
Unshaken by the revolutionary developments of quantum theory, the 
foundations of thermodynamics have demonstrated great resilience. The 
impact of thermodynamics on scientific thought as well as its practical 
impact have been unmatched by any other field of science. Its applications 
range over physics, chemistry, physical chemistry, engineering, and, more 
recently, biology and even black holes. The Principles of Thermodynamics 
offers a fresh perspective on classical thermodynamics, highlighting its 
elegance, power, and conceptual economy. The book demonstrates how 
much of natural phenomena can be understood through thermodynamics.

In a single volume, the author distills the essence of classic texts to give 
a balanced, in-depth treatment of the important conceptual and technical 
developments in thermodynamics. He presents the history of ideas and 
explains how thermodynamics evolved a few basic “laws” that have been 
incredibly successful, despite being developed without knowledge about 
the atomic structure of matter or the laws governing the behavior of atoms. 
The resilience of thermodynamic principles is illustrated by the tremendous 
range of applications, from osmotic pressure and how solids melt and 
liquids boil, all the way to the incredible race to reach absolute zero, and to 
the modern theme of the renormalization group. 

Drawing on his extensive teaching and research experience, the author 
approaches the topics from different angles using a variety of techniques, 
which helps readers to see how thermodynamics can be applied to many 
situations, and in many ways. He also includes a large number of solved 
examples and problems in each chapter, as well as a carefully selected 
guide to further reading. Emphasizing the importance of thermodynamics 
in contemporary science and engineering, this book combines fundamental 
principles and applications to offer an integrated resource for students, 
teachers, and experts alike.
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Preface

The great German physicist Arnold Sommerfeld, in the preface to his book Ther-
modynamics and Statistical Mechanics, had this to say: “In contrast to classical me-
chanics, thermodynamics has withstood the quantum revolution without having its
foundations shaken.” A similar sentiment is echoed in the American physicist Arthur
Wightman’s tribute to Gibbs that “his contributions have survived 100 years of tur-
bulent developments in theoretical physics.” It is this resilience that makes a study
of thermodynamics such a rewarding experience. In fact, not only did thermodynam-
ics survive the revolutionary developments of quantum theory, it, in the hands of
the great masters Planck and Einstein, played midwife to the very birth of quantum
theory. Behind this resilience lies the great generality of the principles of thermo-
dynamics. Usually when principles are too general, their effectiveness gets limited.
But in the case of thermodynamics, its impact both on scientific thought as well as
its practical impact have been unmatched by any other field of science. As for the
latter aspect, the applications of thermodynamics range over physics, chemistry and
engineering, and of late over biology and even black holes!

With the epoch-making developments in Statistical Mechanics, there is an in-
creasing trend among physicists to treat thermodynamics as some sort of a second
fiddle. This is unfortunate indeed as in reality the powers of thermodynamics remain
undiminished. Of course, the two complement each other, making both of them even
stronger. It is also unfortunate in another sense that young readers get the mistaken
impression that statistical mechanics is easier while thermodynamics is nearly in-
comprehensible. This is partly because at that level, statistical mechanics is almost
algorithmic, while thermodynamics seems to require constant revision of its basic
tenets. In fact, one often needs, as for example in the case of magnetism, the guid-
ance of thermodynamics in proper applications of statistical mechanics.

In this book the focus is entirely on what Pippard calls Classical Thermodynam-
ics. My intention is certainly not to belittle the greatness of statistical mechanics. It is
more to highlight the elegance, power, and conceptual economy of thermodynamics.
To see how much of natural phenomena can be comprehended, even highly quanti-
tatively, by thermodynamics on its own. I find it gratifying that Max Planck, Fermi,
and Pippard have written their great books in a similar spirit. That this classical ther-
modynamics can be succesfully applied even to a manifestly quantum state like the
Bose-Einstein condensate is yet another example of the resilience mentioned above.

All this granted, I am sure many would like to ask “Why yet another book on ther-
modynamics?.” It is true that there are many many books on this subject, and some
of them are classics. I would say, in response, that first of all there should always be
space for more books. No two serious authors will have the same perspective and
emphasis. But on a more serious note, I found, while teaching courses on this sub-
ject at the Chennai Mathematical Institute, that even the classics were not uniform
in their choice of topics. By this I do not mean the applications part. They are too
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xiv Preface

vast anyway to be included in any single book. I mean that even when it came to
the basic aspects there was this non-uniformity. It was, therefore, my desire to distill
in one book the essence of many of these classics, and more. It is unlikely that this
book is ever going to replace the classics. But my hope is that it will single hand-
edly complement most of them. As can be gleaned both from the Table of Contents
and the extensive subject index, I have given detailed coverage to a number of ba-
sic topics. I have also included historical background without interfering with the
scientific content, as I strongly believe that a history of ideas is as important as the
ideas themselves. My second goal was to help enlarge the scope of thermodynamics
for teaching purposes. My third goal was to produce a handy reference for experts. I
hope I have succeeded, at least to some measure, in these aspects. Needless to say, I
have not only relied on the great classics, but also on some pedagogically excellent
sources, which I have described at the end of chapter 2. I have also included a reading
guide to help the readers on the one hand, and teachers on the other.

Writing a book is a venture that can not be undertaken without the support and
encouragement of many. Firstly, I thank my daughter Shantala for prevailing over
me, time and time again, to write books to make my pedagogical skills available to
a larger audience. I thank both her and my wife, Jayanthi, for all the difficulties on
the personal front that had to be endured during the writing, and for the continu-
ous enthusiasm they showed throughout. I thank Prof. Dr. Gmehling and Prof. Joerg
Krafczyk of the Dortmund Data Bank for their immense help and permission to use
their data on water. I thank David Fausel and CRC Press for permission to repro-
duce data on specific heats from the Handbook of Chemistry and Physics. On the
production side, I thank Aastha Sharma, David Fausel, and Rachel Holt from Tay-
lor and Francis for patiently dealing with my never ending queries. Shashi Kumar’s
continuous help with LaTeX related matters and style files played a vital role in the
production of the manuscript. I thank him profusely for the same. I am indebted to
Rama Murthy of Indian Institute of Science for his meticulous drawing of the fig-
ures, and for his patience with many redrawings. I thank my friends Sharada Babu
and S.A. Prasad for their permission to use their father’s photograph in the dedica-
tion. I thank my uncle Prof. M.V. Narasimhan for innumerable discussions on heat
engines and entropy. Finally, I would like to thank the students of the 2010 batch of
BSc Honours(Physics) at the Chennai Mathematical Institute for sensitizing me as to
how to teach a subject like thermodynamics properly!

Chennai, February 2013 N.D. Hari Dass



Guide for readers and teachers

I have written this book with the objective that it can address i) beginning undergrad-
uate students, ii) more advanced undergraduate or beginning graduate students, iii)
teachers, and iv) experts and researchers. The entire material should be easily acces-
sible to all except the beginning undergraduate students. In this guide, I wish to point
out a practical road map to each one of these categories.

A basic knowledge of calculus is essential for all. My suggestion is to start with
chapter 16; the beginning undergraduates must first master the first two sections of
this chapter. After that, depending on their interest, they can master the rest of the
sections. For the other categories, I would recommend reading this entire chapter
thoroughly.

Teachers

Teachers can use this book in a variety of ways. They can use it to augment the
courses they are already teaching by using selective portions of the book as per their
requirements. They will benefit from the large number of solved examples and prob-
lems in each chapter. Alternately, they can split the material into two courses a) a
beginning undergraduate course, and b) an advanced course.

For the beginning undergraduate course: the first three sections of chapter 1, all of
chapter 2, skip sections 3.2 and 3.3 but otherwise cover all other sections of chapter
3, all of chapter 4, skip chapter 5 and chapter 6, cover all of chapter 7, skip chapter 8,
cover all of chapters 9 and 10, cover only the first three sections of chapter 11, only
the first two sections of chapter 12, skip chapter 13, cover the first two sections of
chapter 14, and skip chapter 15.

For the more advanced course, whatever was skipped above can all be covered.

Students

Beginning undergraduate students can follow the same guidelines as given to the
teachers above in designing a beginning undergraduate course. The more advanced
students will be able to follow the entire book.

It is highly recommended to understand the solved examples as well as attempt as
many problems as possible. It is also very important to follow the suggested reading
at the end of chapter 2.

Experts and Researchers

This category should find the entire book very useful. In several places, reference
has been made to original literature.
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xvi Guide for readers and teachers

Solution manual

A solution manual will be made available in which solutions to all the prob-
lems will be given. For lack of space many important topics like chemical reac-
tions, saturated solutions, surface tension of solutions, equilibrium in external force-
fields etc. could not be adequately discussed in the main text. These have been ad-
dressed in the solution manual. At any time, the author may be contacted at nd-
hari.dass@gmail.com for your suggestions, comments, and any help.



1 The Beginnings

Like all sciences, the subject of thermodynamics too grew out of systematizing em-
pirical data. Needless to say, data has no meaning unless viewed within a reasonably
well-defined conceptual framework. The beginnings of such a framework is of course
in day-to-day sense perceptions and experiences. The notion of hotness and coldness
must have been around for a very long time. An important part of this experience is
also the recognition that upon contact, the hotter body grows colder and the colder
body grows hotter.

Another very important, though somewhat abstract, empirical notion is that of
equilibrium. Taking the example of mixing, say, hot water with cold water, it was
recognized that after some reasonable time, the bodies reach a common hotness, and
left to themselves, would continue in that situation. In fact, experience tells us that
this property of equilibrium holds even when several objects are brought in contact.
So, for example, if three samples of water all with different hotnesses are mixed to-
gether, they would all reach the same hotness. This is true if instead of mixing the
same substance at different hotnesses, one brings in contact totally different materi-
als. For example, if a chunk of iron, a chunk of copper and a volume of water, all
with different hotnesses, are brought together, they would all reach the same hotness
eventually.

This leads to the following highly non-trivial property of thermal equilibrium: if
bodies A and B are in thermal equilibrium, and bodies B and C are also in ther-
mal equilibrium, then A and C are necessarily in thermal equilibrium. This obvious
sounding, innocuous looking property is so essential for the consistency of the sub-
ject of thermodynamics that Fowler [18] has suggested elevating it to the status of a
law, and consequently it is often called The Zeroth Law.

There are a few subtle points that are worth emphasizing in the context of thermal
equilibria. In the example of the mixing two substances mentioned above, it is clear
that some time has to elapse before equilibrium is reached. But how much time?
This is strictly speaking beyond the purview of thermodynamics discussed in this
book, which is called equilibrium thermodynamics. It turns out to be a very difficult
question anyway. For example, if we live in a static universe (which we do not) and
if the basic laws are laws of classical mechanics, the two systems will eventually
go out of equilibrium! Of course, one has to wait for super-astronomical times, but
in classical mechanics this is among the very few exact results. The phenomenon is
called Poincaré Recuurence. So, one has to wait long enough for equilibrium to set
up, but not wait too long. Even ignoring the Poincaré Recurrence, the very fact that
systems are not perfectly isolated can also take them out of equilibrium.

The other point is that the nature of the contact between systems has to be qual-
ified more carefully. Whatever has been said so far only holds when contacts are
such that only heat can be exchanged between the two systems. Such conditions are
usually called constraints, or more picturesquely called walls.

1



2 The Principles of Thermodynamics

1.1 Temperature and thermometry

A real progress in this process of theorizing and conceptualizing was the recogni-
tion of the notion of temperature as a measure of hotness. The main bases for this
concept are the following empirical facts: i) The fact that when bodies are in equi-
librium they acquire the same hotness would mean that they will also have the same
temperature. ii) The property of thermal equilibrium mentioned above has the im-
portant consequence that it would be possible to decide if two bodies are in thermal
equilibrium without having to bring them into actual contact; this can be done by
simply measuring their respective temperatures. If their temperatures are the same,
they have to be in thermal equilibrium.

That raises the question as to how to measure the temperature of a body. Since
the abovementioned aspects of thermal equilibrium do not depend on the relative
sizes of objects, an important corollary is that by making one of the objects, to be
eventually called a thermometer, very small, so that its contact with the bigger object
does not in any appreciable manner affect the thermal condition of the bigger object,
it would be possible to monitor the hotness of the bigger object by simply monitoring
the hotness of the smaller system or, in other words, its temperature.

That still leaves open the question as to how to decide what the temperature of the
smaller body, the thermometer, is. The empirical fact that heat affects the material
state of bodies can be exploited for answering this. It can be done by measuring one
of the properties of the thermometer, like its volume. For example, bodies expand
upon being heated (mostly, but there are very important exceptions like ice on heating
actually shrinks in volume). Therefore, properties like the volume of an object at
some prescribed pressure can be used as a measure of its temperature. This is the
basis of the so called thermometry.

But it may come as a shock to know that how this is to be done, i.e define the
temperature of the thermometer in terms of, say, its volume, is essentially arbitrary.
This can lead to troubling thoughts as to how a temperature scale that is fixed arbi-
trarily can play any role in a scientific theory. In particular, it can lead to worries as
to how, say, two different scales of temperatures so defined can still be compatible
with each other? We shall address these important concerns with an explicit model
for a thermometer. But it is worth pointing out that such basic difficulties are neces-
sarily there in every branch of physics. If we take time as an example, and a clock in
place of the thermometer, questions like what defines the quantity one calls time and
how exactly should the markings on a clock be determined are precisely the sort of
questions we are encountering in thermometry!

Let X(t) be some temperature-dependent property of some system as a function
of its temperature t. It could, for example, be the volume of a gas under some fixed
pressure P0. But let us keep the discussion general and not specify what X(t) is.
The thermometer can essentially be thought of as a measuring device for X(t), the
difference being that its readings give out temperatures in place of values of X.

The first thing one has to do is choose two fiducial points on the thermometer. In
simple words this means we should mark two positions on the thermometer which
correspond to the temperatures, according to this particular thermometer, of two stan-
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dard states. For example, these can be taken to be the freezing point of water and the
boiling point of water, both at one atmospheric pressure. Thus, thermometry is a re-
lation giving t in terms of the higher fiducial temperature TH , lower fiducial temper-
ature TL, where the scale agrees with some standard scale, along with the measured
values of X at these three temperatures.

Let us arbitrarily mark the freezing point as 0 and the boiling point as 100 (as for
example in the Centigrade scale; in the Fahrenheit scale these would be 32 and 212
respectively) on all thermometers. Let the values of the quantity X at these fiducial
temperatures be X0 and X100. Next, one subdivides this interval in X-space into N
uniform divisions with N+1 points. The value of X at the point labelled n is given by
X (n) = X0+(n−1)/N (X100−X0). There should be no confusion between the num-
bers in the superscript and those in the subscript. The numbers in the subscript refer
to the temperatures of the fiducial points (on the centigrade scale in this example),
while the superscripts refer to the marker positions. The important point to bear in
mind is that the markers on the thermometer corresponding to these values will also
be equally spaced as the thermometer is just a measuring device for X.

So far we made several arbitrary choices, even after fixing the substance to be used
in the thermometer as well as its property used for measuring temperatures. There
is one more arbitrariness, which may come as a surprise to some. Even though we
have N+1 equally spaced markers on the thermometer, it is not necessary to assign
numerical values to these markers in a uniform way! These numerical values will be
the ’temperatures’ read out by the thermometer. Let us look at two concrete examples
to clarify the situation.

1.1.1 Uniform temperature scale

The simplest is to adopt a uniform or linear scale. In this case, the numerical values
attached to the markers (temperatures) are given by

t(n)

100
=

(
X (n)−X0

)

X100−X0
=

n− 1

N
(1.1)

Thus we can mark one hundred points separated by Δt = 1 or two hundred points
separated by Δt = 0.5 etc. with Δt = 1/N in general. The larger the number of
subdivisions, i.e the value of N, the more accurately can the temperature be measured
by this thermometer. We can work out the temperature dependence of X when this
temperature scale is used:

X(t) = X0+
X100−X0

100
t (1.2)

which says that X increases linearly with t. But it should be borne in mind that this
linear behaviour of X is an artifact of the way this particular temperature scale was
defined. It is easy to generalize these considerations when the fiducial temperatures
are arbitrary, and even on an arbitrary scale and not just on the centigrade scale as
exemplified here.
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For many students, this can be a source of great confusion. Often it is asked, does
X really vary linearly with temperature? The point is that this question does not have
much content. To specify temperatures, one must say which scale of temperature
has been used. Depending on that, the same physical quantity may show different
temperature-dependence. In the above example, X(t) varies linearly with tempera-
ture simply because the temperature scale was as defined in eqn.(1.1). But we have
to show that physically sensible conclusions, like whether a body A is hotter than B,
or whether C and D are in equilibrium etc. are indeed independent of the arbitrary
definition of the temperature scale.

1.1.2 Non-uniform temperature scales

To clarify these, let us define another scale of temperature, and for ease of com-
parison take the same fiducial states, i.e freezing and boiling points of water at one
atmosheric pressure. Let us still call these 0 and 100 degrees respectively. But in-
stead of defining temperature according to eqn.(1.1), let us define it according to the
admittedly more complex

t∗

100
=

√
(X −X0)

X100−X0
=

√
n− 1

N
(1.3)

Even according to this new scale, when X = X0 the temperature t∗ = 0 and likewise
when X = X100, t∗ = 100. Therefore at the fiducial states, by design, all temperature
scales agree. But they generally do not agree elsewhere. The temperature dependence
of X according to the new scale is

X(t∗) = X0+(X100−X0)

(
t∗

100

)2

(1.4)

Now we see that the same physical quantity X has a quadratic temperature depen-
dence according to t∗-scale. It should be kept in mind that X100,X0 are physical
values of X and are therefore independent of any temperature scale.

Suppose we have two bodies A and B, and that our thermometer shows values
XA,XB when brought in contact with them. As already stressed, XA,XB in themselves
do not depend on any temperature scale. Further, let XA > XB when A is hotter than
B. Then, according to the t-scale, tA > tB and indeed t is a good measure of hotness.
But it is easily seen that t∗A > t∗B also, so that the t∗-scale, which has nothing to do
with the t-scale, is also an equally good measure of hotness. Finally, if according to
t-scale the two bodies are in equilibrium, i.e tA = tB, then from eqn.(1.2) XA = XB.
But from eqn.(1.4), t∗A = t∗B. This means that even according to the t∗-scale, the two
bodies are in equilinrium.

Finally, note that it is possible to convert from one scale to another:

t∗

100
=

√
t

100

t
100

=

(
t∗

100

)2

(1.5)



The Beginnings 5

and this conversion is such that a given value of t corresponds to a unique value of
t∗, and vice versa. Because of this, one can, without any loss of generality, always
adopt the uniform scale. But it should be stressed that the natural scale to be adopted
depends on the function X(t). For example, if X(t) = at2, it is obviously better to
adopt the non-uniform scale(quadratic in this case).

1.1.3 Materials for thermometry

Can any physical quantity play the role of X(t) as long as it is temperature-
dependent? The answer is no. Before answering this in mathematical terms, note
that water has a peculiar behaviour at 4 ◦C. Its density is maximum at this tempera-
ture, and decreases both as the temperature increases or decreases from this value.
So if we had used the density (or equivalently the volume) of water in a water ther-
mometer, we would have had the peculiar situation that the temperature would be
ambiguous. More precisely, it is two-valued, one of them above 4 ◦C and the other
below. Hence the mathematical criterion for X(t) to be admissible for thermometry
is that t = t(X) must be single-valued which also means that X(t) itself must be
a monotonically increasing or decreasing function of t. Here t can be with respect
to some other thermometer. While we have illustrated these important properties of
thermometry with just two examples, it is clear that there are infinitely many temper-
ature scales all equally valid.

Clearly the temperatures so measured will depend on the material used in the
thermometer, on how its properties depend on temperature as well as on the tem-
perature scale chosen. An apparent circularity at this stage can be removed by using
several types of thermometers, i.e depending not only on different materials but also
on different properties used for thermometry. Then different thermometers can be
calibrated against each other. The properties of the substances used in thermometers
must, however, obey the general mathematical criteria spelled above.

It is very important to emphasize that though temperature is a measure of hotness
or coldness of a body, there is no absolute quantification of hotness of a body. This
is because of the inherent arbitrariness in the choice of a temperature scale.

It will also become clear that no one substance or one property will suffice to
define a temperature scale with arbitrary range of parameters. At temperatures low
enough that a certain gas will liquefy, a gas thermometer based on this gas can not
obviously be used at low temperatures. In fact under extreme conditions of temper-
ature and pressure, radically different methods of thermometry will come into play.
Their design, the task of their accurate calibration etc. forms a fascinating part of
thermodynamics.

For a very illuminating account of the history of thermometers, including the very
early ones based on human physiology, see [47]. Thermometers based on gases at
low pressures and average temperatures were found to agree rather well with each
other best. We shall also see later that thermodynamics provides a very elegant way
of defining a universal scale of temperature which is independent of all such material
details.
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Example 1.1: Comparing thermometers

Consider two constant volume thermometers, one of which is based on an ideal gas,
and the other on a substance whose pressure at fixed volume follows the law P(T ) =
aT + bT2, T being the absolute scale. Find expressions for the two temperatures T1
and T2 in terms of T. Show that the temperature(on the absolute scale) at which the
discrepancy between the scales is maximal is always the mid-point between the fiducial
temperatures.

Let us take the ideal gas law to be P = cT , where c depends on the molar
fraction of the ideal gas used in the thermometer and its volume. Let the
fiducial points for both the thermometers be at TA,TB with TA < TB. T1 read
on this scale is

T1 = TA +(TB −TA)
P(T)−PA

PB −PA
= T (1.6)

irrespective of c. Likewise, the temperature T2 read on the thermometer with
the second material is

T2 = TA +(TB −TA)
P(T )−PA

PB −PA
= TA +(TB −TA)

aT +bT2−aTA −bT 2
A

aTB +bT 2
B −aTA −bT 2

A

(1.7)

It is easy to see that T2 can be recast as

T2 = T +b′(T −TA)(T −TB) (1.8)

where b′ is a constant depending on TA,TB and b/a (but not on b and a individ-
ually). Therefore the maximum deviation i.e T2−T1 occurs at T = (TA+TB)/2.
This is to be expected as everything is symmetric between TA and TB.

Example 1.2: Uniform and nonuniform scales

Consider two constant pressure thermometers both of which use an ideal gas as the
material. One adapts a uniform scale while the other adapts a quadratic scale. Take the
fiducial temperatures to be 0 and 100 on the celsius scale. If there are N subdivisions

in both cases, find T (n)
1 and T (n)

2 .
On the uniform scale the temperature corresponding to the marker n is

T (n)
1 = 100

n−1

N
(1.9)

while on the quadratic scale

T (n)
2 = 100

√
n−1

N
(1.10)

Thus with 100 subdivisions the first nonzero marking will occur at a tempera-
ture of 10! Clearly, on the nonuniform scale one must take N to be sufficiently
large. If the first nontrivial reading is to be at t=1, N should be 104. For that
case, the second nontrivial reading will be at t3 =

√
2, the next at

√
3 etc..
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Example 1.3: A water thermometer

Water has its maximum density at 4◦C. Denoting this density as ρ4 and the density
of liquid water at 0◦C as ρ0, the variation of density can be modelled as ρ(t) = ρ0+
t(ρ4−ρ0)/4 for 0< t < 4, and by ρ(t) = ρ4+(t−4)(ρ0−ρ4)/4 for the range t ≥ 4.
Discuss the peculiarities of this water based thermometer.

It is clear that density as a function of temperature is not single valued in
this case. In fact, densities at temperatures t + τ and t − τ(on the centigrade
scale) are both equal. Thus a thermometer based on water will not be able to
distinguish these temperatures when τ ≤ 4. However, when τ > 4, i.e when t > 8,
density becomes a single valued function of temperature and water qualifies
to be a good thermometer material as per our earlier discussion. Else, one
will have to use separate water thermometers for the respective temperature
ranges above. However, it must be stressed that the differences in density are
very small in practice. The density at 0◦C is 0.9999 g/cc while the density at
4◦C is 1.0000 g/cc (definition).

1.2 Ideal gas laws

We now turn to a discussion of the thermal properties of the so called Ideal Gases.
An understanding of these is important from many different perspectives including
their relevance for the Gas Thermometers. Historically, long before these empirically
determined gas laws were established, thermometry had already reached a good de-
gree of sophistication. The gas thermometer designs shall be based on these laws. At
this stage it may be hard to motivate what one means by an ideal gas, but that should
become clearer as we proceed.

The immediate temptation for a modern reader is to think of PV = nRT , where
P and V are the pressure and volume respectively, while T is the temperature, n the
number of moles of the gas, and finally R is the so called Gas Constant (it is said that
the letter R is in honour of Regnault, whose work will appear prominently in any
discussion on the development of thermodynamics). But one should resist that for
several reasons, both historical as well as scientific. That this is so can immediately
be seen on noting that temperatures in this equation refer to the Kelvin or Absolute
scale, something that came much after the gas laws were discovered. Equally impor-
tantly, this single equation is a concatenation of three distinct, and equally important,
laws of gases. Each of these is conceptually different and each was discovered at
very different times. It is necessary to pay attention to these nuances to get a proper
understanding of what is collectively called the ideal gas law. That will also turn out
to be crucial to the understanding of gas thermometry.

Denoting temperatures by t (say, as measured by some thermometer according to
some chosen temperature scale), the first relevant law in this connection is the Boyle-
Mariotte law (Boyle 1658, Mariotte 1676; but in those days scientists often discussed
their researches in monographs published many years after their work), which states
that

P(i)V (i) = θ (i)(t) (1.11)
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This laws states that for a given mass of a gas, the product PV depends only on its
temperature. In the above, we have labelled the gases by an index i to allow for the
possibility that while for each species pressure is in inverse proportion to its volume,
the product PV could vary from gas to gas.

In most modern texts, this point is glossed over and the product is taken to be
the same for all gases. But careful historical accounts [42] have asserted that that
was not what Boyle had claimed in actuality. Though Boyle was careful enough to
clearly point out that the said relationship had only been established in a narrow
range of pressures and temperatures, it appears as if his experiments were done only
on air. Therefore the logical possibility that the functions θ (i) could be different must
be allowed for in a careful enunciation of the Boyle-Mariotte law.

For gas thermometry, it makes a considerable difference whether θ (i) is different
for different gases or not. In the physical ranges where θ (t) satisfy the conditions for
consistent thermometry discussed above, if these products are not the same, any one
of them can be used to construct a bona-fide gas thermometer, and in general these
thermometers will not agree with each other, though all of them can be calibrated
against each other. Further, as explicitly shown in the section 1.1 on thermometry,
each of them can be brought to the linear form, a form associated with the text book
formulations, by choosing the thermometer material appropriately. But mention had
been made of the fact that a large number of gas thermometers agree rather well with
each other. This is only possible if for this class of gases the function θ (t) is the same
to a good accuracy. Boyle’s law does not claim any such universality.

In fact, the source of that universality lies in yet another of the gas laws, the so
called Gay-Lussac-Charles’s Law. Gay-Lussac announced his results in 1802 in the
journal Ann. de Chimie but even then he acknowledged the fact “..citizen Charles
had noticed the same property in these gases 15 years ago..”[1]. Therefore, it is ap-
propriate to call this law as the Gay-Lussac-Charles’s law. But what exactly did this
law claim, and what exactly is its impact on gas thermometry?

Unfortunately, textbooks and other modern accounts of this miss the essentials.
They also wrongly attribute to this law conclusions that were never claimed, and
what is worse, conclusions that obfuscate important scientific issues. For example,
many of them claim that according to this law, ’for a given mass at constant pressure,
V
T is the same for all gases.’ As commented before, the Kelvin scale was unknown
at the time, and consequently this could not have been the original formula. Some
others say that according to this law ’the fractional change in volume for a given
mass of any gas at constant pressure is proportional to the change in temperature’
while yet another source claims that according to this law ’the fractional change in
volume at constant pressure for a change in temperature of 1 ◦C is the same for all
gases.’

Fortunately, the English translation of Gay-Lussac’s original French paper is
available [1]. He has recorded his claims in such a precise way as to be far more
useful for the current purposes than any of the modern renderings. It turns out that
Gay-Lussac did not study any detailed temperature dependence of volumes of gases
at constant pressure, nor did he study the the fractional changes in volume per de-



The Beginnings 9

gree Celsius. What he did show was, in his own words, All gases, whatever may be
their density and the quantity of water which they hold in solution, and all vapors
expand equally between the same degrees of heat. In this context, equal expansion
should be understood as the ratio of the change in volume to the original volume,
and the phrase same degrees of heat meaning given initial and final temperatures.
In fact, he studied the expansion as gases were heated, according to him, between
temperatures of melting ice and boiling water. In other words, the precise statement
of the Gay-Lussac-Charles’s law should be taken to be

V (i)
100−V (i)

0

V (i)
0

= f (P)c(0,100) (1.12)

for all gases when their masses are held fixed. Here c(0,100) is a number that de-
pends on the two temperatures of 0 and 100 on the centigrade scale. Combining
eqn.(1.12) with the Boyle-Mariotte law of eqn.(1.11) would give

θ (i)(100)−θ (i)(0)

θ (i)(0)
= f (P)c(0,100) (1.13)

for all i. That is possible only if f (P) is a constant independent of P, and θ (i)(t) =
θ (t) for all i. Furthermore, f (P) can be taken to be 1 without loss of generality and in
that case c(0,100) = θ(100)−θ(0)

θ(0) . Therefore, the true import of Gay-Lussac-Charles
law is that the product PV is indeed the same function of temperature for all gases.

This has the profound consequence that if Gay-Lussac-Charles and Boyle-
Mariotte laws are exact, all gas thermometers based on volumes of gases would
agree with each other. Gases for which these laws are exact will be called Ideal.
When any of the ideal gases is used as a material for a thermometer and a linear
scale is chosen, θ (t) = θ0(1+αt). In that case, the equal expansion of Gay-Lussac
is simply 100α .

1.2.1 The Kelvin scale

Now we come to the second result of Gay-Lussac as declared by himself. according
to him, the equal expansion for all the gases was found to be 100/266.66 on the centi-
grade scale [1]. Equating this to 100α yields α = 1/266.66.Now, θ (t) = θ0(1+αt)
can be reexpressed as θ (t) = (θ0α)(α−1 + t). Hence, the temperature scale can be
taken to be T (t) = 266.66+ t. The modern value of the zero of Kelvin scale ex-
pressed in Celsius is 273.13 as against Gay-Lussac’s value of 266.66. But consider-
ing his times, his value is pretty close indeed. In terms of this new scale the gas law
will take the form PV = kT .

This new scale was introduced by Lord Kelvin and hence carries the name Kelvin
Scale. The Kelvin and centigrade scales are related by just a constant shift. Hence
temperature differentials on both scales are the same. Whereas in the earlier scale,
changes in volume at constant pressure were proportional to changes in temperature,
in the Kelvin scale, volumes of ideal gases are themselves proportional to tempera-
ture. The zero on this scale has the interpretation of being the temperature at which
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volumes of all ideal gases vanish if the pressure is kept nonzero. It is yet another
matter that before such a temperature almost every known gas becomes a liquid to
which the gas laws are no longer applicable.

In reality neither of the above mentioned laws is exact and deviations, even if
small, are frequent. Then the gas thermometers will not all agree with each other, and
there is really no criterion to choose one over the other. For each of them, a Kelvin-
like scale can be introduced, and for each of them their zero on the centigrade scale
will be somewhat different. The same Lord Kelvin also showed how a temperature
scale can be introduced without reference to any material, not even perfect gases (and
therefore independent of any gas law), which shall be called the Absolute Scale of
temperature. In practice, the Kelvin scales of ideal gases is very close to this absolute
scale.

The last ingredient in the gas law is the Avogadro’s law formulated in 1811. Avo-
gadro’s law, as formulated by him, said equal volumes of gases under the same ex-
ternal conditions of pressure and temperature contain equal number of corpuscles.
In modern terminology Avogadro’s corpuscles are the molecules. The seeds for this
law were laid in Dalton’s law of multiple proportions for chemical compounds and
Gay-Lussac’s law of integral volume ratios for gases .

Avogadro formulated this law with an atomistic view of matter. Though today we
know that the nature of matter is indeed atomistic, at the time of Avogadro, and to
even much later times, atomism remained a speculation. Even at the time of Boltz-
mann it remained so, and the first vindication of this age-long and profound conjec-
ture came only in the wake of Albert Einstein’s work on Brownian Motion in 1905.
As emphasized earlier, the spirit of thermodynamics is to involve as little as possible
of microscopic details, whether empirically well established or merely speculative,
in its description. On the other hand, it would be futile to completely ignore the mi-
croscopic reality. Therefore, what is needed is a very minimalistic attitude towards
microscopics.

With this in mind, the famous physical chemist Ostwald, a long time critic of
atomism, suggested to use the concept of moles instead of molecules. A gram-mole
of a gas would be a certain mass characterstic of the gas. For Hydrogen it is 2gms
etc. The Ostwald reformulation of Avogadro’s law would then read equal volumes
of gases under the same external conditions of pressure and temperature contain
equal moles of the gas. Stated this way, and with an operational way of determining
the number of moles in a given mass, all reference to atomism has been removed.
Another equivalent formulation is to say that all gases under the same external con-
ditions have the same molar volumes.

As an example of molar volumes, consider Hydrogen gas whose molar weight is
2gms. The density of Hydrogen gas at 0 ◦C and 1 atm. of pressure is about 9.0×10−2

g/liter. The molar volume is easily calculated to be 22.2 liter. What is remarkable is
that a gram-mole of every gas occupies this very volume at the said pressure and
temperature. This is really a first glimpse into the atomic nature of matter.

The final form of the ideal gas law after combining all the three laws is

PV = nRT (1.14)
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where n is the number of moles, T the temperature in Kelvin, and R the so called gas
constant with a numerical value of 8.31 Joules/K.

1.2.2 Non-ideal gases

As already mentioned, in reality no gas is perfectly ideal and departures from the
gas laws discussed earlier are the rule rather than the exception. Many alternative
equations have been proposed, each with its positive as well as negative features.
Here are just a few of the most prominent ones.
van der Waals equation

(
P+

an2

V 2

)
(V − nb) = nRT (1.15)

Clausius equation
(

P+
an2

T (V + nc)2

)
(V − nb) = nRT (1.16)

Dieterici equation
P(V − nb) = nRT e−

an
VRT (1.17)

Of these the van der Waals equation played a major role in explaining the lique-
faction of gases. In a separate chapter we show how this equation provides a simple
model for almost everything that one needs to learn and understand in thermodynam-
ics.

1.3 Heat and specific heats

As we saw earlier a hotter body on contact with a colder body becomes itself colder,
while at the same time the colder body gets hotter. So it is legitimate to think in terms
of an exchange of heat between the two bodies. This is where the notion of heat
enters the subject. The above process, then, is described as the hotter body giving up
a certain amount of heat to the colder body. The concept at this stage is only intuitive
and heuristic. A quantification of this concept and finally an elucidation of the nature
of heat are among the prime objectives of thermodynamics.

The quantification is done through the following, arbitrarily chosen, criterion: the
unit of heat is a Kcal or kilocalorie, and it is the amount of heat needed to raise
the temperature of 1 Kg of water under one atmospheric pressure from 14.5 ◦C to
15.5 ◦C.

For any body, the specific heat c is given by the amount of heat required to raise
the temperature of 1 kg of the substance by 1K. Denoting the amount of heat by d̄Q,
the definition of specific heat is c = d̄Q

dT . Note that while defining the calorie, the heat
transferred to water was at the constant pressure of one atmosphere. It will turn out
that the amount of heat required to raise the temperature of a body by a given amount
depends on the external conditions. Consequently there are many types of specific
heats. All this will be clarified in great detail as we go along.
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1.3.1 Nature of heat

One of the most important questions in thermodynamics concerns the nature of heat.
It is interesting that none of the gas laws required any understanding of heat for their
formulation. In fact their statement only involves the mechanical notion of pressure,
the geometrical notion of volume in addition to that of temperature and molar con-
tent. While temperature is a measure of hotness, it is not heat per se. This is indeed
a fortunate circumstance as far as the gas laws are concerned, as their validity is not
entangled with the correctness or otherwise of any particular theory of heat.

One of the earliest such was the Phlogiston theory. We shall not discuss this at
all. For one thing, this theory was discarded long ago, and more importantly it had
no predictive power whatsoever. The next serious contender was the Caloric theory,
chiefly propounded by Lavoisier. Unlike the Phlogiston theory, the caloric theory
was capable of making specific and some very sophisticated predictions. The funda-
mental and pioneering works of the genius Sadi Carnot were all based on this theory.
We shall describe Carnot’s seminal work in detail.

The basis of the caloric theory was the following: while heat may be added or sub-
tracted from bodies, it is not obvious whether a concept of a total heat contained by
a body in some thermodynamic state makes sense or not. The caloric theory claims
it does. This theory goes further and states that heat is an indestructible fluid. Con-
sequently, the total heat of a body is the sum total of all heat that has flown in and
flown out, there being no other mechanism to alter the amount of heat in the body.
More precisely, the caloric theory claims that heat is a state function very much like
pressure, volume, temperature etc. This aspect of caloric theory can be expressed in
a mathematically precise manner as then dQ is a perfect differential. We shall first
describe Carnot’s work based on this theory in detail, then discuss various arguments
and experiments that were put forward in its criticism before going on to develop
the theory of heat as understood by post-Carnot thermodynamics. Carnot’s theory
is remarkable in that even in a cyclic process where total heat absorbed has to be
necessarily zero in accordance with the caloric theory, net work can be produced.

The modern theory of heat, in contrast, refutes the caloric theory by claiming heat
can be created and destroyed by other agencies, principally work of various kinds
like mechanical, electrical, magnetic etc. Since it can easily be shown that work
can not be a state function, and in fact depends on the history of how one state was
transformed to another as a result of work performed, it follows that heat can not
be a state function either. The post-Carnot view is that heat is yet another form of
energy interconvertible with other forms of energy like mechanical, electrical etc.
Furthermore, the new thermodynamics specifies a precise conversion factor between
heat and work, a development as revolutionary as Einstein’s famous E = mc2, in
both its conceptual depth as well as its scientific impact. Subsequently, the principle
of conservation of energy takes form as the First Law of Thermodynamics. Contrary
to the impression created that heat can be freely and completely converted to work,
thermodynamics imposes an absolute upper limit to the efficiency with which heat
can be converted to work. This is the content of the Second Law of Thermodynamics,
a law unsurpassed in its depth and a law that has impact even on the most modern
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branches of physics today.
Before turning to a description of Carnot’s work, we shall introduce in more pre-

cise terms notions very basic to the thermodynamic description as thermodynamic
states and their transformations, constraints and walls, and finally the notion of re-
versible and irreversible changes. Carnot uses all these notions in a precise manner in
a way that is completely consistent with their post-Carnot meanings. It appears to the
author that precise formulations of the notion of a state, of reversible and irreversible
process may indeed be due to Carnot himself.

1.3.2 States and transformations

States: By a Thermodynamic State we shall mean the equilibrium states of a system.
Though it would seem natural to include only stable equilibrium states, it turns out
useful to include even unstable and metastable equilibrium states also in the ther-
modynamic state space. So, a thermodynamic state of a single component system is
characterized by well defined values of temperature, pressure and volume. If it is a
multicomponent system, in addition to P, V and T, additional parameters like the mo-
lar fractions are needed to specify the state. If the system is also magnetic, then the
magnetic degrees should also be included.

Equations of State: These are relations between the parameters of a thermody-
namic state that lead to a complete thermodynamic specification of the system. For
example, in the ideal gas case PV = nRT is one such equation. For a more structural
meaning of these equations, please see chapter 6. There are as many equations of
state as there are independent degrees of freedom.

Transformations: Any change of state is a transformation. The changes in the
parameters during a general transformation could be anything subject to the equa-
tions of state. When the transformation connects states whose degrees of freedom
are very close (neighbouring states), the transformation is called infinitesimal. For
both kinds of changes (transformation) a further, very important, distinction should
be made between so called irreversible and reversible changes.

Reversible and Irreversible changes: We can try to illustrate these concepts by
considering a cylinder filled with a gas and fitted with a piston. Imagine the cylinder
in contact with a heat reservoir which is nothing but a body much larger than the
cylinder, kept at a constant temperature. We can imagine loading the piston with
enough weights to completely balance the gas pressure. If we increase the pressure
by a very small amount, the gas will quickly come to a new equilibrium position
at a slightly smaller volume. This is an example of an infinitesimal transformation.
Now reduce the pressure and the gas will start expanding; one can go on reducing the
pressure gently so that after some large number of steps both the volume and pressure
have changed substantially. This would amount to a change that is not infinitesimal.

Now imagine that there is friction between the piston and the cylinder walls. Ir-
respective of which way the changes are made, i.e increase of pressure or decrease
of pressure, the moving piston will dissipate heat. So a sequence of changes in pres-
sure P → P+ΔP → P will dissipate energy both ways, and even though the gas has
been brought back to its original state, the surroundings have certainly undergone
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some change. When that happens, we say the change is irreversible. While reversible
changes are always infinitesimal, infinitesimal changes can be both reversible as well
as irreversible.

But for Carnot’s times this would not be a good example as it presupposes that
friction can lead to generation or creation of heat. Though admittedly correct from
the point of view of modern thermodynamics, such an assertion would not be tol-
erated by the caloric theory. So we should characterize reversible and irreversible
changes in a way that would be insensitive to the actual nature of heat. Such a char-
acterization would be: a reversible change, whether finite or infinitesimal, should be
such that at the end of the combined operation of the original process and its exact
reverse, no changes should have occurred in the surroundings. Any process not ful-
filling this will be deemed irreversible. Carnot indeed used such a refined notion in
his seminal work.

In the specific example of the steam engine, he cited effects such as the heating of
the boiler walls through conduction to be the ones that would spoil the reversibility
of the changes made on the water-steam system. Clearly if the system is expanded
to include not just steam and water, but also various surrounding elements includ-
ing the boiler walls, the seemingly irreversible nature of changes to the subsystem
of steam and water can be reconciled with reversible changes of the larger system.
Precisely such nuances concerning reversibility and irreversibility also show up in
the completely unconnected case of Quantum Measurements!

There is another aspect of irreversibility that is important to highlight; while re-
versible changes have necessarily to be slow (quasi-static) though the reverse is not
true, i.e not every slow change is reversible, sudden changes are, as a rule, irre-
versible. Imagine reducing the pressure on the piston suddenly and by a large amount.
The gas will go through various stages before eventually settling to a final equilib-
rium state. But the path from the initial state to the final is not representable as a se-
quence of intermediate equilibrium states. So in the, say, PV-diagram, an irreversible
change will appear as a sudden jump. The conceptually cleanest characterization of
irreversible changes is given in the context of the second law of thermodynamics, but
in the present context that would be like putting the cart before the horse.

Walls and Constraints Very often, useful and interesting changes are such that
some parameter is held fixed. For example, if we enclose gas in a box of fixed vol-
ume, only P and T are variable and because of the gas law only one of them is an
independent variable. So the set of possible changes is one-dimensional in contrast
to the full, unconstrained changes, which in this case are two-dimensional. Such
changes are called constrained and the constraint in this case is V = conct.. As in
this example, it is the walls that enforce the constraint, Callen picturesquely calls
all constraints as arising due to Walls even though literally that may not be the
case. Changes that maintain volume are called isochoric. Likewise, we can think
of changes under constant pressure, called isobaric. Changes at the same tempera-
ture are called isothermal. Systems can also be completely thermally insulated from
their surroundings and changes are then called adiabatic (care should be taken not to
confuse this word with what is used in classical mechanics). Such changes are also
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called isentropic, i.e the constraint being constant entropy, but we have to wait till
we have discussed the second law of thermodynamics for its justification. Lastly, it
is possible to consider transformations that do not change the number of moles. In
what follows, we shall focus only on such changes. We shall consider changes of
molar concentrations while dealing with phase equilibria.

1.3.3 Some examples

We now present some examples, based on the ideal gas law, to illustrate the concepts
discussed above. Let us start with reversible isochoric processes. Then the only in-
dependent variable for a simple single-component system is either P or T. Changing
one changes the other. An observable associated with such changes is the pressure

coefficient defined as βP = 1
P

(
∂P
∂T

)

V
. For one mole of an ideal gas this can easily be

worked out using the ideal gas law to be 1
T . At close to freezing point of water this

is close to 1
273 , the expansion coefficient used in gas thermometry.

Likewise, if we consider reversible isobaric processes, i.e processes under con-
stant pressure, the independent variables are now V and T. An observable associated

with such changes is the expansion coefficient defined by βV = 1
V

(
∂V
∂T

)

P
. It again

follows from ideal gas law that this is also 1
T , same as the pressure coefficient.

The observable associated with reversible isothermal processes is the fractional

change of volume per unit change of pressure, i.e − 1
V

(
∂V
∂P

)

T
. It is defined with a

negative sign as the volume is expected to decrease with increased pressure. Called
the isothermal compressibility and denoted by κT , for ideal gases it equals 1/P, as
can easily be checked.

An example of an irreversible isothermal process is the mixing of two samples of
a gas at the same temperature but each sample having different volume and different
mass. Likewise, an example of an irreversible isobaric process is the mixing of two
samples of gas at the same pressure but different temperatures. The last two examples
bring out yet another aspect of irreversibility, namely a process is irreversible if it can
proceed spontaneously but not its reverse.

Actually, there are relationships between quantities characterizing these different
constrained processes. That follows from the triple product rule of partial derivatives:

(
∂P
∂T

)

V

(
∂T
∂V

)

P

(
∂V
∂P

)

T
=−1 (1.18)

On using the other very important property of partial derivatives, namely,

(
∂x
∂y

)

z
=

(
∂y
∂x

)−1

z
(1.19)

it is easy to show that
βV

κT
= PβP (1.20)
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It is to be noted that these relations are valid for all thermodynamic systems whether
they are solids, liquids, or gases. Among gases they hold for ideal as well as non-
ideal gases. It is the existence of such very general relationships that makes thermo-
dynamics so powerful. For example, knowing βV ,βP would immediately determine
κT without a need for its independent determination.

Example 1.4: Work by ideal gases

Calculate the work done by an ideal gas for i) an isothermal expansion from volume
V1 to V2 at T; ii) an isothermal rarefaction from pressure P1 to pressure P2 at T; iii)
from volume V1 to V2 during an isobaric process at P; iv) from temperature T1 to T2
during an isobaric process at P, and finally, v) from volume V1 to V2 during an adiabatic
process.

For the ideal gas PV = nRT where n is the number of moles present. The
infinitesimal work done by the system is PdV, and the total work done is the
integral of this along the path describing the process. Without specifying a
path, it is meaningless to talk of the work done as the latter is path-dependent.

i) For isothermal processes T is constant. Since the question specifies
the changes in volume, pressure P is eliminated in favor of V according
to P=nRT/V. This gives the work done in going from V1 to V2 to be
W =

∫
nRT (dV/V ) to be nRT ln(V2/V1). ii) In calculating the work done in

this case, we should eliminate the volume in favor of pressure. This leads to
dW = −nRT dP/P and the total work done is W = −nRT ln(P2/P1). It should
be recognized that this is the same expression as in i) but expressed in terms
of the pressures. iii) It is trivial to find out the work done in this case as
P remains constant, i.e W = P(V2 −V1). iv) Now we eliminate V in terms
of T to get dW=nRdT, therefore the work done is W = nR(T2 − T1). v) In
this case the adiabatic relation gives PV γ = c, where the constant is deter-
mined by the initial pressure and volume. Straightforward integration yields
W = c(V1−γ

2 −V1−γ
1 )/(1− γ).

Example 1.5: Work in arbitrary process

Show that the work done by a gas under arbitrary changes of temperature and pressure
can be determined in terms of the coefficient of volume expansion α and the isothermal
compressibility κT . As a corollary show that for isochoric (constant volume) processes(

∂P
∂T

)

V
= κT

α . Verify this for an ideal gas.

The work done is always given by PdV. V can always be taken to be a
function of T and P. Hence under arbitrary changes of T and P,

d̄W =PdV (T,P)=P(

(
∂V
∂T

)

P
dT +

(
∂V
∂P

)

T
dP)=P(Vα dT −VκT dP)=PV (α dT −κT dP)

(1.21)
Thus knowing the coefficient of volume expansion α and the isothermal com-
pressibility κT , one can always determine the work done under arbitrary
changes dT and dP.

For isochoric processes dV = 0 and hence it follows from the above that(
∂P
∂T

)

V
= α/κT . For an ideal gas, it is easily seen that α = 1/T , κT = 1/P and
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(
∂P
∂T

)

V
= nR/V = P/T .

1.4 Sadi Carnot and the motive power of heat

Now we give a detailed account of Carnot’s seminal work Reflexions sur la Puissance
Motrice du Feu published in 1824, a clear three decades ahead of the formulation of
the first and second laws of thermodynamics. Fortunately, the English translation
Reflections on the Motive Power of Heat is available [5], making accessible to the
English speaking world this great treasure of science, which, unfortunately, was ig-
nored and antiquated even before its greatness was understood and appreciated. Its
greatness was revealed to the world of science largely due to William Thomson (Lord
Kelvin)’s epoch-making paper Account of Carnot’s Theory which appeared in 1849
[71], nearly a quarter of century after Carnot’s work was published. It is remarkable
that Thomson himself was a young man at the time, having just embarked on his
scientific career. The account given here is based both on the original work as well
as Kelvin’s paper.

Carnot’s style of presentation would clearly be found cumbersome and confusing
by the modern reader. It hardly has any equations, and almost all the chief results, of
which there really are very many, are derived in a verbose and descriptive manner.
Lord Kelvin’s account is decidedly more modern both in its perspective, as well as
in its presentation. It does make use of equations as well as of calculus. It gives
a mathematically precise meaning to Carnot’s axioms as well as his results. As a
result of this clarity, Kelvin is able to show that Carnot’s theory contains even more
remarkable results like what has come to be known as the Clapeyron Equation. But
even Kelvin’s account may be found somewhat verbose. In this book, the author
has given a succinct mathematical theory which covers all the principal conclusions
of both Carnot and Kelvin. It also points out very clearly the experimental data that
would have been acid tests for the Caloric theory, an objective that was at the heart
of Carnot’s work.

Carnot makes the Caloric Theory the cornerstone of his analysis, and says about
the former:’....This fact has never been called in question. It was first admitted with-
out reflection, and verified afterwards in many cases with the calorimeter. To deny
it would be to overthrow the whole theory of heat to which it serves as a basis. For
the rest, we may say in passing, the main principles on which the theory of heat
rests require the most careful examination. Many experimental facts appear almost
inexplicable in the present state of this theory. Nevertheless, he expresses his dis-
quiet about this theory quite clearly in the course of his thesis. In fact, to quote him
verbatim, The fundamental law that we propose to confirm seems to us to require,
however, in order to be placed beyond doubt, new verifications. It is based upon the
theory of heat as it is understood today, and it should be said that this foundation
does not appear to be of unquestionable solidity. New experiments alone can decide
the question.

The student of modern science may then wonder the usefulness or the need for
going into details of a work based on what is now known to be incorrect, namely, the
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caloric theory. The answer is that even such a student would be amazed to find how
many deep truths Carnot uncovered, based on wrong premises, that have neverthe-
less survived the later developments. It is indeed a valuable lesson on how scientific
theories are to be assessed. If one had concentrated only on these highly non-trivial
aspects, one may well have come to the conclusion, even to this date, that caloric
theory may after all be right!

The other important lesson that such a student would learn from Carnot’s work
is the precision with which scientific questions can be formulated, and the objective
way in which they can be answered. He introduced techniques of scientific enquiry
which were very original then, and are novel even now! His focus was not so much
on any actually practicable engine; rather, it was on narrowing in on the essentials
of an ideal engine, conceivable in the simplest way, unencumbred by needless com-
plications. It was a precursor par execellence to the later day gedanken experiments.
In its simplicity and range of applicability, its closest intellectual equivalent is the
Turing Machine of Computer Science. Finally, Carnot’s work is a testimony to the
true spirit of enquiry, honestly raising doubts about one’s own work and demonstrat-
ing unswerving faith in experiments as the only arbiters of scientific truth. In fact,
the author believes that one’s grasp of thermodynamics in particular, and science in
general, will be significantly enriched through an understanding of Carnot’s work.

Before proceeding to a description of his work, it is worth making note of the
milestones in the subject that were already known at the time of Carnot. The gas laws
of Boyle-Mariotte, Charles-Gay Lussac, and Dalton were firmly established. Specific
heat measurements by Clement and Desormes, as well as by Delaroche and Berard
were used by him as important experimental inputs in his analysis. The fact that
sudden compression of gases heats them up and equally, sudden rarefaction cools
them was known to him, and quantitative details provided by Poisson were used in
his analysis. In modern terminology, this refers to the so called adiabatic processes.
Carnot was well aware of Laplace’s work on the speed of sound, which had, in a
crucial way, corrected the earlier calculations of Newton by correctly incorporating
the adiabatic changes [35].

Carnot’s objectives: His main objective was to investigate the motive power of
heat. In modern usage, this means the ability of heat to provide mechanical work. The
first important step in this direction was his recognition that the effects of heat can be
manifold, like generation of electrical currents, chemical reactions, volume changes
etc., and that to lay the foundations of a particular effect of heat, it is necessary to
imagine phenomena where all other effects are absent. This is so that the relation
between cause (in this case heat), and the effect (in this case mechanical work), may
be arrived at through certain simple operations.

Therefore he focuses on systems where the sole effect of heat is in producing
mechanical work. In particular, where the mechanical effects arise out of increases
and decreases in volumes under varying conditions of temperatures and pressures.
The two precise questions Carnot sets out to answer are:

(i)What is the precise nature of the thermal agency which produces mechanical
work and nothing else?
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(ii)What is the amount of thermal agency needed to produce a given amount of
work?

With respect to the second question, he further raises the issue of whether there is
any limit to the amount of work produced by a given amount of the thermal agency.

Cycles Carnot argued that as thermal agency not only produces work, but also al-
ters the state of the system, it is in general not possible to disentangle the two aspects
of heat from each other. For example, when we heat a gas at constant temperature,
say, the gas expands leading to a change of state (to a new density) and at the same
time work is performed by the expanding gas against the pressure. To circumvent
this, Carnot envisages a sequence of operations that brings the body back to its orig-
inal state. That way, the body having been returned to its original state, the work
performed can be related solely to the thermal agency. Thus he introduced the novel
notion of cycles. It is very important to emphasize that in the caloric theory,
the total heat absorbed or given out in a cycle has to be exactly zero. Therefore
whatever Carnot calls the thermal agency, it can not be the total heat absorbed.

Equivalently, heat is also a function of the state only and ought to be representable
as a singlevalued function of the state Q(V,T ), Q(T,P) etc. In particular dQ is a per-

fect differential and partial derivatives like
(

∂Q
∂V

)

T
are perfectly meaningful mathe-

matically. This will be in great contrast to the situation in post-Carnot development
of the subject, which we shall name the new thermodynamics, for ease of reference.

Thermal agency according to Carnot Since in a cycle the body returns to its
original state, and as per the caloric theory the amount of heat in a body depends
only on its state, it follows that the total heat absorbed must necessarily be zero.
What, then, is the thermal agency responsible for producing work at the end of a
cycle, since it can not obviously be the heat absorbed?

Carnot observes, after a careful examination of various heat engines that perform
work, that in all of them heat enters the engine at a higher temperature, and leaves
at a lower temperature. So he asserts that it is this fall of the caloric from a higher
temperature to a lower temperature that characterizes the thermal agency. Hence,
according to Carnot, work arises not due to an actual consumption of caloric, but to
its transportation from a warm body to a colder body. He then likens the situation
to the manner in which a water wheel performs work. There the agency responsible
for work is the water falling from a height; the work performed depends both on the
quantity of water falling, as well as the height through which it falls. After the work
has been performed, the amount of water is unchanged.

In fact, Carnot, in the light of the caloric theory, sees a perfect parallel between
the water wheel and heat engines; the quantity of water of the former corresponding
to heat or the ’quantity of caloric’ of the latter, the height of fall of the former cor-
responding to the difference in the temperatures at which heat enters and leaves the
engine. The caloric theory says that the amount of caloric, which is neither creatable
nor destructible, is invariable, and in the water wheel the amount of water is likewise.
The comparison continues to be apt even when we consider another subtle concept
in Carnot’s work, i.e reversibility, as we shall see soon.

Ideal Heat Engines and Reversibility The next important question raised by
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FIGURE 1.1 The Water Wheel

Carnot concerned the notion of the most efficient utilisation of the thermal agency in
providing work. As is intuitively obvious, there should be no wastages of the thermal
agency. The following ingenious criterion was found by Carnot: the most efficient
(perfect) engine is such that, whatever amount of mechanical effect it can derive
from a certain thermal agency, if an equal amount be spent in working it backwards,
an equal reverse thermal effect will be produced. This laid the foundation for the
all important notion of reversibility in thermodynamics, and for that matter, quite
generally in physics. Recall our earlier characterization of a reversible change to be
such that at the end of the combined operation of the original process and its exact
reverese, no changes should have occurred in the surroundings. Clearly, Carnot’s
criterion ensures this.

FIGURE 1.2 A heat engine and its reverse in Carnot theory.

This criterion for reversibility can in principle allow irreversible changes of a type
where less work done in reverse could restore the original thermal agency. It would
be irreversible by the earlier criterion that the original operation combined with the
reverse would supply work to the surroundings at no cost of thermal agency. But such
an irreversible process can not be allowed as it amounts to a perpetual machine which
can supply indefinite amount of work at no cost. Hence the irreversibility must be
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such that, when run in reverse, it must take more work to restore the original thermal
agency. However, it is clear that perfectly reversible engines permit the construction
of perpetual machines; but they can not perform any useful work. In practice, perfect
reversibility is anyway not possible to achieve, and even perpetual machines of this
limited kind are not possible.

Quite obviously, the reverse process should first of all be a physically realizable
process. Taking the water wheel as the example, clearly the reverse process, i.e of
pumping water from a lower level to a higher level, is certainly physically realizable.
Now if the wheel mechanism and other mechanisms involved in the water wheel are
such that no work is dissipated in them, clearly the reversibility criterion of Carnot
will be fulfilled. In the case of the steam engine, wasteful effects like conduction
of heat through the walls of the boiler, for example, will degrade the efficiency for
obtaining maximum possible work and therefore reversibility requires their absence.

Therefore, the first important criterion for a perfect heat engine according to
Carnot is that it should be reversible. The criterion for reversibility enunciated by
him is conceptually the simplest and most straightforward, with no hidden assump-
tions. For future reference, it is worth emphasizing that it is logically independent of
the Second Law.

Universality of Ideal Heat Engines Just using the notion of reversibility, and
that of an ideal heat engine, Carnot proved a far reaching result concerning the uni-
versality of all ideal heat engines. It is indeed a stroke of genius. The important
question posed by Carnot was whether the maximum efficiency of ideal heat engines
depended on their design or not. In other words, given ideal heat engines of many
kinds, will some of them be more efficient than others or not?

FIGURE 1.3 Universality of Carnot engines FIGURE 1.4 Universality of Carnot engines

It would appear at first sight that the answer to such a very general question will
not be easy to find, but Carnot solves it in a truly ingenious manner. Suppose there
are two ideal heat engines C,C′ such that for the same thermal agency, i.e a certain
amount of heat Q falling through the temperatures TH ,TL with TH > TL, they deliver
different amounts of work W,W ′ with, say, W ′ > W. Carnot considers splitting W ′
into W +ΔW, and use W to work C backwards. Then, since C is ideal and hence
reversible, run in reverse it will produce the same thermal agency as C but in reverse,
i.e it will extract Q from TL and deliver all of it to TH . The net effect of runningC′ and
the reverese of C together is then that no net thermal agency is used, yet there is net
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work ΔW produced. The cycles can be repeated forever producing work indefinitely
out of nothing. This, Carnot argues, is inadmissible and will violate the very basis of
physics.

Consequently, Carnot arrives at what is perhaps one of the most remarkable sci-
entific truths, namely, that all ideal heat engines must deliver the same amount of
work for a given amount of the thermal agency. It would still be possible to construct
perpetual machines but of the kind that perform no useful work.

The true import of this universality of all ideal heat engines is truly mind-
boggling. For any given ideal heat engine, this efficiency, i.e the amount of work
performed for a given amount of thermal agency (it should be carefully noted that
efficiency has a different meaning in the new thermodynamics), will naturally depend
on a number of properties of the substance employed in the engine. For example, in
the case of steam engines, it would involve such details as the latent heat, density
of both the liquid and vapor etc. Yet, the combined dependence has to be such as
to yield a universal efficiency. It has the further deep implication that, knowing the
value of this universal efficiency for one substance, say, air, would allow determina-
tion of some property of another substance, say the latent of steam at some particular
temperature, without the need for any experimental effort!

The only parallel one can think of is Einstein’s Principle of Equivalence in the
theory of Gravitation; there too, a theoretical principle, if true, would determine the
behaviour of all systems under the influence of gravitation if one knew their be-
haviour in accelerated frames. In that sense, Carnot’s universality is also a principle
of equivalence, i.e the equivalence of all ideal heat engines. One may even say that
it is conceptually on a firmer footing as its invalidation would lead to extraction
of indefinite amount of work at no cost, and hence the end of all physics, whereas
Einstein’s equivalence principle could in principle have been found to be invalid ex-
perimentally!

The Carnot Cycle The cycle of reversible changes that Carnot envisaged as a
means of addressing the question of efficiency of ideal heat engines consists princi-
pally of four stages in the following order: (i) an isothermal dilation at a temperature
TH , (ii) an adiabatic dilation leading to a cooling from TH to TL < TH , (iii) an isother-
mal compression at TL, and finally, (iv) an adiabatic compression. At the end of the
fourth stage, the system is to return to its original thermodynamic state at the begin-
ning of (i).

FIGURE 1.5 Schematic setup of a Carnot cycle

There is, however, a certain difficulty of an operational nature as the Caloric the-
ory requires that the heat absorbed during the first stage must exactly match the heat
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relinquished during the third stage. In other words, while the end points B and C
can be freely chosen, the end point D has to be so chosen that the last stage from D
restores the system to its original starting point, and it is not clear how to identify
such a D. To circumvent this, Kelvin, and Maxwell, suggested variants of the cycle,
which we shall take up shortly.

Though Carnot discussed the cycles both for an air engine in which the working
substance is any ideal gas, as well as the steam engine where the working substance
at every stage is water and steam in equilibrium, let us discuss the cycle for the air
engine first. This is because Carnot makes confusing statements about the realiza-
tion of a reversible steam engine, even in an ideal sense. As Kelvin remarks in his
commentary (he thanks Clapeyron for the clarification), there are no such difficulties
and even for the steam engine, the same sequence of steps can be followed. The only
thing to be kept in mind is that at all stages the temperature of the water equals the
temperature of vapor.

FIGURE 1.6 Construction of a Carnot cycle.

Carnot overcomes the operational
difficulties (i.e of ensuring that the heat
absorbed during (i) exactly matches
the heat relinquished during (iii)) as
follows (see next figure): start with
the system at A′(P′,V ′,TH and let
it, under isothermal expansion, go
to B(PB,VB,TH); then let (ii) be the
adiabatic process taking B to any
C((PC,VC,TL)) such that C is at tem-
perature TL; in the next step, let
(iii) isothermally take C to any state
D((PD,VD,TL)); and let the adiabatic
process (iv) take D to A((PA,VA,TH))
which is at the same temperature as
the starting temperature TH . The oper-
ational difficulty now manifests itself in that A need not necessarily be the same
state as A′, though both of them are at the same TH . But the point of Carnot is that an
isothermal dilation starting from A has to reach A′, and from then on simply retrace
the earlier path A′B. Now to get the Carnot cycle as prescribed earlier, all one has to
do is identify the entire path AA′B with the stage (i). Since no heat enters or leaves
the system through the phases (ii) and (iv), it follows that the heat absorbed during
(i) has to necessarily match the heat given out during (iii).

Carnot had also explicitly characterized stage (iii) to be such that it gives out all
the heat the system had absorbed during (i). Kelvin points out that spelled that way,
this is the only part of the specification of the cycle that is explictly sensitive to the
correctness of the Caloric theory. Kelvin sought to free the description from this by
requiring the end point D of stage (iii) to be such that the fourth stage takes it to
the starting state of (i). Nevertheless, this does not solve the operational problem of
locating such an end point. Maxwell’s prescription, which is completely operational,
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was to start from some B at TH , take it to some C at TL via an adiabatic dilation, take
the system from C to any D, also at TL, through an isothermal dilation, take D to
some A, as long as it is at TH , and finally an isothermal dilation from A has to take
it to B. It should be noted that this is pretty much the same strategy that Carnot also
advocates.

The cycle for an ideal steam engine can also follow the same four stages with the
important difference from gas engines being in the fact that isothermal trajectories
are also isobaric, i.e at constant pressure. This is because the vapor pressure of sat-
urated vapor depends only on the temperature. This fact, as beautifully analyzed by
Clapeyron [6] , actually allows the universal Carnot efficiency to be evaluated en-
tirely in terms of physically observable properties of the water-steam system, as will
be discussed shortly.

The cycles are shown for the steam engine, as well as the gas engine in the next
figure. For both of them, ABC is the expansion phase and CDA the contraction phase.
A part of both of these is isothermal (AB,CD), and the other adiabatic (BC,DA).
During the isothermal phases, for a given volume, the pressure during the expan-
sion(say, at P2) is always higher than the pressure during contraction (at Q2). No
such easy comparison is available during the adiabatic phases. By drawing the verti-
cals P1Q1,P3Q3 it is seen that at a given volume, the pressure during the expansion
is always higher than the pressure during contraction, as shown in the next figure.

FIGURE 1.7 Carnot cycles for air and steam engines.

Hence the mechanical work done by the system during expansion is greater than
the work done on the system during contraction. This way, Carnot concludes that
net work is done by the system at the end of the cycle. Kelvin uses the graphical
method to show that the work done is the same as the area of the curve ABCDA.
The graphical methods are originally due to Clapeyron. For the modern student, that
the area in the PV-diagram represents the work is a straightforward consequence of
calculus, but in the beginnings even this was a novel way of looking at things.

Carnot’s style of analysis As already mentioned, Carnot hardly made use of
equations in his analysis, which were mostly verbal, augmented at most by simple
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arithmetical manipulations. Nevertheless, he made so many far reaching conclusions
with remarkable precision. We shall demonstrate this by a finer mathematical analy-
sis whose conclusions, as shown, coincided with his assertions made verbatim. But,
to the modern reader, following Carnot’s logic, though impeccable, would indeed be
tiresome. We illustrate this by his analysis of the relationship between specific heats
of ideal gases, as an example.

First of all, he uses the Gay-Lussac law to argue that when a given mass of a gas is
heated at constant pressure from 0 ◦C to 1 ◦C, the fractional increase in its volume is
the same for all gases and equals the fraction 1

267 (the modern value would be closer
to 1

273 ). Therefore, the gas initially at (P,V,0 ◦C) would go to (P,V + V
267 ,1

◦C) the
difference in heat between these two states is by definition the specific heat at con-
stant pressure (for the given mass). He also uses the experimental data of Poisson
that under an adiabatic compression which raises the temperature of air by 1 ◦C,
its volume decreases by a factor of 1

116 . Therefore, the heat content of the gas at
(P,V,0 ◦C) and at (P′,V − V

116 ,1
◦C) are the same (here P′ is the pressure the gas

would have at 1 ◦C when its volume is V − V
116 ). On the other hand, if the gas had

been heated at constant volume, the heat required to raise the temperature by 1 ◦C is,
by definition, the specific heat at constant volume (again for the given mass). Hence,
the specific heat at constant volume is also the difference in heat between the states
(P′′,V,1 ◦C) and (P′,V − V

116 ,1
◦C). Now these two states are at the same tempera-

ture but at different volumes. Carnot observes that the difference in their heat must
be proportional to the difference in the volume V

116 . On the other hand, by similar
reasoning, the specific heat at constant pressure will equal the difference in heat be-
tween the states (P′,V − V

116 ,1
◦C) and (P,V + V

267 ,1
◦C); these are also at the same

temperature, and therefore, the difference in their heat must also be proportional to
the difference in their volume, which is now V

116 +
V
267 . It should be emphasized that

the proportionality factor is the same as before. Let us call it X, for ease of reference.

From this rather verbose analysis, he rightly concludes that the ratio of the specific
heat at constant pressure to the specific heat at constant volume is 1+ 116

267 , i.e the
constant pressure specific heat is always greater than the constant volume specific
heat. This is usually attributed to First Law, but Carnot’s analysis shows that it is
much more general. What is even more striking is his conclusion about the difference
in these two specific heats. By the reasoning given above, this difference must be
X V

267 . While the number 1
116 was for air only, the number 1

267 , by Gay-Lussac law,
is the same for all ideal gases. Thus, the difference in the specific heats is completely
insensitive to the details of the individual gases. In fact, a little introspection shows
that Carnot need not have used Poisson’s data at all!

In the next step of the reasoning, too, Carnot displays absolute brilliance. He
considers two ideal heat engines working with different volumes and just by us-
ing some properties of the ideal gas equation such as that for a given fractional
change of pressure at the same temperature produces the same fractional change
of volume etc., he demonstrates that X ·V is the same function of temperature for all
gases. Thus, the difference in the specific heat at constant pressure and the specific
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heat at constant volume being equal to X V
267 , it is the same for all ideal gases at a

given temperature, and is independent of the density.
Introduction of symbolic manipulation already makes the above arguments,

though correct, more transparent. Let us, for ease of presentation, consider one mole
of a gas. The heating at constant pressure, leading to an increase of temperature by
1 ◦C, and the adiabatic compression for air also leading to an elevation of the tem-
perature by 1 ◦C can be described by the simple equations

Q(P,V +
V
267

,1)−Q(P,V,0) =CP Q(P′,V − V
116

,1) = Q(P,V,0) (1.22)

The heating by one degree at constant volume is likewise described by

Q(P′′,V,1)−Q(P,V,0) =CV (1.23)

It immediately follows that

CV = Q(P′′,V,1)−Q(P′,V
115

116
,1)≈

(
∂Q
∂V

)

T
V

1

116

CP = Q(P,V
268

267
,1)−Q(P′,V

115

116
,1)≈

(
∂Q
∂V

)

T
V (

1

116
+

1

267
) (1.24)

We have symbolized Carnot’s principal axiom that heat is a state function by using

Q(P,V,T ). The factor X introduced earlier is precisely
(

∂Q
∂V

)

T
.

1.4.1 Infinitesimal and finite cycles

In the above, changes of volumes and temperatures were very small. Let us
now discuss Carnot’s novel, and extremely useful, concept of infintesimal re-
versible cycles. These are reversible cycles where each of the four stages is
infinitesimally small. He argues that any finite reversible cycle can be shown
to be equivalent to a large number of suitably chosen infinitesimal cycles.

FIGURE 1.8 Composing Carnot cycles

We illustrate how two Carnot cycles op-
erating between the same two temper-
atures TH ,TL can be combined into a
single Carnot cycle. Consider two such
cycles A1B1C1D1A1 and A2B2C2D2A2

as shown in the next figure, such
that the state A2 is the same as the
state B1, and D2 the same as C1. We
can represent each cycle by the or-
dered set of its segments; for exam-
ple, A1B1C1D1A1 can be represented
by A1B1,B1C1,C1D1,D1A1. A segment
B1C1 is to be understood as the ther-
modynamic reverse of the path A1B1.
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Now the two cycles can be composed by considering the sequence of paths
A1B1,B1C1,C1D1,D1A1)+A1B1(A2)+(A2B2,B2C2,C2D2,D2A2)+A2(B1)A1. On
the one hand, this is the sum of the two given Carnot cycles on recognizing that
A1B1(A2) cancels A2(B1)A1 due to perfect reversibility of the ideal cycles. On the
other hand, in the total path, the segment B1C1 cancels D2A2, leading to its reorga-
nization as A1A2,A2B2,B2C2,C2D2(C1),C1D1,D1A1 which is the composite cycle.
This can be repeated for composing cycles operating between different combina-
tions of temperatures. It is very important to notice that reversibility is the key to this
composition of cycles.

The abovementioned way of composing Carnot cycles can be, by borrowing an
obvious analogy from electrostatics, called a composition in series, and is shown as
the bottom part of figure 1.8. However, one can also introduce the notion of compos-
ing Carnot cycles in parallel. In such an arrangement, the lower temperature of the
first cycle would be the same as the higher temperature of the second cycle etc.. This
is shown as the top part of the same figure.

Gas Engine Now we present the analysis of Carnot’s gas engine, not in his orig-
inal prosaic style, but in the succinct mathematical form used by Kelvin . As ex-
plained above, it suffices to analyze an infinitesimal cycle. Let (P,V,T) be the initial
state and let dQ be the heat absorbed during the first isothermal stage, and let dV be
the corresponding increase in volume, so that the state B at the end of the first stage
is (P(1- dV

V ),V(1+ dV
V ),T). The mean pressure during stage (i) is therefore P(1− dV

2V )

and the work done during this stage is dV ·P(1− dV
2V ). We need to calculate to second

order in accuracy.
During the second stage, let δP,δVandδT be the decrease in pressure, increase in

volume, and decrease in temperature, respectively. Hence the state C is (P(1− dV
V )−

δP,V (1+ dv
V )+ δV,T − δT ). It is a good approximation, as can be checked easily,

to treat the corresponding variations during (iii) and (iv) to be the same as during (i)
and (ii). The ideal gas law, for one mole of gas, then requires

−V δP+PδV =−RδT (1.25)

In fact, adiabaticity further restricts these variations, but as Kelvin has rightly re-
marked, it is not necessary to know them. The mean pressure during (iii) is there-
fore δP less than the mean pressure during (i), and the net work done during
the isothermal stages is simply dVδP. The mean pressure during (ii) is therefore
P(1− dV

V )− δP
2 . The mean pressure during (iv) is likewise P dV

V more than that dur-
ing (ii), and the net work done during the adiabatic stages is −P dV

V δV . The total
work done during the cycle is, therefore, (VδP−Pδv) dV

V . On using eqn.(1.25), this
can be simplified as dW = R

V δT dV . Following Kelvin , this is further reexpressed as

dW ≡ μ(T )dQδT =
R

V
(

∂Q
∂V

)

T

dQδT (1.26)

This is the result that Carnot sought to find, and it expresses the motive power dW
that the thermal agency dQδT will give rise to. According to the powerful universal-
ity argument of Carnot, the function μ(T ) is the same universal function no matter
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how the heat engine is designed, or with what substance. For ideal gases, the above
mentioned derivation yields μ(T ) = R

V
(

∂Q
∂V

)

T

.

1.5 Steam engines and the Clapeyron Equation

As already mentioned before, Carnot seems to have been under the impression that
for steam engines, a fully reversible cycle can not be maintained. He based this on
the premise that after the steam has condensed to water at the lower operating tem-
perature, the water would have to be heated to be at the starting point of the cycle.
It was Clapeyron, in 1834, two years after the untimely death of Carnot (he died in
a cholera epidemic at the age of 36), who showed that the ideal steam engine can
also be thought of as a reversible cycle with the same four stages that Carnot had
given for the gas engine, provided important features of liquid-vapor equilibrium are
taken into account. One of these is that in the P-V diagram for steam engines, the
isotherms are at constant pressure because saturated vapor pressure depends only on
temperature. The other is that water can absorb heat to become steam without any
change of temperature. The adiabatic curves are basically the same as the P-T dia-
grams of coexistence. We now present Clapeyron’s analysis of the motive power of
steam engines. In this work, Clapeyron puts to use, in an eloquent way, his graphical
method, which we have already discussed.

Again, let us consider only an infinitesimal cycle EFGH shown as a horizontal
strip in the figure. The work done is given by the area of this strip which is, to a good
approximation, the length EF multiplied by dP which is the thickness. The length EF
is essentially the change in total volume of the system upon absorbing the amount of
heat dQ. If l(T ) is the latent heat (in the modern sense, i.e amount of heat required
to convert unit mass of water at temperature T to unit mass of steam at the same
temperature; in Carnot’s times the phrase latent heat was used in a different sense),
the mass dm of water converted to steam is dm = dQ

l(T ) . The increase in volume of

steam is therefore dVsteam = dm
ρs

, where ρs is the density of steam. No heat is lost to the
water as neither its pressure nor temperature changes. However, there is mass loss of
water, also by dm. This leads to a decrease in the volume of water by dVwater =− dm

ρw
,

where ρw is now the density of water. Both the densities depend on T. Therefore,
EF = dV = dm(vs − vw), where vs,vw are the specific volumes, i.e volume per unit
mass of steam and water, respectively. Consequently, the work done during the cycle
is dWs = EF ·dP = 1

l(T ) (vs − vw)dPdQ. This can be rewritten as follows:

dWs =

{
vs − vw

l(T )

dP(T )
dT

}
dQdT → μ(T ) =

{
vs − vw

l(T )
dP(T )

dT

}
(1.27)

Now one can appreciate the true powers of the universality of ideal heat engines
propounded by Carnot. According to it, μ(T ) is the same function of temperature
for all substances. The implication for steam-water coexistence can be deduced by
rewriting the above equation as

dP(T )
dT

= μ(T )
l(T )

vs − vw
(1.28)
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This is the famous Clapeyron Equation and it has been obtained from the Caloric
theory! The missing ingredient, however, was the function μ(T ), and even Clapeyron
bemoans the lack of reliable experimental data that would determine it. Regnault’s
careful work on steam [60], which Kelvin made use of at the time of his commentary
on Carnot’s work, would only start to become available in 1847, the full descriptions
completed as late as 1870.

Returning to the specific heats of ideal gases, one gets

(CP −CV )(0) =
R

267μ(0)
(1.29)

We shall now go a step beyond Kelvin and give a completely mathematical treatment
of Carnot’s work.

Mathematical treatment of Carnot theory The starting point of Carnot’s con-
siderations was the Caloric Theory, which states that heat is a property of the system.
More precisely, it states that heat is a state function, and mathematically this amounts
to the existence of the heat function Q(V,T ). It can equally well be expressed as

Q(P,V ) or Q(P,T ). As we have already seen, for ideal gases V
(

∂Q
∂V

)

T
= R

μ(T ) .

The Holy Grail of Carnot theory is the determination of both Q(V,T ) and μ(T ).
Of course, knowing Q(V,T) for ideal gases at once gives μ(T ) which holds for all
substances. We develop the mathematical theory for ideal gases here, but it can be
extended to arbitrary cases.

Let us consider specific heat at constant volume CV (we consider one mole of
the substance). By definition, the heat dQ required to raise the temperature by dT is
CV (V,T )dT . We leave open the possibility that the specific heats could depend on
(V,T). In the caloric theory

CV dT = Q(P′′,V,T + dT )−Q(P,V,T) =

(
∂Q
∂T

)

V
dT →CV =

(
∂Q
∂T

)

V
(1.30)

But Carnot finds it more useful to understand CV in terms of heat required to change
volumes at constant temperature! That he does by invoking the properties under
adiabatic changes. Let δadV be the change in volume, under adiabatic changes, cor-
responding to a change δadT in temperature. For air, considered by Carnot for which
he quotes the experiments of Poisson, δadV =− V

116 when δadT = 1 ◦C. The mathe-
matical expression for adiabatic changes in the caloric theory is

Q(P,V,T )−Q(P′,V + δadV,T + δadT ) = 0→
(

∂Q
∂V

)

T
δadV +

(
∂Q
∂T

)

V
δadT = 0

(1.31)
This is the same conclusion reached by Carnot, namely, the heat absorbed at constant
temperature in expanding by a small volume is the same as would be required to
raise the temperature, at constant volume, by a degree by which the temperature
would have increased under adiabatic compression by the same volume. What is
noteworthy is that Carnot arrives at it through only verbal manipulations!
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The second important assertion by him, again proved only verbally, is that the heat
given out, at constant temperature, only depends on the fractional increase in volume
and not on the increase in volume itself. To arrive at that conclusion, he makes use
of his result on the universality of ideal heat engines. In the mathematical formalism
this emerges as follows:

dq =

(
∂Q
∂V

)

T
dV =

R
μ(T )

dV
V

(1.32)

In fact, Carnot enunciates this result for finite changes as well (also proved verbally!):
When a gas varies in volume without change of temperature, the quantities of heat
absorbed or liberated by this gas are in arithmetical progression, if the increments
or decrements in volume are found to be in geometrical progression. To see this in
our mathematical formulation, simply integrate eqn.(1.32), to give,

Q2−Q1 =
R

μ(T )
ln

V2

V1
(1.33)

Though Carnot used Poisson’s data for air on adiabatic changes, he could well have
made that analysis more general as the law for adiabatic changes, in the form, PV γ =
const., appears to have been known to Laplace, whose work on speed of sound is
cited by Carnot. But, as can be seen now, the mathematical theory of the caloric
gives the equivalent of this relation even when the specific heats are not constant.

To address this and other related issues, let us turn our attention to the specific
heats within the caloric theory. One of the differential forms of the fundamental
axiom of the caloric theory can be expressed as:

dQ =

(
∂Q
∂P

)

V
dP+

(
∂Q
∂V

)

P
dV (1.34)

Other equivalent forms using (P,T) or (V,T) as independent variables may also be

used. From the definitions CV =
(

∂Q
∂T

)

P
and CV =

(
∂Q
∂T

)

V
, it immediately follows

that for ideal gases

CP =

(
∂Q
∂V

)

P

(
∂V
∂T

)

P
=

R
P

(
∂Q
∂V

)

P
CV =

R
V

(
∂Q
∂P

)

V
(1.35)

The ratio, γ , of CP to CV in the caloric theory is given by

γ(V,T ) =
CP(V,T )
CV (V,T )

=
V
P

(
∂Q
∂V

)

P(
∂Q
∂P

)

V

=
V
P

(
∂Q
∂V

)

P

(
∂P
∂Q

)

V
(1.36)

Using the triple product rule of partial derivatives, one obtains
(

∂Q
∂V

)

P

(
∂P
∂Q

)

V
=−

(
∂P
∂V

)

Q
→ δadP

P
+ γ(V,T )

δadV
V

= 0 (1.37)
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Which is incidentally the same equation for adiabatic changes in modern thermody-
namics too. Therefore, this particular equation does not care what the nature of heat
is.

Let us evaluate
(

∂Q
∂V

)

T
for an ideal gas directly from eqn.(1.34):

(
∂Q
∂V

)

T
=

(
∂Q
∂V

)

P
+

(
∂Q
∂P

)

V

(
∂P
∂V

)

T
=

P
R

CP − P
R

CV (1.38)

Combining this with the expression for μ(T ), one gets the remarkable equality

CP −CV =
R

μ(T )T
(1.39)

This is the mathematical derivation of Carnot’s result for the specific heats; and the
difference can only depend on temperature, with CP always greater than CV . Carnot
had concluded that if CP −CV was a constant, the specific heats must have a logarth-
mic dependence on volume. In our mathematical framework, this case amounts to fix-

ing μ(T ) to be 1
T i.e hence

(
∂Q
∂V

)

T
= RT

V , whose solution is Q(V,T ) =RT lnV + f (T )

with f (T ) being arbitrary. Therefore, CV (V,T ) = R lnV + f ′(T ) and CP(V,T ) =
R lnV + f ′(T ) + R. One can likewise explore the consequences of a constant CV .
It is easy to see that this would imply Q(V,T ) =CV T + f (V ), f (V ) being arbitrary.
Then, CP = CV + f ′(V ) R

P . But CP −CV can only be a function of T which fixes
f ′(V ) = A

V with A a constant. Consequently CP =CV + A
T .

Finally, we present the differential form of the caloric axiom for ideal gases in
a form that is closest to the present day first law. For that, we take (V,T) as the
independent variables:

dQ(V,T ) =

(
∂Q
∂T

)

V
dT +

(
∂Q
∂V

)

T
dV =CV (V,T )dT +

R
μ(T )

dV
V

(1.40)

Carnot was very particular in his views about the importance of subjecting his
conclusions to rigorous experimental tests. He correctly foresaw specific heat data to
be the most important ones for this purpose. But the state of the art of these exper-
iments were not fine enough, and in fact, the data of Clement and Desormes which
made Carnot see some evidence for a logarthmic volume dependence were later
found to be incorrect. It is undoubtedly clear that had Carnot lived to see greater
precision in these experiments, he would have been the first to abandon the caloric
theory, and perhaps the first to have formulated the first and second laws of thermo-
dynamics! After all, the important ideas of Carnot and Clapeyron, in the hands of
Clausius, paved the way for these developments. However, despite his great con-
tributions, particularly the concepts of reversible cycles, universality of efficiencies,
and of maximum of attainable efficiencies, it can not be said that he knew of even
the broad contours of the first and second laws as understood today. For a critical
assessment, the reader is referred to [23], and to [65] for a different view.
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1.6 Problems

Problem 1.1 Consider three gases with (P1,V1),(P2,V2) and (P3,V3). It is found
that when the first two are in equilibrium the following condition is satisfied:
P1V1 = (P2 + a/V 2

2 )(V2 − b), while the equation satisfied when the first and
the last are in equilibrium is P3(V3− c) = P1V1 e−d/V3P1V1 . Find the respective
equations of state and identify them.
Problem 1.2 At very high temperatures the emissivity of a blackbody varying
as aT 4, where T is in absolute scale, is used for thermometry. Devise both a
uniform and a suitable non-uniform scale thermometer based on this. Which of
the non-uniform scales will agree best with the absolute scale?
Problem 1.3 Show that constant volume thermometers using an ideal gas as
well as a van der Waals gas both yield the same temperature scale when uniform
scales are adopted. What is the relation of this common scale to the absolute
scale? Does this happen with constant pressure thermometers using the same
materials?
Problem 1.4 Thermocouples are bi-metallic junctions where a voltage difference
arises as a function of temperature. A thermometer is to be built out of a ther-
mocouple whose voltage varies linearly from 0 mV to 50 mV as the temperature
is varied from 0◦C to 400◦C. What is the temperature of the device when the
output voltage is 10 mV?
Problem 1.5 Two thermometers are constructed with uniform scales, one of
which is based on a metal whose resistance varies with T as R(T ) = R0(1+
aT + bT 2), and the other based on a thermocouple whose voltage varies as
V (T ) =V0(1+cT2+dT3). Determine the temperatures T1,T2 on them in terms
of T. Find the values of T at which they differ most from the absolute scale. Find
T where they differ from each other maximally.
Problem 1.6 It is believed that since birth radiactivity alone was responsible for
raising the internal temperature of earth by at least 2500 K. If the average coeffi-
cient of volume expansion of the internal part of earth is roughly 3.0 · 10−5K−1,
estimate by how much the radius of earth has increased since formation.
Problem 1.7 A mercury in glass thermometer is such that the change of area
A of the capillary with temperature is negligible. The coefficients of volume
expansion of mercury and glass are respectively αm and αg. If the volume of
mercury that just fills the bulb at 0◦C is V, show that the length of the mercury
column in the capillary at t◦C is given by L(t) = (V/A)(αm −Δ3,1/3).
Problem 1.8 Calculate the work done by one mole of gas in expanding from V1

to V2 a) isothermally, and b) isobarically for i) ideal gas, ii) a van der Waals gas,
and iii) a gas obeying the Clausius equation.
Problem 1.9 Calculate the net work done when one mole of an ideal gas is heated
at constant volume till its temperature is tripled, then cooled at constant pressure
to the original temperature, and finally expanded isothermally to the initial state.
Problem 1.10 Repeat the above problem when the gas obeys the van der Waals
equation of state.
Problem 1.11 Calculate the work done in isothermally compressing the rubber
band of problem 4.8 from L0 to L0/2.
Problem 1.12 The molar specific heat at constant volume of a substance is exper-
imentally determined to be 3R

2 . What, according to Carnot theory, is its Clapey-
ron equation?



2 First Law—The E = Mc2 of

Thermodynamics

There is a tendency, particularly among physicists, to view the first law of thermody-
namics as merely a consequence of the energy conservation principle of mechanics.
That is to some extent a valid perspective today, when atomism has been firmly es-
tablished and when thermodynamics is seen as the effective description of a very
large number of these microscopic constituents in terms of a very few macroscopic
thermodynamic degrees of freedom. But such a perspective would hardly have been
justified at the times (middle of 19th century) when the first law was established.
At that time, atomism was only a conjecture, however appealing. The true experi-
mental vindication of atomism came only with experiments on Brownian Motion,
immediately after Einstein’s path-breaking work in 1905.

In fact what the first law achieves, in effect, is the recognition of a new form of en-
ergy, i.e heat, and equally importantly, establishes a conversion factor (the mechan-
ical equivalent of heat) between this new form of energy and the older known forms
of mechanical energy. Hence this author likens this development, in a precise scien-
tific sense, to the revolutionary developments of the Special Theory of Relativity of
Einstein, where too a new form of energy was recognized, i.e mass, and furthermore
its conversion factor to the older known forms of energy was established through the
famous E = mc2. Actually, the first law achieves the recognition of two new forms of
energy, namely, heat and internal energy! We shall have more to say on this later on.
Recognizing new forms of energy is where the revolution is; the rest is evolution!

Once a new form of energy has been recognized, only then a new manifestation
of the energy conservation principle assumes meaning and significance. In E = mc2

such a manifestation takes, among other things, the dramatic form of nuclear energy,
with enormous impact (of both positive and negative types) for science and society.
It can be said, without any exaggeration, that the impact of first law on science and
society is no less than that of E = mc2. It is clear that without the establishment of a
conversion factor, no quantitative expression of this manifestation would have been
possible. In this chapter we describe in detail the makings of this revolution.

2.1 The fall of the caloric

Doubts about the correctness of the caloric theory had come to many minds. But
most of these remained only as opinions, not at a level to be taken seriously as scien-
tific hypothesis. The earliest important development is undoubtedly due to Benjamin
Thomson (1753-1814), also known as Count Rumford. He passed away nearly a
decade before Carnot published his Reflections.

As a cannoneer for Bavaria, he had noticed that vast amounts of heat would be
generated while boring the cannon barrels. While this in itself may not be in contra-
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diction with the caloric theory, what Rumford found was that heat could be extracted
on an almost continuous basis, as long as the boring went on. This fact would cer-
tainly cast some doubts on the caloric theory, and made Rumford suspect that the
heat output was actually correlated with the work done in boring. He conjectured
that heat was motion. What made his ideas scientific was that he attempted to quan-
tify this relationship, i.e he tried to measure the conversion factor.

One of the first such quantitative results he obtained was that two horses em-
ployed for 2 hrs 30 mins. would generate enough heat to melt 26.6 pounds of ice at
180 ◦F (temperature scale used was Fahrenheit). Joule later argued that this repre-
sented 1034 foot-pounds of mechanical work based on Watt’s claim that the power
delivered by a horse was equivalent to 33,000 foot-pound. Horsepower or Hp is still
used as a unit of power. Watt was also among the early doubters of the caloric. He
expressed doubts, in the context of the steam engine, that all the heat absorbed at the
boiler would pass to the condenser. But again, this was only a doubt expressed and
not a serious critique of the caloric.

For that matter, even Rumford’s demonstration, which today would be clearly
taken as evidence that work can be converted to heat, can not, in any systematic man-
ner, be shown to contradict the caloric. This, as carefully analyzed by Kelvin in his
commentary on Carnot’s work, would require it to be shown beyond any doubt that
the caloric did not flow from other parts of the cannon, or that it did not flow into the
cannon from outside. Kelvin in fact analyzes Joule’s experiments on thermoelectric-
ity wherein he had observed heating of a conductor upon passage of electricity. He
points out that even there, careful experiments would be necessary to rule out cooling
in other parts, in which case the heat observed would merely be consequences of the
redistribution of the caloric.

Another important observation of Rumford was that heating caused no change
of weight in an object; the caloric theory would consequently require that heat as a
material object should be weightless. This too, while not constituting a conclusive
test against the caloric, raised the level of discomfort against it.

What perhaps came as a death blow to the caloric theory was the experiment of
Humphrey Davy (1778-1829) in 1799 (two years after Carnot’s birth!) wherein he
rubbed two pieces of ice against each other whereupon both ended up melting [10].
So the heat of melting could not have come from the caloric contained in either of the
ice cubes. But even this experiment has not been totally beyond reasonable doubts;
as late as 1926, it has been pointed out that this experiment was not carried out in a
vacuum [2], as has been popularized!

2.2 The path to the first law

Though many thoughts pointing to the so called first law can be found in the liter-
ature, the works and thoughts of Robert Mayer, James Joule and Helmholtz stand
out in their relative clarity. We briefly discuss the essential thoughts of these three
musketeers of thermodynamics. It is said that the three worked independently. The
predominant theme is that of energy conservation, though it must be emphasized that
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a mere extension of this known concept in mechanics to thermodynamics can not be
made that straightforwardly.

Robert Julius Mayer (1814-1878): Mayer is said to have explicitly stated that
energy is generally conserved, and to have equally explicitly claimed that heat and
mechanical energy are interconvertible. In a paper written in 1841, but never pub-
lished in any scientific journal, Mayer said ’motion is converted into heat,’ thereby
directly questioning the caloric theory.

He made his criticism of the caloric very precise and succint by his declaration,
in a brochure in 1845 (according to Ingo Müller [47]), that ’the heat absorbed by
the vapor is always bigger than the heat released during condensation. Their differ-
ence is the useful work,’ in the context of the steam engine. There could not have
been a clearer assertion of the interconvertibility of heat and work, and was a clear
forerunner of the events leading to both the first and second law. Nevertheless, it still
amounted to only an opinion.

Mayer also came up with a way of estimating the mechanical equivalent of heat.
He did this by interpreting the difference between the specific heat Cp at constant
pressure and Cv the specific heat at constant volume as the work done against the
pressure of the gas. By using data on specific heats of Delaroche and Berard, and
Dulong’s value for the ratio of the two specific heats, he concluded the conversion
factor to be such that ’the fall of weight from 365 metres heats the same weight of
water by 1 ◦C. This figure was eventually refined by Joule.

We have already seen that even caloric theory predicts that Cp is larger than Cv,
and that the same data of Delaroche and Berard could not rule out these specific heats
from being consistent with Dulong values. So clearly Mayer’s calculation is no proof
of the incorrectness of the caloric theory, or more precisely, no proof that heat and
work were interconvertible. It was only an interpretation of the specific heat data on
the premise that heat and work are interconvertible. The caloric theory, which would
deny such an interconversion, would interpret the very same data in a completely
different way.

