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Preface 
This book on Strength of Materials covers firstly the introductory course on the subject 

for the engineering students of all disciplines i.e. Mechanical, Production, Civil, Electrical, Elect
ronic Engg. and Computer Sciences in the Engg. Colleges as well as in Polytechnics and second
ly the advanced course on the subject for the students of Mechanical and Civil Engg. disciplines. 
This book will act as a faithfull companion to the students studying a course on Machine Design 
and computing stresses in machine members and to engineers serving in design offices of various 
Research and Development Organisations. 

The author is teaching the subject for the last 23 years and is fully conversent with the 
difficulties experienced by the students. Therefore, while preparing the text of the book, the 
point of view of the students was constantly kept in mind. The contents of the book have 
been designed in a manner to help all grades of the students. For the relatively mediocre students 
unable to attend classes regularly, there are simple examples and exercises, a thorough study of 
which would impart confidence and a clear understanding of the subject. For the brighter 
students, there are complicated problems and exercises, the understanding and solution of which 
will help them go a long way in securing exceptionally good marks and in assuring a place 
of distinction in any competitive examination. 

In brief, the book contains the following' features :-

( l) A rigorous treatment given to the subject to meet the current requirements of the 
students. 

(2) Providing a clear understanding of the basic principles of the subject through the 
worked examples which are more than 500. 

(3) Thought-provoking and self-testing objective type questions which are more than 
200 in number. 

the 
(4) Information provided about testing the mechanical properties of the materials m 

laboratory. 

(5) Solution of examples and problems both in MKS and SI units. 

The advanced chapters on Bending of Curved Bars, Rotational Stresses, Energy Methods, 
Unsymmetrical Bending, Shear Centre and Torsion of Non Circular Shafts are no doubt avail
able in many books but either the treatment given is too elementary or the examples given are 
insufficient. As a result, the students are apprehensive of these chapters when they appear 
in the examinations. Therefore, these topics have been thoroughly explained and a large number 
of solved examples are given so that the students can very well understand these advanced 
topics. 

Constructive suggestions for improvement of the book are always solicited. 

The development of this book has been strongly influenced by the author's colleagues, 
students and the numerous books on the subject published in India and abroad. 

The author is deeply indebted to the inspiration received initially from his brilliant 
and genius son and this book is dedicated to his loving memory. 

pr, U. C. Jin~! 
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1 
Simple Stresses and Strains 

A machine member or a strncturnl incmbe:r is deformed when it is subjected to a 
force or a moment. A force can extend or contract the member or it m:i.y distort the shape 
of the member while a moment can bend or twist the member, depcr.di·qg l'pOD the type of 
the, force or the rnomynt applied. 

(a) 

(c) 

(e) 
Fig. 1·1 

(b) 

M 

(d) 

Fig. 1 ·1 (a) shows that a cylindrical bar of section A and length L gets extended under 
the action of the for~e P. Its length increases to L' and area of crnss section decreases to A'. 

Fig. 1·}\ b) shows that a cylindrical bar gets contracted under the action of the force P 
)ts length decrdses to·.ffwh~Ie -its area of cr0ssss~ction incrca~cs to A', 



2 STRENGTH OF MA Tf.RIALS 

Fig. 1 · 1 (c) shows a rec1angular block fixed at the lower surface DCEF and at its top 
surfa ce a force Pacts tangential to the surface ABGH. The shape of the rectangular block 
is distorted to A'B'G'H ' FECD. · 

Fig. 1 · 1 (d) shows that a rectangular bar initially straight is bent under the action of 
bending moment M. Straight bar ABCDEFG is deformed into A'B'C'D'E'F 'G' . 

Fig. 1 · 1 (e) shows that a circular bar fi xed at one end gets twisted under the action of 
a twist ing moment T appli ed at the other end. A line OA initially drawn on the surface of the 
bar gels deformed to OA' . 

In this chapter we will analyse the eff..:ct of the' for.::e which extends, contracts or 
distc.rts the machine member. Ttc effect of bending moment will be discussed in Chapter 7, 
wh ile the effect of twist ing moment wi ll be analysed in Chapter I 3. 

1·1. NORMAL AND SHEAR FORCES 

Consider a body subjected to a number of forces Fi, F2, F3, F4 F5 , F6, F7 etc., as shown 
in Fig. t·2. Say the resultant of these forces on a section aa' is FR inclined at an angle 8 to 
the plane of the section . There are two components of FR i. e. , F,. and F,. Component Fn 
is perpendicular to the section aa' whi le the component F, lies in the plane of the section aa' 
and is tangential to it. The force F,. is called the Normal force on the section aa' . When 
F., is pointing away from the plane aa' it is called the Normal Force (Fig. 1 '2) and when it is 
pomting towards the plane, it is called a Compressive Force (as shown in Fig , 1 '3). -

Fig. t·J 

The Force F, or. the section aa' is called the shear force. The shear force tending to 
rotate the body in the clockwise direction is taken as a positive shear force (Fig. 1 ·2) v.'hile 
1he she:lr for.;e tending to rotate the body in the anticlockwise direction is taken as a negative 
shear force The normal force per unit a rea is called the normal stress and the shear force 
per unit area is called the shear stress. Fig. 1 ·2 shows the tensile force Fn and positive shear 
fprce F, on the section aa'. 

f, Tensile stress= :n (Tensile) 

A 
q, Shear stress = A ( + ve) 

I 

Fi~. 1 ·3 shows compressive strc~s aud ne$ative lihear stress on the area A. r· 



5IMPLE STRESSES AND STltAINS 3 

Example J ·1-1 A bar of rectangular section 20 mm X 30 mm carries an axial force 
of 10 kN. Determiue the normal and shear force on a plane inclined at au angle of 30° to the 
axis of the bar. Determine also the magnitude and nature of the normal and shear stresses 
on this inclined plane. 

Fig. 1·4 

Solution. Fig. 1 ·4 shows a bar of rectangular section 30 mm x 20 mm, carrying an 
axial force P= 10 kN. Now this force is perpendicular to a section efgh or to any section 
parallel to the plane efgh. Sinc0 this force P is wholly normal to such planes, these planes 
carry only the normal stress. 

Consider a plane abed inclined at an angle 8=30° to the axis of the bar. The force Pis 
not perpendicular to the plane abed but is inclined at an angle of 30°. There are two com
ponents of this force i.e., P cos 6 tangential to the plane and P sin () normal to the plane 
abed. 

So Fn= P sine, a normal force pointing away from the plane, so a 
tensile force. 

F1 = P cos 8, a shear force tending to rotate the body in the 
clockwise direction, so a positive shear force. 

Fn= lO x !sin 30°= 5 kN= 5000 N 

F,= IO x cos 30°=8'66 kN= 8660 N. 

Area of the inclined plane, A = ad x ab 

20 
=30 X--:--30a 

Sill 

' 
= 3()"x 

20 
= 1200 mm2 , o·s .. 

Normal stress on the plane, 

Fn 5000 / 0 f = ·y = 1200 N mm-

= 4' 167 N/mm2 (Tensile) 

Shear stress on the plane, 
Fi 8660 

Q= - = ·-- - N /1111112 
- A 1200 · 

= 7'216 N/mm 2 ( + ve). 



Example i' l-2. Fig . . 1 ·5 shows a 
stepped bar of di.ameters 10 mm and 20 mm 
respectively. An axial compressive for.ce of 
1000 kg acts on the bar. Determine the 
minimum and maximum normal stress in 
the bar. 

lO mm dia 

Solution. The bar has two portions I 
and II. 20 mm dio 

Area of cross-section of poi'tion I, 

t41 = : (1)2= 0"7854 cm2
• 

Area of cross-section of portion II, 

A2= ; (2J2 =3'1416 cm2• 
Fig. 1'5 

Force P is the normal compressive force on all sections perpendicular to the axis. 
Maximum n0rmal stress is developed in portion I with minimum area of cross . section while 
minimum normal stress will be developed in the portion II with maximum area of cross 
section. 

So maximum normal stress, 
1000 

0
.
7854 

= 1273"23 kg/cm2 (compressiveJ ' J I 

Minimum normal stress 
p 1000 . . = A--;= 

3
.
1416 

=3 18 31 ·kg/cm 2 /compre,;s1ve). 

Exercise l'l-1. A cylindrical rod , of diaJ.+).eter 1 '6 cm is subjected to a t axial tensile 
force of 500 kg. Determine tl1e normal and shear stresses on a plane inclined at a u angle of 30° 
to the axis of the bar. 

[Ans. 62" l 7 kg/cm2 (tensile), l 07'68 tg/cm2 ( + ve)] 

Note. In this case the inclined _plane will be an ellipse, with ma}:.:: axis equal to 
. . . re x major axis x minor axis 

3·2 cm, mmor ax1s = d= l'6 cm,. Area -of oftheell1pse-:- Ji . · 
sin 30° 

d 

Exc1·cise 1·1-2. A cylindrical tapered , bar ,0I ·12·mm diameter at one end and 20 mm 
diameter at the other end is subjected to an axial tensile force of 4000 N. Determine the 
maximum and minimum direct stret:ses develop~d ili'the l?~r. 

. Ans. [35'36'7 N/mm2 (tensile), 12'732 N/mm:: (tensile)) 

Note. A normal stress is ,also called the direct stress. ··1 

1·2. NORMAL STRAIN 

Fig. 1 · 1 (a) shows a bar of circular cross-section subjected to a tensile force P. [In 
practice, one end of the bar is fixed while force P is applied at the other entl. To · maintain 
equilibrium an equal and opposite force P acJs as a reaction at the fixed end]. 

Due to this force P, ·the bar elongates and its original length L increases to L' and at 
he same time its diameter is reduced from D to D'. ' 



SIMPLE STRESSES AND StRAINS 

Normal strain or the linear strain is defined a·s the change in iength per unit iengtil 
along the direction of the normal force. Lateral strain is defined as the change in diameter 
tor a dimension lateral to the axial length) per unit diameter or change in lateral dimension 
per unit lateral dimension as in the case of a rectangular section. 

Normal strain, (due to tensile force) 

Lateral strain, 

Change in length · Final length-- lniti al length 
1a = Original length =- Original length 

L'- L 'SL ( . . ) = L -[- pos1t1¥e 

, Change in diameter 
E = Original dian1etcr 

Final diameter ...:....'Initial diameter 
Original diameter 

D'-D 'SD . 
= D =D (negative) 

(as the diameter is reduced) 

Similarly Fig. l ' I (b) sh ows a bar of circular cross-section subjected to an axial com
pressive force P, the length of the bc1r is reduced and its diameter i.s increased. 

Normal ~train (due to compressive force) 

Lateral strain, 

Final length- lnitial length 
Original length 

L'- L 'SL . 
= - L-=L (negative) 

Final diameter- Initial diameter 
Initial diameter 

D'-D 'SD ( .. ) = D ~ D pos1t1ve 

Lateral strain ' "' . . 1 . --.-=-= a negat1ve -ratto = - -
Normal stram E nt 

.. d 

The ratio of laterfl l stcain to normal strain is called Poisson's R,itio and is denoted 
by 1/m. 

where 

In the first case, normal stress 

p 
= ,r=J 

P = axial tensile .force 

A= ~ D2, cross-sectional area 
q . 

f is the tensile stress 0r a positive direct stress 

E = normal strain, a positive strain. 

,,·,:, 



6 S'tRENG'rH OF MATERIALS 

where 

. .In the second case, normal stress 
1, p 
',!, = 7 I 

P=axial compressive force 

A= ; D2; cross-sectionit area 

f is the compressive stress or a negative direct stress. 
€=normal strain, a negative strain. 

:, 

In both the cases of tensile and compressive forces, as the force gradually increases, 
the normal stress and normal strain also gradually increase and stress is proportional to strain 
but only upto the elastic limit, as shown in Fig. t ·6. 

Fig. l ·6 shows the variation of normal strain with respect to the normal stress developed 
in the bar. 

0-~---c"E __ _ 

Normal st rain, E 
( pos,t ive) 

(.a) 

..... -Ill 
1/l 
t:,J 
..... -
i 1 V, t 
"' t:,J 
..... 
Q. 

E 
0 
u 

Fig. 1·6 

fe 

E 

Normal strain. E 
( negative) 

(b) 

Upto the elastic limit, if force is removed from the bar, the bar will return to its 
original dimensions. Beyond the elastic limit, the graph between f and e is no longer a 
straight line, but it is curved and once this limit/. is crossed, the bar is subjected to a per
manent deformation (or strain) after the removal of the loa~. 

' 
So within the elastic limit/ot e i.e;, the material obeys Hoo~e's l;tw. ,,. 

f ,. I • ' ~i. , . 

or 

foc€ . 
=;Ee, where Eis the constant of proportionality 

E= _f__ = Normal stress 
E Normal strain , i ... (1) 

This ratio of stress and strain within the elastic limit is called the Young's modulus 
of Elasticity and is denoted by E. Since strain is only a ratio, the units of E are the same as 
those of stress,/. 

In order words 
p 

!=-, 
A 

, Yo1:1ng's modulus of elasticity, 
;,;, I • • • • PL 

E=A8L 

·· dL 
E=- then 

L' 

... (2) 
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If E for the material is given, then 

Strain, 

Change in length, dL 

f p 
"= y = AE 

PL 
= eL= AE 

7 

... (3) 

Exam.pie 1·2-1. A circular tteel bar of 10 mm diameter and 100 mm gauge length 
is tested under tension. A tensile force of 10 k'N increases its length by 0'06 mm while the 
diameter is decreased by o·oo 18 mm. Determine (i) Young's modulus of elasticity, (ii) Poisson's 
ratio for the material of the bar. · 

Solution. Fig. 1 ·7 shows a tensile test specimen. Collars are prcvided at the ends 
so that the speciwen can be prorerly gripped in the testing machine. The central portion 

pi} . ~ . 't] 
Coll ar ~e le~ 

Fig. 1 ·7. Tensile Test Specimen. 

la p 
Tensile 
force 

along which the cross-section is uniform is called the gauge length as shown. 

Tensile force, P= 10,000 N 

Area of cross-section, A= ~ ( 10)2 

4 

= 78'54 mm 2 

Change in length, dL= o·o6 
Original length, L= 100 mm 

Young's modulus of elasticity, 

Normal s train, 

E _. _PL __ _!_ 0000 X I 00_ 
-- A8L - - 78'54 x 06 

_J_OOOX 1000 = 2l 2 x JOs N/ 2 
- 78·54 x 0·06 mm 

8L 0'06 
€=1,- = wo 

Change in diameter, 8D= O·OO l8 mm 

Original diameter, 

Lateral strain, 

Poisson's ratio, 

D = IO mm 

, 8D o·OOl8 
E =-D- = ---io 

I , - e' _ O·OOl3 X 100 _ 0'01 8 _ 0.
3 

/1/ E IO 0·06 0'06 · 
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Example 1·2-2. A circular brass bar of 12 mm diameter is tested under tension. If 
the increase in the gauge length of I 00 mm is o· 12 mm, det ermine the stress developed in the 
bar. What is the change in its diameter? 

Given E for brass 

__!_ for brass 
m 

Soludon. 
E::hange in length, 
Gauge length , 

Normal strain , 

Normal stresi:, 

Poisson's ratio, 

Lateral strain 

-= 102 X 103 N/mm2 

= 0'32. 

E= J 02 X ]()3 N/ mm2 
8L= 0·12 mm 
L = I 00 m m 

~L 0·12 . 
£ = y = 100 = 0 0012 

J="' E 
= 0·0012 x 102 x 103 N/ mm2 

= 122·4 N/mm2 

J... = lateral stra!i1 0.32 
m normal stram 

= ag = 0·32 x ·oo12 

= 0'384 x 10- 3 

Change in diameter, SD= 0'384x 10- 3 x 12 mm 
= 4 '608 x 10- 3 mm 
= 0'004608 mm. 

Exercise 1'2-t. An aluminium round bar of diameter 15 mm and gauge length 150 
mm is tested under tension. A tensile force o f 2 tonnes produces an extension of 0·253 mm, 
while its diameter decreases by cr0083 mm. Determine the Young's modulus and Poisson's 
ratio of aluminium. r Ans. 671 · 15 tonnes/cm 2, 0'328]. 

Exercise 1·2-2. A steel bar of rectangular cross-section 10 mm X J 5 mm and length 
100 mm subjected to a compressive fo rce of 3 kN. If E for steel = 210 x 103 N / mm2 and 
1 /m for steel = 0·3, determine : 

(a) Change in length. 

(b) Change in 10 mm side. 

(c) Change in 15 mm side. 
lAns. (a) ·009524 mm (b) 0'2857 X 10- a mm (c) 0'428 X 10-s mm]. 

t·3. BARS OF VARYING CROSS SECTIONS 

Fig. l '8 shows a bar with different diameters D 11 D 2 and D3 with lengths along 
the axis equal t o L1 , L 2 and L3 respectively. Say E is the Young's modulus and I /m is the 
Poisson's ratio of the materi ., J. 

This bar is subjected to an axial coml?ressive force P, which will produce contraction 
in the length of the bar and its diameters will increase. 
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F ig. 1·8 . II•' ·, 

Force P is the normal force on all sections perpendicular to the axis. Each portion 
of the bar is subjected to same compressive force but the normal stress developed in each 
porti.on will be ~ifferent. .. 

or 

Stres!ies 

Normal stress in portion I, 

Normal stress in portion TI , 

p ' 
Norm~] s~ress in portion Irr, J3=- A

3 

(Compressive) 

Where Areas of cross-sections are 

The normal strain in each portion is 

" 1 = - 1, , " 2 = - ~ and E 3 = - 1e (negative) 

Change in length in each portion 

8L1 = £ 1Li, 8L2 = £ 2L2 , SL3 = c
3
L

3
• 

Tota l change. in length, 8L= ilL1 + 8L2+U
3 

= £ 1L1 + E2L2+ £3L3 

= - !1 Li- f2L2 _ ( aLa 
E E E 

8L= - 4pL- Li + ~ - .. L3] 
rr.E D12 Dz2 + Dl 

Showini the decrea se in !en~th, each diameter wiil increase due to the Jaten~I strai n. 
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Lateral strain in each portion will be 

'--+ /1 € 1·- -E' m 

The change in diameters will be 

8D1= 1a1'D1= f1D1 
mE' 

Showiry.g the increase in dilimeters. 

STRE~GTH QF .MATERIALS 

·~ - ,· ·-
m 

!-1.. 
E 

Example 13-1. A stepped circular bar having diameters 20 mrh, 15: mm ; J~<i 10 mm 
over axial lengths of JOO mm, 80 mm and 60 mm is subjected to an axial tensil~. fpJce of 5 kN. 
If E= lOO x L03 N/mm2 and l /m = o·32 for the materi al of the bar, determine- ' · .. 

(a) Total change in length. 
(h) Change in each diameter. 

Solution. As per the data given 
Lengths /1= 100 mm, /2=80 mm, / 3=60 mm. 

Diameters D 1=20 mm, D 2 = 15 mm, D3=10 mm. 

Since the axial force is tensile; there will be increase in ·length 'and decrease in 
diameters . 

h 
4P [ /i /2 . la J 

Total c ange in length = + 1t_E D/· + D? + Da2 

where P= 5 kN=5000 N 
E = lOO X 1000 N/mm2 

4 X 5000 [ 100 80 60 J 
or di= 100 x 1000 202 + 152 + 102 

=0·2 [0·2so+ o·355+0·6001=0·241 mm. 

Change in diameters 8D1 = - <~:i = - n12 X ,~J = - r;D~:E 

4 x 5000 x o·32 _ _ . _
3 

=,- 1t X20 X IOO X 1000 - l 018 x 10 mm. 

4P 4 X 5000 X0'32 
Similarly l'iD2=- = - ------ - -r;D2mE T X15xl00 X IOOO 

= - 1'358 x 10-3 mm 

4P 4 x sooo x o·32 
aD3=- nD

3
mE= - T X 10Xl00 Xl000 

= -2'037 x 10-3 mm. 

Exercise t·3-1. A stra,ight stepped bar of steel is of square section throughout with 
sides 10 mm, 12 n,TP, 16 mm with axial lengths of ~ cm, 10 cm and 12 cm respectively. 

The bar is subjected to an axial te11sile for(:e of 3600 N, 



If E=200 X 103 N/mm2 and l /m= o·29 determine 

(a) Total change in length. 

(b) Change in the side of the each square section. 

1i 

[Ans. (a) 0'0353 mm, (b) 0·522 X 10- 3, 0'435 X 10- 3, o ·326 X 10-3 mm] 

t ·4. TAPERED BARS 

Consider a tapered round bar of length L and diameter D1 at one end continuc,usly 
increasing to diameter D2 at the other end, as shown in Fig. 1 ·9. The bar is subjected .o 
an axial tensile force P. Say Eis the Young's 
modulus of the material of the bar. In thi s 
case maximum stress occurs at end A and 
minimum stress occurs at end B, or in other 
words there is continuous variation of stress 
along the length. Consider a small element 
of length dx at a distance of x from the 
end A. 

where 

Diameter, 

re 
Area of cross-section, Am = 4 (Dr,) 2 

Stress at the section, 
P 4P 

f.,=A. = .,,D.,2 

Strain at the section, 

Change in length over dx i.e., 

4Pdx 
odx rcED,,2 

Total change in length, 

L L 
f 4Pdx f 4Pdx 

~£ = J rcED ,2 = J rcE(D1+ Kx)2 

0 0 
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=- ::K[ ~;--~
1 
j 

= - Tt4:K [, DD~~: ]= r.4:K [ D~~:.l J 
f"' ,; I 

Substituting the value of K=P2 -;,D 1 

Total change in length, SL= ;~LD 
· 1t 1 2 

. , . ' 

Tapered Flat. Consider a flat of constant thickness t but breadth varying uniformly 
lfom B1 at one end to B2 at the other end. Length of the flat is L. 

, ... L 

Fig. 1:10 

) 

r' I ---r 

The flat is subjected to an axial tensile force P as shown in Fig. ;1 · 10. Say the modulus 
of elasticity of the material of the flat is E. · ' 

where 

,., 

Again consider an elementary strip of thickness dx at a distance of x from end A. 

B B B2- B1 B K Breadth .,= 1+-L- -. x= 1+ x 

Area of cross-section, 

Stress, 

, ~train, 

K _ B2-B1 
L • a constant 

AIIJ= B,,. t = (B1+Kx) t 
p p 

Jx=-A,,-= t(B
1
+Kx) 

f,, . p 
€:i: = e = Et (B

1
+ Kx) 

Change in leHgth over dx, 

dx= Pdx 
Et (B1+Kx) 

\ 
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L 

J 
Pdx Total change in length, 8L= - - -

Et (B1+Kx) 
0 

L 

= it j l tn (B1 + Kx) I 
0 

u 

· · Example 1"4-1. A bar of square section throughout, of length l metre tapers from 
an area of 20 mmx20 mm to the area 10 mm x 10 mm. £ = 200 x 103 N/ mm2, determine 
the change in length of the bar, if the axial force on the bar is IO kN compressive. · 

Solution. Since there is compressive force acting on the har, there will be contraction 
in its length. 

Fig. 1 · 11 

Consider a section X-X at a distance of x from end A. 

Side of the square, 
20-10 

a:c= 10+ lOOO X X 

=(IO+·OI X) 

Area of cross-section, A .. = a:c2=(IO+o·OJ x)2 

Stress, J. = _ !O x 1000 _ _ 10,000 
• a,.2 - (lO+·OJx)2 

f., 10,000 
Strain, €,.=-£ =- E(lo + ·o1x)2 

Change in length over dx, 
10000 dx 

3dx=- E(IO+·Olx)2 
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1000 . 

I 10000 dx 
Total change length, 8/= - WO x 103() o+ ·o l.x)2 

0 

1000 

= - 2~ /- C~l) ·00+·01x)-1 I 
0 

.=+ 0~2 [-fo-- -k-J. 
l 10 = -0'2x 200 = -0·25 mm. 

.. . Example t·4-2; In a bar of rectangular section, the width tapers from 25 mm to 15 
mm, while the thickness tapers from 12 mm to 8 mm over a length of 500 mm. The bar is 
subjected to a tensile force of 8 kN. If E= 1 x 105 N/mm2, determine the change in the length 
of the bar. 

Solution. Consider that the axis of the bar is passing through CG of the section at 
both the ends. The Fig. 1'12 shows the tapered bar with section of 25 mmX 12 mm uniformly 
tapering to the section 15 mm X 8 mm. 

'I l\ 

t 
I dkn l - I Wx 

25mm ~---
i /I ,~ 

Fig. 1·12 

Again consider an element of length dx, at a distance of x from the end A. 

_:__ 2·5_ ,,(25- 15) = c2s- ·02 ) 
Width, w.- 500 .. · X X 

- 12- (1 2- 8) X = (12-'008 X) Thickness, t. - 500 

Area of cross-section, 

Stress, 

Strain, 

A,,= w., t,.= (2s - 0·02x)(12- ·008x) 

, 8 X I 000 8000 
f,. = -' A.,, (25-·02x)(12....:·,008x) 

·8.000 
£.,= E(25-''02.x)(l2-"008x) 

Change in length over dx, 

8dx 
. 8009 d;, 

E (2S - ·02x)(l2-'008x) 

.· ·,: · , 

I 
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Total change in length, 
500 r 8000 dx 

a/= j I05(25- 0'02x)(12-·00L., 
0 

500 · J 2·5 dx 
= ·os (25 - ·02x)( 30- ·02x) 

0 

500 

0·2 .f ! ( 2s·=
1
·02x - :fo-1-ah ) dx 

0 

I I . L 
=- 04 (= . .:- -o-2Y In (25- 02x)- (- ·02) 

500 

= - 21 In (25--·02x)- ln (30- o·02x) I 
0 

- - ? 1 · _!2 - 20 J 
- - L In 25 In 30 

[ 
20 25 J 

= + 2 In '.lO x J5 

= 2 ln 1·111 = 2 X"I052= ·2 104 mm. 

500 

In (30 - ·02x) \ . I 
0 

1~ 

Exercise 1·4_ I. A tapered round bar of length 150 cm, has a diameter of 2 cm at one 
end which uniformly increases to a diameter of 3 cm at the other end. If £ = 2000 tonnes/ 
cm2, what load is required to produce an extension of l mm in the bar. . .I' 

[Ans. U-2832 tonne] 

Exercise 1·4-2. A flat of rectangular section has area of cross-section 3 cm x 1 ·2 cm 
:-:tone end which uniformly decreases to area of cross-section 2 cm X 1 ·2 cm. The length of 
the flat is 80 cm. If an axial tensile load of 2'5 t onnes is applied on the flat, what will be 
extension in its length. E= 1000 tonnes/cm 2. [Ans. '676 mm] 

t·s. BAR SUBJECTED TO VARIOUS FORCES 

A bar of uniform section is subjected to force P1 (compressive) at section A are and 
to force P 2 (tensile) at section D. Then at sections Band C, the forces applied at are P 3 and 
p 4 respectively as shown in Fig. 1·13. Consider the three portions J, II and III i. e., AB, BC 
and CD of lengths I 1 , L 2 and L3 respectively. 

Portion AB will be under a compressive force P 1 and the net force available at B for 
portion BO is P 3+ P1 • The portion CD will be under a tensile force P 2 and the net force ·at 
C for the portion BC will be P4-- P2• 

To r.naintain equilibr ium of the central portion BC, P3+ P1= P.1- P2 
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A I B II C 

~- tFP3 a 
~LI lll• L2 11 1• 

A I B 

P1 ~ , • _ Et-pl 

Fig. 1·13 

- p) 
2 

STRENGTH OF MA TERTALS 

If Eis the Young's modulus of elasticity of the material. Contraction in the length AB, 

Contraction in the length BC, 

Extension in the length CD, 

SL = 4P2 X ..!..i_ 
3 rcD2 E 

Total change in length, Si= -S/1-812+8/a 

The bar in this article can also be considered with different stepped diameters. 

Example 1'5-1. A stepped circular bar 150 mm long with diameters 20 mm, 15 mm 
and 10 mm along the lengths AB, BC and CD respectively is subjected to various forces as 
shown in the Fig. l' 14. Then! is a tensile force on section A (as the fo1ce is pointing away 
from the plane) and there is a compressive force on section D (as the force is pointing toward~ 
the plane). Deterrnine the change in length if £ = 2 X 106 kg/cm2• 
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A 8 ,., ·' 

u-~ 
8 ll C 

osr(y., 
C Ill D 

• I 
- ~ .. ~ .. ~ 

l'r . 1T 

Fig. 1 ·14 

·' 

· :·· .· 

. I . 