James Prescott Joule (1818-1889): Joule took the journey towards the creation
of thermodynamics that much further. As already mentioned, he discovered in 1843
the thermoelectrical phenomenon whereby passage of electricity through a conduc-
tor heats up the latter [72]. The interpretation of this effect in the caloric theory is
obscure at best. Even in this context Joule had begun to wonder whether the mechan-
ical power needed to run the generator was the eventual source of the heat developed
in the conductor. But Joule is best known for the very careful experiments he per-
formed to first show that mechanical work could be converted to heat, and then for
the careful measurement of the mechanical equivalent of heat. His setup was essen-
tially comprised of falling weights turning paddles in a liquid, which would heat up
the liquid through friction. By carefully measuring the rise in temperature of the liq-
uid, and correlating it to the equally carefully measured heights through which the
weights fell, he arrived at the following conversion factor: the heat required to raise
by 1 ◦F one pound of water is equal and may be converted to a mechanical force
which can lift 838 pounds to a vertical height of 1 foot [47]. He refined these values
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through more measurements and in 1845 had given it as 772 pounds. The modern
statement of this conversion factor is

1calorie = 4.18Joules (2.1)

where a Joule is 1Kgm2/s2. Joule too was a firm believer in the conservation of
energy and that heat is the motion of particles.

FIGURE 2.1 Joule’s apparatus for mechan-
ical equivalent of heat.

FIGURE 2.2 Joule’s free expansion
experiments.

Around 1845, a few years before Clausius gave the final, and complete, formu-
lation of the first law, Joule performed an experiment of deep significance, namely,
his experiment on the so called Joule Expansion. In the earlier versions of this exper-
iment, performed by Joule alone, gas occupying a volume at some temperature was
allowed, without any heat exchange with the environment, to expand into a region of
vacuum, as shown in the figure. What Joule observed was that there was no change
of temperature, though the volume had increased. A few years later (around 1852),
Joule and Kelvin performed a variant of this experiment, the so called porous plug
experiment, which showed a tiny drop in temperature. Gay-Lussac had performed
the same experiment, even before Joule, but had not noticed the drop in temperature.
Joule and Kelvin could observe the change because of the progress they had made
in measuring small temperature differences.

The Joule expansion effect provides a second characterization of an ideal gas as
one for which the temperature difference is strictly zero. It is very important to ap-
preciate that this is independent of the equation of state PV = nRT . The significance
of Joule expansion will be explained later in the context of both the first and second
laws.

Herman Ludwig Ferdinand von Helmholtz (1821-1894): Helmholtz was also
a firm believer of the atomistic view and of the conservation of energy. He made
the very astute, and subtle, observation that at the microscopic level there is really
no friction but only a redistribution of energy. As a consequence, he argued that
perpetuum mobile was impossible. We have seen that Carnot had clearly stated this
long ago without necessarily committing to an atomistic world view.

Though all these made contributions that were very pertinent for the formulation
of the first law, none of them really came close to it. In particular, none of them even
conceptualized internal energy, the bedrock of the first law. That task, as well as
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the task of giving a precise mathematical expression to the first law, was beautifully
undertaken by Rudolph Julius Emmanuel Clausius (1822-1888). He formulated
the first law in 1850 [7, 8, 9]. It is said that William John Rankine (1820-72) had
also given a formulation in 1850.

Clausius formulated both the first and second laws, more or less simultaneously,
in 1850. This has led some to erroneously state that the origins of the first law too
lay in the issues of the efficiency of heat engines. It is important to make a clear log-
ical separation between the foundations of these two pillars of thermodynamics. The
foundation of the first law lay in Clausius taking the equivalence between heat and
energy to its logical conclusions, culminating in its precise mathematical expression.
On the other hand, the second law concerned itself with the far more subtle issue of
the possible directions for the interconvertibility between these two forms of energy.
The first law says absolutely nothing about this.

This brief historical account would be woefully incomplete without mention of
James Clerk Maxwell (1831-1879), Josiah Willard Gibbs (1839-1903) and Lud-
wig Boltzmann (1844-1906). Indeed Gibbs is clearly the third of the Thermody-
namic Trinity, after Carnot and Clausius. Working largely by himself, at a time of
little tradition of theoretical physics in his country, this American scientist produced
his monumental work on thermodynamics On the equilibrium of heterogeneous sub-
stances in 1875 [19]. This is one of the most influencial scientific works. In it, Gibbs
introduced the concept of the Chemical potential, which, along with his phase rule
(also in this work), revolutionized physical chemistry. It is a historical travesty that
Gibbs chose to publish this in the obscure Transactions of the Connecticut Academy.
This, along with its ’abstract style and difficult representation,’ according to Ost-
wald, made this great work practically unknown for a long time. His contributions,
in the words of A.S. Wightman, ’have survived 100 years of turbulent developments
in theoretical physics.’

Gibbs also laid the foundations for Statistical Mechanics and made significant
contributions to its development. His brilliant concept of ensembles has indeed
changed the very complexion of this subject. His book Elementary Principles in Sta-
tistical Mechanics [20] is famous for its enormous impact. Einstein is said to have
considered Gibbs as among the greatest men and most powerful thinkers.

Interestingly, even the beginnings of Statistical Mechanics can be traced to the
works of Clausius on kinetic theory. His 1857 work on the diffusion of molecules
greatly influenced Maxwell to undertake a major study in 1959 that culminated in
his pioneering work on velocity distributions. This in turn was a major influence
on Boltzmann who went on to formulate kinetic theory extensively. Kinetic theory
morphosed into what is currently understood to be Statistical Mechanics. Therefore
it would be fair to call Maxwell, Gibbs and Boltzmann the Statistical Mechanics
Trinity.

2.3 The first law of thermodynamics

We shall present here the main essence of Clausius’s formulation of the first law.
The starting point is the paradigmatic shift that heat and mechanical work are inter-
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changeable; obviously, this marks a fundamental departure from Carnot, who based
his Reflections on the premise that heat can neither be created nor destroyed. There-
fore, according to Clausius, at the end of a reversible cycle the net amount of heat
absorbed must equal the net work performed, i.e ΔQ = ΔW , whereas for Carnot
ΔQ = 0 while ΔW �= 0.

FIGURE 2.3 A Carnot cycle

Almost everything else follows just from this initial departure, which is of course
a very radical departure. It is immediately obvious that heat can not be a state func-
tion as was the case in the caloric theory. If it were, dQ would have been a perfect
differential and ΔQ would have been zero, as in Carnot theory. That ΔW is not zero
is anyway familiar from mechanics where in general the work done around a closed
path is nonzero, and additionally depends on the path. In the thermodynamic context,
if the pressure P is a function only of volume (which can not be true in general), can
dW be a perfect differential.

At this stage, all that can be said is that

d̄Q = dW + dU (2.2)

where dU is a perfect differential, and therefore U is some state function. It is not
even necessary at this stage for U to be nonzero. But Clausius not only showed that
U has to be necessarily nonzero, he derived the integrability conditions for U in a
physically transparent manner. The reader is referred to Ingo Müller’s book [47] for
more on the original papers of Clausius.

It is worth remarking at this stage that Clausius maintained the conceptual edifice
that Carnot had created, i.e concepts of cycles and reversibility. In fact, Clausius
goes to great pains to explain that he would like to keep as much as possible of
the structures that Carnot had introduced. This is a great tribute to Carnot indeed.
Clausius makes use of the fact, as done by Carnot and Kelvin too, that addition of
heat can alter both the temperature and volume of a system

d̄Q = M(V,T )dT +N(V,T )dV (2.3)

By definition, M = CV (V,T ). Clausius then considers an infinitesimal cycle, a con-
cept pioneered by Carnot. During the isothermal expansion let δTV (since the



First Law—The E = Mc2 of Thermodynamics 39

cycle is infinitesimal, the isothermal contraction in the third stage can also be
taken to be the same) be the change in volume. The heat absorbed during this
stage is therefore dQAB = N(V,T )δTV . For what follows, where the final quan-
tities of interest are second order in the variations, it is better to express this as
dQAB = 1

2 (N(V,T )+N(V + δTV ))δTV. This amounts to taking the mean value pre-
scription for N(V,T ).

Likewise, the heat relinquished during the third stage CD is − 1
2 (N(V + δTV +

δQV,T −δQT )+N(V +δQV,T −δQT ))δQV. We have denoted the changes during the
isothermal stages by δT and those during the adiabatic stages by δQ. The stages BC
and DA being adiabatic, dQBC = dQDA = 0. Writing these conditions out explicitly,
the expressions for the work done during the four stages can likewise be written
down, and the total work done during the cycle is given by

ΔW =

(
∂P
∂T

)

V
δQTδTV (2.4)

The total heat absorbed during the isothermal stages can be seen to be

δQ =

(
∂N
∂T

)

V
δQTδTV −

(
∂N
∂V

)

T
δTVδQV (2.5)

This can be simplified on noticing that the adiabaticity condition dQBC + dQDA = 0
becomes (

∂CV

∂V

)

T
δQTδTV =

(
∂N
∂V

)

T
δQVδTV (2.6)

The final result for the net heat absorbed during the cycle is, therefore,

ΔQ =

{(
∂N
∂V

)

T
−
(

∂CV

∂V

)

T

}
δTVδQT (2.7)

There are some features of this calculation that are worth emphasizing; firstly, all
quadratic variations of the type (δY X)2, where X ,Y stand for (V,T) and (Q,T) re-
spectively, vanish identically. This is the advantage of using the mean value method.
Secondly, a naive estimate for the work done may have looked like dPdV , but the
calculation shows the need for a more careful treatment which shows the work done
to be as given by eqn.(2.4).

Equating ΔQ with ΔW as per the new paradigm, and in complete contradiction
of the caloric view point, one gets

(
∂CV

∂V

)

T
=

(
∂ (N −P)

∂T

)

V
(2.8)

Clausius interpreted this as an integrability condition for the perfect differential dU
where

dU(V,T ) =CV (V,T )dT +(N(V,T )−P(V,T))dV (2.9)

culminating in the mathematical formulation of the first law:

d̄Q = dU +PdV (2.10)



40 The Principles of Thermodynamics

In this demonstration the work done was purely mechanical, but empirically it is
known that heat can manifest in other forms of energy like electrical work for exam-
ple. So it is natural to generalize the above equation to

d̄Q = dU + dW (2.11)

which shall henceforth be taken as the first law of thermodynamics. Several com-
ments are in order at this stage. On rather general grounds, Clausius has demon-
strated the existence of a hitherto unknown state function U. That it is not identically
zero is guaranteed by something as general as a nonvanishing CV . In contrast, in the
caloric theory a nonvanishingCV did not imply the existence of such a state function.
There, the only state function was the heat Q.

So the most important consequence of the interconvertibility of heat and work is
this new state function. Kelvin named it internal energy. That name suggests itself
from the new perspective of the equivalence of heat and energy. But it is indeed hard
to immediately connect this new notion of internal energy to other known forms of
energy like, for instance, mechanical energy. The fact that today we identify the inter-
nal energy with the energy of the atomic constituents of matter should not be brought
to have any bearing in this purely thermodynamic context. In fact, Sommerfeld takes
the view that the existence of internal energy should be viewed axiomatically with-
out any attempt to link it to the concept of energy in mechanics, and calls this the
first part of the first law. Once its existence is given, the power of thermodynamics
lies in extracting many deep truths without ever bothering further about the nature of
internal energy.

2.4 Some applications of the first law

We now consider various applications of the first law. Processes where some quanti-
ties are held fixed occur frequently in the description of a variety of circumstances.
For example, many processes take place where the pressure is fixed to be that of the
atmosphere. These are constant-pressure processes, also called isobaric. Likewise
processes taking place at some given temperature are also common. They are called
isothermal.

In the description of the atmosphere, a very important process is where a packet
of air is transported through, say, convection. Hardly much heat is transferred to the
packet during the course of its transport. This is an example of an adiabatic process.
In this particular instance, as the rate of heat transfer is extremely slow, the name adi-
abatic here may remind one of a similar name in mechanics referring to slowly vary-
ing parameters. But in thermodynamics, the word adiabatic simply means transfor-
mations with no exchange of heat. For example, quickly opening a valve controlling
a pressurised gas and reclosing it will still be an adiabatic process, though happening
very fast. The reason is that things happen so fast that no appreciable heat transfer
takes place. Of course, whenever something is happening very fast, something else
will be happening very slow!
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2.4.1 Internal energy of ideal gases

Let us first discuss a very important implication of first law for ideal gases. In sec-
tion 2.2 we discussed Joule’s experiment on free expansion of gases. In particular,
it was noted there that for ideal gases the temperature remained the same for adi-
abatic changes when no work was done during expansion. In other words, when
dQ = dW = 0, dT = 0 for ideal gases. But by first law, when both dQ and dW van-
ish, so must dU. In other words

0 = dU =

(
∂U
∂T

)

V
dT +

(
∂U
∂V

)

T
dV →

(
∂U
∂V

)

T
= 0 (2.12)

That is, for ideal gases U(T ) is a function only of temperature T. It should, however,
be stressed that dU = 0 for free expansion of all gases, even if they are not ideal. In
those cases U will not be a function of T alone, and changes in volume will induce
changes in T under free expansion.

2.4.2 Isochoric changes

These are constant volume processes and are indeed very familiar. All changes, for
example, to a gas enclosed in a container are changes of this type. For the ideal gas,
these changes are characterized by P/T = const. In other words, the pressure is in
direct proportion to the temperature T. For all systems

d̄Q= dU+PdV =

(
∂U
∂T

)

V
dT +

{(
∂U
∂V

)

T
+P

}
dV → dQ|V =

(
∂U
∂T

)

V
dT =CV dT

(2.13)
The specific heat CV at constant volume is, by definition, the heat capacity dQ

dT in the
limit dT → 0. This is one of the most important observables in thermodynamics. For
ideal gases for which U is a function of T only, dU =CV (T )dT .

2.4.3 Isobaric changes

These too must be very familiar. All changes occurring when the system is under,
say, atmospheric pressure, are examples of this. For ideal gases these changes are
characterized by V/T = const., i.e the volume is in direct proportion to T. For ideal
gases, the first law, in the light of previous remarks and the gas law PV = RT , can be
rewritten in the form

d̄Q =CV (T )dT +PdV =CV (T )dT +RdT − RT
P

dP (2.14)

For isobaric processes this takes the form

dQ = (CV (T )+R)dT ≡CP(T )dT (2.15)

The specific heat CP follows its definition as CP = dQ/dT |P. Thus, first law leads to
an extremely important result that for ideal gases

CP(T )−CV (T ) = R (2.16)
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The analog of this for van der Waals gases is worked out in chapter 12.

Example 2.1: Land and Sea Breezes

The specific heat of rocks and generally of soil is roughly only a fourth of the specific
heat of water. Use this to explain the phenomenon of land and sea breezes.

The amount of solar heating, determined by the amount of heat received
from the sun per unit area is more or less the same both over the land and
the sea. Both for liquids and solids there is no appreciable difference between
CP and CV . During day time, the soil reaches a much higher temperature than
the ocean water as the specific heat of former is less than that of the latter. It
should be noted that the temperatures do not simply rise uniformly in time.
Both the soil and water reradiate till they reach equilibrium (at different
temperatures). Because of the higher land temperature, air over the land gets
hotter and lighter. Consequently, this hot air rises to reach upper parts of the
atmosphere. This creates a low pressure over the land, to fill which the cooler
air over the ocean rushes towards the land. This is the cool sea breeze.

At night, when the source of heating from the sun is not there, the soil cools
much faster, again owing to its much lower specific heat. The ocean, on the
other hand, loses its temperature relatively slowly. This reverses the situation
from what existed during the day in the sense that it’s the land that is cooler
than the ocean at night. Therefore, it is the air over the ocean that gets hotter
and lighter(relatively speaking), rising to upper atmosphere. The air from the
land rushes towards the ocean, creating the land breeze.

2.4.4 Adiabatic changes in an ideal gas

By the condition of adiabaticity, one has dQ = 0, and since the gas is ideal, the first
law requires

0 = dQ =CV (T )dT +PdV (2.17)

Now there are a variety of ways of realizing these conditions, depending on the
independent variables one chooses. Let us start with the case where these have been
chosen to be (V,T). We can use the ideal gas law to eliminate P and rewrite the
adiabaticity condition as

CV (T )dT +
RT
V

dV = 0 → CV (T )
R

dT
T

+
dV
V

= 0 (2.18)

In cases where CV is a constant, this equation can be integrated to give

VT
CV
R = const. (2.19)

But in general, the adiabatic changes in an ideal gas are governed by

Ve
S(T)′

R = const. (2.20)

where S(T )′ stands for
∫ CV (T )dT

T . In the next chapter we shall see that this is one of
the most important state functions in thermodynamics; it is the volume independent
part of the entropy of an ideal gas.
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2.4.5 Isothermal changes

We now turn to a discussion of the implications of first law for changes under con-
stant temperature. Most generally

d̄Q =CV (V,T )dT +

{(
∂U
∂V

)

T
+P

}
dV →

{(
∂U
∂V

)

T
+P

}
dV (2.21)

For an ideal gas many simple consequences follow. Firstly, pressure is inversely pro-
portional to volume, i.e PV = const.; this is nothing but Boyle’s law. As we saw
earlier, U for ideal gases is independent of volume. Even for the general case for
which CV depends on temperature, for isothermal changes there is no change in in-
ternal energy and the first law gives dQ = PdV . In this case too, the heat Q is a state
function! More explicitly

dQ = PdV → dQ = RT
dV
V

→ Q = RT lnV (2.22)

Heat was a state function for isobaric changes too. Recall that the defining feature of
the Caloric theory was that Q was always a state function. Therefore, for isothermal
and isobaric processes things are indistinguishable from caloric theory. There is no
real conflict with the fact that heat is path-dependent; in these examples, the paths
have been fixed.

2.4.6 Heats of transformation

A very important class of processes is where there can be absorption of heat or re-
linquishing of heat without any change in temperature. Such a form of heat is called
latent heat. From first law it is clear that some other state variable must change. In-
deed, in all such cases there is a change in the phase of the system. Let us cite some
familiar examples. Ice at 273 K can absorb 80 cal/g of heat and turn into water, also
at 273 K. But the density of ice being lower than that of water, there is a change in
the volume of the system. Another example is that of water at its boiling point of 373
K. It can absorb 540 cal/g of heat to turn into steam, also at 373 K. Steam being a
gas, has a much lower density (hence much larger volume per unit mass) than water.
The worked example 2.3 should clarify the situation.

2.4.7 Enthalpy

For isobaric changes, first law implies that

dQ = dU +PdV = d(U +PV) (2.23)

i.e heat Q becomes a state function! Introducing the state function enthalpy H, de-
fined as H = U + PV , the above equation has the interpretation that for isobaric
changes dQ = dH. The significance of this follows from the fact that enthalpy is
always a state function irrespective of whether one is dealing with constant pressure
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processes or not. Therefore the enthalpy for a given state can be determined unam-
biguously. For isobaric processes, it becomes meaningful to talk about the heat of
transformation as the difference between enthalpies. The importance of this remark
lies in the fact that heat, which is in general path-dependent quantity, can, for iso-
baric processes, assume a path independent meaning.

Enthalpy and gas flows

It turns out that enthalpy is a useful quantity even when changes are not isobaric.
This is illustrated by the famous porous plug experiment of Joule and Kelvin. In this
setup gas flows from a region of pressure P1 to a region of pressure P2 through a
porous plug. The entire setup is thermally insulated so that there is no inflow or out-
flow of heat. There is a difference to this setup from the one for Joule free expansion;
in the current setup, a steady flow is maintained from external sources. Also, here the
gas expands against a pressure, and net work is done.

As emphasized by Pippard [54], the setup need not even be with real walls as
long as conditions of steady flow and thermal insulation are fulfilled. For example, a
pocket of air moving by convection over small distances over which the variation of
the gravitational potential can be neglected will also behave as described below.

FIGURE 2.4 The porous plug experiment.

Consider the transfer of an amount of gas which occupies the volume V1 on the
left hand side, and V2 on the right hand side. Therefore, on the left hand side of the
plug the work done is P1V1 and on the right hand side it is -P2V2. Since ΔQ = 0
it follows that the net change in internal energy must equal the net work done, i.e
U2 −U1 = P1V1 − P2V2. But this is the same as the statement U1 + P1V1 = H1 =
U2+P2V2 = H2. That is, enthalpy is conserved through the flow!

It should be appreciated that the circumstance just considered is not one belonging
strictly to the domain of equilibrium thermodynamics. The gas is certainly not in
mechanical equilibrium. Nevertheless, there is steady state flow and that suffices to
apply the thermodynamic notion of enthalpy.

When the pressure is variable, eqn.(2.23) changes to

d̄Q = dU +PdV = d(U +PV)−VdP = dH −VdP (2.24)

It follows from either of them that CP =
(

∂H
∂T

)

P
which is the precise analog of

CV =
(

∂U
∂T

)

V
. For ideal gases for which CV , and hence CP from eqn.(2.16) are con-
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stants, it follows that U =CV T and H =CPT .

Joule coefficient and Joule-Thomson coefficient

The Joule effect, i.e cooling upon free expansion, and the Joule-Kelvin effect, i.e
the porous plug experiment (throttling) discussed before can be quantified through
the Joule coefficient η and the Joule-Thomson coefficient μJT . In the adiabatic free
expansion the internal energy U does not change but there is an increase in volume
accompanied by a change in temperature (in general; for ideal gases there is no tem-

perature change). Thus the quantity η =
(

∂T
∂V

)

U
. This coefficient is also defined as

η =
(

∂T
∂P

)

U
by some. On the other hand, in the porous plug experiment or the Joule-

Kelvin process, it is the enthalpy that does not change. The relevant measure of this

effect is the Joule-Thomson coefficient μJT =
(

∂T
∂P

)

H
. Both these are irreversible

processes (see for example problem 3.2). Another important difference is that while
in Joule expansion no work is performed, in the Joule-Kelvin process work has to be
done on the system.

FIGURE 2.5 Enthalpy and flows.

Example 2.2: Enthalpy and flows.

Consider adiabatic gas flows. Use the Euler equation for fluid flows to show that, for
an ideal gas,

v2

2
+V (�r)+H = const. (2.25)

where H is the enthalpy,�v the flow velocity and V the external potential.
The Euler equation is

�∇
v2

2
=− 1

ρ
�∇P−�∇V (�r) (2.26)

where �v,P,ρ are respectively the velocity, pressure and density of the fluid.
Since the flow is adiabatic, P= c1ργ , with γ the ratio CP/CV , and c1 a constant.
Using this

− 1

ρ
�∇P =−c1�∇

γ
γ −1

ργ−1 =−�∇CP T (2.27)
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where we also made use of the ideal gas equation P = RTρ. Putting everything
together, and identifying CP T with the ideal gas enthalpy, the desired result
follows.

Example 2.3: Boiling of water

Consider the process of boiling, say, 10 gms of water, at its normal boiling point of 373
K and 1 atm. of pressure; the density of water can still be taken to be approximately 1
gm/cc. The density of steam at this temperature is, on the other hand, about 6.010−4

gm/cc. Work out the changes in the three quantities in the first law, i.e work done, heat
added, and internal energy.

The atmospheric pressure is 1.01105Pa. The volume of steam is 16660 cc.
Therefore, the work done against the atmospheric pressure is P(vs−vw), which
is ΔW � 1.01105 ·16650Pa ·cc i.e 1.67 kJ. The heat absorbed, i.e the latent heat
of vaporization, is 2260 J/gm (which translates to 540 cal/gm on using the
mechanical equivalent of heat). Since 10 gms of water is being boiled, the
latent heat absorbed ΔQ is 22600 J or 22.6 kJ.

According to the first law, the mismatch between these two must be due to
the change in internal energy of 10 gms of H2O in passing from water at 373
K to steam at 373 K. Therefore the change in internal energy ΔU is about
20.93 kJ.

The lesson to be learned from this example is that during boiling the inter-
nal energy of a given mass of steam at the boiling point increases in comparison
to the internal energy of the same mass of water at the same temperature.
At an atomistic level, this means that water molecules are less bound to each
other in steam than in water.

Example 2.4: The velocity of sound

Newton gave a theory of sound velocities taking the air to be at the same temperature
during the propagation of the sound wave. This was in disagreement with the observed
values. Laplace corrected Newton’s theory by treating the changes in pressure and
density adiabatically. Work out the details of both these.

The velocity of sound as given by the Newton-Laplace formula is

v2s =
dP
dρ

(2.28)

where ρ is the density of the gas. To obtain Newton’s expression for this, we
evaluate the required derivative under isothermal conditions. The ideal gas
law gives P = RT/Mρ, where M is the mean molecular weight of the gas. For
air, it is about 28.9. Hence the velocity of sound according to Newton is

vNewton
s =

√
RT
M

(2.29)

Let us evaluate this for dry air at 293 K. Using the value of the gas constant R
to be 8.314 J/K, one finds vNewton

s to be close to 290 m/sec. But the measured
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value at this temperature was more like 343 m/sec. It was this discrepancy
which was resolved by Laplace, to whose treatment we now turn.

Laplace’s essential argument was that over the very short time scales in-
volved during the passage of a sound wave through a medium, the heat ex-
changes are minimal, and the problem of sound wave propagation has to be
treated by considering the changes to the medium as adiabatic. We derived
the adiabaticity conditions for an ideal gas as a relation between V and T.
But for the present purposes, it is more useful to get this relation in terms of
P and V, or equivalently, between P and ρ. This has been given as a problem
at the end of this chapter. When the specific heats are taken to be constant,
this relation is

P = const.ργ (2.30)

where γ =CP/CV and takes the value 1.4 for air. It is then easy to show that
dP/dρ for adiabatic changes is actually γ P/ρ. The velocity of sound then
becomes

vLaplace
s =

√

γ
RT
M

(2.31)

This marks a substantial correction to the Newtonian value and gives for the
velocity of sound through dry air at 293 K to be 343.2 m/sec, very close to
the observed value!

Example 2.5: The adiabatic and isothermal atmospheres

It is a well known fact that upper parts of the atmosphere are much cooler than lower
parts. Explain this on the basis of an adiabatic atmosphere. How do these considera-
tions change if the atmosphere is considered to be isothermal instead? Show that there
is a characterstic height of the atmosphere.

The physics behind the aforementioned fact is that a pocket of air on ris-
ing to the upper parts expands adiabatically and therefore cools. The process
is adiabatic because over the time scales involved, no significant heat trans-
fer takes place. The atmosphere is on the whole in hydrostatic equilibrium.
Consider a thin slab of thickness dz(z is the height of the atmosphere) and
unit area. The mass of the element is ρdz and the gravitational force is −ρdzg
where g is the acceleration due to gravity and it is negative because it is down-
wards. The downward force due to pressure of gas above the slice is -(P+dP),
and the upward force due to pressure of gas below the slice is P. Hydrostatic
equilibrium is reached when these three forces add up to zero:

dP
dz

=−gρ (2.32)

Therefore, the pressure of the atmosphere always decreases with height.
If the atmosphere behaves adiabatically, P= aργ (a is a constant). Hence the

equilibrium equation, after using the ideal gas law P = RT
M ρ, can be rewritten

as
dT
dz

=− γ −1

γ
gM
R

(2.33)
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Hence for an adiabatic atmosphere, temperature decreases linearly with height.
Using g= 9.8 m/s2 along with the values of M and R given above, the rate of
decrease is 9.8 K/km. Actual rate is smaller than this.

If, on the other hand, we treat the atmosphere isothermally, we have P =
(RT/M)ρ and the hydrostatic equilibrium condition becomes

dP
dz

=−gM
RT

P P(z) = P(z = 0)e−
gM
RT z (2.34)

In other words, the pressure (and hence the density) of an isothermal atmo-
sphere falls off exponentially with height. The scale of fall-off is determined by
the length scale L = RT

gM , which can be called the height of the atmosphere. Its
numerical value is about 8.8 km! Of course, the atmosphere is far from being
isothermal.

2.5 Problems

Problem 2.1 Consider the melting of 100 gms of ice at 273 K and 1 atm. of
pressure. The densities of ice and water under these conditions are, respectively,
0.92 gms/cc and 1.0 gms/cc. The latent heat of fusion of ice is 80 cal/gm. Apply
the first law to determine the heat absorbed, the work done, and the change in
internal energy. Do you expect the internal energy per unit mass of water to be
greater or lesser than that of ice, and why?
Problem 2.2 Show that the conditions for adiabatic changes of an ideal gas

are governed by dP
P + γ(T ) dV

V = 0 dP
P − γ(T)

γ(T)−1
dT
T = 0, and that they can

be integrated to PV γ = const. and P = const.T
γ

γ−1 when the specific heats are
constant.
Problem 2.3 Show that for an atmosphere in hydrostatic equilibrium, the heat
Q is a state function at each height, i.e Q(V(h),T(h),h). Also show that H+gh-
Q=const. Apply this to the problem of the adiabatic atmosphere. The quantity
H+gh is sometimes referred to as the dry static energy.
Problem 2.4 An empty container is filled adiabatically at temperature T0 at
pressure P0 with dry air. A volume V0 is transferred from outside. Calculate the
final temperature of the air inside the container. Give a physical reasoning for the
rise in temperature.
Problem 2.5 Chemists find the so called enthalpy diagrams very useful. These
diagrams show various products of formation like H2O from H2 and O2 etc.
along with their enthalpies, called enthalpy of formation, at, say, atmospheric
pressure. Draw such a diagram for H2 and O2 taking the enthalpy of the un-
combined constituents to be 0 when enthalpy of formation is as follows:H2O2(-
188),OH−(-230),H2O(vapor)(-242) and H2O(liquid)(-285). Calculate the heat
released when these are transformed into each other.
Problem 2.6 Consider a Carnot cycle operating with an ideal gas of constant
specific heats CV ,CP. The cycle starts at P0,V0 and goes through the following
stages: an isothermal expansion to 2V0, a subsequent adiabatic expansion to 4V0,
an isothermal compression to such a volume that an adiabat can connect this third
state to the original state, and finally an adiabatic compression to the original
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state. Separately calculate the total heat given out, and the total work done during
the cycle. Are they equal? Why?

Problem 2.7 In the Clement-Desormes experiment for measuring the ratio γ of
specific heats for an ideal gas, one starts with the gas at some initial pressure
P1 and temperature T1 in a container which is then allowed to adiabatically de-
compress to a pressure P2 and temperature T2 by quickly opening and closing a
valve. The gas is then heated at constant volume till it reaches the original tem-
perature T1, but at a different pressure P3. Show how γ can be determined from
a knowledge of P1,P2,P3. What fraction of the gas was lost to outside during the
adiabatic decompression?

Problem 2.8 Show that any two points on the P-V plane can be connected by a
combination of an isochore and an adiabat of the type PV γ (note that the system
need not be an ideal gas). If the heat Q discharged by a system during isochoric
compression from Pi to Pf is given by A(Pf −Pi), calculate the internal energy
difference U(P,V )−U(P0,V0) for arbitrary values of P0,V0,P,V (Callen)(V ).

Problem 2.9 Consider the air in a room, which is not airtight, being isobarically
heated to a higher temperature. If air is treated as an ideal gas, show that the total
internal energy of the air within the room does not change despite the heating.
Since the air escaping from the room goes to merely heat the outside and hence
that amount of heat is wasted, is there still any benefit to this way of heating?

Problem 2.10 A medium size iceberg weighs about 100,000 metric tons. If the
energy received from the sun is 2 cals/sq.cm in a minute, how long will it take to
completely melt such an iceberg if all the solar energy incident on 1 square km
is used for it? The latent heat of fusion of ice is 80 cal/g. Considering that the
cross-sectional area of such icebergs is about 1000 square metres, how long will
this iceberg last in its journey?

Problem 2.11 What fraction of ice will still remain after 1 Kg of ice has been
supplied with 200 kJ of heat(all at 273 K)?

Problem 2.12 The specific heat of a solid substance near absolute zero has been
found to vary with temperature as C(T ) = 2.0Te−3.0T J/mol.K. How much heat
will be needed to raise the temperature of 1 mol of this substance from 0 K to 10
K?

2.6 Suggested reading for this book in general

Though in this book the best of many sources has been distilled into one, it is never-
theless recommended that the reader consult as many different sources as possible.
There are some outstanding textbooks on thermodynamics, as well as on statistical
methods, but mostly books with thermodynamics as the main focus are suggested
here.

1. Robert Resnick, David Halliday, and Kenneth S. Krane, Physics, Vol. I [61]. This is
an excellent text with clear exposition and a large number of examples and problems.
Highly recommended that beginners and others start with this.

2. Enrico Fermi, Thermodynamics [17]. This is a classic that is very clearly written and its
particular speciality is the originality of presentation, and approaching problems from
many different angles. It is an excellent source to get a deeper understanding of the
thermodynamic potentials. It is also self-contained.
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3. Max Planck, Treatise on Thermodynamics [57]. This is an excellent source book, with
surprisingly few equations, but with plenty of insight. Planck’s original works on the
third law are beautifully explained here.

4. Arnold Sommerfeld, Thermodynamics and Statistical Mechanics [64]. Though only a
small portion of the book is devoted to pure thermodynamics, this book is a must to get
a clarity regarding the basic issues in thermodynamics. It also has a very good collection
of problems along with their solutions in Sommerfeld’s impeccable style.

5. Evelyn Guha, Basic Thermodynamics [22]. This short book is extremely clearly written.
Whatever topics are covered, are covered well. It has a large number of very instructive
worked examples, and good problems. Beginners and experts alike will find this very
useful.

6. Y. V. C. Rao, Engineering Thermodynamics Through Examples [59]. This book illus-
trates many of the important concepts and results in thermodynamics. With over 750
very good worked examples, readers will benefit immensely from this source.

7. A. B. Pippard, Classical Thermodynamics [54]. This too is a classic and deals with a lot
of subtle issues, and great attention is paid to essential details, though often in very fine
print. Beginners may find this terse to read, but they should use it as often as they can.

8. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part I [34]. In the typical Landau
style, this is a great book for a deeper understanding of the subject. There are illuminat-
ing problems and worked examples. But it is hard reading at first!

9. Herbert B. Callen, Thermodynamics and An Introduction to Thermostatistics [3]. This
is an indispensable source for a proper understanding of the logical structure of thermo-
dynamics. This too has an extensive coverage of all the important topics. It has many
problems and worked out examples. But it requires a certain mature understanding of
the subject before its fine print can be adequately appreciated (and admired!)

10. M. N. Saha and B. N. Srivastava, A Treatise on Heat [63]. This is an old classic whose
hallmark is the meticulous details that follow every discussion. This is also the place to
get an accurate account of the various epoch-making experiments in thermodynamics.

11. R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics [18]. Considered as
one of the authoritative sources in the subject.

12. Wolfgang Pauli, Thermodynamics and the Kinetic Theory of Gases [53]. This short but
delightfully original account of thermodynamics is must reading. Some sections are terse
but worth one’s while.

13. Walther Nernst, The New Heat Theorem [50]. In this book, Nernst gives an extremely
lucid and detailed account of the experiments and ideas that eventually led him to his
postulate.

14. Dilip Kondepudi and Ilya Prigogine, Modern Thermodynamics [33]. This is a book with
a more modern outlook on the subject, including non-equilibrium thermodynamics. It
has a good coverage of the applications of thermodynamics to chemistry.

15. Joseph Kestin, A Course in Thermodynamics [31]. This book, apart from treating all the
standard topics well, also includes a discussion of open systems.

16. Kerson Huang, Statistical Mechanics [26]. The main focus is on Statistical Mechanics,
but has good chapters on thermodynamics too.

17. Sadi Carnot, Reflections on the Motive Power of Heat [5]. Though this work marked the
essential beginnings of thermodynamics, my suggestion for the reader is to study it after
gaining a reasonable mastery over modern thermodynamics, to avoid confusion between
similar sounding concepts then and now. The English translation carries an expository
article by Kelvin, which makes Carnot’s ideas particularly transparent.



3 The Second and Third Laws

Soon after the first law, it became clear that while the first law, seen by many as
a manifestation of the conservation law for energy when thermal phenomena were
taken into account, while by some others like Sommerfeld [64] and Planck [57] as
an axiomatic law recognizing new forms of energy to which an extended form of
the conservation law can be applied, it still could not account for all facts of expe-
rience. For example, while first law could quantitatively forecast the amount of heat
necessary to convert 1 gm of water at its boiling point to 1 gm of steam at the same
temperature, it can not explain why 1 gm of steam does not spontaneously convert
itself to 1 gm of water accompanied by an amount of heat (which can, however, be
forecast by the first law). That the latter process does not take place is one of the facts
whose explanation is beyond the first law.

Likewise, another obvious fact of experience, which even those untutored in ways
of science would readily admit, is that heat only flows from a hotter body to a colder
body though the reverse is in no sense contradictory to the first law. Oxygen and
hydrogen can combine under the right circumstances to form water, but no one has
observed water on its own relapsing to the original condition. Forget about something
complicated as a chemical reaction, just mix hot and cold water to get water at an
intermediate temperature, but has anyone witnessed the resultant water going back
to the original mixture on its own? One can go on and compile a huge list of such
obvious facts.

As beautifully explained by Planck, a common feature to these facts is that there
is an element of directionality to them in that processes seem to proceed only one
way spontaneously. To that extent, processes that would be put on par as far as the
first law is concerned develop an asymmetry, making it meaningful to think of one
of them rather than the other as the initial event.

Unlike the first law, where postulating the equivalence of heat and energy culmi-
nated in a complete description, including its succinct mathematical expression, the
kind of facts mentioned above do not seem, at least on the surface, to have suffi-
ciently common threads, apart from the directionality mentioned above, that could
be used to give a comprehensive and quantitative description. So in essence, to para-
phrase Max Planck, “..when we pass from the considerations of the first law to that
of the second, we have to deal with a new fact, and it is evident that no definition,
however ingenious, although it contains no contradiction in itself, will ever permit
the deduction of a new fact.” Of course, the situation in this respect was not particu-
larly different in the case of first law either; there too, the new fact, namely, that heat
and energy are interconvertible, could never have been derived.

Rather than pretending to be able to derive the body of new facts embodying the
second law, the question to be asked is whether one of these facts can be taken to be
self-evident, and all other such facts can be derived from it consistently. Consistency
would require that in fact any of the new facts can be taken as an axiom and all
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others ought to be derivable from it. But the main difficulty is in stating the complete
essence of any one of such facts.

Historically, this was achieved most admirably through Clausius’s formulation of
the second law on the one hand, and Kelvin’s formulation on the other. Planck and
Maxwell added their formulations, which were essentially the same as these two,
but stated differently, laying emphasis on one aspect rather than the other. All of
them were expressions of the impossibility of the so called perpetual machines of the
second kind. But in this chapter, we shall start with a very different approach; this
is an extension of the perceptive remark by Sommerfeld that there are two distinct
aspects of the second law. What he calls the first part is what can be called the entropy
axiom, which postulates a state function that is now called entropy. To the author’s
surprise, the first part turns out to be fully equivalent to the entire second law! This
will be explained in detail. As will be seen, the entropy axiom is not some arbitrarily
picked postulate; for ideal gases, this is in fact a consequence of the first law. Before
proceeding further, we take a brief, but crucial, detour into perpetual machines.

3.1 Perpetuum mobiles

As the name indicates, a perpetuum mobile is a machine that keeps running forever.
For the purposes of our discussion we need to distinguish between three distinct
types of perpetuum mobiles.

If there is a reversible machine, one can contemplate running a combination of this
machine with its inverse. Whatever work is performed by the first in making certain
thermodynamic transitions can be fed into the reverese engine, bringing the system to
the starting point of the original machine. This can go on and on forever, constituting
a perpetual machine that runs forever. Since all the work performed by the original
machine has to be used to run the reverse machine, no net work can be performed
by perpetual machines of this type. They do not violate any physical principles. A
swinging pendulum in vacuum, without any frictional or dissipative losses, is indeed
a perpetual machine of this type. While perpetual machines of this type are possible
in principle, in practice it is impossible to devise a perfectly reversible machine, and
no perpetual machines of this kind can ever be considered. Frictional and dissipative
effects have to be strictly absent for their realization.

3.1.1 Perpetual machines of the first kind

Recall Carnot’s ingenious argument that all ideal heat engines have to have the same
efficiency. If not, running one of these ideal heat engines with the reverse of another
ideal heat engine would lead to a net combination that would produce useful work
without any thermal agency (in the caloric picture). Such a perpetuum mobile can
in addition run forever, thereby producing limitless work for nothing. Carnot found
that physically unacceptable as it implied lack of conservation of energy. Perpetual
machines of this kind, which violate conservation of energy, will be called perpetuum
mobiles of the first kind.
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3.1.2 Perpetual machines of the second kind

Now let us consider machines that never violate the first law, and hence the conser-
vation of energy in the extended sense described above. This still does not preclude
a machine from drawing heat from a resevoir and convert it completely into work.
Such machines will be called perpetuum mobiles of the second kind. If they existed,
the almost limitless heat reservoirs available in the universe can be used to run such
machines practically forever, producing work for ’free’ so to say. Though such ma-
chines do not violate the first law, or equivalently, the conservation of energy, their
existence certainly seems very implausible. Furthermore, combining such a machine
with a ’normal’ machine like a refrigerator(more on them later) would produce a sit-
uation where heat can flow from a colder body to a hotter body without expending
any work. That too sounds very odd as in real life no such possibility has ever been
observed!

Let us sharpen this notion by pointing out a few cases that may superficially ap-
pear to be examples of this kind of perpetual machine. Firstly, in any reversible cycle,
first law demands ΔW =ΔQ, and it may appear that ΔQ has been completely con-
verted to work. But closer examination reveals that not all of ΔQ has been extracted
from a single reservoir. In fact, the heat drawn from the reservoir at a higher temper-
ature has not been fully converted to work, and part of it has been wasted (from the
perspective of a machine), and relinquished at some lower temperature. More pre-
cisely, ΔQ has not been extracted from a single reservoir or a reservoir that is at the
same temperature throughout (this is to rule out the logically permissible description
of the reservoirs at higher and lower temperatures as a single reservoir but whose
temperature is not the same throughout).

Again, if we consider isothermal expansion of an ideal gas, clearly the heat ab-
sorbed is fully converted to work as per the first law, i.e d̄Q = CV dT + PdV →
dQ = PdV , and the heat has been extracted from a single reservoir. But this too
will not qualify to be a perpetual machine of the second kind for somewhat subtler
reasons. Firstly, the isothermal expansion changes the state of the system from (V,T )
to (V ′,T ); for it to act like a machine, the system will have to be eventually brought
back to its original state whereupon it will expel part of the heat absorbed.

Both these examples serve to provide the following sharper meaning to what a
perpetual mobile of the second kind can be:i) it has to absorb heat from a reser-
voir maintaining the same temperature throughout, i.e a single reservoir, ii) it should
convert the heat so absorbed fully into work without affecting any other changes.

3.2 The entropy axiom: the first part of second law

3.2.1 A bonanza from first law for ideal gases

As we saw from the previous chapter, Joule’s famous experiment on free expansion
implies that for ideal gases, the internal energy U is a function of T only. In fact, this
should be taken as an independent characterization of ideal gases from the gas law
PV = nRT ; it is independent because it can not be derived from the gas laws without
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further assumptions. Now let us consider d̄Q
T ; according to the first law, considering

only mechanical work,

d̄Q
T

=
dU(T )

T
+ nR

dV
V

= dA(T )+ nRd lnV (3.1)

where U = dA(T)
dT . This is a remarkable result which states that for ideal gases, dQ

T

is indeed a perfect differential even though d̄Q was not. This means that
∫ d̄Q

T is yet
another state function. The interesting question is whether this is just an accident
valid only for ideal gases? Before attempting an answer to it, let us call d̄Q

T as the
perfect differential dS, where S shall be called entropy. Clausius introduced this
concept in 1865, fifteen years after he formulated the first and second laws. The
entropy for the ideal gas, from above, is

S =

∫
dU(T )

T
+ nR lnV + S0 (3.2)

with S0 being an undetermined constant. When CV of the ideal gas is constant, this
becomes

S = nCV lnT + nR lnV + S0 S = nCP lnT − nR lnP+ S′0 (3.3)

The existence of entropy as a state function is what Sommerfeld calls the entropy
axiom. We have seen that for ideal gases this is not really an axiom, and is in fact a
direct consequence of first law when combined with the two laws for ideal gases. In
general, U will not be a function of T alone and it is clear that the entropy axiom will
not always be valid.

3.2.2 A consequence of the entropy axiom

To explore the status of the entropy axiom for other than the ideal gases, let us con-
sider gases obeying the van der Waals equation that was introduced in chapter 1.

(P+
an2

V 2
)(V − nb) = nRT (3.4)

If we consider in particular the so called ideal vdW gases, for which CV = const.,
it is not hard to see that for the choice U(V,T ) = nCV T − an2

V , d̄Q
T is again a perfect

differential. This continues to be so as long as U(V,T ) = f (T )− an2
V , but for choices

other than these, d̄Q
T is indeed not an exact differential.

Therefore what the entropy axiom does on one hand is restrict the possible choices
of internal energy. In fact, one can obtain a precise expression of this restriction by
simultaneously demanding that dU as well as d̄Q

T are perfect differentials. Taking
(V,T) as the independent variables, these integrability conditions are, respectively,

(
∂CV

∂V

)

T
=

(
∂

∂T

(
∂U
∂V

)

T

)

V

(3.5)
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and (
∂

∂V
1

T

(
∂U
∂T

)

V

)

T

=

(
∂

∂T
1

T

{(
∂U
∂V

)

T
+P

})

V

(3.6)

Simplifying this and using the previous equation, one arrives at one of the most
important equations of thermodynamics, i.e

(
∂U
∂V

)

T
= T

(
∂P
∂T

)

V
−P (3.7)

Eqn.(3.7) can be taken to be equivalent to the entropy axiom when the first law is
valid.

When applied to an ideal gas for which PV = nRT , it is seen that this equation

would require
(

∂U
∂V

)

T
= 0, which is the same as U being a function of T alone.

Earlier we had shown the converse, i.e when U is a function of T alone, the entropy
axiom is satisfied. In the vdW case too, the particular form of U(V,T ) = f (T )− an2

V
is indeed a solution of eqn.(3.7)!

The discussion of the entropy axiom so far seems rather mathematically oriented,
without any obvious physical significance. Actually, the entropy axiom has very deep
physical significance, perhaps one of the deepest in physics! To bring this out, we first
demonstrate an equivalence between the entropy axiom, and universality of Carnot
cycles.

3.3 Entropy axiom and universality of Carnot cycles

FIGURE 3.1 The Carnot engine obeying first law and its reverse

Recall that within the caloric theory, Carnot had reached the very important con-
clusion that all ideal heat engines must have universal efficiency if energy conserva-
tion (impossibility of perpetual mobiles of the first kind, according to Carnot) is to
be respected. Now, with the new paradigm of interconvertibility of heat and work, it
is pertinent to raise afresh the issue of the universality of all ideal Carnot cycles.



56 The Principles of Thermodynamics

But unlike in the caloric theory, now the Carnot cycle is characterized by the
amount of heat QH absorbed by the system at the higher temperature TH , and the
heat QL < QH relinquished at the lower temperature TL. Even in the new theory, the
notion of efficiency can still be kept to mean the amount of work performed per heat
absorbed at the higher temperature.

The important difference from the caloric theory is that the heat relinquished at the
lower temperature is no longer the same as that absorbed at the higher temperature,
but is in fact reduced by the amount of work performed. Consequently, the efficiency
is given by e = ΔW

QH
= QH−QL

QH
. What is not clear a priori is that in the new theory, the

ratio QL
QH

is universal for all ideal heat engines.
What, if any, would go wrong if the efficiencies of all ideal heat engines were not

the same? Precisely the same kind of analysis that Carnot carried out earlier can be
done now too. The ideal Carnot cycle and its reverse are shown in the next figure.
In the reverse engine, heat QL is absorbed at the lower temperature and QH > QL is
exhausted at the higher temperature after work equal to QH −QL = eQH has been
performed on the system. If there were two ideal Carnot engines C,C′ with efficien-
cies e,e′ > e, then a composite of C′ with the reverse of C (see figure) would extract
an amount of heat (e′ − e)QH from the lower reservoir and convert it completely to
work W of the same magnitude, without expelling any heat at the higher reservoir.
In other words, a perpetuum mobile of the second kind would be possible! This can
only be avoided if the efficiencies of all ideal Carnot cycles, even in the new theory,
are the same.

FIGURE 3.2 Universality of the Carnot cycles FIGURE 3.3 Universality of the Carnot cycles

This line of thinking, as Carnot had already demonstrated earlier, puts severe re-
strictions on efficiencies of nonideal (i.e not reversible) heat engines too. While the
reverse of an irreversible (nonideal) Carnot cycle cannot be used, the argument can
still be made use of with the irreversible Carnot cycle in combination with the re-
verse of a reversible cycle; therefore, if the efficiency of an irreversible cycle exceeds
that of an ideal Carnot cycle, one can still construct a perpetual mobile of the second
kind. Therefore one can conclude that efficiency of an irreversible engine has to be
necessarily lower than a reversible engine.

We will now proceed to determine the conditions for the universality of ideal en-
gines. We can just use the same calculus that Clausius used to establish the existence
of internal energy U. So, considering an infinitesimal Carnot cycle, the efficiency
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de is given by de = ΔW
N(V,T )δT V . On using the results previously obtained, one gets

de = 1
N(V,T )

(
∂P
∂T

)

V
δT . Clausius is supposed to have been aware that for ideal gases

N(V,T ) = P. This is also what follows from Joule’s experiment on expansions of
ideal gases. In the light of the first law, this implies that for ideal gases U is a function
of T only, and consequently dU(T ) =CV (T )dT . On combining this with eqn(2.11)
one concludes that N = P. Therefore, for ideal gases

de =
1

P

(
∂P
∂T

)

V
dT =

dT
T

(3.8)

This is how Clausius fixed the universal Carnot function in the earlier Clapeyron
equation to be μ(T ) = 1

T leading to the modern form of the Clapeyron equation
which should aptly be called the Clausius-Clapeyron equation. However, to avoid
confusion because of this equation being referred to in current literature as Clapeyron
equation, we shall also continue with that practice with the understanding that the
latter is a shorthand for the former. It is of course to be recalled that the earlier
Clapeyron equation was based on the now defunct caloric theory, whereas Clausius
derivation is what follows from the new theory of heat; it is just that many quantities
(but of course not all) were insensitive to the actual nature of heat!

Now the requirement of universality of efficiencies of all ideal heat engines means
that in particular they must equal the efficiency of all ideal heat engines based on
ideal gases as the working substance, and one gets the extremely important conse-

quence that N(V,T ) = T
(

∂P
∂T

)

V
for all thermodynamic systems! On the other hand,

(
∂U
∂V

)

T
= N − P. Therefore, universality of efficiencies of Carnot engines, in the

light of the first law, requires that
(

∂U
∂V

)

T
= T

(
∂P
∂T

)

V
−P (3.9)

Lo and behold, this is nothing but the condition for the entropy axiom! In other
words, the entropy axiom is equivalent to the condition of universality of all Carnot
engines. This is the underlying physical significance of the entropy axiom. But since
the universality is also equivalent to the impossibility of perpetual mobiles of the
second kind, we draw the powerful conclusion that the entropy axiom, what Som-
merfeld called the first part of the second law, is equivalent to the impossibility of
perpetual mobiles of the second kind. But the latter is one of the formulations of the
second law of thermodynamics, what Sommerfeld would have called the second part
of the second law. Therefore, the entropy axiom is not just the first part of the second
law, it is, at the same time, also its second part![24]

However, most people recognize second law in the form where it states that en-
tropy of a thermally isolated system never decreases. As the system while executing
a Carnot cycle is certainly not thermally isolated (except during the adiabatic stages),
one can not immediately see the consequence of the second law, so formulated, for a
Carnot cycle. Instead, we shall focus on the so called Clausius inequality which we
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shall later see to be equivalent to the form of the second law so stated. This inequality
states that for any cycle, not necessarily reversible, the following is always true:

∮
d̄Q
T

≤ 0 (3.10)

The equality holding only for reversible cycles. It is very important to stress that
though d̄Q

T is a perfect differential, the integral of this over a path is the entropy
difference between the endpoints only if the path is reversible. That is why even
though d̄Q

T has been integrated over a closed path in eqn.(3.10), the rhs is not zero!
Furthermore, the rhs can be negative so a naive interpretation of the integral as a
change of entropy would actually imply an entropy decrease! We shall return to a
fuller discussion of these subtleties shortly.

We shall now demonstrate that the entropy axiom, through its equivalence to the
impossibility of perpetual mobiles of the second kind via its equivalence to the uni-
versality of ideal Carnot cycles, indeed yields the Clausius inequality, without any
further assumptions. For that we make use of Clausius’s own ingenious construc-
tion.

FIGURE 3.4 Proving the Clausius inequality.

Consider an arbitrary cycle C̃, not
necessarily a reversible one. In execut-
ing this, let the system start at A1 and
absorb an amount of heat (ΔQ)1 dur-
ing the segment A1A2 at temperature
T1. The cycle is completed by absorb-
ing (ΔQ)2 during A2A3 at T2, and so on,
till the system returns to its starting state
A1 by absorbing (ΔQ)n during AnA1 at
Tn. The sign of (ΔQ) can be positive or
negative.

Clausius’s ingenuity lay in picturing
the heat absorbed at each stage as the
heat relinquished during a reversible Carnot cycle operating between some arbitrary
temperature T0 and the temperature of the stage of C̃ during which the heat was
absorbed. Clearly, there are, in addition to the cycle C̃, n Carnot cycles C1,C2, ..,Cn

operating between T0 and the temperatures T1,T2, ..,Tn. This is schematically shown
in the figure for the stage AiAi+1.

So, the cycle C̃ starts at A1 and at the same time C1 starts at E1 and goes through
the reversible Carnot cycle by eventually delivering (ΔQ)1 to C during A1A2 at
temperature T1. It must therefore absorb T0

T1
(ΔQ)1 from the reservoir at T0. After C̃

and C1, ..,Cn have been completed, all have returned to their original states; the total
heat absorbed from the single reservoir at T0 being

ΔQ = T0∑
i

(ΔQ)i

Ti
(3.11)

and this is completely converted to work, with no other changes. If this heat were pos-
itive, we would indeed have realized a perpetual machine of the second kind. On the
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other hand, if this heat were negative, the work done would have been on the system,
and this would only have amounted to a refrigerator, with no contradictions—the
case when ΔQ = 0 does not also contradict anything.

In conclusion, the entropy axiom is completely equivalent to a) universality of
all ideal heat engines, b) the impossibility of perpetual machines of second kind,
and consequently, c) Clausius inequality of eqn.(3.10). Later, we shall show how the
form of second law stating that entropy of thermally isolated systems never decreases
emerges from the Clausius inequality.

3.3.1 Ideal gas Carnot cycle

Let us consider a Carnot cycle whose working substance is an ideal gas. The states
visited during the cycle are (PA,VA,TH),(PB,VB,TH),(PC,VC,TL),(PD,VD,TL). We
have already worked out the infinitesimal version of this cycle: in that case the ef-
ficiency was found to be dη = ΔW/QH = dT/TH , where QH is the heat absorbed
from the higher tempeature reservoir and ΔW = QH −QL the work done by the
cycle.

FIGURE 3.5 Finite Carnot cycle

Earlier, in eqn. (3.8) we showed how
Clausius had determined the efficiency
of the infinitesimal ideal gas Carnot cy-
cle to be de = dT/T . Now we show
how the finite cycle works. Such a fi-
nite cycle is shown schematically in
the adjacent figure. The first law tells
that during isothermal changes dQ =
PdV = RT

V dV . Hence the heat QH ab-
sorbed during the isothermal process at
TH is QH = RTH lnVB/VA. Likewise the
heat relinquished at the lower end is
QL = RTL lnVD/VC. Using the expres-
sion for entropy given in eqn.(3.3) the
adiabaticity of the steps BC and DA re-
quires lnVC/VB = lnVD/VA and hence
lnVB/VA = lnVD/VC leading to QH/TH = QL/TL, with the resulting efficiency of
the finite cycle being η = (QH −QL)/QH = 1−TL/TH .

During the isothermal stages ΔQ = ΔW . To compute the work done during the
adiabatic stages, one uses (from first law) that during such changes PdV =−dU and
hence the work done during an adiabatic change is just the negative of the change in
internal energy. But the internal energy for an ideal gas is a function of temperature
alone according to eqn. 3.7. Hence the work done during BC is U(TH)−U(TL) and
that during DA is U(TL)−U(TH), and these cancel each other exactly. Therefore at
the end of the cycle too, the total heat absorbed equals the total work done.

Note that we have not assumed CV to be a constant, so that the treatment given
here is the most general. When CV depends on temperature, it is not straightforward
to get P as a function of V during adiabatic changes, so that an explicit evaluation
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of
∫

PdV would have been very difficult. But that step has been circumvented by
exploiting the fact that during such an adiabatic change dW =−dU .

3.3.2 Composition of Carnot cycles

Recall the earlier result that the efficiency of an infinitesimal Carnot cycle using an
ideal gas as a working substance, and working between T and T −dT is dη = dT/T .
How then should one relate this to the efficiency η = 1−TL/TH of the finite cycle
operating between TH and TL? Incidentally, the universality of all ideal heat engines
makes these considerations applicable to any Carnot cycle, not necessarily the ones
whose working substances are ideal gases.

A naive integration of dη from TL to TH would give η = ln TH/TL, a decidedly
incorrect result! Infinitesimal cycles had been justified on the correct premise that
finite cycles can be obtained, as a result of reversibility, by composing many infinites-
imal cycles (in fact Carnot had initiated this concept). Therefore, something is amiss
in the way the efficiencies have been compounded.

Carnot cycles in parallel and series To understand the intricacies better, let us
introduce the notion of compounding Carnot cycles in parallel and in series.

FIGURE 3.6 Carnot cycle compositions.

Consider two infinitesimal Carnot
cycles both of which are operating be-
tween the same temperatures T and T −
dT . By composing these in parallel we
mean a composite Carnot cycle, also
operating between the same tempera-
tures, and in such a way that the heat
extracted by the composite cycle at the
higher temperature is the sum of the
heat extracted by the component cycles.
Likewise for the heat relinquished at the
lower temperatures. If QH ,Q′

H respec-
tively are the heat absorbed at T , the
work performed by the components are
δW = dT

T QH ,δW ′ = dt
T Q′

H and hence
the total work done by the composite is
dT
T (QH +Q′

H). Therefore the composite has the same efficiency as the efficiency
of the components(their efficiencies are the same as they operate between the same
temperatures).

Now let us turn to Carnot cycles in series. We shall say two Carnot cycles are in
series when i) the lower temperature of the first coincides with the higher temperature
of the second, and ii) the heat relinquished by the first cycle at its lower temperature
coincides with the heat absorbed by the second cycle at its higher temperature. If
η1,η2 are the efficiencies of the two components and QH the heat absorbed at the
higher temperature of the first cycle, the heat relinquished at the lower reservoir of
the first cycle is (1−η1)QH . But this is the heat absorbed at the higher reservoir
of the second cycle whereupon the heat relinquished at the lower reservoir of the
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second cycle is (1−η2)Q′
H = (1−η1)(1−η2)QH . This means the efficiency of the

composite cycle is η12 = 1− (1−η1)(1−η2) and this is not η1 +η2. In fact, the
composition rule for the series case is (1−η12) = (1−η1)(1−η2). The efficiencies
in a serially connected case is not the sum because the heat input for the second is
not the same as the first, but is reduced.

More explicitly, if QH(T ) is the heat absorbed at the higher temperature T, the
work done in an infinitesimal cycle is dW = QH (T )

T dT . So for the temperatures
TH ,T1,T2, . . . ,TL characterizing many cycles connected in series resulting in a com-
posite cycle operating between TH and TL, it follows that QH (Ti)

Ti
is constant equalling

QH (TH )
TH

; hence the total work doneW =∑i(dW )i =QH(TH)
∑i dTi

TH
=QH(1− TL

TH
which

is the result for the finite cycle obtained earlier!
Composition of the cycles in the caloric theory It is instructive to compare the

above with what would obtain in the caloric theory, i.e for the cycles as originally
envisaged by Carnot. Because there too the universality of efficiencies was valid, for
cycles connected in parallel one would reach the same conclusion as above. But there
is a dramatic difference for cycles in series; now the heat absorbed at the higher end
of every component is the same! The rule for composing the efficiencies becomes
η12 = η1+η2 and one obtains, as shown by Kelvin,

η(TH ,TL) =

∫ TH

TL

μ(T )dT (3.12)

Therefore, even if the efficiency of an infinitesimal cycle in caloric theory is chosen
to be dT

T , to match the modern result, the efficiency of the finite cycle would have
become η(TH ,TL) = ln TH

TL
! Therefore, even though it is true that in both theories, a

finite cycle can be obtained by composing many infinitesimal ones, the efficiencies
compose differently.

3.4 Historical formulations of second law

As already indicated in the opening lines of this chapter, what was needed was a suc-
cinct postulate that would encompass the nearly countless circumstances of experi-
ence that lay beyond the scope of the first law. As stated, such a postulate, although
differing in exact verbal details, was given by Clausius and Kelvin, and restated later
by Planck and Maxwell. We begin with the postulate of Clausius:

Clausius Postulate A transformation whose only final result is to transfer heat
from a body at a given temperature to a body at a higher temperature is impossible.

The clause only final result is all important. Equivalently, the postulate of Clausius
can also be restated as heat can not, of itself, pass from a colder to a hotter body,
where again the phrase of itself is of critical importance.

As perceptibly noted by Fermi [17], this form of the postulate explicitly brings
in the notion of temperature, which is in fact absent in the general formulation of
the first law. As emphasized in the section on thermometry, though the numerical
value of temperature is dependent on details of thermometry, the notion of whether
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a given body is hotter or colder than another given body is absolute, and is indepen-
dent of thermometric details. Nevertheless, it may be worthwhile to give as precise a
meaning as possible to this postulate.

One is to use, as done by Fermi, a well established phenomenon like conduc-
tivity to unambigously identify the hotter(colder) of the bodies. so, Fermi proposes
to recast Clausius’s postulate as: If heat flows by conduction from A to B, then a
transformation whose only final result is to transfer heat from B to A is impossible.

Refrigerators It is also instructive to view the Clausius postulate as the impos-
sibility of perfect refrigerators. Recall that in a refrigerator heat QL is actually ex-
tracted at the low temperature end and delivered as heat QH > QL to the high tem-
perature end. Of course, work needs to be done to make this happen and that is what
the compressor does. So, in a precise sense, a refrigerator is a reverse heat engine.
The efficiency of a heat engine η = W

QH
= 1− QL

QH
, but refrigerators are described

by the so called coefficient of performance which is defined as the amount of heat
extracted per work done, i.e K = QL

W . This is understandable as a good refrigerator
is the one that extracts maximum possible heat per work done. Therefore, the higher
the K, more efficient is the refrigerator. The formula for K is

K =
QL

W
=

QL

QH −QL
→ K =

TL

TH −TL
(3.13)

But the range of values of K is 0 ≤ K ≤ ∞, whereas an efficiency is expected
to lie in the interval 0 ≤ η ≤ 1. It is, however, possible to define a refrigerator ef-
ficiency eR = K

K+1 which lies in that range. What is the relationship between this
refrigerator efficiency, and the efficiency ηR of the heat engine which is the reverse
of the refrigerator? As can easily be checked, that relationship is eR +ηR = 1, and
not eR = ηR! To grasp the significance of this, consider a very inefficient refrigerator,
i.e one which expends a lot of work W in extracting very little heat QL from the cold
chamber, thereby throwing out an enormous amount of QH at the hotter reservoir.
The reverse of this inefficient refrigerator is the highly efficient heat engine which
takes a large amount of QH , converting most of it to work and discarding a very small
amount of QL at the cooler reservoir. Thus the process of reversal not only turns a
refrigerator into a heat engine, and vice versa, but also changes their efficiencies into
their complements in accordance with eR +ηR = 1.

Now a perfect refrigerator is the one that transmits all the heat drawn at lower
temperature to the higher temperature reservoir without the need for any work, i.e
W = 0.But that is precisely what is forbidden by the Clausius postulate.

Kelvin Postulate A transformation whose only final result is to transform into
work heat extracted from a source which is at the same temperature throughout is
impossible.

In other words, the Kelvin postulate is explicitly prohibiting perpetual mobiles of
the second kind. In fact, the title of his paper on the second law was The impossibility
of a perpetual motion machine of the second kind. The reader will now be able to
appreciate the fine print in the concept of a perpetual mobile of the second kind that
we so carefully elaborated. Just as we emphasized the notion of a perfect refrigerator,
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one can now appreciate that a perpetual machine of the second kind is nothing but
a perfect heat engine. Therefore, the Kelvin postulate can also be restated as the
impossibility of a perfect heat engine.

Though it is hard to immediately see any commonality between the Clausius and
Kelvin postulates, we shall see that both are completely equivalent! Before demon-
strating that equivalence, we state the postulate as restated by Planck and Maxwell.

Planck Postulate It is impossible to construct an engine which will work in a
complete cycle, and produce no effect except the raising of a weight, and the cooling
of a heat reservoir.

Postulate of Maxwell It is impossible, by the unaided action of the natural pro-
cesses, to transform any part of the heat of a body into mechanical work, except by
allowing the heat to pass from that body into another at lower temperature.

Planck says that his restatement coincides fundamentally with those of Clausius,
Kelvin and Maxwell, and that he has selected his form because of its evident techni-
cal significance. It is of course closer in form to Kelvin’s postulate than Clausius’s.
Maxwell’s formulation, on the other hand, preserves the essentials of both the Kelvin
and Clausius forms. Therefore, we will be content to explicitly show only the equiv-
alence of the Clausius and Kelvin postulates, as the equivalence to the Planck and
Maxwell forms becomes obvious.

The perfect heat engine and the perfect refrigerator are schematically shown in
the next figure. That the Kelvin postulate implies the Clausius postulate is schemati-
cally shown in the figure The argument is that, if the Kelvin postulate holds, one can
envisage working a perfect heat engine with another heat engine which is driven by
the complete utilization of the work output of the perfect heat engine. This will in
effect result in a perfect regrigerator. That the Clausius postulate implies the Kelvin
postulate can likewise be shown by working a perfect refrigerator in conjunction with
a suitable heat engine to produce in effect a perfect heat engine, as shown schemati-
cally in figures.

FIGURE 3.7 The equality of Clausius and
Kelvin formulations-I

FIGURE 3.8 The equality of the
formulations-II

3.4.1 Consequences of Clausius Inequality

Therefore, the above mentioned postulates are all equivalent to the impossibility of
perpetuum mobiles of the first kind. We have already seen that that impossibility is
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equivalent to the Clausius inequality. Now we recount the argument of Clausius that
his inequality leads to the famous formulation of the second law according to which
entropy of a thermally isolated system never decreases.

First, let us consider the cycle relevant to the inequality to be reversible, i.e the
whole cycle of operations can be performed in reverse. Operationally, this amounts
to the replacement ΔQ → −ΔQ. But the Clausius inequality, being true for every
cycle, must hold for the reversed cycle too. In other words, for reversible cycles

−
∮

ΔQ
T

≤ 0→
∮

ΔQ
T

= 0 (3.14)

Now consider two states A and B connected by two different reversible paths I and
II. Clearly a reversible cycle can be formed by traversing from A to B along I and
returning from B to A along II. Then, eqn.(3.14) implies that for reversible paths I
and II (with R denoting the reversible nature of the paths)

∫

R,I

d̄Q
T

=

∫

R,II

d̄Q
T

= S(B)− S(A) (3.15)

Since the paths I and II are arbitrary, the implication is that
∫ B

A d̄Q/T is path in-
dependent and that it only depends on the states A and B. In particular, the integral
has to be S(B)-S(A), and the differential dS of the state function S, called entropy by
Clausius, is given by dS = d̄Q/T .

It should be emphasized that in our approach, where the starting point itself was
the existence of this function, defined precisely as above, this conclusion was built
in. But in the historical approaches of Clausius and Kelvin, this powerful conclu-
sion emerges from their innocuous sounding postulates! On the other hand, in the
approach where the entropy axiom is the starting point, the postulates of Clausius
and Kelvin (and consequently, those of Planck and Maxwell) follow as logical con-
sequences, as shown earlier.

FIGURE 3.9 Reversible and irreversible
cycles.

Now let us investigate the con-
sequences of the Clausius inequality
when one of the paths connecting A and
B is irreversible. Then there is no ob-
vious connection between the original
cycle and the reversed cycle. Neverthe-
less, the Clausius inequality still holds
for the cycle formed by going from A
to B along the irreversible path, and re-
turning from B to A along the reversible
one. Hence

∫ B

Ir,A

d̄Q
T

−
∫ B

R,A

d̄Q
T

≤ 0

∫ B

Ir,A

d̄Q
T

≤ S(B)− S(A) (3.16)

Some cautionary remarks are in order here. While one can sensibly talk about an
integral along a reversible path, it is by no means clear what one means by such an
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’integral’ along an irreversible ’path’. First of all, when a set of irreversible trans-
formations take the state A to a state B, there need not even be a path in the space
of states (you can take it, for example, to be the P-V plane). Therefore, there is no
sensible way to talk of an ’integral’ along an irreversible path. What it means oper-
ationally is just summing d̄Q/T over various segments of the transformation which
may or may not form segments of a path in the P-V plane.

Secondly, if both A and B are given states, there is no big deal to eqn.(3.16) as
we then exactly know both S(A) and S(B), and the above equation serves to say
something about lhs and nothing useful about entropy per se. The meaning of the
above equation is as follows: start with some state A of the system and imagine the
outcomes of arbitrary sets of transformations, and consider the set of all states B that
these transformations take A to. Then the difference in entropy between B and A
must obey the above inequality.

In particular, let us thermally insulate the system and again consider all possible
transformations; we must put d̄Q = 0 in the above due to the condition of thermal
insulation, and one obtains

S(B)≥ S(A) (3.17)

which says that the result of an arbitrary transformation of a thermally insulated
system is such that its entropy never decreases. This is the famous Second Law of
Thermodynamics. It must be emphasized that just requiring the entropy axiom, and
nothing else, also guarantees this law.

For a reversible transformation, eqn.(3.15) with d̄Q=0 yields S(B)= S(A), i.e re-
versible transformations of a thermally insulated system maintain the system entropy.
Furthermore, irreversible transformations of a thermally isolated system always in-
crease its entropy. Thus at last we have a quantitative criterion for irreversibility. This
criterion can also be stated equivalently as irreversible processes can never enhance
the efficiency of any heat engine. Stated that way, it sounds intuitive and obvious, but
the considerations of this chapter show that there is nothing really obvious about it.

3.5 Second law and irreversibility

What the second law can determine is the directionality of heat flow, something that
the first law is incapable of doing. As a result, the second law discriminates between
the initial and the final states of a general transformation of a system. Closely woven
into this fabric is the notion of irreversibility. Furthermore, entropy as a state function
provides a quantitative description of this directionality.

It is illuminating, and important, to introspect on these fundamental aspects. Let
us consider the Clausius postulate which denies the possibility of a perfect refrig-
erator. But the reverse of a perfect refrigerator is the process by which heat sponta-
neously flows from a hotter body to a colder body (see fig. 3.11), and there is nothing
impossible about that. Likewise, consider the reverse of a perfect heat engine, some-
thing forbidden by the Kelvin postulate (see fig. 3.10); this reverse is nothing but the
process by which work is completely converted to heat, and again there is nothing
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forbidden about that. Stated differently, while perpetuum mobiles of the second kind
are impossible, their reverses are commonplace!

FIGURE 3.10 The ideal heat engine and
its reverse.

FIGURE 3.11 The ideal refrigerator and
its reverse.

Therefore we see circumstances where certain processes are perfectly legitimate,
but their reverses are absolutely forbidden. This is another way of saying that certain
processes are irreversible. The nature and characterization of such irreversibilities is
the body and soul of the second law. As Planck points out, the situation is dramati-
cally different with perpetual mobiles of the first kind which in effect say that energy
can neither be absolutely created nor absolutely created. But then, the reverse of the
impossibility of a perpetuum mobile of the first kind is also an impossibility of the
perpetuum mobile of the first kind!

A subtle manifestation of this also happens with the demonstration above that
S(B) ≥ S(A). But what in this really distinguished B from A? To understand that,
note that we composed the cycle by first going from A to B along the irreversible
direction, and then returned from B to A along the reversible path. We could equally
well have chosen the cycle by first going from A to B along the reversible path, and
then coming back to A from B along the irreversible direction. The same arguments
as before would now have given S(B) ≤ S(A)! Is their a contradiction with what
we obtained earlier? No, as far as the irreversible processes are concerned, in the
first instance it was A which was the initial state, while in the second instance it
was B that was the initial state, and in both cases the second law is saying the same
thing, namely, S( f inal) ≥ S(initial). It is not that it is meaningless to consider the
reverse of an irreversible path, it is that doing so interchanges the initial and final
states, and second law discriminates between them. A similar issue does not arise
with reversible processes.

Example 3.1: Extracting heat from a cold body

Find the minimum amount of work needed to extract 1 cal of heat from a body at 273
K(melting point of ice) and deliver to a room at 300 K(room temperature).

This example illustrates the heart of the second law, and is the way to
understand why heat does not flow spontaneously from a colder body to a
hotter body. If it could, no work would have been necessary in this problem,
but we shall see that a minimum of work is needed. This can be viewed as a
problem in refrigeration, as heat is being extracted at a lower temperature.
The refrigerator that is most efficient, i.e the one with the largest coefficient
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of performance K, will be the one which will require the least amount of work
for a particular amount of cooling. From eqn.(3.13) we see that for this case,
K = 273/27 ≈ 10.1

Again, by the definition K = QL/W , it is seen that the work needed in this
case is W = QL/K ≈ 0.1cal. It should be noted that all temperatures have to
be in the Kelvin scale. It is also seen that the higher the temperature of the
room, the more work will be needed to transfer the same amount of heat.

It is also worth noting that the reverse of this refrigerator is a heat engine
operating between 300 K and 273 K; the Carnot efficiency for that is ηR =
1−TL/TH = 27/300 ≈ 0.09. More generally, ηR = (1+K)−1.

Example 3.2: Refrigerators as heaters

A refrigerator has to put out more heat than what it extracts from the cold chamber. Can
this heat be effectively used to heat a room? Compare the heating power of a refriger-
ator with that of direct heating, say, by electricity or gas. Take the outside temperature
to be 250 K(real cold!) and let it be desired to keep the interiors at a cozy 300 K. The
option of direct heating is by supplying Ph kW(power in kilo-watts)

The idea is to make the entire outside at 250 K the ’cold chamber’ of a re-
frigerator on which work can be done at W kW. The coefficient of performance
for the required refrigerator is K =250/(300−250) = 5. If the room were heated
directly, the rate at which heat would be supplied is Q̇H =Wh. The amount of
heat QH for the refrigerator can easily worked out to be QH = (1+K)Wr , where
Wr is the work to be performed by the refrigerator. Hence Q̇H = (1+K)Ẇr = Ṗh.
Thus the power required by the refrigerator, Ẇr is only 1/6 of the power for
direct heating!

Example 3.3: Entropy and irreversibility-I

Consider mixing 100 gms of water at 300 K with 50 gms of water at 400 K. Calculate
the final equilibrium temperature if the specific heat c of water per gm is 1 cal/gm/K.
Calculate the change in entropy for this irreversible process.

This is a simple example of irreversibility, as the water so mixed will not,
on its own, go back to the two samples we started with. Hence we expect the
total entropy change to be positive. We can think of carrying out the steps in
a thermally insulated vessel, so there is no exchange of heat with the outside
world.

Since this is an irreversible process, eqn.(3.15) can not be used. In fact
this example shows how, even for an irreversible path, the entropy difference
between the initial and final states can be computed. The crucial fact to note is
that entropy is a state function, and as long as we can find even one reversible
path connecting the initial and final states of any process, even an irreversible
one, we can then use eqn.(3.15) to compute the required entropy difference.

Since the whole system is thermally insulated, we have from first law
dU +PdV =0. The PdV term requires some discussion. It is possible to consider
an arrangement that does not allow any changes in volume by, say, enclosing
both samples in rigid containers of the right side, and only allowing heat to
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be exchanged between them. In that case the PdV terms are strictly zero. But
in the case of liquids, the volume changes can be neglected to a good approx-
imation. In that case the PdV terms can be neglected. But the distinction
between the two circumstances should not be overlooked.

When volume changes are neglected, the specific heat in question can be
thought of as cv, and if this is taken to be constant, which is again a pretty
good approximation for the range of temperatures considered, dU = mcdT .
Therefore

ΔU = 0 = 100(Tf −300)+50(Tf −400) Tf = 333.33K (3.18)

Now consider heating 100 gms of water from 300 to 333.33 K. When
it is at the intermediate temperature 300 < T < 333.33, the entropy gain
upon heating by dT is dS = 100c(dT /T ). Therefore entropy gain is ΔS1 =
100 ln(333.33/300) cal/deg. In the same way, the entropy loss on reversibly
cooling 50 gms from 400 to 333.33 K is ΔS2 =50 ln(333.33/400) cal/deg. Hence
the total change of entropy is ΔS = 10.535−9.116 = 1.419 cal/deg. It is to be
noted that entropy has the same units as the gas constant R, i.e cal/deg, which
has the numerical value of 1.986 cal/deg.

Example 3.4: Entropy and irreversibility-II

Consider the same problem as in example 3.3, but now for an ideal gas; take the first
sample to be one mole of the gas at TL K, and the second one also one mole, but at TH
K. Compare the calculated entropy difference with the known expression for the entropy
of an ideal gas as in eqn.(3.3)

Let us consider two versions, one where the volumes are fixed. Then the
relevant specific heat isCV , and the same calculation as in the previous example
first gives Tf = (TH +TL)/2K, and, ΔS = CV ln(T2

f /THTl). The initial entropy,

according to eqn.(3.3) being Si =CV lnTLTH +R lnVHVL and final entropy being
2CV lnTf +R lnVHVL, we see that the calculated entropy difference is (which it
must be) the difference of the explicit values of initial and final entropies.

If, on the other hand, the volumes are allowed to change as for example
in a constant pressure case, Tf still comes out the same as above but the
directly calculated entropy difference comes out to be CP ln (T2

f /THTL). The
initial entropy now is CP lnTHTL −2R lnP, while the final entropy is 2CP lnTf −
2R lnP, so the two differences again match.

The main lesson from this example as opposed to the previous one is that
there only difference of entropy was calculated whereas now, being the ideal
gas, we could use explicit expressions for entropy itself.

Example 3.5: Reversible and irreversible ice melting

How can a lump of ice at its melting point be completely melted into water reversibly?
Compare it with its irreversible melting by, say, tossing into water at, say, a temperature
10 K higher.

Any reversible process, as the name indicates, can be made to proceed in
both directions by suitably controlling the environment. Therefore one can
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reversibly melt ice by heating it with a reservoir whose temperature is very
very slightly above the melting point of ice. The process can be reversed, i.e the
resulting water refrozen by simply lowering the temperature of the reservoir
to a temperature that is very very slightly below the melting point of ice.
The reservoir can be taken to be at the same temperature as the melting
point during such reversible melting. Reversible melting can be achieved by
changing ambient pressures also.

The gain in entropy of ice is given by ΔSice = mlTmelt where m is the mass of
the ice, and l the latent heat of fusion per gm. The entropy loss of the reservoir
is equal in magnitude but opposite in sign as the temperature of the reservoir
is the same as the temperature of ice, and the heat lost by the reservoir must
exactly match the heat gained by ice. So the total entropy change is zero, as
it should be for reversible changes.

In irreversal melting on the other hand, the temperature of the reservoir
(the hotter water) is at a temperature greater than the temperature of ice
by a finite amount. Hence the entropy loss by the reservoir is less than the
entropy gain by ice, making the total entropy change positive, characteristic of
irreversible changes. That this circumstance is irreversible may be understood
from the fact no small lowering of water temperature is going to result in
refreezing. However, dramatically cooling the water can result in refreezing
but in such a process the entropy loss by water is lower than the entropy gain
of ice, and again, the total entropy increases! Of course even in the so called
reversible melting, in real life there is always some irreversibility, however
small.

3.5.1 Second law and arrow of time

Does the fact that the entropy of a thermally isolated system never decrease have
anything to do with the arrow of time? Irreversibility is the distinguishing feature of
both of them. Existence of an arrow of time means time is not reversible, and that
distinguishes initial and final states. We saw that the second law too distinguishes
initial and final states. So it may appear that these two irreveribilities, i.e temporal
and thermodynamic, are related.

But it would be hasty to draw any conclusions on this very knotty issue. Firstly,
time has no role, whatsoever, to play in equilibrium thermodynamics. Therefore it is
fairly obvious that the irreversibility brought forth by the second law does not directly
have any bearing on issues of arrow of time. One may, somewhat crudely speaking,
think of temporal evolution of states of a thermally insulated system and then imagine
that second law of thermodynamics would imply that entropy is a decreasing function
of time.

But within equilibrium thermodynamics there is no meaningful way of doing this,
and this difficulty persists even when one passes on to equilibrium statistical mechan-
ics. The only formalism where time makes its presence explicitly known is in Boltz-
man’s kinetic theory and its modern variants. The celebrated H-theorem of Boltzman
indeed attempts to answer this question, and while it answers affirmatively the re-
lation between entropy and arrow of time in a manner that is satisfactory to most
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people, the extreme technical difficulties inherent in the theory are such that it can
not still be taken as an unambiguous proof.

3.5.2 Entropy and disorder

Though the notion of disorder is again unwarranted within the strict confines of
thermodynamics, it becomes a very powerful notion once we pass on to statistical
mechanics. There the picture that emerges is that entropy is an indicator of order,
suitably understood, of statistical systems. The higher the entropy, the more disor-
dered the system is. Furthermore, most systems become more and more ordered as
their temperature gets lower. In general the solid phase is more ordered than the liq-
uid phase of the same substance, the liquid phase more ordered than the gas phase
etc. There are interesting exceptions as for example He3 where at around 0.3 K the
liquid phase is more ordered than the solid phase. But even in that system at very low
temperatures the relation between temperature and order reestablishes itself.

3.5.3 Entropy and information

The connection between entropy and order also suggests a connection between en-
tropy and information. To appreciate this, note that a word with meaning in a lan-
guage is an ordered state of alphabets, while alphabets thrown in at random, an ob-
viously disordered state of alphabets, carries no meaning or information. Shannon
was the first one to use an entropy-like notion to characterize information and this
can easily be said to be one of the revolutionary developments in knowledge.

3.6 An absolute scale of temperature

We had earlier discussed the Kelvin scale of temperature in section (1.2.1). As already
noted there, the manner in which this scale was introduced depended on the ideal gas
assumption. Consequently, the Kelvin scale introduced that way explicitly depends
on the material used for thermometry. In reality, no gas is ideal and even the small
departure from idealness nevertheless introduces some material dependence to the
temperature scales.

A question of fundamental importance then is whether even in principle it is pos-
sible to introduce a temperature scale that does not at all depend on the material
introduced for the thermometry. The answer is in the affirmative, and what makes
this possible is the deep property of the universality of the efficiencies of all ideal (in
the sense of being perfectly reversible, and not in the sense that an ideal gas is the
working substance) Carnot cycles (engines). Such a temperature scale, independent
of the material used for thermometry, is called an absolute scale.

Before going into the details of such a scale, let us raise a question that ought
to have occurred to anyone about the temperatures that we have so far referred to
under so many different circumstances; namely, the scale according to which these
temperatures are measured as after all the numerical value of temperature depends
on the scale that has been used. One thing is clear though; the validity of the basic
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laws of thermodynamics can not be dependent on any particular temperature scale.
In fact, the first law, in its purest formulation d̄Q = dU + dW , does not even refer to
temperature explicitly! The second law, in whatever form one chooses to consider,
does however involve temperature explicitly.

But as explained in the section (1.1), a change of temperature scale, of whatever
complexity, is like a change of coordinates, and perfect differentials transform quite
unambiguously under such transformations, leaving the basic relations between per-
fect differentials unaltered. All this really means is that all the thermodynamic rela-
tions hold good even when temperature scales are used that depend on the materials
of thermometry, and no absolute scale need necessarily be used.

But what makes the notion of an absolute scale so powerful is that no single
material will be adequate for use in thermometry for all temperatures, and many
different scales may have to be used along with a knowledge of the precise map
between them. An absolute scale avoids such difficulties.

Now let us turn to the explicit construction of such an absolute scale. Firstly, let
us work with an arbitrary scale of temperature θ . Consider composing two Carnot
cycles C1,C2 operating respectively between (θ1,θ2) and (θ2,θ3). Let Q1 be the heat
absorbed by C1 at θ1, Q2 the heat given by C1 at θ2; since the cycles are composed
in parallel (see section (3.32)), Q2 is also the heat absorbed by C2 at θ2. Finally, let
Q3 be the heat given up by C2 at θ3. Therefore Q1 > Q2 > Q3. Since the efficiency
1−Q2/Q1 is a universal function of θ1,θ2, even with respect to an arbitrary scale
of temperature, it follows that Q1/Q2 is also an universal function of these variables.
Let us call it f (θ1,θ2). Likewise, Q2/Q3 = f (θ2,θ3). Applying the same reasoning
to the composite cycle C3 operating between θ1,θ3, it follows that,

f (θ1,θ3) = f (θ1,θ2) f (θ2,θ3) (3.19)

For this to hold for every θ2, one must have

f (θ1,θ2) =
φ(θ1)

φ(θ2)
(3.20)

where φ(θ ) is yet another universal function. As it is clear that f (θ1,θ2)> f (θ4,θ2)
whenever θ1 > θ4, it follows that φ(θ ) is a monotonically increasing function of
θ and furthermore, it is a positive function. Hence, from our discussions of sec-
tion (1.1), it follows that φ itself qualifies to be defined as a temperature according
to some scale. This is the absolute scale that we are looking for as T = φ(θ ) will be
the same scale irrespective of the working substance used in the cycles. Hence for
Carnot cycles QH/QL = TH/TL, when the absolute scale, as defined above, is used.

It is worth emphasizing that if θ is a particular parametrisation of the temperature
scale based on some particular material used for thermometry, the function φ will
depend both on the material and the parametrisation (refer to section (1.1) for an
elaboration of these important discussions). This means that though T is in itself a
scale that is independent of any material, the transformations T � θ , depend on
both of these.
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Equality of ideal gas and absolute scales:

FIGURE 3.12 Absolute scale of temperature.

In subsection (3.3.1) it was shown
that for ideal gases, when the tempera-
ture scale is defined through PV = nRT̃ ,
QH/QL = T̃H/T̃L. This scale is called
the ideal gas temperature scale. Com-
parison with the absolute scale intro-
duced above reveals that T = aT̃ , i.e
except for an overall constant multi-
plicative factor, these two scales are
the same, and also the same as the
Kelvin scale. The overall factor is often
fixed by choosing the temperature of the
Triple point in the water-ice-vapor sys-
tem to be at 273.16 K.

Uniform and nonuniform absolute scales We introduced the absolute scale
above in a particularly simple way by choosing T = φ(θ ). Even with that choice,
the problem of choosing a uniform scale for thermometry still remains. This is eas-
ily solved by arranging a number of Carnot cycles in series as shown in fig.(3.12).
Then, in an obvious notation, if Ti are the various temperatures, as measured in ab-
solute scale, one has Ti/Qi = const.. Therefore, Ti −Ti−1 = c(Qi −Qi−1) = cWi.

Hence, if all Wi are chosen equal, one gets a uniform scale, or, if Wi � i2, one gets
a quadratic scale etc. Clearly, there are many other ways of introducing scales that
are nevertheless still absolute. In fact, scales introduced through g(T ) = φ(θ ) are all
absolute as long as the function g has no material dependence. As explained in the
section 1.1, all such choices can be mapped to one another.

Absolute scales in caloric theory It is instructive to see how absolute scales
would be introduced in the caloric theory, at least as a lesson in learning! As shown
by Carnot, the universal efficiency in that theory took the form

η(θH ,θL) =

∫ θH

θL

dθ μ(θ ) = w(θH)−w(θL) (3.21)

Therefore, even in the caloric theory an absolute scale can be introduced via Tcal =
w(θ ). Again both uniform and nonuniform absolute scales can be introduced. For
the particular choice of μ(t) = 1/t, which we have seen to be the case for ideal gas
in modern thermodynamics, this gives rise to Kelvin’s famous logarithmic scale. Of
course, even in this case the efficiencies for finite cycles in the caloric theory and
modern thermodynamics are totally unrelated.

3.7 Applications of the first and second laws

In this chapter we shall explore some consequences of combining the first law with
the concept of entropy. While the former involves the inexact differential d̄Q, intro-
duction of entropy trades this inexact differential with T dS. This, of course, is not a
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perfect differential, but the advantage is that it has been written in terms of a perfect
differential dS and a state function T .

The total change in heat in going from a state A to state B through a sequence of
reversible changes, formally represented by the integral

∫ B
A d̄Q, is path dependent.

So, in order to know or specify this quantity, the entire history of the passage from A
to B, along with all the data for all the intermediate parts, have to be specified. That’s
too much information, and often it may not even be possible to provide it. That’s
the down side of the inexact differential d̄Q, which nevertheless has a very clear and
measurable physical meaning.

On the other hand, if we consider the total change of d̄Q
T in going through the

same sequence of reversible changes, it, represented by
∫ B

A
d̄Q
T does not depend on

the path taken. This quantity only depends on the difference of the entropy between
the states A and B. That’s really a miracle in a way, as just a weight factor of 1

T
completely changes the situation. From a mathematical perspective, quantities like
dS can be used as we use differentials in calculus, but quantities like d̄Q can not.
Therefore, as long as we have expressions involving only the perfect differentials,
we can use all the machinery of differential calculus.

Let us start with the first law, for a system with a fixed number of moles,

d̄Q = dU +PdV (3.22)

Since U is a state function, we can take it to be a function of any two independent
variables (we are considering the simplest possible system now). These could be
(V,T), (P,T) or (P,V). And for each of them, we can use the rule for partial differenti-
ation of a function f (x,y)

d f (x,y) =

(
∂ f
∂x

)

y
dx+

(
∂ f
∂y

)

x
dy (3.23)

Therefore

dU =

(
∂U
∂V

)

T
dV +

(
∂U
∂T

)

V
dT

dU =

(
∂U
∂P

)

T
dP+

(
∂U
∂T

)

P
dT

dU =

(
∂U
∂P

)

V
dP+

(
∂U
∂V

)

P
dV (3.24)

Let us use each of these, one at a time, in the first law. Let us start with the first,
which yields,

d̄Q =

{
P+

(
∂U
∂V

)

T

}
dV +

(
∂U
∂T

)

V
dT (3.25)

As it stands this is not a very useful relation as the partial derivatives are as yet
unrelated to observable quantities. Let us recall that specific heat is indeed an ob-
servable quantity and is experimentally measured as the ratio ΔQ

ΔT as ΔT is made
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smaller and smaller, so that the ratio, in the spirit of calculus, can be approximated
by a derivative. At least that would be the naive expectation; but d̄Q is an inexact
differential and this limit, if symbolised by d Q

d T is quite meaningless, mathematically.
Before coming up with an acceptable expression for specific heats, let us note that
on physical grounds there ought to be many different specific heats. This is because
the amount of heat required to raise the temperature of a body by a certain amount
depends on other physical circumstances like whether the heat was absorbed by the
system while maintaining its pressure or volume etc. In particular, less heat is re-
quired if volume is kept constant as no part of the heat goes off to doing work. We
denote the specific heat at constant volume by CV . Let us apply eqn.(3.25) to such
constant volume processes; then dV = 0 and one gets

CV =
d̄Q
dT

=

(
∂U
∂T

)

V
(3.26)

and eqn.(3.25) can be recast as

d̄Q =CV dT +

{
P+

(
∂U
∂V

)

T

}
dV (3.27)

This is somewhat better than before, but still the partial derivative
(

∂U
∂T

)

V
is some-

thing that we have not related to any directly observable quantity. Now consider an
adiabatic process in which d̄Q = 0; then we find

P+

(
∂U
∂V

)

T
=−CV

(
∂T
∂V

)

S
(3.28)

This way we can relate all the partial derivatives occurring in eqn.(3.25) to observ-
able quantities!

The equality of the mixed partial derivatives ∂2 f
∂x∂y = ∂2 f

∂y∂x also gives the condition

(
∂
∂x

(
∂ f
∂y

)

x

)

y

=

(
∂
∂y

(
∂ f
∂x

)

y

)

x

(3.29)

Applying this to eqn.(3.27) one would get
(

∂CV

∂V

)

T
=

(
∂

∂T
(P+

(
∂U
∂V

)

T
)

)

V

(3.30)

which is a contradiction as
(

∂
∂T

(
∂U
∂V

)

T

)

V
already equals

(
∂CV
∂V

)

T
due to the fact

that dU is a perfect differential. The contradiction is merely a pointer to the fact
that d̄Q is not a perfect differential. A closer inspection of the contradiction reveals
its source to be the PdV term. In consequence, the work done PdV can not be a
perfect differential either and should only be written as d̄W ! Just as dS was a perfect
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differential though d̄Q = T dS was not, dV is a perfect differential but PdV is not.
However, we shall soon come up with a very elegant fix for eqn.(3.30)!

Now let us turn to using the second of eqn.(3.24) in the first law to give,

d̄Q =

(
∂U
∂P

)

T
dP+

(
∂U
∂T

)

P
dT +PdV (3.31)

As it stands it has all of dP,dT,dV while only P,T are to be treated as independent;
therefore dV has to be expressed in terms of dP,dT using eqn.(3.23)

dV =

(
∂V
∂P

)

T
dP+

(
∂V
∂T

)

P
dT (3.32)

Substituting this in eqn.(3.31 gives

d̄Q =

{(
∂U
∂P

)

T
+P

(
∂V
∂P

)

T

}
dP+

{(
∂U
∂T

)

P
+P

(
∂V
∂T

)

P

}
dT (3.33)

Once again, the specific heat CP is obtained by

CP =
d̄Q
dT

|P =

(
∂U
∂T

)

P
+P

(
∂V
∂T

)

P
(3.34)

The rhs can also be written as
(

∂(U+PV )
∂T

)

P
, introducing the notion of enthalpy

H = U +PV . In terms of enthalpy, CP =
(

∂H
∂T

)

P
looks very similar in structure to

CV =
(

∂U
∂T

)

V
. Using CP, eqn.(3.33) can be written as

d̄Q =CP dT +

{(
∂U
∂P

)

T
+P

(
∂V
∂P

)

T

}
dP (3.35)

Equations (3.27) and (3.35) are sometimes referred to as the dbar Q equations. They
are somewhat undesirable because of the presence of inexact differentials. On the
other hand, d̄Q can be written as T dS whereby both the equations will only con-
tain perfect differentials. The resulting equations are called TdS equations (jocularly
called the tedious equations!). By doing so more useful results can be obtained.

Let us start by recasting the first law itself in the TdS form:

T dS = dU +PdV → dU = TdS−PdV (3.36)

An immediate consequence of eqn.(3.36) is
(

∂S
∂U

)

V
=

1

T
(3.37)

In axiomatic approaches (see chapter 6), this is in fact taken as the defining relation
for temperature. The other TdS equations arising out of eqns.(3.27,3.35) are

T dS = CV dT +

{
P+

(
∂U
∂V

)

T

}
dV

T dS = CP dT +

{(
∂U
∂P

)

T
+P

(
∂V
∂P

)

T

}
dP (3.38)
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Let us first illustrate getting a relation between partial derivatives of a different type
than what we have obtained so far. From eqn.(3.36) it is easy to get

(
∂U
∂V

)

T
= T

(
∂S
∂V

)

T
−P (3.39)

It is to be noted that we got this even though neither of the independent variables in
eqn.(3.36) has been held fixed. Once again, the integrability condition for the first of
eqn.(3.38) is

(
∂

∂V
CV

T

)

T
=

⎛

⎝ ∂
∂T

P+
(

∂U
∂V

)

T

T

⎞

⎠

V

(3.40)

On using the integrability condition for dU ,
(

∂
∂V

(
∂U
∂T

)

V

)

T
=
(

∂
∂T

(
∂U
∂V

)

T

)

V
and

CV =
(

∂U
∂T

)

V
, the above equation reduces to

(
∂U
∂V

)

T
= T

(
∂P
∂T

)

V
−P (3.41)

Eqn.(3.41) is a very important equation in thermodynamics from which many in-
teresting conclusions can be drawn. Comparing eqn.(3.39) and eqn.(3.41) one con-
cludes (

∂S
∂V

)

T
=

(
∂P
∂T

)

V
(3.42)

This is one of the so called Maxwell Relations and a much less tedious derivation of
it will be given later on. By similar manipulations one can show that

{(
∂U
∂P

)

T
+P

(
∂V
∂P

)

T

}
=−T

(
∂V
∂T

)

P
(3.43)

Now we use the eqns.(3.41,3.43) to recast eqn.(3.38) in the form

T dS = CV dT +T

(
∂P
∂T

)

V
dV

T dS = CP dT −T

(
∂V
∂T

)

P
dP (3.44)

An important result follows on obtaining the integrability conditions for this pair of
equations:

(
∂CV

∂V

)

T
= T

(
∂ 2P
∂T 2

)

V

(
∂CP

∂P

)

T
=−T

(
∂ 2V
∂T 2

)

P
(3.45)

Let us pause and reflect on what has been done; starting with the first law which
had a term dU that is not directly observable, we have recast it as equations where ev-
ery term is measurable in principle. Even though entropy is not directly measurable,
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T dS, being the amount of heat exchanged, is certainly measurable. Though we have
succeeded in writing first law in a form involving directly measurable quantities, it is
desirable to further express these measurable quantities in terms of properties of the
system. Examples of such properties are the specific heats CV and CP.

To do so, we introduce some additional properties. One of the first properties that
one can think about is thermal expansion. In principle one could introduce coeffi-
cients of linear and volume expansions, but as they are related let us just discuss
the coefficient of volume expansion. The idea is that if the temperature of a body is
increased by δT and if as a consequence the volume increases by δV , the coefficient
of volume expansion is δV

VδT as δT → 0. Just as in the case of specific heats, the
conditions under which this expansion is measured ought to be specified. Let us just
consider this coefficient under constant pressure.

The coefficient then, designated by α is given by α = 1
V

(
∂V
∂T

)

P
. This is indeed

one of the quantities that appears in the TdS equation involving CP. But the par-

tial derivative that occurs in the TdS equation with CV is
(

∂P
∂T

)

V
. To relate this to

properties of a system requires more work. Let us first introduce the so called com-
pressibility. Imagine applying pressure to a gas, one would expect the volume of the

gas to decrease. The ratio 1
V

(
∂V
∂P

)
is clearly a measure of how effectively the gas can

be compressed, i.e it is a measure of compressibility. As before, things depend on the
conditions of the experiment, and the important ones are when compression is carried
out isothermally or adiabatically. Therefore we have the isothermal compressibility
κT and adiabatic compressibility κS given by

κT ≡ − 1

V

(
∂V
∂P

)

T
κS ≡ − 1

V

(
∂V
∂P

)

S
(3.46)

A minus sign has been introduced as normally the volume decreases with increased
pressure, and in such cases the compressibility is positive.

Now
(

∂P
∂T

)

V
can be related to the expansion coefficient α and isothermal com-

pressibility κT as follows: using
(

∂P
∂T

)

V

(
∂T
∂V

)

P

(
∂V
∂P

)

T
=−1 (3.47)

one gets

(
∂P
∂T

)

V
=−

(
∂T
∂V

)−1

P

(
∂V
∂P

)−1

T
=−

(
∂V
∂T

)

P

(
∂V
∂P

)−1

T
=

α
κT

(3.48)

Hence the new form of TdS equations involving specific heats, volume expansion
coefficients and compressibilities is

TdS = CV dT +
αT
κT

dV

TdS = CP dT −TVα dP (3.49)
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By equating the two TdS equations we get

CV dT +
αT
κT

dV =CP dT −TVα dP (3.50)

This equation involves dT,dV and dP, but only two among them are independent. So
one of them must be expressed in terms of the other two. Choosing dP and dV to be

independent, dT =
(

∂T
∂P

)

V
dP+

(
∂T
∂V

)

P
dV and we can rewrite the above as

(CP −CV )

{(
∂T
∂P

)

V
dP+

(
∂T
∂V

)

P
dV

}
−T

(
∂V
∂T

)

P
dP−T

(
∂P
∂T

)

V
dV = 0

(3.51)
Since dP and dV are independent, their coefficients must both vanish and we get two
equations

(CP −CV )

(
∂T
∂P

)

V
= T

(
∂V
∂T

)

P
(CP −CV )

(
∂T
∂V

)

P
= T

(
∂P
∂T

)

V
(3.52)

Because
(

∂T
∂P

)−1

V
=
(

∂P
∂T

)

V
etc., these two equations are identical, yielding the im-

portant relation

CP −CV =−T

(
∂V
∂T

)2

P

(
∂P
∂V

)

T
=

TVα2

κT
(3.53)

In simplifying we have made repeated use of the properties of partial derivatives.
We could have also considered adiabatic processes characterised by dS = 0. The two
TdS equations would then have yielded

CV =−T

(
∂P
∂T

)

V

(
∂V
∂T

)

S
CP = T

(
∂V
∂T

)

P

(
∂P
∂T

)

S
(3.54)

The ratio of specific heats γ = CP
CV

is yet another important property of systems. We
can use the previous equation and get

CP

CV
=−

(
∂V
∂T

)

P

(
∂P
∂T

)

S
·
(

∂P
∂T

)−1

V

(
∂V
∂T

)−1

S
=

(
∂V
∂P

)

T

(
∂V
∂P

)−1

S
=

κT

κS
(3.55)

Therefore we have related the ratio of specific heats to the ratio of compressibilities.
This relationship holds for all systems and this illustrates the power of these manip-
ulations though they may have appeared very opaque and without focus in between.
We end this discussion by combining eqn.(3.55) with eqn.(3.54) to derive individual
expressions for the specific heats in terms of α,κT ,κS:

CV = TV · α2

κT −κS
· κS

κT
CP = TV · α2

κT −κS
(3.56)

Once again, the power of thermodynamics is in giving such totally general relation-
ships between various observables. It must however be emphasized that the observ-
ables themselves can not always be computed unless there is some additional infor-
mation, like the equation of state, or some accurate data. But such general relations
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are extremely valuable as they may circumvent limitations posed by the difficulties
of performing certain experiments. For example, it may turn out that measuring adia-
batic compressibilities is difficult experimentally; then a knowledge of γ and κT can
be used to calculate κS. Another very important use of such general relations even
when all experiments can easily be performed is that they provide consistency checks
on measurements. The last feature is indispensable in experimental science.

3.8 Third law of thermodynamics - the Nernst-Planck postulate

A very important consideration in thermodynamics concerns the meaning of the zero
on the absolute scale of temperature, i.e 0 K. Though the full significance of this issue
can only be unravelled through considerations of Quantum Statistical Mechanics,
thermodynamics comes with very strong pointers that 0 K is indeed a very special
temperature.

A practical question that first comes to mind is whether this temperature is physi-
cally realizable, and if so, how? A somewhat related question is whether its existence
is in conformity with the first and second laws of thermodynamics. Let us begin by
recounting an objection to absolute zero that would be the first reaction by many.
This is based on the premise that a Carnot cycle operating between 0 K and any
other T, would be a perfect heat engine in the sense that its efficiency η = 1− 0

T =1!
This would most directly contradict the Kelvin postulate and hence the second law.

Pippard, who in his book [54] has given a most comprehensive critique of the is-
sue of absolute zero, warns against accepting this ’objection’ uncritically. The point
is, in order to take this objection seriously, one has to carefully examine whether a
Carnot cycle with the lower reservoir at 0 K can operate at all. Recall that for the
operability of the Carnot cycle, there has to be an isothermal change in entropy at
the lower temperature as some property of the system, volume in the case of the tra-
ditional Carnot cycle, is varied. It’s only this feature that allows two distinct adiabats
to intersect the isotherm at 0 K, and make the Carnot cycle implementable. If we
call properties other than T collectively as ξ , then the operability of the Carnot cycle

with lower temperature at 0 K requires
(

∂S
∂ξ

)

T=0
�= 0. Only then is absolute zero in

contradiction with the second law.
Therefore, if the isothermal variation of entropy vanishes at absolute zero, one

can not have two distinct adiabats intersecting the T = 0 isotherm, and no Carnot cy-
cle can be operated, removing that particular objection to absolute zero. But evading
inconsistency with second law by taking refuge under the assumption of a vanish-

ing
(

∂S
∂ξ

)

T=0
, lands one in a different kind of difficulty. That difficulty is that when

(
∂S
∂ξ

)

T=0
= 0, absolute zero is simply unattainable! So there are two logically dis-

tinct aspects to the absolute zero issue; one being some system already existing in it,
and the other being the attainability of absolute zero from an initial T �= 0K.

To see that when the isothermal variation of entropy at absolute zero vanishes, no
system initially at T �= 0 can attain absolute zero, let us enquire into the operational
meaning of this attainability. As Pippard has emphasized, of all the ways of lowering
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FIGURE 3.13 Third Law

temperatures, adiabatic means are the most efficient, so let us only consider them. If
absolute zero is attainable adiabatically from some Ti, we should have an adiabat,
say S, passing through both Ti and 0 K, as shown in the figure 3.13 shown in the
P-V plane for the case when ξ = V , but generalizations are obvious. Now continu-
ity would require the same to happen with a nearby adiabat, say, S′. Let O be the
T = 0 point on S and O′ be the 0 K point on S′. Since no two adiabats can ever
intersect, the curves S,S′ have no common points, and consequently, the points O,O′
both corresponding to 0 K, must be distinct. This also means that in this example(

∂S
∂V

)

T
�= 0.

But that is precisely when the conflict with second law would arise, as argued
before. To summarize, either the isothermal changes in entropy are not vanishing,
allowing absolute zero to be attainable but violate the second law, OR the isothermal
variations of entropy vanish, but then absolute zero is unattainable!

Negative Temperatures Some caveats with the above arguments ought to be
pointed out. If the T = 0 point lies in the interior of an isentropic surface (shown as
a line in the figures above), continuity would imply that at least some of the neigh-
bouring points could be at lower temperatures; but then they have to be at negative
temperatures! It is therefore pertinent to ask whether temperatures have to be nec-
essarily positive. If temperatures can be negative on, say, the centigrade scale, why
can they not be negative on the Kelvin scale? Some immediate objections to negative
temperatures on the Kelvin scale may come to mind; for example, the lhs of ideal
gas law is manifestly positive (though the issue of negative pressures too can be a
confusing one; see chapter 12 on van der Waals fluids for some discussion), so T has
to be positive. But this is not a very persuasive argument as it is eminently conceiv-
able that at such temperatures no gas is ideal. Another objection, more serious, can
be that a Carnot cycle operating between negative and positive temperatures may be
contradictory with an efficiency exceeding 1; but this too can not be that straightfor-
ward and would necessitate a critical examination of whether under such conditions
a Carnot cycle is at all operative. That issue is already very subtle even when the
lower temperature is 0 K, as we are finding out!

In fact, in classical statistical mechanics, there exist well known systems like spin
systems, two dimensional point vortices etc where the entropy as a function of inter-
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nal energy reaches a maximum. Then from eqn.(3.37) it follows that temperature can
be both positive and negative in these systems. In the vortex gas case, as elegantly
shown by Onsager, the negative temperature sector is not only physical but mani-
fests itself observationally in very novel ways [51]. But what is common to all these
systems with both positive and negative temperatures is that the two sectors do not
communicate to each other, and no smooth transformations connect them. Therefore
in effect, one is dealing with systems where the temperature is always of one sign.

In classical thermodynamics temperatures are always understood to be positive.
Pippard points out that as long as specific heat of a system (isolated) does not vanish
as T → ∞, the unattainability of absolute zero implies that temperatures in classical
thermodynamics can be consistently taken to be positive.

So, either the T = 0 points lie on the boundary, if any, of the isentropic surface,
or at the boundary of the physical region (P-V plane) above, if negative temperatures
are to be avoided, in the operational sense mentioned.

Returning to the discussion on the attainability or otherwise of absolute zero,
the situation turns out to be even more subtle. The conclusion that the second law
would be violated when

(
∂S
∂ξ

)

T=0
�= 0 because that would allow a Carnot cycle to

be operated between 0 K and any higher temperature, itself requires greater scrutiny.
The point is that, as long as T �= 0, an adiabatic process, characterized by ΔQ = 0, is
also an isentropic process characterized by ΔS = 0 as ΔQ = TΔS. But precisely at
T =0 this identification is no longer necessary. Even processes that are not isentropic
i.e ΔS �= 0 are still adiabatic at 0 K! Thus at the lower end of the cycle, since no
heat is given out irrespective of whether the change involves isothermal changes
in entropy or not, there is no practical way of ensuring that the cycle is operable!
That an isotherm at 0 K also becomes an adiabat for these very reasons adds further
confusion.

Therefore, there is no way to conclude that the second law precludes the attain-
ability of absolute zero.

W. Nernst, the winner of the Nobel prize for chemistry in 1920, had been inves-
tigating for a long time the connection between thermodynamics and chemical equi-
libria, particularly of different phases of the same chemically pure substance. Such
problems consitute the fascinating field of study called thermochemistry. Nernst ini-
tially formulated his so called Heat Theorem which subsequently became the Nernst-
Planck postulate. As we shall see these issues were intricately interwoven with the
developments leading to the birth of quantum theory.

As narrated by Nernst in his book The New Heat Theorem [50], the precursor to
these developments lay in the early works of Berthelot and Thomsen (whom Nernst
calls the fathers of thermochemistry) in 1869–70. A proper understanding of these
ideas will require familiarity with the concept of thermodynamic potentials discussed
at length in chapter 8. According to Berthelot and Thomsen (reworded in modern
language), the condition for chemical equilibrium for changes that are isobaric and
isothermal (i.e under constant pressure and temperature) is the stationarity of the
quantity H =U −PV . This is called enthalpy. But developments in thermodynamics
had shown that this is in fact not correct generally, and that the correct condition for
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equilibrium under these circumstances is actually the stationarity of G =U −PV −
T S. When dealing only with condensed states like liquids and solids, the PV term
can be dropped as there is hardly any change in it during transformations. In that
case, H can be replaced by the internal energy U, and G replaced by the Helmholtz
free energy F. The analysis given by Nernst in his book then follows.

Therefore the Berthelot-Thomsen principle, which was found to be a fairly good
guide at low temperatures, can only be tenable if one demands F = U (or more
generally, G = H) over a range of temperatures. At T = 0, this is what is to be
expected as long as T S → 0 as T → 0 (note that the boundedness of S in the limit
need not be insisted upon — a point that will assume significance in what follows).
However, the validity of this principle in the neighbourhood of T = 0 would at least
require

dΔF
dT

|T=0 =
dΔU

dT
|T=0

dΔG
dT

|T=0 =
dΔH

dT
|T=0 →ΔS|T=0 = 0 (3.57)

This was the main point of a presentation Nernst had made in late 1905, and sub-
sequently published as a paper in 1906 [49, 48]. We have already seen that this by
itself suffices to preclude the attainability of absolute zero.

But it should be carefully noted that this condition on the changes in entropy dur-
ing transformations does not say anything about specific heats themselves. All it says
is that specific heats must be continuous during such phase transformations. In fact
Nernst himself was careful not to say anything about specific heats by themselves.

It was in the same year, i.e 1906, that Albert Einstein, inspired by Planck’s theory
of charged oscillators, gave his theory of the specific heats of solids. A key feature
of Einstein’s work was that the specific heats vanished (exponentially) near absolute
zero. Here was a theory that predicted a key consequence of the Nernst-Planck third
law at least five years before it was clearly formulated in 1911!

Several qualifications need to be made even regarding the preliminary form of the
third law that Nernst had enunciated in 1905. For one thing, the low temperatures that
were accessible to Berthelot and Thomsen were certainly not very close to absolute
zero, even by the wildest stretch of one’s imagination. Therefore, Nernst was extrap-
olating in a big way to the vicinity of absolute zero. As we shall see while discussing
Pomeranchuk cooling in He3, naive extrapolations of the old results for He3 would
have entirely missed the essential physics of the system! Nernst was himself aware
of this and he strongly advocated further experimental work at the time he made the
original conjecture.

In the next five years, he and his collaborators undertook vigorous experimen-
tal work on specific heats which culminated in a series of papers by Lindeman and
Nernst by 1911. The upshot of this very important body of work was the unambigu-
ous support for the vanishing of specific heats near absolute zero for a wide variety
of substances. Nernst openly acknowledged the influence of Einstein’s 1906 paper
in this context, and Einstein in return complimented Nernst in his concluding talk
of the First Solvay meeting for having removed, decisively, the many theoretical
confusions surrounding the topic.
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Somewhere around 1910, Max Planck added the crucial finishing touch to the for-
mulation of the third law, as understood even today. He elaborated on this in the third
edition of his treatise on thermodynamics that came out in 1910. Planck’s refinement
lay in postulating that not just changes in specific heats vanished at absolute zero,
but the specific heats themselves vanished at absolute zero. As a consequence, the
entropy of all systems must approach a universal constant, independent of the state
of the system. This refinement is crucial to removing the arbitrariness in entropy up
to additive constants, characterstic of all thermodynamics involving as it does only
entropy differentials. The importance of this for the determination of the so called
entropy constants is dealt at great length in the last chapter of this book.

It is said that Nernst himself was not so sympathetic to this extension by Planck,
seeing in it certain ad hoc elements. Planck readily admitted his inability to provide
any proofs for his conjecture. In fact, Einstein emphatically stated the indispensabil-
ity of quantum theory to an understanding of the third law.

Returning to the relevance of the original Nernst postulate, i.e ΔS = 0 at T = 0,
the following observations are in order. It must be realized that all these peculiarities
apply precisely at absolute zero, and not to any other temperature, however close in
magnitude it is to zero. Thus none of these considerations can be taken as any ther-
modynamic barrier to reaching a temperature arbitrarily close to zero. The Nernst
Postulate in the light of this discussion can be taken to mean: By no finite series of
processes is absolute zero attainable.

This postulate only precludes reaching absolute zero in one or finitely many steps.
Now one can work backwards from this postulate, and conclude that on no isentropic
surface can be there be states belonging to both 0 K and to nonzero K; because if
there existed such an isentropic surface, one could have, with one adiabatic cooling
step, attained 0 K, starting from T �= 0. This has the consequence that all states at 0
K must lie on a single isentropic surface. This single isentropic surface must also be
an isolated surface.

This is the essential content of the original Nernst postulate: As the temperature
tends to 0 K, the magnitude of entropy change in any reversible process tends to zero.
With the Planck refinement this becomes the statement that as the temperature tends
to 0 K, the entropy of all states tends to the same (constant) value. It is this that is
taken to be the form of the third law which should rightly be called the Nernst-Planck
heat theorem.

It should be noted that with this the third law has laid to rest the confusion as to
whether the T = 0K isotherm is only an adiabat (which it always is) or an isotherm
(which it could be, but need not be). The third law decrees that the isotherm at abso-
lute zero is necessarily an isentrope (i.e constant entropy).

Without loss of generality, at least in thermodynamics, this constant value of the
entropy at 0 K can be taken to be zero. This has the remarkable consequence that any
state at 0 K can be taken as a fiducial state, and an unambiguous expression for the
entropy of a state can be given as

S(A) =
∫ A

0
CX

dT
T

(3.58)
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where X is any quantity that is held fixed like P,V etc., and the path of integration is
along X = const. This automatically determines the so called entropy constants and
in the last chapter of the book we discuss wide-ranging applications of these ideas.
In fact the Nernst-Planck theorem makes its appearance very frequently in this book,
testifying to its great importance. Many are of the opinion that in its importance, the
third law does not quite match the first and second laws. It is interesting to recall
Planck’s own words in this regard as stated by him in the preface to the famous
third edition of his treatise on thermodynamics: Should this theorem, as at present
appears likely, be found to hold good in all directions, then Thermodynamics will be
enriched by a principle whose range, not only from the practical, but also from the
theoretical point of view, cannot as yet be foreseen [57]. Prophetic words, indeed.

An important addendum, before we consider some consequences of the third law,
is the following: originally Nernst thought that the scope of this theorem was relevant
only to condensed systems such as liquids and solids. This was, in his words, due to
the uncertainty in the fate of gases at such low temperatures. But with Einstein’s
pioneering work on the quantum theory of ideal monatomic gases, it became clear
(Nernst was one of the first to stress this) that the third law was applicable to gases
too. In fact, Einstein’s theory predicted the entropy and specific heat (only CV is well
defined for this system) of such ideal gases to vanish like T 3/2 close to absolute zero.

We cite here some of its most immediate consequences. It is clear from eqn.(3.58)
that all specific heats like CP,CV etc. must vanish as T → 0 (else, the statement S→ 0
as T → 0 will not hold), and in particular CP−CV → 0 too. This is a clear demonstra-
tion that no gas can remain ideal down to absolute zero. In a curious remark, Pippard
points out that if all specific heats took nonvanishing constant values at all temper-
atures, the issue of reaching absolute zero would not even arise as then S → −∞!
Classical statistical mechanics, through the equipartition theorem, in fact predicts
such constant specific heats for all temperatures. It is only quantum theory that gives
specific heats dependent on temperature, and that too specific heats which vanish as
T → 0.

Likewise, all partial derivatives like
(

∂S
∂V

)

T
,
(

∂S
∂P

)

T
. . . must all tend to zero in

this limit. Let us first consider the implications when
(

∂S
∂P

)

T
→ 0. By eqn.(3.44) it

follows that this is equivalent to
(

∂V
∂T

)

P
→ 0. But that is the same as V α → 0 where

α is the coefficient of thermal expansion. Consequently, α → 0 unless V → 0.

By the application of the same eqn.(3.44) it follows that
(

∂S
∂V

)

T
→ 0 would imply

(
∂P
∂T

)

V
→ 0, i.e the coefficient of pressure expansion too vanishes at absolute zero.

This can be further related, through eqn.(3.48), to α
κT

→ 0. Though α vanishes in the
limit, it is not required that the isothermal compressivity κT do likewise (see problem
below).

We conclude by showing the direct relevance of results like these to the practi-
cal problems of cooling to very low temperatures. It is reasonable to parametrize
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CP(T,P), which, as we have seen above, vanishes at 0 K, by

CP(T,P)� T b A(P)+ . . . (3.59)

where b is some positive number. This should be a good description close to 0 K.
The resulting entropy, evaluated from eqn.(3.58) is given by S(T,P)� A(P)T b

b + . . ..
By using the results above one concludes

Vα
CP

→ b
A′(P)
A(P)

(3.60)

i.e it approaches a finite value. A quantity of importance to all cooling techniques
is the so called cooling power defined essentially as Q̇, the dot representing a time

derivative. In the present context, this is the same as Q̇ = T
(

∂S
∂P

)

V
Ṗ. Therefore the

cooling rate becomes Q̇ =Vα T Ṗ. As there is no place for time in a thermodynamic
treatment, Ṗ is a non-thermodynamic quantity, determined by the actual details of
the cooling apparatus. But we see that as we approach 0 K, the prefactor vanishes.
This means that the amount of heat that can be extracted by a given cooling machine
rapidly goes to zero, making the cooling more and more inefficient.

What one may really be interested in is not so much in Q̇ but in Ṫ , the rate at which
the temperature can be lowered. This is readily obtained in this case by dividing Q̇
by CP. But the latter too vanishes as T → 0 but at a slower rate. This is because
of eqn.(3.60), and one in fact gets Ṫ = T (Vα

CP
) Ṗ, showing that the rate of change

of temperature also goes to zero linearly with T, making the approach to absolute
zero only asymptotic. In chapter 14, devoted entirely to the issue of cooling to ultra
low temperatures, we shall see that these features are universal. In fact, the Nernst
postulate can be stated in a pragmatic language as all cooling rates must vanish as
absolute zero is approached.

3.9 Problems

Problem 3.1 1 kg of supercooled water at 260K suddenly freezes to form ice at
0◦C. Calculate the change in entropy.

Problem 3.2 Analyze the irreversibility in the Joule free expansion, as well as in
the porous plug experiments. Show that a decrease of pressure while maintaining
enthalpy always leads to an increase of entropy. Likewise, show that a volume
increase maintaining U leads to an entropy increase.

Problem 3.3 1 kg of ice at 260 K is dropped into a thermally insulated vessel
containing 2 kg of water at 300 K. Calculate the equilibrium temperature, the
entropy change of ice, of water, as well as total entropy change. The specific
heat of ice is ci = 2.22J/gmK, that of water cw = 4.19J/gmK, and the latent
heat of fusion is 333 J/g.

Problem 3.4 The molar specific heat CV of a gas can be approximated by 1.5 R
in the temperature range of (300, 400) K, by 2.5 R in the range (400,1200)K, and
finally by 3.5 R for even higher temperatures. If one mole of this gas initially at
1500 K comes in thermal contact with one mole of it at 350 K, under conditions
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of fixed volume, calculate the final equilibrium temperature and the change in
entropy.

Problem 3.5 In helium liquefaction heat is removed from gas, possibly under
pressure. If the laboratory is at 300 K and if 500 mJ of heat is removed from
helium at 4 K, what is the minimum heat delivered to the room. Why is this heat
the minimum possible? What is the coefficient of performance?

Problem 3.6 In a heat engine with air as its medium, the intake is at 1 MPa. It is
exhausted to the atmosphere after an adiabatic expansion by a factor of 5. Find
the pressure of air after the expansion and the highest possible efficiency of this
engine.

Problem 3.7 The work done during the isothermal expansion at T0 of a substance
from V1 to V2 is W = RT0 lnV2/V1. If the entropy of the system is given by
S(V,T) = const.V Ta where a is a constant, find the equation of state P(V,T), as
well as the work done during an arbitrary isothermal expansion.

Problem 3.8 Of the two ways of increasing the efficiency of a Carnot cycle, i.e
a)TH → TH +ΔT or b)TL → TL −ΔT , which is preferrable if the costs involved
in both the changes are the same.

Problem 3.9 Consider two Carnot engines of equal efficiency operating between
TH and TL. Determine the intermediate temperature T, and its significance from
entropic arguments. Calculate the works performed by the two cycles as a frac-
tion of the heat intake at QH .



4 Carnot Cycles - The Turing

Machines of Thermodynamics

The great mathematician and computer scientist Alan Turing (1912-54) was born
more than a century later than Sadi Carnot, but nevertheless the closest intellectual
parallel to Carnot’s reversible cycle is the so called Turing machine. Turing distilled
in an imaginary ’machine’ of extreme purity and simplicity the entire essence of
computation. The so called Turing Machine was no blueprint for any actual comput-
ing machine but any computation, howsoever complex, could be analyzed on it. The
impact of the Turing machine was immense, creating entirely new areas of thought
like complexity theory, and was also instrumental in bringing information theoretic
perspectives to computer sciences.

The Carnot cycle too was a ’heat engine’ of extreme purity and simplicity. It too
was no blue print for any actual engine, but captured within it the true essence of
all heat engines ever built and to be ever built! It too had an enormous impact on
the entire development of thermodynamics, greatly influencing the formulation of
the second law. For these reasons we think it is apt to think of Carnot cycles as the
Turing Machines of thermodynamics.

On a personal note too there are parallels between Sadi Carnot and Alan Turing;
both these great thinkers were short lived.

The cycle as envisaged originally by Carnot, and further elaborated later by Clau-
sius and Kelvin, was based on a mixture of isothermal and adiabatic processes. In
such cycles, heat is absorbed or relinquished only during the isothermal stages, and a
natural notion (at least from the point of view of heat engines) of efficiency emerges
as the work performed per heat absorbed at the higher reservoir. But Carnot’s con-
siderations hold for more general possibilities as long as they constitute reversible
cycles, though a rethink may be necessary as to what efficiency would mean, and
whether they possess the universality that Carnot cycle efficiencies did. In this chap-
ter we look at a variety of cycles, starting from the ones based on gases as originally
discussed by Carnot (but in the light of the first and second laws of thermodynamics)
and going on to others. The main emphasis will be on the thermodynamic aspects of
these cycles rather than their engineering aspects.

4.1 The gas Carnot cycles

4.1.1 The ideal gas cycles

Though the ideal gas cycle is one of the most important gas cycles in thermody-
namics, we have already extensively discussed it under various circumstances in the
earlier chapters. Hence we shall straight away consider cycles using van der Waals
gases as the working medium.

87
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4.1.2 The van der Waals cycle

We repeat the steps now for the perfect van der Waals gas for which, as already
noted, (P+ a/V2)(V − b) = RT . From earlier results, we record the expressions for
the internal energy and entropy of a vdW gas

U(T,V) = f1(T )− an2

V
S(T,V) = f2(T )+ nR ln(V − nb) (4.1)

where f1, f2 are such that f ′1 = CV (T ) and f ′2 =
CV (T )

T . Once again we are keeping
the discussion general by not requiring CV to be a constant. The heat absorbed and
work done during AB are QAB = RTH ln(VB−nb)/(VA−nb) and WAB = RTH ln(VB−
nb)(VA −nb)+an2(1/VB −1/VA). Note that in the vdW case, the heat absorbed and
work done are not equal during an isothermal process and the difference is due to
the fact that now, unlike in the ideal gas case, the internal energy also depends on
volume. During the adiabatic stages BC and DA there is obviously no heat absorbed,
and the work done are given by WBC = f1(TH)− f1(TL)−an2(1/VB−1/VC),W{DA}=
f1(TL)− f1(TH)−an2(1/VD−1/VA). Note that the work done during these stages do
not cancel each other, and in fact their difference exactly compensates the difference
between heat and work during the isothermal stages so that at the end of the cycle
one indeed has ΔQ =ΔW as first law would demand.

From the expressions for entropy, one sees that during the adiabatic change BC,
f2(TH)− f2(TL)+ nR ln(VB − nb)/(Vc− nb) = 0 and during DA, f2(TH)− f2(TL)+
nR ln(VA −nb)(VD−nb) = 0. Using these, it is easily checked that QH/TH = QL/TL
for the vdW Carnot cycle.

Example 4.1: Exotic heat engines

In the Carnot cycle type, heat engines heat is extracted at a single high temperature
reservoir and relinquished at a single low temperature reservoir. This does not have
to be so. Consider an exotic reversible heat engine which extracts a known amount of
heat QH from a single high temperature reservoir at TH, but gives up unknown amounts
of heats Q1 and Q2 to two lower temperature reservoirs at T1,T2 i.e T1 < TH and
T2 < TH. If the heat engine delivers a net amount of work W (also taken to be known),
find Q1,Q2 as well as the efficiency of the heat engine. If this were to be replaced by a
single reversible heat engine of the same efficiency, what should the temperature of its
lower reservoir be?

From first law it immediately follows that QH = Q1+Q2+W . Since the heat
engine is reversible, it also follws that QH/TH = Q1/T1+Q2/T2. In neither of
these equations does it matter that Q1 is positive or not, and likewise for Q2.
These two equations constitute two simultaneous equations for Q1,Q2 whose
explicit solution is easily worked out to be

Q1 =
T1T2

TH(T2−T1)

{
QH − TH

T2
(QH −W )

}
Q2 =

T1T2
TH(T1−T2)

{
QH − TH

T1
(QH −W )

}

(4.2)
The apparent singularity of these expressions when T1 = T2 should not be taken
seriously. In that case, the heat engine degenerates into one with a single low
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temperature reservoir at T = T1 = T2, and only the sum Q1+Q2 = QH −W is
determinate, and not Q1 and Q2 separately.

The efficiency of this heat engine is of course given by η =W/QH without
having to know any other details. If the heat engine were to be substituted by a
Carnot cycle, the low temperature reservoir would be at T ′ =(QH −W)/QH ·TH .

Example 4.2: Absolute scale again

Consider one mole of a gas described by the equation P(V −b) = Rθ , where θ is the
temperature. It should be noted that this is the common equation one gets from the van
der Waals, Clausius, and Dieterici equations in the limit a→ 0. Show that the internal
energy U is independent of volume. Show that CP −CV = R for this system. Assuming
CV to be a constant independent of θ , calculate the the condition for adiabatic changes
expressed in terms of θ ,V. By analysing a Carnot cycle based on this, show that θ
coincides with the absolute scale.

From the fundamental eqn.(3.7) it is readily seen that
(

∂U
∂V

)

θ
= θ

(
∂P
∂θ

)

V
−

P = 0. Therefore, the internal energy is a function of temperature only. If CV
is a constant, U =CV θ . That CP −CV = R here also can be seen on rewriting
the first law in TdS form

θdS = dU +PdV =CV dθ +Pd(V −b) = (CV +R)dθ +(V −b)dP →CP =CV +R (4.3)

One also obtains, from this same equation

dS =CV
dθ
θ

+R
dV

V −b
→ S =CV lnθ +R ln(V −b) (4.4)

Consequently the condition for adiabaticity is θ (V −b)γ−1 = const. where γ =
CP/CV .

Let us take the Carnot cycle to be as depicted in fig.(3.5). The heat
absorbed during an isothermal expansion from V1 to V2 is Q =

∫
PdV =

Rθ ln(V2 − b)/(V1 − b). Hence the heat absorbed at the higher reservoir is
QH = RθH ln(VB − b)/(VA − b), while the heat relinquished at lower reservoir
is QL = RθL ln(VC − b)/(VD − b). The condition for adiabaticity during DA
is θH(VA − b)γ−1 = θL(VD − b)γ−1, while that during BC is θH(VB − b)γ−1 =
θL(VC −b)γ−1. Putting everything together one concludes QH/QL = θH/θL. But
by universality of Carnot cycles this is also TH/TL. Hence the θ scale coincides
with the absolute scale.

4.2 The steam Carnot cycle

Now we work out the Carnot cycle where the working substance is water and steam
in phase equilibrium. The physics of this system is obviously more intricate than
that of a single gas ideal or otherwise. The first interesting difference brought about
is that isotherms here are also isobars! This is because the pressure in question be-
ing the vapor pressure depends only on temperature. Hence the PV diagram for the
cycle looks as shown. What complicates matters here is that as the volume of the
system changes, the mass of the liquid also changes. Let us consider a finite cycle,
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FIGURE 4.1 Steam engine

but subdivide the temperature range TH ,TL to a large number of segments each dT
in extent. Let us consider the segment whose higher temperature is Ti and its lower
temperature Ti − dT . If QH(Ti) is the amount of heat absorbed at Ti, it goes to con-
vert Mi = QH(Ti)/l(Ti) mass units of liquid to vapor, where l(T ) is the latent heat
per unit mass. There are two sources of change of total volume; one is the volume
of the steam created upon absorption of the latent heat, and the other is the reduc-
tion in volume of the liquid for the same reason. Though the specific volume of the
liquid is much smaller than that of steam at temperatures close to the boiling point,
it is not so always. In fact, close to the critical point the two volumes approach
each other. So we shall not neglect the second effect. Then the change in volume is
(ΔV )i = Mi)(vs − vl)(Ti) where v is the specific volume, i.e volume per unit mass.

If we now consider the cycle which is of infinitesimal width along P but finite
along V, the work done at the end of the cycle is ΔW = ΔV dP and putting all the
factors in place

ΔW = d pδV = QH
(vs − vl)

l(T )

dP(T )
dT

dT = QH
dT
T

(4.5)

where we made use of the Clausius-Clapeyron equation for dP/dT . But our dis-
cussions earlier would show that the way Clapeyron and Clausius arrived at the final
form of this equation was by requiring the universality of all Carnot cycles! Eqn.(4.5)
simply says that the efficiency of the Carnot cycle using water-steam as its substance
is the same as the efficiency of the gas cycles.

4.3 The Stirling engine

We now consider the so called Stirling Engine based on a reversible cycle that alter-
nately uses isochoric, i.e constant volume, and isothermal processes. A related cycle
is the Ericson cycle where instead of isochoric processes one has isobaric, i.e con-
stant pressure, processes. Robert Stirling introduced this machine in 1816, nearly a
decade before the publishing of Carnot’s Reflections. It is therefore remarkable that
this cycle comes so close to the expectations of Carnot, Clausius, and Kelvin! It is
shown schematically in the figure 4.2, depicted as a cycle in the PV-plane.
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FIGURE 4.2 The Stirling Cycle

The stage AB is isothermal, as in the Carnot cycle, at the higher temperature TH

and heat QH is absorbed as before. The stage BC is, however, isochoric, in contrast
to the Carnot cycle. Obviously, not only is work done during this cycle, heat is also
relinquished as the system goes from a higher temperature TH to a lower one at TL

under constant volume. Hence the heat relinquished is
∫ TL

TH
CV (V1,T )dT . Likewise,

the heat gained by the system during the isobaric stage DA is
∫ TH

TL
CV (V2,T )dT . It

is to be noticed that in general these heats are not equal. They are the same as long
as CV does not depend on volume, which is so both for ideal gases as well as vdW
gases.

It is easy to check that for both ideal gases and vdW gases, the relation QH/TH =
QL/TL holds in the case of the Stirling cycle. It is unlikely to be so for every work-
ing substance, and in that sense, Stirling cycles do not have that universality which
the Carnot cycles do. Recall that as long as one has alternating isothermal and adia-
batic stages as in Carnot cycles, this relation holds universally by virtue of Clausius
inequality. But before interpreting such a relation to mean that the efficiency of the
Stirling cycle equals the efficiency η =1−TL/TH of the Carnot cycle, we need to de-
cide how the heat loss and gain during the isochoric phases are to be treated. Though
they cancel (at least in the circumstances mentioned above), it is not clear that the
efficiency is still to be computed as Δ/QH ; this is because the net heat absorbed
by the cycle is irrelevant for the purposes of computing efficiency. Also, during the
stages BC and DA the temperatures are not uniform.

It is in fact an ingenious part of the design of Stirling engines that takes care of
this issue and enables one to reason that indeed the efficiency of the Stirling cycle is
1−TL/TH . That feature, called the regenerator (hence the reason that Stirling engines
are called regenerative), ensures as best as possible that the heat relinquished during
BC is fully utilised during DA. This is done by making the substance physically go
through the regenerator, which is nothing but a heat exchanger, during both BC and
DA. In other words, the regenerator retains the heat within the system which would
otherwise have been relinquished to the environment, and that too at temperatures
that lie in between TH and TL. It is only when this regeneration is perfect that Stirling
cycles can achieve the Carnot cycle efficiency.

In practical terms, even if the regeneration is not perfect, it goes to improve the
overall efficiency and it is for this reason that Stirling engines are more efficient than,



92 The Principles of Thermodynamics

say, steam engines. It is a testimony to Stirling’s ingenuity that his engine, discovered
before Carnot, is likely to make a serious comeback in modern times. Apart from its
efficiency, the Stirling engine is also distinct by its ability to make use of diverese
sources of heat, not just those burning fuels. In fact in India, Dalmia Cements is
planning a 10 MW thermal plant based on Stirling engines using solar energy.

4.4 The Otto cycle

The Otto cycle is named after the four stroke internal combustion engine built by
Nikolaus Otto in 1876, and which forms the basis for almost all the automobile en-
gines today. Its thermodynamic essentials are an adiabatic compression from volume
VH to VL during CD, an isochoric process at VL during DA that increases pressure,
an adiabatic expansion during AB from VL to VH , and finally an isochoric process at
VH during AB restoring the system to its original state. In engineering circles DA is
called the ignition stage, AB the power stage and BC the exhaust stage.

FIGURE 4.3 The Otto Cycle

To simplify the discussion let us take the working substance to be an ideal gas,
and that CV is constant. Let us denote the temperatures at ABCD by TA,TB,TC,TD

respectively. Let the ratio CP/CV of the working substance be γ . It is clear that heat Q
is absorbed during BC and Q′ ejected during DA. As both these are constant volume
processes, Q =CV (TA −TD) and Q′ =CV (TB −TC). Hence the thermal efficiency is

ηotto = 1− TB −TC

TA −TD
(4.6)

The adiabaticity of AB means TCV γ−1
H = TPV γ−1

L , and likewise the adiabaticity of
CD implies TAV γ−1

L = TBV γ−1
H . Using these conditions, eqn.(4.6) can be simplified

to

ηotto = 1− (
VL

VH
)γ−1 (4.7)

The ratio VH/VL is called the compression ratio. The higher this ratio, the higher
is the efficiency of the Otto cycle. It is to be noted that the efficiency explicitly de-
pends on the substance through γ , and hence the Otto cycle lacks the universality
of the Carnot cycle. Since the compression ratio can never be ∞, the efficiency can
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never equal unity, so there is no fear of violating the second law. In practice, the
compression ratio can not be too high as the fuel mixture will become so hot during
compression that it will preignite, seriously compromising the cycle.

4.4.1 The Diesel cycle

The Diesel cycle is considerably different from the Otto cycle, though this too has
two adiabatic stages. Of the remaining two, one is an isochoric stage as in the Otto
cycle, but the other is an isobaric stage. The schematics of the cycle on the PV-plane
is shown in the figure.

FIGURE 4.4 The Diesel cycle

The starting stage AB is an adiabatic
compression from VH to VL, as in the
Otto cycle. But the stage BC, which
was isochoric at VL in the Otto cycle,
is now an isobaric expansion from VL

to an intermediate volume VI . Heat Q
is absorbed during this stage. The next
stage CD, as in the Otto cycle, is an adi-
abatic expansion stage to VH . Finally,
the last stage DA is an isochoric stage,
again the same as in the Otto cycle.
Heat Q′ is relinquished during DA. The
Diesel cycle is therefore characterized
by two compression ratios, r1 = VH/VL

and r2 =VI/VL.
Therefore, Q = CP(TC − TB), whereas Q′ = CV (TD − TA). Note the occurrence

of different specific heats in these expressions. Hence the thermal efficiency of the
Diesel cycle is

ηdiesel = 1− 1

γ
TD −TA

TB −TA
(4.8)

The adiabaticity of CD gives TCV γ−1
I = TDV γ−1

H , while adiabaticity of BA yields
TBV γ−1

L = TAV γ−1
L . Lastly, the constant pressure during BC means TB/VL = TC/VI .

These can be simplified successively to get TB = TArγ−1
1 , TC = TBr2 = TA r2 rγ−1

1 , and
TD = TC (r2/r1)γ−1 = TA rγ

2. Putting everything together, the efficiency of the diesel
cycle in terms of the r1,r2 is

ηdiesel = 1− r1−γ
1

γ
rγ
2− 1

r2− 1
(4.9)

Thus, even the diesel cycle is not universal.

4.5 The Brayton cycle

The Brayton cycle is in fact very close to the Otto cycle except that the two isochoric
stages of the Otto cycle are replaced by two isobaric stages. Since as far as ideal
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gases are concerned there is a sort of symmetry between P−1 and V augmented with

γ � γ−1, one expects the efficiency to be of the form 1− r
1−γ

γ
p , where rp = PH/PL

is the so called pressure ratio. We shall show by explicit evaluation that it is indeed
so. The cycle consists of first an adiabatic compression stage AB from low pressure

FIGURE 4.5 The Brayton Cycle

PL to higher pressure PH , then an isobaric stage BC at PH , a third stage which is an
adiabatic expansion along CD from PH to PL, and finally an isobaric compression
along DA at PL bringing the system to its original stage at PL.

The heat Q absorbed during BC is Q = CP(TC − TB), and the heat relinquished
during DA is Q′ =CP(TD −TA) leading to the efficiency

ηbrayton = 1− TC −TB

TD −TA
(4.10)

Adiabaticity along AB gives T γ
A P1−γ

L = T γ
B P1−γ

H , and adiabaticity along CD gives

T γ
C P1−γ

H = T γ
DP1−γ

L . Therefore, together they imply TB/TA = TC/TD = r
γ−1

γ
p . Hence

ηbrayton = 1− r
1−γ

γ
p (4.11)

4.5.1 The magnetic Brayton cycle

So far we have constructed various cycles based on the (P,V,T) degrees of freedom.
In fact, one can construct reversible cycles for power generation as well as refriger-
ation using other attributes. In this section we show how a Brayton-like cycle can be
constructed for magnetic systems. All the necessary thermodynamics are elaborated
in chapter 8 on Magnetic Systems.

Though a general analysis of the magnetic Brayton cycle is pretty straightforward,
it is algebraically rather tedious, and the results not so transparent. For that reason,
we simplify the analysis by considering a hypothetical model for which the Curie
Law is taken to be exact. The two results that we shall be mainly using here are for
the entropy and specific heat at constant field:

S(B,T ) = S0(T )− Va
2

B2

T2
CB(T ) =C0(T )+

Va
2

B2

T2
(4.12)
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Here a is a parameter occurring in the Curie law, S0(T ) is the entropy in the absence
of magnetic fields, and C0(T ) = T S′0 is the zero-field specific heat.

The schematics of a magnetic Brayton cycle in the entropy-temperature plane
(S-T) is shown in the next figure. Starting at P, the system absorbs heat while the
magnetic field is held constant at Bi(isofield transformation) during PQ, then it is
adiabatically magnetized along QR so that the field value is B f , then another isofield
transformation along RS brings it to S, where it is adiabatically demagnetized along
SP to the original state P. It is indeed a magnetic analog of the Brayton cycle previ-
ously considered, except that the isobaric stages there have been replaced by isofield
stages.

The analysis of this cycle is still rather messy mainly owing to the nature of the
adiabats in the problem. Therefore, we shall only analyse an infinitesimal version
of the cycle. We take the temperatures to be TP = T,TQ = T + dT , and the fields
to be Bi = B,B f = B+ dB. These are the four independent parameters of the cycle.
Heat Q1 = 1

2 (CB(B,T ) +CB(B,T + dT ))dT is absorbed during PQ. Given TP,TQ,

FIGURE 4.6 A Magnetic Brayton Cycle

the adiabats determine TS,TR, respectively. Now we use the following notation: if a
point (T,B) is connected to (T ′,B+dB) adiabatically, the shift T along the adiabat is
denoted by δ (T ). For example, in our case, TS = T ′ = T + δ (T ). The heat Q2 given
out during RS is then given by Q2 =

1
2 (CB(B+dB,T ′)+CB(B+dB,T ′+dT ′))dT ′.

Explicitly

Q1 = (C0(T )+
VaB2

2T 2
)dT +

1

2
(C′

0(T )−
Va2B2

T3
)(dT )2

Q2 = (C0(T
′)+

VaB f
2

2T ′2 )dT ′+
1

2
(C′

0(T )−
Va2B f

2

T ′3 )(dT ′)2 (4.13)

The function δ (T ) has to be determined by applying adiabaticity. Applying this to
the states P,S means S(B,T ) = S(B+ dB,T + δ (T )). Writing this out explicitly

S0(T )− VaB2

2T2
= S0(T + δ (T ))− Va(B+ dB)2

2(T + δ (T ))2
(4.14)

It is not possible to solve for δ (T ) without further approximations. It is necessary to
compute Q2−Q1 to quadratic order (compare the situation with Clapeyron’s treat-
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ment of the infinitesimal Carnot cycle). Furthermore, we treat the Curie law param-
eter a as small, and keep terms up to quadratic order in that too (turns out the effi-
ciency vanishes if only terms linear in a are retained!). After some algebra, the result
for δ (T ) can be expressed as δ (T ) = δ ∗(T )+ δ̄(T ) where

δ ∗(T ) =
VaBdB
TC0(T )

δ̄ (T ) =−V2a2B3dB
T3C0(T )2

(4.15)

It is to be noted that while δ ∗ is linear in a, δ̄ is quadratic.
After even more algebra, the magnetic work done during the cycle, to the relevant

approximation is found to be

Q2−Q1 = dT

{
(δ (T )C0)

′+
VaBdB

T 2
+

VaB2

2
(
δ (T )
T 2

)′
}

(4.16)

Rather remarkably

δ ∗(T )C′
0(T )+ (δ ∗)′(T )C0(T )+

VaBdB
T 2

= 0 (4.17)

so the part of Q2−Q1 linear in a vanishes! The final result for the efficiency of our
infinitesimal magnetic Brayton cycle is

dηmagbrayton = (Va)2B3

(
3

2T 4C2
0

+
5C′

0

2C3
0T 3

)
(4.18)

Clearly there is no universality to these cycles. Please see problem 4.5 for a complete
theory of magnetic Brayton cycle.

4.6 Carnot cycle with photons

We finally discuss a Carnot cycle with Photons. Of course, in the spirit of thermody-
namics, we should not be bringing any microscopics into the picture, and photons are
indeed such a microscopic aspect of electromagnetic radiation. A more appropriate
decription would be Carnot cycles with blackbody radiation. Blackbody radiation
refers to a state of electromagnetic radiation that is in thermal equilibrium, and is
consequently associated with a temperature. Once again, this Carnot cycle is of the
gedanken type, but touches on one of the most beautiful chapters in physics ever
written, bringing to the fore, more than ever, the power and elegance of thermody-
namics. Before delving into the Carnot cycle, let us discuss the thermodynamics of
blackbody radiation first.

4.6.1 The Thermodynamics of the radiation field

A blackbody is a hollow box whose walls are maintained at constant temperature.
Let us consider a very small opening in the box through which radiation can easily
get in, but not easily get out. Inside the cavity (hollow box) the radiation will be
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completely absorbed by the walls and re-emitted into the cavity. This process of ab-
sorption and remission brings the radiation into thermal equilibrium with the cavity,
and consequently assumes the same temperature as the latter.

That radiation, one of whose familiar forms is light, can be in a state of thermal
equilibrium is actually rather profound; it is as amazing as the possibility that light
could fall under gravity! Of course, the latter is not just a possibility now, it is a well
established consequence of Einstein’s General Relativity theory. It is indeed true that
the details of the mechanism by which radiation in a blackbody reaches equilibrium
are mired in various microscopic details, which, with our oft-stated intentions, shall
be kept out of purely thermodynamic descriptions. But a cursory description of them
shall not be out of place here.

The nature of these microscopics is twofold; firstly, at a purely classical level, the
electromagnetic field and its interactions with charges is completely described by
the Maxwell Equations (not to be confused with the Maxwell Relations discussed
elsewhere in the book). According to this, charges emit and absorb radiation, and
these processes can in fact be treated on par with chemical reactions where one
treats even radiation as a component. The other is the atomistic nature of matter,
which when combined with Quantum Theory provides a very succesful description
of the interaction between radiation and matter. This too supports the earlier picture
of treating this interaction essentially along the lines of chemical reactions, with
radiation itself as one of the ’chemical’ components.

But for the purposes of the thermodynamic description of radiation to be discussed
now, it suffices that there is exchange of energy between radiation and matter, and
that this will, depending on the circumstances, lead to a state of thermal equilibrium
even for radiation. Then, in keeping with the structure of thermodynamics, all that is
required are a specification of the degrees of freedom and the analog of equations of
state.

From Maxwell theory it follows that radiation can be characterized by an energy
density u, and a pressure p, and that these are related by p = u/3. The other feature is
that the energy density, u, related to U by U =Vu(T ), depends only on temperature.
much like the situation in ideal gases. Now, it is not possible to derive these laws
in exactly the same way as PV = nRT could not be proved within thermodynamics,
but instead must be admitted as a characterization of ideal gases based on empirical
data. The same attitude has to be adopted as far as these thermodynamic equations
of state of radiation are concerned.

The rest follows from the laws of thermodynamics. Let us consider the first law
in the TdS form for this system:

dS =
1

T
(dU + pdV) =

V
T

du
dT

dT +
4

3

u
T

dV (4.19)

The exactness of the differential dS leads to the following integrability condition and
consequence:

(
∂

∂V

(
V
T

du
dT

))

T
=

(
∂

∂T

(
4

3

u
T

))

V
→ du

dT
= 4

u
T

→ u(T ) = aT 4 (4.20)
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This is a remarkable conclusion indeed; that u(T ) is proportional to T 4 is the essen-
tial content of a law empirically established by J. Stefan. It was Boltzmann who gave
this thermodynamic derivation of it. According to Sommerfeld, Lorentz, in a memo-
rial address to Boltzmann, described the above thermodynamic derivation as a veri-
table pearl of theoretical physics[64]! The law is aptly called the Stefan-Boltzmann
law, and the familiar Stefan-Boltzmann constant σ is related to a by σ = ca

4π with c
being the velocity of light.

Having obtained u(T ), both U and S for the blackbody radiation follow immedi-
ately:

U(T,V) = aVT4 S(T,V) =
4

3
aVT 3 (4.21)

Comparison with ideal gases It is worth comparing the blackbody thermody-
namics with ideal gas thermodynamics. Firstly, the ideal gas system requires spec-
ification of three quantities, say, V,T,n, for specifying its states. But in the case of
the blackbody, only two seem to be sufficient. In other words, there is no notion of
a molecular weight for the photon gas! This is a very deep feature of the radiation
gas, and we shall refer to it at different points of this book. A related observation
[37] is that at any given temperature (and hence pressure), the volume of a photon
gas can be made to vanish! To visualize this, we can imagine the hollow box being
fitted with a piston; the zero volume can be achieved by pushing the piston all the
way down. The entire energy contained in U to start with will then have been passed
on to the reservoir, which maintains the walls at a fixed temperature. However, the
entropy of the zero volume state is zero even at nonzero temperatures, and this would
violate the expectations from third law that no adiabat connect T = 0 to T �= 0, but
zero volumes are sort of bizarre!

Since the pressure p = u(T)
3 is a function of T alone, every isothermal process of

the photon gas is, at the same time, an isobaric process too! This is reminescent of the
situation in the steam-water coexistent phase, where vapor pressure was a function
of temperature alone. There too, the amount of water in the vapor phase was not a
constant.

Since S = 4a
3 VT 3, it follows that isentropic processes, which are also adiabatic,

obey V T3 = const. Another form for the adiabat is pV 4/3 = const. This does bear a
close to resemblance to the adiabat of an ideal gas which took the form PV γ = const
with γ taking the value 4/3. But in the case of ideal gases γ had the interpretation of
being the ratio of the specific heats CP/CV . Does the adiabatic index of 4/3 for the
photon gas have a similar meaning?

It is clear that the index 4/3 does not have the same meaning because CP for
the photon gas is a meaningless concept; this is so as during an isobaric process,
temperature also gets fixed and it is meaningless to talk of specific heats then! What

about CV ? This does exist, and on using its definition CV =
(

∂U
∂T

)

V
, takes the value

CV = 4aV T3. Remarkably, this specific heat is in conformity with the third law,
which is of course a consequence of the entropy in eqn.(4.21) satisfying the third
law. The ideal gas CV (T ) can be any function of T, so in this respect the ideal gas
and the photon gas have compatible behaviours.
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We can go on and make a few more comparisons. By reasoning similar to the
above, it is easy to conclude that the concept of a volume expansion coefficient
1
V

(
∂V
∂T

)

P
also does not make sense for a photon gas and nor does the isothermal

compressibility − 1
V

(
∂V
∂P

)

T
.

4.6.2 Photon Carnot cycle

FIGURE 4.7 A Carnot Cycle With Radiation

Now we consider a Carnot cycle whose working substance is blackbody radiation.
It is shown schematically in the P-V plane as shown in the diagram. Starting at the
state A with volume VA at temperature TH , an isothermal expansion at TH takes it to B
with volume VB >VA. The heat absorbed is QH = TH(SB − SA) = 4a/3(VB−VA)T 4

H .
Then an adiabatic stage takes B with volume VB at TH to C with volume VC at TL.
Therefore, VBT 3

H = VCT 3
L . The third stage of the cycle is an isothermal compression

from C with volume VC at TL to the state D with volume TD also at TL. The heat
relinquished during this stage is QL = 4a/3(VC −VD)T 4

L . Lastly, the system returns
from D to A along an adiabat and hence VDT 3

L =VAT3
H . The efficiency of the photon

Carnot cycle is, therefore,

ηphoton = 1− QL

QH
= 1− VC −VD

VB −VA
(

TL

TH
)4 (4.22)

But the adiabaticity conditions yield VA/VD = (TL/TH)
3 =VB/VC. Upon using these,

the efficiency of eqn.(4.23) becomes

ηphoton = 1− TL

TH
(4.23)

which is nothing but the efficiency of an ideal Carnot cycle.
If we had allowed VA to take zero value, the entropy at A would have been zero

too. This would have been consistent only if VD had been zero too, making VA/VD

indeterminate. But then, we would not have needed to know this ratio at all as the
formula for the efficiency would have been η = 1−VC/VB(TL/TH)

4 and only the
consequences of BC being an adiabat would have sufficed to evaluate it. The final
result, as can easily be checked, would still have been as given by eqn.(4.23).
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4.6.3 The thermodynamic gateway to quantum world

While the above considerations show how succesful thermodynamics had been in
capturing some essential features of the blackbody radiation, troubles began when
one attempted to go beyond the total energy density, total entropy etc., and attempt
to explain the frequency dependences in the observed spectrum of blackbody radi-
ation. The frequency distribution of the energy density was an observable feature,
and initial observations seemed to indicate that the energy density of radiation when
restricted to a particular frequency ν seemed to obey the so called Wien law, which
can be roughly stated as

Uν � e−
Kν
T (4.24)

We shall be very heuristic here, as we can not give a full and proper account of the
revolutionary developments that led to quantum theory. What we wish to do, instead,
is to give a flavor of how considerations based on entropy, in the hands of Planck
[55, 56] and Einstein [14], played a decisive role in finding the path to quantum
theory. Planck expressed the Wien law in quite a different, but equivalent form, by
invoking entropic considerations. That form turns out to be

d2S
dU2

=−K′

U
(4.25)

where K′ is a different constant, but related to K introduced earlier. Integrating this
equation once and using dS

dU = 1
T shows the desired equivalence to Wien’s law.

But soon afterwards data started becoming available at longer wavelengths and
here the behaviour seemed entirely different, and seemed to suggest

Uν � K′′ T (4.26)

What was confusing things further was that classical statistical mechanics gave
eqn.(4.26) for all frequencies (Rayleigh-Jeans law) but experiments clearly contra-
dicted it at high frequencies. Planck noticed that the experimental results at long
wavelengths (the Rayleigh-Jeans behaviour) could be stated equivalently as

d2S
dU2

=−K′′

U2
(4.27)

Planck at first sought a behaviour that would interpolate between these two limits. In-
stead of seeking that interpolation directly at the level of U, he sought to use entropy
as a guiding principle. He proposed

d2S
dU2

=
α

U(β +U)
(4.28)

as a relation interpolating between eqn.(4.25) and eqn.(4.27). Integrating once, one
gets

U =
β

(e−
β

αT − 1)
(4.29)
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This can be identified with the famous Planck blackbody radiation formula on iden-
tifying α = −k and β = hν where k,h are respectively the Boltzmann and Planck
constants. Instead of the interpolation formula for U , one can focus on the expres-
sion for the entropy obtained upon fully integrating eqn.(4.28):

S = k

[
(1+

U
hν

) ln(1+
U
hν

)− U
hν

ln
U
hν

]
(4.30)

It was preciely the entropy of radiation that Einstein chose to concentrate on. In
particular, he chose to look at the entropy of radiation for high frequencies, i.e in the
limit when Wien’s law had been found to be valid experimentally:

S �−k
U
hν

ln(
U
hν

) (4.31)

Recall that U is the energy density, so expressed in terms of total energy E, Einstein
recast this as

S = k
E
hν

ln
V
V0

(4.32)

What was remarkable to Einstein was the close resemblance of this to the entropy of
an ideal gas expressed in the form Sideal = k E

ε ln
V
V0

, where ε is the energy per atom
(molecule) of the ideal gas. Einstein drew the far reaching conclusion that insofar as
its thermodynamic properties are concerned, blackbody radiation behaves like a gas
of particles, later christened photons by Gilbert Lewis.

But this revolutionary thought process could be brought to completion only with
the equally revolutionary ideas of the Indian physicist Satyendra Nath Bose, who
treated the photons as indistinguishable and introduced a new statistics that now goes
by the name of Bose-Einstein Statistics. The rest, as they say, is history. The subse-
quent impact of these ideas has been mind boggling, one of which is the discovery
of a new state of matter called the Bose-Einstein Condensate.

Of course, one has to depart from the strict confines of thermodynamics and foray
into statistical mechanics to make these connections, but the crucial role played by
thermodynamics, and in particular entropy, in these epoch-making connections is
undeniable.

4.7 Problems

Problem 4.1 Consider a real life heat engine operating between T1 and T2 with
T1 > T2 that has an efficiency equalling 90% of the maximum possible. Likewise
consider a real life refrigerator working between T3 and T4 such that T4 < T3 and
which has a coefficient of performance that is also 90% of its maximum. If the
work output of the heat engine drives the refrigerator, find the ratio of the heat
absorbed by the heat engine to the heat relinquished by the refrigerator.

Problem 4.2 If a real life refrigerator has a coefficient of performance that is
50% of the theoretical maximum, what is the rate of entropy production per unit
power consumed?
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Problem 4.3 Discuss the details of a Carnot cycle with a Fermi gas (like He3, or
neutrino gas, to be more exotic) as its working substance.

Problem 4.4 Discuss how a Carnot cycle operating with a quantum ideal gas
would work. Work out the cases when a) both the temperatures are above the
Bose-Einstein transition temperature and b) when both temperatures are below
the transition temperature. What happens when one is above, and the other below,
the transition temprature?

Problem 4.5 The magnetic Brayton cycle in the text was analyzed assuming
Curie law. Carry out this analysis when the magnetization is given by the classi-
cal Langevin theory.

Problem 4.6 The anomalous expansion of water at 4◦C makes a Carnot cycle
operating in the vicinity of this temperature, say between 3◦C and 5◦C, rather
unusual. As both the isothermal expansion at the higher temperature and the
isothermal contraction at the lower temperature absorb heat (when pressures are
low enough), making it appear that heat is entirely converted into work, violating
the second law. Analyse this situation and show there is no such violation.

Problem 4.7 Plot the Otto, Brayton, and Diesel cycles in the temperature-entropy
(S-T) plane.

Problem 4.8 A rubber band can be envisaged as a one-dimensional system
whose length L plays the role of volume, and its tension T that of -P. The first
law for rubber bands then reads T dS = dU −T dL. The internal energy and ten-
sion are given by U = cL0 T and T = (L−L0) as long as L is not too different
from L0. Construct a Carnot cycle with this rubber band as a working medium.

Problem 4.9 The compression ratio of an Otto cycle working with air is 10.
The temperature and pressure at the beginning of the compression cycle are 300
K and 1 atm. If combustion adds 50 kJ/mol of heat, find the temperature and
pressure at the end of each segment of the cycle, and the thermal efficiency.

Problem 4.10 Determine the compression ratio of an Otto cycle which delivers
maximum work for given TL and TH . Why can’t the work be increased forever
by simply increasing TH?

Problem 4.11 Show that the observed increase of volume in freezing water to ice
would lead to a violation of the second law if at the same time the freezing point
increases with pressure (normal behaviour) by constructing a Carnot cycle based
on ice-water as the working substance. Are the conclusions sensitive to whether
heat is described by caloric or according to first law? This line of reasoning was
first pointed out by Kelvin.



5 Specific Heats:

Magnificent Bridges

5.1 A brief history

It is clear that thermodynamics as understood today has two, among many, deep
concepts at its very heart, namely, heat and temperature. The concept of specific
heat is what bridges these two. This is in the sense that specific heats tell us how a
certain amount of heat supplied to the system changes its temperature. Specific heats
have played decisive roles in so many fundamental developments including that of
thermodynamics itself. They played a key role in the development of quantum theory,
and even today they continue to play a central role.

In fact, so central was the role played in the development of quantum theory that
the final talk of the very first Solvay Meeting on Radiation and Quanta, held in 1911,
was entirely devoted to specific heats. It was titled The Present State of the Problem
of Specific Heats, and was delivered by none other than Albert Einstein, whose pi-
oneering work on the specific heats of solids had indeed opened the flood gates!
The first (1911) and the fifth (1927) (on Electrons and Photons) Solvay meetings are
considered legendary; while the first highlighted the immense crisis in physics at that
time, the second witnessed the essential culmination of quantum theory.

In essence, specific heats monitor the health of potential theories, and can be
called the thermometers for theories. It is the temperature and volume dependences
of specific heats that enable them to play this role. Such dependences are a major
difference from the early days when specific heats were thought to be constants char-
acterstic of systems. The temperature dependences, in particular, herald new thermo-
dynamic aspects that hitherto lay frozen. In that sense, as more and more of such
features, emerging essentially out of additional microscopic degrees of freedom, be-
come important, they leave their footprints on specific heats.

Many such features of specific heats are covered in quite some detail in various
parts of this book. We shall not repeat those details in this chapter. Instead, what we
shall do is try and give a bird’s eye view of the entire landscape of specific heats,
to enable one to perceive all such details within a single perspective. We start by
recounting some historical developments of this subject.

That adding ’heat’ changes the ’temperature’ of a body must have been known
for a very very long time indeed. That heat can be added without changing the tem-
perature of a body must indeed have come as a surprise. This discovery is credited
to Joseph Black (1728-1799). Black is said to have slowly melted ice and shown
addition of heat still maintained the temperature of ice+water.

Early Scientific Studies One of the earliest, and scientifically systematic, works
to have experimentally determined the specific heat of gases was that of Delaroche
and Berard in 1813. This particular work stands out for many reasons. It was an

103



104 The Principles of Thermodynamics

essay that had won a prize competition of the famous Institut de France. It was
considered the most precise determination of specific heats of a number of gases. Its
influence went undiminished for nearly half a century.

We have already discussed the central role assumed by this experiment in Carnot’s
Reflections. Its results, according to Ingo Mueller [47], were also used by Robert
Mayer in his estimation of the mechanical equivalent of heat, and by Clausius too, in
his thinking on the internal heat. The incorrect values of the Delaroche and Berard
specific heats had their negative impact then.

But the most serious negative impact this experiment had was on Carnot’s work.
This work had unambiguously claimed that the gases it had studied, very close to
being ideal, had a volume dependence to their specific heats. As we have seen in our
detailed account of Carnot’s theory, the constancy of CP −CV in the caloric theory
required both CV and CP to have a mild logarithmic dependence on volume. Carnot
felt that the results of Delaroche and Berard supported such a behaviour.

The Delaroche-Berard results turned out to be erroneous, and the said volume
dependence of the specific heat of gases spurious. Had this grave error been detected
during Carnot’s lifetime, already close to two decades after the experiment, it is hard
to imagine the course that development of thermodynamics would have taken. It was
Regnault, in 1862, that showed the results of Delaroche-Berard to be spurious.

This episode not only highlights the extreme importance specific heats played in
the development of a fundamental theory, it also highlights how in science there can
be circumstances when completely wrong experiments hold sway for unreasonably
long periods! For a fuller historical account of this see Mendoza [46].

Dulong and Petit The next extremely important development was the experimen-
tal determination of the specific heat of solids by Pierre Louis Dulong and Alexis
Therese Petit in 1819. They found that the molar specific heats of all solids showed
a universal value of 3R, where R is the gas constant. Of course, they had only es-
tablished the constancy of the specific heats without relating the constant to the one
appearing in the ideal gas laws.

But soon it was found that the Dulong-Petit law was accurate only at high enough
temperatures. At intermediate and low temperatures there were significant deviations
from the 3R value. Before discussing the significance of these deviations, and their
remedies as pioneered by Einstein, let us continue with our historical narrative.

Another experiment of significance was that by Charles Bernard Desormes
(1771-1862) and Nicolas Clement (1779-1841), performed also in 1819. This mea-
sured the ratio of the specific heats γ =CP/CV for (ideal) gases. They had established
the value of γ = 1.4 for air, a value which Carnot had used extensively in his Reflec-
tions. But as already mentioned elsewhere, Pierre Simon Laplace (1749-1827) had
used a similar value in his work in 1816 on the speed of sound, wherein he had
corrected a major flaw in Newton’s calculations.

Prominent among the early experiments on specific heats and other thermal prop-
erties is the series of very carefully planned determinations of the thermal properties
of steam by Henri Victor Regnault (1810-1878). He published them in a series of
reports, the first in 1847, and the next two in 1862 and 1870 [60]. Kelvin made exten-
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sive use of whatever data of Regnault was available at the time of writing his com-
mentary on Carnot’s work. His main aim was the determination of Carnot’s universal
function μ(t). He could not come to any definite conclusions, nor could Clapeyron.

Thus, well before Carnot a great deal seems to have been known about the specific
heats CV ,CP for gases. These too, and hence their differences CP −CV seemed to be
constants. It was a triumph for Clausius’s first law that it could naturally explain
the constancy of this difference. In fact, the first law and the entropy axiom lead to
a number of interesting relations involving specific heats, as detailed in chapter 3.
These relations are general enough to accommodate both temperature and volume
dependences of specific heats.

Specific heats of liquids and solids Though for gases CP and CV can be quite dif-
ferent, for liquids and solids, the difference between these two is not so great. There
are many ways of understanding this; the compressibilities of liquids and solids are
generally much lower than those of gases. The internal energies of liquids and solids
are also, to a good approximation, only functions of temperature alone.

In this context, it is worth recalling that for the case of the blackbody radiation,
CP was ill-defined (see section 4.6). This was because of the exceptional behaviour
in that case wherein pressure was a function of temperature only, and therefore no
constant pressure process could result in any change of temperature. The situation
is the same with saturated vapor pressures of liquids, which also depend only on
temperature. So it is meaningless to talk of their CP also.

5.2 Varieties of specific heats

While we have so far discussed CP and CV , it is clear that there is an infinite multitude
of specific heats! This arises from the fundamental premise of thermodynamics that
heat is not a state function. So the heat absorbed by a system in going from A at
temperature T to a neighbouring state A′ at temperature T + dT depends on the path
connecting the two states. CP is the specific heat when the path in question is an
isobar, i.e P = const, and likewise CV is the relevant specific heat when the path is
an isochore.

But any relation of the type, say, R(V,T ) = const also defines a path, and clearly
there are infinitely many of them. So, it makes sense to define a specific heat CR

whose meaning is ΔQ/ΔT as Δ → 0 while keeping R constant. From first law,

d̄Q =CV dT +
{(

∂U
∂V

)

T
+P
}

dV . Combining with
(

∂R
∂T

)

V
dT +

(
∂R
∂V

)

T
dV = 0, one

gets

CR(V,T ) =CV +

((
∂U
∂V

)

T
+P

)(
∂V
∂T

)

R

(
∂V
∂T

)

R
=−

(
∂R
∂T

)

V

(
∂R
∂V

)−1

T
(5.1)

Note that the factor
(

∂U
∂V

)

T
+P can not vanish generically, as, if it did, d̄Q would be

a perfect differential. Using eqn.(3.7) this can be recast as

CR(V,T ) =CV (V,T )+T

(
∂P
∂T

)

V

(
∂V
∂T

)

R
(5.2)
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Though there is a multitude of specific heats, given CV and CP, or specific heats
CX ,CY where X,Y are any two independent variables, any other CR can be expressed
in terms of them, as for example,

CR(V,T ) =CV (V,T )+ (CP −CV )

(
∂V
∂T

)

R

(
∂T
∂V

)

P
(5.3)

In addition to specific heats like these, one can have additional specific heats such
as CM ,CB in magnetic systems. They too obey a number of properties analogous to
CP,CV , and these have been expounded in detail in the chapter on magnetic systems.
There we have also discussed the properties of additional specific heats Cs,Cn that
arise in the superconducting systems. These details can be found in chapter 8.

5.2.1 Negative specific heats

With such a generalized notion of specific heats, it will come as no surprise that
specific heats can sometimes be negative. A classic case is that of the specific heat
of the steam-water system in coexistence. As already emphasized, CP is the wrong
specific heat to consider. Instead, let us consider the path to be along the coexistence
curve, which is governed by the Clausius-Clapeyron equation. This is dealt with
at length later. Following Sommerfeld [64], if we call this specific heat Cφ , then it
follows (see chapter 2 for details) that

Cφ =Cliq +
dL
dT

− L
T

(5.4)

Here Cliq is the molar specific heat of water in the liquid phase and L the molar
latent heat. He uses the experimentally determined values for L and dL

dT at the boiling
point (just for illustration) T = 373K to estimate Cφ . These values are L = 9.7 Kcal,
dL
dT = −11.5cal/deg leading to Cφ = −19cal/deg. So the specific heat of saturated
steam along the coexistence curve is indeed negative! The physical significance of
this is that when heat is added to the system, part of it goes off as latent heat and
part towards performing mechanical work that in the end some of the internal energy
has to be depleted. Curiously, there is a parallel to this in black hole thermodynamics
where adding energy to the black hole actually lowers its Hawking temperature!

Example 5.1: CV of nitrogen

If it takes 4.2 kJ of electrical heating to raise the temperature of 2 moles of nitrogen, at
constant volume, by 100 K, calculate the CV of nitrogen assuming that it behaves like
an ideal gas.

Since the process is at constant volume, the change in internal energy ΔU
must match the heat supplied by the electrical heater. Since nitrogen is said
to behave like an ideal gas, the change in internal energy at constant volume
is given by ΔU = nCVΔT . Therefore CV = ΔU/(nΔT ) = 21J/K. This is very
close to the value 5R/2= 20.8J which is the molar CV of an ideal diatomic gas.
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Example 5.2: CP in superconducting transitions

If the molar entropy difference between the normal and superconducting phases de-
pends linearly on T − Tc, show that there is a discontinuity in CP at the transition
temperature and that this discontinuity is proportional to Tc.

The specific heat at constant pressure is given by CP = T
(

∂S
∂T

)

P
. The en-

tropy difference between the two phases is given to be of the form Ss − Sn =
a(T −Tc)(this has to be so since the entropy difference vanishes at Tc), it is
readily seen that at T = Tc, Cs

P(Tc)−Cn
P(Tc) = aTc.

5.3 Specific heats and the third law

As we saw in our discussion of the (non)attainability of absolute zero, the third law
requires all entropies to vanish at absolute zero, and consequently all specific heats
must vanish as absolute zero is approached. The full implications of this are enor-
mous. It means that whatever be R, CR must vanish in this limit. The ideal gas specific
heats obviously do not satisfy the third law which can be interpreted to mean that no
gas can behave ideally at temperatures very close to zero. In this book we have dis-
cussed a number of specific heats that do vanish in the limit of absolute zero. In the
last section of this chapter, an elaborate discussion is given of specific heats in the
context of the third law.

5.3.1 Specific heats and cooling powers

The Nernst-Planck postulate or the so called third law of thermodynamics precludes
the attainment of absolute zero. In practical terms, this translates to the fact that the
cooling powers of all cooling devices must vanish as absolute zero is approached.

The specific heats play a somewhat subtle role here. By the same third law, all
specific heats must also become vanishingly small in this limit. But a small specific
heat has also the consequence that for a given loss of heat, the drop in temperature
is large. This may give rise to the paradoxical thought that the third law actually
facilitates faster cooling. But there is no paradox as both the cooling rates as well as
specific heats are eventually governed by entropic considerations. It is instructive to
see this more quantitatively. Let us restrict attention to adiabatic cooling only.

As explained later on, the essence of the adiabatic cooling method consists in the
triple product identity

(
∂S
∂ξ

)

T

(
∂ξ
∂T

)

S

(
∂T
∂S

)

ξ
=−1→

(
∂T
∂ξ

)

S
=− 1

Cξ
T

(
∂S
∂ξ

)

T
(5.5)

Here ξ is some control parameter; in adiabatic demagnetization this is the magnetic
field etc. In the context of adiabatic demagnetization, to see that even though the
specific heat Cξ vanishes as T → 0, the other factors in the numerator vanish even
faster, one should go beyond approximations like Curie law that are used in such
discussions. One can, for example, use the Langevin model with some ansatz for the



108 The Principles of Thermodynamics

non-magnetic specific heat so that they are in conformity with the third law. Then
one sees that in general cooling rates vanish much faster than specific heats.

5.4 Specific heats and microscopics

We have taken great care not to emphasize the atomistic aspects, with the desire to
showcase the powers and the immense scope of thermodynamics, and certainly not to
downplay the importance of the atomistic picture. On the other hand, it is clear that a
certain minimal atomic perspective should not be totally avoided, making everything
look too empirical. The behaviour of specific heats is a case in point.

At the level of thermodynamics, it suffices, for example, to know the empirically
determined CV ; the laws of thermodynamics then go on to predict a number of re-
lationships which too can be empirically tested. For example, even after restricting
attention to ideal gases only, it is enough from thermodynamics point of view to say,
for example, that CV of some gas is 3/2 or 5/2; that one of them is monatomic or the
other is diatomic from the atomic point of view, adds no more content to the ther-
modynamic description. But it is clearly of importance to know this atomic aspect
should one wish to go further.

In fact, such constant values of CV are clearly in contradiction of the Nernst postu-
late. The fix for this indeed exploits the atomic details. Since within thermodynamics
there is no scope for including such details, any fix must necessarily come from go-
ing beyond the thermodynamic description, as for example from going to Statistical
Mechanics. But it turns out that merely going to classical Statistical Mechanics will
not suffice, and the cures lie in purely Quantum Mechanical Aspects!

Anyway, returning to the issue of microscopics, a balance can be struck by taking
a few, but crucial results from microscopics (including possibly a statistical analy-
sis) as inputs into the thermodynamic formalism. For example, bringing in notions of
electrons and their properties into a thermodynamic discussion undoubtedly amounts
to too much microscopics. But a result from the quantum statistical mechanical anal-
ysis of a gas of electrons which says, for example, that their very low temperature
behaviour of specific heats is a linear temperature dependence, i.e Ce �T , can simply
be incorporated into thermodynamics yielding a host of useful results and insights.
After that, there will never be a need to bring in the microscopics of electrons again.

Continuing in this vein, we could treat electrons as a thermodynamic ’component’
whose equations of state are prescribed. From our discussions of the blackbody ra-
diation, one can for example treat radiation as a component whose equations of state
are PV = U/3 and U = Vu(T ). From a microscopic point of view, a statistical me-
chanical treatment of solids can be given in terms of the so called lattice vibrations.
From our point of view, it suffices to give an effective description of them by speci-
fying the equations of state. For example, the low temperature specific heat of such
lattice vibrations turns out to be of the form Clattice � al T 3. Incidentally, this was
also the behaviour of the low temperature specific heat of blackbody radiation(for
which CP is a meaningless concept).

The linear dependence of the electronic specific heat was the leading order result,
valid in the immediate neighbourhood of absolute zero. At somewhat higher temper-
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atures there are additional corrections and the behaviour is Ce = ae T + be T3 + . . ..
So when one considers the contributions from both the electronic and lattice vibra-
tions, the total specific heat would have the behaviour C = ae T +(be + al)T 3+ . . ..
It is to be noted that both the electronic and lattice vibration specific heats obey the
third law.

In this manner, we could augment the list of possible thermodynamic compo-
nents. Further examples are magnetic systems for which we can introduce the mag-
netic specific heats, superconducting systems with specific heats Cs,Cn for the su-
perconducting and normal components. The specific heat Cs vanishes exponentially
i.e � f (T )e−a/T at very low temperatures, thereby satisfying the third law. Such ex-
ponential vanishing at low temperatures is also a feature of spin systems. For exam-
ple, in magnetic systems, even without any applied magnetic fields, the tiny atomic
magnets can be taken to be a thermodynamic system on their own, with their own
characterstic entropy, internal energy etc..It is in fact what underlies the phenomenon
responsible for Pomeranchuk Cooling because at very low temperatures the spin sys-
tem entropy dominates, and results in the curious outcome that the solid phase of
liquid He3 at these temperatures has higher entropy than the liquid phase.

5.5 Specific heats herald quantum theory!

As noted earlier, the Dulong-Petit law says that the molar specific heat of all solids
must be 3R. This value is also what classical statistical mechanics gives. But the ex-
perimentally observed specific heats deviate from this value, and in fact the Dulong-
Petit value is preferred only at high enough temperatures. Note that the Dulong-Petit
value does not obey third law whereas the experimental data certainly seems consis-
tent with the third law. A classical statistical mechanical treatment of solids, taking
into account an atomistic picture of the constituents and some presumed forces be-
tween the atoms still does not fix the problem. This is where Einstein’s seminal work
on specific heats comes into the picture. In laying the foundations of quantum theory,
this was as important as the work of Planck on the blackbody radiation and Bohr’s
work on the structure of atoms. Let us briefly visit Einstein’s ideas.

5.5.1 Einstein and specific heats

Einstein’s attention was focused on the experimental fact that the specific heat of
diamond at room temperature was anomalously low when compared to the Dulong-
Petit value of 6 cal/deg (see [52] for a detailed account). It is interesting to recall
the history of this anomaly. The Dulong-Petit work was published in 1819 [13].
Around 1840 de la Rive and Marcet [11] found that at low temperatures specific
heat of diamond was only 1.4 cal/deg, less than a fourth of the Dulong-Petit value.
Regnault, to whose pioneering works on the thermal properties of steam we have
already referred, reported a year later, a value around 1.8 cal/gm. De la Rive and
Marcet had worked at much lower average temperatures than Regnault. This was a
pointer to the fact that either the Dulong-Petit law was completely wrong, or that
specific heats could have appreciable temperature dependences.
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Heinrich Weber, some three decades later in 1872, undertook a careful reexami-
nation of the diamond case by accurately determining the specific heat of diamond
in the range 0-200 ◦C. He found unambiguous evidence for a substantial tempera-
ture dependence of specific heats. By the observed trend at the higher temperatures,
he also conjectured that the DP-law would be correct at high temperatures. This he
confirmed in 1875 by going to temperatures as high as 1200 K, where he found a
value of 5.5 cal/gms as against the DP value of 6. It was Weber’s data that attracted
Einstein’s attention. Incidentally, Weber was one of Einstein’s teachers and it is said
that Einstein initially had done some of his doctoral work with him.

It is remarkable that these far reaching experimental discoveries had almost no
theoretical impact for another 30 years! An intervening theoretical development of
considerable significance was Boltzmann’s programmes of kinetic theory and sta-
tistical mechanics. In 1876, he had, based on these considerations, derived the DP
value of 3R for the specific heats of solids! The above mentioned clear experimental
evidence for temperature dependence of specific heats would run counter to these
theoretical developments, for which no simple fixes were available within kinetic
theory.

An experimental result of immense significance to this topic was provided in 1905
by James Dewar; he reported a value for the specific heat of diamond as low as
0.05 cal/deg at the then very low temperatures of less than 100 K, a temperature
region made possible by his own successful liquefaction of hydrogen a few years
earlier (1898). Dewar also conducted specific heat experiments on diamond at high
temperatures of around 2000 ◦C, and concluded that at these high temperatures the
experiments confirmed the Dulong-Petit value rather accurately.

A complete parallel to this situation is to be found in the case of blackbody ra-
diation; there too, considerations based on equipartition theorem of kinetic theory
would give the Rayleigh-Jeans result, which, while in good agreement with data
on the low frequency spectrum, was in clear contradiction of Wien’s law found to
be valid at high frequencies. There too, no simple fixes to classical physics would
work, and only Planck’s bold ideas paved the way for further progress. While at
first Planck had only obtained an interpolation formula for which he had relied on
thermodynamic arguments, he later derived this interpolation formula based on his
revolutionary treatment of charged oscillators. The upshot of that derivation was that
the average energy of such oscillators had to be modified from the kT value inferred
from equipartition theorem to

Ē =
hν

e
hν
kT − 1

(5.6)

This agrees with kT for low frequencies, and with hν e−
hν
kT behaviour of Wien’s law

at high frequencies.
In a stroke of genius, Einstein saw in this a way out of the specific heat problem!

His basic argument was disarmingly simple; he said that what must hold for the
Planckian oscillators must hold for the vibrating atoms of a solid too! He therefore



Specific Heats: Magnificent Bridges 111

proposed to replace the 3NkT value for the internal energy of a solid to

U = 3R
hν

e
hν
kT − 1

→C(T ) = 3R
ξ 2eξ

(eξ − 1)2
ξ =

hν
kT

(5.7)

In making this proposal Einstein made the highly simplifying assumption that the
atoms in a solid vibrate with a single frequency ν in all the three spatial directions.

Let us note some broad qualitative features of Einstein’s proposal. For that, instead
of concentrating on the frequency dependence as Planck had done in the case of the
blackbody radiation, let us concentrate on the temperature dependence. It is clear
from inspection that the behaviour in terms of temperature will be opposite to that
in terms of frequency; it is the high temperature behaviour that will be closer to the
equipartition theorem, while at low temperatures, the average energies and hence the
specific heats will be much lower than the expectations of equipartion theorem. In
the case of radiation, the average energy densities at high frequencies were the ones
that were lower (in fact, exponentially so).

Einstein compared his result of eqn.(5.7) with Weber’s data and found remarkable
agreement over a wide range of temperatures, if the only parameter in his theory
i.e TE = hν/k is taken to be 1300 K for diamond. The origin of this characteristic
temperature is quantum mechanical. When this is high, as in the case of diamond,
quantum effects can manifest even at room temperatures. A schematic comparison
of the Weber data and Einstein prediction is shown in figure 5.1 (as it appeared in
Einstein’s 1906 paper [15, 78]): Thus Einstein had opened the gates of quantum
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FIGURE 5.1 Comparison between Weber data and Einstein’s prediction [78, 15]
.

theory not only for radiation but for matter too. This marked a paradigm shift in our
understanding of matter, in a way completely different from the one pioneered by
Niels Bohr for an understanding of atomic structure.

It is instructive to examine the very low temperature behaviour of specific heats
in Einstein’s theory:

C(T )→ 3R(
TE

T
)2 e−

TE
T (5.8)
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In other words, Einstein theory predicted a precipitous fall in specific heats at very
low temperatures!

The modern reader may find that reasonable as that is what the third law or the
Nernst-Planck Postulate would require. But this has to be viewed in the proper his-
torical perspective. In 1906, when Einstein’s paper was published, Nernst had not
formulated his postulate in the sense in which third law is understood today. In
1905, based on a large body of experimental work, Nernst had only conjectured that
changes in entropy would vanish at very low temperatures. As explained in chap-
ter 3, this only requires changes in specific heats to vanish, and not specific heats
themselves. The form of third law as recognised today only appeared in 1910 after
extensive researches by Nernst had shown that in fact even the specific heats of all
substances vanishes in the limit, and after Planck in 1910 had suggested modifying
Nernst’s original postulate to mean that in fact all entropies vanish in the limit.

However, on the basis of his very accurate measurements, Nernst pointed out that
even Einstein’s result was not in agreement with data at very low temperatures, and
that while specific heat of diamond indeed vanished at very low temperatures, it did
not fall as steeply as what eqn.(5.8) says; instead, he claimed a T 3 like behaviour.
Again, one can see a parallel in the blackbody radiation case. There too, while the
energy density of monochromatic radiation had the same behaviour as in eqn.(5.7),
the total energy density, by which we mean energy density integrated over all fre-
quencies has a T 4 dependence, leading to a specific heat with a T 3 behaviour for all
temperatures (see, for example, section 4.6).

5.5.2 Debye Theory

Nernst not only noted the discrepancy between Einstein’s result and the observed low
temperature behaviour, he suggested the remedy too, essentially along the lines that
the lattice vibrations are not monochromatic. It was Peter Debye in 1912 who com-
pleted Einstein’s treatment by including other lattice vibrations. The essential point
of Debye’s treatment was that the atoms, by virtue of their interatomic interactions,
vibrated more like coupled oscillators. The full problem was of such complexity that
Debye approximated the entire lattice of atoms by a continuous media and consid-
ered all its vibrations. Shortly afterwards Max Born and von Karman undertook a
detailed study of lattice vibrations taking into account the lattice structure. While
the vibrations considered by Debye obeyed the so called linear dispersion, as in the
case of the blackbody spectrum, the Born-von Karman theory had in addition the so
called optical branch for which the dispersion relations were no longer linear.

A subtlety with frequency spectrum that arises in this context, but which is absent
in the blackbody radiation case, has to do with the fact that the total number of
modes of lattice vibrations has to be finite being essentially given by 3N, where N
is the number of atoms. This translates to an upper limit to the value of the allowed
frequencies. An approximate value of this is given by the so called Debye frequency
ωD.

While all this would considerably complicate the integration over all frequencies
in general, certain simplifications are possible when dealing with the low temperature
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FIGURE 5.2 Comparing Einstein and Debye theories.

case. Then the optical modes can be neglected, and integration yields the T 3 law for
specific heats. As already mentioned, the low temperature behaviour of the specific
heat of electron gas has a linear dependence in T, and therefore the Debye theory has
to be modified for metallic solids. We give some important, and essential, results for
the Debye theory. Further discussion of the Debye theory can be found in chapter
15. Just as in the Einstein theory, in Debye theory too there is a characteristic Debye
Temperature ΘD = ( 6π )

1/3 TE . The low temperature behaviour of specific heats in
Debye theory is given by

C ≈ 12π2

5
R

(
T
ΘD

)3

(5.9)

Likewise, the high temperature behaviour is given by

C ≈ 3R

[
1− 1

20
(
ΘD

T
)2+ . . .

]
(5.10)

So intricate are the full details of lattice vibrations that years later a controversy
arose between Max Born and C.V. Raman about the lattice dynamics of Diamond
(what started it all). Though Raman’s views on the lattice vibrations proved some-
what incorrect, he had nevertheless correctly identified modes that in modern par-
lance would be said to ehibit the so called van Hove singularities. The reader is re-
ferred to G. Venkataramans book Journey into Light for a fascinating and technically
complete discussion [76].

5.5.3 Specific heats of quantum ideal gases

The ideal gases too have specific heats that do not conform to the third law. Because
CP−CV =R, it is impossible to make both CP,CV vanish near absolute zero. One way
of getting around this, as already mentioned, is to note that no real gas would remain
ideal at such low temperatures, something that is borne out quite well experimentally.
Here idealness is considered in the sense of whether the atoms are interacting or not.
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But it should certainly be possible, in principle, to think of a non-interacting as-
sembly of particles. What then would be a consistent thermodynamic description of
it at very low temperatures? The fact that even for solids, a consistent picture follows
only if quantum behaviour is included, suggests looking for a quantum description
of ideal gases. Here too, the history of ideas that eventually led to a resolution of
these issues forms another of the bedrocks of quantum theory!

Recall our discussion of the blackbody radiation; Planck had sought the inter-
polation between the high and low frequency behaviours through considerations of
entropy. While Planck focused on obtaining the energy density from the interpolated
entropy, Einstein had focused on the entropy itself, and had made the remarkable
observation that the entropy could have been thought as if radiation was like a gas
of photons. The natural question that would have arisen is whether such a gas could
be treated by the statistical methods that Boltzmann had used in his kinetic theory.
Though Einstein’s work was in 1907, the answer to this had to await yet another rev-
olutionary development in 1924 at the hands of the Indian physicist Satyendra Nath
Bose, as briefly noted in chapter 4.

Bose was able to reproduce the Planck radiation formula by treating radiation as
a gas of particles. But in doing so, he had to introduce a radical departure from the
counting methods of Boltzmann. This amounted to the introduction of the completely
new concept of indistinguishability of identical particles. For example, there are six
ways of distributing distinguishable particles but only one way of doing so if they are
indistinguishable. Another feature, which was not explicitly stressed by Bose, was
the lack of any condition demanding the conservation of the total number of particles.
As we shall see elsewhere, this fact already manifests itself in the thermodynamics
of blackbody radiation by the vanishing Gibbs potential.

This work of Bose made a deep impression on Einstein, who immediately saw in it
a means to solve the ideal gas problem quantum mechanically. Of course, there would
be important differences from the radiation case as the number of atoms of an ideal
gas is indeed conserved. But what Einstein’s genius recognized was that the counting
rules of Bose ought to apply to the ideal gas case too. The rest was a straightforward
application of Bose’s methods. The outcome was a radically new thermodynamics
of ideal gases! Just as Einstein had struck gold earlier with his simple but highly
perceptive observation that what must hold for the Planckian oscillators must also
hold for the lattice vibrations, he again struck gold by realising that Bose’s rules,
being of a counting nature, must apply not only to radiation quanta but also to atoms
of an ideal gas! We shall not go into the detailed derivations, but simply state the
crucial results.

The first surprise was a characterstic transition temperature TBE , even for non-
interacting particles, that sharply separated the thermodynamic behaviour into two
regions; the numerical value of this transition temperature being given by

kTBE � (
N
V
)2/3

h̄2

m
(5.11)

Not surprisingly, this new temperature scale is of purely quantum origin. A surprising
feature is that masses have entered thermodynamics, something that we would not
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usually encounter in thermodynamics. Below TBE the ideal gas is said to be in a
state of Bose-Einstein Condensation (BEC). But the phrase condensation has to be
understood with care as what is happening is no condensation of, say, the water-
steam type. Let us consider the very low temperatures for which obviously T < TBE

holds. The following are the chief results for thermodynamics;

P = ζ (5/2)
kT
λ 3

T
U =

3

2
ζ (5/2)kT

V
λ 3

T
CV =

15R
4

ζ (5/2)
V
λ 3

T
= AT3/2

(5.12)

where λT = h̄
√

2π
mkT is the thermal wavelength, and ζ (5/2) = 1.34149 is the zeta

function with argument 5/2.
A rather striking result is that the pressure is independent of volume, and depends

only on temperature. Therefore, isobaric processes are also isothermal. We already
encountered this situation in the case of blackbody radiation also. Consequently, CP

does not make sense. At very high temperatures, however, pressure depends both on
volume and temperature, and in fact the classical ideal gas law emerges.

In contrast, the pressure of a Fermi-gas (say, electron gas) at low temperatures
does not depend on temperature at all! This degeneracy pressure plays a big role in
the stability of White Dwarfs and Neutron Stars according to the seminal work by S.
Chandrasekhar.

The specific heat of the quantum ideal gas is the other surprise. It has a half-
integral dependence of T 3/2 on temperature! This is a completely new temperature
dependence for specific heats than anything we have encountered so far. This be-
haviour is indeed consistent with the third law. For T > TBE the behaviour of the
specific heat is entirely different, and eventually at very high temperatures it ap-
proaches the constant classical value. At T = TBE , the specific heat is continuous,
but with a discontinuous slope characterstic of a cusp as shown in the figure:

FIGURE 5.3 The cusp behaviour seen in specific heats of BEC.