.; :i . 

· . .. ·.·.~-

Solution. Consideriog P<;>r't ion AB, a re~ction of 2 .tonnes is acting on the plane BC, 
~ 

so for portion BC the the force available is l. '5- 2=-0'5 tonne or the tensile force of0'5 
tonne is acting on the plane B considering the portion BC. Again a compressive force of 1 
tonne is acting on the plane D, there will be equal reaction of 1 tonne on plane C for portion 

~ 

CD. But the force at C is l'5 t.on.nes, so a force of J '5- l = 0·5toi1.ne is acting on" tlte plane 
C for portion BC. Or the port'ion BC is under a tensi le force of 0'5 tonne. 

Areas of cross sections 

•' .P 

A2= ~ x 1 ·52 ~ 1 '767 cm2 
. . 4 

A3 = ~ X l 2= 0'7854 cm2 4 .. 
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Extension in portion AB, 

2 X4 
a/1 = 3.1416 x 2000 • E= 2X 108 kg/cm2 = 2000 tonnes/cm3 

= 1 '273 x 10-3 cm. 

Extem.ion in portion BC, 

0·5 x 4·5 
3/2 = 

1 
.
767 

x 
2000 

= 0'636 X 10 s cm 

Contraction in portion CD, 

1 X6'5 
8/s= 0'7854 X 2000 = 4' 138 X 10-s cm 

Total change in length, 8/=8l~+a12-8/3 

= (1'273 + 0'636- 4'138) x 10-s cm 

=-2'229X 10-s cm. 

Exercise t·S-t. A bar of steel of diameter 16 mm and length 600 mm is subjected 
to axial forces as shown in Fig. 1'15. If E for steel=210 x 10a N/mm2

• Determine the change 
in its length. [Ans. 0'00] 

SkN 1kN 3kN 

t- 200 +200 + 200--t 
mm mm mm 

Fig. 1·15 

Exerch1e 1'5-2. A round tapered brass bar o f length 500 mm is subjected to loads as 
shown in Fig. I' 16., Determine the change in length if E= 1 x 106 kg/cm2 • · 

[See Article I '4) [Ans. -0'0655 mm] 

300kg 500kg 
tOmm+ 

700kg 
20mm + 500kg 

Fi~. 1'16 





2.0 

8/r = 8h' +oh" = c~tension <ilue. W · lts 0w,n wejght 

+extension due to the weight of the lower portion 

SI'- wh2 
_ o·oo78 x 5@x5o _ 

1 
- 2E - 2 X· 21x 106 ' 0 · 

=4'875 X 10-6 cm · 

Weight of the hollow portion 

= W,,= : (l ·22- ;'0·62) >.< 50 X 0'0018 k& =0'330 kg, 

where 

So 

t-l" W1t 50 
01 = --x-

A. E 

Aa = area of cross section of solid portion 

= : (1'2)2=1'131 cm2 

0'330 X 50 
ol/' = ------1' 131 X 2 X 106 7'294 x 10-s cm 

Total elongation of the bar 
•, 'i·' I 

= (4'875+4'875+7'294) >.< 10- 5 

= 17'044 x 10-6 cm: 1 

' 
Exercise 1'6-1. A circular steel ·bar. di~metet_ i10 tµ)ll aµd length 1500 mm is fixed at 

its upper end. If the weight density of steel ~s 0'0078 kg/chi5 aetermine : ' 

(a) maximum stress dcvelope.d in bar, 
·, l ;•. J 

(b) elongation of bar under its own 't'trlght. Oiv~n E= 2 x 106 kg/cm2. 

\ [Ans.; far 1·17 kg/cin2 (b) tN1875 X 10-3 mm] 

1'7. BAR OF UNIFORM STRENGTH 

A bar of varying section is shown 
in Fig. 1 · 19 such that the· stress developed in 
the bar at. any section is the same. Say w is 
the weight per unit volume of the bar. The 
area of cross section aj: the bottom edge is A1 
and area of cross sectioJ.?. at top fixed edge is 
A2 and length of the bar is H. 

j - I • \ 
:• i • i ' 

Let i us consider a small elementary 
strip ABCDrof length •dy at a distance of y .; 
from the .hottoi;n : edge . Say the stress 
developed in tQ.e i J:jar- ~brqug~ µt its length 
. f ! ' • ! ! 
l S . I i i , , 

~ t ; !.,.. -~ t 
Say area at (:!J = A 

f 

Area at AB = A '= A+ dA 

Weight of~'tr1p·, 
1 

= wA . dy 

·., 

J I ' I 

,., 

I' 

I , 

H·, J '. 
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For equilibrium 

f. A+ w. A dy=f(A + dA) 

wA dy=f . dA 

or 

Integrating both the sides 
A 0 H 

J dA w J --y=y dy 
A, O 

. A2, 

or llti A~=; · H 
A1 

or 

or 

or at any distance, 

21 

Example t·7-1, A vertical circular bar 150 cm high is. subjected to a uniform stress 
of 2 6 kg/cm2 throughout its length. The diameter at the bottom edge is 6 cm, determine 
the diameter at the top edge if it is fixed in the ceiling. Given the weight density =0'0078 
kg/cm3• 

s,,Iution. Arca of cross section at the bottom edge, A1 = ; 62= 911 cm2 ., Weight 

density, w=·0078 kg/cm3; Height, ll= l50 cm; Uniform stress,/= 2'6 kg/cm2• 

Area of cross section at the top fixed edge 
wH 

A2 =A1 el 
·0078 X 150 

=9n e ~--= 9i; x e·45 

= 9ft X l '5683= ~ D'i.3 
4 

Diameter at the top edge, 

D~= r 9n X1"56~3 X4 
. rv · * 
= 'V56'4588= 7'514 cm. 
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Exercise 1·1-1. A copper bar of uniform strength, 2 metres long is suspended 
vertically with its top edge fixed in the ceiling. The uniform stress developed in the bar is 
17·8 kg/cm2• If the diameter at the bottom edge is 8 mm, what will be the diameter at the 
top edge. Given weight density of copper= S·9 X 10- 3 kg/cm3 • [Ans. s·tt mm] 

t·s. SHEAR STRESS AND SHEAR STRAIN 

Fig. 1 · 1 (c) shows a rectangular block distorted under the acti<m of the force P acting 
tangentially to the top surface ABGH. At the bottom surface which is fixed to the ground 
there is equal and opposite reaction P. 

This force which is parallel to the plane is called shear force (article 1' 1). This shear 
force per unit area of the plane on which it is applied is called the shear stress q. The shear 
stress tending to rotate the body in the clockwise direction is taken to be positive. The angular 
displacement of the vertical side AD by an angle <fa, is called the shear angle. 

H 

! 
D C 

'If 
~L~ 

I ( 0) 

Fig. I ·20 

C1' 
' 

~1 cl 
(>I 

.c. 
<.fl 

Sh ear stre.,n, 4> 

( b) 

Fig. 1 ·20 shows a block of length L, breadth Band height H subjected to a force P 
at the top surface while the bottom surface DCEF is fixed. Under the action of this force, the 
block is distorted to a new shape A'B'G'H ' DCEF. 

· shear force, P P 
Shear stress = - -- ·----· B x L area of the plane, ABGH 

= q (generally denoted by this letter) 

Sh 
. displacement AA' ,1, 

ear stram = AD = tan .,, . 

But the angle ¢, is very very small within the elastic limit of the material. 
Shear strain = tan if>!"" sin ef> ,,=,, ¢,. 

So the shear strain is given by the angle of displacement ef>. 

Jf the force Pis gradually increased, the shear stress q also gradually increases and the 
angle of displacement if, changes with q. Fig. 1 ·20 (b) shows the variation of ¢, with respect 
to q. Upto a particular l imit shear stress q is directly proportional to !lthear strain r/>. This 
limit is called the elastic limit. Within the elastic limit, if the shear force is removed from the 
block, the block returns to its original shape and original dimensions. But if the shear force is 
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removed after the elastic limit stress (q.), there will be permanent deformation or distortion left 
in the block. 

Within the elast ic limit q ex: ¢, 

or q= G</> · where G is the proportionality constant 

G- shear stress, q 
- shear strain, ¢ · 

Ratio of { - is defined as the Modulus of rigidity, G. 

Complementary shear stt'ess. Fig. 1 ·21 shows a block subjected to shear stress q 
at the top surface, and a shear stress q (due to the react ion) at the bottom surface. The shear 

_rq~r?·" 
qxlxB Anticlockwis e 

Clockwise couple 
couple · 

Fig. 1·21 , j,· 

angle ¢, is very small (and not so large as shown in the fi gure) the length DC, breadth A'H' 
and height A'D' can be considered as negligibly changed fr om their original dimensions L, B 
and H respectively. 

-+ 
Shear force at the top surface = q X L X B 

+ 
Shear force at the bottom surface= q XL XB. 

These two forces constitute a couple of arm H , tending to rotate the body in the 
clockwise direction. 

Moment of the couple = qXL X B x H-;) 

For equilibrium this applied couple has to be balanced by the internal resistance 
developed in the body. Say the resisting shear stress on the vertical faces is q' as shown in the 
figure. 

Shear force on the surface CEG' B' = q' x Bx Ht 
Shear force on the surface DFH'A'=q'xBx H ,I.. 

These two forces constitute an anticlockwise couple of arm L, resisting the applied 
couple. 

Moment of the resisting couple = q' x B x H x L. ') 
For equilibrium q' x BHL= q X LBH 

or q'= q. 
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This -resisting stii:ess q' is called .the ·complementary sh.ear str~ss a:nd always acts at an 
angle of 90° to the applied shear stress . Moreover if the applied stre,s is positive i.e .. , tending 
to rotate the body in the clockwise d irection, then the compl~!llentary shear stress will be 
negative i.e., tending to rotate the body in the anticlockwise direction. 

The use of the concept of complementary shear stress 'Will be made in the chapter 3 
on principal stresses. 

Example 1·8-l. Fig. 1 ·22 shows a rivet joining two plates of thickness t= 1 ·2 cm and 
width= 6 cm. The plates are subjected to for-ce F= 1200 kg. If the diameter of t"'1~ rivet is 

diameter 
of rivet 

Fig. 1 ·22 

15 mm, determine the shear stress developed in the rivet. The ultimate shear strength of the 
material of the rivet is 2·s tonnes/cm 2. How much maximum load the plates can carry. 

Solution. The plates carry the force F which acts as a shear force on the circular 
plane aa' of the rivet. 

This plane aa' is along the contact surface between the two plates. 
Force F= qOO kg 

Area of cross section under shear force, 

TC TC 
A = 4 (d):!= 4 ( I ' 5)2= I '767 cm2 

Shear stress in the rivet, q= ~ = J
1
.;~~ = 679' I 2 kg/cm 2. 

If one section of the rivet is subjected to shear force, the rivet is said to be in single 
shear. 

N0w the ultimat,e shear stress of the materi iil of the rivet 
q .. u= 2800 kg/crn2 

Maximum shear force, = qu11 x A 

= 2800 x 1·767= 4947'6 kg. 

Un<ltr thi& rnaxirrmm shear fore~, th~ rivet will bre;ik a!ong t}ie section ~, a~ shown 
in the Fig. I ·22. 

Example 1·8-2. A hole of SO mm di~meter is to be punched in a mild steel ~heet of 
t·6 mm thickness. If the ultimate shear strength of mild s~eel is 290 N/mm2, determine th:~ 
force required to punch the hol~. · 
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Solu.tion. Fig. 1 ·23 shows a phte of 
1 ·6 111m thickness with a punched hole of 50 
mm diameter. 

where 

Area of cross section under shear 
=1tDt 

So 

D = diamcter of punch 
t = thickness of plate 

A = 1tX50 X ]·6 
= 80 rc cm2 

Ultimate shear strength of plate, 

quu= 290 N /mm2 

Force required to punch the hole 
= qu11 X A 

= 290 x 801t N = 7288Y 12N= 72·885 kN. 

Fig. t ·23 

Area und'er 
shear 

-25 

Exa:mple 1·8-3. Fig. 1 ·24 shows two tie roJs joined through a pin of diameter d. 
Tie rods are transmitting a pull of Ip kN. Determine tlw diam.::tcr of th) pin, if the shear 
stress in the pin is not to exceed JOO N / mm 2

• 

p 

11E ROD PIN JOINT 

Fig. 1 ·24 

Pi n in 
ci')\l ble2 shear 

Sol~~ion. The pull P transmitted by the tic rods acts as shear force on two planes aa' 
and bb' of the pin. The pull is divided equally on both t he planes. This force P acts as shear 
(orce on these planes as it is parallel to the circular p lanes of the pin. 

Shear force on each section 

Allowable shear stress in pin, q= 100 N /mm2 

Area of cross section, A= ~d~ 
4 

So TT f• p q.4c- == 2 

100 X ; d2=5000 

or d= f 5000 X 4 
\J 100 rt 

Diameter of the pin, r/=7·98 P-11ll 
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Exerdse 1 '8-1. A rivet of dia meter 25 mm joins two plates transmitting a pull of 
10 kN. Determine the shear stress developed in the rivet. [Ans. 20·37 N /mm2J 

Exercise 1'8-2. A hole of 5 cm diameter is to be punched in a brass plate of 2 mm 
thickness. If the ultimate shear strength of brass is 210 N/m m2, determine the amount of force 
required to punch the hole. [Ans. 65'97 kN] 

Exercise 1'8-3. Two tie rods transmitting 2 tonnes of pull a re connected by a pin. 
The diameter of the pin is 2'4 cm, determine the magnitude of the sheai' stress developed in 
the pin. (Ans. 0·221 tonne/cm2] 

t ·9. VOLUMETRIC STRESS AND VOLUMERIC STRAIN 

A body subjected to a stress equal in a ll the directions, is said to have volumetr ic stress 
or t he hydrostatic stress . Consider a body at a depth h from the free surface of the liquid in 

p 

Fig. 1·25 

T 
p h 

p:wh 
w: wl'ight dl'nsity 

of liquid. 

a ccP.tainer. Jf w is the weight density . of the .liqt:id, then_ hydrostatic pressure p= wlt. 
According to Pascal ' s law in Fluid Mech anics, the liquid tran~m1ts pressure equally in all the 
directions. i.e. the intensity 0f the pressure on th e body remains the same. Say the body is a 
spherical ball of volume v. When it _is subjected t o V?lumctric stress, its volum~ Vis reduced 
t o V'. The change in volume, SV= V -V, (: educt!on 111 volume). The change m volume per 
unit volume i.e., SV/V is termed as volumetric strain, E,. 

As the depth of the body ir.creases, 
the magnitude of the pressure p increases . a~d 
the volumetric strain also increase~. W1thm 
the elastic limit, volumetric str.ess is directly 
proportional to volumetric stram. 

or 

pel:: . Ee 

p = KE., where K is the constant 
of proportionality 

K =..!!..._ is called the Modulus of 
e, 

compressibility or Bulk 
modulus. 

Ill 
Ill. 

~ ... 

H 
> 

-----E .,. 
Volum~tric 

str a i n 

Fig. 1·26 
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Example 1'9-1. A spherical ball of a material 100 mm in diameter goes d own to 
a depth of 500 metres in sea water. If the weight density of sea water = I 040 kg/m3 and the 
Bulk modulus of the material is 16 x 10s kg/cm 2, determine the change in the volume of 
the ball. 

Solution. Weight density, w= 1040 kg/m3 

= 1040 x 10- 6 kg/cm a 

= '00104 kg/cma 

Depth of water upto the ball, h= 500 metres 

= 500 X 100 cm 

Hydrostatic pressure or volumetric stress, 

p = wh 
= '00104 x 500 x 100= 52 kg/cm2 

Bulk modulus, K= l6 x 10s kg/cm~ 

Volumetric strain (reduction in volume), 

Original volume, 

p 52 - 3'25 10-s 
f.o= K 16 x 10s- X 

IW 
f..,= V or av, change in volume= f.u . V 

V nD3 n X (I 00)3 0'5236 106 a = -
6
-= 

6 
= X mm 

oV=V. f.o= 0'5236 X 106X 3 25 x 10- 5 

= 17'017 mm3= '017 cma. 

Exercise 1·9-1. A cube of 200 mm side of a mater ial is subjected to a volumetric 
stress of 50 N/ mm2 • What will be the change in its volume if the Bulk modulus of the material 
is lOO X 103 N/mm2• [ Ans. 4000 mm3] 

1'10. TENSILE TEST ON MILD STEEL 

. !'vfikl steel is the m1tterial most commonly used in machine members and in structural 
~pplicat10ns. A specimen of circular section and of the shape shown in Fig. 1 ·27 is clamped 
m the fixtures of a testing machine. Collars are provided at both the ends so that the specimen 

~~ 
Fracture 

Fig. 1'27 
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is firmly fixed in the fixtures of the machine. t he cc11trai portibn, where section is uniform 
is called the guage length. Then the sptcuncn is gradually extended and the hiternal resi1;tailce 
ofl'er'ed by the specimen (i.e., tensile load) gradually increases. During the init ial stage i.e., 
when p oc 8/, extensometer is used to measure very small changes in length. AfLer this stage, 
vernier scale on the machine is used to measure cxteuj;ion. Load and extension are simul- . 
taneously recorded t ill the specimen breaks into two pieces. P and 8/ are now plotted on a 
graph taking suitable scales. 0 to A is a straight line ; stress at A is called the limit of prl!)por
tionality. The material obeys Hooke's law i.e., 

p oc. 8/ 

P 81 
or A ocT 

stress, f oc E, strain 
/ = EE where Eis the Young's modulus of elasticity. 

B is the elast ic limit, i.e., if the load is removed at thi s stage, strain will also return to 
zero When the material is loaded beyond this stage, plastic deformation will occur in the 
material, i.e., after the removal of the load, strain is not fully recovered and the r esidual 
strain (0r deformation) remains in the materi al. From O to B, there is elastic stage and from 
B to the point of fracture is the plastic stage. 

Beyond B i.e. , at the point C, there is considerable extension with decrease in internal 
resistance. This is called the upper yield point and the stress at this point is called the upper 
yield strength . At D again the internal resistaJ1ce of the material increases upto the point 
E, i.e., the maximum load point. At this p oint, necking takes place in the specimen and 
further extension takes place in the vicinity of this neck. This point is also called the point of 
plastic instability. 

The stress at t he maximum load i.e., P.,,,.,/A is called ultimate tensile strength of the 
material. At the p oint F, the test piece breaks making a cup and cone type of fracture as 
sh own in the figure which is a typical fracture for a ductile material. The two pieces can be 
joined together to find out the diameter at the neck where the specimen has broken, say t4c 
area at. the neck is a. 

Nominal breaking strength 

I Load at fracture / 
- A (original area of cross section) 

Actual 
. Load at fracture 

breakmg strength= ( f k) a area o nee 

Percentage reduction in areas 
A-a 

= - A- X lOO 

81 
Percentage elongation = -1- X 100 

where 8/ is the elongation upto fracture. 

The specimen of mild steel suffers a considerable increase in length till it breaks. This 
type of material is called a ductile material. On the contrary, a brittle material like cast iron 
fails after very small elongation . 

In some ductile materials, which d o not exhibit a definite yield point, a proof stress 
(at 0'2% strain) is determined to fi nd the onset of yielding (as shown in the figure). 

Percentage elongat ion and percentage reduction in area give estimate about the ductility 
of the material. 
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Now for different gauge lengtl\S and different areas of cross-section the percentage 
elongation will be different and to draw a comparison between the ductility of various materials 
becomes difficult. To avoid this difficulty, similar test pieces must be tested for all the 
materials if the test pieces of same gauge length l and a1'ea A cannot be tested. 

Barba has shown th.at extension upto the maxi11rnm load i.e. , 8/1 is proportional to the 
length of the specimen and extension beyond maximum load and upto the point of fracture ie., 
M2 is proportional to VA, where A is the area of-cross section 

or 

8/1 ex: / 

= bl 

8/2 cc -./A 
= c-1 7r 

T otal elongation, 8i=ol1 +812=·bl+ cif A 

Similar test pieces will have the same ratio of . ..,-~ = -D{~,
25

rt 

the same for similar test pieces . 
The constants b and c are call~d the Barba's constants. 

I 
or D ratio will be 

Example 1'10·1. An aluminium a lloy specimen 12·5 mm dia meter and 5 cm gauge 
length was tested under tension. During the first part of the test, following readings were 
recorded 

Load (kg) 0 750 I 1000 I 1250 1500 I 175 0 2000 

I I 
- -·~- -. . 

Extension (mm) 0 '0327 '0450 '0568 '0756 
I · 120 '216 

Plot the load extension diagram and determing the following values : 
1. Young's modulus of elasticity ; 
2. Limit of proportionality ; 
3. o· 1 % proof stress. 

Solution. Diameter~of the specimen 
= 12'5 mm= 1'25 cm 

Area of cross section , A=; (1·25)2= 1'227 cm2• 

Graph is plotted between load in kg and extension in mm (taking suitable scales for 
beth). From the graph OA is a straight line and beyond the point A load-extension curve is 
not a straight line. So the point A represents the limit for proportionali~. 

Taking a point C along the straight line 
Load at C = 500 kg 

p 500 2 
Stress = A= 1.227 kg/cfn 

81, extension at C = '022 mm 



ao 

Strain 

Young's modulus, E 

0 022 =so 

_ -2QQ_ 2Q_ _ 9'26 105 k / 2 - J '227 X ·022 - X g cm . 

_ 1250 _ . 
11 Limit of proportionality -

1
.
227 

-1018 75 kg/cm . 

Guage length 

o· 1 percent extension 

= 50mm 

- 50 x 0· 1 = 0'05 mm. 
100 

STRENGTH OF M.ATEilIALS 

(See the graph) 

At 0·05 mm extension draw a line EB parallel to the straight line OA, intersecting the 
load extension curve at the point B. 

Load at point B = 1838 kg 

So o· 1 % proof stress - ~ - a - 1.227 -1498 kg/cm . 

2000 

1S38 -------- ·--1750 

roo 
1250 

0> 1000 
->< 

't, 
750 d 

0 
..J 

500 

250 

Limit of 

p 

I 
I 
I 

I 

,B 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

(from graph of Fig. l '28) 

1
dt 00~--~0~2~+~:-l:~--:!.o~s-~-1~0---~12:--:.,~4--.1~6:-~.1s~-;o~-2,~o-22 

---- Extension (mm) 
Graph P Vs f 1 

Fig. 1'28 
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Example 1 '10-2. A specimen of an aluminium ~alloy 1 ·2 cm in diameter was tested 
under tension. The linear strains parallel to the application of the force P and the lateral 
strains measured with the help of strain gages, were as follows : 

Pin kg 400 800 1200 1600 2000 2400 2800 3200 3400 3600 3700 3800 3900 3950 

-- -- -- ---- ---- -- ---- -- -- - -
Linear 
Strain € 1 0·343 0 692 l '03 1 ·39 1·72 2·07 2'40 
( I X 10-3) 

2·734 3·53 4·30 4·90 5'65 6·95 8'4 0 

- -- -- - - -- ------ ---- -- -- -- ----
Lateral 
Strain £ 2 
(I X (0- 3) 

0'108 0'217 0'322 0'435 0·541 0·650/0·754lo·s57 - - - - - -

Plot graphs: (i) P Vs. € 1 (ii) € 1 Vs. £ 2 and determine (a) Young's modulus of elasticity, 
(b) Poisson's ratio, and (c) o· 1 % Proof stress. 

, 
Solution. Graphs have been plotted as P Vs. e1 and e1 Vs. e2 as shown in the 

Fig. l "29. 

4000 

3500 

1
3000 

2500 

- 2000 

"' V 

0 1500 
u.. 

500 

:/ 
I . 