Specific heats and critical phenomenon The cusp singularity in the specific
heat of an ideal bose gas is only one example of the singular behaviour of specific
heats near transition temperatures. In fact such singular behaviours are generic rather
than exceptional. In the figure above, we display the behaviour of the specific heat
at the so called λ -transition in Helium. An almost identical behaviour is seen in
a totally unconnected system, i.e the behaviour of magnetic specific heats near a
magnetic phase transition. This points to the great universality of the behaviour of
specific heats. As discussed in several parts of the book later on, one can have a
variety of situations whereby either the specific heats or some derivatives of them
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FIGURE 5.4 The λ transition. FIGURE 5.5 A magnetic transition.

become discontinuous. For example, in superconducting phase transitions, discussed
at length in chapters 10 and 11, there is a finite discontinuity in the specific heat. The
type of specific heat behaviour near a transition point becomes a diagnostic for the
type of phase transition. In certain second order transitions, the specific heats may
diverge as some power, i.e C � (T −TC)

α , as the critical point is approached. α is
one of the critical exponents, and what is amazing is that physically very distinct
situations like the critical point in a water-steam system and the critical point in the
so called three dimensional Ising model may possess the same critical exponents.

5.6 Problems

Problem 5.1 The molar specific heat of carbon at room temperature is around 6
J/mol, while that of lead at the same temperature is as high as 26.7 J/mol. Explain
this on the basis of the Einstein and Debye theories.
Problem 5.2 There are two solids, one of which has a specific heat of 2.7R and
the other has .15R, both at 300 K. What is the ratio of their Debye temperatures?
What is the ratio of their TE ?
Problem 5.3 A mixture consists of n1 moles of a substance with specific heat
C1 cal/deg mole, a second with C2 etc. What is the molar specific heat of the
mixture?
Problem 5.4 Derive an expression for the molar specific heat at constant en-
thalpy. Derive an expression for it for a vdW fluid.
Problem 5.5 Determine the conditions when CP > CV . Can you think of any
counterexamples?
Problem 5.6 The Debye temperatures for Carbon and lead are 1860 K and 88
K respectively. Calculate the ratio of their specific heats at 300 K.
Problem 5.7 Consider a copper bowl of mass 100 gms which holds 300 gms of
water, and both are at 300 K. A very hot copper ball of 300 gms mass is dropped
into this bowl with water. It is observed that 10 gms of water is completely turned
into steam, while the remaining water and the bowl reach 100 ◦C. Calculate the
temperature of the wall if the specific heats of water and copper are, respectively,
4190 J/kg.deg and 387 J/kg.deg, and if the latent heat of vaporisation for water
at 100 ◦C is 540 cal/gm.
Problem 5.8 It is often assumed that in measuring temperatures the effect of the
thermometer may be neglected. Assess this assumption in the following case: a
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thermometer of mass 20 gms and a specific heat of 0.2 J/deg is at an initial tem-
perature of 15 ◦C. It is dipped into 300 gms of water, and the final temperature
of the water-thermometer combination is 45 ◦C. Find the initial temperature of
water.

Problem 5.9 21.6 gms of copper is in the shape of an annulus with inner radius
of 2.54 cms at 0 ◦C, and an aluminium ball with radius 2.54503 cms at 100 ◦C
just passes the annulus after reaching thermal equilibrium. Find the mass of the
ball if the coefficients of expansion of copper and aluminium are, respectively,
17 · 10−6/deg and 23 · 10−6/deg. Their molar specific heats are, respectively,
24.4 J/mol and 24.3 J/mol.





6 Structure of Thermodynamic

Theories

In this chapter we shall look into somewhat formal aspects of thermodynamics. What
we shall be looking at will be the general structure of thermodynamic theories. While
such considerations may not facilitate practical applications of the theory (even the
ideal gas case looks much more complicated than the usual treatments), they are very
important in clarifying its logical structure. We follow Callen in the elaboration of
this chapter, but unlike him, shall not stress any purely axiomatic approach.

There is a very clear parallel to be found in almost all important theories of
physics. Taking the example of classical mechanics, a practical approach would be to
concentrate on solving Newton’s equations with appropriate initial conditions. But a
more systematic understanding of Mechanics is obtained by studying it structurally.

The three laws of mechanics can be likened to the laws of thermodynamics. There
too, their evolution had strong elements of empirics combined with an axiomatic ap-
proach, which, as we have seen, is true of the thermodynamic laws too. While the
notions of position and velocity were amenable to direct observations, the notion
of momentum was axiomatic. Likewise in thermodynamics, while pressure, volume
and temperature are amenable to direct observation, notions of internal energy and
entropy have to be axiomatised. In mechanics, the state of a mechanical system was
fully specified by its momentum and position. In thermodynamics too there is a no-
tion of a state, and this is the state of thermal equilibrium, and such a state of a given
system is fully specified by specifying certain independent quantities like pressure,
temperature etc. In mechanics, one thinks in terms of the so called degrees of freedom
(d.o.f) which are the independent data required to specify a state.

In thermodynamics too we would like to ask what the degrees of freedom are.
In mechanics, the three laws ascribed to Newton define a framework within which
complete description of all mechanical systems is sought to be found. Such a de-
scription requires system-specific information which usually amounts to specifying
masses, force laws etc. What are the corresponding system-specific details needed
for a complete description of a thermodynamical system? Is there any systematics to
it or is to be done case by case?

In the mechanical example, while one could have worked just with velocities, the
axiomatic introduction of a momentum is indeed a great step forward conceptually. It
allows the extension of the structure of mechanics even to systems where description
in terms of velocities alone becomes clumsy. It is to be emphasized that at all times
one could have simply worked with Newton’s equation for acceleration.

A major difference between mechanics and thermodynamics is the irrelevance
of the notion of time in purely equilibrium thermodynamics. Then isn’t the name
’thermodynamics’ which implies some sort of dynamics misleading? In a strict sense
it is, but the notion of dynamics in thermodynamics has to be construed differently.

119
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So the basic structural question to be answered here is What constitutes a complete
description of a thermodynamic system? A good guess is that equation of state needs
to be specified. But what constitute bona-fide equations of state? Let us take the
simplest thermodynamical system, an ideal gas, as an example.

PV = nRT is frequently stated as the ideal gas equation of state. Recall that his-
torically this single equation was the merger of two distinct laws. Boyle’s law which
stated that at a given temperature PV = const., and Charle’s law which stated that
the rhs of Boyle’s law is linearly dependent on temperature (as often happens in sci-
ence, the names of Mariotti in connection with Boyle’s law, and of Gay-Lussac in
the context of Charles’s law, are frequently omitted). But does even this single com-
bined law completely characterise a thermodynamic system? Given just that, can we
compute ingredients that go into the first law like the internal energy U, the entropy S
etc..? No, one can not as can be seen simply by noting that a monatomic ideal gas, a
diatomic ideal gas all obey this equation. Therefore, this equation alone can not dis-
tinguish between them and hence is incapable of providing a complete description
of a thermodynamic system. In fact, that equation has to be supplemented with in-
formation, say, about the specific heat CV , or equivalently, about the internal energy
U .

In the particular example of the ideal gas, that additional input is that U is a func-
tion of temperature alone, something which was experimentally established by the
Joule-Kelvin Process. This should be, for the ideal gas, treated as yet another law,
conceptually distinct from the law PV = nRT . If so, is this law completely indepen-
dent of the first law? More explicitly, having its origin in experimental data, could
this second law have been, in principle, different from the Joule-Kelvin law?

The answer turns out to be no and in fact PV = nRT implies, as a consequence
of the first law, that U is a function of temperature only. To see this, one uses the
relation (

∂U
∂V

)

T
= T

(
∂P
∂T

)

V
−P (6.1)

which was already discussed in chapter 2. So it is not totally independent of
PV = nRT and yet it has more information than it as it is not enough for a complete
thermodynamic description. The resolution is that the precise functional dependence
of U on T is the true content of this second law, and that is truly independent of
PV = nRT . In particular, assumption of a constant CV means that U =CV T .

Before going further, let us discuss another example where the corresponding
equation is (

P+
an2

V 2

)
(V − nb) = nRT (6.2)

This is the celebrated van der Waals equation to which we have dedicated an en-
tire chapter later. Here we are using it only to exemplify the issues currently being
discussed.

Now applying eqn.(6.1) to this yields
(

∂U
∂V

)

T
=

an2

V 2
(6.3)
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So in this example, the equation of state of eqn.(6.2) completely determines the vol-
ume dependence of U. Nevertheless, there is an unspecified function of T in U, as
before. In fact, given any equation of state of the form P = F(V,T ), it follows from
eqn.(6.1) that U is not fully determined, and that the same freedom of the type f (T )
persists.

This could give the impression that an equation of state specifying U is somehow
subordinate to one specifying P in terms of V and T. This is not so. To see that,
imagine that historically the Joule-Kelvin law, i.e U = U(T ), was known first for

an ideal gas. The same eqn.(6.1) would now give
(

∂P
∂T

)

V
= P whose solution is

P = f (V )T , with f an arbitrary function of V. This is of the same form as the ideal
gas law wherein f (V ) = nRV .

For more general circumstances, given U =U(V,T ), then eqn.(6.1) is nothing but
a first order differential equation for P in terms of T and where V just plays the role
of a constant. Clearly the solution is not unique as changing P by a term of the type
T f (V ) does not alter the differential equation. Therefore, both the equations of state,
happily, are on the same footing. The fact that the said arbitrarinesses are only of the
type f (T ) in U and T f (V ) in P can simply be understood from the first law itself,
after use has been made of the entropy axiom:

TdS = dU +PdV → dS =
1

T
dU =

P
T

dV (6.4)

It is clear that adding a ΔU = f1(T ) and a δ P
T = f2(V ) will not disturb S as a state

function, or equivalently, of dS as a perfect differential. This is the true content of
the need for two equations of state in these examples.

If on the other hand, we had rewritten the first law in its differential form as

dU = T dS−PdV (6.5)

then, adding a ΔS = f1(T ) and a ΔP = f2(V ) would not have upset the perfect
differential character of dU. Finally, specifying S as a function of U and V, or U as a
function of S and V, is completely consistent provided T and P are suitably identified.
We shall return to this later.

Following Callen, we shall call equations of the type f (P,V,T ) = 0 as mechan-
ical equation of state, as they involve purely mechanical concepts like P and V. Of
course, it can not involve only such mechanical concepts and must involve temper-
ature, which is certainly not a mechanical concept. Without that, such an equation
would be irrelevant in thermodynamics. To that extent, mechanical equation of state
is a misnomer. In contrast, Callen calls the second category of equations, of which
the Joule-Kelvin law is an example, the thermodynamic equation of state.

It is again a good place to pause and make a comparison with the structure of
classical mechanics. There, for example, there is a clear distinction between the three
laws of Newton, and the law of Gravitational attraction, also due to Newton. The
first three are to be applied to every system, while the law of gravitational attraction
is to be applied only while focusing on gravitational phenomena. In this sense, the
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law of gravitational attraction, though being one of the laws of nature, is more like
specifying the equation of force. Likewise the force law f =−kx due to a spring.

In a completely analogous manner, the first and second laws of thermodynamics
are to be applied to all systems, while PV = nRT is to be applied only while de-
termining the thermodynamics of ideal gases. Therefore, PV = nRT has the same
significance in thermodynamics as did Newton’s law of gravitation in mechanics.
They are called equations of state. We already saw that for a single component sys-
tem we actually need two of them. For a generic thermodynamic system, how many
equations of state are both necessary and sufficient? We have also not addressed,
systematically, the issue of thermodynamic degrees of freedom, particularly their
number.

Let us recall that the differential forms of first and second laws still do not provide
a complete description of thermodynamic phenomena. This has to do with the fact
that they are unable to fix the so called entropy constants. We found in chapter 3 that
we need to postulate something additional for this. This is accomplished by Nernst’s
Theorem which is also called the Third Law of thermodynamics by some. So, like in
mechanics, we have three laws in thermodynamics too. The empirical relevance of
entropy constants is discussed in a separate chapter.

What about the zeroth law of thermodynamics and its mechanics counterpart?
Zeroth law formalises something that is intuitively obvious and yet conceptually in-
dispensable, that bodies in equilibrium have the same temperature. This can be taken
as defining the notion of temperature itself. Most often, this law only operates from
behind the scenes in the sense that one does not invoke it explicitly in any manipula-
tions. Something remarkably similar happens in mechanics. What truly underlies the
entire structural edifice of Newtonian mechanics is the concept of inertia and that of
the notion of inertial frames. Yet, this too plays only from behind the scenes, though
without it there are no scenes at all! So a characterization of inertial frames can be
taken to be the zeroth law of mechanics!

Let us return to our earlier remark that specifying either S as a function of U and
V, or of specifying U as a function of S and V is a completely consistent specification.
But the important question is whether either of them provides a complete specifica-
tion of thermodynamics. So far the discussion and examples have been restricted to
one mole of a single component substance. Let us relax that and consider arbitrary
amounts of the substance and in particular processes in which this amount is also
allowed to vary. In particular, the first law takes the form

T dS = dU +PdV − μ dn (6.6)

where μ is the so called chemical potential.

6.1 Extensive and intensive variables: general

Now the very important notion of extensive and intensive variables enters. Their
meaning has already been explained. The extensivity of V is in some sense obvious,
and so is the intensivity of P and T. The extensivity of U and S is less obvious, and is
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taken as axioms in thermodynamics. On a microscopic level, these depend on such
details as the range of inter-molecular forces, whether there are direct many body
forces etc.

Extensivity of U, S and V means U = nUm,S = nSm,V = nVm. Obviously,
Um,Sm,Vm are intensive. But these quantities which are intensive by construction
should be distinguished from P,T,μ which are intrinsically intensive. We call vari-
ables like P,T, μ , which are intrinsically intensive as intensive variables of first class,
while variables that are intensive by construction as intensive variables of second
class. The reader is warned that this is a terminology that the author has introduced,
and may not be found elsewhere.

Just the requirement of extensivity imposes important restrictions. Let us first look
at the example of the ideal gas and consider n moles of it. From T dS = dU +PdV ,
and U = nCRT,PV = nRT , it follows that

dS = nCR
dT
T

+ nR
dV
V

→ S(V,T,n) = nCR lnT + nR lnV + S0(n) (6.7)

where S0(n), the constant of integration is a constant only as long as n is held fixed.
But it can, at this stage, depend only on n, and can, for example, be used to fix the
correct dimensions for the arguments of the two logs. If this entropy is extensive it
must satisfy S(V,T,n) = nSm(Vm,T ). But for one mole of the substance, eqn.(6.7)
gives

Sm(Vm,T ) =CR lnT +R lnVm + s0 → Sm(Vm,T ) =CR ln
T
T0

+R ln
Vm

V0
+R (6.8)

where now s0 is truly a constant, and has been used to make the arguments of the
logarithms dimensionless. It has to be understood that T0,V0 are arbitrary constants
with dimensions of T and V, respectively. The significance of retaining an explicit
constant R will become clear shortly. The extensivity of volume yields V = nVm and
consequently

S(V,T,n) = nCR ln
T
T0

+ nR ln
V

nV0
+ nR (6.9)

One may wonder why one had to go through all this to get S(V,T,n) and not obtain
it by directly integrating eqn.(6.6)? The catch is that to do so would require an ex-
plicit knowledge of the chemical potential μ! Since we have determined the entropy
without the explicit knowledge of the chemical potential, but only invoking the ex-
tensivity of S, in effect it means that the chemical potential is in fact determined by
extensivity alone. We shall soon see that it is indeed so.

Now we consider processes in which all of (V,T,n) are variable. The differential,
dS, for such general processes is easily constructed:

dS = nCR
dT
T

+ nR
dV
V

+ dn

{
CR ln

T
T0

+R ln
V

nV0

}
(6.10)

from which it follows, on noting dU = nCRdT + dnU that

T dS = dU +PdV − μ dn → μ =−U −TCV ln
T
T0

−RT ln
V

nV0
+RT (6.11)
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The important lesson is that the requirements of extensivity of S,U and V completely
fixes the chemical potential μ , and furthermore it is fixed to be the same as the molar
Gibbs potential (note that for one mole of ideal gas RT = PVm)! This is not an ac-
cidental result for the ideal gas only. The problem below will show it to be true for
the van der Waals case also. Actually it is true for any system as will be shown now.
Let Sm,Vm,Um be the molar quantities at T,P. Then the first law for one mole of the
substance reads:

TdSm = dUm +PdVm (6.12)

whereas for variable molar systems we have

T dS = dU +PdV − μ dn (6.13)

Consistency between eqn(6.12), eqn.(6.13), and S = nSm,V = nVm,U = nUm imme-
diately gives μ = Um −TSm +PVm, i.e the chemical potential is equal to the molar
Gibbs potential.

6.2 The Fundamental Equations

Following Callen, let us consider functional relations only among the extensive vari-
ables like (S,U,V,n..). Let us for clarity first focus on a single component system with
no other attributes like magnetism etc.. Callen calls such relations exclusively among
the extensive variables The Fundamental Relations. The reason for this nomenclature
will become obvious shortly. As it turns out, any one of the fundamental equations
provides a complete thermodynamical description!

Again a word of caution is in order; in most textbooks and even in many research
or technical articles, the phrase fundamental equations of thermodynamics is used
for the first and second laws. So it is not in that sense, but in a conceptually much
deeper sense, that this phrase is used by Callen for the equations to be discussed here.
Incidentally, the author has tried hard to locate the historical origins of this beautiful
and very apt terminology, but has failed in the task. So it is his surmise that credit for
this should go entirely to Herbert B. Callen.

For the one component system under consideration he writes down two such fun-
damental equations:

S = S(U,V,n) (6.14)

and
U =U(S,V,n) (6.15)

In the first, U is the independent variable while S is the dependent variable. The
fundamental equation of eqn.(6.14) is said to be in the entropy representation [3].
Likewise, eqn.(6.15) in which U is the dependent variable, is called the fundamental
equation in the energy representation.

If certain mathematical assumptions of continuity, monotonicity, single-
valuedness, and differentiability are made about the extensive variables, the two
forms of the fundamental equations will be equivalent. These assumptions are cer-
tainly very reasonable from the point of view of day-to-day experience and also
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from the empirics of thermodynamics. They are part of the axiomatic approaches to
thermodynamics ([4]). We shall not pursue the axiomatic formulations of thermody-
namics in this book.

If we scale the entire system, λ times extensivity tells us that S → λS,U → λU ,
V → λV , and n → λn. From this it follows that the fundamental equations are both
homogeneous equations of degree one. More explicitly

S(λU,λV,λn) = λ (U,V,n) U(λS,λV,λn) = λU(S,V,n) (6.16)

There are important consequences of this extensivity, one of which, i.e the equality
of μ and G, has already been discussed. The other consequence, the so called Gibbs-
Duhem Relation will be derived after we have shown how the intensive variables of
the first class, T,P,μ arise from the fundamental equations. Our demonstration of the
fixing of μ by extensivity also required the use of the First law. In what follows, we
shall see that the first law is a consequence of the differentiability of the fundamental
equations along with the identification of the intensive variables of the first class.

6.2.1 Intensive variables and the fundamental equation

The fundamental equations are relations among only the extensive variables, and are
homogeneous equations of first degree. It is therefore clear that partial derivatives of
the dependent variable in the fundamental equation with respect to the independent
extensive variables must be homogeneous of degree zero, i.e they are intensive vari-
ables. Let us first consider the energy representation of eqn.(6.15). The assumptions
of differentiability immediately yield

dU =

(
∂U
∂S

)

V,n
dS+

(
∂U
∂V

)

S,n
dV +

(
∂U
∂n

)

S,V
dn (6.17)

At this stage, two approaches for further development can be considered. The first
one, which accepts the primacy of the first law, T dS = dU +PdV − μdn, would say
that we must identify the partial derivatives occurring in eqn.(6.17) with the intensive
variables of the first class, i.e (T, P, μ). More precisely,
(

∂U
∂S

)

V,n
= T (S,V,n)

(
∂U
∂V

)

S,n
=−P(S,V,n)

(
∂U
∂n

)

S,V
=−μ(S,V,n)

(6.18)
The other approach, axiomatic in nature, is to define the intensive variables (T,P,μ)
by the above equation. That, on the surface of it, does not seem to have achieved
anything unless these quantities as defined above can be shown to have exactly the
same thermodynamic meaning that one normally attaches to them. This is indeed so,
and will be explicitly demonstrated in a later section.

Similar considerations in the entropy representation lead to

dS =

(
∂S
∂U

)

V,n
dU +

(
∂S
∂V

)

U,n
dV +

(
∂S
∂n

)

U,V
dn (6.19)
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Again, the partial derivatives are identified with suitable combinations of the first
class intensive variables (T,P,μ) either by invoking the first law, or axiomatically as
done in the case of the energy representation, leading to

(
∂S
∂U

)

V,n
=

1

T

(
∂S
∂V

)

U,n
=

P
T

(
∂S
∂n

)

U,V
=−μ

T
(6.20)

In the above, the functional dependence of (T,P,μ) on (U,V,n) is understood. In both
the representations, monotonicity amounts to requiring T,P to be positive. But as
stated elsewhere, there can be systems with negative temperatures.

It is to be appreciated that in the axiomatic formulation, first law is merely a con-
sequence of the differentiability assumption. Of course, strictly speaking this is so
only after the identification of temperature, pressure, and chemical potential in the
axiomatic approach has been shown to be the same as in the traditional approach.
This is done later while discussing the conditions of equilibria in the axiomatic ap-
proach. It will be seen there that the second law is crucial for this.

6.2.2 The Euler relations

Let us explore the consequences of extensivity in the context of the fundamental
equations. Let us first consider the example of a single component system and its fun-
damental equation in the energy representation as given by the second of eqn.(6.16).
Differentiating that with respect to λ gives

U(S,V,n) = S

(
∂U(λS,λV,λn)

∂λS

)

V,n
+V

(
∂U(λS,λV,λn)

∂λV

)

S,n

+n

(
∂U(λS,λV,λn)

∂λn

)

S,V
(6.21)

Which, on using the definition of the intensive parameters in the energy representa-
tion, is the same as

U(S,V,n) = ST (λS,λV,λn)−VP(λS,λV,λn)+ nμ(λS,λV,λn) (6.22)

which becomes, on using the intensive nature of (T,P,μ),

U = TS−PV + μn (6.23)

This is the Euler relation in energy representation. Its consequence, in this example,
is the equality of the chemical potential μ with the molar Gibbs potential G

n with
G =U −T S+PV . We already saw this earlier. A detailed discussion of G and other
thermodynamic potentials is given in the next chapter.

Completely analogous treatment holds for the derivation of the Euler equation in
the entropy representation

S =
1

T
U +

P
T

V − μ
T

n → μ =
G
n

(6.24)

.
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6.2.3 The Gibbs-Duhem relations

Let us consider the differential form of the Euler relations in the energy representa-
tion:

dU = TdS+ SdT −PdV −VdP+ μdn+ ndμ (6.25)

On using either the first law, or the differential form of the fundamental equation in
the energy representation, it is immediately seen that this leads to

SdT −VdP+ ndμ = 0 dμ =−SmdT +VmdP (6.26)

This is the Gibbs-Duhem relation. It implies that the intensive variable of the first
class μ can not be varied independently. As already noted, μ is the molar Gibbs
Potential Gm = Um − T Sm + PVm, and this form of the Gibbs-Duhem relation fol-
lows simply from first law, or again, the differential form of the fundamental relation
dUm = T dSm −PdVm. It is instructive to derive the GD relation in the entropy repre-
sentation. The differential of the Euler equation eqn.(6.24) yields

dS = d(
1

T
)U +

1

T
dU + d(

P
T
)V +

P
T

dV − d(
μ
T
)n− μ

T
dn (6.27)

The trick is not to expand d( 1T ),d(
P
T ),d(

μ
T ) further in terms of dT,dP,dμ as then we

would just recover the GD-relation in the energy representation. The meaning of the
exercise is to retain the variations of the respective intensive variables, which for the
entropy representation are 1

T ,
P
T ,

μ
T . After some elementary algebra, use of the first

law gives the GD-relation in the entropy representation as:

d(
μ
T
) = d(

1

T
)Um + d(

P
T
)Vm (6.28)

So even in the entropy representation, the variation of the intensive parameter corre-
sponding to n is not independent. We shall illustrate these concepts through explicit
examples shortly.

6.3 True equations of state

We already saw that even in the simplest example of the ideal gas, PV = nRT alone
does not fix the thermodynamic description completely, and that an additional equa-
tion specifying the functional dependence of U on T was necessary. Now we shall
see that from the structural point of view, PV = nRT can not really be treated as a
bona-fide equation of motion.

The definitions of the intensive variables of the first class, T,P and μ , of eqn.(6.18)
and eqn.(6.20) are homogeneous equations of zero degree in terms of the respec-
tive extensive variables. To illustrate the implications, let us first consider the en-
ergy representation. Recall that a quantity Z(S,V,n) which is homogeneous of de-
gree zero must satisfy X(S,V,n) = X(λS,λV,λn), and in particular, X(S,V,n) =
X(S/n,V/n)(as can be seen by choosing λ = 1/n). It therefore follows that

T = T (Sm,Vm) P = P(Sm,Vm) μ = μ(Sm,Vm) (6.29)
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Let us emphasize the salient features of these equations. Firstly, the number of in-
dependent variables is only two though we started with three independent extensive
variables (S,V, n). In essence, extensivity has trivialized the role of n as a degree
of freedom. Dependence on this variable of all thermodynamic variables is strictly
linear. Summarising, the number of thermodynamic degrees of freedom of a single
component system is only two. These can be chosen, as far as the fundamental equa-
tions are concerned, to be either (Sm,Vm) for the energy representation, or, (Um,Vm)
for the entropy representation.

The second feature, which is extremely important, is that these equations express
the two independent intensive variables of the first class, say, T and P, entirely in
terms of two independent intensive variables of the second class (Sm,Vm) or (Um,Vm)
as the case may be. This, according to Callen, is what characterizes true equations of
state.

It is easy to appreciate now why in the ideal gas case PV = nRT or equivalently,
PVm = RT would not be such a true equation of state; it involves more than one the
intensive variable of the first kind, i.e it involves both T and P in the same equation.
However, if a second equation of the type U(T ) = nCRT , which is anyway needed
for the complete specification of the thermodynamics of ideal gases, is provided,
that can be cast as T = Um

CR . That is of the form of a true equation of state in the
sense elaborated earlier. Using that, the PV = nRT equation can also be recast as a
bona-fide equation of state, i.e P = Um

CVm
.

Since these points of view are likely to be unfamiliar, let us illustrate them with
yet another example, this time with the ideal van der Waals fluid case. The equation
that is commonly cited as the van der Waals equation of state is

(P+
an2

V 2
)(V − nb) = nRT → P =

RT
Vm − b

− a
V 2

m
(6.30)

This is not a proper equation of state for reasons similar to the ones put forward in the
ideal gas case. However, on supplanting with the idealness condition T = Um

CR which
is a proper equation of state in itself, the vdW equation of eqn.(6.30) can be recast in
the proper form

P =
Um

C(Vm − b)
− a

V 2
m

(6.31)

6.4 Multicomponent systems

Let us generalize our considerations to a k-component system. Some important con-
ceptual differences arise even when all the components are ideal gases. The first of
these is the appearance of the so called entropy of mixing, and the second, somewhat
related to the first, is that chemical potentials are no longer the same as the molar
Gibbs potentials.

Let us begin by discussing the entropy of the composite system. If we denote
the i-th component system entropy by S(i), then additivity of entropy tells us that
the entropy of the total system is S = ∑i S(i). Let the number of moles of the i-
th component be ni. The total number of moles in the mixture is denoted by N =
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∑ ni. Then the entropy of the i-th component is simply given by eqn.(6.9) with the
possibility that the constants T0,V0 can be different for the different components. An
equivalent way of handling this is to add a piece nisi

0 to each S(i), and dropping the
nR piece from the earlier expression. Also, the specific heats will be different for
each component. Consequently

S =∑
i

niCiR ln
T
T0

+∑
i

niR ln
V

niV0
+∑

i
nis

i
0 (6.32)

This can be rewritten as

S =∑
i

niCiR ln
T
T0

+∑
i

niR ln
V

NV0
+∑

i
nis

i
0−R∑

i
ni ln

ni

N
(6.33)

Note that this total entropy is extensive, as each individual entropy in the sum is
extensive. The last term is the famous entropy of mixing. Its significance can be un-
covered by initially considering the components with volumes Vi such that Vi

ni
= V

N .
Then consider mixing the components. The entropy of mixing, a positive quantity,
is the difference between the final and initial entropies. This shows that entropy in-
creases upon mixing and the process is therefore irreversible, as is intuitively clear
anyway.

The internal energies (at some specified T,P) being U (i) = niU
(i)
m , the total internal

energy is U =∑ niU
(i)
m . Since we are considering ideal gases as components, the total

pressure P is the sum of partial pressures as per Dalton’s law, i.e P = ∑i niP
(i)
m . Thus

the total Gibbs potential G is given by

G =U −TS+PV =∑
i

ni

{
U (i)

m −TS(i)
m +P(i)

m

}
+RT ∑

i
ni ln

ni

N
(6.34)

Now let us consider the Euler equation in the energy representation, U =
U(S,V,{ni}) for the whole system. By repeating what was done for the single com-
ponent case, it is easy to see that the Euler equation now reads

U = T S−PV +∑
i

μi ni G =∑
i

niμi (6.35)

where μi is the chemical potential for the i-th component. It is clear that the individual
chemical potentials μi need not (we will see that they actually can not) equal their
molar Gibbs potentials. In fact, on using eqn.(6.33) that

μi = G(i)
m +RT ln

ni

N
(6.36)

The new feature is entirely due to the entropy of mixing. Though μi explicitly de-
pends on ni, it is nevertheless intensive.

Finally, the number of degrees of freedom for a k-component system is k +1,
which in the energy representation can be taken to be S/N,V/N,{xi}, where xi =

ni
N

are the molar fractions, with ∑i xi = 1.
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It is important, at this stage, to make a distinction between additivity and exten-
sivity. For example, entropies of spatially separated systems, entropies of mixtures
of ideal gases etc. are additive, even if they are not individually extensive. In fact, the
Gibbs paradox, in the case of a mixture of ideal gases, arose after invoking additivity
of non-extensive entropies.

6.5 Entropy of mixing and the Gibbs paradox

The so called Gibbs paradox arises on considering the possible changes in entropy
as a result of mixing. It should be stated at the very beginning that an entropy that is
extensive does not lead to any such paradox. However, such a paradox can arise from
an improper treatment of the additivity of entropy. One such improper treatment, for
example, is to start with the molar entropy of an ideal gas that was derived earlier in
eqn.(6.8), i.e

Sm =CR lnT +R lnVm + s0 (6.37)

and incorrectly generalizing to the case of n moles occupying V as

S = nCR lnT + nR lnV + ns0 (6.38)

While additivity of entropy has been invoked in arriving at this, extensively has not
been taken into account. We shall show here that the paradox arises only on use of
entropies as in this equation, and that all paradoxes disappear on using extensive
entropies as in eqn.(6.9).

To appreciate what this so called paradox is about, first consider two samples
of different ideal gases both at the same temperature and pressure T,P. The number
of moles in the first sample is n1 while that in the second is n2. Therefore, their
volumes are V1 = n1RT/P and V2 = n2RT/P, respectively. We can imagine the two
volumes to be separated by a partition dividing a container of volume V =V1+V2 =
(n1+n2)RT/P. Let us consider mixing these two samples by, say, lifting the partition
separating the two volumes. The final volume is V . The entropy before mixing is
given by

Sini = n1C1R lnT + n1R lnV1+ n1s(1)0 + n2C2R lnT + n2R lnV2+ n2s(2)0 (6.39)

while the entropy after mixing is

S f in = n1C1R lnT + n1R lnV + n1s(1)0 + n2C2R lnT + n2R lnV + n2s(2)0 (6.40)

leading to the change in entropy, called entropy of mixing,

Smix = S f in − Sini = n1R ln
V
V1

+ n2R ln
V
V2

=−n1R ln
n1

n1+ n2
− n2R ln

n2

n1+ n2
> 0

(6.41)
This result appears reasonable, and in conformity with experience as such mixings
are in general irreversible. In fact, such mixing entropy is essential for the consis-
tency of thermodynamics itself! If, for example, the salt could be separated from a
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saline solution (desalination) at no cost, one would end up with a perpetual machine
driven by osmotic pressure (discussed in chapter 9)!

Note that this mixing entropy is only a function of the concentrations. Since noth-
ing in the above referred to the nature of the gases, it is reasonable to conclude that
the above should hold even when the two gases are the same. Since this is such an
important point, let us verify by repeating the above for this case. Now the initial
configuration is two samples of the same gas, at the same temperature and pressure,
but with different number of moles n1,n2. The final configuration is the same gas,
at the same P,T but with n1+ n2 moles occupying a volume V =V1+V2. On noting
C1 =C2 =C and s(1)0 = s(2)0 = s0 for this case, the initial and final entropies are given
by

Sini = (n1+ n2)CR lnT + n1R lnV1+ n2R lnV2+(n1+ n2)s0
S f in = (n1+ n2)(CR lnT +R ln(V1+V2)+ s0) (6.42)

Indeed, we get the same expression for the entropy difference as above.
But this is patently absurd as experience tells us that mixing two samples of the

same gas at the same P and T, and then repartitioning them can be performed re-
versibly, and hence there should be no entropy change in the mixing of ideal gases.
This is one version of the Gibbs paradox. It should be emphasized that as far as clas-
sical thermodynamics is concerned, it’s only the changes between thermodynamic
states that are reversible.

We shall now show that on using eqn.(6.9) this paradox just disappears. Repeating
the calculation for identical gases, but with the extensive entropies, it is easy to see
that

Sext
ini = (n1+ n2)CR lnT + n1R ln

V1

n1
+ n2R ln

V2

n2
+(n1+ n2)s0

Sext
f in = (n1+ n2)(CR lnT +R ln

(V1+V2)

(n1+ n2)
+ s0) (6.43)

The entropy difference indeed vanishes on noting V1/n1 =V2/n2 = (V1+V2)/(n1+
n2) = RT/P.

But does extensive entropy change the mixing entropy calculated earlier? It does
not, because the difference between the two expressions for entropies consists of
−nR lnn, and this does not change for either of the dissimilar gases in the process of
mixing. Let us explicitly carry out that calculation also to bring out some important
features of this case. Eqns.(6.44,6.40) are now replaced by

Sext
ini,het = n1C1R lnT + n1R ln

V1

n1
+ n1s(1)0 + n2C2R lnT + n2R ln

V2

n2
+ n2s(2)0

Sext
f in,het = n1C1R lnT + n1R ln

V
n1

+ n1s(1)0 + n2C2R lnT + n2R ln
V
n2

+ n2s(2)0

(6.44)

The difference between these two, which is the mixing entropy, indeed takes the
same value as in eqn.(6.41).
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In terms of pressures, the difference between mixing of similar and dissimilar
gases is this: in the case of similar gases samples with (n1,V1,T,P) and (n2,V2,T,P)
mix to form (n1+n2,V1+V2,T,P) while in the case of dissimilar gases, (n1,V1,T,P)
of first and (n2,V2,T,P) of the second upon mixing go over to (n1,V1+V2,T,P1) and
(n2,V1+V2,T,P2) respectively where P1 = n1/(n1+ n2) and P2 = n2/(n1+ n2) are
the partial pressures of the two gases in the mixture such that P1+P2 = P.

Sometimes such mixtures are characterised loosely as being made up of n1+ n2

moles of a substance with average molecular weight of Mav = (n1M1+n2M2)/(n1+
n2) and average molar specific heat Cav = (n1C1+n2C2)/(n1+n2), occupying V at
(P,T). While that may work for some quantities, it fails to capture the entropy of
mixing which would vanish with such a description.

The other version of the Gibbs paradox is that the entropy of mixing changes
abruptly from a nonvanishing value for dissimilar gases to zero for mixing of similar
gases. This is so even if the actual physical differences between the two dissimilar
gases are very small, but not vanishing. For example, whether we mix O2 and H2

with a ratio of molecular weights of 16, or we mix uranium-235 and uranium-238
with a ratio of molecular weights of 1.013, mixing entropy for given moles of mixing
is the same! This may appear paradoxical, but being a straightforward consequence
of thermodynamics, there is nothing paradoxical about it!

6.5.1 Extensivity revisited

Thus we have seen that taking entropy to be extensive removes the so called Gibbs
paradox while preserving the expression for the mixing entropy for dissimilar gases.
In many accounts of this paradox, an impression is created that one has to go to
quantum statistical mechanics along with notions of indistinguishability to ’resolve’
the paradox. We see that as far as classical thermodynamics extensivity is all that is
needed. Of course, extensivity can not be proved even in classical thermodynamics
any more than proving the second law of thermodynamics, for example. In fact, as
stated by Pauli [53], and emphasized again by Jaynes [28], the Clausius formulation
was really silent on this issue of extensivity. Two factors here are that that formula-
tion only required the extensivity of changes in entropy, i.e dS, and not of entropy
itself. To this extent, the Clausius formulation was incomplete. But Jaynes goes a
significant step ahead by arguing that this logical incompleteness has to be there ir-
respective of the theory, i.e even quantum statistical mechanics can not really prove
the extensivity of entropy. It is perhaps for this reason that Callen [3] has included
the extensivity of entropy as one of the axioms of thermodynamics obviating any
issues of its proof.

Apparently Gibbs was fully aware of all these nuances in his monumental work
of 1875 itself [19]. Interestingly, Jaynes opines that it was Gibbs himself who was
responsible for the subsequent confusions by what he said in his other classic El-
ementary Principles in Statistical Mechanics [20]! All this notwithstanding, conse-
quences of extensivity in thermodynamics have been spectacular, and the very role
of Gibbs concept of chemical potential, whose equality to the Gibbs potential is one
such consequences, is one tip of this massive iceberg!
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Example 6.1: Mixing entropy for gases

Calculate the entropy change when two moles of H2 gas is mixed with one mole of O2

gas at 300 K and one bar. Compare this to the change of total entropy when both of
them are isothermally doubled in volume. Treat both gases as ideal.

In this example, nO2
= 1,nH2

= 2 and nO2
+ nH2

= 3. A straightforward
application of eqn.(6.41) gives, for the total entropy change during mixing,
Smix = R(3ln3−2ln2) = 0.91R = 7.57J/K. The change in molar entropy during
isothermal expansion of an ideal gas from V1 to V2 is Δs = R ln(V2/V1). Hence
the total entropy increase when both the gases in this example isothermally
double their volumes is 3R ln2 which is 17.3 J/K. This gives a comparative
idea of the magnitudes of mixing entropies.

6.6 Worked out examples

6.6.1 Fundamental equations and equations of state

Let us look at some concrete examples. Obviously, the ideal gas case should be the
simplest. Let us imagine that instead of the usual PV = nRT and U = nCRT , we are
given one of the fundamental equations. According to what has been described so
far, a single fundamental equation should contain not only the equivalents of these
two equations, but also the first law.

Historically, this is of course not how the ideal gas laws were discovered, but as
has been emphasized before, the importance of the fundamental equation lies in the
clarity it gives to the structure of thermodynamics. It is not that it provides the most
user-friendly way of working out the thermodynamic properties, nor is it the most
likely equation to be discovered empirically as it involves the variables U and S that
are not directly observed, in contrast to P,V,T,n etc.

So for the purpose of this section, we work our way backwards from the usual
equations of the ideal gas to one of the fundamental equations. For both the repre-
sentations (energy and entropy), one essentially eliminates T in favour of U. Thus,
the expression for S discussed before takes the form

S(U,V,n) = nCR ln
U

nu0
+ nR ln

V
nv0

= nR ln

{
(

U
nu0

)C
V

nv0

}
(6.45)

This is the fundamental equation in the entropy representation. Here u0,v0 are con-
stants with dimensions of U,V. The corresponding equation in the energy represen-
tation can be obtained from this through inversion

U = nu0(
nv0
V

)
1
C e

S
nCR (6.46)

We work out the details in the energy representation. Let us begin by computing the
intensive variables of first class:

T =

(
∂U
∂S

)

V,n
=

U
nCR

=
Um

CR
P =

Um

CVm
(6.47)
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Clearly these are the proper equations of state in the sense of Callen; they relate the
intensive variables (T,P) of the first class to only the intensive variables Um,Vm of the
second class. The usual equations for ideal gases are easily recovered from them.

We see explicitly that there are only two degrees of freedom. It remains to evaluate
the third first class intensive variable μ and show that it is not really independent.
Evaluating the relevant partial derivative explicitly yields

μ =

(
∂U
∂n

)

S,V
=Um(Sm,Vm)+

Um(Sm,Vm)

C
− SmUm(Sm,Vm)

CR
=Um+PVm−TSm =Gm

(6.48)
Now we discuss the somewhat more involved example of the van der Waals fluid.

In that case, the internal energy U is not a function of T(in the usual treatment) alone.
To keep things transparent, let us look at only the ideal case where

U = nCRT − an2

V
→ T = (Um +

a
Vm

)/CR (6.49)

The equation for T is of the correct type despite the internal energy being dependent
on both T and V. The entropy of the ideal vdW fluid being

S = nCR ln
T
T0

+ nR ln
V − nb

nb
= nR ln

{
(

T
T0

)C
V − nb

nb

}
(6.50)

Hence the fundamental equation for the ideal vdW fluid in the entropy representation
is

S = nR ln

{
1

(nu0)C
(U +

an2

V
)C

V − nb
nb

}
(6.51)

The fundamental equation in the entropy representation is still easily invertible. Con-
sequently the fundamental equation in the energy representation is

U = nu0

(
nb

V − nb

) 1
C

e
S

nCR − an2

V
(6.52)

The two bona-fide equations of motion that follow are

T =
1

CR

(
Um +

a
Vm

)
P =

1

C(Vm − b)

(
Um +

a
Vm

)
− a

V 2
m

(6.53)

Again, equations that are commonly called the vdW equation of state can be recon-
structed from these.

It is not always easy to work backwards from the standard equations to the funda-
mental equations. It is crucial that T be invertible in terms of U and V. An example
where this does not work is in the case of the so called Dieterici equation. This is
left as an exercise.
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6.6.2 Gibbs-Duhem relations

Now we show how to solve the Gibbs-Duhem relation for a few cases. We choose to
work in the entropy representation. Let us first treat the ideal gas case. In that case
1
T =CR 1

Um
and P

T = R
Vm

. Therefore

d
(μ

T

)
=Umd

(
1

T

)
+Vmd

(
P
T

)
=CRUmd

(
1

Um

)
+RVmd

(
1

Vm

)
(6.54)

It is easy to integrate this to get

μ
T

=−CR lnUm −R lnVm + const. (6.55)

This is the same expression for μ that we had earlier after the constant of integration
is fixed suitably.

Let us now consider the ideal vdW fluid for which Um = CRT − a
Vm

and P
T =

R
Vm−b − a

V2
m

CR
Um+ a

Vm
. In the true spirit of what has been said in this chapter, one should

show that μ
T is integrable in terms of a function of Um,Vm. This can indeed be done,

but is algebraically a little messy.
Instead, we eliminate Um in terms of T,Vm and integrate the Gibbs-Duhem relation

to find an expression for μ
T in terms of T,Vm. Then

d
(μ

T

)
= −

(
CRT − a

Vm

)
dT
T 2

+Vmd

(
R

Vm − b
− a

TV 2
m

)

= −CRd(lnT )− rd(ln(Vm − b))+ bRd((Vm− b)−1)− d(
2a

VmT
)

(6.56)

The solution to this is

μ = const.T −CRT ln
T
T0

−RT ln
Vm − b

b
− 2a

Vm
+RT

Vm

Vm − b
(6.57)

This is indeed the chemical potential for the vdW fluid if the constant of integration
is adjusted properly.

6.7 Axiomatic intensive variables and equilibrium

We now wish to demonstrate that the first class intensive variables defined axiomat-
ically have all the properties that have been ascribed to them through the traditional
empirico-axiomatic methods. For this we need the Second Law of Thermodynamics.
Either fully axiomatically or through the empirico-axiomatic methods of Clausius,
Kelvin and others, this law can be stated as every thermodynamic change of an iso-
lated system is such as to either increase the entropy or keep it stationary. Then
the condition for thermal equilibrium is that total entropy must assume its maximum
value. Stated in this manner, the fundamental equation in the entropy representation
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may appear to be playing a more fundamental role. This is not so, and completely
equivalent conclusions can be drawn from the energy representation.

Let us first consider thermal equilibrium. Consider two systems that are allowed to
exchange heat between them but the total system is isolated. Further, let the changes
be such that there are no changes in the volumes of the two systems, i.e ΔV (1) =
ΔV (2) =0 and there is no chemical transfer so that Δn(1) =Δn(2) = 0. In such a cir-
cumstance, since total energy must be conserved one must have ΔU (1) = −ΔU (2).
Additivity of entropy says S = S(1)+ S(2). Then

dS =

(
∂S(1)

∂U (1)

)

V,n
dU (1)+

(
∂S(2)

∂U (2)

)

V,n
dU (2) = (

1

T (1)
− 1

T (2)
)dU ≥ 0 (6.58)

At equilibrium, stationarity of S, i.e dS=0 implies T (1) = T (2), i.e the subsystems in
thermal equilibrium must be at the same temperature. Thus the axiomatic definition
of temperature is consistent with the traditional concept of temperature. Furthermore,
if the two subsystems are not in equilibrium and let, for example, T (1) > T (2), then
dS> 0 implies dU (1) < 0, i.e if two systems in thermal contact are not in equilibrium,
then the energy (heat) flow is from the body at higher temperature to the one at lower
temperature if no work is being done and there is no material transfer.

Now we can relax the conditions of no volume change so the two systems can
perform work in addition to exchanging heat. By reasonings completely parallel to
the pure thermal equilibrium case we can write

dS = (
1

T 1)
− 1

T (2)
)dU (1)+(

P(1)

T (1)
− P(2)

T (2)
)dV (1) ≥ 0 (6.59)

where we have also used that the total volume of the system does not change though
the individual volumes can. Now the variations dU (1),dV (1) are of course mutually
independent. Therefore at equilibrium where dS=0 one must separately have T (1) =

T (2) and P(1)

T (1) =
P(2)

T (2) i.e P(1) = P(2). Hence for thermo-mechanical equilibrium both
the temperature and pressure must be the same. Once again, let us consider two
substances which are at the same temperature but not in equilibrium. Then, as in the

earlier case, dS = (P(1)−P(2)) dV (1)

T > 0 implies that if P(1) > P(2), dV (1) < 0. This
again fully corresponds with the traditional concept of pressure.

Lastly one can show that in addition to exchange of heat and volume, the subsys-
tems can have chemical exchanges, then at equilibrium not only do the temperatures
and pressures have to be equal, the chemical potentials have to be the same. Further,
if the subsystems have the same temperature and pressure, but not the same chemical
potentials, there will be a net matter flow from the subsystem with a higher chemical
potential to the one with lower chemical potential.

6.7.1 Stability of equilibrium

The above conditions only ensure that the entropy is stationary at the equilibrium
point. This means that the state in question can still be stable, unstable or metastable
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(neutral). It is of course consistent to count only stable states as (equilibrium) states,
but it is useful to extend the notion of states in thermodynamics to include metastable
and even unstable stationary points of entropy. Otherwise, interesting and useful con-
figurations like supercooled liquids, superheated liquids etc. would be outside the
purview of thermodynamics.

However, for the state to be stable, the entropy has to reach its maximum value.
Therefore, the stationary point must actually correspond to a maxima. Let us consider
the hypothetical case where S only depends on U. From calculus, it then follows that
d2S
dU2 < 0. If we now consider the more realistic situation of S depending on both

U and V, then in addition one expects ∂2S
∂V2 |(U,n) to be also negative. But that is not

enough; the matrix formed by the second derivatives ∂2S
∂U2 |(V,n) ∂2S

∂V2 |(U,n) and ∂2S
∂U∂V

must be negative, i.e all its eigenvalues must be negative. For this case, since the
matrix is 2x2, the determinant must be positive. This leads to the additional condition

(
∂ 2S
∂U2

)

V,n

(
∂ 2S
∂V 2

)

U,n
−
(

∂ 2S
∂U∂V

)2

≥ 0 (6.60)

As they stand, these mathematical expressions for stability do not convey their phys-
ical meaning very clearly. For that, let us express the various second derivatives in
terms of physically observable quantities. Let us examine this issue in the entropy
representation. The reader is urged to work out the analogous results when, for ex-
ample, S is taken to be a function of (V,T).

From
(

∂S
∂U

)

V,n
= 1

T , it follows that

(
∂ 2S
∂U2

)

V,n
=− 1

T2

(
∂T
∂U

)

V,n
=− 1

CV T 2
≤ 0 (6.61)

Thus one of the stability conditions requires that the specific heat CV be positive.

Likewise, from
(

∂S
∂V

)

U,n
= P

T it follows that

(
∂ 2S
∂V 2

)

U,n
=− 1

TVκU,n
− P

VT2βU,n

∂ 2S
∂U∂V

=− 1

VT 2βU,n
(6.62)

In these equations κU,n,βU,n are the compressibility and expansion coefficient under
the conditions of constant (U,n). They are not the compressibilities and expansion
coefficients introduced before, but can be related to them.

In fact stability analysis can also be performed for the maxima of Helmholtz free
energy F and Gibbs potential G. In terms of physical quantities, these conditions are:
κT ≥ κS ≥ 0,CP ≥CV > 0. For more details, please see [3].

6.8 Problems

Problem 6.1 Is the fundamental equation in the U-representation, U =
ANVe−S/NR(A is a constant), consistent with all the known properties of a ther-
modynamic system? If not, make the simplest modification that would make it
so.
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Problem 6.2 Find the intensive quantities T, P and the chemical potential μ for
a system whose fundamental equation in the U-representation is given by U =
A(S2/V )eS/NR. Determine the fundamental equation in the S-representation.
Problem 6.3 Is the fundamental equation in the S-representation, S =
A ln(UV/N2B)(A and B are constants), consistent with the third law? If not,
does it mean that such an equation is never acceptable? Compare this with the
ideal gas case.
Problem 6.4 For what values of α,β ,γ is the fundamental equation, S=(NUα +
AV β )γ , in the S-representation, physically acceptable?
Problem 6.5 As in the previous problem, determine the consistency conditions
for the constants α,β ,γ occurring in the fundamental equation S = AUαV β Nγ

where A is a positive constant. What further restrictions arise from stability,
which in this context requires the pressure P to be a monotonically increasing
function of the internal energy density. Apply to ideal gases and blackbody radi-
ation.
Problem 6.6 The molar entropy s, internal energy u, and the volume v of a
system are known to satisfy the U-representation fundamental equation u =
As2−Bv2. Determine the equations of state for this system and show that the
chemical potential μ is negative of internal energy.
Problem 6.7 N moles of a system satisfying the fundamental equation u =
(A/v2)es/R for the molar quantities u,v,s, is initially at T0,P0. Determine the
final temperature if it is adiabatically compressed to half its pressure.
Problem 6.8 Show that for all systems whose adiabats are given by PV k =
const., the internal energy U is given by

U =
PV

k−1
+N f (

PV k

Nk
) (6.63)

where f is a suitable function. Apply this to a) ideal gases and b) blackbody
radiation.
Problem 6.9 The equations of state of a system are given to be u = APv and
Pv2 = bT . Are they consistent thermodynamically? If not, find a simple modifi-
cation that will restore consistency.
Problem 6.10 Express the fundamental equation S = A(NVU)1/3 in Euler form.
Problem 6.11 Given that T = A(s2/v) and P = B(s3/v2), determine the ratio
(A/B) for which the Gibbs-Duhem relation can be integrated. Find the chemical
potential μ as a function of s,v.
Problem 6.12 Consider the fundamental equation

U =
M 2

N
+Ne

αS
N (6.64)

Determine the three equations of state giving T, Be and μ as a function of S,N
and M .
Problem 6.13 The atmospheric air when dry is essentially a mixture of oxygen
and nitrogen in the molar ratio 1:4. It is required to separate air at 300 K and 1
bar into its pure components also at the same temperature and pressure. Treating
all components as ideal gases, what is the minimum power required to purify 10
mol/s of air? What is the role of the enthalpy of mixing in this?



7 Thermodynamic Potentials and

Maxwell Relations

7.1 Thermodynamic potentials

The notion of a potential plays a very important role in mechanics. Even without
solving dynamical equations like for example the Newton’s laws (which necessarily
bring in the notion of time), a knowledge of even the gross features of a potential,
like its maxima or minima (also called the stationary points), tells us about special
configurations called the stable(unstable) points. The significance of the stable con-
figurations, given by the location of the minima of the potential, is that if the system
when isolated happens to be in one such configuration, it will continue in it forever
(thereby making time irrelevant). One would say it is in a state of static equilibrium.

One may hope that in equilibrium thermodynamics too (where time is irrelevant)
there would be analogous potentials that would be helpful in identifying equilib-
rium states. In the mechanical system, the state was characterised by position. In
the full time-dependent description of a mechanical system, one would need both
position and momentum to characterize a state. But when one restricts attention to
static aspects, momentum plays no role. In equilibrium thermodynamics, a state is
characterised by some set of independent thermodynamic coordinates like P,T or P,V
etc. So the goal is to find functions of such thermodynamic coordinates whose gross
features like minima will identify equilibrium states.

Apart from this physical motivation, there is also a mathematical motivation
which amounts to finding state functions f (x,y, ..) of the independent thermody-
namic coordinates (x,y, ...) such that

d f (x,y, ..) = A1 dξ1+A2dξ2+ . . . (7.1)

where Ai are either coordinates or known functions, and so are ξi. It should be noted
that any d f can always be written as

d f (x,y, ...) =

(
∂ f
∂x

)

y,..
dx+

(
∂ f
∂y

)

x,..
dy+ . . . (7.2)

The important difference between eqn.(7.1) and eqn.(7.2) is that in the case of the
former, the set of partial derivatives appearing in a generic expression like eqn.(7.2)
are known. It is not always easy to achieve this, and there will be integrability condi-
tions associated with eqn.(7.1); these are an essential part of the Maxwell relations.
We shall return to further mathematical properties of the thermodynamic potentials
later.

The reader may find the meaning, and even the usefulness, of these mathematical
aspects rather obscure at first. They will, of course, become clearer as we go on, and
more so after these concepts are repeatedly applied to concrete physical problems.

139
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In fact, thermodynamic potentials are very powerful, and practically indispensable,
tools for a finer understanding of thermodynamics.

The coordinates for a single component, non-magnetic material can be taken to
be (T, P),(T, V) or (V, T). In multicomponent systems, various concentrations are
also among the coordinates. In magnetic systems, magnetization is among the co-
ordinates. Likewise, for the simplest of the systems, S,U are for example, functions
to be considered. To get a clearer idea of what we are going to do, let us start with
the simplest possible system, i.e a single component non-magnetic system with fixed
number of moles; we shall return to an inclusion of more coordinates and functions,
and how the simple considerations will generalize, later.

7.1.1 Internal energy and enthalpy

The first law can be rewritten as

dU = T dS−PdV (7.3)

This is indeed of the form of eqn.(7.1). Some general features of such equations are
i) they are obviously dimensionally homogeneous, ii) one of the factors on the rhs is
intensive, while the other is extensive. In the internal energy example, U is extensive
and so are S and V, while P and T are intensive.

The specific heat at constant volume is given as the temperature derivative of U

at constant V, i.e CV =
(

∂U
∂T

)

V
. This motivates us to look for a state function whose

temperature derivative at constant pressure gives CP. It is straightforward to find it;
it is the enthalpy H =U +PV , and

dH = d(U +PV) = T dS+V dP (7.4)

and indeed CP = T
(

∂S
∂T

)

P
=
(

∂H
∂T

)

P
.

7.1.2 Helmholtz free energy

In a mechanical system all the work done goes to change the energy of the system
and one has the equality ΔW = −ΔE . In thermodynamics, however, we have the
concept of internal energy U instead of E, and from first law we know that ΔW =
−ΔU +ΔQ. Therefore, depending on the sign and magnitude of the heat supplied
to the system, the work done may equal, be greater than, or even be less than the
change in the internal energy.

Now consider a system in the state A, at temperature TA, such that it is in contact
with a reservoir at a constant temperature Tres. The system can exchange heat with
this reservoir but is not necessarily in equilibrium with it. If it were in equilibrium
with the reservoir, the system would always be at the same temperature as the reser-
voir and we would be restricting ourselves to only isothermal transformations. Now
let us envisage the system making a sequence of heat exchanges with the reservoir
and finally ending in a state B.
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We have the fundamental entropy inequality
∫ B

A

d̄Q
Tres

≤ S(B)− S(A) (7.5)

Following Fermi [17], we again emphasize that the temperature occurring under the
integral sign is not the system temperature, but the temperature of the reservoir. Since
in our context, Tres is constant, we get, for the total heat QAB received by the system
during the transformation from A to B

QAB =
∫ B

A
d̄Q ≤ Tres (S(B)− S(A)) (7.6)

Consequently we find that the work performed during the transition A → B satisfies
the inequality

WAB =U(A)−U(B)+QAB ≤ U(A)−U(B)+Tres (S(B)− S(A)) (7.7)

The rhs of this equation involves both the system and environment state functions,
and is as such not a very natural quantity. However, we can choose the temperature of
the system to be the same as Tres both initially and finally, but not necessarily during
the transformation.

This is a very important and subtle point often glossed over. Overlooking this
subtlety would give the impression that the Helmholtz free energy inequality to be
derived shortly is valid only for isothermal transformations. With the choice above
for TA,TB we have TA = TB = Tres = T (say). Then, eqn.(7.7) takes the form

WAB =U(A)−U(B)+QAB ≤ U(A)−U(B)+T (S(B)− S(A)) (7.8)

This allows the definition of a new state function

F =U −TS (7.9)

in terms of which we can write the work inequality as

WAB ≤ F(A)−F(B) =−ΔF (7.10)

This state function F (also denoted by A in some texts, apparently for the German
word Arbeit for work) is called the Helmholtz free energy. It plays a fundamental
role in thermodynamics as well as Statistical Mechanics.

The inequality says that during any transformation of a thermodynamic system
such that the initial and final temperatures are the same, and the system exchanges
heat with a reservoir also at the same temperature, the work performed is bounded
by the negative of the change in Helmholtz free energy. The following are important
remarks in this context:

• Though TA = TB, the system need not be at the same temperature through-
out, i.e the transformation A → B need not be isothermal for the bound of
eqn.(7.10) to hold.
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• It certainly holds when the transformation is restricted to be isothermal.
This requires the system to be in equilibrium with the heat reservoir
throughout.

• An important physical significance of the free energy F is that its change in
any change consistent with the above restrictions gives the maximum work
that can be performed during the transformation.

• The equality holds when the transformation is reversible and in that case
WAB = F(A)−F(B) = −ΔF; in this case, the Helmholtz free energy be-
haves like energy in mechanical systems.

Now we discuss what is essentially the most important property of F. For this, con-
sider the system to be mechanically isolated, though continuing to be in contact with
the heat reservoir. Then WAB is necessarily zero and we get

F(B)≤ F(A) (7.11)

This means that under the conditions stated above, a mechanically isolated system at
a minimum of F must necessarily be in a state of equilibrium. Otherwise, any trans-
formation has to only increase the free energy and that would contradict eqn.(7.11).

But is the converse also true? That is, if a system, subject to the above mentioned
restrictions, is in a state of thermal equilibrium, does it have to be at a minimum of
its free energy? This is a subtler issue. If the system is not at a minimum of F, there
will certainly be states with lower free energies. Therefore, unless there are some
barriers, specific to the system, that prevent transformations from taking the system
to these lower F states, the system will not be in equilibrium. But ruling out such
barriers requires additional considerations, and one can not say with all generality
that the system in a higher state of F will necessarily transform to a state with lower
F. But if one takes the attitude that ’unless otherwise specified’ the system will tend
towards minimising F, the minimum of F becomes both a necessary and sufficient
condition for thermal equilibrium.

7.1.3 Gibbs free energy

Now we introduce the Gibbs Free Energy, also called the thermodynamic potential
at constant pressure. The motivation for this stems from the fact that many impor-
tant transformations take place under conditions of constant temperature and con-
stant pressure. Notable among them are the phase transformations, which will be
discussed at length in chapter 14.

So we consider a transformation that is both isothermal (constant temperature)
and isobaric (constant pressure). It should be appreciated that the conditions dis-
cussed while defining the Helmholtz free energy F are such that, if the transfor-
mation is reversible, it is necessarily isothermal. But irreversible transformations
need not be isothermal. Nevertheless, the irreversible transformations can be taken
to be isothermal without any contradiction. If the volume of the system changes
from V (A) to V (B) during the isothermal-isobaric process, the work done is WAB =
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P(V (B)−V(A)), and the inequality eqn.(7.10) becomes

P(V (B)−V(A)) ≤ F(A)−F(B) (7.12)

This immediately suggests the introduction of the state function

G = F +PV =U −TS+PV (7.13)

In terms of this state function, the isothermal-isobaric transformation A → B must
satisfy

G(B)≤ G(A) (7.14)

Once again, we conclude from this that a system at the minimum of G will be in
thermal equilibrium under conditions of constant temperature and pressure. In the
same spirit as the corresponding discussion for F, we take the minimum of G as a
condition for thermal equilibrium under these conditions.

Example 7.1: Potentials and intensive parameters

Show that a knowledge of the thermodynamic potentials enables the determination of
T and P as suitable partial derivatives.

Let us consider the potentials per unit mass, i.e u,s,h,f and g, and let v
denote the specific volume. We have the following differential identities:

du = T ds−Pdv dh = T ds+ vdP d f =−sdT −Pdv dg =−sdT + vdP (7.15)

Consequently, T and P can be obtained as the following partial derivatives:

T =

(
∂u
∂ s

)

v
=

(
∂h
∂ s

)

P
P =−

(
∂u
∂v

)

s
=−

(
∂ f
∂v

)

T
(7.16)

The Gibbs free energy is not useful in this context.

7.2 Maxwell’s relations

With every equation of the type of eqn.(7.1) the following are associated:
(

∂ f
∂ξ1

)

ξ2
= A1

(
∂ f
∂ξ2

)

ξ1
= A2 (7.17)

An integrability condition as a consequence of ∂2 f
∂ξ1∂ξ2

= ∂2 f
∂ξ2∂ξ1

is

(
∂A1

∂ξ2

)

ξ1
=

(
∂A2

∂ξ1

)

ξ2
(7.18)

Let us start by applying these considerations to the first law described in eqn.(7.3)
which has the same form as eqn.(7.1). The equations that follow are:

(
∂U
∂S

)

V
= T

(
∂U
∂V

)

S
=−P

(
∂T
∂V

)

S
=−

(
∂P
∂S

)

V
(7.19)
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The last of these is traditionally called one of the Maxwell Relations, and following
Pippard, we denote it by M.1. Some authors (Huang) refer to the first two also as
Maxwell relations. We shall adhere to the traditional terminology. We have applied
our considerations to the internal energy U, even though the word potential may not
usually be applied to it. In a certain sense, to be made more precise shortly, one could
call U a thermodynamic prepotential. In a completely analogous fashion, one gets the
next set of relations by considering the enthalpy, H:

(
∂H
∂S

)

P
= T

(
∂H
∂P

)

S
=V

(
∂T
∂P

)

S
=

(
∂V
∂S

)

P
(7.20)

The Maxwell relation here will be designated M.2. Continuing in the same fashion,
we obtain two more sets of equations, by considering F and G respectively:

(
∂F
∂T

)

V
=−S

(
∂F
∂V

)

T
=−P

(
∂S
∂V

)

T
=

(
∂P
∂T

)

V
(7.21)

We call the Maxwell relation of eqn.(7.21) as M.3, and,
(

∂G
∂T

)

P
=−S

(
∂G
∂P

)

T
=V

(
∂S
∂P

)

T
= −

(
∂V
∂T

)

P
(7.22)

as M.4. The four Maxwell relations are not mutually independent. In fact they are all
mathematically equivalent to any one of them. Let us show how this follows from
the identities obeyed by partial derivatives. Let us consider M.4; both the lhs and rhs
can equivalently be rewritten as

−
(

∂T
∂P

)

S

(
∂S
∂T

)

P
=−

(
∂V
∂S

)

P(
∂T
∂S

)

P

(7.23)

On using
(

∂T
∂S

)−1

P
=
(

∂S
∂T

)

P
, one sees that this is just M.2! likewise, we rewrite the

lhs and rhs of M.3 as

−
(

∂T
∂V

)

S

(
∂S
∂T

)

V
=−

(
∂P
∂S

)

V(
∂T
∂S

)

V

(7.24)

On using
(

∂T
∂S

)−1

P
=
(

∂S
∂T

)

V
, one sees that this is just M.1! Pippard has explicitly

shown the equivalence of M.1 and M.2 in his book. Thus all four Maxwell relations
are equivalent to a single relation (see also the problem 7.4 at the end of this chapter).

This is hardly surprising as they are all consequences of the first law. But what
is important is not whether the relations are independent in a mathematical sense
or not. Though mathematically dependent, each one of them plays a different role
in relating quantities that may be hard to obtain experimentally to those that can be
obtained more easily. That is the true import of the different Maxwell relations.
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Example 7.2: Determining enthalpy

It is often necessary to determine enthalpy as a function of T and P. Suppose there
is a substance whose constant pressure specific heat CP(T ) is a function of tempera-
ture alone. What consistency condition is to be satisfied by the coefficient of volume
expansion α? With such a condition satisfied, find enthalpy as a function of T and P.

Let us consider enthalpy h as a function of T and P. Then a knowledge of
its partial derivatives can be used to find h explicitly. This is possible as these
partial derivatives can be expressed in terms of observables. Let us begin with
the enthalpy differential encountered in the example above. It follows from it
that

(
∂h
∂P

)

T
= t

(
∂ s
∂P

)

T
+v→

(
∂h
∂P

)

T
=−T

(
∂v
∂T

)

P
+v = v(1−Tα) (7.25)

where use has been made of the Maxwell relation M.3. On the other hand,
one also has

dh =

(
∂h
∂T

)

P
dT +

(
∂h
∂P

)d

T
P =CPdT +v(1−T α)dP (7.26)

Let CP in this case be CP(T ). The integrability of h requires that v(1−Tα)
must be a function of P alone. Denoting that function as f(P), the expression
for the enthalpy is

h(T,P) =
∫

dTCP(T )+
∫

dP f (P) (7.27)

7.2.1 How many different potentials?

We introduced four potentials U, H, F and G; the question that naturally comes to
mind is whether there are more, and how we can be sure that we have found them
all. We first answer this in the simple context of only two independent variables, and
then answer the question in general.

Starting with dU we find that it equals TdS−PdV as per the first law. The inde-
pendent variables here are S,V, and the dependent variables T,P are given by the first
two of eqn.(7.19). Can U be transformed into another state function which is now a
function of P, which was a dependent variable in the case of U, and of S, which was
an independent variable for U? This is an intermediate step where we have traded
only one of the independent variables (in this case V) to one of the dependent vari-
ables (in this case P). Clearly, this process can be carried out one at a time till all the
original independent variables have been swapped with all the original dependent
variables.

The underlying mathematics is called Legendre transform and we shall not go
into the details of this very beautiful concept, but simply illustrate how it works in
our thermodynamics context (it works in a very simple and straightforward way!). It
is obvious that by changing U to U ′ =U +PV , one gets dU ′ = dU +PdV +VdP =
T dS+VdP. Several important features of this very elementary manipulation deserve
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to be stressed; firstly, U ′ is also a state function satisfying eqn.(7.1). The independent
variables for the specification of U ′ are now (S,P) as againt (S,V) for U. Secondly,
the sign of VdP in U ′ is opposite to that of PdV in U. We may call this elementary
operation a Legendre transform of U in the P,V variables.

Clearly, an independent Legendre transform of U in the S,T variables is also pos-
sible leading to yet another state function, say, U∗, also obeying eqn.(7.1). The thrust
of these considerations is, therefore, that new thermodynamic potentials can be ob-
tained starting from old ones through the process of Legendre transforms. Posed this
way, the question as to the number of possible thermodynamic potentials boils down
to the number of possible independent Legendre transforms that can be performed.

The systematic way of answering that question is by studying the algebra of Leg-
endre transforms, or put in simpler terms, by finding out how two Legendre trans-
forms can be combined to yield a third. Let us look at U ′ obtained by Legendre
transforming U in (P,V) variables. The structure of dU ′ = T dS+VdP indicates that
U ′ too can be further Legendre transformed in two independent ways, in (P,V) or
in (S,T). For the sake of clarity in expressions, let us say that in (P,V) variables it
is Legendre transform 1, and in (S,T) variables it is 2. Further, let us denote by Ai

the Legendre transform of A by transform i, and by Ai, j,.. the result of successively
transforming A by transforms i,j,..etc.

With this notation, U1 = U ′ and U2 = U∗. Quite obviously, (U ′)1 = U1,1 =
U,(U∗)2 = U2,2 = U , and, U1,2 = U2,1. The important rule we abstract is that re-
peated Legendre transforms in the same pair of variables do not generate new poten-
tials, and that the order of independent Legendre transforms is irrelevant. So in our
simplest example, starting with U (hence our choice to call it the prepotential), we
generate three more potentials U1 = U ′ = U +PV = H, U2 = U∗ = U − ST = F ,
and U1,2 =U2,1 =U +PV −ST = G. Thus the answer to our earlier question is that
U,H,F,G are all the thermodynamic potentials one can have in the simplest case.

7.2.2 Inclusion of chemical potential

We will show the generalisation when we include the concentration N and the chemi-
cal potential μ , which is the case of three independent variables. If the concentration
of a substance is also considered as an independent variable, the first law generalizes
to

dU = T dS−PdV + μdN (7.28)

where μ is the chemical potential, and it plays the same role to N as what pressure
plays to V. The intensive variables (T,P,μ) are given by

(
∂U
∂S

)

V,N
= T

(
∂U
∂V

)

S,N
=−P

(
∂U
∂N

)

S,V
= μ (7.29)

while the corresponding Maxwell relations, now three in number, are given by
(

∂T
∂V

)

S,N
=−

(
∂P
∂S

)

V,N

(
∂T
∂N

)

S,V
=

(
∂ μ
∂S

)

V,N
−
(

∂P
∂N

)

S,V
=

(
∂ μ
∂V

)

N,N
(7.30)
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Now, it is possible to perform three independent Legendre transforms; in (P,V) de-
noted by 1, in (S,T) denoted by 2, and finally, in (μ ,N) denoted by 3. Using these we
construct the eight potentials (including U) and their differentials

U0 = U dU = T dS−PdV + μdN (7.31)

U1 = U +PV = H dH = T dS+VdP+ μdN (7.32)

U2 = U −TS = F dF =−SdT −PdV + μdN (7.33)

U3 = U − μ N =Uμ dUμ = TdS−PdV −Ndμ (7.34)

U1,2 = U1−TS = G dG =−SdT +VdP+ μdN (7.35)

U2,3 = U2− μ N = Fμ dFμ =−SdT −PdV −N dμ (7.36)

U3,1 = U3+PV = Hμ dHμ = TdS+VdP−N dμ (7.37)

U1,2,3 = U1,2− μ N = Gμ dGμ =−SdT +VdP−N dμ (7.38)

where we have adopted the notation by Callan whereby Xμ = X − μ N with X being
a potential in the absence of a chemical potential.

Thus at first glance we find 8 potentials for this case, pointing to a 2n rule for
the number of thermodynamic potentials. In addition to the previous four potentials
U,H,F,G we have four more U[μ],H[μ],F[μ] and G[μ]. The new potentials are noth-
ing but the Legendre transforms of the previous potentials in the new direction.

But now there is a new subtlety that was absent when we had not included N
among the independent coordinates; this has to do with the fact that the Euler rela-
tion, expressing the consequences of extensivity, equates Nμ to the Gibbs potential
(see chapter 6). This means that the ’new’ potential Gμ actually vanishes! Thus there
are only 7 new potentials instead of 8! There will be 21 Maxwell relations now. We
shall not write them down explicitly.

Thus the general answer is that if there are n independent variables, not counting
N, the total number of thermodynamic potentials, including U, is 2n. Since each
potential generates n integrability conditions, one will have n ·2n Maxwell relations
in that case. On the other hand, if the independent variables includes N, there are
only 2n − 1 potentials and n(2n − 1) Maxwell relations.

7.3 Problems

Problem 7.1 The enthalpy of superheated steam at 300◦C at 30 bar is roughly
3000 kJ/kg, while at 1 bar is 3080 kJ/kg. Likewise, the specific entropy at this
temperature is 6.54 kJ/kgK at 30 bar and 8.22 kJ/kgK at 1 bar. What is the max-
imum work that 1 kg of steam can deliver as it expands from 30 bar to 1 bar?

Problem 7.2 Show that for an ideal gas, the enthalpy at constant temperature is
independent of entropy. In particular, show that

(
∂H
∂S

)

T
= 0

(
∂H
∂S

)

V
= T γ (7.39)

where γ =CP/CV .



148 The Principles of Thermodynamics

Problem 7.3 Find the condition for the CP of a gas to be independent of pressure.

Problem 7.4 Show that all the Maxwell relations involving only T,S,P,V are
equivalent to the single Jacobian condition:

(
∂T
∂P

)

V

(
∂S
∂V

)

P
−
(

∂T
∂V

)

P

(
∂S
∂P

)

V
= 1 (7.40)

Problem 7.5 Derive the fundamental equations of an ideal gas in the F,G,H rep-
resentations. From each of them, derive the equations of state and the chemical
potential μ .

Problem 7.6 Derive the fundamental equations for the vdW fluid in the F-
representation.

Problem 7.7 Find the fundamental equation for blackbody radiation in the F-
representation. Derive from it the corresponding thermal and mechanical equa-
tions of state.

Problem 7.8 The fundamental equation for a system in the S-representation is
given by S = A(NU +BV2)1/2 where A,B are constants. Find the fundamental
equation in the G-representation. Determine the coefficient of volume expansion
α and the isothermal compressibility κT .

Problem 7.9 Show, by using the fundamental equation in the S-representation
for a mixture, that the Helmholtz free energy F for the system is additive, i.e
F(T,V,{Ni}= ∑i F(T,V,Ni). Also show that no other thermodynamic potential
satisfies this additivity.

Problem 7.10 For the rubber band model of problem 4.8, calculate the various
thermodynamic potentials. Find the Maxwell relations for this system. Show that
the tension at constant length increases with temperature if it is given that the
entropy of the band decreases when it is stretched at constant temperature.

Problem 7.11 Consider the molar fundamental equation in the u-representation:

u = Ae(v−v0)
2

es/3R s4/3 (7.41)

a) For this system show that third law is satisfied, and in particular find the low
temperature behaviour of CV ; b) show that the high temperature behaviour of
CV is in accordance with the Dulong-Petit law; c) show that the coefficient of
expansion α for this system vanishes at P=0. What happens to the volume at this
point?

Problem 7.12 Is it enough to know the Joule-Kelvin coefficient μJK =
(

∂T
∂P

)

H
of a gas and its CP as functions of T and P to determine the equation of state of
the gas? If not, what is the minimal additional information that is required for
this purpose?



8 Magnetic Systems

8.1 Introduction

A magnet is such an integral part of our world that it is natural to expect thermody-
namics to play a role in its description, or more generally, in the description of mag-
netic systems. That temperature has a central role to play in magnetism is revealed
by the fact that magnets lose their magnetism when heated. The power of thermo-
dynamics, as we have amply demonstrated so far, is in providing a fairly detailed,
and even quantitative, description of a system without invoking much of the micro-
scopic characterstics of the system. For the thermodynamics of magnetic systems too
we would like to achieve the same. Nevertheless, there are so many peculiarities of
magnetic systems vis a vis mechanical systems that some broad understanding of the
physics of magnetism is necessary to appreciate, and even correctly formulate, their
thermodynamics.

Magnetic materials can be in the form of solids, liquids, as well as gases. Ac-
cording to their magnetic properties, to be explained shortly, they are classified as
the so called Diamagnetic, Paramagnetic and Ferromagnetic substances. In addition
one can have anti-ferromagnetic as well as superconducting substances. The latter
display a number of novel magnetic phenomena. The quest for lower and lower tem-
peratures has also opened the gates to more and more novel magnetic phenomena.

Let us begin with the simplest physical situation of magnetic phenomena in free
space. Let us further restrict ourselves to the cases where neither the currents nor the
magnetic fields produced by them vary with time. This is called magnetostatics. As
far as thermodynamics is concerned, time plays no role anyway and it is only the
magnetostatics that is of interest.

Quantitatively, the magnetic field produced by a current is given by the Biot-
Savart Law. For example, a very long straight wire carrying a current I, measured in
amperes (A), produces a magnetic field

B =
μ0

2π
I
R

(8.1)

at a distance R from it. The quantity μ0 is called the permeability of free space.
Its dimensions are Newtons per ampere-squared (N/A2). Its numerical value is 4π ×
10−7N/A2. The dimensions of the magnetic field are Newtons per ampere-metre and
the SI unit is the Tesla (T), i.e 1T = 1N/(A.m). Its relation to the more commonly
used unit Gauss, which is actually the cgs unit, is 1T = 104gauss. Actually the
magnetic field is a vector B, and what this equation gives is its magnitude. The force
exerted by a magnetic field B on a wire of length dl (this is a vector as the elementary
length can point in different directions) is given by

dF = Idl ×B (8.2)

149
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For more general circumstances the magnetic fields are obtained by solving the
Maxwell’s Equations:

∇×B = μ0 J f ∇ ·B = 0 (8.3)

here J f is called the current density. Its magnitude Jf is the current per unit area
perpendicular to the flow. Following Griffith, we have added a subscript ’f’ to the
current density to indicate it is the free current. An example of a free current is the
current that flows in a wire whose ends are connected to a battery. Soon, we will
introduce another type of current. These are equivalent to the Biot-Savart law. If you
are not familiar with these equations, do not worry! Just think of them as the precise
mathematical form of the laws governing the magnetic fields created by currents.

We next discuss the very important notion of magnetic dipole moments (magnetic
moments, for short) and magnetization. Consider a tiny loop of area Δa carrying a
current i. Using the Biot-Savart law, the magnetic field produced by this current loop
at distances much greater than its size can be shown to be

B(r) =
μ0

4π
i

r5
[3(Δa · r)r− r2Δa] (8.4)

The area element has been represented here by a vector whose magnitude is the area,
and whose direction is the direction of the normal to the area element. This is indeed
the field of a dipole as can be seen by comparing this with the form of the electric
field produced by an electric dipole. Therefore, eqn(8.4) tells us that an elementary
current loop behaves like a magnetic dipole moment m = iΔa, as far as the magnetic
fields produced at large distances are concerned.

Let us now revisit the familiar bar magnet. It clearly produces a magnetic field
(otherwise, it would not be called a magnet!), yet visibly there are no currentsflowing
anywhere. The common attitude taken then is to claim that the atomic structure of
the magnet is actually a source of currents, though these currents are not visible to
the naked eye because of their extraordinarily small size, and that the magnetic field
of the bar magnet is due to them. But the spirit of thermodynamics is to avoid relying
on such microscopic details. So what else can be one’s attitude to the puzzle of the
bar magnet?

The example of the elementary current loop tells us that the magnetic field can ei-
ther be thought of as being produced by the current in the loop, or as being produced
by an elementary magnetic dipole. In so far as one has information only about the
magnetic field, there is no way to distinguish one of these possibilities from the other.
The actual microscopic description could in principle have been in terms of elemen-
tary magnetic charges (magnetic monopoles) and dipoles constructed out of them.
Thermodynamics should be insensitive to which of the microscopic descriptions is
actually correct.

With such an attitude, we could ascribe the magnetic properties of a bar magnet as
due to magnetic moments, without asking any questions as to the microscopic origin
of these moments. Then the currents, as for example, in a solenoid, and magnetic
moments, as a description, for example, of bar magnets, are to be treated on the
same footing. This shall be our attitude in what follows. Rather than elementary
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magnetic dipole moments, what is relevant for thermodynamics is the concept of
magnetization, which is nothing but the total magnetic moment per unit volume, M,
added vectorially.

With this long, but necessary, introduction to the basics of magnetic phenom-
ena, we turn our attention to the task of a thermodynamic description of magnetic
phenomena. For that, we need to clarify both the nature of energy and of work in
magnetic systems.

Firstly, as per electrodynamics there is an energy density associated with the mag-
netic field itself, even without the presence of any material magnetic system.This
energy density of vacuum in the presence of a �B field is B2

2μ0 (Griffiths, Jackson). As
regards work, what is relevant is the work done in changing the magnetization in a
given magnetic field. This can be computed by using an elementary current carrying
loop as a model for the dipole moment, and adding the work done on all the elemen-
tary dipoles to get the work done in changing magnetization. A lucid account of this
can be found in Pippard. For an elementary dipole this is

δW = δm ·B (8.5)

Would it then be a correct way to obtain the First law for magnetic systems by adding
the magnetic energy density B2

2μ0 to internal energy density u, and adding the mag-
netic work, dWm = δM ·B to the PdV term in the usual first law? Reasonable as it
sounds, this recipe will actually turn out to be wrong! We shall explain the reasons
after describing the correct way of formulating the first law. For that we have to turn
to understanding magnetostatics in the presence of magnetic materials.

Before doing that, let us clarify the meaning of an external magnetic field. In
this context, it is very important to remember an advice from Pippard, which is to
always keep the actual experimental arrangement in mind while analysing any par-
ticular question. Otherwise, an excessive reliance on only the equations divorced
from the experimental arrangements can lead to a plethora of confusions. By ’actual
experimental arrangement’ he is of course not talking about nitty-gritty details of a
laboratory. Rather, his emphasis is on ’the measurable content’ of an experiment.

We digress here to point out that Pippard’s advice actually touches the very basic
chords of science. The final arbiter in science is the experiment, so when interpre-
tational problems arise, their resolution is really to be sought in what is measured
and how. Nowhere has this line of thinking proved more powerful than in the thorny
issues of Quantum Theory.

We could take a typical solenoid along with its battery which supplies the e.m.f for
it as the ’experimental arrangement’ in question. The current flowing in the coils of
the solenoid will then be a directly observable measure of the magneticfield. Imagine
placing an elementary current loop inside such a solenoid. Any attempt to change this
dipole moment, either in its orientation or in its magnitude, will set up an additional
e.m.f in the coils of the solenoid. Then, in order to maintain the original current, and
hence the original magnetic field, the battery will have to supply additional e.m.f
opposite to that induced by the changing dipole. This is tantamount to the battery
doing work on the system. This is the operational meaning of eqn.(8.5). Thus in the
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thermodynamic context, by magnetic system we not only mean the magnetic material
placed in the magnetic field, but also the solenoid along with its source of e.m.f. The
field produced by the solenoid in the absence of any magnetic material placed inside
it will be called the external magnetic field Be.

FIGURE 8.1 A solenoid.

We finally turn to an analysis of the
situation when a magnetic material is
placed inside the solenoid. The situa-
tion becomes quite complex and here
we indicate in broad terms the result-
ing picture. The current in the solenoid
not only produces a magnetic field ev-
erywhere, it also induces a magnetiza-
tion in the magnetic body. Therefore,
to describe the system under consider-
ation, not only the magnetic field but
also the magnetization, which depends
both on the substance as well as its ther-
modynamic state, has to be specified.
We shall only give the most basic equa-
tions necessary for our purposes, but the
reader is strongly urged to consult Griffiths, Jackson, Callen etc.. Essentially, mag-
netization acts as an additional conserved (recall that we are restricting attention to
static phenomena) current JM = ∇×M, so that the Maxwell equation of eqn.(8.3)
now becomes

∇×B = μ0 (J f +∇×M)→ ∇×H = J f H ≡ B
μ0

−M (8.6)

The current JM = ∇×M is called the magnetization current density. It is also some-
times called the bound current density to distinguish it from the free current intro-
duced earlier.

Strictly speaking, one should have solved for B arising from the total current
density J = J f + JM, subject to ∇ ·M = 0. Such a B would have truly behaved like
a magnetic field. Though the mathematical trick employed to get ∇×H = J f is a
neat one in the sense that this equation is determined only by the free part of the
current density, physically the meaning of H is far from clear. For one thing, it is not
divergence free like a true magnetic field. Instead, ∇ ·H =−∇ ·M.

Even though μ0 H and Be satisfy the same Ampere like equation, because their
divergences obey different equations, they are in general not equal. When there are
enough symmetries in the problem, like spherical symmetry etc., Ampere’s equation
alone is enough to determine H and in those situations, ∇ ·M is zero (Griffiths).
In such situations μ0 H also equals the external field Be. The reader is encouraged
to go through the detailed treatment of the bar magnet in Sommerfeld’s treatise on
Electrodynamics, for a better understanding of these subtleties.

Therefore in general, if an external magnetic field is applied, the magnetic field
inside the system is different from this external field. As we have already seen, it
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becomes necessary to introduce two distinct types of fields, �B(x) and �H(x). Also, as
noted before, the physical meaning of H is somewhat obscure. Even their names have
not been without controversy. As we have already seen, �B(x) is the more fundamental
field; yet, �H(x) is called the magnetic field by many. Having done that, it becomes
necessary to give another name to �B that will distinguish it from �H. To that end, �B is
called by some as magnetic flux density, and by some others as magnetic induction.
The latter, as remarked by Griffiths, is particularly misleading as the word induction
has already been given an altogether different meaning.

Confusion in this regard does not stop there; as elaborated by Feynman, the quan-
tities B,H have dimensions that are not always the same! In a CGS system both of
them have the same dimensions, but not the same units! The CGS unit of B is the
gauss (G), while that of H is oersted (Oe). In an SI system, they don’t even have the
same dimensions; the dimensions of B are N/A.m while those of H are A/m. Accord-
ing to Griffiths, Sommerfeld is supposed to have said ’the unhappy term ’magnetic
field’ for H should be avoided as far as possible. It seems to us to that this term has
led into error none less than Maxwell himself’!

Before finally turning to addressing the issues of energy and work for magnetic
systems, we discuss the important notion of magnetic susceptibility. The source of
both the magnetic fields H, B, and the magnetization in the magnetic medium is the
same and that is the current Jf . In this sense, the example of the elementary current
loop is very different as its magnetic moment has an independent existence from the
source of the magnetic field. Thus, in the context of the magnetic systems, a varia-
tion of the external current already induces a change in the magnetization. This can
be expressed quantitatively through a functional dependence of M on the magnetic
field(s). We shall refrain from doing this in all generality, but do so for the class of
systems for which this dependence is linear. This is not such a great restriction, as
for a large number of systems of interest, this is a very good approximation. In fact,
for superconductors, it is even exact!

But here too there is a source of confusion; some authors define magnetic suscep-
tibility through M = χm

B
μ0 , while many others define it as M = χm H. As long as the

susceptibility χm is very small, both work reasonably well. But when susceptibilities
are not small, as indeed happens in the context of superconductivity, to be discussed
in later chapters, the two versions have dramatically different consequences, and the
correct relation to use is

M = χm H (8.7)

In the table below, we list the magnetic susceptibilities of a few substances. Apart
from ferromagnetic materials, susceptibilities are usually very small.

This is a good place to explain the nomenclature of magnetic substances. Before
that, let us note the relation between the external field Be (or equivalently μ0H), and
the B-field. Using the various definitions and results obtained till now, it follows that
B = (1+ χm

μ0 )Be. Diamagnetic substances are those for which the susceptibility is
negative, as can also be gathered from the table (8.1). Physically, what is happening
is that the external fields induce in a diamagnetic substance currents that tend to
oppose the external field, thereby reducing it effectively, i.e B < Be. As we shall see
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later, superconductors are perfect diamagnets in the sense that B = 0 irrespective
of Be. In paramagnetic substances, with positive susceptibilities, just the opposite
happens. The induced magnetization actually enhances the external field, i.e B > Be.
For ferromagnetic substances, these considerations are not really applicable because
of the so called spontaneous magnetization because of which the magnetic system
may possess magnetization even in the absence of any external fields.

TABLE 8.1

Some magnetic materials and their magnetic susceptibility χm.

Name Type Temp(K) χm

Water Dia. 300 -9.0·10−6

Bismuth Dia. 300 -16.7·10−5

Oxygen Para. 300 0.2·10−5

Aluminium Para. 300 2.2·10−5

Iron Ferro. 300 3000

From electrodynamics it follows that the magnetic energy density is given by
u = 1

2 B ·H. In free space, upon using M = 0, it goes back to the earlier expression

um = B2

2μ0 . For materials for which M has a linear dependence on H, as in eqn.(8.7),
the variation of the magnetic energy takes the form

δum = H ·δB = δ
μ0H2

2
+ μ0H ·δM (8.8)

It should be noted that the same variation could have equally well been written as

δum = δ
B2

2μ0
−M ·δB (8.9)

We shall now argue that though both are equivalent, the former is better suited for
thermodynamic applications. Irrespective of which one of them is used, it is clear that
the thermodynamics of magnetic systems requires modifications to both the internal
energy and the work done. If we choose eqn.(8.9), the variation of the internal energy
has to be modified by d B2

2μ0 and the infinitesimal work by −M ·dB. With the help of
suitable Legendre transforms (see chapter 9 and also later sections of this chapter),
we can make the work term look like +B ·dM.

The problem with including B2

2μ0 in the internal energy is that even when the ex-
ternal currents in our reference solenoid are kept constant, this term can change dra-
matically in a phase transition. A prime example is that of the superconducting phase
transition. After the system has become superconducting, the B inside the supercon-
ducting material becomes strictly zero (Meissner effect), whereas this is practical
equal to Be in the normal phase. This difficulty is only of a practical nature as in
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principle one can keep this term and keep track of its changes, though over whole
space. For the same reason, using B · dM or the other way round can lead to singu-
larities unless the susceptibility in the normal phase is carefully kept track of. Once
again, these difficulties are not one of principle, only one of practice.

Let us contrast this with what would ensue had one chosen eqn.(8.8) instead. Then

the internal energy density would have been modified by μ0H2

2 . But when external
currents are fixed, this does not change during phase changes and as far as phase
changes in magnetic systems are concerned, it acts as a harmless constant and can be
ignored without any consequences. The work likewise has many nice features too;
the coefficient of dH never vanishes. When we apply these ideas to superconducting
transitions, these points will become more transparent.

As clarified earlier, in situations with symmetry, as will be the case mostly, μ0H
can be taken in value to be the external field Be. Therefore the energy and work

terms can be equivalently written as B2
e

2μ0 and Be ·M respectively. However, it should
be kept in mind in general situations it is the H-field that should be used. Henceforth,
the H-field and equivalently the Be-field will be taken to be uniform. We introduce
the notation M = VM for the total magnetic moment in the volume V. Though both
the magnetic induction and magnetic fields are vectors, we have chosen the compo-
nent of the magnetization vector along the external field as the magnetization itself.
Clearly there may be circumstances where the full vector nature of these quantities
may be important, and in those cases this expression should be appropriately modi-
fied.

We can now write down the statement of first law as generalized to magnetic
systems

dU ′ = T dS−PdV + μ dN +Be dM (8.10)

where U ′ =U − B2
e

2μ0 V . Before proceeding to build the thermodynamics of magnetic
systems based on this, and the second law, we bring out a number of features that
distinguish magnetic systems from mechanical systems. Comparing the magnetic
work �Be · d �M with the mechanical work −PdV , one sees that there is a parallel
between the component of magnetization parallel to the external field and −V . But
there are many very important differences; in mechanical systems it made sense to
talk of processes at fixed volume. In magnetic systems, it is very difficult to con-
strain magnetization. Therefore fixed magnetization changes are often beyond one’s
reach. The other important difference is that while P,V were taken to be uniform in
space, neither the magnetic field nor magnetization is often uniform. As the source of
magnetic fields are currents, even the shape of the magnetic body is of importance.

One sees that in addition to the usual specific heats for mechanical systems, there
are now two additional specific heats CB and CM (modulo our remarks about constant
magnetization processes). It should also be noted that M can be positive or negative,
while its analog in mechanical systems, -V, was always negative.

For many magnetic systems of interest, the PdV term is often very small com-
pared to BdM term, and in such circumstances, the simplified form of the first law
without the PdV term can be employed. A numerical comparison of these two terms
will be made later on.
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It is important to examine the issue of extensive and intensive variables in mag-
netic systems. The external field, Be, is obviously intensive as it does not depend on
the system volume. The total magnetization M , on the other hand, is more subtle.
As mentioned before, the shape of bodies becomes important for magnetic systems.
If magnetization were to behave like −V , it should indeed be extensive. But because
of the shape dependence, magnetization does not strictly grow with volume, i.e it is
not strictly extensive. But in many substances this is a very small effect and ignoring
it would make M extensive for all practical purposes. However, in superconducting
substances this could be very important and it may not be a good approximation to
treat magnetization as extensive. So a case by case scrutiny is essential and that, to
some extent, is antithetical to the spirit of thermodynamics!

Returning to magnetic susceptibility χm, introduced in eqn.(8.7), this is the mag-
netic analog of compressibility in nonmagnetic systems. Compressibility was the re-
sponse of volume to pressure. It is quantified by the fractional change of volume with

pressure and is given by 1
V

(
∂V
∂P

)

X
, where X depends on the precise conditions. It is T

for isothermal changes etc. Now the analog of V is −M , and of P is B. Therefore, in

complete analogy with compressibility one can think of introducing 1
M

(
∂M
∂Be

)

X
. But

the actual definition of magnetic susceptibility differs from this though the essential
idea that it quantifies the response of magnetization to changes in Be is still retained.

The susceptibility definition introduced in eqn.(8.7), as stressed then, is really
suitable for linear systems. In general, there are actually two definitions used which
should be carefully distinguished; the first is χ = 1

V
M
Be

. The second, the so called

differential susceptibility, is given by χ ′
X = 1

V

(
∂M
∂Be

)

X
, where X stands for the con-

ditions that are fixed. For the large class of materials for which the magnetization
is linearly dependent on the external field, χ equals χ ′. But χ can be a bad defini-
tion when there can be residual magnetization even after the external field has been
removed. This happens for ferromagnets. Therefore, one should use the differential
susceptibility always. In what follows, we shall mean by susceptibility the differen-
tial one, and drop the ′ notation.

Furthermore, if we had followed a strict analogy between M and −V on the one

hand, and between κ and χ on the other, we would have defined χ as − 1
M

(
∂M
∂Be

)

X
.

But here too some notable differences between the two situations would make such
a choice somewhat unnatural. In the non-magnetic case the negative sign was mo-
tivated by the fact that mostly volume decreases with increase of pressure; in the
magnetic case, magnetization usually increases with increasing external field. The
other important difference is that while in the nonmagnetic case V never vanishes,
in the magnetic case M can indeed vanish. Taking all this into account, the general
formula for susceptibility that has been given is the best.