r 
/l 
. I 

I 

P = 2 3 54 kg t 
€1 = 2 X 103 

0 ~-:r-::--~----":--':-..:....-'--
0 0 2 4 6 6 10 

~ »---strai n ( €
1 

r'"' -3 
1000 X 10 

r 
1·0 

08 
.., 
10 

>< 
0 ·6 

w"' 0·4 

Fig. 1·29 

-3 
€1 = l· 5 X 10 

E2= 0·475 X 1ci3 

2 3 
~~~-E,(1 X io3

)~ 
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' 1a) On th~ straight porJjon of the ctirve choose a point. P, 

where force P = 2354 kg 

Strain, 

Oi~!)1cter. of the t~.st piece= I ·2 ems 

Area of cross section, A = _!:_ (1'2)2 = 1'13cm2 

4 

Young's modulus of elasticity, 

E= _!_ X ..l:_ 
A E 1 

2354. 103 

=~ X2 
= l·OS X 106 kg/cm2. 

(b) The slope of the curve between e:1 and E 2 will give "'ls the value of Poisson's ratio. 

Choose any point K 0 :1 the straight graph, where 

Lateral strain, e2= 0·475 x 10-3 

Linear strain, 

Poisson's ratio. 

e1=t·5 x 10-3 

1 0·475 10- 3 
~ =~- X 10_3 = 0'317 . 

(c) Take 00' equal to o· 1 °/r. strain or 1/ IOOQ. strain and from O' draw a line O'P' 
parallel t o the ·straighf pot-tion of the graph (P Vs. E 1) intersecting the graph at the point P' 
where force P'= 3550 kgf · 

Area of cross section, A= 1:'l 3 cm2 
r 

0·1 % Proof stress 
P' 3550 

= - = - --· = 3160 kg/cm2 
A 1 · J3 · 

Example 1'10-3. A mild steel lest p iece of 20 cm gauge length is 111:uked off in 2 
cm length and tested to destructi on. The extension in each marking rneai;urcd from one 
end is equal to 0·32-cm, 0 36 cm, 0'46 cm, 0·50 cm, o·96 cm, 0·34 cm, o :52 c:m, 0·44 cm, 0 36 · 
cm and 0·32 cm. · 

By using gauge lengths of 8 cm, 12 cm, 16 cm and 20 cm, respectively, explain the 
effect of gauge -fengtµ on the percentage elpngation. 

Solution. Gauge lengt]l, /1 = 20 cm 

Change in length, S/1 = s:os cm 

P.ercent elo.ngation, = 5·og X 100= 25'4% 
20 -

Gauge · length, 

Change in length, 

12= 16 cm 

U~= S-08- 0·32 - 0·32= 4·44 cm (considerin~ the ;1,iddle :portion) 



SIMPLE STRESSES AND STRAINS 

Percent elongation 

Gauge length, 

Change in length, 

Percent elongation 

Gauge length, 

Change in length, 

Percent elongation 

4'44 · 
= - 16- X 100= 27'75%. 

/ 3= 12 cm 

8/3 = 4'44- 0'36- 0'36= 3·72 cm . 

3·72 
= ~ X l.00 = 31% . 

/~ = 8 cm 

a/~ = 3·72- '46- '44 ·= ?.'82 cm 

,o-, \
82 

X 100 ·= 35'25%. 

3 J 

It can be concluded while viewing the effect o f g:wgc le,:gth on the percentage elonga
tion, that the percentage elong,ttion goes on increasing as the g wgc kngth is decrea'sed. 

Example t ·to-4. A r .:,und specimen of wrought irnn, diameter 1·25 cm and gage 
ength equal to 10 cm was tested in tensio n upto fracture. The observat ions taken were as 
iollows : 

Load at the yield point = 2'95 tonnes 
Maximum load = 4'40 tonnes 
Load at the time of fracture = 3'70 tonnes 
Diameter at the neck = 0'92 cm 

Extension upto the maximum loa<l point = 2' l cm 

Total extension = 2'85 cm 

From the above data determine (a) yield strength (b) ultimate strength (c) a ct1.1a l 
,reaking strength (d) percent elongat ion for a test p iece cf gnug~ length I 5 cm and diameter 
'.cm. 

Solution. Diameter of the test piece, d= 1 ·25 cm. 

Area of cross section, A = : x (l '25)~ = 1 ·226 cm 2. 

_ Load at the yield point 
- A Yield strength· 

2·95 
= 1.226 = 2'41 tonnes/cm2• 

Ultimate strength 
Maximum load -

A 

. 4·40 3·59 I • = 1.226 = tonnes cm-. 

Load at the time of fracture 
Actual breaking strength=-= ___ A_r_e_a_a_t_t_h_e_n_e_c--c-k--

-
3 ·7 

y;'· {0'92) 2 

4 

= ~·57 tonncs/cm2, 
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and 
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Extension in the test piece = bl+c4" X 

Constants, 

=extension upto the point of the maximum load + further 
extension 

2'85=2'1 + 0·75 

b= I.l.=0·21 
IO 

0·75 
c= - -,J A-

··· 0'75_=0'68. 
,J 1 ·226 

(b) R esults in ar,other p iece, whose gauge length is 15 cm and dia meter is 2 cm. 

Si,~ce yield strength, ultimate strength, ~ctiial breaking strength :1:'.cl constants b, c are 
the properties of the material irrespective of the dimensions of the test piece , therefore 

Yield strength =2'41 tonnes/cm2 

Ultimate strength = 3'59 tonnes/cm2 

Actual breaking strength = 5 · 57 . tonnes/cm 2 

P I . __ ( bl+c4°A) x 100 ercentage e ongat10n 1 / 

= ( 0'21 + 0'
6i8/--;-) X 100 

= 29'03%. 

Since A= ~ cm 2. 

Exercise t·to-1. (a) In a tensile test on a specimen 12'5 mm diameter and 200 mm 
gauge length, the following readinrs fl TC observed 

Force in kg 1 500 1000 1500 2000 

Extension in ·001 X mm J 38 1 
75 112·5 149 

Determine the Young's modulus of elasticity. 

2500 

188 

3000 

226 

3 500 1 
., 4000 

264 I 305--

(b) Afterwards the sp!cim~n w.ls tested to destruction and the maximum load recorded 
was 6000 kg. The diameter at the neck was 7·5 mm and the length between the gauge markr. 
was 260 mm. Determine the ultimate strength, percentage reduction ·in area and percenta:ge 
elongation. f Ans. (a) 2' 16 X I 06 kg/cn;12 (b) 4880 kg/cm 2, 63'9% , 30% ] 

Exercise l '10-2. In a tensile test upto de~truction on the specimen of mild steel of 
rectangular section 5 cm x l cm, the extensions measured on successive l cm length on 16 cm 
gauge length are as follows :-

o· 11, o·l7, 0·18; 0·18 ; 0·19, 0·21, 0·21, 0·29; o ·63, 0'64, 0·28, 0·26; 0·19, 0·19, 0·11, 
o·I7 cm. 

Estimate the percentage elongation of a round bar of the rnme material having a 
Jen~th IQ tip,.es the diameter, (.Ans. Barba'!i <;:on~tants b= 0· 111 c= 0'653 ; 22'82%] 
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Exercise 1'10-3. A metallic specimen of diameter I 5 mm ,and gauge length JOO mm 
is tested under tension upto fracture. The load at upper yield point is 6020 kg and · at breaking 
point it is 6400 kg while the maximum load is 9300 ~g. Distance between the gauge marks 
after the test is I 36'7 mm, and the minimum diameter at fracture is 9' 15 !mm. Determine the 
following :-

(a) Yield strength. 
(b) Ultimate tensile strength. 
(c) Percentage elongation. 
(d) Percentage reduction in area. 
(e) Nominal and actua l stress at fracture . 
[Ans. (a) 3406'9 kg/cm3 (b) 5263'16 kg/cm2 (c) 36'1% (d) .62'81 % (e) 3621'96 kg/ 

cm 3, 974 I ·25 kg/cm2] 

Exercise 1·10-4. A test piece 10 mm dia meter was marked with 5 cm and 10 cm 
gauge lengths and after fracture (which c,ccured r:car the middle section) the two lengths 
measured were 6'5 cm and 12·50 cm. Calculate the pr oba ble elongation for a test piece of the 
same material with gauge length 15 cm and diameter 20 mm. [Ans. 3·999 cm] 

1"11. STRAIN ENERGY AND RESILIENCE 

In the previous articles we have studi ed about the nc,rm al stress and normal strain ; 
shear stress and shear strain ; volumetric stress and volumetric str .iin. With in the elastic 
limit, stress is d irectly proportional to strain. 

·-- - I=: 
• 1 ":· t rr; •n 

\.: 

q · ~ l . Li '' I ; . ri, 'f) , . ' I 
~ .,, 1· ..... ! 
r -~ .' , t - 1.1 

.-, ! '' { .:J ____ ,_ 
- --··- · -"";-- ·~ 

SJ,:~J.r ... . ((;· ·, 

Fig. 1·JO 

' .:..- -~V 
\'·' ! '..!rnc tr, c stro,n 

( C ) 

Say a bar c'lrries a normal stress/ (tensile or compressive) producing a normal strain 
E (extension or contraction). Then 

r! ,;. ~train cm,rgy per unit volum.c; u'r i f. E 

f 12 
but E=E = 2E 

Total strain e:1ergy, u.,,.,. {j;; X volume of the specimen. · 

(has the units' ·of work donc-N mm or kg 
etc. etc.). · 

cm 

The strain ener gy, U absorbed by the speci~e~ is. also c died Resili"cnce. Because if a 
material is loaded producing stress within the,_elast1c l1m1_t, the l whatever energy is absorbed 
during loading, same energv is recover~d dunng unload!ng. Machine mcm b,ers . like springs 
possess the property of resilience. As m the case of an internal combustion engine. during the 
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openin_g of inlet or exhaust valve, spring on the steh1 of the valve is compressed and when the 
SJlr?ng rcJpases its energy the valve is closed. 

Jhe maximum strain energy absorbed by the body upto its elastic limit is · termed as 
, Proof Resilience. 

Proof resilience l (f,A) ( I• . L ) 
2 E 

. where /• . A.=Load at the elastic limit; P. 

f, ·f =change in length upto the elastic limit, oL• 

Proof resilience =iP, . 'BL.. 

Proof resilence per unit volume is called the Modulus of resilience. 

i.e. Modulus of resilience= {~ where/• is the stress at the elastic limit as shown in 

fig. l '30 (1a). 

Similarly if one studies the relationship between shear stress q and shear strain ; ; 
between volumetric stress p and volumetric strain Ee. 

Shear strain energy per unit volume, 

I _q:_ 
11•= 2 q if, = 2G 

Total shear strain energy, 

q2 
U, = 

20 
X V. 

Where q is the shear stress within the elastic limit and G is the Modulus of rigidity 01 
Shear modulus. 

Volumetric strain enr.rgy per unit volume, 

1 p2 
U~=2 p, Eu = 2K 

~ Total volumetric strain energy," 

1 !i'. I 1 ,. ' p2 
Ue= 2K . V. • I 

Where pis the pressure on the body·within its elastic limit and K is the Bulk modulu 
and Vis the volume of the body . · 

E:J!:aµiple 1 · 11-1. A round bar of 15 mm diameter is subjected to a tensile force o 
10 kN. If lepgth of t~e bar is 200 mm determine. 

C.~} SJrai~ ~.~Jrgy per unit;rqlume. 
(ii) Tot;\1"-std fn energy. . 

. '· 1;. ,· Giveµ elastic limit stress for the material · 
'' ; = 260 N/~m2 

,I ){,Quvg's ruod~l1.i°s of e~4*ty, E= .2'10 xrto'op N/ mm2 
·~"',~ 

.,j 
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Solution. Diameter of the bar = 15 mm 

Area of cross section, 
10kN 

A = ~ (! 5)2 
15mmdia.---·--.. 

=176"715 mm2 

Length of the bar, 
L=200 mm 

Volume of the bar, 

lOOmm---•~J 

Fig. 1·31 

Stress in the bar, 

l'"-176"715 x 200=35343 mm3 

10 X 1000 
176.715 =56"59 N/rnm2 (less than the elastic limit 

Young's modulus, 
stres~ of 260 N/mm2) 

E=2l0 x 103 N/ mm2 

. . p (56-"59)2 

Stram energy per umt volume, U = 2E =i x iio x ioa 

= 7"62 x lo-• N/mm2 per unit volume 

Total strain energy absorbed by the bar, 

U=x {~ x volume 

= 7"62 x 10-3 x 35343= 269'3 Nmm= 0"269 Nm. 

Example 1"11-2. A rectangular block 
of 80 mm x 60 mm x 40 mm fixed . at the 
bottom edge is subjected to a shear force of 
240 kN at the top surface as shown in Fig . 
l "32. Considering that shear stress is propor
tional to shear strain, determine. 

(1) Shear angle¢ . 
(2) Shear strain energy 

volume. 
for unit 

block. 
(3) Total shear strain energy 

Given G, modulus of rigidity 
= 840 x l02 N/mm2 

for the 

~·ornm--j 

· Fig. 1·32 

Solution. A, Area of the surface on which shear force is applied 

= 60 x 40= 2400 mm2 

Shear fo.ce, F= 240 kN 

Shear stress, 

Modulus of rigidity 

F .240 x 1000 
q=A = .2400 100 N/mui2 

= ?40x 102 N/mm2.J 

_, T 
40mm 

:. 
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Shear strain, q 100 
r/, = c= 840x 100 

J: 1.d. 1 180d . . = 840,ra 1an=840 x n egree 

. ="068°. 

One can realise that the shear angle r/i is very very small. 

Shear strain energy per unit volume, 

q2 . lOO x· IOO 1 , 
11

•= 2G, = 2 X 840 X 100 

= ·059 N/mm 2 per unit volume. 

Volume of the block, V=80x 60 x 40 = 192 x 10a mm• 

Total shear strain energy, 

~ 

U,= .
2
~ X V="0590X 192 X 103 

= 11"424 k Nmm=ll"424 Nm. 

STRENGTH OF MATERIALS 

Example 1·11-3. A spherical ball of aluminium· of diameter 100 mm' is subjected to 
a hydrostatic pressure of 90 N/mm'. It has been observed that p·ressure is directly proportional 
to the change in volume. Determine 

(I) Volumetric strain 

(ii) Vohimetric strain energy per unit volume 

(iii) Total volumetric strain energy. 

Giyen Bulk modulus for aluminium= 65 x 103 N /mm2 

Sol~don. Pressure, 
\ ·. ' p = 90 N/mm1 

·Bulk modulus, K ' , 
= 65 ~ 101 N/ mm2 

Volume of the sp·h~re, , 

'\. 1 V- nD
3 1

_ " >< (100 mm)8 

\' - 6 :- 6 . 
' i ,. -= 0·5236·x 106 mma. 

(i) Volumetric strain 

Ev= i 
90 

= 1 · 3846 x l,(P 1 

65 X 103 -

(ii) Volumetric strain energy per unit volume, 
· p2 ' ,. 90 X.90 

Uv = 2K = 2 x 6s x ·1os 

9tlN/mm2 

= ·062·3 N/mrri.'2 per unit volume. · 

.II, 

•j, ; 
... 

; 

Fig. 1·33 

\ . 

:_A lµmi ~•··; n 
:; ph ( ': s 

, .. 
! • 
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(iii) Total volumetric strain energy, 
2 

U,= fK XV='0623 X'5236 X JO& 

= 32620 Nmm=32'62 Nm. 

39 

Exercise 1"11-1. A circular bar of copper 16 mm diameter and length 200 mm is sub· 
j~cte.1 t1 a C):n?r-!ssivl! force such that its length is reduced by o· 1 mm. Determine 

(i) Stress developed in bar 
(ii) Strain energy per unit volume 

(iii) T,)t:tl stnin energy fo r the bar. 

Given E=lOO x }03 N /mm2 

[Ans. (i) 50 N/mm2 (ii) 12'5 x i0-3 N/ mm2 (iii) 502'650 Nmm] 

Exercise 1·11-2. A rectangular block of aluminium fixed on one plane is subjected 
to a shear stress q on the opposite plane. Jf the shear a ngle is 1/20 degree, determine 

(i) Shear stress q 
(ii) Shear strain energy per unit volume 

Given G= 500 X 102 N/mm2 
[Ans. (i) 43.633 .N/mm2 (ii) 0'1 90 N/mm2] 

Exercise J·lt-3. A spherical ball of volume o·s x 106 mm 3 is subjected to pressure 
p such that its v,•lume is reduced by 200 mm3. ff the bulk modulus = 170 x 103 N/ mm2, 
determine 

(i) Pressure p 
(ii) Strain energy per unit volume 

(iii) Total volumetric strain energy. 
f Ans. (i) 68 N/mm2 (ii) 13'6 N/mm2 (iii ) 6800 N mm] 

1·12. SUDDEN LOAD 

When a force P on a body is gradually increased, its change in length 3/ also gradually 
increases and the strain energy absorbed = 1/2 Pd/. But when whole of the load suddenly 
acts, change in the length of also suddenly 
takes place. This type of load is called a 
sudden load. As an example say a load W 
is being lowered on to a platform and at 
the instant when the load is very near the 
platform, suddenly the rope breaks, then 
whole of the load W suddenly acts on the 
platform producing 8/ change in its length. 

The load may act suddenly but the 
internal resistance of the body gradually 
increases from zero to the maximum value 

Work done on the body by sudden 
load = W.U 

Strain energy of the body= 1 /2 R.~/ 
where R is the internal resistance 

c,, 
u 
C 
Cl 

C 

r· · . .'\'. 

( !· 

Fig. 1·34 
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For equilibrium 1/2 R.31= W.81 
Internal resistance, R = 2 W 

Stress developed due to sudden load 
R 2W 

J,vddt n = - =--,, A A 

where A is the area of cross section 
fs11dde11= 2 /gradual 

where ~ is the st1ess when load Wis gradually applied, 

Example·l'l2-l. Water under a pressure of 6 N/mm2 is suddenly admitted on a 
plunger of diameter 100 mm. The plunger is attached to a connecting rod 25 mm diameter 
and 5 metres long. Determine the value of the stress develc,ped suddenly and dtfo1mation ot 
the rod. £ = 210 X 103 N/ mm 2• 

Solution. 
Water pressure, 
Plunger diameter, 

p= 6 N/mm3 

D= 100 mm 

Area of cross-section of plunger, 

A=~ (100)2= 7854 mm2 
4 

Sudden load on plunger, 
W= pA = 6 X 7854= 47124 N 

Diameter of connecting rod 
= 25 mm 

Area of cross section of connecting rod 

A'= : (25)2= 490'875 rnm2 

Stress developed in rod d\le ,to sudden load W 
2W 47124 X-2 2 fmdden=-;r, = 490.875 = 192 N/mm 

Length of the rod = 5000 mm 

Sudden deformation in rod 

- f,,. ,,,n X / 
- E 

192 . 
= 

2
fO X 103 X 5000= 4 57 mm . . Ans. 

Exercise 1·12-1. An axial load of 20 tonnes is suddenly applied on a bar of 8 cm 
diameter. Find 

(i) Maximum instantaneous stress 
(ii) Maximum instantaneous elongation if bar is 2m long. 

(iiven £ = 2080 tonnes/cm2 

. [Ans. (i) 0'7958 tonne/cm2 (ii) ·07~5 cm] 
I 
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1'13. IMPACT LOADS 

Whenever a load with some velocity 
acts on a body, it is said to be an impact 
load or a shock load. In other words the load 
possesses some kinetic energy which is utilised 
in the deformation of the bcdy. As an 
example, a blacksmith gives blow or the 
shock load to the hot iron with the help uf a 
hammer striking the iron with some velocity. 

Consider a rod of area of cr( ss sectic,n 
A and length L fixed at one end and having 
a collar at the other end. A weight W sliding 
freely on the bar is dropped on to the collar, 
through a height h as shown in the Fig. l '35. 
The weight arrested by the collm· produ ces 
an instantaneous elongation 'Bl in the bar. Say 
at this instant stress developed in the bar is 
fa and E is the Young's modulus of elasticity 
of the material of the bar. 

Potential energy lost by the weight 

= W(h+ SI) 

Strain energy absorbed by the bar 

L 

rL,----L~l 
S'f /""f' _ _ _ _ _ _ Colla r-

Fig. 1·35 

:--= {; x Volume of the bar 

For equilibrium 

= fi
2 

XAL 
2E 

fi2 
W(/1 + 81)= 2E X AL 

fi2 
Wh+ W81= 2£ X AL. 

41 

.. . (I ) 

Instantaneous elongation can be exp1·cssed in terms of instantaneous stress as follows : 
IJ/= instantaneous strain (€1) x / 

- f, X L -- E 

Equation (1) can now be written as 

Wh+W{L = {~ x AL 

Multiplying throughout by ~1 we get 

2WhE + 2Wfi /ti 
4L A · 

... (2) 

, .. (3) 
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The value <,f/1 will be 

w I w2 2/zEW 
/t= + -;r ± ~ A2 +-:;u:-

= ~ + J W 2 + W X 2hE 
A A2 A L 

(Negative sign is ir.admissihlc ns the stress can not be com-
p·,·essive \\ hen the bar gets elongated) · ·- · 

/t=~+~J I+ 2EA/z 
A A WL 

Instanta neous stress, f. -- ~A [JI+ 2EWALh .J 

lnstantaneous elongation 

\\ A olt= E X L 

In case h= O, it becomes a sudden load 

fmdde11= -~ [ 1+ ../ l + O ]= 2::_1 as proved in the article 1'12. 

Exa.rnple 1'13-1. A steel bar 10 mm in diameter and 150 cm long is stressed by a 
weigth of 12 kg dropping freely through a height or 5 cm before co mmencing to stretch the 
bar. Find the maximum instantaneous stress and i1~siantaneous elongation. 

£ = 2 100 tonnes/cm2 • 

Solution. Diameter of the bar, 
d= lO mm = l cm 

Area of cross section, 
TI: TI: 

A= - X d2= - X (I )2 = 0'7854 cm2 
4 4 

Length of the bar, L = l50 cm 

Height through which load foils, 
/,= 5 cm 

Falling load , W= 12 kg 
Young's modulus, E =-.., 2100 x 1000 kg/cm2 

Maximum instantaneous stress, 

r. = !Y_[ I+ / ~ + 2 EAh J 
Jt A _ \ WL 

_ 12 [ i+.I 1+ 2 x 2100 ~ 10oo x ·7854 x 5] 
- - 0' 7854 "V 12 X 150 

= 15'279 [L + ../ 1+ 9163] 
= !S-279 [l + 95'73]= 1477·:)3 kg/ r.; m2 
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Elongat16n in' tlie bar, 8/1 :.c { x L 

1477'93 
= 2100 x 1000 x 150= '1055 cm. 

Exercise 1'13-1, A brass bar of cross sectional area 80 mm2 and 2000 mm long is 
fixed at one end a nd at the other end of the bar, a coll ar is provided. A weight 50 N drops 
freely through a height of 25 mm on to the collar. Determine the instantaneous stress and 
instantaneous elongation developed in the bar. 

Ebrass= I00 X 1000 N/mm2 • [Ans. 40'158 N/!nm2, '803 mm] 

1 '14. STRESS CONCENTRATION IN MEMBERS UNDER TENSILE F'oRCE 

Uptil now we have studied that stress is defined as the load lpcr unit area and we 
have assumed that stress is uniform. But if a rapiJ change in cross section occurs I along the 
length of the member as shown in Fig. 1 '36, the stress will no longer be uniform. The Fig. 

Secti on 

-1 f 2 f.:. 
Stress distribution 
al·on·g section" b·.:..b 

Sl ress di.st r lbu'tion 
olo'ng·, s r e tion o·-a· 

Fig. 1·36 

shows a bar of two different diameters D and d subjected to a tensile force P. As per tlie 
definiti on, the stress in sect ion l is 4P/ r.D2 and the stress in secti'on t is 4P/ rrd2 but what 
about the stress al'ong· th~ sectiuit" a-a where tlie area of cross section has abruptly changed 
from tt/4 D2 to it/4 c/2. The stress distribution along this section is not uniform' and is of the 
shape shown in the Fig: There are various methods such as photoelasticity, strain gauges, 
theory of elast:icity, finite element- method which can be employed to determine this stress dis
tribution.- But the treatment of these topics is beyqnd the scope of this book. The maximum 
stress occurs at sharp corners as shown '• 01· in. other words stress is . con.centrated in sharp 
corners, fi llets etc. The b1r will tend to fall along this sharp corner under tensile loading. 

Stress concentration factor 
Maximum stress = -,-----·--- -,-,:----- ,--

Average stress at minimum section 

/,nn• ( ) =~ as shown 

To avoid or to reduce th~ effect of stress concentration, large fillet radius should be 
provided at the corner so that tlie .. stt·ess gt'adu:i lly i1icreases from [ 1 to / 2. 
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(a) Sma11 elUptical hole in a plate. Stress distribution along the axis of the ellipse 
has been theoretically determined using the principles of theory of elasticity. Maximum stress 
would occur at the ends of the semi major axis a, as shown in the Fig. 1 "37. 

where 

t 

s-

( Q) ( b) 

Stress concentration factor, 

SCF= l + 2a 
b 

Fig. 1·37 

a= Semi major axis 

( C ) 

b= Semi minor axis of the ellipse. 

·;,· 

Note that SCF increases rapidly as b goes on decreasing i.e., when instead of an 
elliptical hole, there is a fine crack, SCF becomes very high. Similarly as a decreases, SCF 
goes on decreasing i.e , a longitudinal crack (along the direction of load) has no stress 
concentration. 

(b) Circular hole at the centre of the plate. Again the results have bee11 obta ined 
theoretically by theory of elasticity and experimentally by photoelasticity for the SCF at the 
edge of a circular hole in a plate. Fig. 1 ·37 (b). 

R/B 0" 167 o· 1 ·05 

SCF 2·25 2"46 2·97 

R is the radius of the hole, B is the width of the plate. In this case the limiting value' of · 
SCF is 3 i.e., for a large plate having a small circular hole. 

(c) Edge fillets. Theory of photoelasticity has been med to determine SCF ·in the 
case of a bar having a fillet radius Rat the corner. Fig. 1·37 (c). ; 

R /B 0·333 0·222 o· 143 0'083 

SCF 1 ·25 1·5 1 "65 1"8-



SlM~j:,E STRESSES AND S!RAJNS 45 

These values of SCF for vanous cases have been obtained by considering that the 
material is loaded within the elastic region.. But for a ductile material, if the yielding occurs 
then redistribution of stresses takes place and the SCF is reduced. 

1'15. FACTOR OF SAFETY 

We have learnt uptil now that the stress in a member is calculated on the basis of 
(i) type, magnitude and position of the applied load (ii) dimensions of the member and 
(iii) properties of the mater ial. But in p ractice, all these factors are not accurately known 
and as a result correct value of stress occuring on a member is not determined. 

There are various types of loads such (a) static load or dead load or a gradually and 
slowly applied load (b) sudden load (c) impact load (dJ a lternating load, when the magnitude 
of the load changes cyclically. Many a times the load is assumed to be concentrat ed at a p oint 
and while in some applications load is assumed to be distributed over an area. 

rn some machine members there may be abrupt change in dimension, sometimes under 
the compulsion of design details and it is not possible to correctly find out the effect of stress 
concentration. 

Moreover the materia l is assumed to be isotropic and homogeneous while the material 
may be containing internal defects, sharp cuts etc. Such as in casting, the mater ial may have 
internal defects such as blow holes which may act as areas of stress concentration. 

The material may not be obeying Hooke's law. Brittle materials like cast iron, concrete 
etc., if they are assumed to obey Hooke's Jaw, then serious errors may be. introduced into the 
calculations for the stresses. 

All the factors expla ined above influence the stress-stra in behaviour of the material 
and in many applications determination of the correct value of stress occuring at a critical 
section becomes somewhat complicated. Under t hese circumstances a factor of safety is taken 
and an a llowable stress on the material is decided such thateven when all these factors have 
not beea accounted for, the material is not going to fa il. 

Factor of safety 
Ultimate stress 