Now we shall simply repeat everything we have done for the thermodynamics of
nonmagnetic systems. We shall drop the -PdV and μ dN terms for the moment. This
is more to keep things from getting too cluttered, not for any deeper reasons. Later
on, when we discuss the magnetic analogs of the Maxwell relations, we shall restore
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such terms to show their impact. Apart from convenience, for most systems under
consideration, it’s also a very good approximation to neglect these terms. When we
drop these terms, the only effective variables are T, Be, and M (only two of which
are independent). Other variables like P,V are not explicit, and in practice this means
that all quantities of interest depend very weakly on them. Then, the cases of interest
are when internal energy U∗(to avoid confusion, we denote the potentials by starred
quantities when P,V are neglected) is a function of (T, M ) or of (T, Be).

Let us begin with the so called d̄Q relations. In chapter 5.2, we had explicitly
worked out the cases when U is a function of (V,T) and (P,T), and had left the (P,V)
case as an exercise. Under the approximation of neglecting the PdV and μdN terms,

d̄Q =

(
∂U∗

∂T

)

M

dT +

{(
∂U∗

∂M

)

T
−Be

}
dM

d̄Q =

{(
∂U∗

∂T

)

Be

−Be

(
∂M

∂T

)

Be

}

dT +

{(
∂U∗

∂Be

)

T
−Be

(
∂M

∂Be

)

T

}
dBe

(8.11)

From this, the two magnetic specific heats CM ,CB follow:

CM =

(
∂U∗

∂T

)

M

CB =

(
∂U∗

∂T

)

Be

−Be

(
∂M

∂T

)

Be

(8.12)

Substituting these into eqn.(8.11), we get

d̄Q = CM dT +

{(
∂U∗

∂M

)

T
−Be

}
dM

d̄Q = CBe dT +

{(
∂U∗

∂Be

)

T
−Be

(
∂M

∂Be

)

T

}
dBe

(8.13)

Consider applying the first of these to an adiabatic process for which d̄Q = 0. Then

−CM

(
∂T
∂M

)

S
=

(
∂U∗

∂M

)

T
−Be (8.14)

As in the nonmagnetic case, CBe , which is the analog of CP there, can be expressed
as

CBe =

(
∂ (U∗ −BeM )

∂T

)

Be

(8.15)

This motivates one to introduce the magnetic analog of enthalpy as H∗
M = U∗ −

BeM , and in terms of it, CBe =
(

∂H∗
M

∂T

)

Be
. As we shall see when we introduce the

thermodynamic potentials for magnetic systems more systematically, this nomen-
clature needs some care. The TdS equations can now be written down in complete
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analogy with the nonmagnetic discussion.

T dS = dU∗ −Be dM

T dS = CM dT +

{(
∂U∗

∂M

)

T
−Be

}
dM

T dS = CBe dT +

{(
∂U∗

∂Be

)

T
−Be

(
∂M

∂Be

)

T

}
dBe (8.16)

As a consequence of the first equation
(

∂U∗

∂M

)

T
= T

(
∂S

∂M

)

T
+Be (8.17)

The integrability condition for the second of eqn.(8.16) along with the integrability
condition for dU , now expressed as a combination of dT and dM , yields,

(
∂U∗

∂M

)

T
= Be −T

(
∂Be

∂T

)

M

(8.18)

This is the precise analog of eqn.(3.7) which was first encountered in chapter 3. Like-
wise, the integrability condition for the last of eqn.(8.16), along with the integrability
condition for the magnetic enthalpy dH∗

M yields,

T

(
∂M

∂T

)

Be

=

(
∂U∗

∂Be

)

T
−Be

(
∂M

∂Be

)

T
(8.19)

As before, we combine the eqns.(8.16) with the two integrability conditions to obtain
the final form of the magnetic TdS equations:

TdS = CM dT −T

(
∂Be

∂T

)

M

dM

TdS = CBe dT +T

(
∂M

∂T

)

Be

dBe (8.20)

The integrability conditions for this pair of equations give:
(

∂CM

∂M

)

T
=−T

(
∂ 2Be

∂T 2

)

M

(
∂CBe

∂Be

)

T
=+T

(
∂ 2M

∂T 2

)

Be

(8.21)

Combining eqn.(8.17) with eqn.(8.18) yields the magnetic analog of one of the
Maxwell relations: (

∂S
∂M

)

T
=−

(
∂Be

∂T

)

M

(8.22)

A systematic exposition of the magnetic Maxwell relations will be given shortly.
We have already defined the magnetic susceptibility χX when X is held fixed;we

can specify X to be T for the isothermal susceptibility χT , and S for the adiabatic
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susceptibility χS. We could have introduced the magnetic analog of the coefficient of

thermal expansion as αM = 1
V

(
∂M
∂T

)

Be
. But we shall not do so to avoid a prolifera-

tion of symbols; instead we shall explicitly display the temperature derivative of M .

However, it is useful to eliminate
(

∂Be
∂T

)

M
in terms of quantities already introduced.

(
∂Be

∂T

)

M

=−
(

∂M

∂T

)

Be

(
∂Be

∂M

)

T
=− 1

V χT

(
∂M

∂T

)

Be

(8.23)

This allows us to simplify the magnetic TdS equations further:

T dS = CM dT +
T

V χT

(
∂M

∂T

)

Be

dM

T dS = CBe dT +T

(
∂M

∂T

)

Be

dBe (8.24)

Equating the two TdS equations one gets

0 = (CM −CBe)dT +T

(
∂M

∂T

)

Be

{
1

V χT
dM − dBe

}
(8.25)

As in our discussion for the nonmagnetic case, we express dT in terms of dM and

d Be as dT =
(

∂T
∂M

)

Be
dM +

(
∂T
∂Be

)

M
d Be to rewrite the above as

0= (CM −CBe)(

(
∂T
∂M

)

Be

dM +

(
∂T
∂Be

)

M

dBe)+T

(
∂M

∂T

)

Be

{
1

V χT
dM − dBe

}

(8.26)
Equating the coefficients of the independent variations dM , dBe to zero we get the
two equations

(CM −CBe)

(
∂T
∂Be

)

M

= T

(
∂M

∂T

)

Be

(CM −CBe)

(
∂T
∂M

)

Be

= − T
V χT

(
∂M

∂T

)

Be

(8.27)

Using the definition of χT and the standard properties of partial derivatives, it is easy
to see that the two are actually identical. But we shall use the second of these as its
consequences are more transparent:

(CBe −CM ) =
T

V χT

(
∂M

∂T

)2

Be

(8.28)

Again, let us apply the TdS equations eqn.(8.24) for adiabatic processes (dS = 0) to
derive explicit expressions for CM and CBe :

CM =− T
V χT

(
∂M

∂T

)

Be

(
∂M

∂T

)

S
CBe =−T

(
∂M

∂T

)

Be

(
∂Be

∂T

)

S
(8.29)
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The ratio of the magnetic specific heats,γM = CM
CBe

can be worked out, after some
algebra, to be

γM ≡ CM

CBe

=
χS

χT
(8.30)

Using this, and eqn(8.28), one can work out the magnetic analogs of the expressions
for CV ,CP obtained earlier.

This is a good place to bring out some fundamental differences between the
magnetic and nonmagnetic cases. In the nonmagnetic case, CP −CV is always pos-
itive. But an examination of eqn.(8.28) reveals that in the magnetic case the sign of
CBe −CM depends on the sign of χT whereas in the nonmagnetic case this depended
on the sign of the compressibility κT which is always positive. On the other hand, the
isothermal magnetic susceptibility χT can be positive or negative, depending on the
nature of the magnetic material.

For paramagnetic substances, the magnetization M along the external field is
positive whereas it is negative for diamagnetic substances. In other words χT is
small and positive for paramagnetic substances, but small and negative for diamag-
netic substances. Therefore CBe >CM for paramagnetic substances while CBe <CM
for diamagnetic substances. The magnitude of the susceptibility is about 10−5 for
diamagnetic substances and about 10−3 for paramagnetic substances.

Example 8.1: A diagrammatic interpretation of CBe −CM

Show that the first of the eqns.(8.27) can be given a diagrammatic meaning by drawing
two nearby magnetic isotherms at, say, T and T+dT, and taking a point on the lower
isotherm to two points on the upper isotherm via Be = const. and M = const. processes
respectively.

FIGURE 8.2 CBe −CM

An isotherm of a nonmagnetic
system such as a gas consisted of
a curve of, for example, pressure
P vs V at some given T. A mag-
netic isotherm can in general be
a surface. For example, if there is
pressure dependence of the mag-
netic phenomena, the magnetiza-
tion at some temperature T can
depend on both the pressure P
and the external field Be. Then
a magnetic isotherm could, for
example, be the two-dimensional
surface Be = Be(P,M ). In prac-
tice, pressure dependences are

small, and a magnetic isotherm would simply be a curve in the Be −M plane.
As emphasized in the text, then there is a precise analogy between P and Be

on the one hand, and between V and −M on the other.
Now consider two neighbouring magnetic isotherms, and consider the sys-

tem in a state represented by the point A on the isotherm at T. Let a re-
versible process at constant Be take it to the state C on the isotherm at
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T+dT, and let dM be the resulting change in magnetization. Likewise, let a
reversible process at constant M take it to the state B, again on the isotherm
at T+dT. Consider the reversible cycle ABCA. The heat absorbed during AB
is dQAB = CM dT and the heat relinquished during CA is dQCA = CBe dT . To
determine the heat absorbed during BC, we use eqn.(8.20) with dT = 0. This

gives dQBC =−T
(

∂Be
∂T

)

M
dM .

The total heat absorbed during the cycle must match the total work, which
is just the area of ABC. But that is equal to dBe ·dM , This being second order
in smallness can be neglected. Thus we get

(CM −CBe)dT −T

(
∂Be

∂T

)

M
dM = 0→CM −CBe = T

(
∂Be

∂T

)

M

(
∂M

∂T

)

Be

(8.31)

In the last step we made use of the fact that dM during the step AC was
at constant Be. Clearly the same diagrammatic proof can be given for the
nonmagnetic case of eqn.(3.52).

Example 8.2: Magnetic Joule-Kelvin process

There is a magnetic analog to the Joule-Kelvin process wherein a magnetic
substance undergoes a suitable change of Be and M under conditions of adia-
baticity as well as constant enthalpy. At first it is not clear whether we should
consider processes that keep the enthalpy H, however with magnetic contri-
butions, of eqn.(8.49) fixed, or keep the magnetic enthalpy HM of eqn.(8.54)
fixed.

If we want to maintain the nonmagnetic result that the Joule-Thomson
coeeficient vanishes for ideal gases, then one has to define the magnetic analog
to be the one where it is still H that is kept fixed, and not HM . Then, since
dH = T dS+BedM (we are ignoring pressure terms) entropy will increase while
maintaining H if dM is negative. As emphasized earlier, −M plays the role
of V now. To get the magnetic Joule-Thomson coefficient, we rearrange dH as

dH = T dS+BedM =

{

T

(
∂S
∂T

)

Be

+Be

(
∂M

∂T

)

Be

}

dT

+

{

T

(
∂M

∂T

)

Be

+Be

(
∂M

∂Be

)

T

}

(8.32)

With dH=0, the magnetic Joule-Thomson coefficient μM ,JT becomes

μM ,JT =
T
(

∂M
∂T

)

Be

+Be

(
∂M
∂Be

)

T

CBe +Be

(
∂M
∂T

)

Be

(8.33)

It is easy to verify that this vanishes for the magnetic analogs of ideal gases,
i.e systems for which M has the form M = f (Be/T )!
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8.2 Thermodynamic potentials

Now we discuss the thermodynamic potentials that are relevant for magnetic systems.
We will continue to ignore the -PdV and μ dN terms in the first law, but shall return to
a treatment inclusive of them shortly. We can follow the general procedure described
in chapter 9, and starting from the internal energy U∗ as the prepotential introduce
three additional thermodynamic potentials, U∗-TS, U∗-BeM and U∗-TS-BeM . We
have already encountered the second of these which we called the magnetic enthalpy
H∗

M . The first of these is the usual Helmholtz free energy F∗(remember our conven-
tion about starred potentials). We shall call the last of the three as magnetic Gibbs
potential G∗

M .
It is not very important how we name the potentials, what are important are the

observable consequences stemming out of them. But it is clearly desirable to name
them in such a way that in the absence of magnetism they naturally reduce to the
nomenclature one would have adopted earlier. The observable consequences are cer-
tainly the Maxwell-like relations that follow, and their consequences, as also other
relations between properties of systems. A very important aspect of these potentials,
something we have discussed at length in the nonmagnetic context, are the various
equilibrium conditions encoded in them. We shall return to those aspects later on,
and we shall comment on the nomenclature issue then too.

It should be noted that even though the first two potentials, U∗ and F∗, are the
same ones we had earlier, they now depend on two independent variables among the
three variables, namely, T, M and Be. This will also be reflected in the expressions
for their differentials which will be different from their corresponding differentials
in the nonmagnetic context. Let us now display the four differentials in question:

dU∗(S,M ) = T dS+BedM (8.34)

dF∗(T,M ) = −SdT +BedM (8.35)

dH∗
M (S,Be) = T dS−M dBe (8.36)

dG∗
M (T,Be) = −SdT −M dBe (8.37)

As already noted above, the two magnetic specific heats are given by CM =
(

∂U
∂T

)

M

and CBe =
(

∂HM
∂T

)

Be
. The consequences of eqn.(8.34) are:

(
∂U∗

∂S

)

M

= T ;

(
∂U∗

∂M

)

S
= Be;

(
∂T
∂M

)

S
=

(
∂Be

∂S

)

M

(8.38)

(
∂F∗

∂T

)

M

= −S;

(
∂F∗

∂M

)

T
= Be; −

(
∂S

∂M

)

T
=

(
∂Be

∂T

)

M

(8.39)

(
∂H∗

M

∂S

)

Be

= T ;

(
∂H∗

M

∂Be

)

S
=−M ;

(
∂T
∂Be

)

S
=−

(
∂M

∂S

)

Be

(8.40)

(
∂G∗

M

∂T

)

Be

= −S;

(
∂G∗

M

∂Be

)

T
=−M ;

(
∂S
∂Be

)

T
=

(
∂M

∂T

)

Be

(8.41)
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The third of the equalities in each of these equations constitutes a magnetic Maxwell
relation. As in the nonmagnetic case, they are not all independent. Only one of the
four is an independent relation, and the other three can be reduced to it. But, as
stressed before, the important issue is not of their mathematical independence. What
is important is how each one of them, possibly under different experimental circum-
stances, can be useful in relating some quantities to other observable quantities.

These relations once again point to some interesting differences from the non-

magnetic case. There
(

∂G
∂T

)

P
was always negative but

(
∂G
∂P

)

T
was always positive

because volume V and entropy S are both positive. But now, the analog of V, which

is −M , can take either sign. So in the magnetic case while
(

∂G∗
M

∂T

)

Be
is always

negative,
(

∂G∗
M

∂Be

)

T
can have any sign.

The last of the magnetic Maxwell relations,
(

∂S
∂Be

)

T
=
(

∂M
∂T

)

Be
is particularly

interesting. For many magnetic systems, heating leads to loss of magnetism or to de-

magnetisation. In such situations,
(

∂M
∂T

)

Be
is negative, and this particular Maxwell

relation then implies that
(

∂S
∂Be

)

T
is negative too. It means, that magnetizing a sam-

ple by placing it in an external magnetic field, while maintaining its temperature,
leads to a lowering of entropy! This will have a striking consequence for cooling
objects to very low temperatures, as will be discussed later.

What is remarkable is that such conclusions follow very generally without de-
tailed input as to the nature of the magnetic material etc., which once again speaks
of the great power of thermodynamic reasoning.

8.2.1 Inclusion of PdV and μdn terms in dU

Now we discuss the thermodynamic potentials for magnetic systems without drop-
ping the −PdV and μdn terms in the first law. This will clarify a number of important
issues besides yielding more Maxwell and other relations. The first law then takes
the form

dU = T dS−PdV + μ dn+Be dM (8.42)

8.2.2 Magnetic Euler relations

Before working out the generalization of the thermodynamic potentials for the mag-
netic case, it is important to establish the Euler relation for the magnetic case, as here
too, one of the potentials just vanishes as a consequence of the Euler relation. Let us
consider the fundamental relation in the U-representation:

U =U(S,V,n,M ) (8.43)

The differential form of this being

dU =

(
∂U
∂S

)

..

dS+

(
∂U
∂V

)

..

dV +

(
∂U
∂n

)

..

dn+

(
∂U
∂M

)

..

dM (8.44)
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This leads to the identification of the intensive parameters for the magnetic case as

T =

(
∂U
∂S

)

V,n,M
−P =

(
∂U
∂V

)

S,n,M
μ =

(
∂U
∂n

)

S,V,M
Be =

(
∂U
∂M

)

S,V,n
(8.45)

The extensivity of U, as before, means U(λS,λV,λn,λM ) = λU(S,V,n,M ). The
magnetic analog of the Euler equation emerges exactly as in the nonmagnetic case:

nμ =U +PV − ST −BeM (8.46)

Thus in the magnetic case too the chemical potential equals the magnetic Gibbs
potential.

8.2.3 Counting the magnetic potentials

Thus, the magnetic case, as per our counting of chapter 9, corresponds to n = 4,
including the number of moles . Therefore, there ought to be 15 thermodynamic
potentials (2n − 1), and 60 Maxwell relations (n · (2n − 1)). All we have to do is just
take over the results for the n = 3 case explicitly worked out there (which was by
inclusion of the μdN terms for a nonmagnetic case) and suitably adapt them to the
magnetic context. To avoid cluttering, we shall simply show the results for when the
number of moles is held fixed as generalization to include dn �= 0 is straightforward.
Only in that case the potential GM ,μ exactly vanishes by virtue of the magnetic Euler
relation. The 8 potentials and their differentials are given by:

U0 = U dU = T dS−PdV +BedM (8.47)

U1 = U +PV = H dH = T dS+VdP+BedM (8.48)

U2 = U −TS = F dF =−SdT −PdV +BedM (8.49)

U3 = U −Be M =UM dUM = T dS−PdV −M dBe (8.50)

U1,2 = U1−TS = G dG =−SdT +VdP+BedM (8.51)

U2,3 = U2−Be M = FM dFM =−SdT −PdV −M dBe (8.52)

U3,1 = U3+PV = HM dHM = T dS+VdP−M dBe (8.53)

U1,2,3 = U1,2−Be M = GM dGM =−SdT +VdP−M dBe (8.54)

Now we address the issue of a consistent nomenclature for the thermodynamic po-
tentials of magnetic systems when pressure and volume also become important. It
is to be noticed from eqn.(8.47) that, when pressure and volume are ignored, pairs
of potentials become the same: H∗ = U∗,G∗ = F∗,H∗

M = U∗
M ,G∗

M = F∗
M . Conse-

quently, not only is
(

∂H∗
M

∂T

)

Be
equal to CBe , so is

(
∂U∗

M
∂T

)

Be
.

Our motivation for naming H∗
M as the magnetic enthalpy was that its temperature

derivative at constant magnetic Be gave CBe . So the question is, in the general case
when pressure and volume are also taken into account, should we call HM the mag-
netic enthalpy or call UM that? A simple criterion to adopt is that in the absence of
magnetism, what we call magnetic enthalpy should revert to the usual (nonmagnetic)
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enthalpy. Then, it is certainly more appropriate to call HM the magnetic enthalpy.
Apart from this obvious criterion, the equilibrium conditions also point towards a
natural nomenclature. We shall come to this point of view later.

We will not bother to spell out all the 24 Maxwell relations explicitly. We shall
explore only a couple of them, and in particular, we will investigate the difference in
the relations obtainable from some potential X (amongst U, F, H, G) and its magnetic
analog XM . Here too, we shall restrict the analysis to the cases X =U,G only. The
Maxwell relations (we only display the additional relations arising out of magnetism)
coming from U and UM are, respectively,

U : −
(

∂P
∂M

)

V,S
=

(
∂Be

∂V

)

M ,S

(
∂T
∂M

)

S,V
=

(
∂Be

∂S

)

V,M
(8.55)

UM :

(
∂P
∂Be

)

V,S
=

(
∂M

∂V

)

Be,S

(
∂T
∂Be

)

S,V
=−

(
∂M

∂S

)

V,Be

(8.56)

Likewise, the relations coming from G and GM are:

G :

(
∂V
∂M

)

P,T
=

(
∂Be

∂P

)

M ,T
−
(

∂S
∂M

)

T,P
=

(
∂Be

∂T

)

P,M
(8.57)

GM :

(
∂V
∂Be

)

P,T
=−

(
∂M

∂P

)

Be,T

(
∂S
∂Be

)

T,P
=

(
∂M

∂T

)

P,Be

(8.58)

From the U and GM Maxwell relations we get two relations both relating
(

∂M
∂T

)
to

(
∂S
∂Be

)
; we display them together:

(
∂M

∂T

)

S,V
=

(
∂S
∂Be

)

V,M

(
∂M

∂T

)

P,Be

=

(
∂S
∂Be

)

P,T
(8.59)

They show that the signs of
(

∂M
∂T

)
and

(
∂S
∂Be

)
are exactly correlated in two entirely

different conditions. This will have very important repercussions. We shall exam-
ine these various Maxwell relations in some particular models, but they hold very
generally.

8.2.4 Estimating PdV vs BedM

Now we present an argument due to Pippard that enables one to come up with a
criterion as to when the PdV terms in dU can be neglected in comparison with the
BedM terms. The physical basis of this criterion is to determine conditions under
which the mechanical work done is much smaller than the magnetic work. Needless
to say, this depends very much on the nature of internal constraints on the system.
The argument should be seen as being heuristic, and a careful check should be made
as to whether all the implicit assumptions are actually fulfilled or not.

Firstly, the body is taken to be such that magnetization is linearly dependent on the
external field, i.e, M =V χ(T,P)Be. This in itself is not a very resrictive assumption.
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A large number of magnetic systems will fulfill this for suitable ranges of external
fields and (T,P). Following Pippard, let us take the pressure and temperature to be
fixed for the comparison. Then the relevant ratio is given by

R =

(
PdV

Be dM

)

T,P
=

P
Be

(
∂Be

∂P

)

T,M
(8.60)

where we made use of the Maxwell relation of eqn.(41). For linearly magnetizable
bodies this can be worked out to be

R =− P
V χ

(
∂V χ
∂P

)

T
= PκT

1

χ

(
∂V χ
∂V

)

T
(8.61)

where we made use of one of the standard properties of partial derivatives, and the
definition of the isothermal compressibility κT .

Now for an ideal gas PκT = 1. Therefore PdV can be neglected in comparison

with BedM only when the susceptibility is such that 1
χ

(
∂V χ
∂V

)

T
<< 1. For solids on

the other hand, PκT is very small as long as the pressures are not too high, and the
second factor is not expected to be large either, and the ratio is very small. But as
cautioned before, for each circumstance these two factors should be evaluated to see
if the ratio is indeed small or not.

8.2.5 Equation of state for magnetic systems

Since with every additional degree of freedom, an equation of state needs to specified
for a complete thermodynamic description, for magnetic systems too such an equa-
tion of state is needed. In analogy with one of the equations of state for a nonmagnetic
system that takes the form P=P(V,T,N) (through arguments of extensivity, V and N
can only occur in the ratio V

N = v), we can expect the analogous equation of state for
magnetic systems to be of the form M = M (Be,P,T,N). The linearly magnetizable
case is such an example

M = Nχ(T,P)Be (8.62)

Of particular importance is the so called Curie Law

χ(T,P) =
a
T

(8.63)

where a is a constant. Curie law is seen to hold with reasonable accuracy for para-
magnetic substances when the temperatures are high, and applied fields small. Fur-
ther, for paramagnetic material, the constant a is positive, and this is crucial for cool-
ing by Adiabatic Demagnetization.

An additional input, like a magnetic equation of state, can be combined with the
Maxwell relations to get a number of very interesting results, as we shall show now.
Using the second of the Maxwell relations in eqn.(8.58),

(
∂S
∂Be

)

T
= Be V

d χ
d T

=−aV
T 2

Be (8.64)
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This is easily integrated to give the important relation that tells the Be-dependence of
entropy at constant temperature:

S(Be,T ) = S(0,T )− 1

2

aVB2
e

T 2
(8.65)

Because the constant a is positive, we see that entropy indeed decreases with in-
creasing Be, as already remarked before. There we had correlated the decreasing
entropy with Be with decreasing magnetization with temperature. The Curie law for

paramagnetic materials indeed implies that
(

∂M
∂T

)
= − aVBe

T2 is negative. The above

relation immediately points to the fact that Curie law can not be valid at all tempera-
tures as S(Be,T ) does not tend to zero as T tends to zero.

Now we wish to use eqn.(8.65) as a model relation to test various equations we
have obtained in this chapter. Towards that end we write down all the Maxwell re-
lations that involve S,T,Be,V,M only. In eqn.(8.59) we have already displayed two
such relations.

(
∂S
∂Be

)

V,T
=

(
∂M

∂T

)

V,Be

(8.66)

(
∂S
∂Be

)

V,M
=

(
∂M

∂T

)

V,S
(8.67)

−
(

∂S
∂M

)

V,T
=

(
∂Be

∂T

)

V,M
(8.68)

−
(

∂S
∂M

)

V,Be

=

(
∂Be

∂T

)

V,S
(8.69)

In the process one will learn various subtleties that come up in evaluating the thermo-

dynamic partial derivatives. A striking example of such a partial derivative is
(

∂Be
∂T

)
.

At first sight, such a partial derivative may appear to be zero trivially, as the exter-
nal field need not be temperature dependent. But it is to be noted that such partial
derivatives have to be evaluated under constraints; for example, in one case, the vol-
ume and M have to be kept fixed while this partial derivative is evaluated. The Curie
law would then say that Be must be changed linearly, and that’s how the external
field acquires a temperature dependence.

Let us first consider the partial derivative relation eqn.(8.66), as that is the most
straightforward to evaluate given eqn.(8.65) and eqn.(8.63):

(
∂S
∂Be

)

V,T
=−aVBe

T 2
;

(
∂M

∂T

)

V,Be

= −aVBe

T 2
(8.70)

Now we turn to eqn.(8.67). The lhs requires evaluating a derivative of S keeping M
fixed. Therefore we eliminate Be in favour of M in eqn.(8.65): S(M ,T ) = S(0,T )−
M 2

2Va . At first sight it may appear that
(

∂S
∂Be

)
now vanishes as there is no longer

any explicit Be-dependence in S(M ,T ). But keeping M fixed, at say M0, requires
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T = Va
M0

Be and therefore the partial derivative
(

∂T
∂Be

)

V,M
= Va

M0
! This is the kind of

care that needs to be exercised in evaluating the partial derivatives. Therefore,
(

∂S
∂Be

)

V,M0

=

(
∂S(0,T )

∂T

)

V,M0

·
(

∂T
∂Be

)

V,M0

= S(0,T )′
Va
M0

(8.71)

On the other hand, the evaluation of the rhs of eqn.(8.67) requires calculating partial
derivatives while keeping the entropy fixed, at say S0, so that S0 = S(0,T )− M 2

2Va and
as a consequence

0 =

(
∂S(0,T )

∂T

)

V,S
− M

Va

(
∂M

∂T

)

V,S
→
(

∂M

∂T

)

V,S
= S(0,T )′

Va
M

(8.72)

thereby verifying eqn.(8.67).
Verifying eqn.(8.68) is straightforward, if one uses the partial derivatives already

evaluated:

−
(

∂S
∂M

)

V,T
=

M

Va

(
∂Be

∂T

)

V,M
=

M

Va
(8.73)

We finally come to eqn.(8.69) which is doubly subtle! To evaluate its lhs we use
eqn.(8.65) as it is, since we need to take a derivative at fixed Be. But then T is im-
plicitly dependent on M . Therefore, in the first step

−
(

∂S
∂M

)

V,Be

= −S(0,T )′
(

∂T
∂M

)

V,Be

+
aVB2

e

T3

(
∂T
∂M

)

V,Be

(8.74)

= S(0,T )′
T
M

+
M

Va
(8.75)

The rhs of eqn.(8.69) has to be evaluated at fixed entropy. Therefore, differentiating
the (constant) entropy wrt T, one gets

0 = S(0,T )′+
aVB2

e

T 3
− aVBe

T 2

(
∂Be

∂T

)

V,S
→
(

∂Be

∂T

)

V,S
= S(0,T )′

T
M

+
M

Va
(8.76)

thereby verifying the desired relation.
We conclude this section by verifying the various relations among the mag-

netic specific heats by using eqn.(8.65). Let us first consider CBe which is given by

T
(

∂S
∂T

)

Be
. Therefore

T

(
∂S
∂T

)

Be

=CBe = T S(0,T )′+
aVB2

e

T 2
=C0(T )+

aVB2
e

T2
(8.77)

Here C0(T ) denotes the specific heat in the absence of any external field. On using
the expression for S(M ,T ), one finds

T

(
∂S
∂T

)

M

=CM =C0(T ) (8.78)
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Therefore, the Curie law gives, for the difference CBe −CM ,

CBe −CM =
aVB2

e

T2
(8.79)

which agrees with eqn(8.28), on using Curie law.

As another check on the model let us compute
(

∂CBe
∂Be

)
and

(
∂CM
∂M

)
. Explicit

evaluation yields
(

∂CBe

∂Be

)
=

2aVBe

T 2
= T

(
∂ 2

∂T 2
M

)

Be

(8.80)

(
∂CM

∂M

)
= 0= −T

(
∂ 2

∂T 2
Be

)

M

(8.81)

In obtaining the second equation we used the fact that Be is linear in T when M is
held fixed. This is in accord with eqn.(8.21).

8.2.6 Equilibrium conditions

Now we briefly discuss the connection between the magnetic thermodynamic poten-
tials and the criterion for equilibrium for magnetic systems. As far as the Helmholtz
free energy is concerned, the condition (see chapter 7) that it must be a minimum at
thermal equilibrium was obtained by simply considering the work done. The nature
of the work itself, namely, whether it is mechanical or magnetic or whatever, was
not important for those considerations. Therefore the condition that the Helmholtz
free energy must be a minimum at thermal equilibrium will continue to be valid for
magnetic systems too. We can repeat the steps there to find out the conditions for
equilibrium when not only temperature and pressure, but also the external field Be is
held fixed. As in chapter 7, let us consider a process taking the system from state A to
state B under these conditions. Not only will the volume of the system change from
V (A) to V (B), now the magnetization will also change from MA to MB. The work
done WAB is however now given by WAB = P(V (B)−V (A))−Be(M (B)−M (A))
(remember the sign convention for work done). Therefore, the inequality of chapter
9 now changes to

P(V (B)−V(A))−Be(M (B)−M (A)) ≤ F(A)−F(B) (8.82)

In a way completely analogous to the nonmagnetic case, this suggests the intro-
duction of the magnetic Gibbs potential GM in terms of which any transformation
A → B under conditions of constant temperature, pressure, and external magnetic
field Be must satisy

GM (B)≤ GM (A) (8.83)

and consequently, at equilibrium GM must take its minimum. We had already intro-
duced such a potential during our discussion of the magnetic analog of thermody-
namic potentials. The perspective there was more mathematical. This section com-
plements that discussion by providing the physical significance of GM .
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Entirely analogous reasonings can be given for the introduction of the magnetic
enthalpy HM , also defined previously. It should however be noted that the two ad-
ditional magnetic potentials introduced there, namely, UM and FM are not to be
interpreted likewise. It is still the conventional Helmholtz free energy F , and not its
magnetic analog FM = F −BeM , that has to be a minimum at equilibrium.

8.3 Problems

Problem 8.1 Consider the following fundamental equation for a magnetic system
in the U-representation:

U = NAe[S/NR+M 2/2N2a] (8.84)

Find the equations of state T (S,M ,N),Be(S,M ,N) and the chemical potential
μ(S,M ,N). Show that the Euler relation is satisfied by them.
Problem 8.2 Find the fundamental equation in the entropy representation for the
above problem, and find the chemical potential by integrating the appropriate
Gibbs-Duhem relation.
Problem 8.3 Calculate the magnetic specific heats CB and CM for the above
mentioned system.
Problem 8.4 Calculate the isothermal and adiabatic molar susceptibilities for
this system, and show that the isothermal susceptibility obeys the Curie law.
Problem 8.5 Calculate the internal energy for a magnetic system governed by
the Langevin function

M

M∞
= cothα − 1

α
α =

μ0M∞H
RT

(8.85)

Why are such systems called the magnetic analogues of ideal gases?
Problem 8.6 Calculate the magnetic specific heats for the magnetic system dis-
cussed in the previous problem. Find their low and high temperature behaviours.
Problem 8.7 Calculate the work done in an isothermal increase of magnetization
for a system governed by the Langevin function. Discuss the result in the limit
when Curie’s law holds.
Problem 8.8 Find the relation between M and H for an adiabatic transformation
of a magnetic system obeying Curie’s law if the ratio CB/CM can be treated as
a constant. Is the latter a good assumption? Discuss when it breaks down.
Problem 8.9 Show that the work done by a magnetic system under arbitrary

variations of T and Be can be calculated from the knowledge of V,Be,
(

∂M
∂T

)

V,Be

and the isothermal susceptibility.
Problem 8.10 Show that when the external field Be (and pressure if there is
any pressure dependence) is held fixed, the heat absorbed or relinquished by a
magnetic system equals the change in magnetic enthalpy.
Problem 8.11 For a paramagnetic system obeying Curie law show that an
isothermal magnetization leads to a lowering of entropy. Justify this on grounds
that entropy is a measure of disorder.
Problem 8.12 Derive the magnetic analogs of the Gibbs-Duhem relations both
in the U and S representations.



9 Dilute Solutions

9.1 General considerations

Now we develop the thermodynamic treatment of dilute solutions. Quite generally
we can think of a number of substances called solutes dissolved in a liquid called the
solvent. Let N1,N2, . . . ,Ng be the number of moles of the solutes A1,A2, . . . ,Ag and
let N0 be the number of moles of the solvent. A solution will be called Dilute when

Ni < N0 (9.1)

In terms of an atomist description, diluteness means the number of molecules per
unit volume of each of the solutes is much smaller than that of the solvent.

Now let u be the internal energy of a fraction of the solution containing 1 mole of
the solvent. Clearly, this fraction will contain Ni

N0
moles of the solute Ai. This internal

energy will obviously depend on the thermodynamic variables T, p. The pressure
being an intensive variable, p will also be the pressure of the entire solution. The
internal energy can also depend on the amount of solutes present, and possibly on
other parameters not relevant for this discussion. Thus u can have the functional form

u = u(T, p,
N1

N0
,

N2

N0
, . . .) (9.2)

Since internal energy is an extensive variable, the internal energy of the entire solu-
tion will be

U = N0 u(T, p,
N1

N0
, . . .) (9.3)

As the quantities Ni
N0

are very small because of the diluteness of the solution, we can

expand u or equivalently, U , as a power series in Ni
N0

. For a very dilute solution, it
would be a good approximation to retain only the first term of this expansion:

u = u0(T, p)+
g

∑
i=1

Ni

N0
ui(T, p)+ . . . (9.4)

At this stage the quantities ui are merely the coefficients in the expansion, without
having any obvious physical interpretation. The total internal energy can be elegantly
recast as

U =
g

∑
i=0

Ni ui(T, p) (9.5)

The total volume can likewise be expressed as

V =
g

∑
i=0

Ni vi(T, p) (9.6)

171
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Once again, v0 has the physical interpretation as the volume occupied by one mole
of the pure solvent. Again, the quantities vi(T, p) do not have any obvious physical
meaning at this stage. Let us consider varying T, p but keep all the Ni fixed. For small
changes in T, p, the change in entropy of the solution is given by

dS =
1

T
(dU + pdV)

=
g

∑
i=0

Ni

T
(dui + pdvi) (9.7)

For eqn.(9.7) to be consistent, each one of 1
T (dui + pdvi) must also be a perfect

differential. That is, there must exist state functions si(T, p) such that

dsi(T, p) =
1

T
(dui + pdvi) (9.8)

Though si have dimensions of entropy, there is again no obvious physical interpreta-
tion for them. Integrating the above (partial) differential equation, one gets

S =
g

∑
i=0

Nisi(T, p)+C(N0,N1, . . .) (9.9)

In the above equation, C(N0,N1, . . .) is independent of (T, p). This fact will be cru-
cial in determining C from general principles. Determination of si(T, p) is not so
easy.

In order to determine C, let us consider the physical situation when T is very
large and p small enough that the entire solution is in a gaseous phase. One can then
picture the system as consisting of several gaseous components with partial pressures
pi =

Ni
∑Ni

p. Since p is small, all the pi will also be small. Finally, since T is large
and pi small, we can well approximate the behaviour of each component by ideal gas
law. In particular, the entropy per mole of each component is given by

si(T, pi) = Ci
P lnT −R ln pi + ai+R lnR (9.10)

In this equation ai are the so called entropy constants, which thermodynamics is
unable to fix. Ci

P are the respective specific heats at constant pressure. Refer to the
chapter on Entropy Constants for all the deep subtleties relating to ai. Thus the total
entropy of the system at high temperatures and low pressures is given by

S =
g

∑
i=0

Ni(C
i
P lnT −R ln pi + ai+R lnR)

S =
g

∑
i=0

Ni(C
i
P lnT −R ln p+ ai+R lnR)−R

g

∑
i=0

Ni ln
Ni

∑i Ni
(9.11)

Comparing eqn.(9.11) with eqn.(9.9), one finds, at high T and low p

si(T, p) = Ci
P lnT −R ln p+ ai+R lnR (9.12)
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and

C = −R
g

∑
i=0

Ni ln
Ni

∑i Ni
(9.13)

The important point is that this C is valid even if T is not high and p is not low,
because C does not depend on these variables! However, si(T, p) found above is only
valid at high temperatures and low pressures, and it can not be used for the circum-
stances in which the solution is in liquid form. Also, note the important difference
between si and si. For a dilute solution, the expression for C can be approximated
thus

C = −R
g

∑
i=0

Ni ln
Ni

∑g
i=0 Ni

= −R
g

∑
i=1

Ni ln
Ni

N0
+R

g

∑
i=1

Ni (9.14)

The expression for the total entropy S can be recast as

S =
g

∑
i=0

Ni σi(T, p) −R
g

∑
i=1

Ni ln
Ni

N0
(9.15)

where σ0(T, p) = s0(T, p) and σi(T, p) = si(T, p)+R.
What is truly remarkable about this expression for the total entropy is that the

mixing term is of identical form as for ideal gases! On the other hand, we are dealing
with liquids here which are far more complicated than gases, ideal or otherwise! In
fact, for liquids we often do not even know the equations of state. For these reasons,
this result took some time to gain acceptance. This means the Gibbs paradox has
its analogs for dilute solutions also. A corollary of this form of mixing entropy is
Raoult’s law for partial pressures, to be discussed shortly.

Likewise, the Helmholtz free energy for the dilute solution can also be written
down

F = U −TS

=
g

∑
i=0

Ni(ui(T, p)−Tσi(T, p))+RTσg
i=1 Ni ln

Ni

N0

=
g

∑
i=0

Ni fi(T, p)+RT
g

∑
i=1

Ni ln
Ni

N0
(9.16)

In all these formulae, careful attention must be paid to the range of the summations,
as in some of them it goes over 0 to g, which includes the solvent, while in others it
goes over only 1 to g, including only the solutes.

So far we have not given any physical meanings to vi(T, p),ui(T, p),si(T, p),
σi(T, p) and fi(T, p) = ui(T, p)− Tσi(T, p). In spite of that, some further simpli-
fications are possible for the liquid state of the solution. Firstly, v0 is the volume
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occupied by one mole of the solvent, which is a liquid. Liquids have the property
that they are practically incompressible. In other words, their volume hardly depends
on the pressure p. However, their volume can have noticeable temperature depen-
dence. In fact it is this temperature dependence of volume that is responsible for the
functioning of thermometers with liquids as their working material. Hence to a very
good approximation v0(T, p) can be taken as a function of T alone and write v0(T ).
Now the solvent, being a liquid, also shares this property of near compressibility for
arbitrary concentrations of solutes. In other words V = ∑g

i=0 Nivi(T, p), is also, for
all practical purposes, only a function of T alone. For this to be true for arbitrary
Ni, the vi(T, p) for every solute must also be a function of T only, for all practical
purposes.Thus we can set vi(T, p) = vi(T ) in all the above equations. That leaves the
question of whether ui(T, p) are also functions of T only.

Here one has to rely on the empirical evidence that, for example, compressing a
liquid isothermally hardly changes its internal energy. Again, as this is true for both
the solvent and solutions with arbitrary concentrations of solutes, one can conclude
that ui(T, p) are also functions of T only, i.e, ui(T, p) = ui(T ). As a consequence of
both ui and vi being independent of pressure, the quantities si(T, p) are also functions
of T only, and so are σi(T, p) and fi(T, p). We can summarise these conclusions as

S =
g

∑
i=0

Ni σi(T )−R
g

∑
i=1

Ni ln
Ni

N0

F =
g

∑
i=0

Ni fi(T )+RT
g

∑
i=1

Ni ln
Ni

N0
(9.17)

with fi(T ) = ui(T )−Tσi(T ). Finally, the Gibbs free energy for dilute solutions is
given by

G =
g

∑
i=0

Ni( fi(T )+ pvi(T )) +RT
g

∑
i=1

Ni ln
Ni

N0
(9.18)

The reader may wonder what useful things have been gained by this general anal-
ysis of dilute solutions as the functions vi,ui,σi are still undetermined. This will be
addressed in the next sections where it will be shown that knowledge of C alone
is enough to determine various processes of interest like Osmotic Pressure, Boiling
Point of solutions and Freezing Point of solutions.

9.2 Mixing revisited

In our treatment of extensivity in multicomponent systems in section 6.5 we saw how,
in the case of ideal gases, the notion of an entropy of mixing arises. We also saw that
this entropy of mixing was positive when dissimilar gases were mixed, pointing to
the irreversibility of the process. A remarkably simple formula was obtained for this
entropy in eqn.(6.41). It depended only on the number of moles of the gases being
mixed. Implicit expressions for other potentials were also obtained there.
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It is worth emphasizing at this point that the mixing term of eqn.(9.14), which
also appears in eqn.(9.18) for the Gibbs potential, does not always represent the
Gibbs potential of mixing.

Remarkably, the expression for the mixing entropy of dilute solutions obtained
in eqn.(9.15) has exactly the same form even though one is no longer dealing with
ideal gases! In fact, that was obtained even without knowing the explicit form of
the liquid entropies. In fact, this circumstance is even more general. Even in the
case of mixing of liquids, the mixing entropy takes the same form for a large class
of so called ideal liquids. Of course, there are many liquids for which the mixing
entropy does not take this simple form only in terms of concentrations. They are
called nonideal. One phenomenologically replaces the concentrations by so called
activity, but we shall not pursue them here. When the solution is dilute, activities
just become concentrations. We shall see in the worked example below that even for
polymer solutions, the entropy of mixing takes the ideal form.

From the expression for the Gibbs potential eqn.(9.18), it can easily be derived
that the enthalpy of mixing vanishes. This is true for the ideal gas mixing too. In gen-
eral, for ideal liquids this holds, i.e ΔHM = 0. For nonideal liquids the enthalpy of
mixing is in general nonvanishing. In the case of Polymers, even though the mixing
entropy takes the ideal form, mixing entropy does not. The Flory-Huggins theory
(see the example below) can be used to calculate it.

Given both the entropy of mixing and the enthalpy of mixing, the Gibbs potential
for mixing can be computed. It can, of course, be calculated directly too. When the
Gibbs potential for mixing, ΔGM < 0, the mixing can occur spontaneously. Thus
in the case of ideal gas or ideal liquid mixing, ΔGM is indeed negative as ΔHM
vanishes and ΔSM is positive. Hence in these cases ΔGM is negative at all temper-
atures. On the other hand, in cases where ΔHM is positive, for temperatures below
T < (ΔHm/ΔSm) the mixing is not favoured and becomes spontaneous only for
temperatures greater than that. For example, dissociation of water into H2 and O2

becomes spontaneous only for temperatures greater than about 5500 K (of course,
this is an example of dissociation) because only then the entropy change dominates
over the enthalpy change.

Example 9.1: Mixing entropy for liquids

Consider the common pastime of mixing alcohol (ethyl) with water. Let us mix 90 gms
of H2O at 40 ◦C with 46 gms of ethyl alcohol at 30 ◦C, by first bringing them into a
thermal contact only and then allowing them to mix. Calculate the total entropy change
if the molecular weights of water and alcohol are, respectively, 18 and 46, while their
specific heats are 4.0 J/gm and 2.0 J/gm. Separate the entropy change to a part com-
ing from mixing the two at different temperatures, and a mixing entropy arising out of
mixing them at the same temperature.

In this example we have deliberately included a part where the liquids
are first brought into thermal equilibrium through a thermal contact, i.e a
wall that allows only exchange of heat, so that the magnitude of the mix-
ing entropy can be contrasted with the entropy increase during thermal-
ization, also an irreversible process. The equilibrium temperature Te is cal-
culated straightforwardly to be 90 · 4 · (40− Te) = 46 · 2 · (Te − 30) leading to
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Te = 37.9646◦C= 311.1146K. The entropy lost by water is 90 ·4R ln(Te/313.15)
while that gained by alcohol is 46 · 2R ln(Te/303.15. The net gain in entropy
during thermalization is therefore 0.0383 R=0.318 J/K.

The entropy of mixing is on the other hand −5R ln(5/6)− R ln(1/6) =
2.703R = 22.475J/K. Thus we see that entropy increase due to mixing far
exceeds the entropy gain due to thermalization. Both are positive, pointing to
the irreversibility of both processes.

Example 9.2: Mixing entropy for polymers in Flory-Huggins(FH) theory

This example is to show how the ideal mixing entropy, first shown for ideal gases and
then for dilute solutions, can work in much broader circumstances. The aim is to look
at mixing entropy in the FH theory for polymer solutions, and show how it too has the
form of ideal mixing entropy, though in suitable variables.

Polymers are gigantic molecules with very large molecular weights. There-
fore, even if the molar concentration of a polymer in solution is very small, the
weight fraction can be quite large. The polymer can be thought of as a large
chain living in the volume of the solvent. The FH theory provides a statistical
mechanical description of this. In the spirit of a thermodynamical description,
we shall not concern ourselves too much with either the microscopics of a
polymer or the statistical mechanical details. The basic process of dissolving a
solid polymer in a solvent can be thought of as a two step process in the first
of which the ordered solid is changed to a disordered, flexible polymer chain,
and the subsequent mixing of this random chain with the solvent.

The FH theory can be used to calculate the entropy changes during both
these steps. We shall focus only on the mixing entropy. An important param-
eter is r =V2/V1, where V2 is the molar volume of the polymer and V1 that of
the solvent. Recall that for ideal gases r = 1. If N2 is the number of molecules
of the ploymer in the solution and N1 that of the solvent, the Flory-Huggins
theory gives, for the mixing entropy,

ΔSM =−k

(
N1 ln

N1

N1+rN2
+N2 ln

N2

N1+rN2

)
(9.19)

In the FH theory this emerges on purely combinatorial grounds. This ex-
pression is unsuitable for a thermodynamic description as it is expressed
in terms of microscopic parameters, and it contains k, the Boltzman con-
stant, which is unknown to thermodynamics. First we convert N1,N2 to mo-
lar fractions n1 = N1/NA,n2 = N2/NA where NA is the Avogadro number, also
unknown to thermodynamics. Now we can trade off the unknown k to the
gas constant R according to R = NA · k. Introducing the volume fractions
φ2 = n2V2/(n1V1+ n2V2) and φ1 = n1V1/(n1V1+ n2V2) of the polymer and the
solvent respectively, the above expression for the mixing entropy can be ex-
pressed entirely in terms of macroscopic quantities as

ΔSM =−R(n1 lnφ1+n2 lnφ2) (9.20)

This is analogous to the mixing entropy expressions obtained earlier, and
unlike them, depends both on molar fractions and volume fractions. The ap-
pearance of volume fractions is not peculiar to polymer solutions. It happens,
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for example, when an ideal gas is mixed with a van der Waals gas (see prob-
lem 12.6).

9.3 Osmotic pressure

Consider a liquid solvent, say water, separated from a solution, containing various
solutes in the same solvent, by a semi-permeable membrane which is permeable to
the solvent but not to the solutes. So for example, if we consider such a membrane
separating water on one side and a salt solution on the other, water can move in both
directions but the salt will always remain on the same side. As the solvent moves
from one side to another, the concentration of the solution increases or decreases as
the case may be. In terms of the moles of solute and solvent in the solution intro-
duced above, N0 is a variable, but Ni is not.

FIGURE 9.1 Osmotic Pressure

In the accompanying figure repre-
senting a standard setup for demonstrat-
ing Osmotic Pressure, it is seen that the
meniscus of the solution is at a greater
height than that of the solvent. First of
all, the fact that the meniscuses are at
different levels is indicating that there
is a pressure difference between the sol-
vent and solution. It should be appre-
ciated that this pressure difference is
solely due to the arrangement that the
membrane is permeable to the solvent
but not to the solutes. If one had used
a symmetrical membrane instead, one
that would have been permeable to both
the solvent and the solutes, there would

have been no pressure difference and the heights of the meniscuses would have been
the same. The fact that in the actual experimental setup, the meniscus of the solution
is at a greater height means that the pressure in the solution is higher than that of the
solvent.

One should avoid the erroneous reasoning that a greater pressure on one side (in
this case the side of the solvent), is pushing the meniscus of the other side (in this
case the side of the solution).That would get things completely wrong. Instead, what
is happening in the particular setup is that the pressure of the solvent is matching
the atmospheric pressure, while the pressure in the solution is such as to match the
atmospheric pressure plus the weight of a column of the solution of height equalling
the difference in heights of the meniscuses. Hence the pressure difference is

Δp = ρ gh (9.21)
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where ρ is the density of the solution, h the difference in the meniscus levels and g
the acceleration due to gravity. Since the solution is dilute, to a very good approxima-
tion, the density of the solution is the same as the density of the solvent. Henceforth,
ρ will be taken to be the density of the solvent.

Let us consider a vessel with two chambers separated by a semi-permeable mem-
brane which can be moved to left or right, and whose outer walls are permeable to the
flow of heat in both directions. The whole setup is in thermal equilibrium with a heat
reservoir, at temperature T . The left chamber contains the solution described by the
parameters T, psoln,N0,N1, . . . ,Ng while the right chamber contains N′

0 moles of the
pure solvent at T, psolv. Let us imagine moving the membrane to the right by a very
small (infinitesimal) amount ΔV . The volume occupied by the solution increases by
ΔV while the volume occupied by the pure solvent decreases by the same amount.
Recall from the earlier chapters that the Helmholtz free energy differentials are given
by

dF = −SdT −PdV (9.22)

Since the present setup is at constant temperature (isothermal), dT = 0 and hence
dF = −PdV . The change in free energy of the solution is therefore ΔFsoln =
−psolnΔV , while the change in free energy of the pure solvent is ΔFsolv = psolvΔV .
Thus the total change in free energy is given by

ΔFtot =ΔFsoln +ΔFsolv =−(psoln − psolv)ΔV =−posmΔV (9.23)

where we have used the fact that the difference in the pressures of the solution and
solvent, at equilibrium, is by definition, the Osmotic Pressure, posm.

In the process of moving the membrane to the right, certain moles of the solvent
would have moved to the left. Since the volume of solvent that has crossed from right
to left is ΔV , and the volume of the solvent per mole is v0(T ), the number of moles
of the solvent that has crossed to the left is given by ΔN0 =

ΔV
v0

. This can also be
arrived at from the solution side, as follows: the volume of the solution is given by

V = N0v0(T )+N1v1(T )+ . . .+Ngvg (9.24)

At this stage, the importance of the result we established earlier viz. that all the vi(T )
are functions of temperature alone, comes into play. Since our setup is isothermal,
there is no change in any of the vi during the process of moving the membrane to the
right. And due to the fact that the membrane is impermeable to the solutes, none of
the Ni also change during the process. Therefore, ΔV =ΔN0 v0, as before.

Hence the change in total free energy is ΔFtot = −posmv0ΔN0. We can com-
pare this to a direct evaluation of ΔFtot based on eqn.(9.17). The free energy of
the pure solvent is Fsolv = N′

0 f0, while the free energy of the solution is Fsoln =
N0 f0(T ) +∑g

i=1 Ni fi(T ) +RT ∑g
i=1 Ni ln

Ni
N0

. Thus the total free energy of the sol-
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vent and solution is

Ftot = (N0+N′
0) f0(T )+

g

∑
i=1

Ni fi(T )+RT
g

∑
i=1

Ni ln
Ni

N0
(9.25)

The change in total free energy during the process is therefore

ΔFtot =−RT
ΔN0

N0

g

∑
i=1

Ni (9.26)

Thus, even though one does not know the various fi(T ) in the total free energy, their
knowledge is irrelevant for knowing the change in total free energy! It is important to
appreciate how this comes about. The coefficient of the unknown f0(T ) is N0 +N′

0

which is the total number of moles of solvent on both sides. Even though there is
transfer of the solvent from one side to another, this total quantity obviously does not
change. f0(T ) does not change during the process as it happens at the same temper-
ature. Due to the semi-permeable nature of the membrane, none of the Ni changes
during the process and again fi(T ) does not change because of the isothermal nature
of the process. Therefore, the only thing that changes during the process is the coef-
ficient of the RT term which is solely due to the C term in eqn.(9.14). Comparing the
expression for ΔFtot obtained in two different ways, one gets

−posmv0ΔN0 = −RT
ΔN0

N0

g

∑
i=1

Ni (9.27)

leading to the remarkably simple expression for the Osmotic Pressure

posm =
RT

N0v0

g

∑
i=1

Ni =
RT
V

g

∑
i=1

Ni (9.28)

In summary, the Osmotic Pressure of a dilute solution is equal to the pressure exerted
by an ideal gas at the same temperature and volume as the solution, and containing
a number of moles equal to the total number of moles of the solutes dissolved in the
solution. Van’t Hoff was the first one to establish this property of Osmosis.

This is a very remarkable result indeed. The solutes are actually in a liquid
medium and one would expect the interactions between solutes and solvents to re-
sult in strong deviations from ideal gas behaviour. The treatment given above is not
expected to hold if there are chemical reactions between solutes, or between solutes
and the solvent. Another remarkable feature is that Osmotic Pressure depends only
on the number of moles of solutes dissolved, and not on their molar weight. Thus two
solutes, widely different in their molar weights, will still produce the same Osmotic
Pressure if the same number of moles of them is dissolved in a given volume of the
solvent. This leads to some curious (and also important) consequences for strong
electrolytes like salt (NaCl). In this case the molecule of salt dissociates into Sodium
and Chlorine ions, and for the purposes of computing the Osmotic Pressure, we have
to treat sodium and chlorine independently as solutes, yielding nearly double the
Osmotic Pressure from what one would have obtained by treating NaCl as a single
solute!
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Example 9.3: Cost of desalination

The entropy change in mixing salt and water to form a saline solution being positive
means a saline solution will not spontaneously separate into salt and pure water. Some
minimal amount of work must be performed to achieve this. Consider a simple desali-
nation setup which consists of a cylindrical tube fitted at one end with a membrane
permeable only to water. Fill this with sea water approximated to have only NaCl. Ap-
ply a pressure to force pure water through the membrane. Calculate the following: a)
The minimum pressure needed for this desalination to work at 300 K, b) minimum work
done to get 1 liter of pure water at this temperature, and c) the cost of electricity for
desalination at Rs. 10 per kWh, assuming an efficiency of 20%. Compare the energy
budget if one were to boil the water and recondense.

For any process to be the most efficient possible, it has to be achieved as
a reversible process. Without the application of any external pressure, pure
water would enter the cylinder to dilute the sea water with a pressure equal to
the osmotic pressure. Therefore, the minimum pressure needed is the osmotic
pressure. The osmotic pressure, from eqn.(9.28), depends on temperature, vol-
ume of solvent and number of moles of solvent.

Sea water, under the assumption that all salts in it are NaCl, contains
roughly 33gms of salt per liter. The molecular weight of NaCl is 58.5 gm/mole,
so N1 = 33/58 � 0.56. But the fact that salt is fully ionised into Na+ and Cl−
ions the correct number to be N1 = 1.2. The osmotic pressure works out to
be about 27 bar, i.e 27 Kg/sqcm. The external pressure must be at least this
much.

If the cross sectional area of the cylinder is A sqcm, the force on the mem-
brane is 27 A Kg. To produce one liter of fresh water, the piston has to move 10
meters! Consequently the work needed is 270 Kg-m or 2700 J. This is roughly
2700/4200 kcal, i.e 0.66 kcal per liter of fresh water. In terms of kWh, note
that one kWh=3600 kJ. Consequently the work needed is 0.75 ·10−3 kWh/liter
if the efficiency was 100%. Since the latter is only 20%, the figure goes up to
3.75 · 10−3 kWh/liter. This is a tiny energy indeed. But in reality there are
various other costs involved.

Let us now compare the energetics of desalination through boiling and
subsequent condensation of the vapor to form fresh water. Taking the specific
heat of water at 4 J/gm, it would take 73 ·1000 ·4 = 70kcal to heat from 300
K to the boiling point of water and then a whopping 540 ·1000 = 540kcal to
vaporize it. Of course a good part of this nearly 610 kcals can be recovered,
but this method can hardly match the reverse osmosis method.

9.4 Vapor pressure and boiling point of solutions

Above the surface of a liquid there is always a vapor which for a volatile liquid
will have the same composition as the liquid itself. If the liquid is a solution whose
solutes are non-volatile, i.e even at moderately high temperature they don’t go into
the gaseous phase, what is the relationship between the vapor pressure of the solution
and the vapor pressure of the solvent? Intuitively one may feel that since the solutes
can not contribute to the vapor pressure, the vapor pressure of solutions will be lower
than the vapor pressure of solvents. The real situation is indeed so, but as we shall see
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later it is not straightforward to convert this intuitive feeling into a sound argument,
even at a qualitative level.

FIGURE 9.2 Vapor pressures

To show that the vapor pressure of
solutions has to be less than the vapor
pressure of solvents, consider a setup as
shown in the next figure. The solvent
extending from A to B is separated from
the solution extending from B to C by
a semi-permeable membrane at B. The
fact that the Osmotic Pressure of the so-
lution is higher than the solvent means
the length of the column BC is greater
than the length of the column AB. If we
choose a point D such that the length
of the column BD equals that of AB,
and furthermore if CD = h, the Osmotic
Pressure is given by ρgh where ρ is the
density of the pure solvent. It should ac-
tually be the density of the solution, but for the dilute solutions being considered,
these two densities are very nearly the same. This approximation was made earlier
too.

Since the solutes are taken to be non-volatile, the entire region AC is filled with
saturated vapor of the solvent only. Just above the point C, the saturated vapor of the
solvent is in equilibrium with the solution while just above A the saturated solvent
vapor is in equilibrium with the solvent. The pressure at A is higher than the pressure
at C and the difference in these pressures is given by

pA − pC = ρvap gh =Δp (9.29)

where ρvap is the density of the saturated vapor, which, over small regions, is a func-
tion of temperature only. One must recall that saturated vapor pressure depends only
on temperature and does not depend on volume at all. It should be emphasized that
the whole setup is at constant temperature. Thus pC < pA which also means that the
vapor pressure of the solutions is lower than the vapor pressure of the solvent.

The magnitude of this vapor pressure lowering can be calculated easily.

Δp
posm

=
ρvap

ρ
→ Δp = posm

v0
vvap
0

(9.30)

where vvap
0 is the volume per mole of the solvent vapor. This should not be confused

with v0 which is the volume per mole of the pure solvent in the liquid state. Using
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the earlier result for posm given in eqn.(9.28), one gets

Δp =
RT

N0v′0

g

∑
i=1

Ni (9.31)

This is the famous Raoult’s law.

Boiling point of a liquid, that is, the temperature at which the liquid
boils, is given by that temperature at which the vapor pressure equals the
atmospheric pressure. Once again it is worth remembering that the vapor
pressure of a liquid only depends on temperature and not its volume, as
would be the case for an ideal gas. Therefore, lowering of the vapor pres-
sure of a solution in comparison to the vapor pressure of the pure solvent
means that the solution boils at a higher temperature than the pure solvent.

FIGURE 9.3 Boiling point shift

One of the standard ways of calculat-
ing this upward shift in the boiling point
is to use the Clapeyron equation, which
tells us how the vapor pressure of a liq-
uid varies with temperature. As we have
not derived this equation yet, and will
be doing so when we discuss liquid-gas
phase transitions later, we turn to a di-
rect method advocated by Fermi [17]
which addresses both the lowering of
the vapor pressure and raising of the
boiling point in solutions.

For this we return to the expression
for the Gibbs free energy for a solu-
tion that we derived in eqn.(9.18). To
keep the equations simpler, let us consider the case where there is only one solute
present in the solution. Generalizing the results to more than one solute is completely
straightforward. So we consider a dilute solution of N0 moles of the solvent and N1

moles of the solute, in equilibrium with the vapor of the solvent. Diluteness of the
solution means N1 << N0. The Gibbs free energy of the solution is

Gsoln = N0g0(T, p)+N1g1(T, p)+RT N1 ln
N1

N0
(9.32)

where

g0(T, p) = u0(T )−Tσ(T )+ pv0(T ) g1(T, p) = u1(T )−Tσ(T )+ pv1(T )
(9.33)

Now let gvap(T, p) be the Gibbs free energy of one mole of the saturated vapor of the
solvent. If the saturated vapor consists of Nvap moles of the solvent, one has

Gvap = Nvap gvap(T, p) (9.34)
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Recalling our earlier discussion of conditions of thermal equilibrium at constant
pressure, the condition for thermal equilibrium between the solution and the satu-
rated vapor is that the total Gibbs free energy of the solution and solvent must be a
minimum. In the present context the only variables are N0 and Nvap, but their sum
N0+Nvap is constant. The total Gibbs free energy is given by

Gtot = N0g0(T, p)+N1g1(T, p)+RT N1 ln
N1

N0
+Nvapgvap(T, p) (9.35)

Notice that if the Gibbs free energies per mole of the vapor and the pure solvent
were the same for all T, p, the total Gibbs free energy would have no minimum at all,
except at the unphysical point N0 = ∞. Of course, the Gibbs free energies per mole
of the vapor and solvent are different! To find out the equilibrium condition, let us
compute the change in the total Gibbs free energy when the number of moles of the
solvent in the solution is changed by dN0. Since the total amount of solvent in the
vapor and the solution can not change, dNvap =−dN0 and

dGtot = dN0
∂Gtot

∂N0
+ dNvap

∂Gtot

∂Nvap

= dN0 {∂Gtot

∂N0
− ∂Gtot

∂Nvap
} (9.36)

It should be recalled that ∂G
∂N is nothing but the chemical potential. Hence the above

equation is saying that at equilibrium, the chemical potentials of the solvent in the
two phases must be the same. This leads to the very simple equilibrium condition:

∂Gtot

∂N0
=

∂Gtot

∂Nvap
→ g0(T, p)−RT

N1

N0
= gvap(T, p) (9.37)

To make the equations look more transparent, let us denote the saturated vapor
pressure of the pure solvent by p0(T ). The condition for equilibrium between pure
solvent and its vapor can be deduced from eqn.(9.37) by setting N1 = 0, that is,

g(0)
vapor(T, p0) = g0(T, p) (9.38)

Now, after N1 moles of the solute is dissolved in N0 moles of the solvent, the vapor
pressure changes from p0(T ). Let the new vapor pressure be p0(T )+Δp. For dilute
solutions N1 << N0 we expect Δp to be small compared to p0 and we can expand
both g0 and gvap around p = p0 to get

g0(T, p0+Δp) = g0(T, p0)+
∂g0(T, p0)

∂ p0
·Δp

gvap(T, p0+Δp) = gvap(T, p0)+
∂gvap(T, p0)

∂ p0
(9.39)

Using eqn.(9.39) and eqn.(9.38) in eqn.(9.37), one gets

RT
N1

N0
= { ∂g0

∂ p0
− ∂gvap

∂ p0
}Δp (9.40)
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Now let us recall eqn.7.22 from chapter 7 i.e ∂G
∂P = V . Since g0 is the Gibbs free

energy per mole of the solvent, gvap that of the vapor, we conclude that ∂g0
∂ p0

is the

volume per mole of the solvent v0, and ∂gvap
∂ p0

the volume per mole of the vapor in
equilibrium with the solution, which we called v′0 earlier. Since v0 for the liquid is
much much smaller than v′0 for the vapor, eqn.(9.40) gives

Δp =−RT
N1

N0 v′0
(9.41)

which can be seen to be the same as our earlier expression, for the case of a sin-
gle solute, for the lowering of the vapor pressure given by eqn.(9.31). The sign in
eqn.(9.41) corresponds to a lowering of the vapor pressure, and it comes automati-
cally from the treatment based on Gibbs free energy.

Now the same set of equations can be used to get a quantitative expression for
the elevation of the boiling point of solutions. In literature you may find reference
to two types of boiling points, normal and standard. The normal boiling point is
the temperature at which liquids under one atmospheric pressure at sea level boil,
whereas the standard boiling point is the temperature at which liquids boil under a
pressure of 1 KPa. The atmospheric pressure at sea level can vary a little bit from
place to place but is roughly 1.05 KPa.

Let the boiling point of the pure solvent at a pressure pA (we have used the sub-
script A to denote atmospheric pressure, but if one is interested in the standard boiling
point, pA should be set equal to 1 KPa) be T B

0 , while the boiling point of the solution
at the same pressure be T B

0 +ΔTB. For the pure solvent, we get, from eqn.(9.38)

g0(T
B
0 , pA) = gvap(T

B
0 , pA) (9.42)

while for the solution we get, from eqn.(9.37)

g0(T
B
0 +ΔT B, pA)− gvap(T

B
0 +ΔT B, pA) = R(T B

0 +ΔTB)
N1

N0
(9.43)

We expect the elevation of the boiling point ΔTB to be proportional to N1. This is
so, as ΔTB by definition is zero for the pure solvent. As we are dealing only with
dilute solutions, for which N1 << N0, it is a very good approximation to write the
right hand side of eqn.(9.43) as RT B

0
N1
N0

. The left hand side can be expanded around

T = T B
0 just as we expanded around the pressure p0 earlier . Then we can rewrite this

equation as

{(∂g0

∂T
)T B

0
− (

∂gvap

∂T
)T B

0
}ΔT B = RT B

0

N1

N0
(9.44)

To further simplify this we note that ( ∂G
∂T )P =−S, the negative of entropy. We apply

this to the solvent and vapor Gibbs free energies, and on using eqn.(9.17) we get

{σvap(T
B
0 , pA)−σ0(T

B
0 , pA)}ΔT B = RT B

0

N1

N0
(9.45)
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We can evaluate the difference in specific entropies occurring in this equation by
noting that a supply of latent heat of vaporization at (T B

0 , pA) takes the liquid to a
fully vapor state. For an infinitesimal supply of heat d̄Q, the entropy, by definition,
changes by T dS. Normally the total heat change depends on the path taken in ther-
modynamic space. But in this particular case, the absorption of heat takes place at
a definite temperature and pressure, that is, at a point in the thermodynamic space.
Therefore it is legitimate to express the total heat absorbed, ΔQ, as TΔS. Therefore,
σvap −σ0 of eqn.(9.45) is nothing but Lvap

T B
0

where Lvap is the latent heat of vapor-

ization per mole of the solvent. Putting everything together we arrive at the very
important result for the elevation of boiling point of solutions

ΔT B =
RT2

B

Lvap

N1

N0
(9.46)

Example 9.4: Boiling point elevation in solutions

Consider a so-called normal solution of salt in water, i.e one mole of NaCl is dissolved
in 1 liter of water. Estimate the shift in boiling point.

The number of moles of the solute is N1 = 1 while the number of moles of
the solvent is N0 = 1000/18, as the molecular weight of water is 18. The latent
heat of vaporization per mole is 540 · 18 = 9.720 kcal. Using eqn.(9.46) with
a factor 2 as NaCl ionises and taking R= 1.986 cal, TB = 373.15K one gets
ΔTB � 1K. If on the other hand one had dissolved, say, CH3OH, such a factor
of 2 would not be there.

9.5 Freezing point of dilute solutions

In this section we shall discuss how the freezing points of liquids are affected when
solutes are dissolved in them. Freezing point, in complete analogy with boiling
points, is the point in the (P,T ) diagram at which a solid and liquid coexist. Clearly,
the temperature at which a liquid freezes, or equivalently the solid melts, depends on
the external pressure. As in the case of boiling points, one can introduce normal and
standard freezing points.

Once again, we need the condition for phase equilibrium between solid and liquid.
The important point is that eqns.(9.37,9.38) expressing the equilibrium conditions
for liquid-gas phase equilibrium have their precise analogs for liquid-solid phase
equilibrium also. Let us start by writing these equations corresponding to liquid-solid
phase equlibria:

gsolid(T
F
0 , pA) = g0(T

F
0 , pA) (9.47)

This states the equilibrium condition for the coexistence of the pure solvent as a
liquid, and its solid phase at the freezing temperatute T F

0 and atmospheric pressure
pA. When N1 moles of the solute are dissolved in N0 moles of solvent to form a dilute
system, the freezing point will shift to T F

0 +ΔT F , giving
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g0(T
F
0 +ΔT F , pA)−RTF

0

N1

N0
= gsolid(T

F
0 +ΔT F , pA) (9.48)

Use has already been made of the fact that ΔT F is in itself proportional to N1 in
simplifying the second term above. Expanding eqn.(9.48) around T F

0 , one can recast
it as

RT F
0

N1

N0
= {(∂g0

∂T
)T F

0
− (

∂gsolid

∂T
)T F

0
}ΔT F (9.49)

Following reasoning similar to the one adopted in the case of the boiling point, this
condition is equivalent to

{σsolid(T
F
0 , pA)−σ0(T

F
0 , pA)}ΔT F = RT F

0

N1

N0
(9.50)

But now σsolid −σ0 = − Lf reez

TF
0

. Hence, one gets for the shift of the freezing point of

the solution the expression

ΔT F =− RT 2
F

L f reez

N1

N0
(9.51)

The freezing point of the solution actually becomes lower than that of the pure sol-
vent, unlike the boiling point of the solution which is higher than that of the pure
solvent.

Example 9.5: Salt-ice freezing mixtures

Calculate the lowering of the freezing point of water when one mole of NaCl is dissolved
in 1000 liters of water (the so called normal solution) treating the solution as dilute.
With the so called freezing mixture of NaCl and water, it is observed that the maximum
lowering of freezing point is by about 21 K. Calculate the number of moles of salt that
need to be dissolved in 1000 liters of water for this.

Using N1 = 1, N2 = 1000/18,TF = 273.15,L f = 80cal/gm, R = 1.986 cal, and
with an additional factor of 2 to take into account the near completion ion-
isation of NaCl, eqn.(9.51) gives ΔTF = −1.85K. If we calculate the amount
of salt needed to depress the freezing point by the maximum value of -21 K,
dilute solution theory gives N1 � 6, or about 350 gms. This is roughly the
observed concentration of salt in the freezing mixture. This is close to the
maximum solubility of salt in water at these temperatures. Thus for saline
solutions dilute solution theory works all the way.

9.6 Problems

Problem 9.1 Show that the chemical potential of the solvent in a solution de-
creases linearly with concentration, while the chemical potential of the solute in
the solution increases logarithmically with concentration. Find the concentration
of a saturated solution, i.e a solution for which the chemical potential of the so-
lute in the solution equals the chemical potential for the pure solute. Explain why
the solution is saturated then.
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Problem 9.2 Find the maximum work that can be done in the formation of a
solution, and from it the maximum work that can be done in forming a saturated
solution.

Problem 9.3 Find the minimum work that must be done to raise the concentra-
tion of a solution from c1 to c2 > c1 by removing the appropriate amount of the
solvent. Is there any significance of this to the desalination problem?

Problem 9.4 Show that for ideal mixing, the enthalpy of mixing, internal energy
of mixing, as well as volume of mixing vanish.

Problem 9.5 Find the equilibrium condition for a solution in an external gravi-
tational field. Assuming that solutions are incompressible, derive an expression
for the variation of concentration in a gravitational field.

Problem 9.6 If a solution of sugar (C6H12O6) and another of calcium chloride
(CaCl), both in water, have the same volume and same osmotic pressure, at the
same T, in what ratio by weight are they dissolved?

Problem 9.7 Calculate the osmotic pressure and the variation in boiling and
freezing points of a normal salt solution in water.

Problem 9.8 At what temperature will the osmotic pressure of a normal solution
of Nacl be 100 atmospheres?

Problem 9.9 Explain why a living cell containing water and many ions, equiva-
lent to a saline solution of 0.15 moles per liter, will burst when inserted in fresh
water. This is also the reason why sea water fish will die when moved to fresh
water. Estimate the osmotic pressure responsible for this by taking the tempera-
ture to be 300 K.

Problem 9.10 10 gms of an unknown electrolyte, but known to dissociate into
three ions in water, is seen to shift the boiling point of water by 1 K when dis-
solved in one liter of water. What is the molecular weight of the unknown sub-
stance?

Problem 9.11 Calculate the osmotic pressure when 10 gms of a protein with
molecular weight of 100,000 is dissolved in a liter of water at 300 K.

Problem 9.12 In what ratio by weight should hemoglobin, with molecular
weight 64,000, and NaCl be dissolved in water to produce the same osmotic
pressure? Does the answer depend on the temperature of the solution?





10 Phases and Their Equilibria

We are all familiar with the sight of ice floating on water. In fact, even on a warm
day, we can toss an ice cube into a glass of water. What happens subsequently is
that ice starts melting and will take quite some time before completely melting into
water. In the interim, both ice and water are existing together. Can this be called a
state of phase-coexistence? Strictly speaking not, because this is not an equilibrium
situation. It is not a state of equilibrium because as time goes on the amount of ice
left changes.

Our next question is whether we can arrange for a truly equilibrium coexistence
of ice and water? It can indeed be arranged as follows: let us take a certain amount of
water cooled to 0 ◦C. If we maintain this temperature and 1 atmosphere of external
pressure, water will continue in the same state and is hence a stable phase. Now let
us toss some amount of ice into this water. Ice, if maintained at 0 ◦C is also a stable
phase in the sense that no matter how much time elapses, it will remain ice. Now
this combination of ice and water both maintained at 1 atmosphere and 0 ◦C is also
stable, and this is an equilibrium state of the coexistence of two phases, namely, ice
and water. As this example makes it clear, we need to fix both the temperature and
pressure at pre-prescribed values.

In this chapter we shall investigate phase co-existence or phase equilibria as gen-
erally as we can. In the example considered above there was only one chemically
distinct component, that is, H2O, but our general discussion can handle many differ-
ent constituents in phase equilibrium. The following discussion is due to Gibbs. To
start with, we make a distinction between number of components and the number of
phases in coexistence. In the water-ice example, the number of components is one,
and the number of coexisting phases is two. We shall see later that H2O can exist
simultaneously in solid, liquid, and gas phases at a very special combination of tem-
perature and pressure called the Triple Point. Strictly speaking, one should consider
H2O as having two components, namely, Hydrogen and Oxygen. But at low enough
temperatures and high enough pressures, it is legitimate to consider it as a single
component system. The precise criterion is that rates of production, and the rates of
dissociation of the chemical H2O must be very small. In fact, we can extend this dis-
cussion to make a distinction between atomic Hydrogen H and molecular Hydrogen
H2. If we do so, then we should think of this system as having even more compo-
nents. Clearly there is no strict end to this process of counting, and depending on
the circumstances we may have to count electrons, protons, neutrons etc. and maybe
even quarks and strings!

10.1 The Gibbs phase rule

Quite generally, let us consider a system of n independent components capable of
coexisting in F phases. So far most of our discussions have involved quantities ex-
pressed in moles only. The actual masses of constituents never entered the picture.

189
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Now we are going to make a departure from this and express amounts in their respec-
tive masses. Of course the two are completely equivalent as knowing the molecular
weights means we can express one in terms of the other. But obviously care must be
exercised in carefully remembering the convention used in context.

Let mik be the mass of the component labelled by k in the phase labelled by i.
Here too it is very important to remember the convention, that is, the first label in
mik refers to the phase and the second to the component. Since the number of phases
can in general be different from the number of components, mik, viewed as a matrix
is in general rectangular. As a phase need not always have all the components, and a
component need not be present in all phases, some of the mik can be zero.

m11 m21 . . . m f1

m12 m22 . . . m f2

. . . . . . . . . . . .

. . . . . . . . . . . .
m1n m2n . . . m f n

The first column in this matrix (m11,m12, . . . ,m1n) carries information about the
masses of the n components in the phase labelled by ’1’. The first column,
m11,m21, . . . ,m f1 carries information about the mass of the component labelled by
’1’ in the f phases. Likewise for other rows and columns of this matrix.

From our discussion of the elementary examples, it is clear that phase equilibria
take place at fixed temperature and pressure. Thus the conditions for equilibrium are
best understood in terms of the Gibbs free energy for the total system. This total
Gibbs free energy must take its minimum value at equilibrium. The total Gibbs free
energy is given by

G = G1+G2+ . . .+G f (10.1)

where
Gi = Gi(T,P,mi1,mi2, . . . ,min) (10.2)

It should be carefully noted that Gi is the Gibbs free energy of the phase labelled
by i in which the masses of the various components are given by the n quantities
mi1,mi2, . . . ,min.

Let us first consider phase equilibrium only between a pair of phases, say the ones
labelled by i and j. Before equilibrium is achieved there will be transfer of various
components between the two phases. When equilibrium is reached this transfer of
components ceases. This should happen when the total Gibbs free energy of these
two phases, Gtot = Gi +G j reaches a minimum. Let us further simplify the situation
by restricting the transfer to component k only. Imagine the amount of this compo-
nent in the i-phase to be increased by δ m; then the amount of this component in the
j-phase must decrease by the same amount. Hence

δmik =−δm jk = δm (10.3)

If the Gibbs free energy is a minimum, the variation δGtot of the total Gibbs free
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energy must vanish at the equilibrium point:

δGtot = 0 =
∂Gi

∂mik
· δm− ∂G j

∂m jk
·δm → ∂Gi

∂mik
=

∂G j

∂m jk
(10.4)

It should be emphasized that eqn.(10.4) is only a necessary condition for phase equi-
librium between the phases i and j. For the phase coexistence to be stable, Gibbs free
energy must be a minimum and this requires

∂ 2Gtot

(∂δm)2
< 0 (10.5)

Stability of phases is a very important and fascinating topic in thermodynamics. We
will discuss some essential aspects of this later on.

Now we can remove the restriction of only two phases and a single component;
that was introduced only to make the presentation less cluttered and does not re-
ally restrict the general validity of this analysis. The removal of these restrictions is
straightforward and one gets, in place of eqn.(10.5),

∂G1

∂m11
=

∂G2

∂m21
= .....=

∂G f

∂m f1

∂G1

∂m12
=

∂G2

∂m22
= . . .=

∂G f

∂m f2
. . . = . . .= . . .= . . .

∂G1

∂m1n
=

∂G2

∂m2n
= . . .=

∂G f

∂m f n
(10.6)

In each row we have ( f − 1) equalities, and therefore all in all we have n( f − 1)
equations. Suppose we have phase equilibrium among f phases involving n compo-
nents, and we double all the masses mik; we are clearly not going to get another type
of phase equilibrium. What we will get instead is the same equilibrium with twice
the total mass in each phase. In another words, 5 gms of ice is not a different phase
from 10 gms of ice. Therefore we conclude

Gi(λimi1,λimi2, . . . ,λimin) = λiGi(mi1,mi2, . . . ,min) (10.7)

In other words, Gi are homogeneous of first degree in the mass variables. Equiva-
lently, Gi can only depend on the ratios of the masses, and not on all the masses.
Specifically, each Gi can depend only on the (n− 1) independent mass ratios con-
structed out of n masses occurring in eqn.(10.7). It should be appreciated that each
phase can have different values for λi. We had, to begin with, nf masses; but the num-
ber of independent ratios is (n−1) for each phase, or (n−1) · f altogether. If we now
count the thermodynamic variables (T, p) as the other independent variables, the to-
tal number of independent variables is (n−1) · f +2. On the other hand, we counted
n · ( f − 1) independent equations. These equations are constraints among what we
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thought to be the independent variables. Therefore the true number of independent
variables, or degrees of freedom are

v = (n− 1) · f +2− f · (n− 1) = 2+ n− f (10.8)

This is the famous Gibbs Phase Rule. Let us apply this to a few simple examples.

10.2 Phases of water

Consider water in ranges of temperatures and pressures in which it remains a liquid.
The system is characterized by its temperature T , pressure P and the mass of water.
This is an example of a chemically defined (H2O) homogeneous, in the sense of being
in a single phase, liquid. Let us apply the phase rule to it. In this case f = 1,n = 1.
Therefore, the number of degrees of freedom is v = 2. These are (T,P). As already
explained, the masses of components are not degrees of freedom, but only ratios of
masses. Clearly, whether we have 10gms of water or 1Kg of it, we still have the same
phase!

Now let us consider two phases of water in coexistence, say water and ice or water
and its vapor. The number of components is still n = 1 but the number of phases is
f = 2 so the number of degrees of freedom is now v = 1. Compared to the previous
example, the number of degrees of freedom has come down. Counting the amount of
water and the amount of its vapor along with temperature and pressure would give
four variables. As per the discussion of the phase rule, in each phase, only the ratios
of masses are to be counted. Therefore, in this example, neither the amount of water
nor the amount of vapor would be among the degrees of freedom. Of course, there
is the ratio of the mass of water to mass of vapor; but this ratio is constructed out of
masses taken from different phases, and hence is not counted.

Therefore the single degree of freedom to describe the coexistence of two phases
of the same component, in this case water, can be chosen to be either the pressure
or temperature. The one gets determined in terms of the other. In other words, in the
(P,T ) plane, the coexistence points lie on a curve. As one crosses this curve in the
T,P plane, one goes from one phase to another.

We introduce some useful terminology here. Suppose two phases, say A and B,
are in coexistence. This is described by, say, a curve in the P-T plane. One could of
course have chosen any two independent thermodynamic variables to describe this
coexistence. As we cross the coexistence curve from lower to higher temperatures,
one says that we go from a low-temperature stable phase to a high-temperature stable
phase. Likewise, for pressure. We shall illustrate this with specific examples later on.

That the number of degrees of freedom goes down with increasing number of
phases is physically clear. It requires many more physical conditions to be satisfied
at the same time. Thus the negative sign that comes with f in the phase rule. By the
same reasoning, it becomes easier to have more phases in coexistence if the number
of components gets larger. Indeed n comes with a positive sign in the phase rule.

There is one point worth elaborating about the coexistence between a liquid and
its vapor. As we have just seen, either the temperature or the pressure suffices to fix
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the phase coexistence. Let us take it to be temperature. Then the pressure, which is
also the vapor pressure in this case, is automatically fixed! That is, vapor pressure is
a function of temperature only. But for a gas, pressure is usually determined by both
its temperature and volume.

Why then does not the volume of vapor play a role in fixing its pressure? As
the volume over a liquid surface is increased, say by raising a piston, more of the
liquid evaporates to form saturated vapor. Thus unlike the example of a gas where
the equation of state is expressed for a given amount of gas, in the case of the vapor
the amount keeps increasing with volume in such a way that the pressure is kept fixed
at the value that is the vapor pressure of the liquid at the given temperature.

Now let us ask if all the three familiarly known phases of water, namely, ice, liquid
water, and water vapor can coexist. From our discussion a little while ago, we expect
the coexistence of any two given phases to be described by a curve in the T,P plane.
Thus, the water-vapor coexistence will be described by one curve, and the ice-water
coexistence by another curve. If these curves intersect, at the intersection point we
will have all the three phases in coexistence. Clearly, such an intersection point will
have unique values of temperature and pressure. In the context of water, it means
there are no degrees of freedom left at all! This is indeed what the phase rule also
says as v = 0 for this case of n = 1 and f = 3. Such points are called Triple Points.
The triple point for water occurs at T = .0075 ◦C,P = .006KPa.

FIGURE 10.1 Phase diagram of H2O.

Having determined the triple point as
an intersection of the ice-water and water-
vapor coexistence curves, there is no free-
dom left for the ice-vapor curve but to pass
through this triple point! In the following
figure we show a typical phase diagram for
a one component system capable of be-
ing in three phases. The solid-liquid co-
existence curve shown as a dotted line is
for the water-ice case. There is something
anomalous about this freezing curve. Be-

fore explaining that, let us explain a simple rule that determines the way these phase
boundaries are pointing in the T,P plane, or in other words, their ’slope.’ If we look
at the water-vapor curve, or a generic liquid-gas coexistence curve, we see that its
slope in the P,T -plane is positive. Correlated with this is the usual situation that the
density of gases is much lower than the density of liquids. The solid-gas coexistence
in the above figure also shows the same thing: gases are less dense than solids and
the solid-gas coexistence line has positive slope.

Finally let us look at the solid-liquid coexistence curve. By and large liquids are
less dense than solids and if the slope of the coexistence curve is dictated by it as in
the above two cases, then the freezing curves should also have positive slope. But the
water-ice freezing curve has negative slope. This means that at higher pressures, the
melting point of ice is lowered, and the system (H2O) can remain a liquid at lower
temperatures than it did when the pressure was lower. It is claimed that skiing is
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facilitated by this, but we will discuss that issue elsewhere, but it is experimentally
true that the melting point of ice is indeed lowered at higher pressure. But there is
something else about water that is unusual too! Below 4 ◦C, water expands upon
cooling! So in fact ice is lighter than water reversing the usual situation that solids
are denser than liquids! Therefore our ’rule’ still works, and since the sign of relative
densities is reversed, so must the slope of the freezing curve!

Example 10.1: Ice melting on a very very cold day

How does snow melt during a bitter winter when temperatures are much below 0◦C? It
certainly does not melt by first becoming water. To understand what happens,
refer to the phase diagram of water as shown in Fig.(10.1). At temperatures
much below the normal melting point of ice, the solid phase coexists only
with the vapor phase. Therefore any loss of snow (ice) must be accompanied
by gain in vapor. This process of direct passage from a solid to gas is called
sublimation. Another example is the burning of Camphor. So the answer is
that snow disappears in very cold weather due to sublimation.

In chapter 11 we shall derive the Clapeyron Equation, more aptly the Clausius-
Clapeyron Equation, which will explain why this rule works, and even predict the
slope. This is a very important equation in Thermodynamics with the help of which
we can understand many things. This equation will tell us that freezing curves can
have the anomalous slope even when all densities are normally behaving! We will
see that this is what happens in He3 where too the freezing curve has negative slope.

A curious feature can be pointed out about systems with anomalous freezing
curves, i.e systems like water: first consider a ’normal’ system. Draw a vertical line a
little to the right of the triple point. This is a constant temperature curve. As we move
from bottom to top, we move from lower pressures to higher pressures. In a normal
system, we would start from a gas phase and move on to a liquid phase and then
to a solid phase. This fits with our intuitive expectations of what increased pressure
should do to a system. On the other hand, in the case of water, drawing the vertical
line to the left of the triple point, one finds that with increasing pressure one goes
from gas to solid first, and then from solid to liquid!!

In terms of the terminology of stable phases introduced before, we can summarize
the stability aspects of the phase diagram of Fig. 1 as follows: for solid-gas coexis-
tence, the gas phase is always the high-temperature stable phase. For the liquid-gas
coexistence too, the gas is high-temperature stable. In both these cases, the vapor is
also the low-pressure stable phase. The situation is more varied for the solid-liquid
coexistence because there are two types of freezing curves. For both of them, the
liquid is still the high-temperature stable phase. But for water, the high-pressure sta-
ble phase is the liquid, while for normal freezing curves, it is the solid phase that is
stable at higher temperatures.

In addition to the triple point, there is another special point in the phase diagram
of Fig. 1, called the Critical Point. It is the point at which the liquid-gas coexistence
curve terminates, in this particular example. As one can see, beyond this point there
is no phase boundary between the liquid and vapor phases. There is no physical way
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to distinguish them, and they must be considered to be the same phase. Among other
things, the latent heat vanishes at the critical point. Such a special point was also en-
countered while we were discussing the van der Waals system. A full understanding
of the physics of the critical points, also called Critical Phenomena can be consid-
ered to be one of the greatest achievements of physics. While the full machinery of
Statistical Mechanics is needed for this, one can go a long way in understanding
them only on the basis of thermodynamic principles. This will be done in the chapter
on critical phenomena.

10.3 Salt water phase diagram

FIGURE 10.2 Salt water phases.

We end this chapter by discussing a differ-
ent type of phase diagram, one where states
of the water and salt are plotted in a tem-
perature vs concentration graph. Obviously,
the pressure has to be kept fixed, and we
take it to be 1 atmosphere so that the freez-
ing point of the pure solvent, namely water,
is at 0 ◦C. The phase diagram is shown be-
low. The temperature range is such that the
gaseous phase is not relevant. For example,
for the pure solvent, whose states are repre-
sented along the vertical axis, only the liq-

uid and solid phases are relevant as long the temperature is below the boiling point
of water at 100 ◦C. Now let us move very slightly to the right along the horizontal
axis and start from the upper left hand corner of the diagram. This corresponds to
high temperatures (but below 100 ◦C). Now we have a very dilute salt solution. Let
us try to understand what happens to this dilute saline solution as we cool it. From
our discussion of the freezing point of solutions, we expect this solution to freeze,
not at 0 ◦C, but at a slightly lower temperature. Let us say that the concentration is
such that this new freezing point is at −.01 ◦C. Therefore one may expect ice mixed
with salt crystals below this lowered freezing point. But what happens is a little more
complicated.

As ice forms, it floats on salt water of a somewhat higher concentration. Ice floats
even on pure water as it is lighter. As salt water is denser than pure water, ice floats
even more easily on salt water.

The rest of the salt solution is a little more concentrated because the amount of salt
has remained the same but the amount of water has decreased, having formed some
ice. Now this slightly more concentrated salt water, again in line with our earlier
discussion, freezes not at −.01 ◦C, but at an even lower temperature. Therefore the
state of the system is a mixture of ice and salt water. Of course, this process does
not continue indefinitely and at approximately −21.1 ◦C all the water solidifies into
ice and one is left with a phase of ice mixed with salt crystals (not salt water). A
way to understand this is to realize that the concentration of salt in water can not be
increased beyond a certain saturation concentration.
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This can also be understood from the same phase diagram. To see this, stay at the
upper left hand corner, corresponding to a dilute salt solution at high temperature,
but now move horizontally taking us to higher concentrations at the same temper-
ature. Initially one has salt water at this temperature, but eventually, after reaching
concentrations somewhat in excess of 23.3%, one gets salt water and salt crystals in
coexistence. The salt water is completely saturated at this point and it is not possible
to dissolve more salt into it.

Finally, let us see what happens to the fully saturated salt water, represented by a
point on the boundary between the salt water phase and the phase with salt water and
salt crystals, as we lower its temperature. The amount of salt that can be dissolved
goes down with temperature. As a result, some salt crystals will start separating,
giving rise to a mixture of salt water and salt crystals. The concentration of salt is
high enough to keep the freezing point around −21.1 ◦C. As we cool below this
temperature we end up in the phase with ice and salt crystals.

It should be appreciated that the freezing point can not be lowered arbitrarily just
by increasing the concentration. Two factors come in the way of this; firstly one can
not increase the concentration of salt indefinitely. Secondly, when the concentration
becomes high, the system can no longer be treated as a dilute solution.

10.4 Phases of Carbon

FIGURE 10.3 Phase diagram of carbon.

As another example of an n = 1 system,
let us look at the phases of Carbon. In
some sense, this is even more striking,
as chemically this is a single component
while water had two chemically distinct
components, namely, Hydrogen and Oxy-
gen. A rough phase diagram of Carbon
is shown in Fig.(10.3). It consists of four
distinct phases, namely, Graphite, Diamond, liquid Carbon and Carbon vapor. It’s
a rough, or crude, phase diagram in the sense that a lot of fine structure that may
actually be present has been averaged out. An application of the phase rule gives as
f ≤ 3, as otherwise the number of degrees of freedom turns negative. Indeed, we see
that there is no point in the phase diagram where all the four phases are coexisting.
On the other hand, there are two triple points where Graphite, liquid and vapor on the
one hand, and Graphite, Diamond and liquid on the other, coexist. This is completely
in accordance with the Gibbs phase rule.

It should however be emphasized that the phase rule does not say that four phases
for a n = 1 system can never coexist. There could certainly exist some very special
material for which the two triple points coincide. But that is not generic. Even in the
Carbon system, one could envisage the presence of some impurities. In fact coloura-
tion in diamonds can come out of such impurities. Then, the location of the triple
points can depend on the impurity concentration, and for some special impurity con-
centration the two triple points may coincide giving a f = 4 coexistence. But now
we have increased n to at least 2, and as per the phase rule, f = 4 for a n = 2 system
is a generic possibility.
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Example 10.2: Are diamonds really forever?

A look at the Carbon phase diagram of Fig.10.3 indicates that at room tem-
peratures diamond is stable only at very high pressures, of the order of ten
thousand atmospheric pressures! Then how come we see diamonds at room
temperature at all, seemingly existing forever? Let us look at another similar
’puzzle.’ Ice at atmospheric pressure is a stable phase only below 0◦C. Yet, if
we pull out a cube of ice from a freezer into room temperature, it does not spon-
taneously convert into water. It takes some time. A similar thing happens for
diamonds at room temperature. They will eventually ’degrade’ into the phase
that is stable at room temperatures, which is Graphite. But it takes a really re-
ally long time for this to happen. How long does it take for diamond to convert
to graphite? Equilibrum Thermodynamics, the subject of this book, can not
answer that question, mainly because the passage is a non-equilibrium process.

FIGURE 10.4 Gibbs Free Energy Barrier

One can get a feel for what is hap-
pening by considering a mechanical
anology. What is shown is a potential
with a barrier separating two locally sta-
ble points A and B, with B lying lower
than A. Therefore B is more stable than
A. But the system, if initially in A will
not spontaneously roll down to B. That
is so because in order to get to B it
has to climb a barrier. The more diffi-
cult the barrier, the longer it will take to

complete the transition. When one studies enough Statistical Mechanics and Non-
equilibrium thermodynamics, one will see that this is more than a mere analogy. In
going from an unstable state like diamond at room temperature to the stable graphite
state, the system has to go through many intermediate states whose Gibbs free ener-
gies are such that there are several barriers. The nature of these barriers determines
the transition rate.