= working stress or al-lo-w-ab_l,_e_s_t-re_s_s· 

For general engineering applications, the factor of safety is taken frc m 3 (for dead 
loads) t o 12 (for shock loads). The value of the ultimate stress is determined through a test on 
the specimen of the material. 

Many a times the factor of safety is decided on the basis of yield stress because at the 
yield point, the material ceases to obey Hooke's law and on the removal of the load, irrecover
able strains remain in the material. Moreover the material is assumed to fail at the yield 
point because of considerable strain without much increase in load. 

Exarnple 1·15-1. The ultimate tensile strength of mild steel is 450 N/mm2. A tie 
bar of equal-angle section has to carry an axia l load of 200 kN. The m .;an thickness of 
angle sector is 10 mm. T aking factor of safety as 5, determine the dimensions of the angle
section. 

Solution. Ultimate tensile strength 

= 450 N/ mm2 

Factor of safety = 5 

Working stress 
450 =s 

=90 N/ mm2 

Say the length of equal angle section 

=L mm(as shown in Fig. l '38) 

ILlOmm 

-11-

ILi,omm 
}+-L-~T .• 

Fig. 1 38 
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A, Area of cross section . 

= L x lO+ (L-10) x 10 mm2 (neglecting rounding of corners)' 
= 20 L - 100 mm2 

P, Axial load on tie bar 

= 200 kN= 200 x 1000 N 

P 200 x 1000 
Work,ing.stress = A = 20L- lOO 90 (as given) 

01; I· 200,000 = 1800 L-90,00 

,. 

1800 L= 200,000-9,000= 191,000 

191 ,000 
L = 1800 = 106'11 mm say 107 mm. 

The equal angle section is 107 mm x i07 mm x 10 mm. 

Exer.cise 1 '15-1. A. short strut is of 
seeti-0n· 15@', mm x 80 mm x 10 mm. 1f it 
carries a load of 150 kN, find the compressive 
stress in the strµt. If the ultimate crushing 
stress for the material is 500 N/mm2, what is 
tµe factor of safety ? The section is shown in 
the.Fig~ l '39. ,, 

[Ans. 68' 18 N/ mm2; 7'33] 

Problem. 1·1. Two parts of a certain 
machine component are joined · by, a rivet of 

2 cm - diameter. ·. Determine the shear and 

normal stresses i1t the rivet if the axial force 
P = l tonne, and the angle of the joint is 50° to 
the axis of the load (See Fig. 1 ·40). 

Solution. Force, P= 1000 kg 

Angle IX = 90°-50°= 40° 

N6rmal force on the ri:vet, 

,.._,so·~m-~ ·_t 

T · 10mm 
. , -: 

80mm I 
L __ 

~tmm 
Fig. J ·39 

Fig,- 1·40 

· · Pn= P:cos ix.= 1000 x cos 40°= 765 kg 

Shear force on the rivet, 
Pa=P sin IX = 1000 X sin 40°=642'5 kg. 

Diameter of the rivet, d- 2 cm. 

Area of cross section oHhe rivet, 

A= ; d2= 3·14 cm2 

Normal stressrin·the rivet, 
Pn _ 765 _ 2 fn = A - 3•141 243 kgf.cm 
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Shear stress in the rivet, (in single shear) 

I'= Z• =..?42'5 =204'5 kg/cm2 
.1, A 3'14 . 

Problem 1 ·2. A solid circular 
shaft of diameter 120 mm has a collar of 
20 mm thickness as shown in Fig. 1 '41. The 
shaft is subjected to a compresssive force of 
250 kN. Determine 

(i) Compressive stress developed in 
the shaft. 

(ii) Shear stress developed in collar 
section. 

Solution. Diameter of the shaft 
= 120 mm 

Area of cross section of shaft 

= : (120)2 

' = 11309'76 mm2 

Compressive force = 250 x 1000 N 
Compressive stress in shaft 

_ 250000 _ 22.10 N/ 2 
-- 11 309'76 - mm· 

47 

P= 250 kN 

Fig. 1·41 

This force Pacts as a shear force along the circular section aa of diameter 120 mm 
and thickness 20 mm. 

Area of cross section of collar under shear 
= 1t x 120 x 20= 7539'8 mm2 

Shear force = 250 X 1000 N 

Shear stress in collar section 

250000 _ 33.15 N/ 2 = -7539·8 - mm · 

Problem 1'3. The Fig. l '42 shows a tie bar 25 mm in diameter carrying a load which 
causes a stress of 120 N /mm2• The t ie bar is attached to a cast iron bracket with the help of 
4 bolts which can be stressed only upto 90 N/mm 2 ? Determine the diameter of the bolt. 

Solution. Tie bar is attached to the 
cast irnn bracket with the help of four bolts as 
shown. 

Stress in tie bar = 120 N/mm2 

Di ;1.meter of tie bar 
= 25 mm 

Area of cross section of tie bar 
7t = 4 (25)2 

= 490,875 mm2 

Tensile force in tie bar, 
P= 120 X 490'875 

= 58905 N 

'""' Bolts 

Fig. 1'42 

bar 
p 
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Tensile force on each bolt 

= : -= 
58!05 

= 14726.25 N. 

Allowable stress in each bolt 
= 90 N/mm :i 

So area of cross sect ion of each bolt 

= 1~~?'~? = 163'625 mm2 

90 

Say diameter of each bolt = d 

So ....!:.. d 2 = 163'625 
4 

d 2= 163'625 X 4 = 208'333 ... 
Diameter of each bolt, 

d= 14'434 mm. 

STRENGTH OF MATERIALS 

Problem t ·4. Three wooden pieces of square cross section 4 cm x 4 cm n.re glued 
together as shown in Fig. 1'43. The outer surfaces of the assembly are glued to the 
foundation. What will be the average shearing stress in the glued joints if the horizontal 
force P = 4000 kg. 

., 
+ 

d----'--

., 
• 

Fig. 1·43 

Solution The cross sections A-A and B-8 carry the shear stresses due to the load P. 

Area of cross section of the glued joints 
= 12 X4= 48 cm2 

Shear force, ? = 4000 kg ' 

Average shear stress in the glued joints 

4000 - 4t·67 k / 2 = 2 X 48 - g Ctn . 

Problem t·5. A round brass bar as shown in the Fig. 1 ·44 is subjected to a tensile 
force of 50 kN. What must be the diameter at the middle portion if the stress there is not to 
exceed 160 N/mm2. What should be the length of this middJe portion if 1he total extensioQ in 
the bar is 2)(j mm. ~= 100.x JOOO N/ mm2

, · 
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p -&- 1-------..L----"""'1 E 
- E--

o -.-
-d--

-----f-----

Fig. 1·44 

P: 50 kN 

Solution. Say the diameter at the middl e portion = d mm. 

Area of cross section 

Stress in the middle portion 

= 160 N/mm2 

So 160 x 0·7854 d2 = 50 x 1000 

q 50000 . 
d" = 160 X 0·7854- = 397 886 

Diameter of middle portion, 

d= 19·947 mm 

Area of cross section = 312"5 mm 2 

Say che length of middle portion 

= / mm. 

Area of cross section of outer po1'tion 

J; 

= 4 (40)2 = 1256"64 rnm 2 

. h . 50 X 1000 39 788 N Stress mt e outer porti on = -1i56.
64 

= · / mm? 

Total change in length 160 x / + 39·788 x (300 - /)_=
0

.
36 E E 

160 / -j- 11936'4- 39'788 I= 100 X 1000 X 0'36 = 36000 

120·212 / = 24063"4 

24063'4 
I = 120'212 

Length of the middhi portion 

= i ()o·17 m,rn, 

49 
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Problem t·6. A rigid pl:tte l m~ is 

supported on 4 equal elastic legs A, B, C and 

D as shown in the Fig. 1 ·45, A load of 100 kg 

is applied on the plate at a distance of 40 cm 

from edge AD and 25 cm from edge AB as 
shown. D etermine the magnitude of the com

pressive forces in each leg. 

Solution. Say the compressive force 
in the legs is R,1, Rs, Re and Ro respectively. 

or 

or 

Then total vertical load 

= total reactions from supports 

R,. + R o+ Re+ Rn= IOO kg. ... ( I ) 
Taking moments of the forces about the edge AB 

100 X25 = 100 Ro -f-- 100 Re 

25 = Rn+ Rc. 

Taking moments of the forces about the edge AD 

100 X40 = 100 Rs+ IOO Re 

40= Rn + Rc. 

P :100 kg 

... (2) 

... (3) 

Now the plate A BCD is a rig id p late and it is not going to bend, i.e . it will remain in 
one p1ane. Or in other words 

or 

or 

Mean change in lengths o f A and C legs 

Say 

Then 

= Mean change in lengths of Band D legs 

a = area of cross section of each leg. 
E= Young's modulus of elasticity of legs 

/ = length o f each leg 
RA! Rd Rb/ R oi 
aE + aE = aE + aE 

R,. + Re= RJ1 + Ro . 
RA+ Rc=50 kg. 
Rs+ Rn = 50 kg. 

From equations (2) and (3) substracting equation (2) from equation (3) 

Rs-Rn= 15. 
From equations (6) and (7) 
Compressive force in 

leg B, Rs= 32'5 kg 

leg D, Rn= 11'5 kg 
leg C, Re =25- Ro = 7·S kg 

le~ A, R,4 = 59 -7·5= 42'5 k~. · . ·, 

.. . (4) 

... (5) 

... (6) 

. .. (7) 
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Problem 1'7. Two rigid yokes P & Q 
are connected by three elastic rods A, B 
and C made of the same material as shown 
in the Fig. 1'46. The area of cross section of 
bars A and C is a, while the area of cross 
section of the bar B is 2a. A load of 1200 
kg hangs from the lower yoke. Find the 
magnitude of the forces in the bars A and C, 
and in two portio ns of bar B. The frame is 
symmetrical about the central rod B, which 
is passing through a horizontal bearing as 
shown.· 

Solution Say tensile forces developed 
in bars A, Band C are TA, T»', T»" (in two 
portions) and Tc as shown. 

Considering the equilibrium for yoke P 

TA+ T»' + Tc= O 

C o nsidering the equilibrium o f forces at yoke Q 

TA + T»"+Tc= 1200 kg 

;f 

... (1) 

... (2) 

Say E= Young's modulus of the material of the rods. Since the yokes arc rigid, elonga
tion in each bar will be the same i.e., 

8IA = 8!»= 8lc 

"SIA= TA x 30 
aE 

"Sic = Tc X 30 
aE 

"8/» = T»'x IO _ T»"X 20 
2aE -1 2aE 

.. . (3) 

. .. (4) 

... (5) 

Since the rods A and C are symmetrically placed about rod B and their area, of cross 
section is the same. 

or 

TA=Tc, 8IA=8lc 

So from equation ( l) and (3) 

T»'= -2TA 

Tn"= 1200-2TA= I200+Ts' 
Tn"-Ts'= 1200 

30 TA Tn'X JO Tn"X 20 
-;y-= 2aE + 2aE 

30 TA = 5Tn'+ IOT»" 

But Ts"= l200 + Tn' from equa tio n (6) 

So 30 TA = 5Tn' + IO ( I200+ Tn' ) 
30 T a= .lST»'+ J-2000 

From equation ( l) 2T,. = - T »' 

•• I •• 

.. (6) 

... (7) 

... (8) 

.. . (9) 



'srRENGt :H OF MAfERlALS-

Substituting in equation (7) we get 

Fordes in ~ars are 

30TA = -30TA+ 1200() 

T A= 200 kg= Tc 

Tir'= t-2X200= - 400 kg 

T»"= 1200- 400 = 800 kg from equation (6) 

TA = Tc= 200 kg 

Ts'=-400 kg 

Probleni 1·s. Fo·r the structure shown, member AC is a steel wire 3 mm in diameter 
nnd member AB is an aluni. inium rod 15 mm in diameter, supporting a vertical load P= 200 N. 
Determine the horiiontal and vertical displacements of the point A if · 

E for steel=210 x 103 N/mm2 

':. E for aluminium = 70 X 103 N/mm2• 

Solution. Figure 1 ·47 shows an 
aluminium bar and steel wire carrying the load 
P= 200 N . If the force polygon is drawn for 
the point A; ,as shown in the Fig. l '47. , 

Tension in steel wire = 282'8 N. 

Compressive force in aluminium rod 
= 200'8 N. 

Extension in steel wire 
282'8 X length of steel wire 

= Area of cross section X E, 

Length of steel wire 
= 5-v2= 5 X 1'414= 7'07 m 
= 7070 mm 

Area of cross section 
1; 

= 4 (3)2=7·~685 mm2 

C 

wire 

P: ~828N 

200 N 

4 s· 
~-----'1'- .,,_A,..._ 2 00 N 

Force Polygo r. 
Bj ~Alumi nium bar 

Sm--.,.. 

Fig. 1·41 

P " 200 N 

Extension in steel wire 282'8 X 7070 
7'0685x210 x 1000 = 1·347 mm 

Length of aluminium rod= 5000 mm 

Area of cross section of aluminium rod 

Contraction in aluminium rod 

200 X 5000 · 200 X 5000 
116'1 X Eu = 176·7 x 70x 100 - '080 mm, 
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Displacements at point A 

---~ 1 3 4 7 C o s 4 5 • = 0 9 5) 
080 mm 

contract ion in 
o lum ·1n ium rod 

~ ~ 1· 34 7m m ( ~xtension ste e l w, n ) 
1.J47 Si n ~~ 

: 0-952 
Fig. 1-48 

Vertica l displacement of point A 
= 0·952 mm .j, 

Horizontal displacement of point A ---= 0'952-0'080= 0'872 mm. 
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Probem 1'9. The cross section of a bar is given by (169 + 0·01 .x:i) 1111112 where xis the 
distance from one end in mm. If the length of the bar is 200 mm, find lhe change in length 

· under a load of 5 kN. 
E= 2 X 105 N/ 111111~. 

Solution. Considering a small length dx at a distance of x mm from cne end. 
Area of cross section = (169+ ·01 x2) mm2 

Load = 5 kN 

Stress, 
5000 

/ ,,= (l 69+ 0·o I x2 ) 

5000 
Strain, <= :i:= E(l69+ 0·01x2) 

. 5000 dx 
Change 111 lengt~ over dx= E(l69+ o·o ix2) 

200 
. f 5000 dx 

Total change m length, of= J 2 x 105-(-1-69-+---=-o.-:-O-lx__,.2,_) 
0 

200 

- = 2·s x 10- 2 r dx 
j (L69+ o·Olx2) 

0 
200 

- 2·5 10-2 f dx - X . 0"0:-1:--:-(--,-16:-:-9-00_+_x_z_) 
. 0 . -

I 
1 • 

=2'5 x 130 tan- 1 

200 

1:0 I 
0 
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= 2 '5 X l X t -1 
200 

130- an 130 

Probtem 1·10. Determine the reduction in length in a circular tapered steel bar with 
a cylindrical hole under a compre5sive force P= 40 kN as shown in the Fig. J '49. 

E= 2IOO X 100 N/ mm2. ' 

Solution. Consider the two portions 
AB and BC separately. 

Portion AB 

r, - ~,r---rc-. 
A --=---· 1- p ~ /, 0 ;, " 

Diameter at A = 60mm 
100+ 60 

- --- t.Omm.p.__...____ 

' IOOmn • 
Diameter at B 

Length AB 
Force 

-
2 

= IOO mm 
P=40 kN 

80 mm 

l,oomm -~ :t~-L 
, Contraction in the length AB, 

4PL 

4 X40 X lOOO X 100 
= ~ x 60 x80 x 2 L~O x 100 

Portion BC 

Fig. 1·49 

o·oosos mm. 

Consider an elementary ring of length dx at a distance of x from B. 
100-80 

Diameter at x, D.:=80+ 100 Xx 

= (80+ 0·2x) 
,; 'IT \ 

Area of cross section, A.:= 4 (80 + 0·2x)2- , 4 (40)2 

• = ~ [80 + 0·2x+40][80 + o·2x-40] 

= ~ (120+ 0·2.1)(40+ 0·2x) 

= ~ (0 '2)2[600 + x][200+x] 

= 
1
~
0 

[600+x][200+x] 

P 40 X 1000 X 100. 
Stress, f•= -Z = ,;[600+x][200+x] 

Strain, E.:= { 

Change in length over dx= E.: • dx 
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Total change in length for BC, 
100 

°8/2= J Er dX 
0 
100 

= J-=--c-_4_x_l 0-=6=d_x __ _ 
rr E f600 + xl[200+ x] 

0 

JOO 
4 X I or. f 1 [ 1 l J 

= rt X2 100 X 100 J 400 200+ x - 600+ x d:a 
0 

100 

= 2~rt \ in (200+x)- ln (600+x) I 
0 

= _ ! __ ( In 300 - In 700 ) 
21n 200 600 

1 3 6 1 9 
= 21n: ln 2X7= 21n In 7 

l = ~ X 0"2515 = 0"00381 mm 

Total change in length =0·00505+0·0038 I 
= 0·00886 mm (contraction). 
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Problem 1·11. A load W is suspended by ropes as shown in Fig. 1 ·so. In case (a) 
a rope of ar<!a of cross section 400 mm2 passes over a µd ley of diameter 200 mm and its ends 
are connected to the ceiling as shown. The pulley carries a load of 2000 N. In case (h), load 

t.m 

L' 
B 

D 

Sm 

T 

W: 2000N 

( (;l) 

l, 
I 

t,m 

1: 

Fig. 1'5Q 

~ .,/. 

Dr ~ r, 
A 

5 rr, 

,''_l 
zoo 
mm 

W:2000 N .. 
( !.l) 



56 STRENGTH OF MATERIALS 

of 2000 N is suspended at a bar attached to the ropes of area of cross section 400 ·mm2 and 
lengths 4 m and 5 m respectively as shown. The load is suspended in such a manner that 
the bar remains horizontal in bot h cases determine the stress in the ropes and downward 
movement of the pulley and the bar. E = 210 x 103 N/ mm2 • 

Solution. In case (a ) there is a continuous rope from ABC to D. The load W 
produces tension T = W/2 in both the portions. 

Length of the rope, /= 4000 + 5000+ n x R 

Stress in the rope 

where R is the radius of the pulley. 
= 9000+ n x 100= 9314'16 mm 

W T 1000 J= - - - ,...,, - = - -- = 2'5 N/ mmi 
2 area area 400 

Change in length of the rope, 

J 2·5 
= E X I= 2IO X IOOO X 9314'16 

= 0'11088 mm 

Downward movement of pulley 

o· 11088 = 
2 

= '05544·mm. 

In case (bl the length of the ropes AB and CD are different, but the bar RC is to 
remain horiz01 ta l i <'., the change in length in both the ropes is the same 

i.e., 0/1= 8/2 

E1 X l1 = E:2 X 12 
where E1 and £ 2 are strains in AB and CD 

or "i x 4000 = e- 2 x 5000 

or 

or 

or 

or 

E1 = 1·25 E: 2 

But 
_ /1 _ /2 

E"1- E' E:2 - - E-

iL = 1·25 ! 2__ 
E E 
/1= 1 ·25 /2 

Tension in rope I + tension in rope 2= 

W= 2000 N 
T1 + T2= 2000 N 

/ 1 A+f 2 A= 2000 N 
/ 1 X 400+ / 2 X400= 2000 N 

Ji +J;= 5 
1·25/1+ / 2=5 N /mm2 

/ 2 = 2·222 N/ mm2 

Stress in rope AB 

Stress in rope CD 

/ 1 = 2'777 N/mm 2 

= 2·777 N / 1111112 

= 2'222 N/ IT\1112 

Both the ropes of the same material. 
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Downward displacement of bar BC= 811 = 'iii~ 

= 1 X /1 

(• 

2·777 . 
210

x 
1000 

x 4000 = 0 0529 mm. 
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Problem 1·12. A steel wire 5 mm in d ia meter is used for hoisting purposes during 
construction of building. If 100 m length of the wire is hanging vertically aud a load of 
0 '6 kN is being lifted at the lower end of the wire, determine the .total elongation of the 
wire. Given specific weight of stecl = 0'008 kg/cm=i. 

£ = 210 x 1000 N/mm2
• 

Solution. Diameter of wire, 

d=5 mm 

n 
Area of cross section, A= 4 (5)2 = l 9'635 mm 2 

l ength of steel wire, I= 100 m = IOO X 1000 mm 

Load, W= 0'6 kN = 600 N 

E=-~210 x 1000 N/mm 2 

? loi;igation in wire due to load W, 

D ensity of steel 

·w 
'ii/1 =- !IE X i 

600 X l 00 X 1000 
= l.9'635 X 2 10 X 1000 =~ l4 'S 5 l mm. 
=o·oo8 x 9·8 = 0'0784 x 10- 3 N/mm3 

103 

Elongation due to the self weight, 

~ - w/2 0'0784 X 10-~ X (105P 
o/2- --:rr= 2 X 210 X 1000 

-- '078:: 103 = J '866 mm 

Total elongation = 'iil1+ 'iil2= 14'551 + l '866 

= 16'417 mm. 

· I ' 

Problem 1'~3. _A cone of base ?iamcter _D and height L is securely fixed with base 
at the top as shown m Fig. l '5 1. If the weight density of the material is w, dctcrininc th<; 
C?ttension in the Jcn~ h of the i,;one d1,1e to ·it~ own wei~ht, · 
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Solution. Consider an elementary disc 
of length dx at a distance of x from the apex. 

Diameter 
X 

D.,,=L-XD 

Weight of the cone abc 

Wx = W [ + (7t~a
2

) XX J 
', 

STRENGTH OF MA TERTALS 

T 
l 

;1,·', ;· ,, . 
1,, I ,., • 

- ~ (X - 12 . 1t L 
I, . ' 

D Y.x ., _____ _... l . 
"' ,rw I' • ' 

- 12 -~ 
•I I /' l' 

4W,, 1tW x 3D2 4L2 1vx 

f,, - nD.,2 - 12 X L2 X 1;x2D2 - 3 Stress, 

Strain 
f,, wx 

£.=E = 3£ 

Change in length over 

dx- wx dx 
- 3E 

Total change in length, 
L 

J 
wx _dx wL2 

at= 3£ =- -6E - . 
0 

(I' I 

' I It C:,:· ,, 
Ii ;1. 

Fig. !·51 

Problem 1'14. A stepped b:ir I '6 m long has area of ;cross sectfo'n 4 cm2 over a 
certain length ~nd 8 cm 2 ever remainder of its length. The strain energy of this stepped 
bar is 40% of that of a bar 8 cm~ in area, 1 ·6 m long subjected to the same maximum stress. 
What is the length of the portion of '1 cm2 in area? 

!1 ' 

Solution. Say the bar is subjected to ·same axial load and 
Stress in porti on T =J 

Th . . Ir- I· 4 __ ! en stress m portion -
8 

= 
2 

a:4cm2 

Il 

a= Bcm2 

I T 
+ (160cm 
-ei 
_[ 

fill. 1·si 

l 6m 

j ·_ 
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5ay E is the Young's modulus or'tlie materia( 

Strain energy, U= ·--- (4 x l) + - , - (8)( 160-/) /2 ( f )
2 

1 
2E 2 2E 1 

I 

·={; [ 4/+2(160- /)]= ~ [ 1+ 160 ]. 

Now the uniform bar of area 8 cm2 is also subJ~cted to the stress f (maximum stress in 
stepped bar). ' 

Strain energy, u· = {;, (8)(160) 

but U= 0·4·U' 

12 I' E. (1+ 160)= 0'4 
2
~. X 1280 

1+160= 256 
1= 96 cm. 

, I 

Problem t·ts. Compare the strain energy absorbed by the bars A and B as shown. 
Bar A of length L having diameter d at one end and uniformly increasing to the <liametcr D at 

p F 

1I ,11 

di 
d 

, t'r 

l + , 

I B 
0 ·5L 

TT 

Fig. 1·53 

the other end is subjected to cJmpressive force P. Bar B of the same material, but a stepped 
bar of diameter d for half bf its length and diameter D of th~ rem1ining half of its length is 
subjected to the same compressive force P. Given d=0'6 D .. 

,ut 

Solution. Say £ = Young's modulus of the material. 
· PL 

8£, contraction in bar A = 7;DdE 

Strain energy, 
1 2PL:1, 

u .. =-i° P8L == rr.DdE. 

d= 0·6 D 

2PV 
VA = 7; X0'6D2E' ... ( 1 J 



ri: . 

or 
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, · . ·. . .b B- 4P t I 4P L 1 8£ contraction m ar - -- --- x ~ · X - + -· - x - x -• - 1td2 E 2 nD2 E 2 

2P L [ 1 1 J 2P L[ 1 1 J 
- 1tE d2 + D2 - 1tE o·36D2+ D2 

Strain energy, 

2PL x 1'36 
= 0'361tED2 

11,. 

1'36PL2 
0·3_6nED.2 

,• ! 

VA 2PL2 nED2 X 0:36 2 0'36 0·72 
VB - TJ:ED2 X0'6 X 1'36 PL2 - o·6 X 1'36 - '816 

Stra!n energy, bar A' = 0.882_ 
Stram energy, bar B 

J: If~ 

Example 1 ·16. A steel r~d 80 cm long_ and 2 cm in d_iameter suspended vertically 
is secured dt its upper end, and a weight of 20 kg_ 1s allow~d to sltde freely on the rnd. through 
a height h= 3 cm on to a collar at the lower end. Determme :- . 'i , . 

(a) The stress developed in the rod. 

(b) The stress developed, if the extension of rod while computing the potential energy 
given up by the weight is neglected. . 

(c) The stress developed in the rod when h= O. 

Take £ = 2100 tonnes/cm2
• 

Solution. (a) W= 20 kg 
h=3 cm 
E=3100x 1000 kg/cm2 

Area of cross section, 
R 

A= 4 X 4 

= 3'1416 cm2 
Length of the bar, 

1= 80 cm 

Stress, f = :[ 1+J I+ 2e;/ J 
2EAh 2 X 2100 x 1000 x 3'1416 X3 wr = 2ox so = 2472o 

f = 3,!i16 [ 1+ .{24721 J 
•\ I, 

2o x 1ss·2_ 2 

3
.
1416 

- 1007 kg/cm . 

Fig, 1·54 
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(b) The extension of the rod when the potential energy given up by the weight is 
neglected. 

Potential energy lost by the weight 

= W X h 

Strain energy stored in the bar 

12 = 2E x A x l 

12 W X h= 
2

E X A X I 

1 2-_ 2WhE = 2 X 20 X 3 X 2100 X 1000_ = 1.002 l06 
- A I 3' l 4 i 6 X 80 X 

/=1001 kg/cm2
. 

(c) lz= O, the load will suddenly act on the bar 

f = ~ X 2= ~?1~t6 = 12·72 kg/crn2
. 

Problem 1'17. A vertical steel rod 150 mm long is rigidly secured at its upper end 
and a weight of 15N is allowed to slide freely on the rod through a distance of 20 mm on to a 
stop at the lower end of the rod. What would be maximum stress developed if the upper 
90 mm length of the rod has a diameter of 16 mm and the lower 60 mm length remains at 
12 mm diameter. · 

E = 210 x 103 N/mm2 • 

Solution. Say the instantaneous stress 
developed in portion I =/ 1 

Instantaneous stress developed in 
portion II = f~ 

For equilibrium 

/1A1 =f2A1 

/1 ~ ; (l6)2 =/ 2 X % (12)2 

Volume, 

Volume, 

/1 = 0"5625 /2, ... (l) 

V1=: (16)2 X90 

= 18095'6 mm3 

V2=: (12)2 X60 

= 6785'8 mm3 

Say the change m length under the 
instantaneous stress, 

~/ _:f1l1 _ /1 X 90 
o 1 - E - E 

~! _ fi2 _ f; X 60 
o 2- E - E 

Loss of PE of the we_ight = W(li+ oli + 0!2) 

16mm+--,, 1 
90 mm 

+ 
Fig, 1·55 



Strain energy absorbed by the bar 

/12 fl = 2E V1+ 2E X V2 

Using the principle of conservation of energy 
/12 /22 

W(h+l>l1+812) = 2E X V1+ 2E X V2 

or W.h+ w·1x 9o + W.ft 60 
= {~ x 18095'6+ {~ x 6785·s · 

E X 15 X20 + 15 X/ 1X90+ 15/2X60 

Putting 

= tfr, X J809§; 6 + ff X 6785'8 

W= l5 N 
2£+ 9f1 + 6/2= 6'032/12 + 2'26 /22 

2 X 210 X 1000+ 9(0'5625/2)+6f2 
= 60'32(0'5625}2)2+22·6/22 

420 X 103+] ] '0625/2 = 41 '7 fl· 
/22-'02653/2-\0071 '94= 0 

STRENGTH OF MATERIALS 

I 1 1 J ,11 

. ,, 

, ( . .:. ,·• . 

1 ' ft = 0'265~+V-(0'265i)2+ 4 X ]007] '94-

l ~' 

. 

'2653+ 200·72 
2 

Maximum stress developed in steel rod 
= 100·49 N/mm2. 

Probletn 1 ·18. A load W suspende~ from a cra)J.e hook by a ch~in is b~ing lowered 
at a speed of 1 metre/second. At a particular instant when the length of the unwound chain 
is 8 metres, the motion is suddenly arrested. The chain links are made of 10 mm round steel 
bu. · · 

Determine the maximum load that the chain can carry under these conditions if the 
instantaneous stress produced in the chain is not to exceed 150 N/mm2 • Neglect weight of the 
chain. 

Acceleration due to gravity = 9'8 m/sec2 

E for steel= 210 X 103 N/mm2. 

Solution. The chain link is sh own in 
Fig. 1'65 

Arca of cross section of the chain 

' = 2 X : (10)2 

= 157'58 mm2 

Length of the unwound chain, 
1= 8000 mm 

Speed, V= l m/sec 

Say when the motion is stopped, the 
instantaneous stress developed in chain is ft 
N/mm2• 

I• _J_ 
10mm 

T 

•Fig. 1'56 
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Extension in chain, 81= { X I= 210f lOOO X 8000 

= 0'038/j I , 

Say the maximum load carried by the chain= W N. 

wv2 

= 2.g = KE lost by the weight 

= 5L'02 W 

P.F. lost by t ile weight c:=W.S! 

W x IOOO x 1000 
2 x 9'8 x LOOO 

Nmm •·· 

= 0'038 W/t 
Strain energy absorbed by the ch:!ti1t 

= f1.
2 

X·Volume1 • • • • " 
2£ ' ,. 

f;,2 X 157158 X8000 = 3'00 ,. 2 
- 2 X 210 X !000 . J t 

Applying the principle of conservation of energy 

51 ·02 w +·o3s w fi = 3Ji2 

' But maximum stress developed is not to exceed 150 N/mm2 

So f;. = J 50 N/mm2 

'51'02 + 0'038 W X 150 ~ 3 X 150 X 150 
51 ·02 w+5·7 W= 67soo 

The maximum load which the chain can carry 
67500 . 

W=-· 56-:7T = I !90 0 N 

63 

... ( I) 

... (2) 

.. . (3) 

. 
• - • f 

... (4) 

Problem 1'19. . The load to be c:trried by ~~ !if~ can be dropped on its fl oor tl~rc{;/g1~ a 
height of 8 cm . . The weight_ o~ the_ cage of t he 11ft 1s 250 k~. The cage is supportcdi by a 
wire rope 20 m 111 length ~ciglu ng O ?O kg/ metre !ength . . The w1:re rope consists o f 49 wires 
of J ·5 mm dia . ~adl. 1f the 1:1;.ix1mum stres~ 111 the wire !·ope 1s not to exceed 1000 kg/cm2, 
determine the maxmmm load which can be earned by the lift. E for the rope materia l= 670 
tonnes/cm2 

Solution . . Weight of the cage= 250 kg 
Weight of the r ope supporting the cage 

= 0'8 X 20 = 16 kg. 

The maximum stress in the wire rope will occur at the end of the rope coming out of 
the rope clrnm. 

Area of cross section of wire rope 

= 49 x ; (O' I 5)2 = 0'866 cm2 

250+ 16 . 
Initial stress in wire rope=-

0
.866 = 307 16 kg/cm2 

Allowable str<:ss = I 000.,kg/c1112 
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I I• 

where 

Stress due to the falling lo.ad, 
ft= 1000-307" 16 

= 692'84 kg/cm2 

Extension in wire rope dii'e to), 
= f;. ; iei:i. oth of the r~pe 

• E · "' 
= · 692"84 x 20 X JOO = 2· .068 · 670 x lOOO .. - cm. 

Say the maximum load which can be droppec! . on the floor of the cage is W, then 
/t 2 

W(h-1- 1$1 ) = 
2
£ X Volume 0f the rope . ' 1, , , 

h= height through which the load falls 

W(8+ 2·068) = 
2
J!;~'.!~)~oo _ x o·866 x 2o x 100 

= 620"453 ' 
W= 61'62 kg. 

Example 1·20. A vertical tie consisting a steel rod 1 ·6 m long and 25 mm diameter 
encased throughout in a brass tube '40 mm external diameter, is rigidly fixed at the top end. 
The rod and the tube are fixed together so as to form. a co mpound bar. The compound bar 
is suddenly lnacled in tension by a weight W falling freely th.rough a height of 10 mm, before 
being arrested by a collar provided at the lower encl of the' tie. Determine the magnitude of W 
if the maximum stress in the tie is not to exceed 80 N/mm2

• 

Given Esteel= 2 X 105 N/mm2 
,, . 

Ebrass= 1 X 105 N /mrn2
. 

Solution. Since steel rod and brass 
tube are fixed together, there cannot be diffe
rential elongati cu for them. Both the rod a nd 
tube have to strain together under load i. e , 
change in length in st~el rod = change in length 

· i'n.' brass tu be 

or 

then 

or 

or 

E.'i = <:b 

(Strains are the s,i.me) 

Say the stress developed in steel rod = /, 

Stress developed in brass tube = f b 

f, _ J!_ 
E, - Eb 

· J; _ E, _ _ 2 x l05 = 2 f b - · fa - 1 X 105 

f ,= 2/b 

Extension in compound bar ; · 

·={, xi 

Fig. 1·57 

where /= length of the bar 

. .. (I) 

' .. (;2) 

•• 
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Height through which load falls, 
lz = lO mm 

Area of cross section of steel rod 

= -; (25)2= 490'875 mm2 

Area of cross section of brass tube 
7t = 4 (402- 252)= 765'765 mm2 

Volume of steel rod, V.= 490'875 x 1600 mm~ 
Volume of brass tube, Vb=765'765X 1600 mm3 

Applying the principle of conservation of energy 
f ,2 j b2 

W(/1 + 81) = 2£, X v .+ 2Eb X vb 

. f .2 /b2 
W(LO + 008/,)= 2£ , X V, + -it;- X Vn 

Maximum stress in tie 
Which means 

=80 N/ mm2 

J .=80 N/mm2 

fo=40 N/mm2 

Substituting the values above 

65 

802 402 

W(I 0-1- '008 X 80)= ? -, l o:r X 49()" 875 X 1600 + ? l , (on X 765'765 X 1600 _x _x _ _x x 
W (10"64)= 12566"4+ 9801 '8 

Load, W 
2~~~~42 2102·27 Newtons. 

Problem 1'21. A steel bar 3 cm in dia meter, 2 metres long is rigidly fixed to a 
bracket as shown in Fig. l "58. The other end with a collar rests on a support. A weight of 
15 kg moving horizontally along the bar at the velocity of 300 cm/second is brought to rest 
by the c0llar at the other end. The bracket deflects hori zontally by 0-04 cm/tonne of t he 
load induced in the bar. Calculate the maximum tensile stress in the bar . 

Given £ = 2100 tonne.s/cm2 

Acceleration due to gravity, g = 980 cm/sec2 • 

Solution. 

25kg 

V 

--~ - 200c ms .. ~~~-~1 

• 
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K.E. lost by the travelling load 

25 X 300 X 300 
2 x 980 = J 150 cm-kg 

Say the stress developed = f kg/cm2 

Equivalent load induced, W=f. A kg 

f.A 
= 

1000 
· tonnes 

Cross sectional area, 

Length of the bar, 

A= ..2:... X9= 7'07 cm2 

4 

/=, 200 cm. 

Instantaneous horizontal c.!dkction in the bracket, 

8= 0'04 W= ·o4 f · A cm 
1000 

f.A 
= 25000 cm 

Strain energy in the bracket 
= WS (since the load is sudden) 

Strain energy in the bar = {; X Al 

f A f. A f ~ A X 200 
I l 50= 1000 X 25000 + 2X2l00 x 1000 

1150 x l0r, = r x 1·012; 1·01 + f 2
X2~?:1·01 

= J ! r2·003 + 337J 

/
2 = _ l_l10 _ x 106 =3'39x I0° 

339·003 

f = I 840 kg/cm 2. Ans. 

SUMMARY 

~TRENGTH OP .MATERIA~S 

I. FR is the resultant force on a plane, making an angle 0 to the plane, then normal force 
= FR sin tJ, shear force=FR cos 6 on the plane. 

2. Ncrmal stress= Normal force per unit area of the plane 
+ve normal stress-a tensile stress (pointing away from the plane) 
-vc normal stress-a compressive stress (pointing towards the plane). 

3. Nc,rmal strain= change in length per unit length along the direction of the applied force 
+ vc normal strain-elongation in the length of specimen 
-ve normal strain-contraction in the length of the specimen. 

. . . . . , Normal stress 
W1thm the elastic l1m1t, Youn~ s modulus = M 1 t . · 

· .pOT111a . S r~ll\ 
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L 
· .. 

1 
. _ Chang~ in lateral dimension 

4. atern stram- 0 . . I I I ct· . ngma atera 1mens1011 
(lateral to the direction of force) lateral 

strain 1s a lways of the opposite sign to the normal (or linear) strain. 

Lateral strain ( . h. 1 1 . 1. . f h . I) 5. Poisson's ratio= N 
1 

. wit mt 1e e ast1c urnt o t e matena . 
orma stram 

6. Within the elastic limit of the material, if the load is removed from t he specimen, the 
specimen returr.s to its original d imension and original shape. Or the strains produced 
on the material within the elastic limit are recovered after the removal of the load. 

7. A tapered bar of length L , diameter at one end D1 a:r..d diameter at the other end D. is 
subjected to an axial force P. ff £=Young's modulus of the material, then change "in 
the length of the bar is 

4P L 
SL= --- x -· 

rtD1D 2 E 

8. Bar of uniform strength, area of cross section at a distance y from the end where area 
is A, is given by 

where 

wy 

A= A1 el 
w= weight density of the material 

f = uniform stress in bar. 

. . . . ~wh2 

9. Extension m bar due to its own weight= 
2
£ 

where w= weight density 
h= height of the bar. 

10. Within the elastic limit, shear steess is proportional to shear strain, 

Modulus of rigidity, G 
Shear stress 
Sh~ar strain 

1.1. Within the elastic limit, volumetric stress is proportional to volumetric strain, 

Bulk modulus, 
K= Volumetric stress . 

Volumetric strain 

12. Tens~le test on_ mild steel. 

Mild steel fai ls showing a cup and cone type fracture. 

At the yield point there is considerable extension without increase in interna l resistance.1 
Ultimate tensile strength is the maximum load withstood by the specimen divided by its 
original area of cross section. 
Total change in length M= bl+ c .f A- where b and c ar.-: 
Barba's constants, != length and A= area of cross section of the specimen. 

t 3. Strain energy absorbed by a body wit~in its c lastic I imit 

f2 
= lE X Vulume 

/ = stress developed in the body. 
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14. Strain wergy due to shear stress q, 
q2 

U,=w- x Volume. 

15. Volumetric strain energy, U~= r; x Volume 

where p = volumetric stress . 

16. Stress produced by a sudden load Won a bar of area of cross section A 
2W 

sudden=A· 

l 7. ·Instantaneous stress produced by an impact load 

where 

/,= : [ 1+J 1+ 2:12 J 
A=area of cross section 

h= height through which load W falls 

L= length of the bar. 

l 8. Stress concentration factor in a specimen with a discontinuity such as hole, fillet etc. 
Maximum stress 

SCF=~~~~~~~~.,-~~~-
Average stress at minimum section 

19. Factor of safety 
Ultimate stress 
Working stress 

MULTIPLE CHOICE QUESTIONS 

1. On a plane resultant stress is inclined at an angle 30° to the plane. If the normal stress 
on the plane is 50 N/mm2, the shear stress on the plane will be 

(a) 43·3 N/mm2 .(b) 86·6 N/mm2 
(c) 100 N/mm2 (d) None of the above. 

2. A bar of square cross section side a is subjected to a tensile load P. On a plane 
inclined at 45° t o the ~xis of the bar, the normal stress will be 

. (a) 2P 
az 

(c) 
p 

2a2 

p 
(b) a2 

p 
(d) 

4a2 

3. A steel bar 100 mm long is subjected to a tensile stress/ If the change in the length of 
the bar is 1/20 mm, what will be the value off? E for steel= 200 x 1000 N/mm 2 

(a) 200 N/mm2 (b) 100 N/mm2 
(c) 50 N/mm2 (d) 25 N/mm2. 
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4. A steel bar of square section tapering from 25 mm X 25 min to 20 mm X 20 mm over a 
length of I metre, is subjected to a tensile force of 1000 N. If E ...... , The change in the 
length of bar is given by (£= 200 x 1000 N/m1112) 

(a) ·2 mm 

(c) ·02 mm 

(b) ·1 mm 

(d) ·01 mm. 

.S. Two tie rods are connected through a pin of 40 mm~ area of cross section. If the tie 
rods cany a tensile load of 10 kN, the shear stress in pin will be 

(a) 125 N/mm 2 

(c) 375 N/mm2 
(b) 250 N / mm2 

(d) 500 N / mm2• 

6. A rivet is connecting two plates through a lap joint subjected to a tensile force of 500 kg. 
If the maximum shear stress permissible in rivet is 625 kg/cm 2, what is the area of cross 
section of the rivet 

(a) 125 mm2 

(c) 80 mm2 

(b) JOO mm2 

(d) 40 mm2• 

7. A wire rope l O metre long is suspended vertically from a pulley. The wire rope weighs 
1 ·2 kg/metre length. The area of cross section of the wire rope is 20 mmi. The maxi
mum stress developed in wire rope is 

(a) 12 kg/cm 2 

(c) 30 kg/cm2 

(b) 24 kg/cm2 

(d) 60 kg/cm2• 

8. A spher ical ball of volume [QG mm3 is subjected to a hydrostatic pressure of 90 N/ mm2. 
If the bulk modulus for the material is 180 X 1000 N /mm2• The change in the volume 
of the bar will be 

(a) 50 mm3 

(c) 250 mm3 

(b) 100 mma 

(d) 500 mm3• 

9. A bar JOO mm long and cross sectional area 64 mm 2 is tested under tension. The Barba's 
constants for the material are b = 0·2, c= O· 5. The percentage elongat.ion of the bar is 
(<l) 29'6 (b) 24 
(c) 20 (d) N one of the above. 

10. A load of 100 kg acts suddenly on a bar with o·8 cm2 area of cross section and length 
10 cm. The maximum stress developed in the bar is 

(a) 125 kg/cm2 (b) 250 kg/cm2 

(c) 500 kg/cm2 (d) 1250 kg/cm2• 

11. A bar l m long and 4 cm2 area of cross section is securely fixed at one en<l and a collar 
is provided on the bar at the other end. A weight of 10 kg falls through a height of 
10 cm on to the collar so as to extend the bar instantaneously. Neglecting the effect of 
extension in bar, the maximum stress developed in the bar is- E = 2 X 106 kg/cm2 

(a) 5 kg/cm2 (b) 500 kg/cm2 

(c) 1000 kg/cm2 (cl) 2000 kg/cm. 

12. A round bar 'A' of length Land d iameter D is subjected to an axial force producing 
stress [ Another r0und 'B' bar of the same material but diameter 2D and length 0·5 L 
is also subjected to the same stress/ The ratio of strain energy in '1 to the strain energy 
in B is given by 
(a) 2 
(c) 1 ·o 

(b) 1'5 
(d) o·5. 
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13. A steel rod I m long of diameter 3 cm is completely encased in a brass tube of external 
diameter 5 cm. and internal diameter 3 cm. A shock load produces a stress of 900 N(mm2 

in £teel rod. If Estee! = 2Ebrass, the stress developed in brass tube is . 

(a) 1600 N/mm2 (b) 1500 N/mm2 

(c} 900 N/mm2 (d) 450 N/mm2. 

14. A mild steel specimen is tested .under tension and a continuous graph between load and 
extension is obtained. A load at which there is considerable extension without increase 
in resistance is called 
(a) Ultimate load (b ) Breaking load 

(c) Upper yield load (d) Lower yield load. 

15. The approximate value of Poisson' s ratio for mild steel is 
(a) 0'35 (b) 0·33 
(c) 0'29 (d) 0'25. 

ANSWERS 

1. (b). 
7. (d). 

13. (d). 

2. (c). 
8. (d). 

14. (c}. 

3. (b) . 
9. (b). 

15. (c). 

4. (c). 

10. (b ) . 

EXERCISE 

1·1. The parts of a certain machine 

component · are joined by a rivet 25 mm in 
diameter. Determine the shear and normal 

stresses in the rivet if the axial force P= 15 kN 
and the angle of joint is 30° to the axis of 

the load. Fig. 1 ·59 
[Ans. 15'28 N/mm2 , 26'46 N/mm2

} 

1'2. A solid circular shaft and collar 

are forged in one piece. If the maximum 

permissible shearing stress is 300 kg/cm2
, 

what is the greatest compressive load W which 

may act on the shaft ? What will be the com

pfe_ssi've stress in the shaft ? Fig. l '60 

. (Ans. 22·62 tonnes, 288 kg/cm2
} 

p 

5. (a} . 
l l. (c). 

Fig. 1·59 

Fig. 1·60 

6. (cl. 
12. (d). 

1·3. A tie bar 2 cm in diameter carries a load which causes a stress of 1000 kg/cm
2

• 

It is attached to a cast iron bracket by means of four bolts whic11. can be stressed only upto 
800 kg/cm2. Determine the diameter of lhe bolts. [Ans. 1·12 cm} 
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1·4. The wooden pieces of square 
cross section 5 cm x 5 cm are glued together as 
shown in Fig. 1 ·61. The outer surface of the 
assembly are glued to the foundation. What 
will be the average shearing stress on the glued 

joints if the horizontal force=5 kN. 

[Ans. 50 N/ mm2l 

t·s. The round bar as shown in Fig. 
l "62 is subjected to a tensile load of 10 tonnes. 
What must be the diameter of the middle 
portion if the stress there is to be l tonne/cm2• 

What must be the length of the middle 
portion if the total extension of the bar under 
the given load is 0·010 cm 

£=2100 tonnes/cm 2• 

f Ans. 3"568 cm. 9"633 cm) 

1"6. A rigid plate 80 cm X 80 cm is 

supported by 4 elastic legs A, B, C and D as 
shown in Fig. I "63. A load of 1200 N is 
applied on the plate at a distance of 30 cm 
from edge AD and at 20 cm from edge AB. 
Determine the required compressive force in 

each leg. 

I Ans. 525, 375, 75, 225 N] 

t ·7. Two rigid yokes P and Q are 
connected by three elastic r ods A, Band C 
made of the same material as shown in F ig. 
l "64. The area Gf cross section of bars A and 
C is a each, while the area of cross section of 
the bar B is 3a. A load of l O kN h angs from 
the lower yoke. Find the magnitude of the 
forces in the bars A and C and in two portions 
of the bar B. The frame is symmetrica l about 
the central rod B, which is passing through a 
horizontal bearing. 

fAns. TA = Tc= 1086"96 N , 
T n' -.:;- 2173"9 1 N, To",.- + 7826"09 NJ 

- 5cm 

A 

71 

Fig. 1·61 

Fig. 1·62 

Fig. 1·63 

,-
Tc 150r""l 

-iton .. .i 
·~ 
C 

25.0 
T.c j_ 

Fig. 1·64 
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1·s. For the simple structure shown 
in F ig. J '65, member AC is a steel wire 4 mm 
in diameter a nd member AB is an aluminium 
rod 8 mm in diameter supporting a vertical 
load P= 100 kg. Determine the horizontal 
and vert ical displacements of the point A, if 

Estee1= 2100 tonnes/cm 2 

Ealuminium = 700 tonnes/cm2 

rAns. 0' 103 cm, 0'178 cm] 

STRENGTH OF MATERIALS 

25m 

Fig 1·65 

1'9. T he cross section of a bar is given by (2 + '02x 2) cm2 where x is the d ist a nce 
from one end in cm. If the length of th e har is 15 c m, find the change i,i'length under a load 
of 5 tonnes. E = 2 X 10° kg/cm2. [Ans. 0'0123 cm] 

1'10. D etermine the extension in a 
rectangular steel bar 30 cm long with a tri
angular hole cut in it , under an axia l force of 

P= 25 tonnes. Given Esteet= 2 100 tonnes/cm2
. 

[Ans. 12'6 x 10- 3 c m] 

1·11. A gradua lly app lied load 
W= 300 kg is suspended by ropes as shown in 
Fig. I ' 67. Jn both (a ) a nd (bl the ro pes have a 
cross sectiona l area 5 cm2 and value of 
£ = 2100 to nnes/cm2 • J.n case (a), the rope 
ABC is continuous and the weight is suspended 
by a frict ionless pulley of dia meter 20 cm. Jn 
(b) AB and BC are separate ropes connected 
to a bar from which the ropes are suspended, 
such that the bar rema ins h orizontal. 

Find for both (a ) and (b) the stresses 
in the r 0pes and find the downward movement 
of the pulley and the bar due to the load . 

rAns. (a) 30 kg/cm2, 0'05 mm] 

1 
3 m 

l 

LL/ 
A 

20 
C rn 

, w 

(b) 25'71 kg/cm2, 34'285 kg/cm2, 0·049 mm l 

Fig 1·66 , 

cl LL~T 
4ro T A 

4, n 

l I 20 11 ( m 

B 

Fig. 1·67 

1 ·12. A steel wire 6 mm in diameter is used for hoisting purposes in a building con
struction. lf I 50 metreso f the wire is hanging vertically and a load of 100 kg is being lifted 
a t the lower enu o f Lhe wire, deter mine the total elongation of t \l.e wire. The specific weight 
9f ~teel is 8 g/cm3, E = i lOO tonnes/cm2

. [Ans. i·954 cmJ 
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1· 13. A steel cone of base 200 mm and h..:ight 600 mm is securely fixed with base on 
the top. lf the weight density of the material is 0"0078 kg/cm 2, determine the extensi on in th~ 
length of the cone due to its own weight. E = 2· 1 X 106 kg/cm2. [Ans. 2·228 X 10-G cm] 

1·14. A brass rod 1 m long and 15 mm dia meter suspended vertically is secured at its 
upper end and a weight of 40 N is a llowed to slide freely on the rod thr0ugh a height 50 mm 
on to a stop provided at the lower end. Determine 

(a) Stress developed in the rod. 

(b) The stress developed in the rod when /i= O. 

Efor brass = lOO x lOOO N/ mm2• [Ans. (a) 47"96 N/mm2, (b) 0·453 N/ mm 2] 

1 ·1s. A vertical steel rod 100 cm long is rigidly secured at its upper end and a weight 
of 10 kg is allowed to slide freely on the rod through a distance of 5 cm on to a stop at the 
lower end of the rod, what would be the maximum stress developed if the upper 60 cm length 
of the rod has a diameter of 2 cm and lower 40 cm length rema ins at 1 ·6 cm diameter. 
E = 2·1 x 106 kg/cm2 • [Ans. 1109·5 kg/cm2] 

1·16. A load of 1 tonne suspended from a crane hook by a chain of cross section_al 
area 2 cm2 is being lowered at a uniform speed of 50 cm/sec. At the instant when the length 
of the unwound chain is 10 metres, the machine stops working and the motion is suddenly 
arrested. Determine the instantaneous stress produced in the chain along with the elongaticn 
in its length due to sudden stoppage. Neglect weight of t he chain. 

g, acceleration due to gravity=9'8 rn/sec2• 

£ = 2100 tonnes/cm2• IAns. 2210 kg/cm2, 1·05 cm] 

1·11. A stepped bar L m long has area of cross section a crn2 over a certa in lengt h 
and 2a cm2 over the remainder of the length. The strain energy of the stepped bar is 30% of 
that of a bar 2a cm2 in area, L m long subject~d t o the same maxi mum stress. What is the 
length of the portion of a cm2 in area ? [Ans. 0·2 L] 

1·1s. Compare the strain energy absorbed by two baTs A and B. Bar A 1'5 m long 
has diameter 8 cm at one end uniformly tapering to a diameter 4 cm at the other end. Bar B 
is a stepped bar of diameter 8 cm for 0·5 m length and 4 cm diameter for I m length. Both 
the bars are of the same material and are subjected to the same magnitude of axial load. 

[Ans. 1"059] 

1·19. The load to be carried by a lift can be dropped on its floor through a height of 
15 cm. The weight of the cage of the lift is 200 kg, the cage is supported by a wire rope of 
30 m length weighing 0·7 kg per metre length. The wire rope cons ists of 49 wires of 1 ·2 mm 
diameter each. If the maximum stress in the wire rope is not to exceed 90 N/ mm2• Determine 
the maximum load which can be carrried by the l ift. £=70,000 N/mm2. [Ans . 179"2 NJ 

. 1 ·20. ~ _vertical tie consisting a s~eel rod 2 m long a_nd 3 cm diameter encased through-
out m an alumm:um tube 4 cm external diameter and 3 cm 111ternal dia meter is r igidly fixed 
at the top end. The rod and the tube are fixed together so as to form a compoun d bar. The 
compoun~ bar is suddenly loaded in tension by a weight W fa lling through a h eight of 2 cm, 
before bemg arrested by a collar provided at the lower end of the tie. Determine th e magnitude 
of W if the maximum stress in the t ie is not to exceed 1800 kg/cm 2. 

Esreel = 2100 tonnes/cm2
• 

E(lf11mi11i11m= 100 tonnes/cm2
• [Ans. 632 kg l 
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1·21. A steel bar 20 mm in diameter 
1 ·5 m long is rigidly fixed to a bracket as 
shown in Fig. 1·68 The other end with a 
collar rests on a support. A weight of 200 N 
moving horizontally along the bar at the 
velocity of 2m/sec is brought to rest by the 
collar at the other end. The bracket deflects 
horizonta lly by 2 x I 0- 5 mm/N of the load 
induced in the bar. Calculate the maximum 
tensile stTess in the baT. 

£ = 210 X 1L3 N/1111112 

acceleration due to gravity, g = 9·8 m/sec2 • 

STRENGTH OF MATERIALS 

-...J 
< ol I ar 

Supoo r r. 

Fig. 1.68 

f Ans. 190'2 N/mm2] 
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Composite Bars and Temperature Stresses 

A bar made up of two or more than two different materials is called a composite or a 
compound bar. The bars of different materials in a composite bar are rigidly fixed together 
and there is no relative movement amongst these bars. Under the applied load, all the bars of 
different materials strain together. The most common example of a composite bar is an 
RCC column or a slab i.e., concrete column or slab reinforced with steel bars to increase the 
strength of a concrete structure. Another common example is a bimetallic strip, made of 
two different materials, used in a refrigerator for temperature control. 

1·2. STRESSES IN A COMPOSITE BAR 

Fig. 2· 1 shows a composite bar in which a solid circular rod of material 1 is completely 

I-'"' -L 
Fig. 2·1 

encased in a tube of material 2. The outer tube can be force fitted or shrink fitted over the inner 
rod, so that both are perfectly fixed at the interface. The diameter of the rod is d and outer 
diameter of the tube is D. The composite bar is subjected to an axial tensile force P. Say 
the change in length in composite bar is 'SL change in length in rod, 'SL=change in length in 
tube, 'SL. The force P will be shared by rod and t he tube in such a manner that change in 
length due to axial force for both rod and tube is the same. 

Total load on composit~ bar = P 

Say load shared by rod = P 1 

Load shared by tube = P~ 

Therefore P1 -'.- P~= P 

A1, Area of cross section of rod = ~ x d~ 
4 

( 75 ) 

... (1) 
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or 

or 

STRENGTH OF MAfERIAi..S 

A2• Area of cross section of tube 
1t = 4 (D2-J2) 

Stress in rod, 

Stress in tube, 

Say Young's modulus of rod 

Young's modulus of tube 

Stra in in rod, 

Strain in tube, 

Change in length of rod, 

Change in length of tube, 

But 

Stress in th~ rod, 

Stress in the tube, 

But 

f _ .!i._ 
1- A1 

P2 
f2=~ 

= E1 

= E2 

f i Pi €1= y = yi---;-
1 l. i 

SL1 = 8L 2 (as per the condition for a composite bar) 

Pi L1 P2 L 
A1E1 = A2 E2 

!~ p A1 Ei 
i = 2 -A2 X E 

2 

". (2) 

". (3) 

.. . (4) 

So from equations (3) and (4). 

. . "(5) 

Now 

".(6) 

From equation (6), stress/2 can be worked out and then from equation (5) stress / 1 can 
be calculated. . 

Exarnp?e 2· 1-1. A steel bar 50 mm diameter is completely encased in a brass tube 
of 80 mm outside diameter. Th~ length of the composite bar is 400 mm. If the assembly is 
subjected to a compressive force of 80 kN determi1,e · 

(i) stresses in steel bar and brass tube 
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where 

or 

(ii) change i-o the length of the assembly. 

Given E sree/ = 208 X 1000 N/mm 2 

Ebrass = 104 X 1000 N/mm2
• 

Solution. Area of cross section of steel bar, 