10.5 Helium-3 Phase Diagram

Returning to phase diagrams, one can also ask whether in a system with at least three
dinstinct phases, there may be no triple point at all. This is certainly possible and
is illustrated by the rough phase diagram of Helium-3 that people had thought to be
correct before more accurate measurements at very low temperatures were possible.
This is illustrated in the next figure: The phase diagram of Helium-3 has had a fas-
cinating history, which we shall recount here as the physics involved is rather deep,
and some of it (the so called Pomeranchuk Cooling) will play a crucial role in our
later discussion of the experimental techniques to reach the lowest possible temper-
atures. Even the phase diagram of Fig.(10.5) was only theoretically conjectured at
one point. If it is compared, for example, with the phase diagram given in Pippard,
it differs from the latter by the non-monotonic (i.e both decreasing and increasing)
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FIGURE 10.5 Older He3 Phase Diagram. FIGURE 10.6 Recent He3 Phase Diagram.

part of the freezing curve. At the time of Pippard’s book, experiments seemed to
indicate that the freezing curve had flattened out around 0.5K. As we shall explain
later, close to absolute zero, all freezing curves must flatten out. Hence it was taken
that the flattening at around 0.5K was because of this and that this flattening will
continue for the remaining ’short’ temperature interval.

The Russian physicist, Pomeranchuk, had however argued that at temperatures
much lower than 0.5K, the solid is the high-temperature stable phase, meaning that
an increase in temperature would prefer the formation of the solid phase. This is
highly counter-intuitive as we expect the liquid phase to be the one that is high-
temperature stable. This would produce the kind of freezing curve shown in Fig.10.5.
To test such a hypothesis, one would have to go to temperatures below 0.3 ◦C, not
an easy task then. Assuming such a possibility, one sees that the freezing curve for
Helium-3 for such temperatures would resemble the anomalous freezing curve of
water. But we will see in the next chapter that as a consequence of the Clapeyron
Equation (for gases at low temperatures and low pressures it is also referred to as
the Clausius-Clapeyron approximation), the physics behind the two anomalous situ-
ations is drastically different.

We show above a modern phase diagram of Helium-3. This has been made pos-
sibly through great technological breakthroughs, particularly in attaining and con-
trolling very low temperatures. The phase diagram shown above extends the lower
end of the temperature scale to millikelvin, which is 50 times smaller than the corre-
sponding temperature scale used in the older phase diagram. It certainly upholds the
ideas of Pomeranchuk; indeed from mK to about 0.3 K, it is the solid that is high-
temperature stable, not the liquid. The phase diagram has, at the same time, become
much richer. The liquid phases are now three in number, normal liquid, superfluid A,
superfluid B. While there is no triple point involving the solid and normal liquid, one
involves all the liquid phases, and two involve the solid. The critical point as the end
point of the liquid-gas coexistence is still at the same location of roughly 3.2 K, and
230 KPa of pressure.

10.6 Helium-4 Phase Diagram

We now turn to a discussion of the phase diagram of Helium-4. Its features are to-
tally different from that of Helium-3. At a fundamental level, Helium-3 is fermionic,
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whereas Helium-4 is Bosonic. From a purely thermodynamic perspective, this dis-
tinction can not be made use of. Helium-4 exists in four phases, solid, vapor, and two
liquid phases. There are two triple points and one isolated critical point.

FIGURE 10.7 Helium-4 Phase Diagram.

The accompanying figure displays the
phase diagram of Helium-4. What is to-
tally new from the Helium-3 case is that
now there is a continuous line of criti-
cal points separating the two liquid phases.
This is called the λ -transition line because
the specific heat curve at each of these
critical points resembles the greek symbol
λ . At each of these points, the latent heat
vanishes. We will show later how many
of these features can be understood from
pure thermodynamic arguments using the
Clapeyron equation, and its generalizations
to the so called higher order phase transitions.

10.7 QCD Phase Diagram

Lastly we discuss a case to show the tremendous range of thermodynamics, far be-
yond the types of matter, and their physical conditions, that led to its birth in the first
place. We discuss the phase diagram of the so called Quantum Chromodynamics.
This is the theory considered by many to be the best candidate to explain the strong
forces holding together the nucleus of atoms.

By colliding nuclei against each other at high energies, very high temperatures
and densities can be created. These are also the conditions that are believed to exist
in the very early stages of our universe. The most energetic of such collisions are

FIGURE 10.8 Quantum Chromodynamics.

being carried out at the particle ac-
celerator LHC at Geneva. So the
span of thermodynamics is truly mind-
boggling, from ultra-microscopic to
ultra-macroscopic, that is actually cos-
mic. This phase diagram says that at
low temperatures (these are still very
high temperatures compared to what
we normally encounter!) and fairly high
densities, matter exists as nuclei. At
somewhat higher temperatures, but still
considered ‘low’ from a nuclear matter
perspective, and much higher densities
one encounters matter as found in Neu-
tron Stars. If nuclei are heated to substantially high temperatures but keeping the
density low, one reaches the states as found in very early universe (top left hand side
of phase diagram). If heated to somewhat lower temperatures and densities lower
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than neutron star matter, one gets a gas of protons and neutrons etc. called the hadron
gas. When this hadron gas is taken to higher temperatures or suitably high pressures,
a new phase called Quark-Gluon Plasma shows up. Studying the properties of this
phase is one of the chief objectives at LHC. The coexistence curve between the gas
phase and the plasma phase is expected to terminate at a critical point. Determining
the precise location and the properties of this critical point is seen as a challenging
test of this theory.

10.8 Superconducting Phase Transitions

One of the most interesting phase transitions, also of far reaching consequences, is
the so called Superconducting Phase Transition. First let us discuss this fascinating
phenomenon. When certain metals like Aluminium or Tin are cooled to rather low
temperatures, of the order of a few K, they abruptly lose their DC electrical con-
ductivity completely! This was experimentally discovered by Kamerlingh Onnes in
1911.

A complete understanding of this phenomenon requires Quantum Theory. Also,
now many variants of the superconducting phenomenon are known. It would be far
beyond the scope of this book to even make a modest attempt at that. But the power
of Thermodynamics is so incredible that we can understand some of the most salient
properties of superconductivity in terms of what we have already covered in this
book.

We shall focus attention on the so called Type-I Superconductors only. For such a
class of superconductors, there is a phenomenon called Meissner-Ochsenfeld Effect.
It is an effect by which a metal in a superconducting state expels all magnetic field
within it. This is explained in figure 10.9. The material becomes a superconductor

FIGURE 10.9 Meissner-Ochsenfeld Effect.
FIGURE 10.10 Critical field Bc vs tempera-
ture.

only below some temperature Tc; above that it is in the normal state. On the left hand
side of the figure is a situation where the metal is in a normal state and magnetic
field as usual can penetrate the metal. On cooling the sample below Tc, which makes
the metal become superconducting, the magnetic field is completely expelled from
the material. What is of course happening is that in the superconducting state cur-
rents are set up in the body which generate magnetic fields to exactly compensate
the applied external magnetic field. These details, though extremely fascinating, are
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not required for a thermodynamic understanding. But what is of relevance to us, is
another aspect of such type-I superconductors. It turns out that if the external field
is made stronger and stronger, it eventually destroys the superconducting state, and
beyond that critical field Hc, the metal ceases to be a superconductor, and as a nor-
mal metal allows the penetration of the magnetic field. It is observed that the value of
Hc depends on temperature. Quite obviously, above the superconducting transition
temperature Tc, the critical field is zero as the metal is anyway in the normal state.
Temperature dependence of Bc in typical type-I superconductors has the behaviour
shown in the figure 10.10.

The table below gives the numerical values of Tc(K) and Bc(0) in mT(milli-Tesla)
for a few familiar superconducting materials: As can be seen from this table, rather

TABLE 10.1

Critical Temperature Tc and Critical Field Bc(0) for some superconductors.

Name Tc(K) Bc(0)(mT)

Aluminium 1.2 10
Lead 7.2 80
Mercury 4.2 41
Tin 3.7 31
Titanium 0.4 5.6

small fields are enough to destroy superconductivity. For example, just a field of
3 mT(30 G) is enough to destroy the superconductivity of Aluminium at 1K. We
shall see in chapter 11 that the vanishing of Bc at Tc means that the superconducting
transition is one with vanishing latent heat. As far as this aspect is concerned Tc here
is very much like the critical point in the water phase diagram. At Tc the critical field
vanishes. Very close to the critical temperature, Bc falls linearly, i.e Bc ≈ (Tc −T ).
At other temperatures, it is observed that the temperature dependence of the critical
magnetic field is well described by the equation

Bc(T ) = Bc(0)

(
1− T2

T2
c

)
(10.9)

This is referred to as the Parabolic Law. This is one of the predictions of the famous
Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. Though in principle
the critical field is expected to be a function of both temperature and pressure, no
appreciable pressure dependence has been seen experimentally [25].
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FIGURE 10.11 The specific heats in supercon-
ductors.

But a very important difference
arises in the behaviour of specific heats
which is shown in the figure 10.11. As
the temperature is lowered below Tc, the
specific heat increases with a jump from
the specific heat of the normal metal
at that temperature. One may wonder
how the specific heat of the normal state
could have been probed at temperatures
below Tc! The trick is to apply a criti-
cal magnetic field at that temperature so
that superconductivity is destroyed and
one is left with a normal metallic state.

The magnetic field could in principle affect the specific heats, but those effects can
be accounted for by using the results presented in chapter 10.

For most metals the low temperature specific heat in the normal state has the be-
haviour aT + bT3. In the case of Aluminium, the dependence is practically linear. It
vanishes at absolute zero as required by Nernst-Planck theorem. The low temperature
specific heat of superconducting state on the other hand is of the form de−

c
T . There-

fore eventually the specific heat again falls below the normal state specific heat. The
superconducting state specific heat too approaches zero as one approaches absolute
zero, again in conformity with Nernst-Planck theorem.

These are the most important observable effects for us and in chapter 15 we shall
see how thermodynamics gives a beautiful and straightforward account of them.

10.9 High-Tc Superconductor Phase Diagram

FIGURE 10.12 High Tc Superconductors.

The pursuit of the phase diagrams of high temperature superconductors continues
even till today. A phase diagram is shown characterising the so called High Tempera-
ture Superconductors. Their study is extremely important both from a basic sciences



Phases and Their Equilibria 203

perspective, as well as from a technological perspective. The diagram shown is in a
plane spanned by temperature and doping concentration. This continues to be a very
challenging problem.

10.10 Problems

Problem 10.1 Consider a chemically homogeneous substance such as, for exam-
ple CO2. In its liquid phase, how many degrees of freedom are required for its
thermodynamic description? What is the maximum number of coexisting phases
for this substance? What could they be?

Problem 10.2 Consider a system consisting of two chemically distinct systems.
When they are in a single homogeneous phase, what is the number of degrees of
freedom required for a complete description? How many triple points are pos-
sible for this system, and how many degrees of freedom are required for their
description? What is the maximum number of coexisting phases in this case?
Give an example of such a system.

Problem 10.3 An experimenter wishing to study the phase diagram of Carbon is
under the mistaken impression that the carbon samples are pure, but it turns out
that they do have impurities. If the triple point pressure Pgdl where graphite, dia-
mond, and carbon liquid are in coexistence is very sensitive to impurities and has
a dependence on impurity concentration x of the type Pgdl(x) = Pgdl(0)−η x,
while the pressure at the other triple point Pglv is totally insensitive to impurities,
at what value of x will the two triple points coincide if for all practical purposes
the temperatures of the triple points are the same, and also totally insensitive to
x? Interpret such a coalescence from the point of Gibbs phase rule.

Problem 10.4 Consider the system of water and salt as discussed at length in
section 10.3. Discuss the phase diagram presented there in the light of the Gibbs
phase rule

Problem 10.5 Carbon dioxide has a normal freezing curve and its phase diagram
has a triple point at T = 304.25K and P = 74 bar. At what values of P,T should
one start so that upon reduction of pressure solid carbon dioxide directly passes
to its gaseous phase (sublimation)? Likewise, what should be the starting P,T
such that reduction of pressure first takes the solid to a liquid and then to a gas?

Problem 10.6 Consider a weak salt which only partially ionises in water. Apply
the Gibbs phase rule to this system.





11 The Clapeyron Equation

In this chapter we shall derive one of the most important equations in thermody-
namics, the so called Clapeyron Equation, named after Paul Emile Clapeyron (1799-
1864), one of the founders of thermodynamics. The Clapeyron equation is magical
in its ability to explain a myriad of facts concerning phase equilibria. Nevertheless,
its derivation, at least in its most commonly used form, is rather straightforward. We
shall present a few alternative ways of obtaining it. We shall also give a generaliza-
tion of it due to the Austrian and Dutch physicist Paul Ehrenfest (1880-1933), which
enables it to be applied to the so called continuous phase transitions (at the critical
points).

11.1 Clapeyron’s original treatment

As we saw in section 1.5 of chapter 1, Clapeyron derived his famous equation in
1834 even before the nature of heat as understood in modern thermodynamics was
known. The equation given by him then, as given in eqn.(1.28) was

dP(T )
dT

= μ(T )
l(T )

vs − vw
(11.1)

This is of the same form as what is currently known as the Clapeyron equation
except for the appearance of the unknown, but universal, Carnot function μ(T ). The
great importance of this function, at those early times, has been elaborated at length
in chapter 1. It is worth mentioning that many predictions of the modern version of
this equation like boiling point elevation and freezing point depression (see later parts
of this chapter) already follow, though only qualitatively, from this original equation.
As also stressed before, Clapeyron heralded the graphical methods with this work,
and these methods form the backbone of modern thermodynamical analyses.

11.1.1 Clausius’s improvement

As explained in section 3.2 of chapter 3, it was Clausius who fixed the universal
function μ(T ) to be 1/T. To do so, he relied on Carnot’s revolutionary idea of the
universality of heat engines. As explained in eqn.(3.8), he essentially reconsidered
Clapeyron’s original treatment, but now with his modern theory of heat, to get this
seminal result. In the light of Clausius’s important progress, the Clapeyron equation
becomes

dP(T )
dT

=
l(T )

T (vs − vw)
(11.2)

We once again stress that this equation should truly be called the Clausius-Clapeyron
equation, as some sources indeed do. But a vast majority call it the Clapeyron equa-
tion and we shall continue with that but in this book that should be understood as just

205
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using a shorthand. Also, one should not confuse this with the Clausius-Clapeyron
approximation discussed later.

11.2 More modern approaches

To begin with, let us note that every phase is characterized by its own Gibbs poten-
tial per unit mass g(T,P). This can of course be expressed in terms of any set of
independent thermodynamic variables. Since phase transitions take place at a given
temperature and pressure, the P-T representation is more convenient.

Before considering the problem of coexistence of phases, let us note some impor-
tant properties of the Gibbs potential:

(
∂g
∂T

)

P
=−s

(
∂g
∂P

)

T
= v (11.3)

where s,v are the entropy per unit mass (specific entropy) and volume per unit mass
(specific volume), respectively. As both s,v are positive, it follows that at constant
pressure g(T,P) must decrease with T and at constant temperature it must increase
with pressure.

The condition for phase coexistence is easily determined; we explicitly derive
this condition for phase equilibria of a single component system (n = 1 in our earlier
terminology), as generalization to arbitrary systems is straightforward. Let m1,m2 be
the masses of this single component in the phases 1,2 respectively. The total Gibbs
potential Gtot is then

Gtot (T,P) = m1 g1(T,P)+m2g2(T,P) (11.4)

If m1 changes by δm during coexistence, m2 must change by −δm. The change in the
total Gibbs potential is therefore δGtot = δm(g1− g2). Since phases in coexistence
are in equilibrium, and since at equilibrium the total Gibbs potential is stationary, i.e
δGtot = 0, the condition for phase coexistence is

g1(T,P) = g2(T,P) (11.5)

and this must be true all along the coexistence curve. In fact, eqn.(11.5) defines the
coexistence curve, P(T ).

This is a mathematical consequence of the exact equality of the relevant Gibbs
potentials g1,g2. In reality, such an exact equality will be hard to realize and this
means that we may be dealing with situations which are slightly off equilibrium.
This departure may be very hard to recognize for all practical purposes. Then we do
not expect the pressure to be determined entirely by the temperature. Also, an exact
determination of the potentials g1,g2 either theoretically or from experimental data
(as is often the case in thermodynamics) is also practically impossible. This too leads
to an effective fuzziness in the coexistence ’curve.’

It is important to get a physical understanding of this fact also. For coexistence of a
gaseous phase with other phases, which can be solid, liquid or gas, the pressure above
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equals the vapor pressure. Now vapor pressure depends only on temperature and not
on volume. Superficially, this seems to go counter to the ideal gas behaviour, PV =
nRT , according to which the pressure depends on both temperature and pressure. In
the case of the vapor pressure, n is not fixed. If one increases the volume, more of
the solvent goes into vapor form, maintaining the pressure P. At any temperature,
what is fixed instead is the ratio n

V . In the case of coexistence involving liquids and
solids only, the situation is very different, yet leading to similar observations about
pressure. Both liquids and solids are highly incompressible, making pressure depend
very weakly on volume anyway.

But if the equilibrium condition of eqn.(11.5) is rigorously valid, pressure is
strictly dependent on temperature only. Even for liquids and solids, this means that
what little dependence on volume there is for their pressure, because of their very
low compressibilty, must disappear at phase co-existence.

Mathematical aspects Mathematically speaking, the Clapeyron equation is the
equation for the tangent of the coexistence curve in the P-T plane. Physics-wise, it
tells us the change in pressure ΔP accompanied by a change in temperature ΔT .
Clearly, the required condition is

{(
∂g1

∂T

)

P
−
(

∂g2

∂T

)

P

}
dT +

{(
∂g1

∂P

)

T
−
(

∂g2

∂P

)

T

}
dP = 0 (11.6)

On using eqn.(11.3), we get the final (almost) form of the desired equation:
(

∂P
∂T

)

g1=g2

=
s2− s1
v2− v1

(11.7)

In transitions with a latent heat per unit mass l21 (which could in principle be
temperature-dependent), one has, (s2− s1) = T l21(T ). Since pressure depends only

on temperature in the present context, the partial derivative
(

∂P
∂T

)
above can be re-

placed by the total derivative, giving therefore

d P
d T

=
l21(T )

T (v2− v1)
(11.8)

This is the famous Clapeyron equation. We have added the subscript 21 to clearly
indicate that l21 is the heat per unit mass absorbed by phase-1 in going to phase-2.
Depending on how the phases are labelled, it can be negative also. In the ice-water
example, if phase-1 is ice and phase-2 is water, ice needs to absorb the latent heat of
melting (also called latent heat of fusion) of 334 kJ per kg. Hence l21 is positive. If
the phases had been labelled otherwise, l21 would have been negative.

11.2.1 Other demonstrations

There are many demonstrations of the Clapeyron equation available. Some of them
may appear much ’simpler’ than the one presented here. But on closer examination,
one would find that in such proofs some seemingly reasonable facts are assumed.
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Also, we shall soon see that the Clapeyron equation of eqn.(11.8) breaks down at
critical points of phase diagrams. Then the so called easy proofs, which are highly
contextual, do not generalize that easily. We shall, however, provide a few more
demonstrations that are quite general. Looking at the same issue from different per-
spectives is always useful.

Fermi’s approach: Let us look at the proof as given by Fermi, which is obtained
straightaway from the first law and the meaning of latent heat [17]. For the circum-
stance considered above, the total volume V of the system is V = m1 v1 +m2 v2.
If u1,u2 are the internal energies per unit mass, the total internal energy U is
U = m1 u1 + m2 u2. Since we are on the coexistence curve, pressure is a func-
tion of temperature and consequently all quantities are also functions of tempera-
ture only. The variations in U and V are given by δV = δm(v2(T )− v1(T )) and
δU = δm(u2(T )− u1(T )), respectively. Then, from the first law d̄Q = dU +PdV ,
and the fact that the latent heat l21 ·δm is in this case the same as d̄Q, one gets

l21 = (u2− u1)+P(v2− v1) (11.9)

Since temperature is kept constant throughout these changes, δu
δv →

(
∂U
∂V

)

T
, but that

is given by one of the fundamental identities
(

∂U
∂V

)

T
= T

(
∂P
∂T

)

V
−P (11.10)

Putting all the relations together, indeed one arrives at the Clapeyron equation
eqn.(11.8).

Huang’s approach Another derivation which is almost as straightforward as the
first one, is the following (Huang) [26]: Let Δg(T,P) = g2(T,P)− g1(T,P). It im-
mediately follows, on using eqn.(11.3), that

Δs
Δv

=−

(
∂Δg
∂T

)

P(
∂Δg
∂P

)

T

=−
(

∂Δg
∂T

)

P

(
∂P

∂Δg

)

T
=

(
∂P
∂T

)

Δg
(11.11)

Where we have made use of the results,
(

∂x
∂y

)

z
=
(

∂y
∂x

)

z
, and,

(
∂x
∂y

)

z

(
∂y
∂ z

)

x

(
∂ z
∂x

)

y
=−1 (11.12)

whenever z = z(x,y).
Finally, in eqn.(11.11) Δg should be set equal to zero. The reader should note,

however, that even though Δg vanishes on the coexistence curve, its partial deriva-
tives occurring in eqn.(11.11) need not vanish necessarily. Thus we get exactly the
same as eqn.(11.7), and the Clapeyron equation follows as before.

Example 11.1: A skating myth?

One of the interesting consequences of the Clapeyron equation is that under pressure,
the freezing point of a liquid is lowered. This means a substance in a solid phase, like



The Clapeyron Equation 209

for example ice, can be turned into a liquid if sufficiently high pressure is applied. A
popular folklore is that this is how ice skating becomes possible i.e under the weight of
the skater spread over the very small area of contact between ice and skates just melts
ice forming a liquid layer, facilitating skating. Is this a myth or a reality?

Let us denote by W the gravitational force due to the weight of the skater
in kilo Newtons. For example, if the mass of the skater is 75 Kg, the weight
due to gravity will be 75 Kg.9.8 N/Kg = 735 N and W=0.735. Let the area
of contact be A in units of 100 square mm. Most ice skates are about 200 mm
in length so that if the blade has thickness of 0.5 mm, the area of contact
would be 100 sq.mm and A=1. The pressure exerted on ice is then 10W/A
MPa. Remember that the atmospheric pressure is roughly 100 KPa. Strictly
speaking one should integrate the Clapeyron equation from Ti=273.15 K with
Pi=1 atm to Tf and Pf =Pi+10W/AMPa. But let us assume that the latent heat
of fusion of 330 kJ/kg at 273 K and 1 atm does not change appreciably during
the process nor does the change in specific volume of Δv =10−4m3Kg−1. Then
the Clapeyron equation gives

Δ

T
=

W 10−4

330A
MPam3

kJ
� 3 ·10−4 (11.13)

So, if we take the blade edge to be 0.5 mm and W=1 (corresponding to a
mass of about 102 Kg (a rather heavy skater), the change in freezing point
is ΔTF � 0.8K. On the other hand, if the mass of the skater is 75 Kg but the
width of the blade is 3mm so that A=6, then ΔT is only about 0.1 K. But some
people have taken the mass of the skater at 70 Kg but A at the improbably
low value of 0.25, corresponding to a blade width of 0.12 mm, getting a ΔT of
2 K. But even this exaggerated case would imply that no ice skating would be
possible below −2◦C and that is certainly not true! This raises serious doubts
about this popular myth, and the reasons for developing that surface water
layer must lie elsewhere!

11.3 Freezing curves

As a first application of the Clapeyron equation, let us consider the so called freezing
curves (also called melting curves). These are the coexistence curves for a solid-
liquid coexistence. In a majority of cases, it requires heat to take the solid to a liquid.
If we denote the phase-1 to be the solid, and phase-2 to be the liquid, as per our
conventions, the latent heat l21 is positive. We saw earlier that l21 = s2− s1. Hence
in all these cases, the specific entropy of the liquid is higher than that of the solid.
This means, from our discussions of entropy, that the liquid phase is generally more
disordered than the solid phase. So far, whatever has been said holds for water too.

Now, in most cases, solids are denser than the liquids at the freezing or melting
points. Therefore, in all such cases, v2 > v1 or v2−v1 is also positive. The Clapeyron
equation immediately tells us that in these so called normal cases, dP

dT is positive. On
referring to the phase diagrams of chapter 14, one sees this for the solid freezing
curve of fig. 1, for the diamond-liquid carbon case, for Helium-3 past what may be
called the Pomeranchuk point, and for Helium-4 also (at very low temperatures the
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curve is practically flat as demanded by Nernst theorem, to be discussed in a later
chapter).

11.3.1 Anomalous freezing curves

An examination of even the small number of phase diagrams shown in chapter 14
tells us that not all freezing curves have positive slope in the P-T plane. A prime case
is that of water itself, whose freezing curve has a negative slope, although very small
in magnitude. The latent heat in going from solid to liquid is positive in this case.
But what is anomalous about water is the behaviour of its density below 4 ◦C; the
density decreases with temperature. More specifically, at the freezing point the spe-
cific volume of ice, the solid phase, is larger than that of the liquid phase. Therefore
in this case while l21 is positive, v2− v1 is negative. It immediately follows from the
Clapeyron equation that the slope of the freezing curve for the ice-water system is
negative. the consequences of such a negative slope for the freezing curve of water
have already been mentioned before.

Turning to the phase diagram of Helium-3, we once again see that the freezing
curve has a negative slope for temperatures below the point at which the coexistence
curve has a minimum. We called this the Pomeranchuk point as that part of the curve
was first proposed by Pomeranchuk, on theoretical grounds.

But for the Helium-3 system, densities behave normally, i.e the solid phase is
denser than the liquid phase. So, v2− v1 is positive. The Clapeyron equation tells us
that the coexistence curve can have a negative slope only if s2 < s1, but that would
imply that the latent heat l21 is negative in this case. In other words, the solid has to
give up heat to become a liquid! This also means that the solid is more ordered than
the liquid in this case. In thermodynamics this is all that can be said. But a statistical
mechanics treatment of this problem explains, as originally shown by Pomeranchuk,
this unexpected behaviour. The key to this behaviour is that Helium-3 is Fermionic.

A very important consequence of this anomalous freezing curve for Helium-3 is
that, upon applying pressure to a liquid it freezes to a solid. But this process now is
endothermic, i.e heat must be absorbed from the surroundings, leading to a cooling
effect. This is the principle behind the Pomeranchuk compressional cooling tech-
nique. This will turn out to be a very important tool in the march towards absolute
zero, to be discussed at length later on.

11.3.2 Boiling and sublimation curves

The Clapeyron equation can be applied to liquid-vapor and solid-vapor coexistences
also (in fact it is applicable to a variety of phase coexistences, except for the so called
higher order phase transitions, discussed later in the chapter). Again, comparison
with all the phase diagrams of chapter 10 reveal that all these coexistence curves
have positive slopes. In all these cases, the latent heats (with the convention that we
have adopted) are all positive, accompanied at the same time by increases in specific
volumes. Thus both the denominators and numerators of the Clapeyron equation are
positive, leading to a positive d P

d T .
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11.3.3 Slope near absolute zero

As will be discussed at length later on , the entropy near absolute zero either van-
ishes or can be taken to be the same for all systems. Hence as we approach absolute
zero, the numerator of the Clapeyron equation vanishes. Generically, there is nothing
requiring the denominator to also vanish in this limit. Hence the generic behaviour
of coexistence curves near absolute zero is that their slopes must be vanishingly
small. This is clearly seen for the solid-superfluid-B coexistence curve for Helium-3,
and for both the solid-liquid Helium-II and liquid Helium-II and vapor coexistence
curves for Helium-4.

11.4 The Clausius-Clapeyron approximation

Now we derive what is called the Clausius-Clapeyron approximation which is a re-
stricted form of the Clapeyron equation, applicable to gases at low temperatures (but
still high enough for the gasesous phase to exist), and low pressures. We make two
simplifying assumptions, namely, that the specific volume of vapor is much much
larger than the specific volume of the liquid , and that the vapor obeys ideal gas law.
The consequence of the first approximation is that the specific volume of liquid can
be neglected in the Clapeyron equation. Adopting the convention that phase-1 is the
liquid and phase-2 is the gas, l21, the latent heat of vaporization is positive. As the
context is unambiguous, we shall call this λ (T ) and simply denote the vapor specific
volume by v. This yields

dP
dT

=
λ (T )
T v

(11.14)

The ideal gas law for the vapour is Pv = R
M T ; we can rewrite the above equation as

dP
dT

=
λ (T )M

RT2
P (11.15)

Integrating this between temperatures T0 and T1 where the pressures are P0,P1 re-
spectively, one gets

P1 = P0 e
M
R
∫ T1

T0
λ(T )

T2
dT (11.16)

If T0 is taken to be the normal boiling point of the liquid, then by definition P0 is
the atmospheric pressure. We can then use the above equation to give the tempera-
ture dependence of the vapor pressure. But to do so requires the knowledge of the
temperature-dependence of the latent heat λ (T ). As a further approximation, we can
take λ (T ) to be a constant equal in value to the latent heat of vaporization λ0 at the
boiling point. In that case, the temperature dependence of the vapor pressure is given
by

P(T ) = P0 e−
Mλ0

R ( 1T − 1
T0

) (11.17)

This equation works reasonably well in the vicinity of the boiling point.
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Example 11.2: Raising boiling points by pressure

Using the Clausius-Clapeyron approximation, calculate the increase in boiling point of
water in a domestic pressure cooker if it can build up a pressure of 2 atm., given that
the latent heat of vaporization is 2257 kJ/kg at 100◦C and 1 atm. of pressure. What
would be the boiling point if the pressure could be built up to 5 atm.(rather high!)?

The Clausius-Clapeyron approximation yields

dP(T )
dT

=
PL

RT2
(11.18)

Integrating this between (Ti,Pi) and (Tf ,Pf ) gives

ln
Pf

Pi
=−L

R

(
1

Tf
− 1

Ti

)
=

2257 ·18
8.314

(
1

Tf
− 1

Ti

)
(11.19)

It is easy to calculate from this that when the pressure ratio is 2, Tf = 394K,
and when the pressure ratio is 5, Tf = 425K, when Ti is taken to be 373.15 K

11.4.1 Dew, frost and relative humidity: An application

We now discuss a classic application of the Clausius-Clapeyron approximation to the
phenomena of Dew and Frost. This is the phenomemon which manifests, for exam-
ple, as beautiful water droplets condensing on various surfaces on a cold morning.
The vapor pressure discussed in the context of phase equilibrium between liquid and
vapor should be more appropriately called the saturated vapor pressure. It is so, as
under the given pressure and temperature, the liquid keeps on evaporating till the
pressure of the vapor equals the external pressure. If there is air over the liquid sur-
face, it is the sum of the vapor pressure and the partial pressure of air that equals the
external pressure. We can now consider the gas to be air and water vapor in equilib-
rium with water. This saturated vapor pressure is then a function of temperature only.
The gas constant in the CC-approximation has to be that of the water vapor and we
can denote it by Rv.

In contrast to this saturated vapor pressure, there is also the notion of an unsatu-
rated vapor pressure. To appreciate this, consider a room at pressure P and tempera-
ture T that is filled with dry air. Into this dry air, consider introducing a small mass of
water vapor. Compared to the amount of water that would have been contained in this
body of air had it been filled with saturated vapor pressure, this amount will be much
smaller and consequently unsaturated vapor pressure will also be much smaller than
the saturated vapor pressure at P,T .

It is clear that if this parcel of almost dry air were to be cooled at pressure P to
lower temperatures, the vapor pressure will get closer to the saturated vapor pressure.
The temperature at which the original unsaturated vapor pressure exactly equals the
saturated vapor pressure at the new temperature is called the Dew point temperature
Tdew. Clearly, if the temperature is lowered any further, the air can not hold the orig-
inal amount of water, and water vapor will begin to condense into water, which is
the phenomenon of dew. If such conditions happen at some height from the ground,
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the phenomenon of fog takes place. If instead of liquid phase, one substitutes the
solid ice phase, the resulting phenomenon is that of frost. The physics of all these
phenomena is essentially governed by the CC-approximation.

Going back to the coexistence of liquid and vapor at some pressure P(T ) corre-
sponding to a temperature T on the coexistence curve, any lowering of the tempera-
ture will necessarily result in some of the vapor condensing into liquid. In that sense,
every temperature on the coexistence curve is a Dew point! This is so because the
starting point is itself a condition of saturation. Thus, it is to be appreciated that Dew
point is a temperature that is dictated by the conditions of unsaturatedness rather
than by any characterstic of the liquid-vapor coexistence. A related concept is that
of relative humidity which is defined as the fraction of the saturated vapor pressure
that equals the given unsaturated vapor pressure. Clearly, given the relative humidity
at some temperature, the dew point can be calculated, and vice versa. This is pos-
sible if there is a formula which gives the saturated vapor pressure as a function of
temperature.

The CC-approximation gives an approximate way of doing so. Clearly, this
approximation breaks down when the approximations used in deriving the CC-
approximation break down. For example, close to the critical temperature the approx-
imation of neglecting the liquid specific volume compared to the specific volume of
the vapor is definitely a very poor approximation. Also, close to the critical point the
pressure and temperature are both high so the ideal gas approximation breaks down
too. In fact it will be seen later that at the critical point CP blows up in complete
contrast to the behaviour of ideal gases.

In metereological literature, the saturated vapor pressure is denoted by eS(T ), and
the unsaturated vapor pressure by e(T ). The gas constant Rv for the water vapor is
given by Rv =

R
Mv

, where R is the universal gas constant with the value of 8.314
Joule/Kg/K and Mv the molecular weight of water which can be taken to be 18.01.
Thus the numerical value of Rv is 461.5 J/Kg/K. From the previous discussion it is
clear that if e is the unsaturated vapor pressure at P,T, the dew point at the same
pressure is given by

eS(Tdew) = e(T ) (11.20)

It should be emphasized that the formation of dew need not happen at the same pres-
sure. What is needed is that at the new pressure and temperature, the saturated vapor
pressure must equal the original unsaturated vapor pressure. The calculations are a bit
more involved, but there is no real complication. All that is needed is to integrate the
CC-approximation between T and Tdew. We can simply take over eqn.(11.17) with
the identifications M = Mv,T0 = T,P0 = eS(T ),T1 = Tdew,P1 = eS(Tdew) = e(T ) to
get

ln
e(T )
eS(T )

= ln r =
1

Rv

∫ Tdew

T

λv(t)
t2

dt (11.21)

where r is the relative humidity at temperature T. An almost identical equation ob-
tains for the frost temperature, Tf r on replacing the latent heat for vaporization λv by
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the latent heat of freezing λ f :

ln
e(T )
eS(T )

= ln r =
1

Rv

∫ Tf r

T

λ f (t)

t2
dt (11.22)

To proceed further one must either have a theoretical model for the latent heats λ (t),
or have empirical data for them. In metereology one also uses empirical equations for
the saturation vapor pressure as, for example, the Magnus-Teten equation. But even
without going that far, one can make some interesting observations: the positivity of
the latent heats guarantees that for a given T,r, one gets a unique value for the dew
and frost temperatures.

To get a feel for what is going on, one can solve these equations under the
assumption that the latent heats are constant; this is not a very bad approxima-
tion in the vicinity of the boiling and melting points. On using the familiar values
λv = 2250kJ/Kg at 373 K, and, λ f = 335kJ/Kg at 273 K, one finds

T−1
dew = T−1− 2.05 ·10−4 lnr T−1

f r = T−1− 1.38 ·10−3 lnr (11.23)

Thus, given the relative humidity r at some temperature T, the dew and frost tem-
peratures can be calculated. It is interesting to note that as r → 0, Tdew,Tf r → 0,
independent of T. Empirically it is found that approximating the latent heats by con-
stants is not so good. The Magnus-Teten empirical equation

es(T ) = 6.1094exp

(
17.625T

T +243.04

)
(11.24)

is seen to perform better. Here the vapor pressure is measured in hPa and temperature
in Celsius. This can be seen, on substituting in the CC-approximation, to be equiva-
lent to the temperature dependent latent heat of vaporization (now T is temperature
in Kelvin):

lv(T )≈ T 2

(T − 30)2
(11.25)

where T is in degree Kelvin. Near the boiling point of water, this amounts to a latent
heat that linearly decreases with temperature. Such a trend has also been verified by
direct measurements. But for temperatures higher than the boiling point, this predicts
an incorrect behaviour. For more accurate calculations, the metereological standard is
the so called IAPWS Formulation 1995 (International Association for the Properties
of Water and Steam) (see Wagner and Pruss[77])

Log
eS

22.064 ·106 =
647.096

T
· (−7.85951783t+1.84408259t1.5− 11.7866497t3

+ 22.6807411t3.5− 15.9618719t4+1.80122502t7.5) (11.26)

with T in [K] and ew in [Pa] and t = 1−T/647.096. This equation is expected to be
valid all the way to the critical temperature.
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11.5 Temperature dependence of latent heats

That latent heats can be temperature dependent should not come as a surprise. In
fact that is the generic thermodynamic behaviour. On noting that l = T (s2− s1), and(

∂ s
∂T

)

P
= cP

T , one finds
(

∂ l
∂T

)

P
=

l
T
+ cP2− cP1 (11.27)

Likewise, (
∂ l
∂P

)

T
= T

(
∂ (s2− s1)

∂P

)

T
(11.28)

We now use one of the Maxwell relations,
(

∂ s
∂P

)

T
= −

(
∂v
∂T

)

P
= −vβ , where β

stands for the volume expansion coefficient. Therefore,
(

∂ l
∂P

)

T
= T (v1β1− v2β2) (11.29)

The total derivative of l wrt to T is therefore given by

d l
d T

=

(
∂ l
∂T

)

P
+

(
∂ l
∂P

)

T

d P
d T

(11.30)

Using the earlier expressions and the Clapeyron equation we arrive at the final result
for the equation governing the temperature dependence of latent heats:

d l
d T

=
l
T
+ c(2)P − c(1)P + l

v1β1− v2β2

v2− v1
(11.31)

Even at this level of generality, the following observations can be made:

• If phase-1 is either liquid or solid, and phase-2 is gas, then v1 << v2, except
perhaps in close vicinity of the critical temperature.

• The thermal expansion coefficients β are the largest for gases, followed by
liquids and solids.

• The specific heats at constant pressure are typically larger for liquids and
solids when compared to the gasesous state at the same temperature and
pressure.

If we make use of these well founded approximations, we can recast eqn.(11.31) as

d l
d T

≈ l
T
+ c(2)P − c(1)P − l β2 (11.32)

Additionally, if we are in a range of temperatures and pressures where the gas phase
can be described by an ideal gas law, β2 =

1
T , we see that the first and last terms

cancel, leaving
d l
d T

≈ c(2)P − c(1)P (11.33)
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The rhs, as mentioned above, is generally negative. Thus we see that latent heats
generally decrease with temperature. It should be cautioned that from this one can
not conclude that as critical temperature is approached, latent heat will vanish. Many
of the approximations made here, including the ideal gas behaviour for the vapor,
are no longer valid there. One has to use eqn.(11.31) or make an ab initio study
of the problem. It is worth stating that near the critical point the latent heat drops
precipitously.

The meaning of CP for the gas in the above needs some clarification. By that we
mean the specific heat of the unsaturated vapor. For a saturated vapor, as we have
seen on several occasions, the pressure is determined solely by temperature, and CP

is ill-defined!
It is interesting to see how well some of these considerations work in the familiar

example of water. The specific heat CP for liquid water at 4 ◦C is roughly 4.2 J/K/gm
which translates to a molar specific heat of 75.6 J/K. While there is some variation in
this quantity with temperature, it is not very dramatic. On the other hand, the molar
CP of steam around 100 ◦C is around 36 J/K, so indeed the gas CP is less than that of
the liquid. If steam is approximated as an ideal diatomic gas, this value would have
been 28 J/K. On the other hand, around 645.2 K, which is very close to the critical
temperature, the molar CP of water is close to 1800 J/K, while that of steam is close
to 3800 J/K and the roles of gas vs liquid get completely reversed!

11.5.1 Fermi’s treatment

In general, modelling the liquid state is very difficult. For the solid state, however,
reasonably good models like the Debye model exist which have been succesful in ex-
plaining many observed features of solids. We shall not go into the details of such a
model. Instead, we shall simply use the expression for the entropy of solids as given
by the Debye model. We shall follow Fermi in describing a solid-vapor phase co-
existence along these lines. This particular approach, which we have simply termed
the Fermi model of sublimation will be used several times in this book, each time
to illustrate a different essential concept. Here we use it to discuss the temperature
dependence of the latent heat of sublimation.

The entropy of a mole of solid, as given by the Debye model is,

Ssolid = 3R ln T + aD (11.34)

where aD is a constant. Though it is explicitly known in the Debye model, it suffices
here to treat it as unknown. Following Fermi, we shall treat the vapor as an ideal
monatomic gas. Consequently, its entropy in the T,P representation is given by

Sgas =
5R
2

ln T −R ln P+ a (11.35)

where a is yet another entropy constant whose precise value is not of interest here.
The molar latent heat of sublimation is therefore given by

Λ(T ) = T (Sgas− Ssolid) = T (−R
2
lnT −R ln P+ b) (11.36)
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We first record the resulting vapor pressure as a function of temperature:

P(T ) = c
1√
T

e−
Λ
RT (11.37)

This differs from the solution, eqn.(11.17), of the CC-approximation obtained under
the assumption of a constant latent heat. The difference is in the additional factor of
1√
T

. Fermi ascribes this to the fact that in his calculations the temperature dependence
of the latent heat has been taken into account. We go a step further and display the
exact temperature dependence of Λ(T ) that is implicit in his model.

To do so we compute d P
d T in his model and compare it to the CC-approximation:

d P
d T

=
c√
T

e−
Λ
RT

Λ

RT2
− 1

2

c

T3/2
e−

Λ
RT − c√

T
e−

Λ
RT

1

RT
dΛ
d T

=
ΛP
RT2

− P
RT

dΛ
d T

− P
2T

=
Λ

TVgas
=

ΛP
RT2

(11.38)

where in the last line we used the Clapeyron equation and ideal gas law (CC-
approximation). Hence, in the Fermi model,

dΛ
d T

=−R
2

→ Λ(T ) = Λ0− RT
2

(11.39)

This too shows a latent heat decreasing linearly with temperature. But it does so
everywhere, and predicts a vanishing of latent heat at T̄ = 2Λ(273)

R +273. This is
much much higher than the true critical temperature for water. This means that in
real life, latent heat falls more rapidly.

We end this discussion by comparing eqn.(11.39) with eqn.(11.33). In the Fermi
model, βsolid = 0 (this has to do with the fact that the Debye model neglects an-
harmonicities). This is consistent with the general trend we discussed that thermal
expansions of solids can effectively be neglected. Further, in this model, Csolid

P = 3R
while Cgas

P = 5R
2 . This too agrees with the anticipation that CP for solids is higher

than that for gases. With these values eqn.(11.39) and eqn.(11.33) are in agreement
with each other.

11.6 Boiling points of dilute solutions

In chapter 9 on the thermodynamics of dilute solutions, we had shown that upon
dissolving N1 moles of a solute in N0 moles of a solvent, the lowering of the vapor
pressure when the solution is dilute, i.e N1 << N0, was given by

ΔP =
RT
ΔV

N1

N0
(11.40)

As the signs of various effects have been treated very carefully in that chapter, we
shall merely deal with their magnitudes. We can derive the magnitude of the eleva-
tion of boiling points and depression of freezing points by combining this with the
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Clapeyron equation. We will show how it works for the boiling points. Treatment of
freezing points is completely parallel.

ΔT =ΔPT
ΔV
Λ

=
RT
ΔV

N1

N0
T
ΔV
Λ

=
RT2

Λ

N1

N0
(11.41)

This is precisely the expression for the elevation of the boiling point of dilute solu-
tions obtained there.

11.7 Breakdown of the Clapeyron equation

Conditions may certainly arise when both the numerator and the denominator of
the Clapeyron equation vanish at the same time. When the numerator vanishes, the
latent heat vanishes. There are a countless number of cases where this happens, and
we shall discuss them shortly. When the denominator vanishes, there is no change
in the specific volumes between the phases. Therefore, in such exceptional cases,
the standard form of the Clapeyron equation becomes mathematically meaningless.
Before discussing the possible remedies in such cases, let us look at some situations
where only the denominator or the numerator vanishes.

When the denominator vanishes, the slope of the coexistence curve becomes in-
finite. The tangent to the coexistence curve is then parallel to the P-axis. In the ice-
water case, the entire coexistence curve is almost parallel to the P-axis. In this case,
the change in specific volumes remains small throughout. The graphite-liquid coex-
istence curve in the phase diagram of carbon appears to be such that between the two
triple points, the slope of the coexistence line takes both normal and anomalous val-
ues. In between, it seems to pass through a point where the slope is infinite, pointing
to a vanishing of the denominator of the Clapeyron equation.

When only the numerator vanishes but not the denominator, the tangent becomes
parallel to the T-axis. This is what happens at the Pomeranchuk point on the phase
diagram of Helium-3. This represents a phase transition where the latent heat van-
ishes. In fact the latent heat vanishes at all the so called Critical points. But at the
critical points, the denominators also vanish typically. From that point, the Pomer-
anchuk point may not be considered a critical point. We will postpone a discussion
of this subtle point to a later stage.

Coming back to the situations where the Clapeyron equation breaks down, there
are several ways to proceed. One is to expand the Gibbs potential to higher orders in
d p,dT , and getting an equation for dP

dT on noting that P is a function of T alone. This
typically leads to second and higher order algebraic equations for dP

dT . Instead, we
shall illustrate an alternative proposed by Ehrenfest, and also its possible limitations.

The starting point of Ehrenfest’s treatment is that when both the numerator and
denominator of the Clapeyron equation vanish simultaneously, one has s1(T,P) =
s2(T,P); v1(T,P) = v2(T,P). These are of the same form as eqn.(11.5), and the same
type of analysis applied to it before can now be applied to the pair. The generalization
of the Clapeyron equation will now consist in finding the equation for the common
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tangent to the two curves s1−s2 =0 and v1−v2 =0. Generically two curves may not
have a common tangent at the point of their intersection at all. Thus, critical points
are very special indeed.

It easily follows that

d P
d T

=−

(
∂(s2−s1)

∂T

)

P(
∂(s2−s1)

∂P

)

T

=−

(
∂(v2−v1)

∂T

)

P(
∂(v2−v1)

∂P

)

T

(11.42)

We now use the following relations:

• The definition of the specific heat per unit mass at constant pressure:(
∂ s
∂T

)

P
= cP

T ,

• The Maxwell relation
(

∂ s
∂P

)

T
=−

(
∂v
∂T

)

P
, and finally,

• The definition of coefficient of volume expansion:
(

∂v
∂T

)

P
= β

• The definition of isothermal compressibility:
(

∂v
∂P

)

T
= κ

We can then recast eqn.(11.42) as

d P
d T

=
1

vT
cP2− cP1

β2−β1
=

β2−β1

κ2−κ1
(11.43)

A consistency condition is

vT (β2−β1)
2 = (cP2− cP1)(κ2−κ1) (11.44)

In this section we have discussed how the standard Clapeyron equation can fail, and
have shown that the so called Ehrenfest Second Order phase transitions can be han-
dled despite this breakdown. It is clear from the various restrictions encountered that
this treatment will not be generally applicable. The superconducting phase transition
is a case to which these considerations can be applied.

The so called λ -transitions in Helium-4 are examples where the discontinuity of
cP at the transition is not finite, and eqn.(11.43) can not be applied to it. Nevertheless,
an examination of the phase diagram of Helium-4 reveals that the slope of the co-
existence line is indeed finite though both the numerator and the denominator of the
standard form of the Clapeyron equation vanish, hinting at some treatment similar to
that of Ehrenfest. In fact, the reader may see a sort of resemblance to the L’Hospital
rule from calculus. We shall elaborate this point later.

11.8 Magnetic Clapeyron equation

Now we discuss some simple application of these ideas to phase equilibrium between
magnetic systems. That the Gibbs potential per unit mass of the various phases must
all be equal at the phase coexistence point was so general that hardly any details about
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the nature of the systems went into that. In particular, details like whether a system
is magnetic or not also did not enter those considerations. Of course, for magnetic
systems, one must include Be in addition to (P,T) as the independent variables. As
explained in chapter 10, it is the magnetic Gibbs potential GM that has to be used
for determining the equilibrium conditions, rather than the usual Gibbs potential G.
More precisely, it is the magnetic Gibbs potential per unit mass gM that needs to
be used. As explained in chapter 10, the contribution of the magnetic field energy

density B2
e

2μ0 need not be explicitly included in the internal energy. Just so that there
is no confusion about this, we shall, following Pippard, use u′ instead of u for the
internal energy per unit mass. The appropriate magnetic Gibbs potential per unit
mass will likewise be denoted by g′M .

Therefore
du′ = T ds−Pdv+Bedm (11.45)

Likewise, the magnetic Gibbs potential per unit mass and its variation are given by

g′M = u′ −Ts+Pv−Bem dg′M =−sdT + vdP−mdBe (11.46)

These immediately lead to the relations
(

∂g′M
∂T

)

P,Be

=−s

(
∂g′M
∂P

)

Be,T
= v

(
∂g′M
∂Be

)

T,P
=−m (11.47)

Unlike the non-magnetic situation, not all the partial derivatives are of definite sign;
the last one can be both positive or negative. It can vanish too.

Now we discuss phase equilibrium between two phases of a magnetic system. At
this stage we keep the discussion very general. In the next subsection we shall focus
specifically on superconducting phase transitions. As before, the condition for the
coexistence of two phases, labelled 1 and 2, is that g′M ,1(T,P,Be) = g′M ,2(T,P,Be).
This defines a two dimensional surface of coexistence unlike the phase coexistence
curve that we have treated so far. Therefore, we can in principle define three different
types of tangents; one lying in (T,P)-plane, one in (P,Be)-plane and finally, one in the
(Be,T )-plane, so the single Clapeyron equation for a phase coexistence curve now
becomes three Clapeyron-like equations. Other than this additional detail, our earlier
methods for obtaining the Clapeyron equation go through. This time we will illustrate
with only one way of getting the Clapeyron equation, the one based directly on the
Gibbs potential. The reader is however urged to try and derive these results for the
magnetic systems by as many different methods as possible.

The differential form of the phase coexistence condition is

−s1dT + v1dP−m1dBe =−s2dT + v2dP−m2dBe (11.48)

It immediately follows that the three equations, the magnetic analog of the Clapeyron
equation, are given by
(

∂Be

∂T

)

P
=− s2− s1

m2−m1

(
∂P
∂T

)

Be

=
s2− s1
v2− v1

(
∂Be

∂P

)

T
=

v2− v1
m2−m1

(11.49)
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It is easy to explicitly evaluate the triple product of partial derivatives:

(
∂Be

∂P

)

T

(
∂P
∂T

)

Be

(
∂T
∂Be

)

P
=

(
∂Be

∂P

)

T

(
∂P
∂T

)

Be

(
∂Be

∂T

)−1

P
=−1 (11.50)

which is the triple product rule for partial derivatives that we have heavily made use
of. This demonstration should help demystify the triple product rule, i.e the product
being -1 instead of a naive expectation of 1.

The second of the equations in eqn.(11.49) is indeed of the same form as the
Clapeyron equation encountered in the mechanical case; however, there is an impor-
tant difference. While the earlier one was a total derivative, the magnetic analog is a
partial derivative. This is simply because the third independent variable Be has to be
kept constant while the variation of P corresponding to a variation in T is computed.

11.8.1 Superconducting transitions

We have already described the phenomenon of superconducting phase transitions in
chapter 10. We shall apply the magnetic analog of the Clapeyron equation to explain
and understand a number of its features. We shall take Be to be the critical mag-
netic field μ0Hc. As described earlier, in the superconducting state (we shall restrict
attention to the so called Type-I superconductor, a terminology that has also been
introduced in the same chapter), the magnetic field vanishes totally, i.e B = 0 for
all Be below a certain critical strength μ0Hc. This is what is usually referred to as a
state of perfect diamagnetism, as the induced magnetization (or currents) completely
cancels the external field. In particular, this means that in the superconducting state
χm = −1, which is several orders of magnitude larger than the susceptibility in the
non-superconducting, or normal, state.

As also explained in chapter 14, when the external field exceeds the critical value,
superconductivity is destroyed and the substance returns to its normal state. Instead
of labelling the states as 1 and 2, which is not very informative, we shall label them
by S for the superconducting state, and by N for the normal state. Then, sN ,vN ,mN

refer respectively to specific entropy, specific volume and specific magnetization for
the normal state, and likewise, sS,vS,mS for the superconducting state. At this point,
it is clear why defining susceptibility through M = χm B would be inappropriate, as
that would have either implied mS = 0 or χS

m = ∞. It is also clear that for the normal
state whose susceptibilities are very small, it would not have mattered that much
as to which of the two ways was used to define the susceptibility, i.e M = χmH or
M = χm

μ0 B.
In what follows we shall adapt the very lucid analysis of this situation as given by

Pippard. Let us first consider the equation
(

∂Be

∂T

)

P
=− sS − sN

mS −mN
(11.51)

The specific magnetization for the superconducting state is simply given by mS =
vSMS = −vS

Be
μ0 whereas mN = vN χN

m
Be
μ0 . The specific volumes do not change that
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dramatically during these transitions. Since χN
m << 1, we can, to a very good ap-

proximation, take mN ≈ 0. Putting these together, eqn.(11.51) can be recast as

sS − sN = μ0vSHc

(
∂Hc

∂T

)

P
(11.52)

Before interpreting this equation, a subtle point, as explained by Pippard, needs
to be discussed. As they stand, all the quantities (sS,sN ,vS,vN) are at coexistence
points, and will in general depend on Hc. But a closer inspection reveals that their
field dependences are weak, and that to a good approximation they can be taken to
have the values in zero field. This is an important point as otherwise comparison of
many of the equations with data would become very difficult. So let us analyse this
in some detail.

First consider the field dependences of the specific entropies. Recall from our
discussions in chapter 10 that entropy of a magnetic system was affected by magnetic
fields. But that effect was driven by the susceptibility in the normal phase. In the
present analysis, effects of the susceptibility of the normal phase are being treated as
very very small. It is in this sense that one can claim that the field dependence of sN

is very weak. We can make this argument more precise by considering the magnetic
analog of Maxwell’s relation as contained in the second of the eqn.(8.58), which for
the present circumstance can be rewritten as

(
∂ s

∂Hc

)

T,P
= μ0

(
∂m
∂T

)

P,Hc

(11.53)

Therefore, for sN , the field dependence can be ignored because mN ≈ 0. It is curious
that it is this weak field dependence of sN that underlies the Adiabatic Demagnetiza-
tion, but in the context of superconducting phase transitions, it can just be ignored.
But what about the field dependence of sS then? The diamagnetic susceptibility here
is in a sense the largest ever possible! But now, mS = −vSHc, and the partial deriva-
tive on the rhs of the above equation is nonzero only because of a temperature de-
pendence of vS. In other words, the field dependence of sS is of the same order as the
thermal expansion effect, which is usually very small.

Likewise, to discuss the possible field dependence of vS,vN , we make use of the
other magnetic Maxwell’s relation:

(
∂v

∂Hc

)

P,T
=−μ0

(
∂m
∂P

)

Hc,T
(11.54)

It again follows from the rhs of this equation that for vN there is no field dependence
as long as mN ≈ 0. For the superconducting phase, the only contribution comes from

−
(

∂vS
∂P

)

T
which is nothing but vS κT , where κT is the isothermal compressibility or

the bulk modulus. This too is a very tiny effect. Thus both vS,vN are also practically
field independent. The practical consequence is that we can use zero field values for
these quantities wherever they make sense.
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Let us return to eqn.(11.52) to understand its consequences. To get a better feel
for them, let us use the phenomenologically succesful formula for the temperature
dependence of Hc, the parabolic law.:

Hc(T,P) = Hc(0,P)

(
1− T2

T2
c

)
(11.55)

Experimentally very little pressure dependence has been seen for the parabolic law
[25]. Nevertheless, we have included a pressure dependence of a very specific type
above. The reader should appreciate that sometimes it is necessary to see and ap-
preciate how thermodynamics works. For such purposes, even a model, such as the
presumed pressure dependence above, is very helpful, notwithstanding its actual ob-
servational status. Substituting this in eqn.(11.52), one gets

sS − sN = −2μ0vS(T,P)
Hc(0,P)2

T2
c

T

{
1− T2

T2
c

}
(11.56)

We now make several remarks about this important equation. Firstly, notice that at
absolute zero, the rhs vanishes. This is what Nernst theorem would require. Accord-
ing to it, all entropies must vanish at absolute zero. A weaker version of it requires
that differences between all entropies must vanish at absolute zero, and the above
relation satisfies it. The above relation is valid at all temperatures below Tc. The rhs
then is negative except at Tc and 0 K, where it vanishes. This means that the specific
entropy of the superconducting phase is lower than the specific entropy of the normal
phase. From our earlier discussions of entropy this implies that the superconducting
state is more ordered than the normal state.

While the vanishing of the difference in specific entropies at absolute zero is de-
manded by the Nernst theorem, its vanishing at the critical temperature Tc is simply
a characterstic of the superconducting transition. Let us try to understand its sig-
nificance. It means that this zero field transition takes place with vanishing latent
heat. But we can recall two other circumstances where too the latent heat vanished.
One was at the critical point of the phase diagram of water, and the other at the
Pomeranchuk point in the phase diagram of He-3. There was however a fundamental
difference between those two situations.

At the Pomeranchuk point, while the latent heat vanished, the difference in spe-
cific volumes remained nonzero. This allowed the Clapeyron equation to be applied
without any modifications. On the other hand, at the critical point of the phase di-
agram of water, not only the latent heat vanished, so did the difference in specific
volumes. Consequently, the Clapeyron equation could not be applied in its original
form, and higher order modifications were necessary. To settle this issue, use can be
made of the last of the magnetic Clapeyron equations,

μ0

(
∂Hc

∂P

)

T
=

vS − vN

mS −mN
(11.57)

By substituting eqn.(11.55) into eqn.(11.57) and using the expressions for mN ,mS,
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we get

vS − vN =−μ0Hc(0,P)H
′
c(0,P)

(
1− T 2

T 2
c

)2

(11.58)

where the prime indicates differentiation wrt P. This equation tells us the very impor-
tant fact that at the superconducting transition, the specific volumes of both phases
are the same, i.e vS(Tc) = vN(Tc). This is exactly what happens at the critical point
of the water phase diagram too where the specific volumes of the water phase and
steam phase become equal. Therefore the superconducting transition is also a critical
point, and the standard form of the Clapeyron equation can not be applied to it.

If the parabolic law has no pressure dependence at all, the lhs of eqn.(11.57)
trivially vanishes and so does the equality of the specific volumes (in fact at all tem-
peratures). But even with the hypothetical P-dependence introduced in eqn.(11.55),
the difference in specific volumes vanishes at Tc. It is to be noted that vS − vN is van-
ishing as � (sS − sN)

2 as Tc is approached. We will explain the significance of this
shortly.

We have already encountered critical points of different kinds, as for example
the critical point in water, the λ -transitions of He-4 etc. Can we say, purely from a
thermodynamic analysis, whether the superconducting transition is of one of these
types, or of a totally different type? The clue to that comes from an examination of the
specific heats. Recall that both at the λ -transition and at the water critical point, the
specific heat diverged. By specific heat here, we specifically mean the specific heat cP

at constant pressure and per unit mass. To avoid clumsiness in expressions, we shall

drop the pressure subscript, and simply write it as c. This is given by c = T
(

∂ s
∂T

)

P
.

It straighforwardly follows from eqn.(11.52) that

cS −cN = μ0T vS

{(
∂Hc

∂T

)2

P
+Hc

(
∂ 2Hc

∂T 2

)

P

}

+μ0
T
2

(
∂vS

∂T

)

P

(
∂H2

c

∂T

)

P
(11.59)

The discontinuity in the specific heat at Tc follows on noting that Hc(Tc) = 0 and is
given by

(cS − cN)(Tc) = μ0TcvS(Tc)

(
∂Hc

∂T

)2

P
(11.60)

It is to be noted that the lhs is positive even without invoking the parabolic law.
Thus the thermodynamic analysis, originally due to Gorter and Casimir [21],

states that there should be a sudden jump in the specific heat at Tc. Not only that,
it even predicts that cN should be lower than cS. Actually, Keesom and collaborators
[30] had observed this effect experimentally in 1932 at the same laboratory in Leiden
where Kamerlingh Onnes originally discovered superconductivity, called supracon-
ductivity by the Leiden group. The thermodynamic analysis by Gorter and Casimir
actually came a year later.

The BCS theory too, naturally predicts such a discontinuity in specific heats. In
fact, thermodynamics may contradict a theory, but no theory can contradict thermo-
dynamics. However, BCS theory goes further in predicting that the ratio cS−cN

cN
has
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the universal (meaning the same value for all materials) of 1.43. In actuality, the
value differs from material to material. This should not be of concern as the BCS
prediction involves some material dependent assumptions. The BCS value has been
shown to be in excellent agreement with the high precision experimental values ob-
tained by Phillips for Aluminium.

The general trend is of course seen in all materials. For Aluminium the graph de-
picting the variation of the specific heats with temperature was shown in chapter 10.
One sees that as the temperature is lowered from Tc, a temperature is reached where
the two specific heats become equal, i.e cS = cN . Beyond that, cS becomes smaller
and smaller compared to cN . Of course, both of them approach zero as absolute zero
temperature is approached, in accordance with Nernst theorem.

Before we analyse the issue of applying the higher order Clapeyron equation
to this transition, we wish to make some comments on the significance of the
temperature at which the two specific heats become equal. Quite generally, since

cS−cN = T
(

∂ sS−sN
∂T

)

P
, it is clear that the point at which the two specific heats match,

is a temperature at which the difference in specific entropies is either maximum or
minmum. Since the entropy difference is zero at absolute zero as well as at Tc and it
is negative everywhere else, it follows that if there is only one crossover point (ex-
perimentally that is indeed the situation), that must be a minimum. Therefore this
is the point at which maximal ordering of the material happens. If we assume that
effects of thermal expansion are negligible, so the last term of eqn.(11.59) can be
dropped, the parabolic law of eqn.(11.55) predicts that this crossover must happen at
T ∗ = Tc√

3
, quite universally. Examination of data shows that this is quite accurately

true.
We finally address the issue of the type of higher order Clapeyron equation that is

applicable for the superconducting transition. The fact that cP is discontinuous at the
transition but the discontinuity is finite suggests that Ehrenfest’s second (or higher)
form of the Clapeyron equation may be the right one. For this we need to examine
the behaviour of the difference in thermal expansion coefficients βS −βN as well as
the difference in isothermal compressibilities κS −κN at the critical temperature. We
shall first analyze the situation rather generally, and then use the parabolic law for
a more explicit analysis. In particular, we wish to understand how the consistency
condition of eqn.(11.44) is satisfied for the superconducting transitions. We shall
restrict the analysis to only T = Tc.

As a first step, we recast eqn.(11.57) into a form that does not assume the parabolic
law:

vS − vN =−μ0vSHc

(
∂Hc

∂P

)

T
=−μ0

2
vS

(
∂H2

c

∂P

)

T
≈−μ0

2
v

(
∂H2

c

∂P

)

T
(11.61)

This equation is of course valid at all (T,P) on the coexistence surface. From this we
can obtain both βS−βN and κS −κN. Let us consider the expansion coefficients first:

βS −βN =
1

vS

(
∂vS

∂T

)

P
− 1

vN

(
∂vN

∂T

)

P
≈ 1

v

(
∂ (vS − vN)

∂T

)

P
(11.62)
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Following Pippard, we have approximated the denominators 1
vS
, 1

vN
by 1

v and further
taken v to be a constant. The reader is advised to carefully check the appropriateness
of this approximation. If this is acceptable, the following result follows for βS −βN :

βS −βN ≈−μ0

2

∂ 2

∂P∂T
H2

c (11.63)

Likewise

κS −κN ≈ μ0

2

(
∂ 2

∂P2
H2

c

)

T
(11.64)

At the critical temperature, where Hc = 0, these relations take the simplified forms

cS−cN = μ0Tcv

(
∂Hc

∂T

)2

P
βS−βN =−μ0

(
∂Hc

∂P

)

T

(
∂Hc

∂T

)

P
κS−κN = μ0

(
∂Hc

∂P

)2

T
(11.65)

It is seen that the Ehrenfest consistency condition, eqn.(11.44) is indeed satisfied. It
finally follows that the slope in the fixed Hc plane is given by

(
∂Tc

∂P

)

Hc=0

= vTc
βS −βN

cS − cN
=

κS −κN

βS −βN
(11.66)

So far we did not invoke the parabolic law of eqn.(11.55). On making use of it, one
finds, at Tc,

cS − cN = 4
μ0v
Tc

H2
c (0,P) βS −βN = 0 κS −κN = 0 (11.67)

Consequently (
∂Tc

∂P

)

Hc=0

= 0 (11.68)

Even if one allows for a pressure dependence in parabolic law, Tc is seen to be inde-
pendent of P. Though both βS −βN and κS −κN vanish as T → Tc, the latter vanishes
faster than the former. In fact the latter vanishes as the square of the former.

11.9 Problems

Problem 11.1 Consider a cylindrical needle of radius 1 mm with a rectangular
platform attached to it at right angles. By placing weights on the platform, pres-
sure can be applied to a block of ice, and if the pressure is sufficient, ice will
become liquid, allowing the needle to go through. Derive a relationship between
the temperature of the ice block and the weight that has to be placed for the nee-
dle to go through. How can this be used to measure the latent heat of fusion of
ice?

Problem 11.2 The vapor pressure of mercury in two different ranges of tempera-
ture is seen to be: a) 0.0127 torr at 50 ◦C and 0.0253 torr at 60 ◦C, b) 247 torr at
300 ◦C and 505 torr at 310 ◦C. Calculate the latent heat in each of these ranges
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by applying the Clausius-Clapeyron approximation. Assuming a linear interpo-
lation between the low and high temperature regions, find the formula for vapor
pressure as a function of temperature. What is the boiling point at 1 atm. = 760
torr?
Problem 11.3 In a solid-liquid phase transition such as the one between water
and ice, it is given that P0,T0 lies on the coexistence curve. The slope of the
coexistence curve at this point is given to be b. If the latent heat at P0,T0 is
l0, calculate the latent heat at a nearby point with temperature T0 + δT under
the assumption that the specific volumes, the coefficients of volume expansion,
isothermal compressibilities, and constant pressure specific heats of both phases
are known in the vicinity of these points.
Problem 11.4 In a so called second order phase transition it is observed that
there is no change in specific entropy, specific volume between the two phases.
Calculate the difference in cP for the two phases in terms of the differences
between the coefficients of volume expansion and isothermal compressibilities.
Problem 11.5 Determine the temperature dependence of the saturated vapor
pressure above a solid under the assumption that the vapor behaves like an ideal
gas, and that all specific heats are constant. Show how the difference in specific
heats can be measured this way.
Problem 11.6 Determine the change in the volume of a vapor with temperature
along its coexistence curve with a liquid. The vapor may be assumed to obey
ideal gas law.
Problem 11.7 If one treats the atmosphere isothermally, there is a characteristic
decrease of pressure with height as determined by g, the acceleration due to
gravity and the mean molecular weight. If these are given to be g = 9.81N/Kg
and M = 0.029Kgmol−1 , calculate the boiling point of water at a height of 5
kms. The latent heat of vaporization can be taken to be 40 kJ/mol. Since the true
atmosphere is not really isothermal, what is a reasonable value to be used for the
temperature?
Problem 11.8 Repeat the above problem by giving up the assumption of an
isothermal atmosphere, and instead basing it on the more realistic case of an
adiabatic atmosphere.
Problem 11.9 If the latent heat, specific volumes of the liquid, and vapor are all
known as a function of pressure, show that the equation for the coexistence curve
can be used to find out the absolute temperature along the coexistence curve in
terms of pressure. This can be thought of as a thermometer.
Problem 11.10 Find the equilibrium vapor pressure for a liquid-vapor coexis-
tence when the latent heat of vaporization is known to be well approximated
by L(T) = L0 − aT − bT2 in a certain range of temperatures. The Clausius-
Clapeyron approximations may be made here too. Compare this with the ob-
served behaviour of the vapor pressure of liquid He4.
Problem 11.11 The vapor pressure of a liquid is given by lnP(T) = al + bl/T ,
while the vapor pressure over the solid phase of the same substance is given by
lnP(T) = as + bs/T . Find the a) temperature and pressure of the triple point
and b) the three latent heats at the triple point, using the Clausius-Clapeyron
approximation and assuming the constancy of various latent heats.
Problem 11.12 Water boils at 92 ◦C at the top of a hill while it boils at 100 ◦C
at its bottom where the pressure is 100 KPa. If the atmosphere is taken to be
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isothermal with a characteristic temperature of 300 K, find the height of the hill
given that the latent heat of vaporization and the mean molecular weight of air
are 2200 kJ/kg and 28 respectively.

Problem 11.13 The specific heat per unit volume of a metal is described by
Cs = aT 3 in the superconducting state, and by Cn = cT + bT 3 in the normal
state. Find the transition temperature i) in zero field, ii) the critical magnetic
field, and iii) the difference in internal energies of the two states at zero magnetic
field.



12 The van der Waals Equation

In 1873, a little over two decades after the formulation of the first and second laws of
thermodynamics, van der Waals in Leiden published a thesis entitled The Continuity
of the Gaseous and Liquid States. He introduced the now famous van der Waals
equation in that work. This equation has had a great impact on our understanding
of phases and their equilibria, apart from being a much more succesful description
of the gaseous phase than the ideal gas law. This came nearly two centuries after
Boyle’s law and a century after Charles’s law.

This work also marked a transition from purely thermodynamic treatments to ones
invoking the atomic nature of matter. Interestingly it came around the same time
as Boltzmann’s great works on the statistical origins of thermodynamics. Though
atomism had been conjectured by the early Greeks (Democritus) and the Indian
philosopher Kanada, and surmised as the basis of chemistry by Dalton, it took several
decades more even after van der Waals to experimentally vindicate the atomic hy-
pothesis. In fact, even after Boltzmann’s works there was great opposition to atomic
theory from such stalwarts as Ernst Mach and Wilhelm Ostwald. The issue was con-
clusively settled only by Einstein and Perrin’s works on Brownian motion. What is
remarkable about van der Waal’s work is that it used atomism in a rather minimal
way, yet with great effect. He introduced two essentially different modifications into
the ideal gas law PV = nRT . For the first, he argued that atoms or molecules consti-
tuting matter have finite size and for this reason replaced the volume V by V − nb to
account for the effective volume available for the motion of the constituents.

The second is somewhat more elaborate, and attempts to take into effect the mu-
tual attraction between the elementary constituents. His analysis of this is surpris-
ingly modern in its spirit. The forces of cohesion were taken to be of short range.
Taking the spatial distribution to be uniform, it becomes obvious that in the interrior
of a volume, the cohesive forces balance each other and the net effect is as if there
were no cohesive forces. But near the boundary, essentially only a hemisphere (if the
walls are planes) of atoms or molecules exerts an influence on those at the boundary.
Hence the net effect is a pull towards the interior which has the effect of reducing
the pressure. The effect per constituent is obviously proportional to the number den-
sity n

V , and on the pressure with an additional factor of n
V . Therefore, van der Waals

argued, the pressure P in the ideal gas law must be replaced by P+ an2

V2 . Combining
the two effects, the equation proposed by van der Waals is

(P+
an2

V 2
)(V − nb) = nRT (12.1)

The constants a,b are characteristic of the particular substance. It should be noted
that the n factors are such as to ensure extensivity. Clearly, in the limit a,b → 0, the
ideal gas law is recovered.

In the ideal gas case every solution of the equations of state is an equilibrium state.

229
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Is this so for the vdW case also? The answer turns out to be negative. The meaning
of this will be explained in detail later.

While we have briefly explained the microscopic modelling that went into getting
the equation, as far as thermodynamics is concerned, we can forget about that rea-
soning and simply take eqn.(12.1) as one of the equations of state characterizing the
thermodynamic system. It is like specifying the force or equivalently the potential in
Newtonian mechanics. Interestingly, Boltzmann is supposed to have called van der
Waals the Newton of real gases!

12.1 Thermodynamic aspects

As already emphasized in chapter 6, structurally this is a single constituent sys-
tem with two thermodynamic degrees of freedom. Consequently, one must have two
equations of state for a complete determination of its thermodynamics. The van der
Waals equation is only one of them. For the second, we need an independent equa-
tion involving T. In the case of the ideal gas, this was that the internal energy U(T )
is a function of temperature alone. The second equation of state could not have been
specified completely independently. The restriction, in fact, came from the first law.

To see the analog in the present context, let us use the relation (see eqns.(3.7, 3.9,
3.41)) (

∂U
∂V

)

T
= T

(
∂P
∂T

)

V
−P (12.2)

Substitution of eqn.(12.1) in this yields
(

∂U
∂V

)

T
=

a
V 2

(12.3)

whose solution is
U(T,V) = f (T )− a

V
(12.4)

The physically interesting deviation from the ideal gas case is that now the internal
energy depends both on (V,T ). From the microscopic point of view, the volume
dependence of energy is to be expected because of the cohesive forces, but the power
of thermodynamics is that it can give that conclusion purely based on its fundamental
laws and the equation of state.

Two things to notice about this result are: (i) the internal energy is independent of
the parameter b, which in the microscopic picture was a measure of the size of the
constituents; (ii) even in this case, the only freedom in specifying the second equa-
tion of state is a function of T alone, which was the same in the ideal gas case too.
Therefore, the parameters defining a vdW system are not just (a,b) but in addition
all the parameters that enter f (T ).

An important consequence is that the specific heat CV of a generic vdW system is
determined by only the temperature:

CV =

(
∂U
∂T

)

V
= f ′(T ) (12.5)



The van der Waals Equation 231

The specific heat at constant pressure CP can be obtained on using the general iden-
tity (see eqn.(3.52)

CP −CV = {
(

∂U
∂V

)

T
+P}

(
∂V
∂T

)

P
(12.6)

It is easy to show that this reduces to

CP −CV =
R

1− 2a
RT

(V−b)2

V3

(12.7)

It is interesting at this stage to ask about the consistency of the vdW system with
Nernst theorem. Recall that in the ideal gas case with CP −CV = R, it is impossible
for both CP,CV → 0 as absolute zero is approached. To examine this issue for the
vdW case, let us rewrite the above equation as

CP −CV =
R

1− 2a
V3

RT
(P+ a

V2 )2

(12.8)

Now, as T → 0, the volume tends to b, and the above equation says that even for
the vdW system, CP −CV → R, and therefore compatibility with Nernst theorem is
not possible. At high temperatures anyway the vdW behaves like an ideal gas, and
CP −CV → R. It is only in intermediate regions that the behaviour of the difference
in specific heats differs from the ideal gas case.

12.1.1 Thermodynamic potentials

As a first step towards determining all the thermodynamic potentials, let us calculate
the entropy of a generic vdW system (meaning for an arbitrary choice of f (T )). Let
us first consider the ratio d̄Q

T :

d̄Q
T

= dS =
1

T
(dU +PdV) =

1

T

(
CV (T )dT +

a
V 2

dV +
RT

V − b
dV − a

V 2
dV

)

=
1

T
CV (T )dT +

RdV
V − b

(12.9)

Clearly this ratio is a perfect differential by virtue of the two equations of motion
only. Integrating this yields the entropy S:

S(T,V) =
∫ T

0

CV (T )
T

dT +R ln(V − b)+ S0 (12.10)

It is significant that the entropy is independent of the constant a! The a-dependent
contributions to dU and PdV exactly cancel. There is a statistical mechanical signif-
icance to it which is beyond the scope of this book to explain.

So far the discussion has been quite general. In what follows, we restrict atten-
tion to cases when CV is a constant.Then clearly the integral does not exist due to a



232 The Principles of Thermodynamics

logarithmic divergence near the lower limit of integration, i.e T = 0. But it is obvi-
ous that a constant CV will be a good description only at high enough temperatures.
Thus, with the proviso that we shall apply these considerations to only cases with
reasonably high T, the entropy can be taken to be

S(T,V) =CV ln(
T
T0

)+R ln
(V − b)

b
(12.11)

Here T0 is an arbitrary temperature scale. Except for the replacement V →V −b, this
is the same as that of the ideal gas. The Helmholtz free energy has the form

F(T,V ) =U −TS =CV (T −T ln
T
T0

)−RT ln
(V − b)

b
− a

V
+U0 (12.12)

U0 is a possible arbitrary constant in the internal energy, which is independent of the
entropy constant T0. The enthalpy and the Gibbs free energy follow likewise.

H(T,V ) = CV T − 2a
V

+RT
V

V − b
+U0 (12.13)

G(T,V ) = CV (T −T ln
T
T0

)− 2a
V

+RT
V

V − b
−RT ln

V − b
b

+U0 (12.14)

We end this discussion with a totally different method for calculating the Gibbs po-
tential G. We saw from chapter 6 that the Euler’s equation says that the Gibbs po-
tential and the chemical potential μ are basically one and the same. In particular, the
Gibbs-Duhem relation in the entropy representation was

d
(μ

T

)
=Ud

(
1

T

)
+Vd

(
P
T

)
(12.15)

for one mole of the substance in which case μ = G. Recall that we had dG =
−SdT −VdP which is nothing but the Gibbs-Duhem relation in the energy rep-
resentation. But integrating that would require solving for the entropy S first. The
Gibbs-Duhem relation in the entropy representation avoids that. But we need an ex-
plicit representation of the internal energy U. To illustrate how things work, let us
specialize to the case when CV is constant, so that U(T,V ) = CV T − a

V . Explicitly
working out the details

d(
μ
T
) = Ud(

1

T
)+Vd(

P
T
) =−(CV T − a

V
)

dT
T 2

+Vd(
R

V − b
− a

TV 2
)

= −CV d(lnT )− d(
2a
VT

)−Rd(ln(V − b))+ bRd(V − b)−1 (12.16)

which is easily integrated to give

μ = const.T −CV T ln
T
T0

−RT ln
V − b

b
+ b

RT
V − b

(12.17)

This is, not surprisingly, the same expression as for G in eqn.(12.13) if the constant
in eqn.(12.17) is chosen to be CV +R.
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12.1.2 Various isoparametric processes

Now we consider various processes with one of the quantities, like S, P, V or T, held
fixed. Let us consider adiabatic processes characterized by d̄Q = 0. Obviously these
are also isentropic with dS = 0. Using the explicit expression for entropy obtained
above, we see that these are described by the curve in the (V,T) plane

CV ln
T
T0

+R ln
V − b

b
= const. → T (V − b)

R
CV = const. (12.18)

The equation for this adiabat in the (P,V) plane is easily seen to be

(P+
a

V 2
)(V − b)

R+CV
CV = const. (12.19)

The corresponding equation for ideal gases is also called the Poisson Equation.
Meteorologists, for whom this equation has great significance, are more familiar with
this naming. It should be recalled that the adiabat for an ideal gas in the (P,V) plane
had the volume exponent γ = R+CV

CV
. In the vdW case, even though the corresponding

exponent is still R+CV
CV

, it is not the same as the ratio γ = CP
CV

of the specific heats
except at very high and very low temperatures.

Next we consider isochoric or constant volume processes. Then, only the curve in
the (P,T) plane is nontrivial, and is given by

T = B(P+A) (12.20)

where the constants (A,B) depend on both the fixed volume as well as the vdW
constants (a,b). When the fixed volume is b, the constant B must vanish.

The isobaric or fixed pressure (at, say, P0) processes are described in the (V,T)
plane by the curve

AV 3+B(T )V 2+CV +D = 0 A = P0;B(T ) =−(bP0+RT );C = a;D =−ab
(12.21)

Finally we consider isothermal processes characterized by fixed temperatures.
The equation of an isotherm in the (P,V) plane is given by

(P+
a

V 2
)(V − b) = const. (12.22)

This is also a cubic equation in V like the isobar.

Example 12.1: Comparing pressures of ideal and vdW gases

Given that one mole of a gas occupies 10 liters at 300 K, find a relation between the
vdW constants if the pressure of this gas, treated as a vdW gas, is bigger, equal to, or
smaller than its pressure if treated as an ideal gas.

The pressure formula for a vdW gas shows that if the constant b is zero
but the constant a �= 0, the pressure in the vdW case is always smaller than
the corresponding ideal gas case. On the other hand, if a = 0 but b is not, the
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vdW pressure is always greater than the ideal gas pressure. In the interesting
cases where both the parameters are non-vanishing, it can go both ways. Let
us compute the difference in the pressures

Pideal −PvdW =
RT
V

− RT
V −b

+
a

V2
=− RTb

V (V −b
+

a

V2
(12.23)

It is easy to see that the ratio r = (a(V −b)/RTVb) determines the required
answer, i.e Pideal >PvdW if r> 1, the two pressures equal if r= 1 and Pideal <PvdW
if r < 1. The constant b for many known gases is very small compared to 10
L, so we can approximate r to just (a)/(RTb). It should be appreciated that
this is not the same as ignoring b in the vdW pressure formula. The ratio r
has the interesting interpretaion of (27Tc)/(8T ). The unit we shall use for b is
L, and for a is atm.L2. The value of the gas constant R is 0.0821 atm.L/K, so
that RT in this case is 24.63 atm.L. The ideal gas pressure is therefore 2.463
atm.

Let us apply our criterion to water, CO2, and Helium. In the case of water,
a=5.45 and b=0.03, giving r=7.47. We therefore expect the vdW pressure to
be less than 2.463 atm. Indeed, a direct evaluation yields PvdW=2.42 atm. For
CO2, a= 3.59 and b= 0.0427, giving r= 3.41, while a direct calculation of
pressure gives PvdW= 2.137 atm. Lastly, we consider the case of Helium for
which a= 0.034 (a very small value), while b= 0.0237. One gets, for this case,
r= 0.056, and one gets PvdW to be 2.483, which is larger than the ideal gas
pressure, and this is what r < 1 should indeed give. In Helium, the pressure
difference is almost entirely dominated by b effects while in the case of water
it is the other way around.

Example 12.2: Joule and Joule-Kelvin effects for vdW gases

Explicitly show that both during the Joule expansion as well as Joule-Kelvin process
for vdW gases, entropy increases. Calculate the Joule coefficient η and Joule-Thomson
coefficient μJT and show that while in the former case there is always a drop in tem-
perature, in the latter the temperature change can be of either sign.

Both processes occur under adiabatic conditions, i.e d̄Q = 0. From this one
should not conclude that dS = 0 and hence that there is no change in entropy.
Recall from section 3.4.1 of chapter 3 that integrating dS gives the entropy
change only along reversible paths, and along irreversible paths the integral is
actually less than the entropy difference between the initial and final states.
So how can we show that both the processes are irreversible?

Consider the ideal gas case as an illustration. The final volume is greater
than the initial volume but the temperature has not changed. From earlier
chapters we know that under an isothermal expansion of an ideal gas, entropy
increases. Therefore, the Joule expansion for ideal gases is irreversible. This
has to be so quite generally as from first law T dS= dU +PdV , and when dU =0,
dS is always positive (as long as temperatures and pressures are positive). The
meaning of dS �= 0 in this analysis, even when analysing the Joule expansion
for which d̄Q = 0, is the following: once the Joule (or for that matter, any
process) takes the system from one state to another, the entropy difference
between these two states can be computed by considering any reversible path
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between them and integrating dS along that path. This dS is of course, non-
zero in general.

The Joule coefficient is given by η =
(

∂V
∂T

)

U
. It obviously vanishes for ideal

gases as U is a function of T only. For the vdW case it can be calculated, for
example, from the explicit result for U from eqn.(12.4):

ηvdW =−CV (T )V2

a
(12.24)

This is always negative, showing that during free expansion of a vdW gas,
temperature always drops. In this particular case the finite drop in tempera-
ture for a finite increase in volume can be computed either by integrating this
expression or directly from eqn.(12.4). Taking CV to be constant, for example,
it is easy to show

CV (Tf −Ti) =−a(
1

Vi
− 1

Vf
)< 0 (12.25)

Likewise, using T dS = dH −V dP, where H is the enthalpy, it follows that for
the Joule-Kelvin processes for which dH = 0, a lowering of pressure is always
accompanied by an increase of entropy, i.e the process is irreversible. The quan-
tifier for this process is the Joule-Thomson coefficient μJT . First let us derive
a general expression for this in terms of CP and α. The following equations are
to be made use of:

dH = T dS+V dP → T

(
∂S
∂T

)

P
dT +T

(
∂S
∂P

)

T
dP+V dP

= CPdT +

(
V −T

(
∂V
∂T

)

P

)
dP (12.26)

on using one of the Maxwell relations. Hence

μJT =

(
∂T
∂P

)

H
=

V T
CP

(α − 1

T
) (12.27)

From this it clearly follows that for ideal gases, for which α = 1/T , the Joule-
Thomson coefficient vanishes. For the vdW case it follows that (when V , T are
high),

μJT−vdW =
1

CP

(
2a
RT

−b

)
(12.28)

Clearly this does not have a definite sign, and in the vdW case the porous plug
experiment can lead to both lowering and raising of temperatures depending
on circumstances.

12.1.3 Properties of the vdW isotherms

We had earlier raised the issue of whether every solution of the vdW equations of
state corresponds to an equilibrium state. We address this important issue and is-
sues related to it by examining a family of vdW isotherms, which are displayed in
fig.(12.1).
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FIGURE 12.1 A family of vdW isotherms.

In the vdW case, there is a natural scale
for volume which is b, and a natural
scale for pressure, which is a

b2
. When

volumes are large compared to their
natural scale, and pressures are small
compared to their scale, the vdW equa-
tion becomes the same as the ideal gas
equation, and hence the isotherms also
coincide with ideal gas isotherms at the
same temperature. At very high temper-
atures, it can be seen from the family
of isotherms that to each pressure there
corresponds only one V. Thus, indeed
the solution to the equation of state in
these regimes corresponds to an unique
equilibrium state.

But at low enough temperatures, in the sense to be made precisely, the isotherms
are such that to a given P, there correspond three distinct values of V. Just as there
were natural scales (b, a2

b ) for volume and pressure, there is of course a natural scale
a

Rb for temperatures also. But we shall soon come across another set of scales. So,
low temperatures means T is much lower than this natural scale of temperature. That
three values of V correspond to a single P is just a consequence of the isotherm
equation being a cubic.

In between the three points where the horizontal axis (P=const.) intersects the
isotherm, there ought to be pairs of maxima and minima. In the present case there
is exactly one such pair, again due to the cubic nature of the equation involved. The
explicit condition for stationarity dP

dV = 0 is:

dP
dV

=− RT
(V − b)2

+
2a
V 3

= 0 (12.29)

This is again a cubic equation. It is clear from the figures that the lower the tem-
perature, the farther apart is the maximum from the minimum. This implies a tem-
perature, to be called Critical Temperature Tc, where the maximum and minimum
coalesce into a point of inflexion. At that point, denoted by Pc,Vc on the isotherm at
Tc in the (P,V) plane, both dP

dV and d2P
dV2 are zero. It is an elementary exercise to show

at the point of inflexion, the vdW equation written as

PcV
3− (bP+RTc)V

2+ aV − ab = 0 (12.30)

must be a perfect cubic, i.e of the form Pc(V −Vc)
3 = 0. Compared with the previous

equation, it is easily seen that

Vc = 3b Pc =
a

27b2
RTc =

8a
27b

(12.31)

This is the other scale we had referred to. One immediately notices PcVc
RTc

= 3
8 for all

vdW fluids even though their individual Pc,Vc,Tc or equivalently their (a,b) may be



The van der Waals Equation 237

different. This may be reminescent of the ideal gas law PV = RT but the numerical
factor is different. This relation could be used to test whether a substance belongs to
the vdW class or not. The quantity PV/RT is often referred to as the compressibility
factor Z.

At this moment, the critical point is emerging only as some mathematical aspect
of the vdW equations. But we shall soon see that there is a very rich physics (ther-
modynamics) associated with this point. Because of these features, the critical point
(Tc,Pc,Vc) is easily distinguished experimentally.

Example 12.3: vdW theory for water

Calculate the observed value of (PcVc/RTc) for the water-steam critical point, and
compare it to the prediction of the van der Waals theory. The observed critical pa-
rameters for the water-steam critical point are : Tc = 647K (to a very good
approximation), Pc = 22MPa (again to a good approximation), and the critical
density is very close to 323Kg/m3. Hence the critical molar volume Vc is

Vc =
18

323
m3/Kg ·gms = 5.6 ·10−6m3 (12.32)

where we used the molecular weight of water to be 18. Hence the critical
compressibility factor Zc for vdW fluids is

Zc =
PcVc

RTc
=

2.2 ·107 5.6 ·10−6

6.47 ·102 8.31 N/m2 m3/J = 0.22 (12.33)

When contrasted with the value of 3/8 = 0.375 predicted by van der Waals
theory, we see that the latter is quite a bit off.

It should be noted that an experimental determination of the critical point allows
one to immediately determine the vdW constants (a,b) through the inverse relations:
b = Vc

3 ,a = 3PcV 2
c = 9

8 RTcVc. A very interesting feature emerges on scaling (P,V,T)
by (Pc,Vc,TC) and introducing Pr =

P
Pc
,Vr =

V
Vc
,Tr =

T
Tc

(these ratios are sometimes
called reduced quantities). The vdW equation in terms of these scaled quantities
takes the form (

Pr +
3

V 2
r

)(
Vr − 1

3

)
=

8

3
Tr (12.34)

What is special about this equation is that it is completely universal, i.e it has no,
unknown constants in it, and takes the same form for all substances obeying vdW
equation of state. Expressed differently, it establishes a correspondence between ther-
modynamic states of different substances. Therefore, for given pairs of values, say,
Pr,Vr, one can associate many (P,V) values. One needs only to study thermodynam-
ics with the variables Pr,Vr,Tr, and then the thermodynamics of all vdW substances
follows. Kamerlingh Onnes and van der Waals called this the law of corresponding
states. Henceforth, we shall only use this universal equation.

Example 12.4: vdW thermodynamics in reduced variables

Express all the basic thermodynamic relations of the vdW system in terms of reduced
variables, and define in the process, expressions for reduced internal energy, reduced
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entropy, reduced Gibbs potential, and reduced enthalpy. Write down the first law in
reduced form.

Let us start with the expression for the molar internal energy given by
eqn.(12.4). We wish to find a reduced internal energy Ur which is dimensionless
and expressed in terms of the reduced variables.

U =CV T − a
V

=
8a
27b

(
CV

R
Tr − 9

8Vr

)
=

8a
27b

Ur →Ur =
CV

R
Tr − 9

8Vr
(12.35)

Clearly there is no uniqueness to Ur but it has been designed so that it resem-
bles the form of the unreduced U as much as possible.

Next consider the entropy as given in eqn.(12.11). It is straightforward to
write down the reduced molar entropy Sr:

S = RSr → Sr =
CV

R
lnTr +ln(3Vr −1) (12.36)

Likewise, it is easy to see that the reduced Helmholtz free energy, reduced
Gibbs free energy, and the reduced enthalpy (all molar) are given by

F =
8a
27b

Fr → Fr =Ur −TrSr G =
8a
27b

Gr → Gr =Fr+
3

8
PrVr Hr =Ur +

3

8
PrVr (12.37)

The explicit expressions for Fr and Gr are

Fr =
CV

R
(Tr −Tr lnTr)−Tr ln(3Vr −1)− 9

8Vr

Gr =
CV

R
(Tr −Tr lnTr)−Tr ln(3Vr −1)− 9

8Vr
+

3

8
PrVr (12.38)

The first law in reduced form would read

Tr dSr = dUr +
3

8
PrdVr (12.39)

If we denote by V max
r (Tr),V min

r (Tr) the volumes at which the maximum and mini-
mum occur for the reduced isotherm (Pr vs Vr), the universal vdW equation gives
two pressures, Pmax

r (Tr) and Pmin
r (Tr), which are characterstic properties of vdW

isotherms. The location of these stationary points is given by the eqn.(12.29). De-
noting them collectively by Ṽr, the reduced pressure at the stationary points, P̃r, can
be calculated:

P̃r =
8Tr

3Ṽr − 1
− 3

Ṽ 2
r

= 4Tr
(3Ṽr − 2)

(3Ṽr − 1)2
(12.40)

It is also instructive to calculate the second derivative d2Pr
dV2

r
at the stationary points to

check whether the stationary points in question are a maximum or a minimum:

d2Pr

dV 2
r

= 72Tr
1− Ṽr

Ṽr(3Ṽr − 1)3
(12.41)
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The important conclusion that follows is that all maxima occur at Vr ≥ 1 and that all
minima occur at Vr ≤ 1. This further has the very important consequence that Pmax

r
is always positive. On the other hand, Pmin

r can be positive or negative depending on
whether Ṽr is greater than 2

3 or lesser than it, while still being lesser than 1. These
points will assume significance while discussing the issue of negative pressures in
vdW systems.

For pressures above Pmax
r as well as for pressures below Pmin

r , the cubic equation
determining the intersection of a vdW isotherm with Pr = const. has only one root.
This can be checked by applying the well known rules for the roots of a cubic equa-
tion. For intermediate pressures one can also check that there are three real roots.

Now we address a number of seemingly unphysical features of the vdW isotherms.
Firstly, it is odd that at a given pressure there can be three points of intersection with
an isotherm. One would expect that fixing both P and T should fix the state of the
system. But at this stage, this in itself need not be considered an undesirable feature
as it could well turn out that only one of these points of intersection is stable.

Since at the maximum and minimum, dP
dV = 0, it follows that this derivative must

change signs at these points. Let us divide the volume range into three regions: region
I by b ≤V ≤Vmin, region II by Vmin ≤V ≤Vmax, and finally region III by Vmax ≤V ≤
∞. As already remarked,in the low P high V regions, the vdW equation becomes

closer and closer to the ideal gas equation for which
(

∂P
∂V

)

T
is always negative. But

this is region III, which means in region II this partial derivative must be positive,
and in region I it must again be negative.

To explicitly show that the derivative is negative in region I is rather cumbersome,
so the above argument is a nice short cut. Recall that the isothermal compressibility

κT is defined as κT =− 1
V

(
∂V
∂P

)

T
. This means that in regions I and III, this compress-

ibility is positive which is physically sensible. But in region II, this compressibility
is negative. This does not seem physically sensible as it implies that on increasing
pressure P, the volume also increases! This is a very serious drawback of the vdW
equation if one interprets it literally. The cure, which really turns a problem into a
victory, is discussed next. The occurrence of negative pressures is another serious
drawback of the vdW system. A fuller discussion of that issue is possible only after
we have discussed the next section.

12.2 Existence of Phases in the vdW system

Now we address the central issues concerning the vdW equation, namely, the mul-
tivalued solutions to the equation of state, and the unphysical behaviour of the
isotherms. If more than one solution to the equation of state is thermodynamically
stable, it is tempting to interpret them as different phases of a single component sys-
tem. Of course, it will not be evident that this interpretation will automatically fix the
bad behaviour of the isotherms.