A,= ~ (50)2 = 1963"5 mm2 

Area of cross section of brass tube, 

Say the stress in steel bar = /, 

Stress in brass tube = fb 

But f, - E, 
fb - fa 

208 X 1000 
/,= 104 X IOOO X fo = 2 fo 

Total load P = 80 kN = 80,000 N = P,+Po (compressive load) 

P.= load shared by steel bar= /, A, 

So 

Change in length, 

Po = load shared by brass tube=/ b Ao 

80,000 = /, X 1963"5+ /o X 3063"06 

= 2/o X 1953·5+/o X 3063"06 

Jo= 6!~~?g6 = 11·44 N/mm2 (compressive) 

/,=2[,= 22"88 N/mm~ (compressive) 

8/ = _!, _ 22: 88 X 400 
• E, - 208 X 1000 

= 0·044 mm = change in length in brass tube 

Change in length of composite bar 

= 0.'044 ~m. 

-

... ( I) 

Exercise 2'1·2. A steel rod of 2 cm diameter is fully encased in an al~minium tube 
of outside diameter 4 cm, so as to make a composite bar. The assembly is subjected to a 
tensile force of 4 tonnes. Determine the stresses developed in steel rod and aluminium tube 
and change in the length of the assembly if its length is I metre. 

Given E stee/ = 2100 t01U1es/cm2 

Eatuminiwn= 1/3 Estee/ . 

[Ans. 0·6366, 0·2122: tomi.e/cm~ (tensile), 0·303 mm] 
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2·2. COMPOSITE BAR WITH MORE THAN 2 BARS OF DIFFERENT MATERIALS 

A composite bar can be a combination of two or more than two bars of different 
materials. The Fig. 2·2 shows a composite bar of 3 different materials. Three bars of cross 

I 
I 
I 

-!--- - ---
I 

I-• - L- -~l 
Fig. 2·2 

·- ' I 

1:-<i •~- ' '1. 
r 

sectional areas Ai, A2 and A3 respectively but of same length Land of different materials are 
perfectly joined together, say the Young's modulus of elasticity of these bars is respect ively 
E1 , Ea and E3 • 

The composite bar is subjected to an axial tensile force Pas showr . The load will be 
shared by each rod i.e., 

P= l\ + P2+ Pa=f 1 A1 +/2 A2+f a Aa 

where / 1 , / 2 and fa are the stresses developed in each bar. 

But f 1 = E1 E1, / 2 = E2 E2, / 3 = E3 E3 

. . '8L change in length 
But111 a compos1tebar E1 = E2= Ea= --L = · · ll h ongma engt 

8L 
So P= y [E1 Ad -E2 A·2+ E3 A3] 

or cha nge in .length, 8L= PL 
A1E1 + A2E2+ A3E3 

then 
8L !1 f2 fa 

E1= E2= Ea or y = E1 ;= E2 = Ea 

8L 8L 
/ 1= y XE1 and P1 = /1A1 = y XE1A1 

So the load ·~hared by bar 1, 

Pi = PE1A1 

E1A1+ E2A2+E3A3 

Similarly the load shared by other bars oon be determined. Say in a composite bar 
there are n bars of same length but with areas of cross sections A1, A 2, A3 • • • An respectively. 
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Load shared by any ith bar (i < n) 

Pi= P E,A1 
£ 1A1 + E 2A 2+ ...... £,.A,, 

Stress in the ith b:1r 

79 

Example 2·2-1. A fl.at bar of steel 2·5 cm wide and 5 mm thick is placed between 
two aluminium alloy flats, each 2·5 cm wide and 10 mm thick t o form a composite bar of 
section 25 mm X 25 mm. The three fl ats are fastened t ogether at their ends. An axial tensile 
loaJ of 2000 kg is applied to the composite bar. What are the stresses developed in steel and 
aluminium all oy. 

Estee/ = 2100 tonnes/em2 

Eat11mi11i11111 alloy= 100 tonnes/cm2
• 

' 
Solution. The figure 2· 3 shows the cross section of the composite bar. 

A lumi nium a ll Jy 

Fig. 2·3 

Cross sectional areas, Ai= !Ox 25 = 250 111111 2, A2= 125 mm2, A3 = 250 mm3 

Modulus of elasticity, £ 1= 700 tonnes/cm2
, l:~= 2100 tonncs/cm2 

£ 5 = 700 tonnes/cm2 

E1A1 = 700 X2'5= 1750 tonnes; E 2Aj= 2 l00 x 1'25 = 2625 tonnes 
E3 .4 3 = 700 X 2'5 = 1750 t onnes 

E,A 1 + E 2A2 -l- E:1A3 =- 6 I 25 

Load applied , P ~ 2000 kg= 2 tonnes 

Load shared by each bar 
2 X 1750 

P 1 = P3 = 
6125 

0'5715 tonne 

P 
2 X 26251 0 .857 t i = 6125 = onne 

Stresses in each bar 
0'5715 . 

/ 1=/ 3= - 2.5- =0 2286 tonne/cm2 

0'857 
/2= T25= ·6856 tonne/cm2 
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Stress in aluminium alloy = 0'2286 tonnes/cm2 

=228'6 kg/cm2 (tensile) 

Stress in steel = 0'6856 tonne/cm2 = 685'6 kg/cm2 (tensile). 

Exercise 2·2-1. A steel bar of section 30 mm x 10 mm is placed between bars of 
aluminium and brass of secti on 30 mm x 10 mm each. The ba.rs are fastened together at the 
ends. An axiai compressive force of 60 kN is applied to t he composite bur. Deter.mine the 
stresses produced in steel, aluminium and brass bars. Take, 

Est eel = 210 X 10s N/mn,2 

Eat11111i11i11m = 70 X 103 N/mm2 

Ebrass = l05 X 103 N/1111112
• 

Calculate ::ilso the change in length of the composite bar which is 2 m lon g. ' 
[Ans. 36'36, 109'1, 54·53 N/•nm 2 (compressive 'itr~sses); 1 ·09 mm] 

2·3. COMPOSITE SYSTEMS 

Two or more bars or. wires of diffe.r_ent ~aterjaJs may support a load. This type of 
system is called a comp0s1te system. Fig. 2 4 shows two bars of different materials and 
different areas of cross section but of the 
same length carrying a load through a h ori
zontal bar . 

Say the area of cross section of bar 1 
is A1 and that of bar 2 is A2 ; Modu lus ~f 
elasticity for bar l is £ 1 and that for bai: ~ 1s 
E.. The load W is placed at such a pos1t1on 
that the bar AB remains horizontal, which 
means 

Elonr?;ation in b ar 1 = Elongation in b.1r 
2 = 8/ 

or Strain in bar l , e1 = str ain in bar 2, 1:2 

Load W will be shared by the two bars 

W= W1+ W2=/1A1 + f!A2 

Fig. 2·4 

where /
1 

and /
2 

are the stresses developed in bars 1 and 2 respectively· 

But 

8L 'SL 
Wc- y, E1A1+ L . E2A2 

or 8L= WL ( 1:.'1A~~E2A? ) 
... (I) 
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or 

Moreover 

E1 "
/1= E2 XJ 2 

W f 1A1+f 2A2= : : Xf 2A1+ f '!.A 2 

The stresses in bars can be determined by using equat ions (2) and (3), 

Load shared by each bar 
W1= / 1A1 and W 2= f 2A2 

Position of the load W . Taking moments of the forces about the point A 

W1 XO+ W(l= W2 (a+b) 

or W2 (a+ b)= Wa 

Wia+b) 
a= W 

Let us consider that the load is placed 
at the centre of the bar AB. then 
load shared by bar l = load shared by bar 2 

w 
= 2 

Elongation in the bar I, 'oL1 

W L - -- x- -
- 2A1 E1 

Elongation in the bar 2, 'oL2 
W L 

= 2A2 X £; 
Depending upon the value of A1 E1 

and A2E2 • 8L1 may not be equal to 8L2 

Say 

T 
L 

l 
Fig. 2"5 
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. .. (2) 

... (3) 

... (4) 

... (5) 

The bar AB will no longer remain horizontal but will now be inclined at an angle a. 

tan .O'.= 8L2-'oL1 
. X 

, Example 2'3-1. A rigid bar is suspended from two wires of equal lengths l '25 metres. 
One wire is I mm in d iameter and made of steel, other wire of 2 mm d iameter is made of brass. 
A load 10 kg is placed on the rigid bar such that the bar remains 'horizontal. If the hori
zontal distance between wires is 20 cm, d etermine. 

(i) Stresses developed in steel and brass wires. 
(ti) Elongation in the steel and brass wires . 
(iii) Distance of the load from the steel wire. 
Given E~trte l = 2 E{Jras~·=21 0 X 103 N/mm2, 
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Solution . Area of cross secti on of 

steel wire, A.=-: (1)2= 0·7854 mm 2 

Area of cross section of brass wire, 

'R 
Ao= 4 (2)2= 3'141 6 mm 2 

S te e l 
w i re 

The bar AB (Fig. 2'6) is to remain 
horizonta l 

or 

Strain in steel wire 
= strain in brass wire 

-~ = JiE~- where f, and Jo are the 
E, o 

stresses developed in steel and 

brass wires 

Load shared by steel wire, W,= f, X A8 = 0·7854 f• 

Load shared by brass wire, Wo = fo XAo=3 ' 14 16/0 • 

nut 

Stress in brass wire, 

Stress in steel wire, 

W = W d -Wo for equi l ibrium 

9'8 X 10 = 0'7854f,+3" }416/• 

= 0'7854 X 2 X/d-3' 1416 fo 

98 
fo = 4'7 124 = 20·8 N/mm2 

/ . = 2/o = 4 I '6 N/rn m2. 

Load ~hared by brass wire, Wu = 20'8 X 3' 1416= 6S'34 N 

,. 

Bra ss T wire 

1-25 m 

20cm 

1 a-1 
I B ·--, 
\' ''i-:. 10 kg 

Fig. 2·6 

El . . 1 . "'L-f, XL - 4 1'6 ongat1on m stec wire, o , - E . - 210 x iCOO X 1250 

where L is the length of the w:rc 

= 0'248 mm = Elongation in brass wire, 8L ~ 

T aking momen1s of the forces about the po int A 

W X a= WoX 20 

a= 
w ~x 20 

w 

D istance of load axis from steel wire 

65.34 X20 
98 

= 13'33 cm. 

. .. (1 : 

Exam ple 2'3-2. A r igid bar is supported by wires of steel and aluminium alloy, eacl1 

t ·5 m long. The diamet<er of ea<;:h win~ is 1 ·2 mm,. A load of 20 kg is placed at the P1iddk 
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of the bar as shown in Fig. 2'7. After the load is applied, the bar is inclined to the horizontal. 
Determine this angle made by the rigid bar. The distance between tl1e wires is 20 cm. 

Given Estee1= 2· 1 X 106 kg/cm2 

Ealu111i11i11lll alluy = o·1 X lOG kg/cm2
• 

Solution. Since the load is placed at the middle of the rigid bar AB. Load shared by 
;tecl wire 

wire 

= Load shared by aluminium alloy 
wire 

w 
=y= lO ~g. 

Length of each wire, L = 150 cm. 

Diameter of each wire = 1 ·2 mm 

= 0·1 2 cm 

Change in length of steel wire, 
lO x 4 150 . 

SL,= 1t("l 2)2 x2.1x 10~= 063 cm 

Change in length of aluminium a lloy 

10 X 4 150 
oLa= ff X (0' 12)2 X 0·7 X lQG 

=0.189 cm 

Say the angle of inclination of the bar is O 

e- olu- '81. _ o· 189 - '063 _ _QJl6 = .
0063 tan - x - 20 - 20 

8= 0° 22' . 

S t ee l 

Fig. 2·7 

Alluminium 
alloy 

Exe1·cise 2'3-1. Two wires each of diameter 2 mm and length 2 metre are securely 
ixed at the top. At the bottom a r igid bar is sw;pended , keeping the distance between the 
vires equa l to 0·25m. One wire is of brass and the othe•: wire is of aluminium. A load of 30 kg 
s applied at the bar in a manner that bar remains horizontal. Determine the stress in each 
.vire and change in their Ie11gths 

Given Ebrass = 1000 tonnes/cm2 

Eat11111 ;11 ; 11111= 700 tonnes/cm2
• [Ans. 56t ·7 kg/cm~, 393 ·2 kg/cm 2, o· 112 cm.] 

Exercise 2'3-2. A rigid bar is suspended from two wires A and B. Wire A is of steel 
.vith diameter 2 mm,- wire Bis of brass with diameter I mm. Length of each wire is 2·5 metres. 
f-1 orizontal clistance between the wires is 240 mm. A load of 300 N is placed on the bm at a 
listance of 80 mm from the brass wire. The rigid bar is inclined with the horizontal, determine 
:he angle of inclination of the bar. 

Esteet= 2 Ebrass= 210 X 103 N/mm2
, [Ans. 0° 16' ] 
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2'4. BARS OF DIFFERENT L'.ENGTHS SUBJECTED TO LOADS 

Fig. 2·s shows a rod of material 1 and diameter d placed co-axially in a tube of out
side diameter D2 , inside diameter D1 of material 2. The length of the tube L2 is slightly 
less than the length of the rod L1. 

i.e., 
where 

L1 = L2+c 
C= clearance between rod and tube. 

Area of cross section of rod, 

Ai= : (d2) 

Area of cross section of tube, 
n 

A2 = 4 (D22 -D12) 

Say, the Young's Modulus of elasticity 

w 

of rod · =E1 

Y cung's modulus of elasticity of tu be 
=E2. Fig. 2·8 

The load W applied axially on the assembly would compress the rod and tube simul
taneously and load will be distributed between rod and the tube. 

or 

Say the stress developed in rod 

Stress developed iu tube 

= f1 

---f2 

Change in the length of rod, SL 1= /i X L1 E1 

Change in the length of the tube, 8L 2= J
2 

x L 2 

But 

So 

8L1= 3L2+C 

Ji X L= J; X L +C 
E1 i E2 2 

f " E1 L2 E1 
, =J2X E2 x-r;+c Li. 

From this equation relationship between/1 and / 2 is obtained. 

Total load, W = W1 + W2 

=f1A1+f2A2 

... (1) 

=( f;X Ei x .!:1 X A1 +C Ei Ai )+f2A2 ... (2) 
E2 L1 Li 

From equation (2) stress/2 in tube is determined and then from equ1tion (1) stress /1 
in rod is determined. 
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Example 2'4-1 . A steel rod 20 mm diameter 1 ·5 m long is placed co-axially in an 
aluminium tube of outer diameter 60 mm and inner diameter 30 mm and 1500'4 mm length. 

1500 mm 

Fig. 2·9 

A compressive force of 100 kN is applied 01;1 !he assembly as shown in the Fig. 2·9. Determine 
the stresses developed in steel rod and alumnuum tube. 

Given Esteet= 210xl03 N/mm2 

Ea111mi11ium= 70 X 1 oa N/mm2 

Solution. 

(i) Say the load is taken up by the aluminium tube only 
Area of cross section of aluminium tube, 

n 
Aa= 4 .(602-302) = 2120'58 mm2 

Change in the length P L" 100 X 1000 1500A 
= 7. X Ea= 2120'58 X 70 X1000= l 'Ol mm. 

Note that 1 ·01 mm is greater than 1500·4-1500= 0·4 mm i.e., clc~rance between the 
rod and tube. So the load will be shared by both the rod and tube. 

(ii) Say the stress developed in steel rod = /, 
Stress developed in aluminium tube =J;, 

Area of cross section of steel rod, 7t 
A,= 4 (20)2= 314.16 mm2 

8L,, change in length in steel rod = f, X 1500 
E, 

8L0 , change in length in aluminium tube = / a_ x 1500'4 
Ea 
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but 

or 

0La= 8L, + 0·4 

f., . X 1500'4= f , X 1500+ 0·4 
Ea E, 

Substituting the values of Ea and E, 
. 70 103 1500 Q· 4 X 70 X l 03 

f a=/, '/.. 210Xl03 X l500'4 + 1500'4 

= 0'333 J,+ 18' 662 . . , 
But P= Pa+ P, (load shared by the aluminium tube and steel rod) 

100 X 1000 = / aX2120'58 + / , X314' L6 

J 0,000 = (0'333 /• + 18'662) 2120'58 + 314' 16 f. 
100,000-39574'26= 1020·3 13 f, 

t 1 d I 60425'74 N/ i - 59·22 'N/ z stress 111 see ro , , 
1020

.
313

_ mm - mm 

Stress in aluminium tube, fu = 0·333 J,+ l 8'662 
= 38·382 N/mm2 • 

Exercise 2'4-1. A steel rod 40 mm d iameter is p laced co-axially inside a brass tube 
of inner diameter 42 mm and outer di~meter SO mm. The length of the brass tube is 2·5 metre 

ip =B Ton nes 

. ]_L 
T C::O·Zmm 

•' : 

: .. 

I ' .. 

and the length of steel rod is 2 metres. There is clea::ance at the top between rod and tube 
equal to o·z mm. The assemblr .is subj~eted to a coinpress iv.e fon;e of ~ t onnes1

• I?et~rm.i~e 
the stresses developed in the r od and the tube. , 

Given that 
r , • • • ~ 

Estec•i= 2 I 00 tonnes/cm2 

Ebra,s= 1/2 Estee/, 
• I' , . ') 

[Ans . 0·57 tonncs/cm2, o·'llf4 tonnes/cm%J 

) ·. 
2'5. BOLT AND TUBE ASSEMBLY TIGHTENED WITH A NUT 

Fig. 2· 11 shows an assembly of a bolt a nd a tube tightened with a nut. · Tlie· figure 
shows a bolt passing through a tube co-a "<ially. On both the ends of the tube there are 
washers. T he nut is tightened on th~ threaded portion of the b9lt , exerting pn:ssure. on the 
washers or consequently on the tube. · ' · · 
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Thrli'cds 

When the nut is tightened on the bolt as shown, the bolt is extended and the tube is 
contracted, developing compressive stress in the t ube and a tensile stress in the bolt. 

Let the d iameter of t he bolt = d 
Length o f the bolt between the washers 
Inner diameter of the tube 
Outer diameter of the tube 

Area of cross section of bolt 

Area of cr0ss section of tube 

Say Young's modulus of el asticity of bolt=E1 

Young's modulus of elasticity of tube = E2 

When the nut is being tightened, the bolt is extended and tube is reduced in length. 
Extens ion in bolt + contraction in tube = axial movemen t of the nut. · ... (l) 

Co mpressive stress is developed in tube and tens ile stress is developed in the bolt, for 
equilibrium. 

Tensile for ce in bolt= Compressive force in tube 
Say the stress developed in bolt = / 1 

stress developed in tube = / 2 

. then .f1A1 = /2A2 ... (2) 

Moreover £1 x L+ ~~ + L= axial movement of not ... (!) 

note that f 1 is a positive tensile stress and /2 is a negative compressive stress. 

Example 2'5-1. A steel bolt _of diameter l '8 cm passes co-axially through a copper 
tube of inner diameter 2 cm and outer diameter 3 cm and length 50 cm. Washers are placed 
at both the ends of the tube. The bolt has threads at one end with a pitch o f 2 ·4 mm as 
shown in Fig. 2· 11 The_ nut is turn_ed on the bolt through 45° so as to tighten the assembly. 
Determine the ~tresses developed m th e bolt and the tube. 

£.= 2£. = 200,000 N /mm2 • 

Solution. Pitch of the threads, 
p= 2'4 mm 

Angle thro ugh which nut is tightcnl'd 
= 45° 



88 
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So axial movement of nut= ;~~ x 45°=0"3 mm 

Area of cross section of bolt, 

A,= ~ (18)2 = 254"47 mm2 

Area of cross section of tube, 

Say the stress developed in bolt 

= +J, (tensile) 

Stress developed in tube =- !, (compressive) 

Due to the tightening of the nut, bolt is extended and tube is contracted. 

Now f,A, - f ,A,= 0 

f, X 254"47 = f c X 392"70 

f, = 1 ·543 Jc 

Extension in bolt = f!.- X L = f • X 500 I.!_ 
E, 200,000 = 400 

Contraction in tube f , f ~ X 500 f, 
= E,- x L = 100,000 = 200 

Now axial movement of nut = extension in bolt + contraction in tube 

0·3 f, fr 
= 400- + 200 

120=!·+~(, 
1 ·543 J,+2J.= 120 

f, = / 5
2
~3 = 33 '87 N/ mm 2 compressive) 

f ,= 1 ·543 X 33'87= 52"26 N/ mm 2 (tensile). 

.. . (1) 

... (2) 

Exercise 2·s -l. A central steel rod 25 mm diameter passes through a brnss sleeve 
30 mm inside and 40 mm outside diameter and 60 cm long. lt is provide:d with nuts and 
washers :.tt each . end. A nut is tightened_ so as to produc~ a compressive stress r.f 600 kg/cm2 
in tube. If t he pitch of the threads on rod 1s 3 m m, determine 

(i) Stress developed in steel rod 

(ii) Angle through which the nut is turned during tightening. 

O ivcn f, . 2£, = 2 100 tonnes/cm 2• 

f,A.ns. (i) 671 85 k~/cm:i (ten:;ile)
1 

(ii) 64 '2 "j 
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2"6. TEMPERATURE STRESSES IN A SINGLE BAR 

A bar of diameter ·a and length L is fixed between two rigid walls as shown in the 
Fig. 2·12. 

Woll rWoll 

· ----d-·-·-

L 

Fig. 2'12 

The coefficient of linear expansion of the bar is _(I. . The temperature of the bar is raised 
through T°. The bar is not free to expand. The bar tli'ies to expand and exerts axial pressure 
ory. wall, and at the same time wall puts equal and opposite pressure on the bar. 

ff the bar is free to expand, then free expansion in the length of the bar= cxLT 

Total length of the bar after expansion= (L + Cl.LT). 

But the initial and the final length of the bar after the temperature rise remains the 
same. In other words the wall exerts pressure on the bar and its fo:ngth (L+ (J.LT) is compressed 
to L. 

So the change in length = L + (J.TL-L=r,.LT (contraction) 

Strain in the bar due to temperature rise, 
cxLT (I.LT 

E1 = L+(J.LT =:! --y:-=(I.T as (1.LT<<L . 

fr; stress in the bar due to temperature rise 
= "r E= (I.TE (compressive) 

where E is the Young's modulus of the bar. 

Similarly if there is a drop in the temperature of the bar, the bar will try to contract 
exerting pull on the wall and in turn the wall offers equal and opposite reaction exerting pull 
on the bar and developing tensile stress in the bar. 

fr. stress in bar due to fall in temperature 
= <1.TE (tensile) 

Example 2'6-1. A steel bar 2 cm in d:ameter, 2 metres long is rigidly held between 
two walls. The temperature of the bar is raised by 30°C. If the coefficient of linear expans ion 
of steel is I l X 10- 6/°C, determine 

(i) Stress develo?ed in b~r 
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(ii) Force exerted by the wan on the bar. 
Given E stee/ =2080 tonnes/cm2• 

Solution. Diameter of the steel bar, 
= 2cm 

A, area of cross sec.!ion of the bar 

= ; (2)2=3'1416 cm2 

r,., coefficient of linear expansion of steel 
= 11 X 10-6/°C 

Temperature rise, T=30°C 
Estee/ = 2080 tonnes/cm2 

Compressive strain in bar, 
€T= 0tT= ll X 10-0 x 30= 330 X 10-6 

Compressive stress in bar, 
fx = rJ.TE= 330 X 10-0 x 2080 

= 0·6864 tonnes/cm2• Ans. 
Force exerted by the wall, 

P =fx x A= 0'6864X 3' 1416 
= 2·156 tonnes. Ans. 

STRENGTH OJI MATERIALS 

Exercise 2·6-2. A copper bar of square section 3 cm x 3 cm and length 1 metre is 
held between rigid fixtures There is drop in the temperature of the bar by 20°F. Determine 

(i) Stress developed in bar 
(ii) Force exerted by the rigid fixture. 
Given F.copper = 100,000 N/mm 2 

or copper= IO X 10-Gj°F. 
lAns. (i) 20 N/mm2 (tensile), (ii) 18 kN] 

2·1. TEMPERATURE STRESSES IN A COMPOSITE BAR 

A composite bar made up of two bars I and fl of different materials is shown in the 
Fig. 2' 13. The length of the two bars is the same, say L. The area of cross section of bar 

' I 

0::.1 >~2 
I I 



C6Mi>o'srrfBARS AND TEMl?ERATURE STRESSES 91 

1 is A1 and area of cross section of bar 2 is A2• The coefficient of linear expansion of bar 1 
is e.t1 while the coefficient of li.neaT e1Cpansion of bar 2 is e.t2 • Say r1.1 > r1.2 • Both the bars are 
permanently fixed cogether so as to form a composite bar. Now say the temperature of the 
composite bar is increased by T 0

• The length of the composite bar is increased by 8L, i.e., 
BB' or CC' as shown in the figure. 

If the bar 1 is free to expand independently then it would expand or ch'ange in its 
length = BF=EG= et.1 L1'. 

Similarly if the bar 2 is free to expand independently, then it would expand or change 
in ils length= EP= CQ= ~2 LT. 

But in a composite bar, both the bars l and 2 expand unitedly, by the same c1mou11t 
i.e., 8L 

·.t., 

'oL < e.t1 LT, 'oL > Cl2 LT 

Contraction in the freely expanded length of bar 1 

= oc1 LT-'oL 

Extension in the freely expanded length of bar 2 

= 'oL-rJ.2LT 

Compressive strain in bar I, 

Since 

'oL- e.t2LT 'oL-<1.2LT 
Tensile strain in bar 2, r 2= L+ r1.

2
LT ~ L 

Contraction in length of bar I , 

'oL
1
= (r,.1£i-'oL) XL = r1.

1
LT- 8L 

Extension in length of bar 2, 

8L2=( ('oL - 2LT)) L = 'oL- <1.
2
LT 

Contration 'oL1+extension, 8L2= (/.1LT- r1. 2LT= LT (a1 --r,.
2

) 

Say the stress developed in bar l, 

= / 1T (compressive) 

Stress developed in bar 2 = /zT (tensile) 

For equilibrium compressive force in bar ! = Tensile force in bar 2 

/1T X A1 = /zr X A2 

Contraction, 'oL1 = fiT x L 
E1 

£:?(tension, 

ivhere E1 and E2 are the Young's modulus of elasticity of bars 1 and 2 respectively. 

... (2) 
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From equation (1) 

f1T + f2T = T (ct1- 0C2) 
E1 E2 

... (1) 

From equations (1) and (2) temperature stresses in bars 1 and 2 can be determined... . ,\" 

Example 2·1-1. A flat steel bar 20 
mm x 8 mm is placed between two aluminium 
all oy bars 20 mm x 6 mm each, so as to form 
a composite bar of section 20 mm x 20 mm. 
The three bars are fastened together at their 
ends when the temperature of each is 75°F. 
Find tlie stress in each when the temperature 
of the whole assembly is raised to 125°F. 
Determine the temperature stresses developed 
in the steel and aluminium alloy bars. 

177'.i'77,'177:'7'7?'777771 ~ ' 

or 

or 

or 

6mm 
~<f*~~~~~~ -iT 

elnm' 
lr7'7?~'r:~~+-,~_.:.L.. 

Fig. 2·14 

E,= 21.0,000 N/mm2 E 0 = 70,000 N/mm2 

o:, = 6"4 X 10- 6/°F 1Xa= l2"8 X 10-6/°F. 

Say the stress developed in steel due to temperature rise = /sr 

Stress developed in aluminium alloy due to temperature rise = J.,r 

E, = 210 X 103 N/mm2, EJ= 70 X 103 N/mm2 

Temperature rise, T = 125- 75= 50°F 
Area of cross section , A,= 20 x 8= 160 mm2 

Area of cross section, Au= 2 x 20 x 9= 240 mm2 

Now 

Since 

fsr X A,= f r X A., 
f sr x 160= / T x 240 

f,r = l "5 f T 

1;~ +{; = T (o:u-<1 .• ) 

fsr 
210,000 + 
l "5 /aT 

210,000 + 

= 50 ( 12·s - 6·4) x l.0- 6= 320 x 10- 5 

/ aT 320 10 · r, 
70,000 = X 

/aT _ 
· --= 320 X 10 o 
70,000 

1"5/ar = 22"4 
/ar= 14"93 N/mm2 
/ sr = l "5/ar = 22"40 N/mm2 

IXa i> °'' 
f or = 14"93 N/mm2 (compressive) 
/sr= 22"40 N/mm2 (tensile). 

6mm 

,, 

... (1) 

. .. (2) 

... (2) 

Exercise 2·7-2. A compound bar 1'2 m long is made up of two pieces of metal ; one 
of steel and the other of copper. The area of cross section of steel is 40 cm:i and that of 
copper is 25 cm2. Both pieces are 1 ·2 m long and are rigidly connected together at both tge 
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ends, the temperature 'of the qar . is now raised by l,0~°C . The bar is restrained agaimit bending. 
Determine the temperature stress in both the material. 

ocs=l2x ro-0/°C, E,=2100 tonnes/cm2 

oc,=17'5X 10- 6/°C, E, = 1000 tonnes/cm2 • 

[
Ans. 0·265 tonne/cm2 (tensile) in steel l 

0'424 tonne/cm2 (compressive) in copper J 

· Problem 2· 1. A weight of 25 tonnes is supported by a short concrete column 
25 cm x 25 cm in sectipn strengthened by 4, st~<tl b<1-rs in the corners of the cross section. The 
diameter of each steel bar is 3 cm. Find the stres.ses in ~t~el and in concrete .. 

1 

E, = 15£, = 2100 tonnes/em2• 

lf the stl'ess in the concrete must not exceed · 20 kg/cm 2, what area of steel is required, .. 
in order that the column may support a load of 40 tonnes . 

Solution. Load, P= 25 tonnes 

Say the stresses developed St<el ba r: 

in steel -f, . 
1 

, ~C;~ \',> . }'m

1
J!ia 

in concrete --f, 
'~-:-f,-: ~: ;.._ .~. ' 

Area of cross section of steel, 
ff ,I ' 

A,= 4 (3)2 X4 = 28'27 cm2 

Area of cross section .of coRcrete, 
A,= 25 X25-28'27 

= 596'73 cm2 , .. 

J • • '~ - ... / 

/p.:.C~ncret~ -, - : l25f,m 
' .< : ...,., { • l • . • ;-

.<"',., _ ,--
·. . • . ./ ~-.,.. . .. ,, ·-·~:-, Y., ,.-.~ ·: . 
,~(- _':~. 

~75cm-J 
Concrete column reinforced with steel 

bar is a composite bar 

strain in steel= strain in concrete 

Is l e 
E, = E, 

l . 

or E, 
I,= l e X £e ,rr- ll le , · 

Now P=l ,A,+I.A. ~ 15f, . A',+fgA;' 
' . . ' 

25=15 Xfc X 28:27 + /• X 596'13 

or 
. ; 25. 25 
f• = 596'73+ 424:05 = 1020'78 0·0245 tonnes/cm' 

I 

f, = 151. = 0'3675 tonne/cm~. 

i ~ 
1 

!~ 1 ! I 

(b) Now the allowable stress i!l, COQG~~te,=20 kg/cm2 

So maximum stress in steel 11 = 15 x 20 = 300 kg/cm2 

I 

,•r; 

Say the area of steel section = A,'; A/= (225-A, ') 
' '. 

.. ... (1) 



· Load p ~·40 tonnes = 40,000 kg=f,A,'+f•4e' .,i 

40,000=300 X A,' +20 X (625-A,') 

40,000=12,500= 280 A,' 

A.'= 27500 
. : .280 

Area of the steel required = 98'2 cm2• 

j~ ... 

,,: 

Problem i-·2. A short, hollow cast · iron column · 20 cm 'ext~h1al dia.tneter and 
J6 cm internal diameter is filled with concrete as shown in Fig. 2·16. The' column carries a 
total load of 30 tonnes. If ECJ = 6Econcrete 

ca,lculate the stresses in the cast iron and th\:! 
concrete. · 

What must be the internal diameter 
of the cast iron column if a load of 40 tonnes 
is to be carried, the stresses and the external 
diameter being unchanged. 

Solution. (a) Load on column, P= 30 tonnes 

Fig. 2·J6 

Area of cross section of cast iron, A1 = ; (202 - 162}= 113'098 cm2 

Area of cross section of concrete, A2= ; x 16~=201 '062 cm:.i. 

Say the stress developed in cast iron= / 1 (compressive) 

Stress developed in concrete = / 2 (compressive) 

I• 

Cost iron 
·I 

Ccncrct, 

. I 

.r. 

: j. 

(As the load on the column is a compressive force) 

£: = {
2 

(in a composite bar) 

E ' /1 = E: f:.1=6 !2 (as given in the problem) 

So /1A1 +J2A2 :d,30,000 kg 
6/2A1+/2A2= ~0,000 

fl6X 113'098+201'062]= 30,000 

Stress in concrete, 

Stress in cast iron, 

(b) Load 
Stress in cast iron, 
Stress in concrete, 

, . I 

I' - 30,000 - 34'10 k / 2 
Jz- 879·65 - g cm 

/1= 6!~= 204'60 kg/cm2 

= 40,000 tonnes 
/ 1= 204'60 kg/cm2 
/2= 34' 10 kg/cm2 

Outside diameter of cast iron column~ 20 cm 

!' 

1, ' 
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. Sa,y insi9e ~iameter of cast iron column 

= d cm 

Area of cross section of cast iron, Ai'= ; (202-d2)=; (40u- d2) cm~ 

Area of cross section of concrete, A2' = : d2 cm2 

Now 

204'6 X : (400-d2)+34'1 X : Xd2= 40,000 

64277"13-160·69 d 2 +26'78 d2 = 40,000 

24277"13 = 133'91 d 2 

Internal dia. of column, 

d2=24277· 13 = 181 '29 
133·91 

d= I 3'464 cm. 

Problem 2·3. A circular ring is suspended by 3 vertical bars A, Band C, of different 
lengths. The upper ends of the bars are held at different levels. Bar A is 2 metres long, 
15 mm diameter. Bar B is l "6 metres long, 12 mm diameter and Bar C is 1 melre Jong and 
18 mm diameter. Bar A is of steel , B of copper and C of aluminium. A load of 30 kN is 
hung on the ring. Calculate how much of this load is carried by each bar, if the circular ring 
remains horizontal after the application of the load. 

E,=2E0 = 3Eu= 210 x 1000 N/mm2 

s stand for steel, c for copper and a for a luminium. 

Solution. Area of cross sections of bars 

... 
Aµ = 4 (12)2 = 113'098 mm2 

Ac= ; (18)2 = 254'47 mm2. 

Length of the bars, LA= 2000 mm 

Ln= I600 mm 
Lc= lOOO mm. 

Modulus of Elasticity, EA = 210 x 1000 N/mm 2 

Es= 105 x 1.000 N/mm2 

Ec= 70 X 1000 N/mm2. 

Say the change in length in each bar= 8L 

~L = /,EA X LA= fEn X LB= J;Ec X Le 
A J B C 

or JA = 8L. f~ = oL x210
2
~~goo = I05 oL 
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r = 8L ~!1 = .. L x 105 X IOOO 65'62 .. L 
J B • LB O 1600 ° 

f c= 't>L . r: - 8LX 
7
0 ~ ~~00= 70 3L. 

Now j.fAA +fBAB + fcAc = 30,000 N 

(105 X 176'71 -1- 65'62 X 113'098 + 70 X254."47) SL= 30,000. 
30,000 

~L= 1855f55 f 7421 '49 + 17812'9 

30000 . = 
4378

.8"
94

,= 0 6851 mm. .,, 

Load shared by bars, PA = /AAA = 18554'55 X0'685 l = 12711 '8 N 

, Ps = /aAn = 7421'49 X0'685 l = 5084'5 N 

Pc= fcAc = 17812'9 X0'6851 = 12203'7 N. 

[Note that values of fA AA, fsAs and fcAc are taken from equation (1) above]. 

Problt>m 2·4. · Prestressed concrete beam is fabricated as follows : 

(a) A rod is loaded between the plates under tension,/,. r ' 

(b) Then the concrete is poured to form a beam of the section shown. 

.. . (1) 

(c) After the concrete is properly set the external force Pis removed, and the beam is 
left in a prestressed condition. 

If E, 15 d h · · · h ' · A, 1 l t ·11 b the E, = an t eir cross sectional areas are m t e ratio ·Tc = is, w 1a w1 e 

final residual stresses in the two materials. 

~ ·---H~ 
)11 

Fig. 2·17 
) ' 

Solution. 

(a) Area of steel reinforcement = A, 

J:?<-ternal forc;e = f 
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p 
Initial tensile stress in steel, f ,= - · A, 
After the concrete is properly set the external force Pis removed. 

97 

The steel will try to contract but its contraction wi ll be checked by the concrete portion 
because steel and concrete are bound together and released load will act as a compressive force 
on the composite beam. 

Strain in steel bar=strain in concrete beam 
f,' - fe' 
E.- E, 

where f ,' =stress in steel (compressive) 
/ •'=stress in concrete (compressive) 

f .~. = .E.!_ = 1 S 
f / E. 

Moreover f,'. A,+f.'. A.= P 

f.'. A,+{s; 15. A,= P 

2.f.' . A,=P 

f, '= _!_ 
2A, 

J.
I f.' - p 

• =15- 30 A, 

Final stresses, in steel, J. " - P - p - p (tensile) 
' - A, 2A, 2A, 

In concrete, Jc'= 
3
{ A, (compressive) 

p 
2A c 

Ratio, 
J." _ P x 2A. _ A. (tensile stress) = - IS 
Jc' - 2A, ~ - A, (compressive stress) 

Prob!em 2·s. A steel bar 2 m long 
with area 500 mm2 for 80 cm length and 
1000 mm2 for 120 cm length. The bar is 
fitted between two rigid supports at top and 
bottom as shown in Fig. 2' 18. A uniformly 
distributed load of 20 kN is applied on the 
shoulder. Determine the stresses developed 
in the upper and lower portions of the bar. 

Solution. When the load is applied, 
upper portion will come under tension and 
lower portion will come under compression. 

Extension in upper = Contraction in lower 
portion . rortion, 

120cm 

I 
• .. -; ~~ T'1-::rr7it?--:'"7".,...,-r7' 
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Say the stress in upper portion= / 1 

Stress in lower portion =J~ 
Young's modulus of elasticity of the material = £ 

Extension in upper portion = Ji X 80 
E 

Contraction in lower portion = 1 X 120 

So 
/1 X 80 _ /2X 120 

E - ~-

/1 = 1'5/2 
Total force will be shared by the upper and lower portion 

P= P1+ P2 

20 x 1000= / 1A1+ /2A2 
= 1'5/2X500+f 2 X 1000 

Compressive stress in lower portion, 

Tensile stress in upper portion, 

r - 2o,ooo I 1'4~·8 N/mm2 
J 2- 1750 

STRENGTH OF MATE~IALS 

.. . (1) 

/ 1= 1'5/2= 1'5 X 11'428=17'142 N/mm2 • 

Problem 2·6. A steel rod 20 mm in diameter passes co-axially inside a brass tube of 
inner diameter 24 mm and outer diameter 40 mm It is provided with n uts and washers at 
each end and nuts are tightened until a stress of 150 kg/c m2 is set up in steel. 

The whole assembly is now placed in a lathe and a cut is taken along half the length of 
the tube reduci ng the outer diameter to 36 mm. 

(a) Calculate the stress now existing in the steel. 
(b) If an end thrust of 500 kg is applied at the ends of steel bar, calculate the final 

stress in steel. 
Estee/= 2 .Ebrass = 2100 tonnes/ cm 2 

L 

Fig. 2·19 

Solution. 

Thrllads 

it 
(I) Area of cross-section of steel rod , As= 4 (2)2= 3'1416 cm2 

Area of cross-section of brass tube, 

Stress in steel, 

Tt 
An= 4 (42- 2'42)= 8'0425 cm2 

fs = 150 kg/cm2 (tensile) 
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or 

Now for equilibrium Pull in steel rod = Push in brass tube 

150 X 3' 1416= /u X 8'0425 

r 150 X3 '1416 58.59 k / "( . ) 
;B = 

8
.
0425 

= g cm~ compressive 

(U) When the tube is turned for half of its length on fl lathe contraction of the t ube 
will increase and extension of the rod is decreased. 

or 

or 

Change in length of steel rod = change in length of brass tube 

Say /n1 = stress in the reduced section of the tube 
jB2=stress in the uncut section of the tube · 
fs 1 = stress in the steel rod 

Load on the tube = load on the rod 

Reduced section of the t ube 

/ n1 XAn'=/ n2 X An = fs1X As 

/n1 X 5'655= /e2 X 8'0425 = /s1 X 3' 1416 
/ 111= 0·555 fs1 
fn2 = 0'390 fs 1 

N ow reduction in the length of the 'rod = Reduction in the lengtl1 of the tube 

fy-.fs1 X l= frit - f " X f_+ f n~- J,1 X j_ 
E, En 2 En 2 

Es 
2( fs-fs1)=E;; [(Ja1-fn)+(Ju2-fn)] 

= 2(/n1 + /u2-2/n) 
fs-fs1=/n1 + / n2-2/u 

Substituting the values offs and/n 
150-/s1= 0·555 f s1+ 0'390 /!>'1- 2 X 58'59 

/s1 (l + 0·555+ 0·390) = 150+2 x 58'59=267· 18 
267' l 8 

/s1 = 
1
.
945 

=137·37 kg/cm2 • 

Stress now existing in the steel rod= 137·37 kg/cma. 

... ( I ) 
... (2) 

.. . (3) 

(iii) When the end thrust is applied on the steel rod, there will be further reduction in 
its tensionfs1 and the compressive stresses in the two portions of tube will increase. 

Fig, 2'20 
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Say /a1 increases to /a3 (in the reduced section) 

/n2 increases to /"4 (in the uncut section). 

st1u.NG111 011 .MArERiAi.s . 

So 500=compressive force in tube-tensile force in rod (for equilibrium) 
500= /Bs X 5'655-fs2X 3' 1416 

= fa4 X 8'0425- fs2 X 3' 1416 

(Because the compressive force along the tube will be constant throughout its length). 
/n3=88'417+ 0·555 fs2 
/B4= 62'170+ 0'390 fs2, 

Reduction in length of the tube= Reduction in length of the rod 

fs-fs2 Xl=Jns-fo x_!_+f B4-fB X- 1-
Es EB 2 E 2 

But Es=2EB 
Js-Js2=f B3-f o+J B,1-f" 

I50-/s2 = 88'417+ 0'555 fs2 +62' 170+ 0'390 / s2-2X 58·59 

fs2 (l + 0·555+ 0·390)= 150+ 1 x 58'59- 88'417-62· 170 
fs 2 (l '945)= l J 6'593 

Final stress in steel rod, 
I 16'593 

fs2= 1.945 59·945 kg/cm2 • 

Problem 2·1. A rigid bar EF 3 m long is supported by two wires AB and CD af 
shown in the Fig. 2·21. Wire AB is of steel, 2 m long and 6 mm in diameter. Wire CD is of 

B 

WB 
Brass wire 

- A'~-- - •, c---
t-im •j• lm-,- lm 

AB:2m 
CD: 1·4m 

Fig. 2·21 

w~HkN 

brass, 1 ·4 m long and 5 mm in diameter. The bar carries a vertical load of 1 ·6 kN at the end 
F and end Eis hinged. Determine the stresses in steel and brass wires. ' 

Es= 2Es=210 x 1000 N/mm2• 

Solution. Under the applied load at the end F, the rigid bar EF will be inclined as 
shown in Fig. 2·2 1. 

Extension in steel wire, 
Extension in brass wire, 

'Sfscc EA 
13/B'X EC 
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but 

or 

or 
or 

So 
EC= 2EA 
ols= 2Sls. 

Say the stress developed in steel wire is Js and in brass wire it is jB. 
I 

Then f: X /s = 2 X 1s X ls 

Load on steel wire, 

Load on brass wire, 

fa 
Es X 1400= 2 X f;B X 2000 

/B 2000 10 
fs = 1400 =7· 

Ws =JsAs = fs X : (6)2= 28'27 fs 

Wn=fBAs =jB X : (5)2 = 19'63/B 

Taking moments of the forces about the poi nt E 

1·6 kN X3= Ws x l + WB X2 
Ws + 2Ws= 4·8 kN= 4800 N. 

28.27 Js+ 2 x 19'63Jn= 4800 N 

But 

So 

10 
f s = -r fs 

10 
28.27Js + 2 x I9'63 X 7- /s= 4800 

Js[28 ·27 + 56 ·os6 J = 4800 

Stress in steel wir~. 

Stress in brass wiire, 

fi - 4800 - s6·9o N/ 2 s-84·356 - mm 

fB= 8t ·29 N/mm2• 
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.. . ( l) 

... (2) 

. .. (3) 

Problem 2·s. A rigid steel plate is supported by three vertical concrete posts of 2 m 
height each, but accidentally the height of the middle post is o·s mm less as shown in Fig. 2·22. 

p 

2m 

II 11 l 

Fig. 2'22 
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Area of cross section of each post is 200 mm x 200 mm. Determine the safe value of the load 
p if the allowable stress for concrete in compression ,is 16 N/mm2

• 

or 

or 

E for concrete= 12 x 1000 N/mm2• , 

Solution. Say the stress developed in outer posts=/ 1 
Stress developed in middle post =/2 

Ar.;a of cross section of each post, A = 200 x 200 

A = 4 X 104 mm 

Now contraction in outer post = Contraction in middle post+ o·5 mm 

/ 1 X 2000= _h_ X (2000-0'5)+0'5 
E E 

i.e., 

So 

Safe load, 

2000 / 1= 1999'5 / 2+ 0·5 X 12 X 1000= 1999'5 /2+6000 
.f1=0·99975 !2+ 3. 

f1>h 
/ 1 = 16 N/mm2 allowable stress 
16= 0·99975 !2+3 

f2= 13'00325 N/mm2• 

P = 2f1 X A +f 2 XA 
= 2 X )6X4 X 104 + 13'00325 X4 X 104 

= 128 X 104 + 52'01.3 X 104 = 1800'13 kN. 

. .. (1) 

... (i) 

Problem 2'9. A combination of stepped brass bar 599·97 mm long and aluminium 
tube 600 mm long is subjected to an axial compressive force of 20 kN. Both the tube and the 

W:: 20 k N 

399. 97mm 

+ 200mm 

Fig. 2·23 

rod are co-axial. Determine the maximum stresses in brass bar and aluminium tube. 
Ebrass= 105 X 103 N/mm2 

Ea/uminium= 10 X.103 ~/mm2
• 
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Solution. Say the load shared 

by brass bar 

by aluminium tube 

Contraction in brass bar 

Contraction in aluminium tube 

4Wq 150 4W2 X450 
Siu= ~ X (802-302) Eu+ n X (802-602) Ea 

W2 [ 600 1800 J 
= Ea. 1t X 5500 + 1t X 2800 

= W2 [0'0347 + 0'2046] = O'l 393 W11 

Ea Ea 

But contraction in tube = Contraction in b ar + o·o3 

0'2393 W2 0'84 W1 + o·o3 E., F:~ 

0'2393 W2 = o·g4 X W1 + o·o3 
70 x 103 !05 X l03 

0'342 W2 = 0'8 W1 + 3000 
or W1= 0'4275 W~- 3750 

But J1.'.:'1 + W~= 20,000 N 
W1 = 2000-W2 

or 0'4275 W2 - ·3750= 20,000- W~ 
1 '4275 W2= 23750 

Maximum stress in brass bar 

W2= 16637'5 N 
W1 = 3362'5 N 

4 X 3362'5 
= n X (20):l 

Maximum stress in aluminium tube 

=~ 13
~~ = 10·7 N/mm2 • 

400 X TC 

_ ~x 16637'_5 _ _ 4 x 16637·5 
7

.
565 

NJ 
2 

- rr x (802-602) - n x 2800 mm · 
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Problem 2·10. A railway is laid so that there is no stress in the rai.ls at l lO' F. 
Determine the stress in the rail at 50 °F if all . contraction is prevented. E= 2100 tonnes/cm~, 
o: = 6'5 X 10 "6 /°F. 

The ra ils are 30 m long. If however, there is 5 mm allowance for contraction per rai l , 
wha t is the stress at 50 °F? 
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Solution. (a) T , Fall in temperature 
= I 10- 50= 60°F 

Coefficient of linear expansion, rx = 6·s x 10-0 /°F 
I 

Say the stress developed in rail =/sr 
£ = Young's modulus of elasticity 

= 2100 x !000 kg/cm2. 

Due to fall in temperature, rail will try to contract, but its contracti0n is prevented, 
so tensile stress is developed in rail. 

(b) Length of the rail, 

Allowance for contraction 

Say stress developed 

fs; = :t.XT 

Jsr = 2100 X IOOO X 6'5 X J0 · 6 X 60 
= 2·J x 6·5 x 60 = 819'0 kg/cm 2• 

L ·= 30 m = 3000 cm 

= O·s cm 

=Jsr' 

fs~ XL= cxLT- contraction allowance 

= 6·s x J0-6 x 3000x6o-o·s 

= 1·11- o·s =:= 0·67 cm 

f 
, __ 0_:_610 x 2100 x I 00,0 

ST - 3000 469 kg/cm2• 

Problem 2 11. A steel wire 2·4 mm in diameter is stretched tightly between two 
rigid supports I metre apart under an initial tensi le force of I kN. If the temperature of the 
wire drops by 20°c , determine the maximum tensile stress in the wire. 

Es= 2l0X J03 N /mm2 

os= 11 X 10- 6/°C. 

Solution. Wire diameter, c/= 2'4 mm 

Area of cross section, 

Tensile fo1ce 

Initial tensi le stress, 

7t 
As = 4 (2'4)~ = 4·524 mm2 

= 1000 N 

1000 
fs =-

4
.
5
i4 = 22 1'04 N/ mm 2

• 

Now due to the temperature drop, the wire will try to contract but the rigid suppons 
will prevent this contraction ar.d thus further increasing the tensile stress in the wire. 

Say the tensile stress in wire due to drop in temperature = fsr 

Drop in temperature, T= 20°C 

fsr - X T - - 'J. $~ . 
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fsr = 210 x 103 x 11 x 10-6 x20=4'2 x 11 
=46'2 N/mm2. 

Maximum tensile stress in wire, 
fs .,, .,,=Js+Jsr = 221 '04+ 46'2 

= 267'24 N/mm2. 
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Problem. 2·12. Two steel rods, each 5 cm in diameter are joined end to end by 
means of a turnbuckle, as shown in Fig. 2 24. Tl1e other end of each rod is rigidly fixed and 
there is initially a small tension in the rods. The effective length of each rod is 4 metres. 
Calculate the increase in this tension, when the turnbuckle is tightened one quater of a turn. 

Tl\ere are threads on each rod with a pitch of 5 mm. 
£ = 2080000 kg/cm2. 

If ai= 6'5X l0-6/°F, what rise in temperature would nullify this increa~e in t.ensioijl. 

Solution. 

Diameter of steel rod =5cm 

Area of cross section, As=~ (5)2= 19'635 cm2 

4 

Length of each rod, 

Pitch of threads, 

L= 400 cm 

p= Smm 

Turn Bu c k le 

Fig. 2·24 

Elongation in each rod , 

BL=~ = 1 = 1·25 mm = o·12s cm 

(The turn buckle is tightened one quarter of a turn) 
Young's modulus, £=2080,000 kg/cm 2 

BL 0·125 
Strain in each rod, E = y = 400 

0·125 
f, stress in each rod, EE= 

400 x 2080,000= 650 kg/cm2 

Increase in tension, F= f. As= 650 X 19'635 
= 12762'75 kg= 12'76 tonnes 

' Now if the temperature of each bar is increfls,ed1 it would expand nullify in~ the tens* 
~tre~~ developed, · 
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Say the temperature rise = T°F 

-{= <1.T 

650 6'5 10-0 T 
2080 X 1000 X X 

Increase in temperature required, 

T = 6'5 !~~:01iolOOO =48'08 op 

Problem 2'13. Three vertical wires one of steel and two of copper are suspended in 
the same vertical plane from a horizontal support. They are all of the same length and same 
area of cross section and carry a load by means of a rigid cross bar at their lower ends. The 
load is increased and temperature is changed in such a way that stress in each wire is increased 
by 100 kg/cm2• Find the change in temperature. 

Es=2000 tonnes/cm 2, Ee= 1000 tonnes/cm2 

~s= 11 X 10- 6/°C, (/.o= 18 X 10- 6/°C. 

Solution. Say the stresses developed due to load in steel and copper wires are f. and 
J. respectively. The stresses developed due to temperature change by T°C are f s'I' and f cT 
respectively, 
then J.+fsT = 100 kg/cm2 

J c+f cT= 100 kg/cm2• 

or 

Say the area of .::ross section of each wire=A cm 2. 

Stresses due to direct load 

J.xA+2JcXA= I00 x 3 A 

J ,+2Jc=300 ... ( l) 

(The load due to temperature change will be compressive in one and tensile in the other 
so that total load change due to temperature is balanced). 

Moreover strain in steel wire=strain in copper wire due to direct load. 

So 
f, fo 
-e;=e: 

E, 2000 
f,= 7:;: X/0= -1000- X/c= 2/c 

So 2/c+2/c=300 
/ 0 = 75 kg/cm2 

f,= 150 kg/cm2 • 

(Stress due to the direct load) 

Resultant stress in steel wire 

So 

= f,+fsr= lOO kg/cm2 

f sr = -50 kg/cm2 (compressive) 
fc+Jsr = 100 
/cr= I00- 75= 25 k~/cm2 (tensile) 

... (2) 
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Since C1., < r.J. c, and the temperature stress in steel wire 1s compressive, there will be fall 
in temperature say by T°C. 

~:-+ {: = (o;.-a,) x 10- nx T 

50 - 25 - (18 - 11) 10- 6 ' T 
2000 X 1000 + 1000 X 1000 - X X ' 

50= 7 T 

T = 
5
7
° = 7' l4°C (fall in temperature) 

Let us check for equilibrium 

Compressive force in steel wire = 50 A 

Tensile foree in copper wires = 2 X 25 x A= 50 A. 

Problem 2'14. Three vert ical rods carry a tensile load of LO tonnes. The area of 
cross section of each bar is 5 cm2 • Their temperature is raised by 60' C and the 102.d of IO 
tonnes is now so adjusted that they extend equally. Determine the load shared by each. The 
two outer rods are of steel and the middle one is of brass. 

Es= 2100 tonnes/cm 2 , En= 1050 tonnes/cm2 

cxs= 11 x 10- 0rc. CXB= 18 x 10-6/°C. 

Solution. Each bar extends due t o the rise in its temperature by 60°C and due to the 
load shared by it. 

Say the total extension in each rod = o 
Expansion in each steel r od due to rise in temperature= cxs TL 
Expansion in brass rod due to rise in temperature = Cl.s T L 
Extension in each steel rod due to load = o- Gts TL 
Extension in brass rod due to load 

So strain in each steel rod 

=o-ao TL 

Strain in brass rod 

Total load 

8-o:s TL 
L (-i-- cxs T) 

= 8-r,.s TL - (}__ 0.
8
T) 

L - L 

= 10 tonnes=2 ( f - r1.s T ) Es . A+ ( 1-oT) Es. A 

10= 2 X2100 X5 ( 1-as T)+ t050 X5 ( 1-as T ) 

10 48 o 
5250 = -y-4 r1.s T + -y - r1.n T 

= ~ -4X 60 (11 X 10- 6)-60(18 X 10-6) 

1 58 
525 =T -60 X 10- 0 (62) 
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5 X~25 = 1 - 12 X62 X l0- 6 

1 = 
2

; 25 + 12x62X 10- 6 

=(0"381 +0·744) X 10- 6 = l " 125 X 10-a 

Load on each steel rod = ( 1 - c:11, T ) E, A 

Load on brass rod 

= (1 ' 125 X 10- 3-} l X 106 X 60) 2100 X 5 
= 11'8125-6"930=4"88 tonnes 

=( ~ -(1.B T ) xEnX A 

= (1'125 x 10-3-l8 x 10- 6 x60) 1050x5 
= S'9l - 5"67= 0·24 tonne . 

Problem '.?°15. A steel tie rod 20 mm diameter is encased in a copper tube of 
external diameter 36 mm and internal diameter 24 mm with the help of washers ancl nuts Th'e 
nut on the tie rod is tightened so as to produce a tensile stress of 400 kg/cm2 in steel rod. 
This combination is subjected to a tensile load of 2 tonnes. Determine the resultant stresses in 
steel rod and the copper tube, if 

E,= 2 Ec = 2100 tonnes/cm2• 

Now if the temperature of the assembly is raised by 80°C, determine the resultant 
stresses developed in the rod and the tube. 

Given rJ.steel = 11 X 10-Gf°C 

occopper= 18 X 10-Gf°C. 

Solution. (i) Stresses due to tightening the nut. 

Area of cross section of steel rod, 

'II' 
A,= - (2)2= 3' 1416 cm2 

4 

Area of cross section of copper tube, 

A.= ~ (3'62-2'42)= 5'655 cm2 

4 

Tensile stress developed in steel rod, 

f, = 400 kg/cm2 

Tensile force in steel rod, 
F,= 400 X3' 1416 kg 

= compressive force in copper tube, 'F. 
- /. x s ·655 (fo! equilibrium) 

So colnpressive stress in copper tube 

400 X3' 1416 
5'655 

222·2 kg/cm2 
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(liJ' ~m·esies due io tens'He fore~· 

10~ 

Say the stresses developed due to tensile force of 4 tonnes in steel rod is /.' and in 
copper tube it is f,'. 

2000=/,' X A,+fe' X A, 

But {' = ~: (in a composite bar under direct force) 

f,'=2/e' 

Substituting in equation (1) 

So 2/,' X 3"1416+ /e' X 5"655==2000 

Jo'= 1t.~~~2 = 167"53 kg/cm3 ltensile) 

/,'=2/o'= 335 '06 kg/cm2 

Resultant stresses in steel foci 
= 400+ 335"06= 735"06 kg/crn2 (tensile) 

In copper tube = 222"20- 167"53= 54"67 kg/cm2 (compressive). 

(iii) Temperature Stresses 
o:, > o:, 

...(1) 

... (2) 

Due to temperature rise compressive stress will be developed in copper tube and tensile 
stress will be developed in steel rod. Say the stresses developed are Jsr and f er respectively. 

then · 

Then for equilibrium 

J vr X A,=f cT X Ac 

5"655 . Jsr=Jc1·x 3.1416- = l 8/cr 

Rise in temperature, T= 80°C 

Jsr fcT 
E, + E~=(«, - o:,) X T 

210f; 1000 + 1os~; ~ooo =(lS- ll) x w-s xso 
J 

1'8Jcr fer 
2'1 X 106 + l '05 X 10-0 

= 500 X 10· 6 

fer (0'857+ 0·952)= 569 

560 . ( 
f er = 1.809 = 309"56 kg/cm2 compressive) 

fs1'= 1 '8 / c r = 557'28 kg/cm2 (tensile) 

Resultant stress in steel rod 
= 735'06+ 557'20= 1292'26 kg/cm~ (tensile) 

Resultant stress in copper tube 