To gain some intution in the matter, let us look at a one component system existing
in both liquid and gaseous phases, for example, CO2. The phase diagram of this
substance exhibits a critical point at 304 K ( room temperature in many parts of the



240 The Principles of Thermodynamics

world!). In figure 12.2, isotherms are shown for both above and below the critical
temperature. It is seen that well above the critical temperature, the real life isotherms
do indeed resemble the vdW ones. Even the one at the critical temperature (the thick
curve) looks like the vdW critical isotherm, though the curve at the critical point is
much flatter.

FIGURE 12.2 Carbon Dioxide Isotherms

But where the real life isotherms differ markedly are when temperatures are below
Tc. What distinguishes the real life isotherms are regions where the isotherms are flat
and run parallel to the V-axis(P=const.). These are clearly absent in the vdW case.
Before focusing attention on this part, let us note that to both the left as well as the
right of the flat part, the isotherms sort of resemble the vdW ones, though the shapes
are not exactly the same. But what is of importance is that in both these regions the
isothermal compressibility is normal (positive).

The region to the left is characterized by small volumes, or equivalently higher
densities, and is the liquid part. Likewise, the region to the right is marked by con-
siderably larger volumes for the same P and T, and this should be identified with
the gaseous phase. To be more precise, this corresponds to the region of unsaturated
vapor. What that means is that there is only vapor without any liquid accompanying
it.

With these identifications, we can now understand the flat part of the real
isotherms. From our detailed study of phase equilibria we know that two phases
can coexist at the same P and T if their Gibbs potentials per unit mass are equal at
those (P,T). On the other hand, the specific volume (volume per unit mass) of the
gas, vg, is much larger than that of the liquid,vl. Now imagine x mass units of liquid
coexisting at (P,T) with 1− x mass units of gas so that the total mass is still unity.
But the volume now is xvl +(1−x)vg and for each value of x one has a stable phase.
Thus in the/ P-V diagram, this entire collection of stable phases appears as a line
with one end being pure liquid and the other end being pure gas.

Let us follow the isotherm marked abcd to get a better grasp of things. The point
d is in the unsaturated vapor region with T < Tc,P < Pc and V > Vc. Let us consider
compressing this isothermally. As we increase the pressure, the system moves up
along the isotherm, with decreasing volume, till it reaches c. This point is on the flat
coexistence curve bc. The vapor pressure now equals the saturated vapor pressure.
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Any further compression at this point leads to condensation so that a decrease
in volume is accompanied not by an increase in pressure but by formation of liquid.
Therefore the decrease in volume has to be accomplished by taking away latent heat.
As this process is carried on, more and more liquid will be formed while maintaining
the pressure at the saturated vapor pressure, and one eventually reaches the point b,
where the system is completely in the liquid phase which is practically incompress-
ible. Volume can now be lowered only by increasing pressure, and the isotherms tell
us that the pressure increases steeply.

At this point we have the situation that real life isotherms have something that
the vdW isotherms do not, i.e the flat parts, and they do not have something which
the vdW isotherms do have, namely, the kink over part of which the compressibility
is unphysical. The main task of reconciliation is to bring to vdW isotherms what is
missing, and to get rid of the unphysical sectors.

There is a subtlety that we address now. If instead of taking away heat at c, let
us consider compressing the system very slowly.Then the vapor becomes supersat-
urated meaning the liquid content in the vapor is more than what would have been
in the saturated case. This clearly has to be an unstable state as all the possible
stable points have been accounted for by the flat part. In practical terms, liquefac-
tion requires the so called nucleation centres; these could be dust particles or in
their absence even fluctuations in temperature, density etc. By removing such nucle-
ation centres, it is possible to supersaturate the vapor. These supersaturated, unstable,
states are the part of the vdW isotherms that would not be part of the stable states of
real isotherms. The instability manifests itself by the fact that any slight disturbance
of the system through minute dust particles, fluctuations etc. would result in conden-
sation to the stable states. In principle, by a very very careful method more and more
such unstable states may be produced whose locus will reproduce the original vdW
isotherms (provided of course that the substance strictly obeys the vdW equation).
But in practice, unstable states ’far away’ from stable ones are extremely difficult to
produce.

With this discussion a plausible resolution of the unphysical features of vdW case
suggests itself; it is that the vdW equation does not always represent a single com-
ponent homogeneous phase. There are two phases of the system, and regions where
they coexist, and in those regions the original vdW isotherms have unstable states
that should be replaced by stable states of coexisting phases.

This also gives meaning to the multiplicity of the roots for V of the vdW equation
at a given P. Where the equation has only one root, for example when P > Pmax or
P < Pmin, there is no issue. But for Pmin ≤ P ≤ Pmax, the smallest volume solution is
to be associated with the liquid phase and the largest volume solution with the gas
phase. At only one P, will both the phases be stable. At all other pressures even in
the range of multiple solutions, only one root will represent the stable phase.

All this does not say how exactly this replacement is to be achieved. In other
words, where exactly should one locate the flat part of the isotherms? The answer to
this is one of the most beautiful developments in thermodynamics worthy of being
called another pearl of theoretical physics (Lorentz is said to have described Boltz-
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mann’s thermodynamic derivation of the Stefan law as a veritable pearl of theoretical
physics). We describe this in the next section.

12.2.1 The Maxwell construction

So the main task is to find a method for determining, for a given T, the pressure at
which the liquid and gas phases coexist. Then all the points in region I of the isotherm
below this line, all the points in region III above this line and the entire region II will
represent unstable phases.

We discuss three different ways of tackling this problem: first is a very elegant
construction discussed by Fermi which requires only the existence of the coexistence
part and does not require any calculations at all. Next, we use the fact that the Gibbs
potential per unit mass of the two phases must be equal to determine the flat part,
also called the Maxwell line. Finally, we use Helmholtz free energy considerations
towards the same end.

Fermi method: Consider the isotherm marked de f h jkl in fig.(12.1). Let the solid
line ehk be the flat part we are seeking. The important point to remember is that if
it were so, every point along it, from e to k, represents a stable state. Consequently,
infinitesimal reversible changes can link two neighbouring points. Even though the
states along the original part of the vdW isotherms are all unstable, nearby points can
still be connected by reversible isothermal changes.

FIGURE 12.3 The Maxwell Construction.

Now consider performing a re-
versible isothermal cycle hk jh f eh.
From our considerations of chapter 3, it
follows that

∮ d̄Q
T = 0 along this cycle,

and because T is constant throughout,∮
d̄Q = 0. From first law, it then follows

that the total work done in traversing the
cycle must also vanish, which means∮

PdV =0, i.e the total area of the curve
must vanish. Our sign convention for
work is such that the area of the closed
curve hk jh, traced in the anti-clockwise
direction, should be considered nega-
tive, while the area of the closed curve
h f eh, traced in the clockwise direction,
should be considered positive. There-
fore, the total area being zero means that the geometrical areas of hk jh and hgeh
should be equal. Therefore the way to find the coexistence line is to draw it such
that it produces two curves of equal area. This is called the Maxwell Construction
[43, 44].

The Gibbs potential construction Now let us turn to this construction from
the point of view of g(T,P). The ends e and k of the coexistence line represent
the pure phases (liquid and gas in this case). Hence their Gibbs potentials per unit
mass must be equal, i.e ge(T,P) = gk(T,P). This implies fe(T,P) + Pve(T,P) =
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fk(T,P)+Pvk(T,P) where ( f ,v) stand for the unit mass Helmholtz free energy and
volume, respectively. Now recall that d f = −sdT −Pdv where s is the specific en-
tropy. It therefore follows, since T is constant throughout, that

fe − fk =−
∫ k

e
Pdv (12.42)

This integral is just the area of the open curve e f h jk. It is elementary to see that this
is equal to P(vk −ve)+Area(h jkh)−Area(h f eh). Therefore, the equality of g at the
points e and k implies the equality of the two closed areas, exactly as before. For
ease of later references, let us call hfeh the lower closed curve, and hjkh the upper
closed curve.

But it is possible to go beyond this geometrical construction to explicitly write
down the equation for the Maxwell line. There are several ways of doing this. Let us
illustrate by explicitly using the expressions for entropy and internal energy of vdW
fluids as given in eqn(12.11) and eqn.(12.4) respectively. One could have used the ex-
plicit expression for the Gibbs potential of eqn.(12.13), but that particular expression
does not contain P explicitly. Therefore, the condition ge − gk = 0 becomes

P(ve−vk)+ue−uk−T (se−sk) = p(ve−vk)+RT ln
vk − b
ve − b

+
a
vk

− a
ve

=0 (12.43)

Solution of this equation gives the coexistence curve P(T ). But what makes solving
this equation difficult is that the roots ve,vk of the cubic equation for finding v given
(T,P) are themselves dependent on (T,P) in a very complicated way. However, we
shall work out these details in the vicinity of the critical point later on.

The Free energy construction We now turn to an explanation of the Maxwell
construction based on Helmholtz free energy considerations. It should be appreciated
that all these different outlooks are related deep down. They are included to give the
reader as many different perspectives as possible. First let us consider the case where

FIGURE 12.4 Maxwell Construction based on Helmholtz free energy.

P has any value lying between Pmax and Pmin, as shown in the figure. Let the points

of intersection be at l,m,n. Recall the relation
(

∂ f
∂v

)

T
= −P. This means that if we

plot f as a function of v at a fixed T, the slope of the tangents at the points l,m, and
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n are the same, and equal to -P. Let us concentrate only at the end points l and n.
Therefore, there are three possibilities: i) the points l and n have a common tangent,
ii) the one at n lies above that at l, or iii) the tangent at n lies below that at l. Let us
consider possibility ii) first. Let ( f ′,vn) be a point on the tangent at l. In other words,
the tangent at l intersects the vertical line v = vn at f ′. Clearly, fn > f ′. Since the
slope of the tangent at l is -P it follows that

f ′ − fl

vn − vl
=−P →−P(vn − vl) = f ′ − fl < fn − fl → gl < gn (12.44)

This means that ii) represents the case when the liquid phase is more stable. In this
case the area of the upper closed curve is lower than the area of the lower closed
curve. Likewise, the case iii) would imply gl > gn, in which case it is the gas phase
which is more stable. Then the area of the upper closed curve is larger than the area
of the lower closed curve.

Thus the g’s at the endpoints would be the same only if case i) holds, i.e the free
energy curve has a common tangent at the end points. In that case, it follows that

fn − fl

vn − vl
=−P →

∫ n

l
Pdv = P(vn − vl) (12.45)

which has already been shown to be the same as the equal area rule of the Maxwell
construction.

It is interesting to enquire about the third point of intersection whose volume lies
intermediate to the volumes of the liquid and gas phases. It turns out that its Gibbs
potential per unit mass is higher than gl , and hence higher than gg too. Therefore
it is an unstable phase. From the free energy point of view too, it can be shown
that the free energy of the homogeneous phase represented by h is higher than the
coexistence phase (represented by the point h′ which is geometrically at the same
point h, but represents a different state).

Finally, it is important to note that the common tangent referred to while dis-
cussing the method based on Helmholtz free energy has the same physical interpre-
tation as the line representing the free energies of the various coexistence states. It is
worth emphasizing that while all these have the same g, they have different f’s with
fn being lower than fl . The fact that fn is lower than fl certainly does not mean that
n is more stable than l (they are in fact both stable). A lower f means greater stabil-
ity only when comparisons are made at the same (T,V). Therefore it made sense to
compare the free energies of h and h′ for stability.

12.2.2 Stable and unstable states of the vdW system

Now we summarize our discussion so far as to which of the states of the vdW system
are stable and which of them are not. For T > Tc or equivalently Tr > 1, for each
pressure there is only one point on an isotherm which is stable. Therefore all points
on all isotherms above Tc are stable states.

For temperatures below Tc the issue is more involved. Now we have two distinct
pressures Pmax(T ) and Pmin(T ). For pressures above Pmax there is only one root to
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isotherm which again is a stable state. Inspection shows that this happens for V much
less than Vc and these stable states are in the liquid phase. Likewise, for pressures
below Pmin there is a single root which represents a stable state, and this time in the
gaseous phase.

When pressures are in the range Pmin ≤ P ≤ Pmax, we have to analyse case by
case. Let us start when P = Pmin. Now there are two points of intersection, the point
l being at the location of the minimum itself. Now the area of the lower curve is zero
and obviously the area of the upper curve is the larger. From our earlier discussion,
it is n which is more stable and this is in the gaseous phase. This is in fact what one
would expect from continuity, as for P slightly lower than this value the stable phase
is gaseous. As we increase P from Pmin all the way to the Maxwell line, this will be
the situation and we will get a sequence of stable states in the gas phase. But now
each of these stable states is accompanied by two unstable states. In terms of g, the
gas phase has a lower Gibbs potential than the potential liquid phase.

Then we come to the Maxwell line, when the areas of the upper and lower curves
equal. Here both l and n have the same g, and they can coexist as liquid and gas
phases. The entire line ln now represents stable states of liquid-gas coexistence. At-
tention has already been drawn to the point h which is geometrically the point of
intersection between the line ln and the isotherm. We can, by convention, take h to
be the homogeneous state lying on the isotherm. Then the intersection point h′ lying
on the line ln, though geometrically coincident with h, represents a completely dif-
ferent state which is the stable state in which both liquid and gas phase coexist (with
the mass ratio of liquid to gas being lh′

h′n ). The Gibbs potential g of h is much higher
than that of h′. The difference in these g-values is what was referred to as the barrier
in the chapter on phase equilibrium.

Immediately after the Maxwell line, the situation is akin to what it was immedi-
ately before, but with the roles of liquid and gas reversed. Now we get a series of
stable states in the liquid phase, with each stable state accompanied by two unstable
states. This will continue till one reaches P = Pmax where again (just as in the case
P = Pmin) there is a stable liquid state accompanied by only one unstable gaseous
phase.

It is useful to look pictorially at how the Gibbs potential profile of both the stable
and unstable states progresses as we go through the abovementioned sequence. In the
following figures we have plotted g vs v. This idea is sometimes presented through
continuous curves of g as a function of v. But we point out that at any combination of
(T,P) values, the vdW equation has at best three solutions, which means the manifold
of states with fixed (T,P), inclusive of both stable and unstable states, can at best
have three points. Now it can be appreciated that the two-phase structure of the vdW
system owes it to the multivaluedness of solutions for volume at fixed (T,P). The
ideal gas, being singlevalued in this respect, can not obviously exhibit more than one
phase. This also means that the vdW system can not possess a triple point. For that
to happen, the relevant equation must have at least five solutions or in other words,
the equation of state must at least be a quintic.
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FIGURE 12.5 The relative Gibbs potentials. FIGURE 12.6 Another plot of G.

12.2.3 Phases of the vdW system

Now we discuss the vdW phase diagram in the P-V plane. The critical isotherm
forms one boundary, above which the system is always in the unsaturated vapor
phase, which we call the gas phase. All isotherms above Tc lie entirely in this region.
This means that if the temperature is even slightly higher than Tc, no matter how
large a pressure one applies, one can not liqueify the gas, a rather remarkable feature
of the critical temperature. At Pc and above, the critical isotherm marks the phase
boundary between the liquid and gas phases.

FIGURE 12.7 Stable phases of vdW.

Below Pc there are three distinct re-
gions and we now discuss the bound-
aries separating these regions. For this,
consider the locus of all liquid state
endpoints of the Maxwell lines. This is
one of the boundaries of the region we
are talking about. Likewise, the other
boundary is the locus of all the gas state
endpoints. These two boundary lines
obviously merge at the critical point.
The region bounded by these two lines
marks the two-phase coexistence region
where the liquid is in coexistence with
its saturated vapor. This can be called
the liquid-vapor region. We are making
a distinction between the saturated va-
por which we are calling vapor, and the unsaturated vapor which we have already
called gas.

The locus of liquid endpoints marks the phase boundary between the purely liquid
phase and the liquid-vapor coexistence phase. In the same way, the locus of gas
endpoints marks the boundary between the purely gas phase and the liquid-vapor
coexistence phase.
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12.3 Negative pressures in vdW systems

FIGURE 12.8 Negative pressure.

Now we discuss the occurrence of negative pressures in vdW systems, and
whether these have any physical significance, or provide another unphysical aspect
of vdW isotherms. By drawing the vdW isotherms at a low enough temperature one
can explicitly verify that the isotherm goes through negative values for pressures. Let
us analyze this issue as analytically as possible.

It is clear that if at some temperature Tr,neg (we shall henceforth use reduced vari-
ables, so our conclusions hold for all vdW systems), Pmin(Tr,neg) becomes zero, then
for temperatures lower than this the isotherm will have points with negative pressure.
To determine this characteristic temperature, let us recall that the pressure Pr,S at the

stationary points is given by Pr,S = 4Tr
(3Vr,S−2)

(3Vr,S−1)2
. Clearly, this can vanish at Vr,S =

2
3 .

As this volume is less than unity, the stationary point, as per our earlier discussions,
can only be a minimum. In fact we have already shown that Pmax is always positive.

In other words, while Pmin can indeed be negative, Pmax can never be. If both Pmax

and Pmin could have become negative at some temperature, then there would have
been the possibility that the Maxwell construction would yield stable coexistence
states at negative pressure. But the fact that Pmax can never be negative, precludes
such a possibility.

It is easy to work out the value of Tr,neg since there Pr = 0 and Vr =
2
3 . An elemen-

tary calculation using the universal form of the vdW equation in terms of reduced
variables yields Tr,neg =

27
32 , which is a surprisingly large value!

We next examine whether with a negative Pmin and a positive Pmax, the Maxwell
line which has to lie in between can be at a negative value of P. Firstly, since Pmax

is positive, and for large V P → 0 from above, there can not be any intermediate
points where P can be negative without the isotherm having at least an additional
pair of maximum and minimum, something that a cubic vdW equation can not ac-
commodate. Hence, if at all there is a Maxwell line at negative P, it must intersect
the isotherm at only two points. It is easy to show, using methods described so far,
that the point with the lower g (more stable) is the one with unphysical isothermal
compressibility. This precludes having a coexistence curve at negative P.
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Lastly, we have to consider the possibility that even with a negative Pmin and a
positive Pmax, as well as a Maxwell line at positive P, there may be a stable state with
negative P. But the same argument that was given above to show that the point with
lower g was unphysical holds here too.

Thus one can confidently conclude that no stable state with negative P exists in
the vdW system. Such states have to be unstable. But even as unstable states, do
they make sense? Some have argued that the concept of a negative pressure can be
physically sensible. Some point to the pumping of water by tree roots despite the
pressure by the already present water column as evidence in favor of such a concept.
But in that particular case, causes such as capillarity as well as partial vacuum created
by various processes mimick a negative pressure. They certainly do not point to
absolute pressure turning negative. For isolated thermodynamic systems, negative
absolute pressure should be considered unphysical.

Unfortunately, there is no experimental way to address this issue as no real life
system is actually described by the vdW equation. The real life equations of state
have various corrections and very likely these modifications also take away the
source of negative pressure.

However, there is one circumstance where a negative absolute pressure is taken
very seriously. That is in the context of Cosmology where the so called positive cos-
mological constant in Einstein’s equations for the universe have the effect of a neg-
ative absolute pressure. What is more, recent data based on Supernovae has given
good evidence that this is the case with our universe. The observable manifestation
is an expanding universe that is also accelerating.

12.4 Surface tension

FIGURE 12.9 Bubble pressure

We now discuss the phenomenon of
surface tension from two rather dis-
tinct perspectives. First is that this phe-
nomenon, in contrast to everything that
has been considered so far, is a purely
surface effect. It becomes important
while considering interfaces between
coexisting phases. It can be character-
ized as a tendency to minimize interfa-
cial surfaces. One of its descriptions is
in terms of a force per unit length acting
on a line on the surface in a direction
normal to it. For example, when a leaf
is found floating on water, it is not the
force of buoyancy that is holding it up,
as the leaf is not even partially submerged. An even clearer example is a razor blade
floating on water, as the density of steel making up the blade is far higher than that
of water.
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This means that the net effect of the fluid surface on the blade is to exert an up-
ward force cancelling the force due to gravity. It will therefore require work to be
done to lift the blade out. The force required to pull the blade out is proportional to
its perimeter, and for a circular blade of radius a, the required force is 4π aσ (not
2π aσ !), where σ is called the surface tension of the liquid and has the units of
Newton/meter. What could be confusing is that the force on the blade acts normal to
it.

An experiment that can also be used to measure σ can clarify this. If we prepare a
rectangular soap film with an arrangement to, say, change the height of the rectangle,
it can be seen that a force is required, along the direction of the height, to increase the
height and hence the area of the film. This gives the alternative definition of surface
tension as the work done to increase the area of the surface by a unit. Equivalently,
an internal energy of surfaces of the form Us = σ A can be introduced.

Let us consider a bubble made of a liquid with its vapor both inside and outside it,
as shown in figure (12.9). In the absence of any surface tension, mechanical equilib-
rium would require the pressures inside and outside, Pi and PO, to be equal. But with
surface tension, there can be a pressure difference. This pressure difference can be
qualitatively understood as follows: a positive pressure difference ΔP = Pi −PO > 0
has the tendency to increase the surface of the bubble. This can be countered by a
surface tension which tends to decrease the surface, so there can be equilibrium when
these two tendencies equal each other.

We make this reasoning quantitative from alternative viewpoints. The bubble, like
a soap bubble, has two interfaces- a vapor to liquid and a liquid to vapor. Let us
simplify the problem by considering a single interface. We take this to be the surface
of the spherical cavity with vapor inside and liquid outside. First, let us apply the
principle of virtual work, a method used for determining mechanical equilibrium.
For this, imagine changing the radius of the bubble r by δ r; the work done by the
pressure difference ΔP is ΔP ·ΔV = 4π r2δ r ·ΔP. The work done against surface
tension is −σ δA =−8π Rσ δ r. The principle of virtual work requires the total work
to be zero. This leads to the well known equation in capillarity:

ΔP =
2σ
r

(12.46)

ΔP in this equation, which is Pi −PO, is always positive else or no bubble can form.
In this case, Pi =Pv and PO =Pl , where the subscripts v, l refer to the vapor and liquid,
respectively. When the bubble consists of liquid in a vapor environment, ΔP = Pl −
Pv. In the case of the soap bubble, if the outer vapor pressure is PO and the inner vapor
pressure Pi and the pressure of the liquid in between is Pl , one has, Pl −PO = 2σ/r,
and, Pi −Pl = 2σ/r! Therefore, for a soap bubble, Pi −PO = 4σ/r!

When we pull films out of a liquid too, there are two interfaces due to the un-
avoidable wetting of the surface that is pulled out. This explains why the required
forces are twice as large as a naive expectation. We shall also derive eqn.(12.46)
from thermodynamic arguments, which form our second perspective on the issue.
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Example 12.5: Work required for aerosol spray

1 Kg of water at 20◦C is initially in a container 10 cm x 10 cm x 10 cm. This is
completely atomized into spherical droplets of average radius of 10−4 cm. The whole
process takes place isothermally. Calculate the work required for this process as well
as the heat transferred. The dependence of surface tension with temperature is very
accurately given by eqn.(13.3).

The initial surface area is 600 sq.cm. Since all droplets are spherical, the
ratio of surface area to volume of each droplet is just 3/R. Hence the new
total surface area of water is simply A = 3.0 ·103m2. This is a huge increase in
area. The increase in surface energy is therefore σ ΔA � σ A, as the initial area
is completely negligible in computing the increase in area. Now we use the
high accuracy interpolation formula for the surface tension of water at various
temperatures (see eqn.(13.3) [75]). According to this σ at 20◦C is 72.72 ·10−3

N/m. Thus, it requires W = σA = 72.72 ·3 = 218.16 Joules.
From the same interpolation formula one finds that dσ/dT at 20◦C to

be -0.15 · 10−3Nm−1K−1. The surface entropy is given by eqn.(12.62) to be
Ss = −dσ/dT ·A. In this case this turns out to be Ss = 0.45 J/K. The heat
absorbed by water at 20◦C is, therefore, 131 J.

Example 12.6: Coalescing soap bubbles

If two soap bubbles of radii r1 and r2 coalesce to form a single bubble, what will its
radius be if all other physical conditions like pressure and temperature are unchanged.

Since all other conditions are identical, upon coalescing the new bubble
must be of such a radius that the total surface energy is conserved. Before
coalescence, this was 4π(r21+r22). Hence the radius of the final bubble is R =√

r21+r22.

Example 12.7:

Consider a spherical drop of radius r1 of a liquid with surface tension σ . It is found
that the drop has inside it a spherical bubble of radius r2 concentric with the drop. If Po

is the pressure outside the drop, and Pi the pressure inside the bubble, find the radius of
a single bubble such that the pressure difference between the inside and outside of that
bubble is equal to Pi −Po.

Applying the formula for the pressure differences obtained in the text,
P−Po = 2σ/r1, and Pi−P = 2σ/r2, where P is the pressure of the liquid in the
annular region. Hence, Pi −Po = 2σ(1/r1+1/r2). This must be equal to 4σ/R,
where R is the radius of the single bubble. Hence R = (r1r2)/(2(r1+r2).

12.5 Thermodynamics of inhomogeneous substances.

The first perspective presented above is purely mechanical. All it needed was the
existence of surface tension. We now turn to the second perspective, which is ther-
modynamical. Any process that has a tendency to increase the interfacial area must



The van der Waals Equation 251

perform work. Therefore, the first law must be modified to include this additional
source of work:

T dS = dU +PdV −σ dA (12.47)

the negative sign for the extra term follows from the fact that while the PdV tends
to increase the area, the surface tension term tends to decrease it. This seemingly in-
nocuous modification has, however, some very subtle consequences. Firstly, surface
terms spoil the extensivity that has played such an important role so far. In fact the
Euler and the Gibbs-Duhem relations of chapter 6 are no longer valid for the whole
system! We shall soon find that entropy has a part growing with area. In consequence,
all thermodynamic potentials too will have surface dependent terms.

While deriving the conditions for the equilibrium of coexistence of phases, the
Gibbs potential G played a central role, and the Euler relation forced this to be the
same as the chemical potential μ . But a central feature then was the equality of the
pressures in the two phases. But now, because of eqn.(12.46), the pressures in the two
phases are different. This necessitates a rethink on this very central issue. In the usual
cases referred to, the equal pressures also equalled the externally applied pressure;
but now, in general, all these can be different and careful distinction between them
has to be made.

In fact, the issues go beyond this. So far, only homogeneous substances had been
considered, and for them, density and molar fraction n, being uniform, contains the
same information for a given volume. The interface, being the transitional region be-
tween two phases, must necessarily be described in terms of varying density. There-
fore, a reformulation is needed replacing n by density ρ , which, however, is no longer
constant. This also means that the chemical potential introduced traditionally via the
μ dn term, loses its meaning in the interface. Though there is a pressure difference
between the phases, each phase on its own continues to be homogeneous with a
meaningful chemical potential. But what is far from obvious is the relationship be-
tween the chemical potentials.

Gibbs, around 1875, was the first to give a systematic treatment of this problem
of the thermodynamics of heterogeneous systems in his foundational work [19]. All
the essential results are contained in that work. In 1894, van der Waals gave another
treatment of the problem in what is considered to be a monumental paper on capillar-
ity [74, 62]. Gibbs had based his work on discontinuities in the density profile, while
van der Waals theory uses only smooth variations. An additional noteworthy feature
of van der Waals’s work is that he treated, as best as he could for his times, the singu-
lar behaviour of surface phenomena near critical temperature. Van der Waals points
out some conceptual errors that even a great master like Gibbs made regarding the
chemical potentials.

12.5.1 van der Waals theory of surface tension

We shall follow the treatment of van der Waals. We shall only state the principal re-
sults, but encourage the reader to go through the original. In the modification to the
first law considered above, the surface tension σ entered at the level of an empirical
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description. In an ab initio treatment such as that of Gibbs or van der Waals, it has
to emerge as an effective description of inhomogeneity. It proves useful to consider
systems with some symmetry so that density varies only as a function of one param-
eter. If the interface is planar, this parameter will be the height h measured along the
normal to the plane; if the interface is spherical, the parameter is the radial distance
r. Let us generically denote it as z.

For reasons already mentioned, i.e pressures not being the same in the two phases,
Gibbs potential can be problematic in determining phase equilibrium. Van der Waals
bases his analysis on Helmhotz free energy instead. It should be noted that the tem-
perature is taken to be constant throughout, thereby justifying the use of F. But now
one has to reckon with a fundamental difference when compared to the traditional
uses of F; a local variant of it has to be used which not only depends on the local
value of the density, but also on its variation wrt z. Denoting the Helmholtz free
energy per unit mass (recall that in treating phase equilibria one has to consider var-
ious thermodynamic potentials per unit mass) by f (ρ(z)), the total free energy is∫

ρ f (ρ)dV . If the phase is homogeneous this would have been essentially -PV (for
isothermal conditions).

Instead of viewing the problem as that of coexistence of two phases, with their
respective Gibbs potentials (or equivalently, chemical potentials), van der Waals’
mastery lay in viewing it as the problem of equilibrium of a single substance, albeit
of varying density, at some given temperature. The minimization of the total F should
still be valid as nothing in the derivation of that criterion really made any assumptions
about the density profile.

Thus according to van der Waals, the equilibrium condition should result upon
minimizing F subject to the constraint that the total mass of the system does not
change, i.e

δ
∫

ρ f (ρ) = 0

∫
ρ =C (12.48)

This is a familiar problem in the calculus of variations and is solved through the in-
troduction of a Lagrange multiplier, say μ (with a deliberate choice of the symbol!),
to handle the condition of constant total mass. The resulting variational problem is

δ
∫

{ρ( f (ρ)− μ)}= 0 (12.49)

When f depends only on ρ , and not on the derivatives of ρ wrt z, the solution to this
variational problem is straightforward, and is given by

f (ρ)+ρ f ′(ρ) = μ (12.50)

where f ′ denotes the derivative of f wrt to ρ . When f also depends on some or all
the derivatives of ρ , it is still possible to write down the solution to the variational
problem. Instead of doing this in all generality, we shall restrict ourselves to the
particular modifications that are thought to be sufficiently accurate in [74, 62]. This
amounts to keeping only second derivatives of ρ wrt z, and neglecting all higher
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ones (due to the symmetry assumed, there can be no first derivatives). The relevant
variational problem is

δ
∫ {

ρ( f (ρ)− c2
2

d2 ρ
dz2

− μ)
}
= 0 (12.51)

where c2 is taken, following common practice, to depend only on temperature. It
has to be positive as otherwise every interface will spontaneously disappear. In other
words, equilibrium configurations will be those with uniform densities.

The solutions to the variational problem are slightly different for the planar case
and the spherically symmetric cases. This has to do with the partial integrations
needed to solve the problem, and the different volume factors in the two cases. We
present both of them, side by side, in the next equation;

f +ρ f ′ − c2
d2 ρ
dz2

= μ f +ρ f ′ − c2
d2ρ
dr2

− 2c2
r

d ρ
dr

= μ (12.52)

When phases are homogeneous, i.e when density does not depend upon z, both these
become a single equation

u−Ts+
P
ρ
= μ (12.53)

The lhs is nothing but the Gibbs potential g per unit mass, and the above equation,
when applied to coexisting phases, is the familiar equality of chemical potentials.
But that equality had been derived ignoring capillarity. With capillarity taken into
account, when eqns.(12.52) are applied to the homogeneous phases adjoining the
interface, one still comes to the highly non-trivial conclusion that Gibbs potentials
(also chemical potentials) of the homogeneous phases separated by an interface,
are still equal! This holds irrespective of the geometry of the interface, i.e planar or
spherical. Applying this to the bubble problem, one gets,

μ = μl = ul −Tsl +Plvl = μg = ug −Tsg +Pgvg (12.54)

What happens in the interface? The governing equation is still eqn.(12.52), but sev-
eral complications arise. In the homogeneous phases as above, ρ f ′ = P/ρ by virtue

of the relation
(

∂F
∂V

)

T
= −P; but in the interface, this is no longer true. One could

continue to call ρ f ′ as P/ρ , but such a P has no bearing to the real pressure inside
the interface nor to the externally applied pressure. As such complications tend to
obscure the real issues when the geometry is also more involved, let us consider the
planar case first, where the difficulties with the interface are already present. Also, in
that case Pl = Pg, offering an additional simplification.

For that case, with the abovementioned understanding about P, one can show, with
the help of eqn.(12.52) that (I denoting the interface)

uI(h)−TsI(h)+PI(h)vI(h) = μ +
c2
2

d2ρ(h)
dh2

(12.55)



254 The Principles of Thermodynamics

With PI(h) not even being interpretable as the pressure in the interface, the lhs can
not be given the meaning of a chemical potential for this region. In fact, it is hard
to make any sensible use of this equation. Remarkably, van der Waals manages to
derive the following relation (again for planar interfaces)

uI(h)−TsI(h)+PevI(h) = μ +
c2
2

{
1

ρI(h)

(
dρI(h)

dh

)2

− d2ρI(h)
dh2

}

(12.56)

Where Pe is the external pressure. The reversal in the sign of the second derivative
term will be seen to be crucial. The crucial observation of vdW is that neither with P
nor with Pe is this expression equal to the common chemical potential for the liquid
and gas phases. Gibbs had assumed the chemical potential in the interface to be also
the same as the other two.

One can integrate this (after multiplying with ρI) to arrive at

UI −TSI +PeVI = MIμ +σA (12.57)

with

σ = c2

∫
dh

(
dρ(h)

dh

)2

(12.58)

and UI ,SI,VI being the internal energy, entropy, and volume of the interface. The
symmetry of the problem was crucial for getting the integral to be proportional to
the total area. In fact, in the spherical case, it does not happen (see [74, 62] for
details). However, for large enough radii, the two cases converge. We shall discuss
the quantitative aspects of this later on.

12.5.2 Surface thermodynamics in vdW theory

The natural question that arises in ones mind is whether the two σ ’s of eqn.(12.58)
and eqn.(12.47) are one and the same. As a first step towards this, let us clarify the
meaning of eqn.(12.57). Clearly, the interface has a certain fraction as liquid, and
the remainder as gas. If UI ,SI,VI were just the weighted sums of the correspond-
ing quantities for the liquid and gas, there could not have been the additional σA
term; this clearly means that there are additional contributions over and above the
bulk contributions, which can be ascribed to a surface. But as Landau and Lifshitz
[34] point out, this division into bulk plus surface is problematic. There are several
ways of seeing this; the masses and volumes of the liquid and gas are ambiguous
because these quantities can be exchanged with the interface. Thus, a surface tension
coupled with geometric information about the surface is not enough for a complete
thermodynamic description of the entire system.

Even without attempting this rather delicate split into bulk and boundary, one
can address the issue of the equality of the two σ ’s. For this we write down the
expressions for the total Gibbs potentials for the liquid and gas phases:

Ul −TSl +P1Vl = Mlμ Ug −TSg +P1Vg = Mgμ (12.59)
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Next we consider some reversible process where all relevant quantities undergo in-
finitesimal changes while maintaining the total mass Ml + Mg +MI ; it is easy to
see that U = Ul +Ug +UI and V = Vl +Vg +VI satisfy just the same equation as
eqn.(12.47), so indeed σ of eqn.(12.58) is the surface tension.

Returning to the issue of the bulk plus surface split, this can indeed be down as
shown in the worked example. It amounts to an explicit realisation of the suggestion
made by Landau and Lifshitz [34] and is expressed through the equation

Fs =Us −TSs = σA (12.60)

where the subscript s refers to the surface which is now characterized by having no
mass and volume, unlike the interface, which had both. Consequently, the surface
Gibbs potential Gs is given by

Gs = σA (12.61)

All the thermodynamic aspects of the surface follow from eqns.(12.60) and (12.61).
Using the familiar relations of thermodynamics one finds that the surface entropy Ss,
surface internal energy Us, and the surface enthalpy Hs to be

Ss =−dσ(T )
dT

A Us = (σ(T )−T
dσ(T )

dT
)A = Hs (12.62)

The heat absorbed during a reversible change of area, and the corresponding work
done are given by

ΔQ = T
dσ
dT

(A2−A1) ΔW =−σ(A2−A1) ΔUs =ΔQ−ΔW (12.63)

Analogous results for spherical layers is left as an exercise.
The relation derived earlier, i.e eqn.(12.46), gave only the pressure difference be-

tween the inside and outside of a spherical bubble. We now disuss how to determine
both these pressures individually when the applied pressure is Pe, which is also the
pressure of the two phases when the interface is planar, i.e when R → ∞.

Before that we show how eqn.(12.46) can also be derived by minimizing the total
free energy F = Fl +Fg+σA. The area for a spherical bubble is A = 4π r2. Since the

total volume V = Vl +Vg is fixed, δVl =−δVg =ΔV . Recalling
(

∂F
∂V

)

T
= −P, one

finds

0 = δF = (Pg −Pl)ΔV +σdA →ΔP =
2σ
r

(12.64)

Recall that when the vapor is outside the liquid drop, ΔP = Pl −Pg. In fact, this ex-
actly mimics the virtual work calculation. While the former was purely mechanical,
the present one is thermodynamical.

12.6 Revisiting the bubble pressure

The starting point for a separate evaluation of Pl,Pg is the equality of the chemical
potentials (taken to be Gibbs potential per mole) as given by eqn.(12.54), i.e

μl(Pl ,T ) = μg(Pg,T ) (12.65)
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When the interface is planar, i.e r→ ∞, Pl = Pg = Pe, where Pe is the external pres-
sure. Hence

μg(Pg,T )− μg(Pe,T ) = μl(Pl ,T )− μl(Pe,T ) (12.66)

Recalling that dμ = −sdT + vdP, and the fact that for liquids entropy is almost a
function of T alone, it follows that

μl(Pl ,T )− μl(Pe,T ) =
∫ Pl

Pe

vl(P,T )dP ≈ vl(Pl −Pe) (12.67)

where the further, reasonable, approximation that liquids are very nearly incompress-
ible, i.e vl is independent of P, has been made. For the vapor, it is a good approxima-
tion to use the ideal gas law to obtain

μg(Pg,T )− μg(Pe,T ) = RT ln
Pg

Pe
(12.68)

Thus one obtains the fundamental equation

RT ln
Pg

Pe
= vl(T )(Pl −Pe) (12.69)

Using the ideal gas condition Pgvg = RT , this can be recast in the following very
useful form:

ln(1+
ΔPg

Pe
) =

Pe

Pg

vl

vg

ΔPl

Pe
(12.70)

This is valid for bubbles and drops of all sizes.
We analyze the situation for two extreme cases, one of which is when (i) ΔPl =

Pl − Pe << Pe and ΔPg = Pg − Pe << Pe, and the other when (ii) ΔPg >>,Pe.
Clearly, case (i) is characteristic of large bubbles or drops. It is pertinent to ask what
one means by large or small sizes in this context. It is obvious that rc = 2σ/Pe has
dimensions of length, and this can be taken to set the scale for largeness or smallness.
We shall point out that the relevant scale for (ii) is much smaller.

Let us analyse the case (i) now. It immediately follows from eqn.(12.70) that

ΔPg

Pe
=

Pe

Pg

vl

vg

ΔPl

Pe
(12.71)

In this regime Pg ≈ Pe. Using this, and ΔPl −ΔPg = 2σ/r, it is easy to arrive at

ΔPl ≈ 2σ
r

ΔPg ≈ (
Pevl

RT
)
2σ
r

≈ 0 (12.72)

Therefore, for large enough bubbles, i.e r>> rc, the vapor pressure is hardly changed
from the external pressure (for a planar surface the vapor pressure is exactly equal to
external pressure), while the pressure in the liquid increases.

Let us now turn to the other limit (ii) where ΔPg >>Pe. This means that Pg >>Pe

too. It should of course be remembered that if Pg is too high, the vapor would have
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condensed completely, and there would not be a liquid drop anymore! As long as
the vapor has not liquefied completely, vl < vg. It therefore follows from eqn.(12.70)
that whenever ΔPg >> Pe, ΔPl is much greater than ΔPg. This again implies that
ΔPl is very close to 2σ/r, which was the case also when r was large! But unlike
then, ΔPg, though negligible in comparison to ΔPl , can still be much larger than Pe.

It is easy to determine how large this can be, again from eqn.(12.70); on the lhs
of that equation, ΔPl can be replaced by 2σ/r, and PgVg by RT, since the vapor has
already been taken to obey ideal gas law. Hence

Pg(r) = Pe e
2σ
r

vl
RT = Pe e

rc
r

Pevl
RT (12.73)

We see that the effective size scale for small bubbles (drops) is no longer rc, but the
much smaller scale (Pevl/RT )rc. This has the effect of slowing down the rate of
increase of Pg with decreasing r. This concludes our discussion of bubble pressures.

12.7 Problems

Problem 12.1 Express various identities involving CP ,CV of eqns.(3.52–3.56)
in terms of the reduced variables, and the reduced versions of isothermal com-
pressibility κr

T and the coefficient of volume expansion αr .

Problem 12.2 Determine the critical parameters Tc, Pc,Vc for the Clausius equa-
tion of eqn.(1.16). Show that this equation too admits a law of corresponding
states by determining the reduced equation.

Problem 12.3 The compressibility factor Z is defined as PV
RT , and has the signif-

icance that it is the ratio of the pressure P to the ideal gas pressure at the same
V and T. We have seen that the value of Z at the critical point of all vdW fluids
is 3/8. But there is another kind of universality too; show that Z satisfies a cubic
equation whose coefficients are functions of only the reduced pressure Pr and
reduced temperature Tr. Show that at the critical point Pr = 1,Tr = 1 this cubic
becomes a perfect cubic equation.

Problem 12.4 Apply the previous problem to the solved example 12.1.

Problem 12.5 It often becomes necessary to calculate the volume given P and
T, for equations like the van der Waals, Clausius, Dieterici etc. In the next chap-
ter 13, one such method is adopted for the vdW case. Show that an iterative
method for all such equations is available which consists of writing the volume
(assume one mole) formally as V = f (P,T,V) (which of course does not solve
the problem in itself), and some value V0 as the first guess and calculating the
next value by substituting this in f(P,T,V), and so on. For these classes of equa-
tions, what will be the best guesses for V0? Does this depend on the phase for
which the volumes are required? Does the iteration converge eventually?

Problem 12.6 Calculate the entropy of mixing when n1 moles of a vdW gas is
mixed with n2 moles of an ideal gas at T,P. Show that the mixing entropy has
the form encountered in Flory-Huggins theory (example 9.2). Also calculate the
enthalpy of mixing, volume of mixing, as well as the Gibbs potential of mixing
in this case. Can this mixing be called ideal or not?

Problem 12.7 Repeat the previous problem when both the gases are vdW.
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Problem 12.8 One of the main uses of the Joule-Kelvin process is in the liq-
uefaction of gases. There it is desirable to achieve cooling, i.e ΔT < 0 upon
expansion ΔP < 0, i.e the Joule-Thomson coefficient μJT must be positive. But
we already saw, in the vdW case, that this can have both signs. The curve in
the P-T plane separating regions of μJT > 0 from μJT < 0 is called an inversion
curve. Determine the inversion curve for vdW gases. Express it in terms of the
reduced variables.

Problem 12.9 Repeat the previous exercise for a gas obeying the Clausius equa-
tion.

Problem 12.10 Consider a fixed volume V0 of a vdW gas. Show that knowing
the pairs (T1,P1) and (T2,P2) is sufficient to determine the vdW constants a,b.
If one does not know whether a gas obeys the vdW equation or not, show that
the triplet of pairs (T1,P1), (T2,P2), and (T3,P3) can determine whether a gas
obeys the vdW equation or not. Find the relationship between the three pairs of
values so that the gas obeys a vdW equation.

Problem 12.11 Consider an ideal gas as well as a vdW gas both having the same
constant CV . Show that the difference in their Helmholtz free energies at the same
values of (T,V,n) can be expressed as a suitable integrable of the compressibility
factor Z (see problem 12.3)

Problem 12.12 Gilbert Lewis introduced the notion of fugacity f in such a
way that the chemical potential expressed in terms of T and P has the form
μ(T,P)=A(T)+RT ln f(T,P) for all substances. For ideal gases fugacity equals
the pressure. Calculate the fugacity of a vdW gas.

Problem 12.13 Calculate the pressure corresponding to an inversion temperature
of 10 K for Helium assuming it to behave like a vdW gas with constants as used
in example 12.1.

Problem 12.14 Show, using the explicit expression for enthalpy of a vdW gas
of eqn.(12.13), that the integral Joule-Kelvin effect for i a vdW gas leads to the
temperature drop

CV (Tf −Ti) = PiVi −PfVf +a(
1

Vf
− 1

Vi
) (12.74)

Show that integrating the Joule-Thomson coefficient μJT leads to the same ex-
pression.



13 The Critical Point

13.1 Overview

Now we address one of the most profound of phenomena in Thermodynamics as well
as Statistical Mechanics, namely, Critical Phenomena. In plain terms, this is a study
of the occurrence of the so called critical points and their properties. In this book
we have encountered critical points in many different contexts. We start by briefly
recalling these contexts as this will not only put the contents of this chapter in its
proper perspective, but also give the reader an idea of the great importance of this
topic.

At the earliest instance, we noted in section 4.2 that at the critical point in the
phase diagram of water, the specific volumes of the liquid and gas phases become
equal. The critical point in the water-saturated steam system occurs at roughly 647.29
K and a pressure of 22.09 MPa. Considering that at even the boiling point of water
at 373.15 K and 0.101 Mpa (1 atm.), the density of water is nearly 1600 times that
of steam, it is rather remarkable that at Tc they become equal. Then in section 5.5.3,
the occurrence of a critical point even for the case of an ideal gas, albeit quantum
mechanical, was noted and discussed. The specific heat vs temperature displayed a
cusp at this Bose-Einstein transition temperature. In the same section, the general
behaviour of specific heats at critical points was discussed. It was seen that specific
heats show a variety of very fascinating behaviours at critical points; some of them
blow up with characterstic critical exponents, i.e C � |T −Tc|α , while others become
discontinuous, as at the λ -transition in He4. The cusp behaviour means that while
the specific heat is in itself continuous, its temperature derivative is discontinuous.

The critical point in He3 occurs at 3.2 K, while an isolated critical point occurs
at 5.19 K in He4. In He4, one also observes the remarkable phenomenon of a line
of critical points. In carbon dioxide, as noted in chapter 12, the critical temperature
occurs at 304 K! Thus critical points are rather ubiquitous!

In water, the critical point is a termination of the phase coexistence curve P(T )
in the P-T plane. As we shall see soon, the latent heat, which is around 2257 J/mole
at the boiling point, monotonically decreases to zero at Tc! The vanishing of the la-
tent heat is also characterized by an exponent, i.e L(T ) � (Tc −T )β , with β being
very close to 1/3 for water. This vanishing of latent heat at the critical point is not
just restricted to the water system, and is in fact seen in many diverse systems. For
example, the superconducting transitions, discussed in section 10.8, also share this
feature. In chapter 10, a brief mention has also been made of the phases of Quan-
tum Chromodynamics, with characterstic temperature scales of 1013 K(!), where too
a critical point is expected. Vigorous research is on to determine its location and
properties. This exemplifies the astronomical range of temperatures where all these
concepts hold.

The Clapeyron equation exhaustively discussed in chapter 11 nicely ties up the
various features of critical phenomena. For example, according to this equation, the

259
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observed fact that the slope of the coexistence curve for water is finite and non-
vanishing at Tc means that if the entropy difference, which is the latent heat, van-
ishes at Tc, so must the difference in densities, which of course it does, as already
mentioned. Strictly speaking, this leads to a 0/0 problem, and formally, the Clapey-
ron equation breaks down. In section 11.7 of that chapter, we discussed Ehrenfest’s
proposals to modify the Clapeyron equation at such critical points. His second or-
der phase transitions, however, required CP to be continuous. This, as seen in sec-
tion 10.8, is indeed what happens in superconducting transitions. Ehrenfest theory
demanded certain consistency conditions as discussed in that section. In the later
section 11.8 on the magnetic Clapeyron equation, it was shown that these conditions
for the superconducting transitions follow from the thermodynamics of magnetic
systems.

These considerations show that a substantial amount of even the details of critical
phenomena are captured quite well from general thermodynamic considerations. As
already pointed out in these earlier chapters, even the Ehrenfest second order the-
ory is not sufficient to understand all of the critical phenomena. In fact, it fails to
explain the λ -transitions in He, as the change in CP in these transitions is not finite.
However, as clearly emphasized by Pippard [54], it is possible to suitably modify the
Clapeyron equaton to handle any critical phenomena, while staying entirely within
the thermodynamical framework.

A word of explanation may be necessary to qualify the previous remark; thermo-
dynamics is, of course, incapable of even revealing the existence of critical exponents
discussed in the next paragraph. But consistency with thermodynamics would require
that different exponents match.

But the most remarkable aspect of phase transitions is their universality. For ex-
ample, even in Xenon, chemically and structurally very different from water, the
difference in densities of the liquid and vapor phases vanishes as |T − Tc|β with
β � 0.317, a value very close to the one found in water; both are close to 1/3, whose
significance will be discussed in the last part of this chapter. In fact all liquid-vapor
transitions are described by the same value for this exponent! Not only that, even
unrelated problems like the behaviour of binary alloys, and certain ferromagnetic
transitions, all possess the same exponent.

This universality is so amazing that it is worthwhile to look at a few more aspects.
Liquid water at the melting point of ice has a density of 1000 Kg/m3, but at its Tc

of 647.29 K it reaches a critical density of 316.96 Kg/m3. carbon monoxide, on the
other hand, has the much lower Tc of 133.15 K, but still its critical density is 301
Kg/m3; carbon dioxide, its close cousin has its Tc at the rather high value of 304
K, room temperature in many parts of India! Nevertheless, its critical density is 464
Kg/m3. Thus while all critical liquid densities are of comparable magnitude, critical
temperatures show a wide variation. Neither Tc nor ρc are by themselves universal in
the sense the exponents are; their universality is far more precise.

What we wish to do in this chapter is to give a three-fold view of critical phe-
nomena. In the first part, we simply display various experimental data for water. We
have chosen to concentrate on the phase-coexistence curve P(T ), the latent heat of
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vaporisation L(T ), and surface tension σ(T ), over a wide range of temperatures, all
the way upto Tc. We then look at the van der Waals equation as an analytical model
for the critical properties of a thermodynamic system. In particular, we solve for the
densities of the two phases near criticality by exhibiting a Taylor series in suitable
variables for both the mechanical equation of state in the terminology of chapter 6,
as well as the Maxwell line describing the coexistence of phases within this model.
From this, we compute the coexistence curve P(T ), the latent heat L(T ), the surface
tension σ(T ), and the interface thickness. It is shown that the vdW model captures
many essentials of the observed data for water, though the exponents do not come
out correct.

In a subsequent section we briefly explain the basis for the observed universal-
ity of exponents in terms of the famous scaling laws arising out of the so called
renormalisation group. This theory says that the exponents of the liquid-vapor sys-
tem must be the same as those of the three dimensional Ising model. The notion of a
scaling function is also explained. We then discuss how a simple parametrization for
the latent heat of water given by Torquato and Stell [73] that is motivated by the 3-d
Ising model fits the observed data for water over a very wide range of temperatures.

13.2 Critical properties of water:data

13.2.1 The coexistence curve

FIGURE 13.1 Steam pressure data.
Source: The Dortmund Data Bank

We shall only concentrate on the liquid-
vapor aspect of the phase diagram of
water, shown in fig. (10.1), as only
that branch ends in a critical point. Of
course, other parts of the phase diagram
are fascinating too, like the triple point
at 273.16 K and a pressure of 0.006028
atm., the anomalous freezing curve etc.,
but they are not governed by any univer-
sality. As emphasized during our dis-
cussion of thermometry in section 1.1,
the triple points are a good way of cali-
brating thermometers as they occur at a
unique combination of temperature and
pressure. For reference, it may be noted
that the triple point of carbon dioxide
occurs at 216.55 K and a considerably
higher pressure of 5.112 atm.

Let us start with the coexistence curve. The figure 13.1 presents the data (with
the kind permission of the Dortmund Data Bank) for temperatures ranging from the
0 ◦C to Tc. The important thing to notice is the slope of this curve at Tc. It is neither
0 nor ∞, but has a finite value. Up to the boiling point of water the saturated vapor
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pressure has a very slow growth, but beyond that it rises steeply to reach a pressure
nearly 250 times higher than at the boiling point. It is such high pressures that make
working with steam at higher temperatures so difficult.

13.2.2 Latent heat

FIGURE 13.2 Latent heat data for water.
Source: The Dortmund Data Bank

Next we consider the latent heat data
(also courtesy of the Dortmund Data
Bank). Its value at the boiling point
of 100 ◦K or 373.15 K is, as is well
known, 540 cal/gm or 40,688 J/mole. In
the next figure, the data is plotted for
the molar latent heat from the boiling
point all the way to Tc. The latent heat
decreases monotonically throughout the
range.

In section 11.5 we gave a gen-
eral derivation for the total derivative
dL(T )/dT as expressed in eqn.(11.31).
At temperatures far away from Tc, this
general equation could be simplified to
eqn.(11.33). This latter equation was
based on a number of approximations,
like the fact that at such temperatures
vl << vg, that the thermal expansion
coefficients β are higher for gases than liquids, and finally that the gases can be
taken to obey ideal gas laws. Under those approximations it was found there that

dL(T )
dT

≈Cgas
P −Cliq

P (13.1)

Since at such temperatures, CP for gases is lower than those for liquids, it followed
that L(T) must decrease with temperature, thus explaining the observed decrease of
L(T).

Recalling the worked example there, the molar CP for water at 100 ◦C was 76
J/mole, while that for steam was 36 J/mole, and indeed the rhs of eqn.(13.1) is neg-
ative. Recall that molar specific heat CP for an ideal triatomic gas is 4R under the
approximation that its CV is 3R (which is a very good approximation at low temper-
atures); this works out to 33.2 J/mole, not far from the actual value. The difference
can be attributed to the rotational degrees of freedom of the water molecule.

This simple analysis of why latent heat should decrease with temperature, breaks
down in the vicinity of the critical temperature for a variety of reasons. In fact, close
to criticality it is the CP of the gas that is higher! For example, at 645.20 K, just a few
degrees away from Tc, the CP for liquid water is 1776 J/mole, while that for steam
is 3865 J/mole! [39]. Furthermore, the specific volume of the gas is no longer much
larger than that for the liquid; in fact they become equal at Tc. The vapor can hardly
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be treated as an ideal gas. For all these reasons, it becomes rather difficult to apply
eqn.(11.31) to understand the observed fall of the latent heat near Tc.

A noteworthy feature of the latent heat at Tc is that while it vanishes, its deriva-
tive blows up as revealed by the fact that the plot meets Tc with a tangent that is
perpendicular to the T-axis. This means that as T → Tc, the latent heat must vanish
as L(T )→ L0(Tc −T )β with β positive and less than unity. The fit to the data gives
β = 0.325. Of course, in practice, fits are also compatible with β = 1/3. We shall
return to this point later on.

13.2.3 Surface tension

�

�

�

�

�

�

�

�

�

��
50 100 150 200 250 300 350

10

20

30

40

50

60

70

FIGURE 13.3 Surface tension of water vs T.
Source: IAPS tables (1975)[27]

We finally turn to the issue of the crit-
ical behaviour of surface tension. As
per the van der Waals theory, described
in section 12.5.1, surface tension must
vanish near criticality. This is because
the density profile, the source of sur-
face tension in the vdW theory, disap-
pears at criticality as the density of both
phases become equal. Thus, one should
expect that surface tension must vanish
as (Tc −T )β ′

, with β ′ a new exponent.
At this stage, we can only say that β ′
must be positive.

However, as per discussions of
section 12.5.2, and in particular of
eqn.(12.62), the surface entropy is

given by

Ss =−dσ(T )
dT

A (13.2)

Accordingly, the surface tension exponent β ′ can not be less than unity, as otherwise
the surface entropy would blow up! The minus sign in this equation is important, and
it makes surface entropy positive near Tc. But what is to be noted is that the surface
entropy vanishes at Tc.

What has been plotted is the data as per the international table of values of surface
tension released by the International Association for the Properties of Steam (IAPS)
[27]. A selection of data points, representative of the temperature range under con-
sideration, is shown by dots; the solid curve is based on the interpolation formula
obtained by by N.B. Vargaftik, B.N. Volkov, and L.D. Voljak [75]:

σ(T ) = 235.8

(
Tc −T

Tc

)1.256{
1− 0.625

Tc −T
T

}
(13.3)

In the above σ is given in units of 10−3N/m. The agreement between the data points
and the interpolation formula is excellent despite the extreme simplicity of the for-
mula. For temperatures lower than about 275 ◦C, the formula yields a marginally
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higher than linear growth, while for temperatures higher than this, the formula yields
a marginally lower than linear growth. It is clear from the formula that the curve must
touch the T-axis with zero slope, but this is very hard to see from the graph. Thus the
observed surface tension exponent is β ′ = 1.256, which is indeed greater than unity
as required by entropic considerations discussed earlier.

13.3 Critical behaviour of van der Waals theory

The vdW equation is easily the simplest equation of state for a system that displays
liquefaction of gases, as discussed at length in chapter 12. In fact, it was the first of
any equation to be able to do that. As already noted, the vdW equation also admits a
critical temperature. This was easily seen as a property of its isotherms. Through the
Maxwell construction, the seemingly unphysical branches of these isotherms were
replaced by lines of phase coexistence At that level, the critical point played the role
of dividing the isotherms into two regions, i.e for T > Tc, and the system existed
only in the gas phase, while for T < Tc, the system could exist in both gas and liquid
phases. The fact that above Tc the gas phase could not be liquefied no matter how high
the pressure, was a remarkable prediction of the vdW equation! This experimentally
well founded fact had indeed appeared baffling till then.

In the vdW system, the critical point appears as a point of termination of the
phase coexistence curve. This is also a feature that is experimentally observed in
many systems. This has a certain subtle consequence of the phases: it means that one
can continually pass from a liquid phase to a gas phase (and vice versa) without ever
crossing a phase boundary!

Because of all these features, the vdW equation would provide an easily analyz-
able model for phase coexistence and critical phenomena. Due to the law of corre-
sponding states discussed in section 12.1.3, the vdW equation also predicts that all
vdW systems have the same critical exponents. Let us recall those arguments once
more: the vdW equation ( for one mole)

(
P+

a
V 2

)
(V − b) = RT (13.4)

had its critical point at

Pc =
a

27b2
Vc = 3b RTc =

8a
27b

(13.5)

In terms of the so called reduced variables Pr = P/Pc,Vr =V/Vc,Tr = T/Tc, the vdW
equation assumes the particularly simple reduced form

(
Pr +

3

V 2
r

)
(3Vr − 1) = 8Tr (13.6)

Naturally, for all vdW systems the critical point occurs at the same location in terms
of the reduced variables, i.e T c

r = 1,Pc
r = 1,V c

r = 1. What’s more, if, say, the latent
heat vanishes as (T c

r − Tr)
β , the latent heat exponent for all systems obeying vdW

equation is the same β !
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This may appear to be the explanation for the observed universality of universal
exponents, but it is not. In fact, we shall see that the exponents predicted by vdW
theory do not agree with the observed values. That the vdW equation can not ad-
equately describe the observed critical phenomena quantitatively is already evident
from the fact that vdW theory predicts the universal value (PcVc/RTc) = 3/8 = 0.37
for all liquid-gas critical phenomena. As already worked out in the example 12.3, the
observed value is only 0.22.

Therefore, one should not expect very accurate numerical agreements between
observed critical phenomena and vdW theory. The best that can be hoped for is that
gross features of physical phenomena like the vanishing of the latent heat at Tc with
an exponent less than unity, vanishing of surface tension with an exponent greater
than unity, the slope of the coexistence curve etc. are reproduced by the vdW theory.
In this, we shall see, the vdW theory indeed does very well, and in fact it gives the
correct trend even far from Tc.

The critical point in vdW theory is governed by the vanishing of the derivatives
(

∂Pr

∂Vr

)

Tr

= 0

(
∂ 2Pr

∂V 2
r

)

Tr

= 0 (13.7)

The strategy is to examine the system in the vicinity of T c
r . For that purpose we

introduce the variables

Tr = 1− t Vr = 1+ v Pr = 1− p (13.8)

So, for fixed t we wish to obtain expressions for vl for the liquid phase and vg for the
gas phase. As a first step in this direction, let us write down the vdW equation in the
reduced form, as given in eqn.(13.6), by naively treating all of (t,p,v) to be small.
Let us take (t,p) to be the independent variables; then one can always take (p,t) to
be small, but the smallness of the dependent variable needs care.

It is straightforward to obtain an expansion for p to the leading order:

p = 4t − 6vt+
3

2
v3+ . . . (13.9)

Here is the subtlety in treating v as also small. Since t,p have been taken to be in-
dependent, there is no reason why p− 4t has to be vanishingly small. On the other
hand, if v is indeed small, the -6vt will be small compared to 4t, and things will be
consistent only if p− 4t ≈ 0, which it has no reason to! The resolution is clear, for
generic changes t,p away from the critical point, there is no reason why v, as defined
by eqn.(13.8) has to be small. In fact it can be arbitrarily large, as a consequence of
the vanishing derivatives in eqn.(13.7).

However, it is clear from the nature of isotherms of the vdW theory (see sec-
tion 12.1.3, and the figure 12.1 therein), that an isotherm in the vicinity of Tc (but
of course with T < Tc), will have the liquid and gas volumes close to Vc which is
another way of saying that v will be small if t,p are both small and lie on the coexis-
tence curve. Even in the vicinity of the coexistence curve, but not necessarily on it,
v can still be treated as being small.
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The coexistence curve itself is given by the locus of points in the Pr,Tr plane such
that the Gibbs potentials per unit mass of the two phases are equal. In fact this defines
the so called Maxwell line, already introduced and discussed in subsection 12.2.1,
with the explicit equation for the line given in eqn.(12.43), with the proviso that
ek there refer to the liquid and gas phases, respectively. Since we are dealing with a
single component system, phase equilibrium can equally well be characterized by the
equality of molar Gibbs potentials at a given T P. For this we need the expression for
the molar Gibbs potential in reduced form worked out in eqn.(12.37). We reproduce
it here for better readability:

Gr =
CV

R
(Tr −Tr lnTr)−Tr ln(3Vr − 1)− 9

8Vr
+

3

8
PrVr (13.10)

Thus the Maxwell line at the point T,P(T ) of the coexistence line is defined by

Gliq
r (T,P) = Ggas

r (T,P) (13.11)

where Vr takes the value V liq
r in the liquid phase, and V gas

r in the gas phase. It is clear
that the part of Gr that only depends on Tr has no role to play, and the equilibrium
condition can be stated as:

M(V liq
r ,Tr) = M(V gas

r ,Tr) (13.12)

where the truncated ’Maxwell function’ M(Vr,Tr) is given by

M(Vr,Tr) = −Tr ln
(3Vr − 1)

2
− 9

4Vr
+

Tr

3Vr − 1
(13.13)

In arriving at this equation, Pr has been expressed in terms of Vr, Tr using the reduced
vdW eqn.(13.6). Therefore, in order to find vl, vg at a given pressure and tempera-
ture, not necessarily in the vicinity of Tc, both p(vg,t) = p(vl,t) have to be solved
at the same time. Already, for a given temperature and pressure, the equation satis-
fied by the volume is a cubic, which can, however, be solved analytically. But the
difficulty arises in solving the Maxwell line condition in addition, which, when the
analytical solution for the cubic is substituted is not even a polynomial equation any
longer.

In the vicinity of the critical point, however, both conditions can be handled per-
turbatively. The expansion for M(v,t) to the same order of accuracy as eqn.(13.9),
is

M(v ,t) =− t

2
+

9

4
vt− 9

16
v3+ . . . (13.14)

The analysis proceeds as follows: equilibrium at a given temperature requires that
the pressures of the liquid and gas phases be the same, i.e

−3

2
v3g +6tvg =−3

2
v3l +6tvl → 4t = v2g +v2l +vgvl (13.15)
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It is easily seen that to this accuracy

p(v, t)+
8

3
M(v, t) =

8

3
t (13.16)

As this is independent of v, to this accuracy the Maxwell line condition is the same as
eqn.(13.15), which does not determine vg,vl separately. However, even at this stage
it is clear that the leading order coexistence curve is given by

p(t) = 4t (13.17)

We can check the consistency of this with the Clapeyron equation, even without
knowing the individual volumes, as long as they are both small. It follows from
eqn.(12.36) that ΔSr, the change in reduced entropy from the gas phase to the liquid
phase is ΔSr = 3/2(vg−vl). The reduced Clapeyron equation is given by

dPr

dTr
=

8

3

ΔSr

ΔVr
→ d p

dt
= 4+ . . . (13.18)

To determine the two volumes separately, we develop both p and M to one higher
order:

p(v ,t) = 4t − 6vt+
3

2
v3+9tv2− 21

4
v4+ . . .

M(v ,t) = − t

2
+

9

4
vt− 9

16
v3− 9

4
tv2+

99

64
v4+ . . . (13.19)

The analog of eqn.(13.16) now reads

p(v, t)+
8

3
M(v, t) =

8

3
t+3tv2− 9

8
v4 (13.20)

Consequently the coexistence condition becomes

3t(v2g−v2l )−
9

8
(v4g−v4l ) = 0 → (v2g−v2l )(8t− 3(v2g+v2l ) = 0 (13.21)

This immediately yields vg = −vl. Combining with eqn.(13.15) yields the leading
order solution

vg = 2
√
t+ . . . vg =−2

√
t+ . . . (13.22)

13.3.1 Critical exponents of vdW theory

Therefore, the reduced latent heat to leading order is given by

Lr(t) = 6
√

t (13.23)

Therefore the exponent β for vdW theory is 0.5 as against the observed value for
fluids and binary mixtures which is close to 1/3. The satisfactory aspect of the vdW
theory is that it gets this exponent to be less than unity. The surface tension close to
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criticality can be worked out from van der Waals celebrated paper [74, 62]; we shall
simply work with the results obtained there.

σ(t)� (vg−vl)
3 � t

3
2 (13.24)

The vdW theory also predicts the prefactor, but we shall only focus on the exponent.
Thus the prediction of the theory for the surface tension exponent β ′ introduced
above is 1.5, whereas the observed value is 1.256. Again the exponent is larger than
unity as expected on grounds of finite surface entropy. In fact, the surface entropy
near criticality, as given by vdW theory is

Ss � t0.5 (13.25)

Curiously, this is also the leading behaviour near criticality of bulk entropy too! The
interface thickness, according to the vdW theory is given by

h� lnΛ(vg−vl)
−1 � lnΛt−0.5 (13.26)

Unfortunately, van der Waals analysis of the interface thickness near criticality is
not as clean as his other derivations, and he had to introduce a cut off Λ to obtain
meaningful results. This expression is for planar interfaces only. We shall discuss the
behaviour of interfacial thickness in real life later on.

13.3.2 Even more exponents

An additional exponent, δ , is defined by the behaviour as one approaches the critical
point along a critical isotherm, defined by t = 0, or equivalently by the behaviour
along a critical isobar defined by p = 0 [3, 34]:

t = 0; p � |v|δ p = 0 : t� |v|δ (13.27)

From eqn.(13.9), it is clear that both give δ =3. The critical isochore is given exactly
by p = 4t even arbitrarily far from the critical point.

There is also the so called susceptibility exponent which for the liqid-gas system is
essentially the exponent governing the behaviour of the isothermal compressibility:

κ r
T =− 1

Vr

(
∂Vr

∂Pr

)

Tr

� t−γ (13.28)

using eqn.(13.9) it follows that γ = 1 for vdW theory.
Another interesting issue is the behaviour of CP near the critical point. It should

be noted that CV in vdW theory is an input; for ideal vdW case, CV (T ) = const.,
so there is no special critical behaviour. The exponent α , defined via CV (t) → t−α ,
is therefore zero. To investigate CP, we make use of the reduced form of one of the
identitities in eqn.(3.52) (see problem 12.1):

CP −CV =
3RTr

8

(
∂Pr

∂Tr

)

Vr

(
∂Vr

∂Tr

)

P−r
→−3R

8

(
∂ p
∂ t

)

v

(
∂v
∂ t

)

p
(13.29)
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For this purpose, it is useful to recast eqn.(13.9) in the form

2p− 8t+3vp− 3v3 = 0 (13.30)

Using this, it is easy to see that in the vicinity of the critical point

CP −CV = 8R
1

p− 3v2
1

2+3v
(13.31)

Approaching along the critical isochore:
Along this line v = 0 ,p = 4t (in fact this is true even if one is not in the vicinity
of Tc). Hence CP −CV � t−1. For the ideal vdW case, since CV remains finite by
choice, one concludes that CP � t−1. If an additional exponent α ′ is introduced via
CP(t)→ t−α ′

, one concludes that for approach along the critical isochore α ′ = 1.
Approaching along the critical isobar:
Along the critical isobar p= 0 ,v3 =−8t/3. It should be noted that p ,t were positive
only along the coexistence curve. Away from it, they can take both signs. However,
along the critical isobar a negative t is only compatible with a positive v, i.e a gas
phase, and likewise a positive t is only compatible with a liquid phase. In either case
|v| � |t|1/3, and one sees that CP � |t|−2/3 so that α ′ = 2/3 now. Since CP does
not have a finite discontinuity, Ehrenfest second order theory is not applicable to the
vdW critical point!
Approaching along a critical isotherm:
We have already seen that along a critical isotherm 2p = 3v3. So we can investigate
the behaviour of CP along an isotherm by introducing yet another specific heat ex-
ponent via CP � p−α̃ . Then, using the relations above it is easy to see that along a
critical isotherm CP � p−2/3, so that α̃ = 2/3.

In fact critical exponents can be introduced for any approach along a given path
so that there is only one dependent variable, and study how some physical quantity
like latent heat, surface tension etc. behaves as one approaches the critical point. To
reiterate, if the path is the coexistence curve, one takes temperature as the indepen-
dent variable; if the path is a critical isotherm, one takes the independent variable to
be the pressure etc.

13.3.3 Beyond the critical region of vdW theory

The advantage of an explicitly analytic model like vdW theory is that one can study
the behaviour of any physical quantity one is interested in any region of the space of
thermodynamic variables. The essential ingredients involved are simultaneous so-
lutions to the liquid equation of state P = P(Vl ,T ), of the gas equation of state
P = P(Vg,T ), and the Maxwell line, or equivalently, the equality of the Gibbs po-
tentials in the two phases.

In this age of computers, one can envisage carrying this out numerically. A good
starting point is where the solution is P=Pc,Vl =Vg =Vc,T = Tc. Then the numerical
implementation will be to go to temperature very close to TC, but lower than it, and
self-consistently determine P,Vl,Vg at this new temperature from the three mentioned
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FIGURE 13.4 Coexistence curve in vdW
theory.

0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.5

1.0

1.5

2.0

FIGURE 13.5 Latent heat in vdW theory.

equations. In this manner, one goes on iteratively solving the relevant equations to
any desired accuracy. The initial stages of the iteration, however, require great care
because of the vanishing of the derivatives as in eqn.(13.7).

An analytical approach to the problem consists in essentially adding more and
more terms in the perturbative expansons of the functions p(t ,v) and M(t ,v), and
iteratively solve the equations. In this manner one obtains vl ,vg as series expansions
in powers of

√
t. Once the series expansions for the two volumes are obtained, any

thermodynamic quantity of interest can also be obtained as a series expansion by
simply substituting the expressions for the volumes. The main drawback of such an
analytical expression, in general, is that the manipulations become extremely tedious
as one goes to higher and higher orders. More seriously, one has to contend with
issues like radius of convergence for the series etc. There are questions of unphysical
behaviour even while staying within the radius of convergence. For example, Vl =
1+vl, being the physical volume of the liquid, should never be negative. Actually, for
the vdW case the reduced volume Vr should always be greater than 1/3. The pressure
too should only show a monotonically increasing behaviour.

A third, hybrid, approach is to perform the initial steps analytically using the
perturbative method around a small neighbourhood of the critical point to avoid the
numerical pitfalls due to the vanishing derivatives exactly at Tc, and then perform the
rest numerically.

We shall not present the details and systematics of this perturbative approach, but
urge the interested reader to work them out!. In the two plots in figs. (13.4,13.5) we
have presented the results for the coexistence curve and the latent heat as a result of
a series expansion upto t5/2:

vg = 2t1/2+
18

5
t+

147

25
t3/2+

7992

875
t2+

34183

2500
t5/2+ . . .

vl = −2t1/2+
18

5
t− 147

25
t3/2+

7992

875
t2− 34183

2500
t5/2+ . . . (13.32)

The radius of convergence was around t1/2 = 0.66, but within this the volumes
remained physically sensible. However, the resulting equation for the coexistence
curve:

P(t) = 1− 4t+
24

5
t2− 816

875
t3+

5212128

21875
t4+ . . . (13.33)
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appears to have a very low radius of curvature of t = 0.004; but this could be mis-
leading, and as the terms are alternating in sign, a reliable estimate for the radius of
convergence may only obtain with the next term. It is a healthy sign that the series
for P has only integer powers in it.

Above t = 0.15, the pressure starts showing unphysical behaviour like rising with
decrease of temperature. But in the range t = (0.15,0.0), the plotted curves look
remarkably like observed data. It is clear that a fuller treatment of the problem will
remove all these pathologies, which are in any case absent in the isotherms, and
one can conclude that the vdW theory will reproduce the gross observed features to
regions far removed from the critical region.

13.3.4 From van der Waals to Wilson via Landau

As already mentioned, universality is the most astounding aspect of critical phe-
nomena. Van der Waals was the first to discover a particular form of universality as
embodied in the law of corresponding states. According to Levelt Sengers [38], van
der Waals was also the first to explicitly invoke the concept of a critical exponent,
done so in the context of surface tension in a letter of Nov 1893 to Kammerlingh
Onnes (who is also credited with the concept of corresponding states). We already
saw that the vdW theory correctly accounts for the existence of critical exponents,
both for latent heats in fluids, as well as for the more non-trivial case of surface ten-
sion. But the values predicted, 0.5 for β instead of the universally observed value
closer to 1/3, and 1.5 for the surface tension exponent as against the observed, again
universal, value of close to 1.25, are clearly not correct.

Several issues come to one’s mind in this connection. We saw that the vdW theory
was grossly inaccurate in its prediction of the critical compressibility Zc; its predicted
value is 0.375 while the observed value for water is 0.22. Therefore one can ask
whether the critical exponents can be improved by choosing a different gas equation,
as for example, the Clausius equation introduced in eqn.(1.16). Indeed, for carbon
dioxide, the Clausius equation agrees very well with the observed critical parame-
ters. The Clausius equation has three parameters unlike the vdW equation, which has
two. The compressibility ratio is not fixed, but if all the three parameters are positive,
is constrained by 1/4< Zc < 3/8. The Clausius equation too admits a law of corre-
sponding states. In fact, Planck clearly states in section 30 of his book (1910 edition)
[57] that any equation of state that has at most three independent parameters always
admits a law of corresponding states. But an analysis of critical phenomena for the
Clausius equation, in the same way as done for the vdW equation, reveals that the
exponents are the same as in vdW theory!

Landau’s theory of critical phenomena allows one to understand this universalities
among universality, in the sense that even different reduced equations, each one of
which represents infinitely many physical systems, are still governed by the same
critical exponents! A notion of great importance in the Landau theory is that of the
order parameter. This parameter distinguishes the state of the system below Tc from
its state above Tc. In water, and also vdW theory, the order parameter is vg − vl.
Above Tc, its value is zero, and below Tc it is nonzero. In vdW theory, it behaves like
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t1/2 near critical point. In the vdW theory, close to critical point, v2 = 4t, and this
equation is symmetric under v �−v. This is also the symmetry of the Ising model.
The importance of this remark will be elucidated in the next section.

Now the Landau theory amounts to writing a very general expression for the rel-
evant thermodynamic potentials (F or G), in terms of t and the order parameter. In
the order parameter space, for example, the Gibbs potential close to the critical tem-
perature looks like fig.(12.6) with the middle figure representing coexistence. As one
approaches criticality, the figure approaches a curve with a single minimum at zero
order parameter. It is easy to see then that in the vicinity of the critical point, the order
parameter has the Ising symmetry mentioned above, and further that it behaves like
t1/2. Thus the value of β = 1/2 is generic to Landau theory. The reader is referred
to Landau’s book for a very clear exposition of these ideas [34]. The other exponents
emerging from the Landau model are:

β =
1

2
α = 0 γ = 1 (13.34)

the same values we found for the vdW theory.

13.3.5 The renormalization group

A great breakthrough in understanding critical phenomena and the observed critical
exponents came through the works of Kenneth Wilson, and his idea of Renormal-
ization Group. It is beyond the scope of this book to give an adequate account of
this great development. We try to give a basic flavor of it, and direct the reader to
Wilson’s original papers [79] or the review article by Kogut and Wilson [32]. A
very elementary, but conceptually accurate account which is also very readable is by
Kadanoff and Maris [29]. The basic idea of the renormalization group is that un-
like in thermodynamics where the system is homogeneous or nearly homogeneous,
fluctuations about the homogeneous values ought to be taken into account, and in
fact these fluctuations become very strong as the critical point is approached. An
experimental manifestation of this is the so called critical opalescence whereby the
liquids near the critical temperature scatter light strongly. The explanation for this
originally came from Einstein.

As a result of such strong fluctuations, different parts of the system become cor-
related. The so called correlation length signifies the scale over which parts of the
system are strongly correlated. The renormalization group theory says that the cor-
relation length diverges as the critical temperature is approached. This divergence is
characterized by the correlation length exponent. A striking consequence is that as
the correlation length diverges, all other finite length scales in the problem become
irrelevant, and the correlation length sets the only scale. Because of this, all quanti-
ties which have dimensions will also scale as the appropriate power of the correlation
length. The upshot is that, say, the Gibbs potential instead of being a function of two
independent variables, becomes a function of a single ratio, and near criticality the
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dominant part of the potential has the form [34, 3]

G � |T −Tc|2−α f

⎛

⎝ B
1+ 1

δ
e

|T −Tc|2−α

⎞

⎠ (13.35)

Be for the liquid-gas case is p− 4t [34]. Because of this, one gets relationships be-
tween the various exponents i α,β ,γ,δ ,β ′ etc. called the scaling relations:

α +2β + γ = 2 γ = β (δ − 1) (13.36)

The exponents of Landau theory, which encompasses vdW theory, clearly satisfy
these scaling relations. The Landau and vdW exponents are called classical because
they ignore fluctuations.

The power of the renormalization group is that according to it the exponents only
depend on (i) the dimensionality of space, (ii) the number of different order parame-
ters, also called the order parameter dimensionality, and (iii) the symmetries of the
order parameter. It is for this reason that the exponents of a liquid-gas system must
be, according to renormalization group theory, the same as that of the three dimen-
sional Ising model!

The three dimensional Ising model, unlike its two dimensional cousin, has not
yet been solved analytically. However, a great many techniques are available which
have been put to use to ’calculate’ the critical exponents of the 3d Ising model. In
particular, Le Guillou and Zinn-Justin have reported the exponents [36]

β = 0.33 α ≈ 0.1 γ = 1.242 δ ≈ 4.82 (13.37)

These too satisfy the scaling relations of eqn.13.36. The surface tension exponent
from the 3d Ising model is given by β ′ = (4− 2α)/3 ≈ 1.27. This is remarkably
close to the experimentally determined value of 1.256.

13.3.6 Renormalization group inspired thermodynamics
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FIGURE 13.6 3d Ising model inspired latent
heat.

Though the fluctuations are beyond the
scope of thermodynamics, one can still
use thermodynamics to give a very sat-
isfactory description of, say, the liquid-
gas transitions even far away from the
critical region. The idea is to use the
’dominant’ potential of eqn.(13.35) as
the thermodynamic potential for a de-
scription in the close vicinity of the
critical point, where the various expo-
nents are what a proper renormalization
group analysis would give.

So, for the water case one would use
the values as given by eqn.(13.37), and
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β ′ = 1.27 for the surface tension analysis. To describe the phenomena far away from
the critical point, one adds a power series in t. It is remarkable that the surface ten-
sion interpolation formula based on the 3d Ising model exponent along with a single
correction term (though in this case as a factor), completely explains the entire data
all the way up to the boiling point of water!

In a completely similar spirit Torquato and Stell [73] proposed the following in-
terpolation formula for the latent heat:

L(t) = a1t
β +a2t

β+Δ+a3t
1−α+β +

3

∑
i=1

bi t
i (13.38)

where they used an additional exponent coming from the Ising model, i.e Δ≈ 0.50.
They found the coefficients a,b through a best fit to the IAPS data. We have shown,
in figure 13.6, a plot based on such a formula where the coefficients are very nearly
those used by them, and multiplying their formula by 18 to get the molar latent
heat. The agreement with actual data, say, from the Dortmund data bank is excellent.
The IAPS has implemented such a renormalization group based thermodynamics
by a much more elaborate formula [77], but the idea is the same as what has been
explicitly discussed.

13.4 Problems

Problem 13.1 Derive the equation for the critical adiabat, i.e an adiabat passing
through the critical point, for a vdW system.
Problem 13.2 Calculate the critical exponents β and β ′ for the Clausius equa-
tion given in eqn.(1.16). Make use of the reduced form of this equation (see
problem 12.2).
Problem 13.3 Calculate the specific heat at constant area for a surface whose sur-
face tension has the form given by eqn.(13.3). What is the physical significance
of such a specific heat? Does this specific heat remain finite at Tc or diverge? If
it diverges, what is the corresponding exponent?
Problem 13.4 Consider a dilute solution made up of a solvent and a solute. Show
that the surface tension of the dilute solution σ is related to the surface tension
of the pure solvent σ0 according to

σ(T )−σ0(T ) =−ns

T
A (13.39)

where A is the area of the surface and ns the surface concentration of the solute.
Do you see any resemblance between this equation and van’t Hoff formula for
osmotic pressure?
Problem 13.5 If the surface tension σ(T ) is a function of temperature only, and if
the liquid is described by vdW theory, show that the law of corresponding states
asserts that the surface tension of all vdW fluids must be of the form σ(T ) =
A a

b5/3 f (T/Tc). Apply this to eqn.(13.3) to show that B in that formula must have

the form B = B0 (a/b
5/3) where B0 does not depend on the vdW parameters.

Given that B for water is 235.8 · 10−3 N/m for water, estimate it for Helium
using the results of the previous problem, and compute the surface tension of
liquid He4 at 3 K given its Tc = 5.2K.



14 Approach to Absolute Zero

We saw in section 3.8 of chapter 3 (Nernst-Planck Theorem) that there are thermody-
namic arguments to indicate the difficulty of reaching the absolute zero temperature,
i.e 0 K. While it could not really be strictly proven using only the first and sec-
ond laws, the powerful analysis of Nernst hinted at the desirability of introducing a
separate law, usually called the Third Law of thermodynamics. In this chapter, we
explore, from a purely experimental point of view, the issue as to how close to abso-
lute zero can one get? An excellent source for further reading is Lounasmaa’s book
Experimental Principles and Methods Below 1 K [40]. Another excellent source is
Frank Pobell’s book Matter and Methods at Low Temperatures [58]. The reader is
also recommended to the extensive, and highly readable articles on this subject by
Srinivasan [66, 67, 68, 69], as well as by Per Delsing [12].

It turns out that one can get pretty close. But the still intriguing question is whether
any of the fundamental theories of physics pose an actual limit as to how far one can
go. Certainly quantum theory on its own does not seem to pose any limitation, nor
do any of the theories of the elementary particle world. Quantum gravity theories on
the other hand, have thrown tantalizing hints at a deeper connection with thermody-
namics, that they may well set such a limit. But for the moment all such thoughts are
purely speculative, and really far from the true spirit of thermodynamics.

Difficulties, if not outright limitations, in experimentally achieving a temperature
arbitrarily close to absolute zero, seem to be manifold. Thermal insulations, for ex-
ample, have to be nearly perfect. In its broadest sense, this is a problem in ultimate
refrigeration. Refrigeration, again, can be broadly characterized as the technique for
extracting heat from a body, thereby cooling it. This can not happen spontaneously
if a conflict with the basic laws of thermodynamics is to be avoided. Specifically,
work needs to be done, and the difficulty in reaching this thermodynamic Holy Grail
can be thought of as the insurmountable amount of work that one may end up do-
ing. In this chapter, we take a look at some novel refrigeration techniques that have
driven the quest of reaching as close to absolute zero as possible. Curiously, the win-
ner of the race, the Bose-Einstein Condensate (BEC), reaching the record limit of
500 picokelvins (500 pK or half a nK), does so by essentially exploiting evaporative
cooling!

14.1 Standard methods of refrigeration

One of the most common techniques of refrigeration uses the principle of so called
evaporative cooling. This has been used in ancient Egypt as long ago as 2500 BC
and in India even as early as 3000 BC to cool water. In India, even to this day it is
popular as a poor man’s way of cooling water by as much as 15 degree Celsius! The
technique is simplicity personified, and consists of a narrow-necked earthenware pot
filled with water. The pot being porous, water oozes out, very much as in a capillary
tube, and the hot, dry air outside evaporates the water, taking away the latent heat
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from the pot and subsequently from the water inside it. The total amount of cooling
depends on the total mass of water converted to vapor.

If a breeze of dry air were to be incident on the pot, the rate of evaporation is
enhanced and so also the cooling rate. This is so, as the breeze continually replenishes
the supply of dry air, facilitating the process of evaporation. A familiar day-to-day
example of this is the cooling effect produced on our bodies by a breeze on a hot
sweaty day.

14.1.1 Cooling power

A way of quantifying the efficiency of a cooling, or equivalently, a refrigerating
process, is through the so called cooling power. This is the same as the rate of cooling
alluded to before, it is Q̇, the rate at which heat is removed. This is not a proper
thermodynamic concept, because in thermodynamics the concept of time does not
make sense. However, what does make thermodynamic sense is the amount of heat
removedΔQ when a certain amount of cooling agent has been utilised. In the context
of evaporative cooling, this is the amount of water that has evaporated. Therefore ΔQ

Δm
is thermodynamically sensible, and hence computable from thermodynamics.

But in a refrigerating device in real life, the design of the refrigerator (pumps,
compressors etc.) is such that the rate ṁ at which a refrigerant evaporates can be
specified and this, when combined with the thermodynamics of the device, allows
one to compute the cooling power.

In all methods based on evaporative cooling, if δm is the mass of the substance
that has evaporated, then the heat extracted is δm · l where l is the latent heat of
vaporisation per unit mass of the refrigerant. Then δQ = δml and Q̇ = ṁ · l. In this,
l of course has a thermodynamic meaning, but not ṁ.

In all cases of refrigeration, the heat extracted will depend (in most cases linearly)
on the amount of what may be called the control parameter. In evaporative cooling
this is clearly the mass of the substance that has evaporated; in Adiabatic Demag-
netization, discussed later in this chapter, it is the amount of the magnetic field by
which a magnetic substance is demagnetized; and in the extremely novel acoustic
refrigeration it is the acoustic power etc.

Cooling power is clearly a good indicator of the preferability of the particular
mode of refrigeration. At a given temperature, a method with higher cooling rate will
result in faster refrigeration. But care should be taken not to confuse cooling power
with the Coefficient of Performance (COP) of a refrigerator. This latter concept has
been discussed earlier.

Is it then meaningful to compare the cooling powers of different refrigerators,
from a thermodynamic point of view? In general not, as no meaningful comparisons
can be made about different control parameters. With methods of refrigeration in-
volving the same substance and consequently the same control parameter, it is indeed
thermodynamically sensible to compare the cooling powers.

As an example, consider different methods of refrigeration involving He3. These
could be the Helium-cryostat, dilution refrigeration, or Pomeranchuk cooling (all of
these will be discussed later in this chapter). The amount of cooling in all of them
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depends on the amount of He3 pumped out of the system. Therefore, a comparison of
the efficacy of cooling can indeed be made among these methods by comparing the
amount of heat carried away per unit mass of He3 pumped. Even if the refrigerants
are different, as for example is the case for He3 and He4 cryostats, a thermodynami-
cally meaningful comparison of cooling powers can be made by comparing the heat
extracted per unit mass (or, per mole) of the refrigerant.

But clearly, there is no natural way of comparing the cooling power of a Helium
cryostat with the cooling power of an Adiabatic Demagnetization Refrigerator(ADR)
where the heat carried away depends on the amount of demagnetization. However,
a meaningful comparison can indeed be made between an ADR using paramagnetic
salts and an ADR using nuclear magnetism. Both these methods will also be dis-
cussed in detail later. This can be done by comparing the heat extracted per unit of
magnetic field demagnetised.

An implication of the third law is that all cooling powers must vanish as absolute
zero is approached. We will see clear evidence for it in the various refrigeration
methods to be discussed. This is physically achieved in very different manners, and
the reader is urged to carefully examine these differences.

In what follows, we shall be mostly interested in refrigeration techniques that
have proved useful in, so to say, the last mile as far as the journey to absolute zero
is concerned. Therefore, we shall not deal with domestic or even industrial or other
scientific refrigeration techniques.

14.2 Helium cryostats

The principle behind this class of refrigeration is that when liquids boil at their boil-
ing points (normal or otherwise), latent heat is carried away from the body to be
cooled. To reach as low a temperature as possible, one needs to identify liquids with
as low a boiling point as possible. As per the Clapeyron equation, the boiling point
can be lowered by working under reduced pressures. But with reduced vapor pres-
sures, the density of the vapor goes down. This means the pumping rate must be
enhanced correspondingly. As has already been shown in chapter 15, the vapor pres-
sure has an exponentially falling dependence on temperature of the form

P(T ) = c(T ) · e−
Λ
RT (14.1)

where Λ is the molar latent heat, and c(T ) can in principle have some power law
dependence on temperature. c(T ) can also depend on the substance. As was seen
earlier, in the Debye(Einstein) models of solids, the vapor pressure in the process of
sublimation is such that c(T ) ≈ T− 1

2 . But for us, the important point is that vapor
pressure drops exponentially. It helps to introduce a characteristic temperature scale
Tv = Λ

R , in terms of which the exponential dependence of vapor pressure can be

reexpressed as e−
Tv
T . The significance of this is that when T << Tv the vapor pressure

becomes negligibly small.
If we treat the vapor as an ideal gas, the density of the vapor is given by ρ =

M
RT P(T ) (M is the molecular weight). The rate at which the vapor is pumped out of
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the system is then given by

ṁ = ρ Sp = Sp
M
RT

P(T ) = Sp
M
RT

c(T )e−
Tv
T (14.2)

Here Sp is the rate of pumping the vapor, usually expressed in litres/sec. The cooling
power is, consequently,

Q̇ = ṁ l(T ) = ρ Sp = Sp
M
RT

P(T ) = Sp
M
RT

c(T )e−
Tv
T l(T ) (14.3)

Even though the c(T)/T factor is larger at lower temperatures, the exponential fall
far outweighs this. Therefore, as one operates at temperatures well below Tv, for a
given Sp, the cooling power becomes extremely small. Up to a point, this can be
compensated through a corresponding increase in Sp. But beyond a point, that option
becomes unfeasible, and then this method of refrigeration has to be given up.

Before discussing specific details, let us again note some generalities. As the ab-
solute zero is approached, the cooling power rapidly vanishes. In this particular case,
not only does the vapor pressure go to zero, so does the latent heat. The latter follows
from the fact that Nernst-Planck theorem demands that all entropy differences must
vanish at absolute zero.

The asymptotic vanishing of the cooling power as absolute zero is approached
means that it gets harder and harder to lower the temperature of a body, making the
attainment of absolute zero absolutely impossible. Had the cooling power remained
finite at absolute zero, there would not have been any such impediment.

14.2.1 He4 cryostat

Let us now turn to a discussion of the He4 cryostat. We have already briefly discussed
the phase diagram of He4 in chapter 14. What concerns us for the present discussion
is that part of the phase diagram in which He4 exists in both the liquid and gaseous
phases. The first noteworthy feature is that the vapor phase persists all the way to
absolute zero (more precisely, up to an arbitrary neighbourhood of absolute zero).

There is a critical point at 5.19 K, beyond which there is no distinction between
the liquid and gas phase. As the temperature is lowered, there is coexistence between
the so called He I liquid phase and vapor. As already mentioned before, He4 exists in
two liquid phases. There is a continuous line of critical points separating the liquid
He I and liquid He II phases. This is the so called line of λ -transitions. This meets the
coexistence line between the vapor and liquid I phases at what is called the λ -point
at a temperature of 2.18 K at a pressure of roughly 0.05 Atm. For our discussion it
means that up to 2.18 K there is coexistence between the vapor and liquid I phase,
and below that a coexistence between vapor and liquid II phase. The liquid II phase is
called the superfluid phase and is marked by a number of very remarkable properties.

The normal boiling point of liquid He (liquid I, also called the normal liquid) is
4.23 K and the molar latent heat of vaporisation is roughly 83 J. Thus the character-
istic temperature Tv for this case is around 10 K. Already the normal boiling point
itself is low compared to Tv.
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Therefore by boiling liquid He4 at atmospheric pressure, one can reduce the tem-
perature of a body placed in a He4 cryostat to 4.23 K. By boiling the liquid at lower
pressures (facilitated by pumping), the boiling point can be lowered and so also the
temperature to which the body can be cooled. The limitation to this process of cool-
ing, as already explained, comes from the steep fall in vapor pressure with tempera-
ture. Already at the λ -point this has fallen by a factor of 20 compared to the normal
boiling point. A further lowering of the boiling point by 1 K, that is to a temperature
of 1.2 K, is still possible. Beyond that the pumping requirements become prohibitive.
Thus this is the lowest temperature that can be practically reached in a He4 cryostat.
At this temperature He4 is already in its superfluid state. With a thermal conduc-
tivity some million times larger than the normal liquid, the cryostat becomes highly
vulnerable to thermal leaks.

14.2.2 He3 cryostat

Now let us turn to the improvement in cryogenics that result by just replacing He4
by its lighter (though much more expensive) isotope He3. At a fundamental level the
difference between He3 and He4 could not have been more dramatic. While He4 is
what is called a Bosonic system, He3 in contrast is Fermionic.

We have discussed the phase diagram of He3 also in chapter 14. There we pre-
sented two such diagrams for He3. One was a ’low resolution’ phase diagram which
showed only the liquid, gas and the solid phases. The maximum pressure was about
5 MPa and temperature resolution of about 0.1 K. We also a displayed a high reso-
lution ’modern’ phase diagram, which, in addition to these three phases showed two
additional superfluid phases. While the low resolution picture had no triple points at
all, the latter had several. But to see these additional features one had to probe ultra-
low temperatures of the order of 0.1 mK but over a comparable range of pressures.
For the purposes of this chapter, the low resolution picture suffices.
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FIGURE 14.1 A comparison of He3 and He4
vapor pressures.

The features of importance to us are
the critical point at 3.35 K, the normal
boiling point at 3.19 K, and the molar
latent heat of 26 J. The characteristic
temperature Tv turns out to be 3.13 K,
very close to the normal boiling point it-
self. Thus at any given temperature (we
are now thinking of temperatures of a
few K), the vapor pressure of He3 is sig-
nificantly higher. This is shown in fig-
ure 14.1 where the top curve is that of
He3, and the bottom that of He4. The
pressure is in Kpa and temperature in
mK. This has been drawn based on the
solution to problems 14.2 and 14.3. For
a real-life comparison see Pobell [58]. This means one can expect a much larger cool-
ing power with He3 cryostats as compared to their He4 counterparts. Additionally,



280 The Principles of Thermodynamics

one can go to much lower temperatures where the vapor pressure is still reasonable
enough to use pumping effectively.

The lowest temperature reachable is about 0.25 K which is about a fifth of what
is reachable with He4. It should be noted that as fractions of the characteristic tem-
perature Tv, the lowest temperatures reachable by both He4 and He3 cryogenics are
comparable, about a tenth. The reason for this should be clear; what limits going to
lower and lower temperatures is the steep fall of vapor pressure with temperature,
and as we have seen, that is controlled essentially by the ratio T

Tv
.

Though He3 is a lot more effective in reaching lower temperatures, it is also a
very expensive option, and should be used only where necessary. In other words, if
some desired temperature is reachable through a He4 cryostat, it is wasteful to use
He3 to achieve the same temperature. The main reason for why He3 is so expensive
is that its natural abundance is only 10−7 that of He4.

14.3 Dilution refrigeration

14.3.1 Thermodynamics of He3-He4 mixtures

FIGURE 14.2 He3-He4 mixture

The basis for this novel means of re-
frigeration is in the fascinating thermo-
dynamics of He3-He4 mixtures. This is
best understood in terms of the phase
diagram for such mixtures, shown in
fig.(14.2).The temperature range shown
is 0-2.2 K and plotted on the horizontal
axis is the molar fraction of He3 in the
mixture. If N3 is the number of moles
of He3 and N4 the number of moles of
He4, the molar fraction x = N3

N3+N4
. Let

us first examine the region of very low
x, which corresponds to the mixture be-
ing composed of almost entirely He4.
The temperature being so low, He4 is in
a liquid state. At x = 0, which is pure

He4, 2.18 K represents the λ -point, already alluded to before. Above this tempera-
ture, we have the normal liquid phase and below it the superfluid liquid phase. As
the concentration of He3 is increased, this normal-superfluid λ -transition persists
but the transition temperature shifts. This can be compared to the phase diagram of
dilute solutions discussed in chapter 13. Of course, when the concentration of He3 is
no longer small, the dilute solution theory is not expected to hold.

But even before going to regions of higher concentration, already there is some-
thing very peculiar about this system, at least from a classical point of view (see
also Srinivasan [68]). We learned about the Gibbs paradox in the context of entropy
of mixing. In the thermodynamic context, this arose out of the nonextensivity of the
naive expression for entropy, say, of even the ideal gas. You may recall that this led to
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the paradoxical situation of an entropy gain by mixing two volumes of the same gas.
Since entropy in thermodynamics can only be determined modulo a constant, this
could be circumvented by a suitable constant contribution to entropy, but even with
that modification, there was always the gain in entropy upon mixing two different
substances, signifying the essential irreversibility involved.

Now if we combine this with Nernst-Planck theorem, then classically one has
to conclude that there can be no mixtures at absolute zero! This follows on noting
that the entropy of all substances must vanish at absolute zero. Since the individual
components themselves have vanishing entropy, any mixture of them will have non-
vanishing entropy, contradicting Nernst-Planck theorem! But the phase diagram in-
dicates the existence of a mixture phase all the way up to absolute zero. Not only that,
the limiting concentration of He3 is some 6.5% which is non-negligible! There is no
resolution within classical physics for this amazing phenomenon. Only a quantum
statistical mechanical treatment can explain this. Then it turns out that the mixture at
absolute zero indeed has zero entropy. The nonvanishing concentration of He3 very
close to absolute zero will be seen to play a crucial role in the working of a dilution
refrigerator!

Moving to higher than this 6.5% concentration, one finds the other novel aspect
of this system. Not all combinations of temperatures and concentrations are permis-
sible. In fact, there is a whole region of the phase diagram where no stable configu-
ration is possible. As this is a very important aspect of this system, let us look at it
step by step. So, when the concentration is just a little over 6.5%, as the temperature
is lowered, the system first makes a λ -transition from a normal liquid (not a pure
He3 or He4 liquid, but a liquid of mixture) to a superfluid liquid (again of a mix-
ture). For example, starting at a concentration of xini = 20%, the normal-superfluid
transition happens around roughly 1.8 K. On further cooling, it remains a superfluid
up to about 0.5 K. Any further cooling at this concentration leads the system into an
unstable composition.

But eventually it must end up in some stable configuration. What exactly is this
stable configuration? If we draw a horizontal line at this lower temperature, it inter-
sects the phase diagram in two points corresponding to, let us say, the concentrations
xd(T ) and xc(T ). Quite clearly, xd < xini < xc. In other words, at the lower temper-
ature one has a stable phase that is rich in He3 (the one with xc) and another stable
phase that is poorer in He3 as compared to the He3 concentration one started with
(xini). So the system phase separates into a He3-rich phase, called the concentrated
phase, and a He3-poor phase called the dilute phase (hence the reason for the sub-
scripts (c,d)). In fact, the fraction fd of the dilute phase coexisting with the fraction
f> of the concentrated phase is easily calculated:

fd =
xc − x
xc − xd

fc =
x− xd

xc − xd
(14.4)

The dilute and the concentrated phases, being stable phases in coexistence, satisfy
the equilibrium condition of equal Gibbs potential per unit mass, i.e gd = gc.

The phase diagram further indicates that at very low temperatures xc → 1 and
xd → 0.065. A naive expectation may have been xd → 0, but this is not so, and as al-
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ready mentioned this striking result needs quantum mechanics for its understanding.
It follows from eqn.(14.4) that a single stable phase at any temperature T is possible
only if the concentration xini is tuned to be such that it is either xc(T ), in which case
it is only the concentrated phase ( fc = 1, fd = 0) or 0 ≤ xini ≤ xd(T ) in which case
the stable phase is entirely the dilute phase.

What is of importance to refrigeration by dilution is the difference in entropy be-
tween the dilute and concentrated phases. Though many treatments base themselves
on considerations of enthalpy also, in the end it is only the entropy difference be-
tween the two stable phases that matters. This entropy difference can be computed
if one has a knowledge of the specific heats of the two phases. The literature is con-
fusing even on this. Some talk of specific heat per unit mass, some others of molar
specific heat, and some even of specific heat per atom (not very sensible in a purely
thermodynamic context). In mixtures, number densities and molar concentrations are
not straightforwardly related. There is also confusion about the equilibrium condi-
tion itself. As can be gathered from our discussions on phase equilibria in chapter
14, the equilibrium condition is that Gibbs potential per unit mass must be the same
in the two coexisting phases.

Let us turn to a discussion of the entropy and subsequently the latent heat differ-
ence between the two phases. To avoid any confusion, let us first pose the following
question: suppose one mole of He3 is converted from a concentrated phase to one
mole of He3 in the dilute phase. Then what is the change in the molar entropy of
He3? Clearly, for the dilute phase to have exactly one mole of He3, there should be
enough superfluid He4 around.

Strictly speaking, it is the entropy difference between the dilute and concentrated
phases that we should be seeking. But below 0.5 K the He4 is in the so called Bose
Condensed state, and carries zero entropy. Consequently the specific heat also van-
ishes. Therefore, as far as latent heat (or equivalently) entropy considerations are
concerned, the He4 part, both in the dilute phase as well as the concentrated phase
at nonzero K, simply acts like a silent spectator. However, as we shall see, He4 does
influence the enthalpy. But the equilibrium condition gives the enthalpy difference to
be directly related to the entropy difference.

In the dilute phase, the He3 can be treated as a so called Ideal Fermi Gas. It is
beyond the scope of this book to give a proper account of it. We shall simply give the
formula for the molar specific heat of He3, when its molar concentration is x

Cd = agas f (x) ·T (14.5)

Putting all the relevant factors, one gets

Cd(x = .065) = 106TJ/mole (14.6)

The specific heat of He3 in the concentrated phase is a lot more complicated. In that
phase, He3 is in a liquid state and it is not easy to give an analytical expression. But
according to the legendary Russian physicist, Lev Landau, though He3 is a so called
Fermi Liquid, it behaves like an Ideal Fermi Gas not of He3 atoms, but of some
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fictitious helium-like atoms, so that the very low temperature specific heat of He3,
even in the liquid state, is given by

Cc = aliq f (x) ·T (14.7)

What distinguishes agas from aliq in these is the differing values of the so called
effective mass of Landau theory of Fermi liquids. It is remarkable that even in the
liquid state, the dependence of the specific heat on molar concentration as well as
temperature is exactly the same as in the ideal Fermi gas description of the dilute
phase! Lounasmaa [41] on the other hand, uses the experimental data in the 40 mK
range to come up with an empirical fit for the molar specific heat in the concentrated
(liquid) phase:

Cc = 25TJ/mole (14.8)

Another estimate which is commonly used is

Cc = 22TJ/mole (14.9)

It should be noted that this too can be thought of as having the same functional
form of eqn.(14.7) with an emprically determined aemp playing the role of aliq. We
can generically denote this parameter by a and write the generic expression for He3
specific heat as a f (x)T J/mole.

If the equilibrium condition (equality of Gibbs potential per unit mass) were to be
applied separately to He3, one would expect

H(3)
c −TS(3)

c = H(3)
d −TS(3)

d (14.10)

The superscript (3) serves as a reminder that only quantities pertaining to He3 are
to be used. The above mentioned linear temperature dependences can be assumed
to hold all the way to absolute zero. The enthalpy and entropy can be obtained by
integrating C(T ),C(T )/T respectively:

S(T ) =
∫ T

0

C(T )
T

dT H(T )−H(0) =
∫ T

0
C(T )dT (14.11)

While S(0) has been set equal to zero in accordance with third law, there is no such
requirement regarding H(0). The integrals above exist and the behaviour of specific
heat near absolute zero is indeed in conformity with third law. We will be applying
all these considerations to very low temperatures where we can take xc = 1 and xd =
.065. However, since the functional forms of xc(T ),xd(T ) are known, in principle one
can integrate the expressions in eqn.(14.11). The generic expression for the enthalpy
and entropy can now be written down as

S(a,x,T ) = a f (x)T H(a,x,T ) = H(a,x,0)+
a
2

f (x)T 2 (14.12)

with x taking the appropriate temperature-independent values. Using these expres-
sions we can recast the equilibrium condition of eqn.(14.10) as

H(aliq,x = 1,0)− aliq

2
f (1)T 2 = H(agas,x = .065,0)− agas

2
f (.065)T 2 (14.13)
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This can never be satisfied for different T no matter what H(a,x,0) is. Hence the
equilibrium condition should not be applied to the He3 part alone. On the other hand,
if the condition is applied to both the He4 and He3 parts, there is no contradiction.
Thus the temperature-dependent enthalpy of He4 is crucial for the equilibrium.

Thus at very low temperatures, the molar entropy difference between the dilute
and concentrated phases is

Sd − Sc =
L
T

= 81T J/K (14.14)

leading to a latent heat for conversion from concentrated to dilute phase of
81T2J/mole. Comparing this to the latent heat of vaporization, one sees that the
concentrated phase is akin to the liquid phase and the dilute phase to the vapor phase
(but keep in kind that both the concentrated and dilute phases are actually liquids in
this case). Continuing that analogy, one can conclude that if one mole of He3 in con-
centrated phase passes to one mole of He3 in the dilute phase, there will be cooling
very much like the evaporative cooling in the liquid-vapor system.

14.3.2 Cooling power of dilution refrigerators

It is clear that if ṅ3 is the rate in moles per sec at which He3 is made to cross the
phase-coexistence surface between the dilute and concentrated phases, the rate of
cooling, i.e the cooling power, is given by

Q̇ = ṅ3 81T2 (14.15)

As emphasized before, this cooling power also vanishes at absolute zero, as Nernst-

FIGURE 14.3 Comparison of cooling powers of He3 cryostats and dilution refrigerators.
Source: Modified from fig. 3.7, p.31, of O.V. Lounasmaa [40].

Planck theorem would demand. But in order to see how fast the cooling power van-
ishes, we need to examine the possible limitations on ṅ3, as after all in the case of the
cryostats, it was this factor that vanished exponentially at lower temperatures. This
is where the nonzero molar fraction of He3 in the dilute phase, even at absolute zero,
makes a dramatic difference. If He3 is being pumped to achieve cooling, the factor
ṅ3 is temperature independent!
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Hence the cooling power of dilution refrigerators goes down only quadratically
with temperature. In the cryostat, the latent heat was practically insensitive to tem-
perature, whereas in the dilution case it is ṅ3 that is insensitive. A comparison of the
cooling rates for the same, but otherwise arbitrary, He3 pumping rate is shown in
figure 14.3.

As can easily be gathered from this, dilution refrigeration is far superrior to even
the He3 cryostat. The latter, as already remarked, becomes totally inefficient below
about 0.2 K. The dilution refrigeration, on the other hand, can cool objects to a few
mK. In the next section, we consider a few salient features of this novel means of
refrigeration.

14.3.3 The dilution refrigerator

So the idea is to convert He3 in the concentrated phase into He3 in the dilute phase.
To make the analysis simpler, let us assume that we are close to the temperatures
where xc ≈ 1.0 and xd ≈ .065. A more general analysis is not much more difficult, it
is just that it suffices to bring out the essence of the method to work at temperatures
where the molar fractions have these values.

The most important part of the refrigerator is the so called mixing chamber where
the mixing and consequently also the cooling takes place. Imagine mixing N3 moles
of He3 with N4 moles of He4 at some low enough temperature. After phase separa-
tion, let Nc

3 be the number of moles of He3 in the concentrated phase and Nd
3 be the

corresponding number of moles in the dilute phase. Since xc is very close to unity,
hardly any He4 will be in the concentrated phase, and we can take the circumstances
to be such that all N4 moles of He4 are in the dilute phase so Nd

4 = N4. The conser-
vation of the amount of He3 gives:

N3 = Nc
3+Nd

3 (14.16)

But Nd
3 and Nd

4 (which in this case is the same as N4) are related by Nd
3 = 0.065

0.935 Nd
4 ,

since Nd
3

Nd
3+Nd

4
= xd =0.065. Hence it follows that Nc

3 =N3− 0.065
0.935 N4. This means that

the number of moles of He3 that have passed from pure He3 phase to the dilute phase
is ΔN3 =

0.065
0.935 N4. The amount of cooling is therefore ΔQ = 81ΔN3 ·T2J. The ratio

of N3 to N4 can not be arbitrary (or else the assumption that all N4 moles of the initial
He4 pass to the dilute phase will be wrong). In fact N3− 0.065

0.935 N4 ≥ 0. The optimal
situation is when N3 = 0.065

0.935 N4, which happens when the initial concentration is
exactly xd = 0.065. In that case all of the initial He3 and He4 pass entirely into the
dilute phase, and maximum cooling takes place.

Actual laboratory designs are of course too elaborate for discussion here. But the
schematics of the main design elements for a dilution refrigerator will be given next.
For more details, the reader is referred to [41, 68].

14.3.4 Dilution refrigeration: skeletal designs

Before discussing even the schematics of a dilution refrigerator, it is worth clarifying
the meaning of ṅ3 in the cooling power formula. This is the number of moles of He3
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that crosses the phase boundary. If phase equilibrium is disturbed, such a movement
of He3 will restore the phase equilibrium.

In fact this is exactly analogous to the liquid-vapor case. Suppose in a container
there is liquid coexisting with its vapor at some temperature. If some amount of vapor
is pumped out, the phase equilibrium is momentarily disturbed. But it is restored by
the requisite amount of liquid vaporizing, leading to cooling in the process. So a
certain amount of vapor has crossed the phase boundary.

Coming back to the helium mixture case, if the molar concentration of the dilute
phase is altered, phase equilibrium will be disturbed. Depending on how exactly it
is disturbed, a certain amount of He3 will cross the phase boundary one way or the
other. If the He3 molar concentration is decreased, say by removing a certain amount
of He3 from the dilute phase, then some amount of He3 from the concentrated phase
will move into the dilute phase, thereby leading to cooling.

On the other hand, if the molar concentration of He3 in the dilute phase is de-
creased by increasing the amount of He4, then too phase equilibrium is disturbed in
the same way and again He3 will move from the concentrated to the dilute phase,
and again lead to cooling.

Therefore to effect a Δn3 across the phase boundary, and hence to effect a cool-
ing, it does not matter whether we do it through physical movement of He4 or He3.
The fact that the dilute phase has a molar fraction 0.065 of He3 at all temperatures
of operation is important for both of them. In the case of explicit extraction of He3,
it matters as it controls the amount of He3 available for extraction. In the case of ma-
nipulation through He4 it matters because the amount of He3 that will actually cross
the phase boundary due to the change in amount of He4 is also directly proportional
to xd .

The problem with extracting He3 from the dilute phase is that in the chamber
in which phase coexistence happens, the dilute phase, being more dense because
of dominant presence of the more dense He4, settles at the bottom! Nevertheless,
with ingenuity this can indeed be achieved as will be briefly discussed now. Be-
cause of these issues, there are essentially two different designs, one in which He3
is circulated, and the other in which He4 is circulated. The circulations, achieved
through pumps and heat exchangers, make the operation continuous. This allows one
to achieve very low temperatures even when the cooling powers are very modest. Let
us first look at the so called Leiden design in which only He4 is circulated.

At its bare essentials, this design consists of two chambers, called respectively the
demixing chamber and the mixing chamber. The demixing chamber is held at some
low enough temperature by a He3 cryostat (this means the temperature of the demix-
ing chamber can not be lower than about 0.3 K). The demixing chamber has an inlet
through which liquid He3 and liquid He4 can be introduced. The first step is indeed
this filling of the demixing chamber. This immediately leads to phase separation with
the lighter He3 liquid on the top, and the denser dilute phase at the bottom.

The demixing chamber is connected to the mixing chamber by a tube in which
simultaneously the lighter He3 can raise to the mixing chamber from the demixing
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FIGURE 14.4 A dilution refrigerator with
He4 circulation FIGURE 14.5 One with He3 circulation

chamber, and the heavier dilute phase, to be formed in the mixing chamber during
the next step, can descend to the demixing chamber.

As a result of the first step, the concentrated phase rises to the mixing chamber
and partially fills it. The next step is to fill the mixing chamber with liquid He4. This
is done through a so called superleak, placed at the bottom of the demixing chamber.
The superleak is essentially a tube filled with some powder through which only the
superfluid He4, with vanishing viscosity, can penetrate. This He4 liquid mixes with
the liquid He3 already present, leading to phase separation and cooling.

Now the heavier dilute phase which occupies the bottom of the mixing chamber
descends into the demixing chamber. The demixing chamber, in addition to the inlet,
has a superleak outlet at its bottom. Through this superleak, He4 can be taken out of
the chamber, leading to an increase in the molar concentration of He3 in the dense
phase, which is why this chamber is called a demixing chamber. This, of course, leads
to heating and this heat is carried away by the He3 cryostat cooling this chamber.

The He4 extracted is further cooled and pumped back to the mixing chamber
through its superleak. Thus the dilution refrigeration can be realised as a continuous
process. Note that only He4 has been circulated in this design.

Now we discuss the other design, again very schematically, where He3 is ex-
tracted from the dilute phase and circulated to achieve continuous operation. Here
too there are two chambers, one of which, like the Leiden design, is the mixing
chamber. The other is called the still and in it, the He3 of the dilute phase is allowed
to vaporize. It is then removed from this still through He3 pumps. As the first step,
He3 is input and liquefied with the help of a He4 cryostat at about 1.1 K. This liq-
uid He3 is eventually fed into the mixing chamber where it mixes with liquid He4
and phase separation takes place. The dilute phase is then fed into the still. Here,
of course, both He4 and He3 vaporize. But the vapor pressure of He4 is extremely
small compared to that of He3, and this allows for an easy pumping of He3 vapor
out of the still. This He3 vapor is pumped back to the mixing chamber after lique-
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faction, exactly as in the first step. The process can be repeated in a cycle leading to
continuous operation.

With dilution refrigeration, cooling to about 2 mK can be achieved. This is a sig-
nificant improvement over both He3 and He4 cryostats in the march towards absolute
zero.

14.4 Magnetic cooling

We now discuss yet another novel cooling technique called Adiabatic Demagneti-
zation that can also result in cooling to a few mK level. This is totally different in
its physics and thermodynamics from the previous sections in that it exploits the
thermodynamics of magnetic systems, extensively discussed in chapter 8, to achieve
cooling. It also goes by the name magneto-caloric effect. This method has, however,
been available since the mid-1930’s, some three decades before dilution refrigeration
came on the scene. With the nuclear version, it has again come back as a desirable
means of reaching very very low temperatures.

In terms of our earlier terminology the control parameter is the magnetic field.
We first discuss some generalities of adiabatic cooling as adiabatic demagnetization
happens to be one particular manifestation of these principles.

14.4.1 Principles of adiabatic cooling

The phenomenon of adiabatic cooling is nothing new to us now as we already en-
countered it in free expansion of an ideal gas. As the name suggests, we should be
examining processes that are adiabatic, or more explicitly, isentropic. This in partic-
ular will mean that entropy S will be one of the quantities entering the description.
Since we are also seeking a way to cool objects, temperature T must also enter. Fi-
nally, the control parameter should be there too and we shall keep it very general and
call it x! So what’s a very general equation we can think of involving S,T and some
x? Clearly, the triple product of thermodynamic partial derivatives

(
∂S
∂x

)

T

(
∂x
∂T

)

S

(
∂T
∂S

)

x
=−1 (14.17)

Of the three factors,
(

∂x
∂T

)

S
is what will quantify the adiabatic cooling upon the

change in the control parameter. This equation can consequently be rewritten as
(

∂T
∂x

)

S
=−

(
∂S
∂x

)

T

(
∂T
∂S

)

x
(14.18)

The second factor on the rhs is the inverse specific heat when the control parameter
is held fixed. This is expected to be finite and even positive. Thus as long as all spe-
cific heats exist, and entropy can be changed isothermally by changing some control

parameter (x in this case, so
(

∂S
∂x

)

T
is nonzero), one can achieve adiabatic cooling
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by appropriately changing the control parameter. It is as general as that. One does
not even have to assume that the specific heat is positive.

To understand this better, let us in fact take all specific heats to be positive (if
they are not, cooling and heating conditions will get interchanged), and let the en-

tropy, say, decrease when x is increased isothermally. Then
(

∂S
∂x

)

T
is negative. Con-

sequently,
(

∂T
∂x

)

S
will be positive, which means temperatures can be lowered by

adiabatically reducing x.

14.4.2 Adiabatic demagnetization

These considerations can immediately be applied to cooling by adiabatic demagne-
tization. Then the idea will be to first reduce the entropy of a magnetic substance by
isothermally magnetizing it and then adiabatically demagnetize it to lower its tem-
perature. Let us again look at some generalities first.

There are two distinct types to be discussed, the first of which uses paramagnetic
salts, while the second uses the very weak nuclear magnetization. In both cases, it is
a very good approximation to treat the systems as being linearly magnetizable in the
sense of what has been described in chapter 10. This means, the magnetization (total)
has the linear dependence M = V χ(T,P)Be on the magnetic field. Specializing the
general considerations of the previous subsection to the magnetic case, i.e identifying
x with the (external) magnetic field Be, one gets

(
∂T
∂Be

)

S
=−

(
∂S
∂Be

)

T

(
∂S
∂T

)−1

Be

=− 1

CBe

(
∂S
∂Be

)

T
(14.19)

where CBe stands for the specific heat of the magnetic system at constant external
field. Without specifying any further details on the susceptibility, we first make use
of eqn.(38) of chapter 10:

(
∂S
∂Be

)

T
=

(
∂M

∂T

)

Be

= BeV

(
∂ χ(T,P)

∂T

)

P
(14.20)

Combining these two equations we obtain what may be called a fundamental identity
for magnetic cooling:

(
∂T
∂Be

)

S
=− 1

CBe

BeV

(
∂ χ(T,P)

∂T

)

P
(14.21)

So far things have been very general except for the restriction to linear systems.
Actually, the latter can easily be relaxed to find the equivalent relations. Let us see
what type of restrictions arise due to the Nernst-Planck theorem. The lhs of the above
equation effectively determines the cooling power and this must vanish as absolute
zero is approached. Also, CBe must also approach zero as absolute zero is approached
as Nernst-Planck theorem demands that all specific heats must vanish in that limit.

Consequently
(

∂ χ
∂T

)

P
must also vanish as absolute zero is approached.
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After having spelled out all these generalities, we now restrict ourselves to cases
where the susceptibility obeys the Curie law χ = a

T (see chapter 8 for a fuller discus-
sion). As shown there, all expressions can be explicitly worked out, and in particular

S(Be,T ) = S(0,T)− 1

2
Va

B2
e

T 2
(14.22)

The important consequence of this is that for paramagnetic substances, for which
a > 0, entropy decreases as the magnetic field is increased. From our general consid-
erations it then follows that cooling results upon adiabatic demagnetization. Before
discussing the magnitude of the various effects, let us note that another consequence
of the above equation is that for the specific heat CBe :

CBe(T ) =C0(T )+
VaB2

e

T 2
(14.23)

Here C0(T ) is the specific heat (taken to be at constant pressure) of the paramagnetic
system in the absence of any external field.

So what are the sequence of steps required? First, a paramagnetic salt is isother-
mally magnetized. Let us say this initial temperature is Ti and let the initial field be
Bi (we drop the subscript to denote the field is external). The next step is adiabatic
demagnetization, and to make the effect as large as possible, let us consider complete
demagnetization so that the final field B f = 0. Since this step is adiabatic, and hence
no change of entropy, the entropy before demagnetization, S(Bi,Ti) must equal the
entropy after complete demagnetization, S(0,Tf ). The final temperature Tf will of
course be lower.

FIGURE 14.6 Adiabatic demagnetization.

In figure 14.6, the point A represents
the start at an intial temperature of Ti

with no magnetic field. The entropy of
the system is SA = S(Ti,0). After mag-
netizing the system isothermally to field
value Bi, we reach the point B where the
entropy SB = S(Ti,Bi) is lower than SA.
A complete demagnetization of the sys-
tem adiabatically takes it to C where the
magnetic field is again zero and SC =
S(Tf ,0) = SB < S(Ti,0). If we had con-
tinued the two curves all the way to
absolute zero, they would have to con-

verge as by Nernst-Planck theorem S(0,0)= S(0,B) = 0 for all values of B. It is then
clear that by suitable choice of Ti and Bi we can get lower and lower values of Tf ,
but never Tf = 0.

Let us first work out the magnitude of the cooling effects at room temperatures
and easily achievable fields of a few Tesla. Then all the magnetic field induced terms,
both in the entropy as well as in the specific heats, are small. In fact the zero field
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specific heats C0 are large. Writing down the adiabatic condition explicitly

S(Bi,Ti) = S(0,Tf )→ S(0,Ti)− 1

2
Va

B2
i

T 2
= S(0,Tf ) (14.24)

But S(0,Ti)− S(0,Tf )≈ (Ti −Tf )C0(Ti). Therefore, the amount by which the initial
temperature gets lowered upon adiabatic demagnetization is

Ti −Tf =
VaB2

i

2C0Ti
(14.25)

For a typical paramagnetic salt at room temperature, a demagnetization by a Tesla
results in a temperature drop of less than a mK and the effect is really negligible.

But as one goes to very low starting temperatures there is a dramatic improvement
in the cooling efficiency of adiabatic demagnetization, essentially due to two reasons.
The low temperature specific heats are much smaller than their room temperature
counterparts. This is as required by Nernst-Planck theorem. They typically vanish
as aT + bT3. This enhances the effect which is inversely proportional to the specific
heat. Secondly, the effect itself is inversely proportional to the initial temperature.
Therefore in going from room temperature to even 1K, there is nearly a factor of 300
improvement.

In fact, at such low temperatures the field dependent VaB2

T2 dominates over the C0

term, and the effects can be very large. In fact, from eqn.(14.21) and Curie law, one
gets (

∂T
∂Be

)

S
= Be

T
CBe

Va
T 2

≈ T
Be

(14.26)

where use has been made of eqn.(14.23) as well as the approximation that C0 is
negligible. What eqn.(14.26) says is that

Ti

Bi
=

Tf

B f
(14.27)

which is dramatic. By demagnetizing the field from a Tesla to a Gauss, the final
temperature can be 10−4 the starting temperature.

Of course, some important caveats should be made clear. The Curie law, which
usually holds only as a high temperature approximation, must hold at the low Ti.
This requires finding paramagnetic salts for which Curie law is valid at very low
temperatures. A naive extrapolation of the above result would give the erroneous
impression that complete demagnetization would result in absolute zero! But our
general considerations, even for magnetic systems, have already disposed of that
possibility. The reasons are the caveats mentioned, like breakdown of Curie law and
of other approximations made in deriving the above.

Example 14.1: Field dependences of entropy and third law

What are some of the restrictions imposed by the third law on the possible magnetic
field dependences of entropy?
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FIGURE 14.7 Violating the third law.
FIGURE 14.8 More on violating the third
law...

Let us consider some field dependences of entropy as depicted in
figs.(14.7,14.8). First consider the figure 14.7. We have seen, on rather gen-
eral grounds, that the effect of magnetization at any temperature is to lower
the entropy from its zero field value. Therefore one possibility is that at all
temperatures, including 0 K, this is so. This case is what is shown in the first
figure.

Now, the essential content of the third law is that there should exist no
horizontal path, i.e an adiabatic process that would take some point on the
Be �=0 curve to the 0 K point on the field zero entropy curve. But this is clearly
violated by fig.(14.7)! Hence such field dependences will violate the third law.
It is easy to check that as long as the 0 K point on the non-zero field curve lies
lower than the corresponding point on the zero field curve, third law violations
are possible.

Let us see what happens if the 0 K point on the Be �= 0 curve is higher
than the one on the curve with zero field, as shown in the last of the figures in
fig.(14.8). Since eventually the magnetized curve has to come lower, the only
possibility is as shown, i.e the nonzero field entropy must have a minimum
somewhere. If the minimum lies at S0 or lower, we can again reach absolute
zero in one single step, violating the third law. If the minimum lies above S0,
nothing can be said in this context.

Lastly, when the 0 K points on the two curves coincide, as in the first two
figures, third law can be violated, leaving only the case presented in the middle
figure as one consistent with third law.

14.4.3 Electronic demagnetization: some results

Consider the cooling by adiabatic demagnetization of paramagnetic salts. We shall
not go into the details of the actual experimental designs. A very important practi-
cal issue is the choice of the paramagnetic salt. The desirable features are that i) it
must be such that Curie law holds to as low a temperature as possible, and ii) its
magnetic susceptibility is as high as possible. For example, it has been found that in
some magnetic clusters Curie law is valid even at as low a temperature as 1K [70].
The first criterion is important as one can cool to a lower temperature if the starting
temperature itself is as low as possible. The second point is important as a higher
susceptibility means lower magnetic fields can achieve the same results.

There are in fact a few more very important criteria when it comes to choosing the
magnetic material. One has to do with the extent to which entropy can be lowered
upon complete magnetization. Microscopically, this has to do with the spin content.
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FIGURE 14.9 Paramagnetic adiabatic demagnetization.

The higher the spin the better is the material for use in adiabatic demagnetization
cooling.

The last point also addresses the limit to which a paramagnetic salt can be cooled
by this process. This is one of the factors that limits the approach to absolute zero.
The point is, as the magnetic system is cooled, its own magnetic properties may
undergo important changes. This is in fact what happens to most paramagnetic sub-
stances. At low enough temperatures they become ferromagnetic (or antiferromag-
netic), which are completely magnetically ordered. In fact this order is spontaneous
which means it does not require any externalfield to lower the entropy. Consequently,
there can not be further cooling due to adiabatic demagnetization. The temperature
at which this spontaneous ordering occurs is called the ordering temperature.

Therefore a desirable paramagnetic substance should have as low an ordering
temperature as possible, as one can not achieve temperatures below the ordering
temperature by adiabatic demagnetization techniques.

Cerium Magnesium Nitrate (CMN) is a popular choice for many reasons. It can
be cooled with a Helium bath around 1K and modest magnetic fields of a few Tesla
can achieve very low temperatures. It has been found that Curie law is valid even at
6 mK and its ordering temperature is 1.9 mK. The lowest temperature achieved witn
CMN as the paramagnetic salt in adiabatic demagnetization devices has been around
2 mK. The entropy of the most magnetically disordered state is S = R ln2.

Some other paramagnetic salts that are frequently used are: Magnesium Ammo-
nium Sulphate (MAS) with an ordering temperature of 170 mK and maximum spin
entropy of R ln6, Ferric Ammonium Alum (FAA) with an ordering temperature of 26
mK and spin entropy of R ln6, Chromium Potassium Alum (CPA) with an ordering
temperature of 9 mK and spin entropy of R ln4.

A lower ordering temperature results when the magnetic interactions are weaker.
Many of the paramagnetic salts have water of crystallization which actually help in
bringing this about. In figure 14.9, a typical entropy vs temperature plot encountered
with paramagnetic salts is given. In this example, a sample at 1K is isothermally
magnetized to 1 Tesla and completely demagnetized to yield a final temperature of
25 mK. The spin entropy for this example is R ln4. The curves are just plots of the
entropy S/R = ln2coshx− xtanhx, where x = μB/kT (μ is the magnetic moment
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of the paramagnetic atom).

14.4.4 Nuclear demagnetization: some results

FIGURE 14.10 Nuclear adiabatic demagnetization.

The principle of nuclear demagnetization is exactly the same as the electronic
demagnetization discussed in the context of paramagnetic salts. What is different,
however, is the scale of things. Nuclear magnetism is a thousand times weaker than
electronic magnetism. The susceptibilities are a million times smaller. The ordering
temperatures are also much smaller, typically 0.1 μK! This means one can hope to
cool samples to these low temperatures which are at least a thousand times smaller
than what was possible with paramagnetic salts.

A typical material used for nuclear demagnetization is Copper. A price has to
be paid for the advantages of nuclear demagnetization. One has to work with much
higher magnetic fields. In the case of copper, the spin entropy is R ln4. The decrease
in entropy upon magnetization should be as high a fraction of this as possible. But
even with 8T of magnetic field at an initial temperature of 10 mK, the reduction in
entropy is only about 10%, whereas in the case of paramagnetic salts at 1K with a
field of 1T, one could get as high as 50% reduction.

The first succesful implementation of nuclear demagnetization was by Kurti in
1956, nearly a decade before dilution refrigeration came on the scene. The coldest
achieved temperature achieved then was about 1μK (careful distinction should be
made between this magnetic cooling and the cooling of the lattice. Kurti could not
lower the lattice temperature below about mK. It took Lounasmaa another decade to
achieve lattice cooling also to microkelvin range). Because of the very low temper-
atures of operation, all the standard problems of cryogenics like thermal insulation
etc become really severe in implementing nuclear demagnetization.

In figure 14.10, nuclear demagnetization with copper is shown very schematically.
It is the same function that was plotted in figure 14.9, but for the much smaller
nuclear moments. The important points to notice, as already emphasized before, are
the much higher magnetic fields required and the comparatively lower degree of
magnetic ordering achieved. This can be quantified by the fraction of the entropy of
the completely magnetically disordered state, R ln4 for copper, that can be lowered
by the isothermal magnetization step.
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14.4.5 Cascade nuclear demagnetization

The race to the proximity of absolute zero is really like a relay race. For example,
in the case of paramagnetic adiabatic demagnetization one first used a helium bath
to cool to 1.2 K, which at one time was the lowest temperature achievable, and then
achieve mK temperature ranges.

Extending this concept, Knuuttila and coworkers [16] of the μKI (microkelvin in-
vestigations) group of the Lounasmaa lab at Helsinki, reached the lowest temperature
ever in a Rhodium sample. In the first stage they used dilution refrigeration to reach
3 mK range. Then in the next stage they used adiabatic nuclear demagnetization
to reach 50 μK. In the last stage, they again used adiabatic nuclear demagnetiza-
tion with the rhodium sample to reach the record of 100 picokelvin (pK) which is
10−10 K!

14.4.6 Further lows!

In a completely new and novel technique for cooling Medley and coworkers [45], in
Ketterle’s lab, have reached temperatures even lower than the rhodium record. They
have reached temperatures of 50 pK, but these are spin temperatures only. Their
method, called gradient demagnetization is a generalization of adiabatic demagneti-
zation where it is the field, not its gradient, that is demagnetized. They can use this
to cool rubidium atoms to 350 pK.

14.5 Pomeranchuk cooling

FIGURE 14.11 Phase Diagram of He3 show-
ing the Pomeranchuk point.

Let us recall the discussion of the phase
diagram of He3 from chapter 14; fol-
lowing the theoretical suggestion of
Pomeranchuk and its subsequent exper-
imental vindication, it was found that
below 0.3 K, the phase coexistence line
between solid He3 and liquid He3 had
an anomalous slope, while beyond this
temperature it was normal. Let us dis-
play only that part of the larger phase
diagram of He3 that highlights this fea-
ture. This is shown in the figure above.

As already discussed there, the
anomalous P(T) curve for He3 has a totally different origin than the familiar anoma-
lous coexistence curve for water. In the case of water, the solid phase (ice) had a
lower density than the liquid (water) phase at the coexistence temperature. But the
solid phase had lower entropy than the liquid phase as is evident from the fact that
heat (latent) has to be supplied to ice to turn it into water. Equivalently, the solid
phase was more ordered than the liquid phase.
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It is clear from the Clapeyron equation that in order to have an anomalous slope
one of ss − sl ,vs − vl must be negative. In He3, the solid and liquid phases behave
normally as far as density or specific volume is concerned; the liquid phase is lighter
and hence vl > vs (for ice this was opposite). Hence the specific entropy of the liquid
must be lower than the specific entropy of the solid He3 below 0.3 K i.e sl < ss! It is
the liquid which is more ordered than the solid, which is rather unexpected.

It is instructive to go over Pomeranchuk’s reasonings and the estimate for the tem-
perature where the phase diagram has a dip. Though in chapter 14 we had said that it
would involve microscopic details beyond pure thermodynamics, after our detailed
discussions of dilution refrigeration and adiabatic refrigeration, those microscopic
details can easily be motivated. Basically, the solid He3 behaves like a paramagnet
but the only thing is that the source of this magnetism is nuclear.

As we already saw in our discussion of nuclear demagnetization, the ordering
temperature for nuclear magnetism is � μK and at temperatures higher than this, the
nuclear spins are totally disordered. In terms of entropy, this means that the magnetic
entropy would have saturated at R ln(2J +1) where J is the spin content. For He3,
this is J = 1

2 .
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FIGURE 14.12 Entropy vs temperature for
He3 around TP.

On the other hand, as we saw from
eqn.(14.9), the entropy of the liquid
phase of He3 can be taken to be linear
in T when temperatures are around 50
mK. Let us see what would happen if
we blindly extrapolated this linear tem-
perature dependence of entropy all the
way to 300 mK or so. For the case
where the nuclear spins are J = 1/2,
the high temperature solid entropy is
mostly dominated by the magnetic en-
tropy, and will have a value R ln2.

Clearly, the linearly rising curve for the liquid will intersect the solid entropy
curve at some temperature TP such that 22TP = R ln2; putting in the numbers one
gets TP = 260mK! It is also clear from this simple picture that for T < TP, the solid
has a higher entropy than the liquid! The experimentally observed transition point
(i.e transition from anomalous to normal behaviour) is at 300 mK, which is close to
the rough estimate. One of the reasons for the deviation is that the entropy of the
liquid phase can not really be approximated by a linear behaviour beyond 50 mK or
so. Realistic behaviours are more like what is shown in figure 14.12, where the upper
curve for the solid entropy has been obtained by some type of scaling of the curve in
figure 14.9, and the lower curve for the liquid entropy was chosen to be of the form
aT + bT2. The real-life curve (see fig. 4.1 of [40]) does not look very different from
this. The solid entropy mimicked has the correct high T limit of ln2, and vanishes at
low T as required by third law.

The real-life situation in the case of He3 is rather involved. The relevant magnetic
entropy is not the one we encountered in the paramagnetic case (there is no applied
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magnetic field here). The nuclear spins effectively experience a magnetic interaction
of the Heisenberg-type. Pomeranchuk had originally thought this to be due to the
direct dipole-dipole interaction. But this is very weak with an ordering temperature
of about 1μK. In He3 the exchange interaction is much stronger leading to an anti-
ferromagnetic interaction with an ordering temperature of about 1 mK [58].

14.5.1 The principle of cooling

The principle of Pomeranchuk cooling is very much like the evaporative cooling. In
that case, a liquid with lower entropy passing to a vapor with higher entropy, must
draw an amount of heat equal to the latent heat of vaporisation. Now imagine a cer-
tain mass of liquid He3 solidifying into solid He3 at temperatures below 0.3 K. Now,
it is the liquid which is the lower entropy system and the solid the higher entropy sys-
tem. Again there will be cooling. This is indeed the principle behind Pomeranchuk
cooling. Liquid He3 at these temperatures freezes upon heating. A typical cooling
process can again be understood in terms of the figure 14.12: when the liquid at, say,
temperature of 25 mK, is isentropically frozen to a solid, represented by a horizon-
tal move, the temperature is indeed lowered to only a few degree K. Alternately, the
cooling can be thought of as an isothermal process where a certain mass of liquid at
T freezes to a solid by absorbing T (ss− sl)m of heat. In that case, the transformation
is along a vertical line on the same figure.

We now discuss the cooling power of this cooling process. It is clearly given by

Q̇pom = ṅsolT (Ss − Sl) (14.28)

FIGURE 14.13 Pomeranchuk vs dilution cool-
ing.
Source: Modified from fig. 4.5, p.67, of O.V.

Lounasmaa [40].

By referring to the figure fig.(14.12)
we see that even around 50 mK, the en-
tropy of the liquid can be neglected and
the entropy of the solid well approx-
imated by the saturation value R ln2,
giving rise to the approximate cool-
ing rate Q̇pom ≈ ṅsolRT ln2. The cool-
ing power of dilution refrigeration went
as � T2 whereas we see from above
that the cooling power of Pomeranchuk
cooling only vanishes as T. Since T <<
1, the cooling power of Pomeranchuk
cooling far exceeds that of dilution re-
frigeration. The cooling powers in arbi-
trary units (actually determined by the
rate of He3 involved) of the two processes are compared in fig.(14.13). The improved
cooling characteristics of Pomeranchuk cooling are clearly seen.
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14.5.2 Ends or means?

The real objective of most low temperature laboratories is to develop techniques
to create conditions where new physics can be investigated. It is these techniques
that allowed, for example, the extension of the phase diagram of He3 to its modern
version as described in chapter 10. They have also shown that at low enough tem-
peratures even paramagnetic salts become ferromagnetic etc. In this fashion, Lithium
was seen to become a superconductor at 0.4 mK.

One of the most spectacular outcomes of low temperature physics has been the
realization of Bose Einstein Condensates. This is a purely quantum mechanical phe-
nomenon which can manifest under conditions of very low density and extremely
low temperatures. First achieved in 1995 by Eric Cornell and Carl Weimann, it con-
sisted in cooling Rubidium atoms to 170 nK. The atoms then condensed into what
has been termed a new state of matter. Such a state of matter was predicted by S.N.
Bose and Albert Einstein way back, in the earliest stages of the development of
Quantum Theory. As the ambient temperature of the universe is 2.7 K, much hotter
than these temperatures, this state can not occur naturally ever, and has to be only
created in a laboratory! By allowing this condensate to undergo evaporative cooling,
temperatures of 20 nK, the lowest ever achieved temperature then, could be reached.
Similar techniques have been used to reach condensate temperatures lower than 500
pK in 2003.

14.6 Problems

Problem 14.1 It was pointed out, following eqn.(14.13), that the equilibrium
condition should be applied not just to He3, but to both He3 and He4, and that
the enthalpy of He4 is crucial. Determine the necessary enthalpy of He4.
Problem 14.2 The temperature dependence of vapor pressures is, to a good ac-
curacy, of the form P(T) = cTb e−L/RT , where b,c are constants and L is the
molar latent heat of vaporization. For He4, L � 83J and the boiling point is at
TB =4.2 K. If additionally it is given that the vapor pressure at 2.48 K is 0.1 atm,
determine b,c.
Problem 14.3 The molar latent heat of vaporization of He3 is roughly 26 J and
the boiling point is at 3.2 K. If it is given that at 1.2 K, the vapor pressure of
He3 is 35 times the vapor pressure of He4, determine the constants b,c of the
previous problem for the case of He3.
Problem 14.4 If the lowest feasible vapor pressure to work with for cryogenics
is 100 Pa, determine the lowest temperature one can hope to get to with a) He4
cryostat, and b) a He3 cryostat.
Problem 14.5 It was stated that the third law requires all cooling rates to vanish
as 0 K is approached, and a consequence of this for cooling by adiabatic demag-
netization was that susceptibilities should also vanish in this limit. Examine this
for a) systems obeying Curie law for magnetization, and b) for systems whose
magnetization is given by the Langevin function of problem 8.5.
Problem 14.6 Determine the crossover temperature at which Pomeranchuk cool-
ing starts to become more efficient than dilution refrigeration. For a given pump-
ing rate, how much more efficient is the former, compared to the latter, at 1 mK.



15 Entropy Constants

We saw earlier that the entropy at absolute zero for all systems can be taken to be
zero. This is Nernst-Planck theorem or the third law of thermodynamics. As entropy
enters all thermodynamic relations only as its differential dS, and never on its own
(unlike temperature, for example), an addition of a constant, independent of the ther-
modynamic degrees of freedom of the system, does not affect any of these relations.
This would imply that entropy in itself is ambiguous up to an additive constant. Third
law can be taken to be a normalising condition for entropy.

Let us recall that for a reversible path connecting two states A,B of a system, the
change in entropy is given by

∫ B

A

d̄Q
T

= S(B)− S(A) (15.1)

If we take A to be the state of the system at 0 K, and use third law so that S(A) = 0,
we get ∫ B

0

d̄Q
T

= S(B) (15.2)

Since this integral can be evaluated, at least in principle, along an arbitrary path,
there can no more be a freedom to add any constant to S.

Let us now look at the entropy of a mole of an ideal gas that thermodynamics had
given us earlier:

S = R lnV +
R

γ − 1
lnT + S0 (15.3)

where γ = CP/CV is the ratio of the specific heats, and S0 a possible constant that
thermodynamics is unable to fix.

Clearly at T = 0 no value of S0 is going to realise the third law. The attitude
usually taken is that no physical substance remains an ideal gas (most do not even
remain gases!) at absolute zero, and that the above equation should only be used at
high enough temperatures.

Because of the third law, S0 is no longer arbitrary. However, if we are only dealing
with one particular system, all thermodynamic changes of state involve only changes
in entropy of this system, and knowledge of S0 is irrelevant. But when many systems
are in thermal equilibrium with each other as a result of transformations of one sys-
tem to another, we will see that knowledge of entropy constants becomes essential.
Third law can then be probed empirically and will no longer be a purely academic
criterion.

This is quite evident if one considers the Helmholtz free energy F = U − TS;
while an unknown constant in U results in an unknown constant in F , an unknown
constant in S leads to a temperature dependent contribution to F . When there is only
a system, with no distinction made between different phases of the system, only
the equilibrium temperature enters the discussion and again the knowledge of S0

becomes irrelevant.

299
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15.1 Gaseous reactions

Let us discuss a situation where both the internal energy and entropy constants are
physically relevant. This is the phenomenon of gaseous reactions, a prime example
of which is the reaction

2 H2 O � 2H2+O2 (15.4)

For any given temperature and pressure, a state of equilibrium is reached when the
amounts of various constituents remain the same. Let us consider a general reaction
of this kind

n1A1+ n2A2+ . . .+ nrAr � m1B1+m2B2+ . . .+msBs (15.5)

The concentrations are denoted by [X ]. The law of mass action states that the quantity

[A1]
n1 · [A2]

n2 . . . [Ar]
nr

[B1]m1 · [B2]m2 . . . [Bs]ms
= K(T ) (15.6)

is a function of T only. We shall assume that every constituent gas obeys ideal gas
law. The Helmholtz free energy per mole of the constituent X is given by

F(X) =U(X)−TS(X) =CX
V T +WX −T (CX

V lnT −R ln[X ]+ aX) (15.7)

where W X is a possible constant in U(X) and aX is the entropy constant for X. On
noting that the number of moles of X is given by V · [X ], the partial free energy of X
is given by

V · [X ]{CX
V T +W X −T(CX

V lnT −R ln[X ]+ aX)} (15.8)

and the total free energy at any time, where all the constituents {Ai,B j} are present
is

F =
r

∑
i=1

V · [Ai]{CAi
V T +WAi −T (CAi

V lnT −R ln[Ai]+ aAi)}

+
s

∑
j=1

V · [B j]{C
B j
V T +WB j −T (C

B j
V lnT −R ln[B j]+ aB j)} (15.9)

Equilibrium condition is obtained by requiring that F is stationary with respect to
changes in [Ai], [B j]. Furthermore, the changes in [Ai] are obviously proportional to
ni, and if [Ai] decrease, [B j] increase etc. Thus, under δ [Ai] =−ε ni,δ [B j ] = ε m j

the change in F, given by,

δF = −ε ·V [∑
i

ni{CAi
V T +WAi −T (CAi

V lnT −R ln[Ai]+ ai)+RT}

− ∑
j

m j{C
B j
V T +WB j −T (C

B j
V lnT −R ln[B j]+ b j)+RT}] (15.10)

This can be rewritten as

δ F =−V RT ε ln[K(T ) ·D(T )] (15.11)
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where

lnD(T ) = − 1

R
{∑

j

(R+C
B j
V − b j)m j −∑

i

(R+CAi
V − ai)ni}

+
1

R
{∑

j
C

B j
V m j −∑

i
CAi

V ni} · lnT

− 1

RT
{∑

j
W B j m j −∑

i
W Ai ni} (15.12)

The condition for equilibrium is that δF = 0 i.e K(T ) = D−1(T ). Thus we see that
the function occurring on the lhs of eqn.(15.6) is indeed a function of T only. Fur-
thermore, the T -independent term of eqn.(15.12) indeed depends on the entropy con-
stants {ai,b j} and hence these are measurable [17]. An important quantity charac-
terizing such reactions is the Heat of reaction. Denoting this by H̃ (to distinguish it
from the enthalpy H), we have in this particular case

H̃ = {∑
i

CAi
V ni −∑

j

C
B j
V m j}T + {∑

i

W Ai ni −∑
j

W B j m j} (15.13)

and one gets the very important relation

dlogK(T )
dT

=
H̃

RT 2
(15.14)

Thus we see that purely thermodynamic considerations can not give the T -
independent constant of proportionality in K(T ). As emphasized before, the entropy
constants are becoming physically relevant in this case because there are transforma-
tions from one system to another.

In some cases the quantity W = ∑ j m jW B j −∑i niW Ai is of interest. For example,
in the ionisation of a gas, say, sodium, i.e Na�Na++e, W is nothing but the energy
required to completely ionise the sodium gas.

It is instructive to display the differing temperature dependences in K(T) explic-
itly. If we write

K(T ) = K0 T α e
W
RT (15.15)

where K0 is the temperature independent, constant factor in K(T). (Sometimes K(T)
itself is referred to as the law of mass action constant. This is obviously a misnomer.)
By explicit comparison we can write down the expressions for α and K0:

α =
1

R

{

∑
i

niC
Ai
V −∑

j
m jC

B j
V

}

lnK0 = ∑
j

m j(R− b j)−∑
i

ni(R− ai)−α (15.16)

We see that the entropy constants {ai,b j} are crucial for a determination of K0, which
is certainly measurable experimentally. It should be emphasized that this representa-
tion is valid only when all the CV ’s are constants. But it is easy to generalize these
considerations to more realistic cases of T-dependent specific heats.
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At this point, it is instructive to enquire whether these entropy constants can be
determined theoretically at all. At this point, rather surprisingly at first, Quantum
Mechanics makes its entry! Even though no known physical system remains a gas at
absolute zero and is described by ideal gas behaviour, as a theoretical exercise this
system can be treated within quantum mechanics (this, of course, will not be done
here) and one finds the following interesting features directly relevant to the contents
of this chapter, and the one on the third law of thermodynamics: a) the specific heat is
not constant and in fact decreases with T , vanishing at absolute zero (contrary to the
heuristic picture that there is always zero point motion in quantum mechanics!); b)
this, as discussed before, and again to be discussed later in this chapter, determines
the entropy constant. As shown independently by Sackur and Tetrode, the ensuing
entropy constant for monoatomic ideal gases is

a = R ln
(2π M R)3/2 e5/2

h3 NA
4 +R lnω (15.17)

where NA,h,M are, respectively, the Avogadros number, Planck’s constant, and the
Atomic weight, and ω is the so called quantum degeneracy of the ground state, and
is of order unity. It is worth remarking that in all the relationships encountered in
thermodynamics, a kinematic property like mass never made an appearance. This
is so in classical statistical mechanics too. It is quantum mechanics that first brings
it into a thermodynamic discussion. It is also worth pondering over the appearance
of the Planck’s constant in what is clearly a classical context! Another interesting
feature of eq.(15.17) is the appearance of the Avogadro number, which is a hallmark
of the atomic nature of matter.

When ω �= 1 , there will be a violation of Nernst-Planck theorem. In practical
calculations, it is important to use the correct value of ω . It is important to stress
that the violation of Nernst-Planck theorem whenever ω �= 1 does not invalidate the
significance, or usefulness of, the entropy constants discussed here. This is because
the degeneracy term adds a well defined, not an arbitrary, constant to the entropy
defined by Nernst-Planck normalisation, thereby adding the same constant to the
entropy constants. In the examples discussed later, it is equivalent to starting with a
system very close to absolute zero, but with entropy R ln ω instead of zero.

15.2 Entropy constants for solids

As another illustration of how Nernst-Planck theorem fixes the entropy constants, we
now consider the case of solids. Specifically, let us look at the behaviour of specific
heats of solids as a function of temperature. In the classical theory this is given by
the Dulong-Petit law according to which the molar specific heat of solids is constant,
with value 3R. This clearly violates Nernst-Planck theorem. But quantum theory
makes a dramatic difference. We shall illustrate this with two theories for specific
heats that were developed by Einstein and Debye, respectively. What is amazing is
that both these were developed long before quantum theory was fully developed.
Einstein’s theory of solids was developed in 1906, barely after Planck formulated his
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blackbody theory, and Debye theory came out in 1912, just around the time the Bohr
atomic theory was getting formulated.

As we have already given a detailed account of these epoch-making developments
in section 5.5 of chapter 5, we shall only use them to address their impact on the
issue of entropy constants, and their extreme importance in understanding specific
phenomena like the vapor pressure of solids.

Even though the Debye theory came later, and was in fact a technical improvement
over Einstein’s theory, let us first consider the Debye theory. According to this theory,
the specific heats of solids is given by

CD(T ) = 3RD(
T
Θ
) (15.18)

where Θ is a temperature scale called the Debye temperature, which depends on the
material, and with the function D(ξ ) given by

D(ξ ) = 12ξ 3
∫ 1/ξ

0
dx

x3

ex − 1
− 3/ξ

e1/ξ − 1
(15.19)

At high temperatures, ξ → ∞ and D(∞) → 1. Therefore, at high temperatures the
specific heat approaches the classical value of 3R. But at low temperatures where
ξ → 0, the specific heat vanishes as

C(T )→ 12π4

5

R
Θ3

T3+ . . . (15.20)

This is indeed compatible with the Nernst-Planck theorem as the entropy at low
temperatures vanishes as

S(T )→ 4π4

15

R
Θ3

T 3+ . . . (15.21)

Using eqns. (15.18) and (15.19), along with the Nernst-Planck definition of entropy,

FIGURE 15.1 Debye model for silver
Source: Data from the table Thermodynamic Functions of Copper, Silver, Gold on p. D74 of Handbook

of Chemistry and Physics (1973-74), 54th Edition, Ed. Weast, CRC Press.
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it is easy to see that entropy at all temperatures, according to Debye theory, is given
by

S(T ) = 3R{4 T 3

Θ3

∫ Θ
T

0
dx

x3

ex − 1
− ln(1− e−

Θ
T )} (15.22)

It is straightforward to work out the high temperature behaviour of the Debye entropy
now:

S(T )→ 3R lnT +4R − 3R ln Θ (15.23)

This explicit example clearly demonstrates how the Nernst-Planck theorem, namely
the requirement of vanishing entropy at absolute zero, fixes the entropy constant.

In figure 15.1, a comparison is made between the specific heat of solid silver as
predicted by the Debye theory and experimental data for silver. Clearly, the agree-
ment is very good.

Now we carry out a similar analysis with Einstein’s theory for the specific heat of
solids. The purpose is again to demonstrate how third law fixes the entropy constants
at high temperature. We will not go into the details of the Einstein theory again, as
the relevant details can be found in section 5.5.

The specific heat predicted by Einstein’s theory is

CE(T ) = 3R(
TE

T
)2

eTE/T

(eTE/T − 1)2
(15.24)

where TE is a scale of temperature in the Einstein theory. We shall relate TE to Θ
shortly. This too approaches the classical value of 3R at high temperatures. However,
at very low temperatures, the specific heat in this theory behaves as

C(T )→ 3R(
TE

T
)2 e−TE/T (15.25)

Though this is in conformity with Nernst-Planck theorem, this is too rapid a fall. The
Debye theory explains the low temperature data better.

FIGURE 15.2 Einstein vs Debye

In figure 15.2, a comparison is made between the two theories. One subtlety has to
be faced before the two theories can be compared; one has to relate the two different
temperature scales appearing in them. We simply mention that relationship without
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going into details: TE = Θ(π
6 )

1/3. Once again, the entropy of a solid in Einstein’s
theory can be calculated at all temperatures on noting the indefinite integral

∫ ∞

x
dx

x
(Sinhx)2

= xCothx− ln Sinhx (15.26)

The resulting expression for entropy is

S(T ) = 3R [
TE

T
Coth

TE

T
− ln Sinh

TE

T
] (15.27)

The low temperature behaviour of S(T ) in Einstein theory is, then,

S(T ) → 6R
TE

T
e−2

TE
T (15.28)

On the other hand, the high temperature behaviour of the entropy is

S(T ) → 3R +3R ln
T
TE

(15.29)

Expressing this in terms of the Debye temperature scale, one gets

S(T ) → 3R +3R ln
T
Θ

+ R ln(
6

π
) (15.30)

Thus one sees that the entropy constant in Einstein theory is 0.33R lower than the
corresponding constant in Debye theory. Though the high temperature limits of spe-
cific heats is in both cases the Dulong-Petit value 3R there is a 10% difference in
the entropy constants at high temperature. In addition to the phenomenon of gas
dissociation, where we saw the observable impact of the entropy constants, we shall
soon present other observable consequences of these constants. In particular, we shall
present some nice experimental verifications of the Sackur-Tetrode formula.

Following Fermi, we shall now discuss how the entropy constants affect another
common phenomenon, namely, the vaporization of a solid. In this, a solid passes to a
gaseous phase, taken to be described by an ideal monoatomic gas. As expected, this
will involve an interplay between the entropy constants for monoatomic ideal gas as
given by the Sackur-Tetrode formula on the one hand, and by the entropy constant for
a solid as given by Debye theory on the other. We shall also illustrate what happens
if one uses Einstein theory for solids instead.

Let us consider the molar entropy difference between the solid and the gas, coex-
isting at temperature T :

Svap(T )− Ssolid(T ) =
Λ

T
(15.31)

where Λ is the molar heat of vaporization. Substituting the expression for Ssolid from
Debye theory, and the expression for Sgas, the entropy of an ideal monoatomic gas as
completed by the Sackur-Tetrode relation, one finds,

Λ

T
=

3R
2

lnT + R lnV + a− 3R ln
T
Θ

− 4R

=
5R
2

lnT − R lnP +(a+R lnR)− 3R ln
T
Θ

− 4R (15.32)
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Note that in passing from an expression for entropy in terms of (V,T ) to one in
terms of (P,T ), the coefficient of lnT changes from CV = 3R

2 to CP = 5R
2 , and, the

entropy constant given earlier by a, changes to a + R lnR. It is straightforward to put
everything together and arrive at

PDebye =
(2πM)3/2 R5/2Θ3ω

e5/2h3 N4
A

1√
T

e−
Λ
RT (15.33)

A similar equation emerges for Einstein theory, albeit with different constants owing
to the different entropy constants, as expressed in eqn.(15.30):

PEin = (
eπ
6
) · (2πM)3/2 R5/2Θ3ω

e5/2h3 N4
A

1√
T

e−
Λ
RT (15.34)

The numerical factor eπ
6 is about 1.4, which is remarkably close to

√
2! Thus, in

absolute terms, the Einstein theory of solids predicts a vapor pressure that is 1.4
times higher than what the Debye theory predicts, and it ought to be possible to
tell the difference experimentally. Several comments are in order, as pointed out by
Fermi, regarding eqn.(15.33):

• There are no undetermined constants in the vapor pressure equation. Note,
however, that the power law corrections (in T) to the exponential behaviour
here are quite different from the power law corrections to the vapor pressure
formulae in the case of liquid-vapor transitions as found in problems 14.1
and 14.2. The expressions for the vapor pressures, both in Debye as well
as Einstein theories, should be contrasted with the purely thermodynamic
derivation of this important equation based on the Clapeyron equation

d p
dT

=
λ

T (v2− v1)
(15.35)

where p,T,λ ,v2,v1 are, respectively, pressure per gm, temperature, heat of
vaporisation per gm, specific volume of vapor, and specific volume of solid.
As v2 >> v1, using ideal gas law for the vapor can be used to convert the
Clapeyron equation to

d p
dT

=
λ M
RT2

p (15.36)

If λ is approximated by a constant, this can be integrated to yield

P = const.e−
Λ
RT (15.37)

on using Λ = λ M. Comparing this with eqn.(15.33), the thermodynamic
derivation is unable to fix the constant. This, of course, is due to the inability
of thermodynamics to fix the entropy constants.
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• The comparison also reveals an additional factor of T−1/2 that is absent in
the thermodynamic derivation. As Fermi has remarked, this difference has
to do with the possible variations of the vapor pressure with temperature.
The derivation based on entropy correctly takes this into account.
The two can be reconciled if the λ in the Clapeyron equation is replaced by
an effective temperature-dependent λe f f :

λe f f (T ) = λ − RT
2M

(15.38)

For the liquid to vapor transition in water, the first term is 2260 J/gm at the
boiling point of water, while at that temperature, the second term is roughly
80 J/gm. Hence the difference is small. It may appear that at low tempera-
tures the difference may become substantial, but then the high temperature
expansions used may not be justified.

• The constant in the vapor pressure equation can indeed be measured experi-
mentally, pointing to a way of experimentally verifying the Sackur-Tetrode
formula. Instead, we shall discuss other ways of doing this as that would
further exemplify the importance of the entropy constants.

15.3 Two experimental verifications of the Sackur-Tetrode formula

We now discuss two experimental vindications of the Sackur-Tetrode formula for the
entropy constants of monoatomic gases.

Example 15.1: Vaporization of mercury

The first one is what Fermi has himself discussed in his book [17]. This is
the liquid to vapor transition in Mercury, with M = 200.6. While in the vapor
phase the Sackur-Tetrode formula can be used, the liquid phase is much more
complicated, and certainly the Debye theory will not apply. Following Fermi,
we first compute the entropy of the mercury vapor at the boiling point of
mercury at 630 K, at 1 atmosphere. An immediate issue that arises in trying
to evaluate the entropy, as a function of P,T is that of the units to be used for
pressure and temperature.

The rule is to use T in degrees Kelvin, P in C.G.S units, and use the C.G.S
units for all other dimensionful quantities including the gas constant R. Let
us explicitly carry out this computation. Use will be made of the explicit
evaluation of the constant a as given by Fermi:

a = R ln
(2πMR)3/2 e5/2ω

h3N4
A

= R(−5.65 +
3

2
lnM +ln ω) (15.39)

The pressure in this case is 1 atm., which is 1.013 · 106 C.G.S units. There-
fore 5

2 lnT = 2.5 · ln630 = 16.118, ln P = ln 106 = 13.816, 3
2 ln200.6 = 7.952; the
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entropy constant after adding R lnR to it because of the change to (P,T) as in-
dependent variables is 20.54R, yielding an entropy Sgas =22.838R =189.88 ·107,
after taking ω = 1(Fermi’s value is 191.0 ·107).

A comparison of this is made with entropy evaluated using Nernst-Planck
theorem. Starting with solid mercury at absolute zero with zero entropy, the
entropy of solid mercury at the melting point of 243 K can be calculated
by integrating CP

T from 0 K to 243 K. Using experimental values one gets
Ssolid(233K) = 59.9 · 107.

At this point a conceptual point may be worrisome. According to the zeroth
law, absolute zero can never be achieved, and hence no specific heat data can be
obtained at that point. Then how can one integrate the entropy integral from
zero? Let us explain this on the basis of Debye theory. Let us, for argument
sake, assume that experimentally only 1 K is reachable. The entropy of the
solid at 1 K can be found by using the low temperature behaviour of the
entropy given in eqn.(15.21) to be only 150. Therefore even if we cut off the
lower end of the integral at 1 K, which is actually pretty high from the point of
view of modern day cryogenics, a negligible error is made. If the lower limit is
cut off at even lower temperatures, the remaining contribution to total entropy
becomes even more negligible.

At this point, we could have even used Debye theory to actually calculate
the entropy of solid mercury at 243 K. The Debye temperature of mercury
is 100 K. The answer, using the high temperature expansion of eqn.(15.23)
is 55.8 · 107 which is already quite close to the experimentally determined
value! As the melting temperature is only 2.43 times higher than the Debye
temperature, there will be corrections to the high temperature expansion.

Now this solid mercury melts at 243 K to liquid mercury by reversibly
absorbing 2330 Joules per mole of heat of fusion. This increases the entropy
by 9.9 · 107. The liquid mercury at the melting point of 243 K has now to
be heated at constant atmospheric pressure to liquid mercury at the boiling
temperature of 630 K . The entropy change here can not be computed using
Debye theory as it is not applicable to liquids. But once again experimental
data on CP of liquid mercury can be used to compute the change of entropy
as before, and the result is 26.2 · 107.

Finally, the liquid at the boiling temperature reversibly absorbs the heat of
vaporisation of 59,300 J/mole. This increases the entropy by a further amount
of 94 · 107. Adding up all the entropy changes, starting at zero entropy, one
gets (59.9+ 9.9+ 26.2+ 94.0 = 190) · 107, which is remarkably close to the
prediction of 191 · 107 by the Sackur-Tetrode theory! It is instructive to display
the various entropies that are involved in this problem:

Ssolid(0) = 0 · 107
Ssolid(Tm = 243) = 59.9 · 107

Sliq(Tm = 243) = 69.8 · 107
Sliq(Tb = 630) = 96.0 · 107
Sgas(Tb = 630) = 190.0 · 107

Sgas(TB = 630)calc = 189.88 · 107 (15.40)
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Example 15.2: Solid Neon to its vapor via a liquid phase

As our next example we consider Neon with an atomic weight of M = 20.18.
Neon is a rare earth element and these are very interesting elements. Neon is
a solid below its melting point of Tm =24.6K. At this temperature, and 1 atm.
of pressure, it turns into a liquid but does not stay a liquid very long. Just a
few degrees higher, at Tb = 27.2K and again at one atmospheric pressure, it
turns into Neon gas. Firstly both the melting and boiling points are at rather
low temperatures. Secondly, the Debye temperature of solid Neon is 63K! The
reader should try to understand what it means for a substance to have a Debye
temperature at which it is not a solid at all! We therefore have here an example
that complements that of Mercury in the sense that in its solid phase it is the
low temperature expansion of the Debye theory that is more relevant.

Other relevant data about Neon are its latent heat of melting, which is 335
Joules/mole at Tm, and its latent heat of vaporisation of 1761 J/mole at Tb.

We can go through the same steps as was done in the example of Mercury.
As the method should be clear from the previous example, only the results
are quoted here. The entropy of Neon gas at its boiling point, as calculated
from the Sackur-Tetrode relation is 96.45 · 107 where once again we substitute
27.2 for T and 1 atm in C.G.S units for P. The entropy of solid Neon at the
melting point 24.6 K calculated by using data on CP comes to 14.29 · 107.

This part of the entropy can also be calculated theoretically from Debye
theory by using eqn.(15.20). The result is 13.2 · 107, which is again quite close
to the experimentally determined value.

At the melting point, the reversible transition from solid to liquid phase
increases the entropy by 13.62 · 107. The entropy increase in heating the liquid
from the melting to boiling point comes out to be 3.85 · 107, and finally the
reversible liquid-gas transition increases the entropy further by 64.74 · 107.
Adding everything together, the entropy of Neon gas at its boiling point, as
calculated from data, is (14.29+13.62+3.85+64.74 = 96.5) · 107 which is in
excellent agreement with the value of 96.45 · 107 calculated from the Sackur-
Tetrode formula!

15.4 The entropy constants for diatomic gases

It is clear that under the simultaneous scalings of T,R according to T ′ = λ T,R′ = R
λ

should not have any significance, amounting merely to a change of units. Therefore,
entropy, a physical quantity, must also satisfy S′

R′ =
S
R . Applying this to eqn.(15.3),

one concludes
S′0
R′ =

S0

R
− lnλ

γ − 1
(15.41)

In thermodynamics and classical statistical mechanics, where entropy constants are
arbitrary, this scaling principle is of no consequence. But in quantum theory, where
entropy constants are fixed, this scaling principle becomes necessary. It can be ex-
plicitly verified that the entropy constant given by Sackur and Tetrode in eqn.(15.17)
indeed satisfies eqn.(15.41) with γ = 5/3 for a monoatomic gas.
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It is clear that when γ �= 5/3, which is the case for polyatomic gases in general,
the entropy constant given in eqn.(15.17) has to be modified. We show in this section
how they are modified for diatomic gases. In such gases, the molecules have other
degrees of freedom in additional to the translational degrees of freedom, which are
the only degrees of freedom in the monoatomic gases. For diatomic molecules we
have in addition the rotational and vibrational degrees of freedom. Each of them
make contributions to specific heats and entropy. At high temperatures, described
well classically, their contributions to specific heats are, R each, respectively and
accordingly their contributions to entropy at high temperatures, modulo the entropy
constants, are also R lnT . To determine the contributions to the entropy constants,
one needs to investigate the entropies that quantum theory would give. We shall
simply cite the results for the high and low temperature behaviours. More details can
be found in many sources on Quantum Statistical Mechanics.

First, let us look at the rotational degrees of freedom. Their contribution to low
temperature molar specific heats and entropies are

Clow
rot = 12R

Θ2
R

T 2
e−

2ΘR
T Slow

rot = 6R
ΘR

T
e−

2ΘR
T (15.42)

Clearly the specific heat vanishes as T → 0 and so does the entropy, as required by
Nernst-Planck theorem. The high temperature behaviours are

Chigh
rot = R Shigh

rot = R ln
Te

σΘR
(15.43)

In these formulae, ΘR is a new scale of temperature generated by quantum theory,
and σ is a symmetry factor which is 1 if the molecule is made of different atoms, and
2 if it is made of the same atoms, as for example H2. We see that rotational specific
heats an additional R ln( e

σΘR
) to the entropy constant.

The treatment of the vibrational degrees of freedom is analogous. The relevant
formulae are, for low temperatures,

Clow
vib = R

Θ2
V

T2
e−

ΘV
T Slow

vib = Re−
ΘV

T (15.44)

and for high temperatures

Chigh
vib = R Shigh

vib = R ln
Te
ΘV

(15.45)

ΘV is yet another intrinsic temperature scale brought forth by quantum theory. Again,
the low temperature specific heat and entropy are in conformity with Nernst-Planck
theorem. This is in fact, a central feature of quantum theory. It may be said in hind
sight that a careful experimental establishment of the entropy constants might have
heralded quantum mechanics independently of the historical path via the blackbody
radiation! The high temperature behaviour of the vibrational specific heat adds a
further R ln e

ΘV
to the entropy constant of a diatomic gas.
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Putting everything together, we arrive at the Sackur-Tetrode formula for the en-
tropy of a diatomic gas at high enough temperatures to have excited both the rota-
tional and vibrational degrees of freedom:

S = R lnV +
7

2
R lnT +R ln

(2π M R)3/2 e9/2

h3 NA
4σ ΘRΘV

+R lnω (15.46)

Now under the scaling considered, the intrinsic quantum temperature scales ΘR,ΘV

should also be scaled according to ΘR → λ ΘR,ΘV → λ ΘV ; then we see that the
entropy of diatomic gases of eqn.(15.46), with γ = 9/7 is such that the new entropy
constant indeed satisfies the scaling requirement of eqn.(15.41)!

15.5 Problems

Problem 15.1 Determine the entropy constants for polyatomic ideal gases, and
verify the scaling property of eqn.(15.41).

Problem 15.2 Determine the vapor pressure of a diatomic solid along the same
lines as eqns.(15.33,15.34). Under identical thermodynamical conditions, which
will have a bigger vapor pressure, a monatomic solid or a diatomic solid? Clearly
separate the effects of the entropy constants in this discussion.

Problem 15.3 Consider a gaseous reaction of the type n1M1+n2M2+m1D1 �
n3M3+m4D4, where M’s are monoatomic and D’s are diatomic. Assuming all
of them to behave like ideal gases, determine the quantities K0 and α in the law
of mass action.

Problem 15.4 Consider the double ionization of calcium, i.e Ca �Ca+++2e.
Determine the degree of ionization as a function of T and the energy required for
complete double ionization of Ca.

Problem 15.5 Repeat the previous problem for the ionization of NaCl.

Problem 15.6 In thermionic emission, i.e ejection of electrons upon the heating
of a metal, it is of importance to determine the density of an electron gas that is
in equilibrium with the hot surface of a metal. Determine this by minimizing the
free energy of an electron gas by treating the latter as an ideal monatomic gas.
Express the result in terms of T and W, the work function of the metal.





16 Some Mathematical Aspects of

Thermodynamics

16.1 Introduction

In this chapter we discuss some mathematical aspects of thermodynamics. This is
not going to be an extensive account of the foundations and applications of a mathe-
matical theory of thermodynamics. It is instead intended in the first place as a guide
to the mathematics that has already been extensively used so far in the book like the
properties and uses of the partial derivatives, integrability conditions etc. Therefore,
the first parts of this chapter will explain, in as straightforward a manner as possi-
ble, these aspects. Readers who were unfamiliar with these concepts and could not
therefore fully appreciate the scope of this book (and others of this nature) are urged
to gain full familiarity with these parts. They are absolutely essential for a proper
understanding of the full powers of thermodynamics.

A logical next step to the introduction of partial derivatives is the so called Pfaf-
fians, a short name for Pffafian form of differential equations. An important issue in
this context is the solvability of these differential equations which leads to the notion
of integrability conditions. Again, this is crucial for a proper appreciation of thermo-
dynamics. Many of these properties have already been widely used in the book and
the reader is urged to use the material in the text as examples of these concepts. Most
of the properties of thermodynamic potentials including the Maxwell relations are
particular applications of these concepts.

After this, we shall explore interesting structures like Jacobian matrices and their
determinants called Jacobians. There is an intimate relationship between partial
derivatives and Jacobians, which will be explained in reasonable detail. We shall
then introduce what we call half-Jacobians. Though this is a purely formal device,
it has amazing applications in thermodynamics. Examples will be given of their use
in getting Maxwell relations as well as their use in getting various properties of the
thermodynamic potentials. As an application we shall show how Jacobians provide
compact and elegant means of proving some results that were shown using the prop-
erties of partial derivatives.

Then we shall introduce the powerful notions of differential forms and their prop-
erties. These provide extremely compact codifications of the various laws of ther-
modynamics. We shall again provide examples of their use in thermodynamics. It
should be emphasized that while all these mathematical techniques enable one to de-
rive results known earlier in compact, succinct and elegant ways, they do not really
add anything significant towards a deeper physical understanding of thermodynam-
ics. Nevertheless, they offer very powerful techniques which should be part of the
’armory’ of any serious student of thermodynamics.

313
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16.2 Differentials and derivatives

This section must be well known to most readers, but it is still included for the sake
of completeness, and also to help the few who are not familiar with it. If we have a
function f(x) of a single variable x, the differential df(x) of f(x) is

d f = f (x+ dx)− f (x) (16.1)

The derivative of f(x) with respect to x is defined as ( f (x+ dx)− f (x))/dx in the
limit in which dx → 0:

d
dx

f (x) =
d f
dx

as dx → 0 (16.2)

This allows df to be written, to first order, as

d f =
d
dx

f (x) ·dx (16.3)

Now the first derivative is a function of x and one can construct its derivative which
is the second derivative d2

dx2
f (x) of f(x) and so on.

16.2.1 Partial derivatives

Suppose we have a function of two variables, f(x,y); then the above considerations
can be generalized. To first order we expect d f = adx+ bdy. Now there is a new
circumstance that we can ask how f(x,y) changes when, say, x is changed to x+dx,
but not changing y. Then df = a dx allowing a new type of derivative to be identified

with a. It is denoted by
(

∂ f
∂x

)

y
and is called a partial derivative of f(x,y) with respect

to x. Likewise we can have the partial derivative
(

∂ f
∂y

)

x
and the relation, to first order,

d f =

(
∂ f
∂x

)

y
dx+

(
∂ f
∂y

)

x
dy (16.4)

Now the partial derivatives are themselves functions of (x,y) and one can construct
various second derivatives of f(x,y). Consistency requires

d2

dxdy
f (x,y) =

d2

dydx
f (x,y) (16.5)

leading to the important consequence

∂
∂x

(

(
∂ f
∂y

)

x
)|y = ∂

∂y
(

(
∂ f
∂x

)

y
)|x (16.6)

Here ..|x means the quantity evaluated while x is held fixed etc.



Some Mathematical Aspects of Thermodynamics 315

Example

Let f (x,y) = 2xy2+7x2y+x2+3xy+6y2+2x+4y+5. Let us evaluate the partial

derivative
(

∂ f
∂x

)

y
. This means we must find the derivative of f(x,y) with respect to

x, while keeping y fixed. In other words, as far as x-dependence is concerned y will

act like a constant whose derivative wrt x is zero. Then,
(

∂ f
∂x

)

y
= 2y2+14xy+2x+

3y+2. Likewise,
(

∂ f
∂y

)

x
= 4xy+7x2+3x+12y+4. The partial derivative of

(
∂ f
∂x

)

y
with respect to y, keeping x fixed, is therefore 14x+3, while the partial derivative of(

∂ f
∂y

)

x
wrt x, keeping y fixed is also 14x+3. This is the meaning of eqn.(16.6).

Example from thermodynamics

Consider the specific heat CV . Its physical meaning is that while keeping the vol-
ume of the system fixed, say by enclosing a gas in a rigid container, the amount of
heat that must be added to increase the temperature by dT is CV dT . As we have seen,
partial derivatives abound in thermodynamics.

16.2.2 Important properties of partial derivatives

Let us consider a quantity u that changes by du when another quantity v is changed

by dv, while a third quantity w is held fixed. By our previous considerations
(

∂u
∂v

)

w
=

du/dv in the limit both du and dv tend to zero. On the other hand,
(

∂v
∂u

)

w
is dv/du

in the same limit. Therefore, it must follow that
(

∂u
∂v

)

w
=

(
∂v
∂u

)−1

w
(16.7)

So far we talked about partial derivatives as derivative wrt one independent variable,
say x in the above example, while another independent variable, y in the above ex-
ample, was held fixed. But things can be more general and we can talk about partial
derivatives when some function of the two variables is held fixed. To illustrate this,
consider a function f(x,y) of two independent variables (x,y), so that

d f (x,y) =

(
∂ f
∂x

)

y
dx+

(
∂ f
∂y

)

x
dy (16.8)

which always holds. Now consider varying x and y in such a way that f(x,y) is fixed,
i.e df=0. The ratio dy/dx in the limit both dx,dy tend to zero while keeping f fixed is

by definition
(

∂y
∂x

)

f
and one gets

0 =

(
∂ f
∂x

)

y
+

(
∂ f
∂y

)

x

(
∂y
∂x

)

f
→
(

∂ f
∂x

)

y

(
∂x
∂y

)

f

(
∂y
∂ f

)

x
=−1 (16.9)
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which is the triple product rule for partial derivatives used extensively in the book.
In arriving at its final form in eqn.(16.9), note that we have made use of eqn.(16.7)
twice.

What many beginners find intriguing about this rule is that a ’chain rule’ for
derivatives ends up with a negative sign! But the above derivation is so transpar-
ent that this should not be bothersome any more. Another fact that intrigues them is

that the partial derivative
(

∂y
∂x

)

f
is non-vanishing even though x and y were declared

to be independent. The resolution is that this partial derivative is evaluated keeping
the f(x,y) fixed which makes the variations dx and dy no longer independent.

16.2.3 Pfaffian forms

Consider k independent variables x1,x2 . . .xk and an equation of the form

d f ({xi}) = f1({xi})dx1+ f2({xi})dx2+ . . .+ fk({xi})dxk (16.10)

where we have used the short hand notation {xi} to denote possible dependence on
all the independent variables. This is called a Pfaffian form or Pfaffian form of dif-
ferential equation. An important question is the conditions the coefficient functions
fi must obey in order that this differential equation can be solved (or ’integrated’)
to give a function F. Let us, for the sake of clarity, consider only two independent
variables x1,x2, and consider a Pfaffian differential equation

d f (x1,x2) = N(x1,x2)dx1+M(x1,x2)dx2 (16.11)

It is obvious from previous definitions that N =
(

∂ f
∂x1

)

x2
and M =

(
∂ f
∂x2

)

x1
, and

by eqn.(16.7), one must have
(

∂N
∂x2

)

x1
=
(

∂M
∂x1

)

x2
. Therefore, unless the coefficient

functions M, N in the Pfaffian form of eqn.(16.11) satisfy this integrability condition,
there will be no solutions to the Pfaffian differential equation. This has been the basis
of the many thermodynamic identities that were discussed in the book. In fact, all the
Maxwell relations are integrability conditions of this type. To clarify the issues raised
here, let us consider a famous example where a Pfaffian-looking form is actually not
integrable!

The first law

Let us consider the first law for an ideal gas with constant CV (these consider-
ations are generally valid, not just for this example), i.e d̄Q = CV dT +PdV . This
superficially looks like a Pfaffian form. It would have been a Pfaffian form if instead
of d̄Q we had dQ. Now CV dT = d(CV T ) so integrability of this equation would
have been possible only if PdV could also have been written as a df for all V and
T. But a moment’s inspection shows that that would have been possible only if P
were a function of V alone, which it certainly is not. The integrability condition(

∂P
∂T

)

V
=
(

∂CV
∂V

)

T
= 0 would also have demanded the same. Of course, the physi-

cal significance of the failure to integrate this equation is that heat Q is not a state
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function and is instead path-dependent. Hence the convention to denote changes in
Q by d̄Q and not dQ. This is also equivalent to the notions of exact and inexact
differentials introduced earlier in the book.

16.3 Jacobian matrices and Jacobians

Let us illustrate the relevant ideas for a case with two independent variables, say,
x1,x2. Generalization to several variables is straightforward. Now suppose we want
to work with another set of independent variables, say, x′1,x′2, which are functions of
the older independent variables. In the thermodynamic context, an example would
be working with P,T instead of P,V. In that simple example one of the variables, i.e
P, does not change but the other, say, T is changed to V but by equation of state
V =V (T,P).

The first question that arises is about the check for the independence of the new
variables, as after all not every pair of functions of the old variables can form inde-
pendent variables. This is answered through the properties of the Jacobian Matrix
Ji j, defined as

Ji j =

(
∂x′i
∂x j

)

..

(16.12)

where .. stands for keeping fixed all independent variables other than x j. For the
specific example of the two variable case, the Jacobian matrix is given by

J11 =

(
∂x′1
∂x1

)

x2

J12 =

(
∂x′1
∂x2

)

x1

J21 =

(
∂x′2
∂x1

)

x2

J22 =

(
∂x′2
∂x2

)

x1

(16.13)

The Jacobian J is the determinant of this Jacobian matrix:

J =

(
∂x′1
∂x1

)

x2

(
∂x′2
∂x2

)

x1

−
(

∂x′1
∂x2

)

x1

(
∂x′2
∂x1

)

x2

(16.14)

In answer to the question about the independence of (x′1,x′2), the answer is that they
will be independent only if J �= 0, i.e if the Jacobian matrix is non-singular. There

are many notations used for the Jacobian. We shall use the notation J =
∂(x′1,x′2)
∂(x1,x2)

i.e.

J =
∂ (x′1,x′2)
∂ (x1,x2)

=

(
∂x′1
∂x1

)

x2

(
∂x′2
∂x2

)

x1

−
(

∂x′1
∂x2

)

x1

(
∂x′2
∂x1

)

x2

(16.15)

16.3.1 Some important properties of Jacobians

It is immediately obvious that Jacobians satisfy

∂ (x,y)
∂ (a,b)

=− ∂ (y,x)
∂ (a,b)

→ ∂ (x,x)
∂ (a,b)

= 0 (16.16)

A non-trivial property of the Jacobians is their composition law

∂ (x,y)
∂ (a,b)

· ∂ (a,b)
∂ (c,d)

=
∂ (x,y)
∂ (c,d)

(16.17)
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It is difficult to establish this directly from the definition of the Jacobian given above.
If the independent variables are thought of as coordinates of a two-dimensional man-
ifold, the invariant area element is given by dA=

√
gdxdy where g is the determinant

of the inverse metric on the manifold. Under changes of coordinates from (x,y) to,
say (a,b), this changes according to

g(x,y) =

{
∂ (x,y)
∂ (a,b)

}−2

g′(a,b) (16.18)

The area dA being a geometrical quantity does not depend on the choice of coordi-
nates and one gets the important relation

dxdy =
∂ (x,y)
∂ (a,b)

·dadb (16.19)

Considering the sequence of transformations (x,y) → (a,b) → (c,d) and directly
comparing to the transformation (x,y) → (c,d), and making use of eqn.(16.19) at
every step leads to eqn.(16.17).

Yet another important property of Jacobians is that every partial derivative can
itself be expressed as a Jacobian:

∂ (x,z)
∂ (y,z)

=

(
∂x
∂y

)

z
(16.20)

This can easily be shown from the definition of the Jacobian itself.

16.3.2 Half-Jacobians!

Let us first introduce a convenient shorthand for Jacobians [59]:

[x,y]
[a,b]

=
∂ (x,y)
∂ (a,b)

(16.21)

Then the composition law of eqn.(16.17) can be recast as

[x,y]
[a,b]

· [a,b]
[c,d]

=
[x,y]
[c,d]

(16.22)

Now consider the independent variables (c,d) to be arbitrary, in principle specifiable,
but never specified in practice. Furthermore, introduce yet another notation via

{x,y}= ∂ (x,y)
∂ (c,d)

(16.23)

We can call objects like {x,y} half-Jacobians as only half the information required to
compute the Jacobian is explicitly available, i.e (x,y). But it must be kept in mind that
[x,y] takes on definite value once (c,d) is specified. As a Jacobian, it never vanishes.
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This will turn out to be very important. Because of this, eqn.(16.17), or equivalently
eqn.(16.22) can be recast in terms of half-Jacobians as

∂ (x,y)
∂ (a,b)

=
{x,y}
{a,b} (16.24)

Let us consider an interesting application of half-Jacobians by rewriting eqn.(16.8)
with the help of eqn.(16.20) and eqn.(16.24) as

d f =
{ f ,y}
{x,y} dx+

{ f ,x}
{y,x} dx (16.25)

which, on using {x,y}=−{y,x}, can be written as

{x,y}d f + { f ,x}dy+ {y, f}dx = 0 (16.26)

16.3.3 Maxwell relations and Jacobians

Now we illustrate the powerfulness of Jacobians by showing the equivalence of the
four Maxwell relations to a single Jacobian condition. Consider the Maxwell relation(

∂V
∂S

)

P
=
(

∂T
∂P

)

S
and rewrite it in terms of half-Jacobians as

{V,P}
{S,P} =

{T,S}
{P,S} → {T,S}= {P,V} (16.27)

In other words this Maxwell relation is equivalent to the statement that the transfor-
mation (T,S) to (P,V) is area preserving, i.e the corresponding Jacobian is unity. This
is the familiar result that the Carnot cycle represented in (P,V) or (S,T) coordinates
has the same area! Now it can be shown that {T,S} = {P,V} also reproduces the
other three Maxwell relations. We show one of them explicitly:

(
∂S
∂P

)

T
=

{S,T}
{P,T} =−{P,V}

{P,T} =−
(

∂V
∂T

)

P
(16.28)

16.3.4 Thermodynamic potentials and Jacobians

As a prelude, let us consider the Pfaffian dz = M(x,y)dx+N(x,y)dy, from which it
follows that, for some other choice of independent variables (a,b)
(

∂ z
∂a

)

b
=M(x,y)

(
∂x
∂a

)

b
+N(x,y)

(
∂x
∂a

)

b
→{z,b}= M{x,b}+N{y,b} (16.29)

This holds for arbitrary choice of b and can be used to efficiently generate a number
of identities. Of course, N and M must satisfy the integrability conditions character-
stic of the Pfaffian forms.
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This result can be readily applied when z can be taken to be any of the thermo-
dynamic potentials. Let us illustrate by taking z to be U,H,F and G respectively,
yielding

dU = T dS−PdV → {U,X}= T{S,X}−P{V,X} (16.30)

dH = T dS+VdP → {H,X}= T{S,X}+V{P,X} (16.31)

dF = −SdT −PdV → {F,X}=−S{T,X}−P{P,X} (16.32)

dG = −SdT +VdP → {G,X}=−S{T,X}+V{P,X} (16.33)

X can be taken to be any independent variable, and these can yield a host of identities.

16.3.5 Another application to thermodynamics

We close this discussion with another application to thermodynamics. Following Rao
[59] we apply the method of Jacobians to derive eqn.(3.49) from chapter 3. Let us
first recall that equation:

T dS =CV dT +
Tα
κT

dV (16.34)

From our earlier discussion, it is easy to see that

dS =
{S,V}
{T,V}dT +

{S,T}
{V,T}dV (16.35)

The specific heat at constant volume CV , the coefficient of expansion α , and the
isothermal compressibility κT can be expressed in terms of Jacobians as follows:

CV = T

(
∂S
∂T

)

V
= T

{S,V}
{T,V} α =

1

V

(
∂V
∂T

)

P
=

1

V
{V,P}
{T,P} κT =− 1

V
{V,T}
{P,T}

(16.36)
On using {S,T}= {V,P}, it is easy to see that eqn.(16.35) and eqn.16.36) are indeed
the same.

16.4 Differential forms in thermodynamics

Now we very briefly present the uses of differential forms in thermodynamics. As
structures, differential forms are even more formal than Jacobians, and a full discus-
sion of all their nuances is beyond the scope of this book. Let us begin with some
definitions. All functions f are said to be 0-forms. Their differentials, df, are said to
be 1-forms. There is an operation, called the exterior derivative, denoted by d which
acts on all forms and increases their rank by one. For example, acting on functions,
which are 0-forms, exterior derivative yields the 1-form df i.e d f = d f . At this level,
and only at this level, the exterior derivative coincides with the differential. If ω is a
p-form, dω is a p+1-form.

A crucial property of exterior derivatives is that d(d(anything)) = 0. In this re-
spect d differs fundamentally from differentials, and this is a frequent source of con-
fusion in this subject. The next structure of importance is the so called wedge product
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of differential forms. If ω is a p-form, and η is a q-form, ω ∧η = (−1)pqη ∧ω is a
p+q-form.

A very important rule to remember is for the exterior derivative of wedge prod-
ucts. If ω is a p-form, and η is a q-form, the rule is

d(ω ∧η) = dω ∧η +(−1)pω ∧dη (16.37)

Let us pause and consider a few examples. Let us consider two functions f and g; as
per our earlier discussion, both are 0-forms, and their wedge product should also be
a 0-form. Indeed, the product function fg is a 0-form, being another function. Next
consider the wedge product of f with dg, the latter being a one form. This gives the
1-form fdg. If we apply eqn.(16.37) to the product fg, we get d( f g) = d f ·g+ f ·dg,
which is again familiar. But let us apply it to fdg:

d( f dg) = d f ∧dg (16.38)

as d2g = 0. This is a 2-form.

16.4.1 Some applications to thermodynamics

Consider the 1-form dU = T dS−PdV , which is nothing but the first law. Applying
the exterior derivative to this

d(dU) = 0 = dT ∧dS− dP∧dV

= (

(
∂T
∂V

)

S
dV +

(
∂T
∂S

)

V
dS)∧dS− (

(
∂P
∂S

)

V
dS+

(
∂P
∂V

)

S
dV )∧dV

= (

(
∂T
∂V

)

S
+

(
∂P
∂S

)

V
)dV ∧dS (16.39)

This is nothing but the Maxwell relation M.1!
As yet another example, consider the same first law but written as dS = (dU +

PdV )/T , and consider 0 = d(dS) i.e

0 = d(
dU
T

+
P
T

dV )

= − 1

T2
dT ∧dU +

1

T
dP∧dV − P

T2
dT ∧dV

= − 1

T2

(
∂U
∂V

)

T
dT ∧dV +

1

T

(
∂P
∂T

)

V
dT ∧dV − P

T2
dT ∧dV

=

{
− 1

T2

(
∂U
∂V

)

T
+

1

T

(
∂P
∂T

)

V
− P

T 2

}
dT ∧dV (16.40)

This is nothing but the fundamental equation encountered earlier in eqns.(3.7,3.9,
3.41): (

∂U
∂V

)

T
= T

(
∂P
∂T

)

V
−P (16.41)
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As a last application of the differential forms we now consider the relationship
of the wedge products and Jacobians. Let us restrict ourselves to the case of two
independent variables. In particular, let us consider the transformation taking two
independent variables (x,y) to two other independent variables (a,b). Let us start
with the 2-form dx∧dy:

dx∧dy = (

(
∂x
∂a

)

b
da+

(
∂x
∂b

)

a
db)∧ (

(
∂y
∂a

)

b
da+

(
∂y
∂b

)

a
db)

= (

(
∂x
∂a

)

b

(
∂y
∂b

)

a
−
(

∂x
∂b

)

a

(
∂y
∂a

)

b
)da∧db

=
∂ (x,y)
∂ (a,b)

·da∧db (16.42)

From this we can easily deduce the composition law of Jacobians of eqns.(16.17,
16.22). For that, consider the sequence of transformations (x,y) → (a,b) → (p,q)
and we have

dx∧dy =
∂ (x,y)
∂ (a,b)

·da∧db =
∂ (x,y)
∂ (a,b)

∂ (a,b)
∂ (p,q)

·d p∧dq =
∂ (x,y)
∂ (p,q)

·d p∧dq (16.43)

The composition law then follows.
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