=54·67+ 309'56:::364''23 kg/cm!! (compressive) 

... (1) 
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Problem 2·16. Fig. 2·25 shows a steel bolt 20 mm diameter and 200 mm long 
passing centrally through a copper tube 150 
mm long, outside diameter 40 mm and inside 
diameter 28 mm. The screw on bolt has a 
pitch of 2 mm and initially the nut is just tight. 

Find (i) Changes in the stresses in the bolt 
and the tube due to tightening the nut by 
rotating it through 45°. 

(ii) Changes in the stresses in the bolt 
and tube due to temperature rise of 40°F. 

~ - 150,-,m-~ 

E,= 210 x 103 N/mm2, Ee= I'OO X 103 N/mm~ 
ot,=6'4 X 10-Gj°F, oto= 10 X 10-0/°F. 

Solution. (i) Stresses due to tightening of the nut 

Pitch of the threads 
Rotation of the nut 

= 2mm 
= 45° 

Axial movement of the nut 

= 2 X -Jio = 0·25 mm 

Fig . 2·25 

= contraction in tube+ extension in bolt 

Area of cross section of the bolt, 
.,, 

A,=4 (20)2= 314'16 mmz 

Area of cross section of the tube, 

A.= : (402 -282)=640"88 mm2 

Say the stresses developed 
In bolt = /, 
In tube Jc 
Pull in bolt =Push in tube 

f,. A,= f • . Ac 
640'88 . 

J.=1 • . -3i~fir=2 o4 J. 

Extension in bolt 

Contraction in tube 

= ~. XI,= 210~ 103 X 200 

- J. I - f• 150 - ff:X . - lOO X 1Q3 X 

So 
. J. 1·51. 2·04/. 1·s1. 

0 25= 1050 + 1000 = 1050 + 1000 

3'443/,= 250 
/,=72·61 N/mm2 
~ _'li:•i:o "·/-... : .;0 - .,V' ..,, .i.1 LUU.,.• 

.. .(1) 

. ... (2) 
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(ii) Stresses due to temperature rise 

«c i:> ex, , so compressive stress will be develcped in copper tube and tensile stress will 
be developed in steel bolt due to temperature rise. 

Say the stresses developed are f c1· and f sT respectively. 
f c1' X Ae-fsT X A, 

314'16 . 
fcT = f sr x 

640
.
88 

= 0 49 fsr .. . (3) 

Moreover 
Jsr / <..T 
E, +~ = (.x. - i,) X temperature rise 

f sT 0'49 fsT 
21oxToa+ 1oo x 1000 = 144x 10- r. 

0'966 jsT= 14'4 
f sT= 14'9 N/mm2, / C1' = 7·3o N/ mm2 

Final stresses in bolt = 72'61+ 14'90= 87'51 N/mm2 (tensile) 

In tube = 35 '59+ 7·30= 42'89 N/ mm2 (compressive) 

Problem 2'17. Four steel bars of length L and area A each support a square rigid 
plate. The bars are symmetrically arranged. A load P is then applied at the middle of the 
square plate. 

A steel rod of length L - I> and area a is now attached to the rigid support where the 
four bars are secured and its temperature is raised by T0 above the normal so that it can be 
connected at the middle of the square plate. When the central bar returned to normal tem
perature, it was found that the load in each of the four bars has been reduced by 20%. Show 
that 

I> = PL (_l _ _ l ) 
SE\ a A 

To= _!_(_l + - 1 ) 
SE11. a 4A 

where cx = coefficient of linear expansion of steel 

and E= Young's modulus of elasticity cf steel. 

Solution. Init ially the four bars of area A and length L carry the load P, 

then load on each bar 
p 

=-.r 
Initial extension in each bar 

= ~t = I>' (as shown) 

When the middle bar is heated by T 0
, it has to expand by (S+S'). 

So that its connection can be made with the rigid square plate. 
When the <;:entral bar returns to normal temperat4re1 
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Load shared by each bar of area A 

= 0'8 (0'25 P)= 0'2 P 

So the load on middle bar 

p 

Fig. 2·26 

= P- 4 X0'2 P = 0"2 P 

Squor~ rig ;.1 
~lat~ 

When the central bar tr ies to contract, tensile stress will be developed in this bar and 
CO!JlPres_sjve s,tre~_s »'i ll be develope_d in outer f91;1r par~. 

or 

or 

Tensile force in central bar 
= 0·2 P 

Conwressive force in outer bars (sl19wing tquilipri.t1m) 

= 4 (0'25 P - 0·20 P)= 0'2 P. 
• J. • 

f sr, tensile stress in central bar 

0·2 P 
a 

f er, compressive stress in each of outer bars 

Now 

0·2 P o·os P 
= 4::t=~.--

f sr + fer = «(T) 
E E 

0·2p 0·05p 
~+AE- =ocT 

P [ 1 1 J 
T= 5E'1. a + 4A 

Now total expansion in centr~! pl;lr , 

1>+ 8'= ixT (L-8)~«LT 

Since 8 < <L 
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[ 
1 1 J P PL 

= (1.L -;; + 4A 5Eia - 4AE 

PL PL PL PL PL 
- 5Ea + 20EA - 4AE - 5Ea - SAE 

o= ~i [ { - +} 
Problem 2·1s. A 10 mm diameter- steel rod passes centrally through a copper tube 

25 mm external diameter and 15 mm internal diameter and 2·5 m long. The tube is closed 
at each end by thick steel plates secured by nuts. The nuts are tightened until the copper tube 
is reduced in length by 0'6 mm. The whole assembly is then raised in temperature by 20°C. 
Calculate the stresses in the steel rod and copper tube before and after the rise in temperature. 
The thickness of the end plates rema ins unchanged . 

Estee/ = 208000 N/mm2 

E copper= 104000 N/mm2 

<>:s= 12 X 10- 6/°C, <X e= 17'5 X 10- 6/°C. 

Solution. Copper tube 

External diameter = 25 mm 

Internal diameter = 15 mm 

Area of cross section, A. = ~ (252- 152)= 314.16 mm2 

4 

Length of the copper tu be = 2500 mm 

Contraction in length = 0·6 mm 

Strain, 

Young's modulus, Ee= 208000 N/mm2 

Stress in copper tube, f , = EcX E f 

o·6 = 
2500 

x 208000 = 49.92 N /mm2 (compressive) 

Compressive force in copper t ube, 

P . = 49.92 X 314' 16= 15682'87 N 

For equilibrium compressive force m tube, 

P.= tensile force in rod, P, 

A,, Area of cross section of steel rod 

= : (J0)2= 78'54 mm2 

Stress in steel rod, • 15682'87 '99"68 N. i ( ·1 ) Js= -7s·s4 =- · / mn1 tens1e 
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Temperature Stresses . Say the stresses developed in steel rod and copper tube due 
to temperature ri se aref~r and f er. As r1., < rJ. c ; f .r will be tensile and / er wi ll be compressive. 

f sr. A,= f e r . Ac (for equilibrium) ... (] ) 

fsr + f eEr = (cx.- 1X,) T . .. (2) 
E, C 

Temperature rise, T = 20°C 

So /fr X 78·54= f er X314'16 
f,r = 4 f,1· 

Substituting the values in equation (2) 

4Jsr + f e r = ( 17·5- 12) x 10- 0 x 20 
208,000 104,000 

3 f cr = 5'5 X 20 X 10-ox 104,000= 11 '44 

f er = 3'8l3 N/ mm2 

Jsr= 4 f er = 15·253 N/mm2 

Stresses after the ri se in temperature in steel rod 
=f .+f fr = 199'68+ 15'253 = 214.933 N/ mm2 (tens ile) 

.. . ( I) 

In copper tube = J c+/ cr = 49'92+ 3·813= 53'733 N/mm2 (compressive) 

Problem 2·19. A circular aluminium 
rod of area 300 mm2 is fitted in a square steel 
fra me of area of cross section 400 mm2 as 
shown in the Fig. 2·21. At a temperature of 
25°C there is a clearance of 0·05 mm between 
the upper end of the rod and the top of the 
frame. Determ ine the compressive force in the 
aluminium if the temperature of the system 
is raised to 50°C, neglecting the bending 
of the frame and the bar. 

Given ('f. •= 11 X 10- 6/°C 

('f.a= 22 X 10- 0/°C 

S'hel t ,c 

400mm2 

300mm2
- I-+-~ 

Alumi n iu m rod 

Fig. 2·27 

E,=3 Ea=2100 x 1000 N/mm2• 

·05 m rn 

.T 
1, 2m 

_J_ 
t 

Solution. At 25°C, clearance between steel frame and alum inium rod = 0'05 mm 
At 50°C, say exk nsion in steel frame = 8 mm 
Then extension in aluminium rod = 8+ 0·05 mm 

Since cxa > cx,, alum inium rod will tend to extend more than steel but steel frame wil 
prevent free expansion of aluminium rod and in turn aluminium rod will exert pull on tw< 
vertical steel bars and steel bars will extend beyond their free expansion limit. 

E11 , compressive strain in aluminium 

CXa(50-25)(]2Q0- 0 '05) - (11 + 0'05) , 
= 1200- 0 '05 takmg(l200-0'05) = 121 

_ 22 X I0- 6 X 25 X 1200-(S+ O·QS) 0'66- 8- 0'05 0'6 1-
~u - IJOQ . = -·1ioo - = 1iQO 
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\' 

or 

Area of cross section of a luminium rod, 

A a= 300 mm2 

Compressive force in aluminium rod 

Fa= Ea. EaXAa= Ea X E.x 300 

Tensile strain in steel bar, 

Tensile force in steel bars, 

o-cc. (50-25) X 1200 
1200 

F1 = E• E, A, = E, X3 E0 X 800 
But for equilibrium Fa = F, 

So 

Now 
I 

Ea . Ea. 300= E,. 3 Ea 800 
Ea=8 € 1 

o- 11 X 10-0 X 25 X 1200 
E,= 1200 

Ea = 8 Er 

0·61 - 0 = S cs - 0·33) 
1200 1200 

0'61 + 8 x o·33= 9 o 
3'25 
--= o o= 0'361 mm 

9 ' 

0·61-s 0·61 - 0·361 
ea= 1200 1200 

Stress in alum inium rod, 

s - 0·33 
1200 

0·249 · 
=1200 

•' I 

0·249 0'249 . 
f a= 1200 XEa = 1200 X 70 x 1000= 14'525 N/mm2 

... (1) 

(compressive) 
· Compressive force in aluminium rod, 

Fa= 14'525 X Aa= I4'525 X 300= 4357'5 N 
= 4'3575 kN Ans. 

SUMMARY 

1. In a composite bar of two m1terials with cross sectional areas A
1

, A
2 

and length L 
the stresses developed under a load W are . ' 

f1A1 +J2A2= W. ...(1) 
h_ _ f~ 

111 I. I. E1 - E~ · ... (2) 
where E1 and £ 2 are the Modulus of elasticity for both the materials 

W1 + W2= W. ... (3) 

oL= ~ X L = ·t L. Change in length, 
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2. In a composite bar with more than 2 materials, with areas of cross sections A1, A2 , 

.. .. .. , An etc. 
W1 + W 2+ W3 ••• • •• Wn = W (Total load) 

/1 /2 fa 
E

1 
= -E

2 
= E

3 

W, 
Stress in any bar i, Jt= A, . 

3. Bars of d ifferent lengths L1 and L2 placed co-axially subjected to load. 
Li-L2= C (a small clearance) 

8L1 -C= 8L2• • •• (1) 

. .. (2) 

. .. (3 ) 

4. A bolt and a tube assembly tightened with a nut 
f1A1 = f2A2 . .. (1) 

(/1 and / 2 are tensile and compressive stresses in bolt and tube) 

A1 and A2- area of cross section of bolt and tube respectively. 

Axial movement of the nut = f 1 L + .f 2 L 
E1 ·£2 

where L is the length of bolt and tube. 

5. A single bar fixed o'etwee,1 rigid supports at both the ends, subjected to teiriJerature 
change by T0

• ' • 

Tensile stress in bar 
Compressive stress in bar 

= ':I.T (for decrease in, temperature) 
= a.T (for increase i~ temperature) 

(/. = coefficient of li11ear expansion of bar. 

' 

· 6. A composite bar, of two materials, cross sections A1 and A2 subjected to temperature 
change T , r,.1> o:2 

f1A1 = f ~A2 

i~ + f2
2 

= ( 7.c - <X2) T 

/1 is compressive and / 2 is tensile stress for increase in temperature. 
/1 is tensile and Ji is compressive stress for decrease in temperature. 

, ; I 

MULTIPLE CHOICE QUESTIONS 

1. A composite bar is made by encasing a brass rod in steel tube. lf Estett= 2 Ebrass and 

there is •a change of length of o· 1 mm in brass rod in a length of l metre of the composite 
bar, due to an applied force, then change in length of steel tube is :-
(a) 0·2 mm (b) o· 1 mm 
(c) o·os mm (d) 0·025 mm. 
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2. A copper bar 2 cm in diameter is completely encased in a steel tube of 3 cm external 
diameter so as to make a composite bar. The bar is subjected to a compressive force of 
P tonnes so as to cause a stress of 150 kg/cm2 in copper bar, the stress developed in steel 
tube will be (if Es=2Ec). 

(a) 300 kg/cm2 

(c) 75 kg/cm2 

(b) 150 kg/cm2 
(cl) None of the above. 

3. A composite bar made of steel and aluminium strips each having 2 cm2 area of cross 
section. The composite bar is subjected to load P. If the stress in a luminium is 100 kg/ 

cm2 and Estee1=3 Eatuminiim, the value of load P is 

(a) 400 kg 
(c) 800 kg 

(b) 600 kg 
(d) 100 kg. 

4. A composite bar is made of strips of material I and material 2, having area JOO mm2 

each. The stress in material 1 is 20 N/ mm2 due to an applied load of 6000 N. If the 
value of E for material 1 is 100 X 103 , the v;;i.lue of E for material 2 will be 

.' . 
(a) 25 x 103 N/mm2 (b) 50 x 103 N/mm2 

(c) 100 x 103 N/mm2 (d) 200 x 103 N/mm2 • 

5. A steel bolt passes centrally through a brass tube. At the ends washers and nuts are 
provided. Nuts are tightened so as to produce a compressive stress of I 00 N/ rnm2 in brass 
tube. The area of cross section of brass tube is . 1000 mm2 and that of steel bolt is 
500 mm2• The value df E for steel is 2 times the value of E for brass. The stress 
developed in steel rod is 

(q) 50 N/mm2 
' ' (c) 200 N/mm2 

(b) 100 N/mm 2 

(d) None of the above. 

6. A steel bolt passes centrally through a b'rass tube. At the ends washers and nuts are 
provided. The whole assembly is raised in temperature by 50°C The area of the 
cross section of steel bolt is 2000 mm2 and .that of brass tube is 1000 mm2 • 

Estee1= 2 Ebrass. If the stress due to temperature rise is 40 N/mm2 (tensile) in steel bolt, 

the stress in brass tube wiil be 

('a) 80 N/mm2 (compressive) 
(c) 40 N/mm2 (tensile) 

(b) 60 N/mm2 (tensile) 

(d) 20 N/mm2 (compression). 

7. A wire of a material, 1 mm in diameter, l m long is stretehed b etween two rigid supports. 
the temperature of the wire drops by 10°C. If a = JO x 10- 6/°C and E = 100 x 10a N/mm:i 
for the ,wire, the stress developed in wire will be 

(a) 1 N/mm2 (b) JO N/1111112 

(c) 100 N/mm2 (d) 1000 N/mm 2 • 

8. A steel rail track is laid by joining 30 m loag rails end to end. A 30°C there is no stress 
in rails. At 50°C what will be the stress in rail if a= 11 X J0- 6/°C and £ = 200 X 103 N/mm. 

(a) 88 N/mm2 (compressive) (b) 88 N/mm2 (tensile) 
(c} 44 N/mm2 (compressive) (d) 44 N/mm2 (tensile). 

9. Three wires of equal cross section and equal length but of different materials fixed at the 
top support a ring, £ 1 = 2£2=3£ 3~ A load of 3 kN is applied on the ring in such a 
manner that the ri11g remains horizontal. The load share<.l by wire of material 1 is 
(a) ·0·5 kN (b) 1 kN 

·cc) 1 '5 kN (d) 21cN. 
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10. A steel bolt passes centrally through a copper tube. At the ends nuts and washers are 
provided. The area c f cross section of both bolt and tube is the same. Esteet= 2Eb,ass. 

If the assembly is tightened by rotating a nut through 60° on the thread of pitch 3'6 mm. 
The contraction in the length of the tube is 

(a) 0'6 mm ·(b) 0'4 mm 
(c) 0'2 mm (d) o· 1 mm . 

1. (b) 

7. (b) 

2. (a) 

8. (c) 

3. (c) 

9. (c) 

ANSWERS 

4. (dJ 

10. (b). 

EXERCISE 

5. (c) 6. (a) 

2·1. A weight of 200 kN is supported by a short concrete column of 30 cm diameter 
strengthened by 6 steel bars of 2·5 cm diameter symmetrically placed in the section of concrete. 
Find the stresses in steel and concrete. 

' Esteet= I 5 E concrete = 210 X 105 N /mm2
• 

If the stress in the concrete is not to exceed 3 N/mm2, what area of sted is required in 
order that the column may support a load of 400 kN ? 

[Ans. 26'81 N/ mm2, l '787 N/rom2 ; 4174'8 mm2] 

2·2. A short hollow cast iron column, 250 mm external diameter and 200 mm intern.al 
d iameter is filled with eoncrete. The column carries a tota l load of 500 kN. If 
Ecast iron = 6 Econcrete, calculate stresses in cast iron and concrete. 

What must be the internal dia meter of the cast iron column if a load of 650 kN is to 
be carried. The stresses in cast iron and concrete and external diameter . of the column being 
unchanged. rAns. 21.828 N / mm2, 3'628 N/ mm2, 171'76 mm] 

2'3. A circular ring is suspended by three vertical bars A, B and C of different lengths. 
The upper end of the bars are held at different levels. Bar A is 1 ·5 m long with 2 cm2 cross 
sectional area, bar Bis 1 m long with 1 ·5 cm2 cross sectional area and bar C is 70 cm long with 
cross sectional area equal to 2·5 cm:i. Bar A is of steel, B of copper and C of aluminium. A 
load of 2 tonnes is hung on the ring. Culculate how much of this load is carried by each bar, 
if the circular ring remains h orizontal after the application of the load. 

Estee1= 2 l00 tonnes/cm2, Ecoppper = 1100 tonnes/cm 2, Eatuminium = 700 tonnes/cni2• 

[Ans. 0'941 , 0'555, 0·504 tonne] 

2·4: Pre-stressed concrete beam is fabricated as follows : 
(i) A steel rod is loaded in tension between two plates. 

., 

(ii) Then the concrete is poured to form a beam of square cross section with• steel 
rod in centre. , 

(iii) After the concrete is proper ly Eet, the extt.rnal force on the rod is removed and 
the beam is left in a pre-stressed condition. ,q 

If E , = 15 Ee, beam section 15 cm X 15 cm and the steel rod is of 3·5 cm diameter, 
what will be the ratio of final residual stresses in the two materials. [Ans. - 22 · 39] 
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2.5. A copper rod of length 2/, with cross sectional area A 1 = 4 cm2 over the upper 
half and A2 = 6 cm2 over the lower half is supported and loaded as shown in Fig. 2·28. 
Calculate the stresses in the upper and lower 
portions if P = 1 tonne. 

. Ans. [100 kg/cm2 (tensile) in the 
upper portion, 100 kg/cm2 (compression) in the 
lower portion]. 

2"6. A steel rod 25 mm in diameter 
passes co-axially inside an aluminium tube of 
inner diameter 30 mm and outer diameter 
40 mm. It is provided with washers at each 
end and nuts are tightened until a stress of 
20 N/mm2 is set up in the aluminium tube. 

1Ton11tt 

·-+ 
The whole assembly is now placed in 

a lathe and a cut is taken along half the length 
of the tube reducing the outer diameter to 
37mm. 

F ig. 2·28 

(a) Calculate stress now existing in the steel. 
(b) If an additional end thrust of 4000 N is applied at the ends of the steel bar, 

calculate the final stress in steel. 
Esteet = 3 Eatu111i11im11 = 210 X 103 N/mm2

• 

[Ans. (a) 13·997 N/mm2, (b) 12·73 N/mm2] 

2·1. A rigid bar EF 3"5 m long is supported by two wires AB and CD as shown in 
Fig. 2·29. Wire AB is 140 cm long, 5 mm diameter and made of copper. While wire CD is 

.LJ 
D 

B 

F 

1m+1m+1·5m 
2 5 0 kg 

Fig. 2·29 

180 cm long, 5 mm diam.::tcr and made of steel. The bar carries a vertical load of 250 kg at 
the end F and end E is hinged, determine the stresses in steel and copper wire. 

E ~teer= 2100 tonnes/cm 2, Ecopper = 1080 tonnes/cm2
• 

[Ans. 1220 kg/cm2 (steel), 1615 kg cm2 (copper)] 

2·s. A rigid steel plate is supported by three vertical concrete posts of 80 cm height 
each, but accidentally the height of the middle post is 0·04 cm less as shown in Fig. 2·30. 
Area of cross section of each post is 12 cm X 12 cm. Determine the safe value of the load P 
if the allowable stress for concrete in compression is 150 kg/cm2 • 

E r;oncrete = 120' tonnes/cm 2. [Ans. 56.16 tonnes] 
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· 002 • I 

~ 

T -t-
80 cm 

Fig. 2"30 Fig. 2"31 

2·9. A combin~tion of stepJ?ed steel rod 40 cm long and brass tube 39"998 cm long 
is subjected to a1: axial compress1_ve load W ~3 tonnes. B?th the rod, and the tube are co
axial as shown in Ftg. 2·31. D~termtne the maximum stresses m steel and brass. 

Esteei= 2 Ebrass = 2000 tonnes/cm2, [Ans. 232 kg/cm2, 772 kg/cm2 

2·10. A railway is laid so that there is no stress in rails at 80°F. r),etermine the stres.s 
in the rail at 130 F, if its expansion is prevented. 

E= 2l0 x 103 N/mm2 

r.t = 6"4 x w-0/°F. 
The rails are 30 m long. 

what is the stress at I 30°F. 
If, however, there is 6 mm allowance for expansion for rail, 

f Ans. 67·2 N/mm2, 25"2 N/mm2] 

2·11. A ~~p_per wi!e 2 mm in diameter is stretched tightly between two supports 1 
m apart under an m1t1al t~ns1on of 20 kg. If the temperature drops by I 0°C, determine the 
maximum tensile stress in the wire material. 

E= 1050 tonnes/cm 2, C'. = 18 X l0- 0f°C. 
[Ans. 825 kg/cm2] 

2·12. Two steel rods 25 mm in diameter are joir.ed end to end by means of a turn 
buckle. The other end of each rod is rigidly fixed and there is initially a small tension in each 
rod. The effective length of each rod is 5 m. Calculate the increase in tension of each rod 
when the turn buckle is tightened through one half of a turn. There are threads on each rod 
with a pitch of 3· 18 n~m. 

£ = 208 X 103 N/mm2• If cc = 11 X w -o/°C, 
what rise in temperature would nullify the increase in tension. [Ans. 32"408 kN, 28·9°C] 

2·13. Three vert ical wires, two of s,teel and one of aluminium are suspended in a 
vertical plane from a horizontal support. They are all of the ·same length and same areq- of 
cross section and carry a load by means of a rigid bar at their lower enc,ls. Th.e loa<;l is now 
increased and temperature is changect iu such a way that the stress in each wire is increased by 
28 N/mm2. Find the change in temperature. 

E. = 3E.,= 210 X 103 N/ mm2 
'l., = 6'5 X w - 0/°F: •Zo= t;nx 10- 0f°F. 

[Ans, - 44'44°F] 
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2'14. Three vertical rods carry a tensile load of 120 kN. The area of cross section of 
each bar is 600 mm2

• Their temperature is raised by I00°C and the load is so adjusted that 
they extend equally. Determine the load shared by each. The outer two rods nre of aluminium 
and the middle one is of brass. 

Ea=700 x 102 N/mm2, E~= 1050 x 102 N /mm2 
v:a=23 x l0- 6/°C, a.1,= l8 x l0- 6/°C. 

[ 
An s . 25'285 kN in each aluminium bar J 

69'43 kN in brass bar 

2'15. A steel tie rod of 25 mm d iameter is enclosed in a brass tube of external dia
meter 40 mm and internal dia meter 30 mm with the help of washers and nuts . The nut on 
the tie rod is t ightened so as t o produce a tensile stress of 30 N/1111112 in steel rod. Th is 
combination is now subjected to a tensile load of 30 kN. Determine the resultant stress i,n 
steel tie rod and brass tube if 

£.= 2 X 105 N /mm2, fa = 0·8 x 105 N/mm2. 

Now if the temperature of the assembly is raised by 50°C, determine the final stresses in 
tie rod and tube. 

(.( s = 11 X 10-s /°C, (.(b = 19 X 10- 6 /°C. 

[
Ans. (i ) 72·19 N/mm2 (tensile), 10·10 N/mm2 (compressive) ] 

(ii) 98'94 N/mm2 (tensile), 32·21 N/ mm 2 (compressive) 

2'16. Fig. 2·32 shows a steel bolt 2 '5 cm diameter and 250 mm long passing centrally 
through an aluminium tube 180 mm lon g, outside d iameter 4 cm and ins ide di ameter 3 cm. 
The thread on bolt ha,; a pitch of 3' 18 mm.' F ind (i ) changes in the stresses in bolt and tube 
due to the tightening of the nut through 30°. (ii ) changes in the stresses in bo'Jt and tube due 
to increase in temperature by 30°C. 

E,= 3 Ea= 2100 tonnes/cm2 

C/.3 = I I X 10- src, IX,i = 22x w-rfe:: . 

Fig. 2 ·32 

2'17. Three brass wires of length L, area A support an equilateral triangular rigid 
plate. The bars are arranged at the corners of the triangle. A load P is then applied at the 
C.G. of the triangular plate. 

A brass rod of length (L-8) and area a is now attached to the rigid support, where 
the 3 bars are fixed, and its temperature is ra ised by T 0 above normal so that it can be 
connected to the C.G. of the triangular plate. When the middle bar returned t o normal 
temperature, it was found that the load in each of the 3 bars has been reduced by 25%. 
Show that 

'ii= __!__ r _l +--l ·J 
4Ev: a 3A ·-· - . z. 
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where 

T= PL [-I __ I J 
4E a A 

ix=coe:fficient of linear expansion 
E= Young's modulus. 

STRENGTH Of MATERIALS 

2'18. A 2 cm diameter steel rod passes centrall/through on aluminium tube 2'4 cm 
internal d iameter and 4 cm external diameter. The tube is closed at each end by thick steel 
plates secured by nuts. The nuts arc tightened until the aluminium tube is reduced in length 
by 0'4 mm. The whole assembly is then raised in temperature by 50cc. Ca lculate the stresses 
in steel rod and aluminium tube before and after the r ise in temperature. 1 he thickness of the 
steel p lates remain unchanged. · 

E.= 3 Ea= 2IOO tonnes/cm2 

O:a= 2 a, = 21 X 10-0/°C. 

[
Ans. (i) 448 kg/cm2 (tensile), 175 kg/cm2 (compressive) J 

(ii) 979'92 kg/cm2 (tensile), 382'78 kg/cm2 (compressive) 

2'19. A circular copper rod is fitted 
in a square steel frame of circular section. 
The diameter of the copper rod is 2 cm and 
the diameter of the rod of the steel frame is 
4 cm. At a temperature of 15°C, there is a 
,clearance of 0·02 mm, between the copper rod 
and the frame as shown in Fig. 2'33. Deter
mine the compressive force in the copper rod 
if the temperature of the system is raised t o 
25°C, neglecting the bending of the frame. 

Given 1Xc=l8 x 10- 0rc 
o:s= ll '2 X 10-6/°C 

Estee! = 2 Ecopper= 2080 tonnes/cm2 

[Ans. 132'32 kg] 

- ·-
I 

I 
,. 

80c in -
I 

-· 
- - ~ -

~-

l/2cm di0 ·-4cm c,.,.i. 
14-

- :""· 

Fig. 2·33 
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3 
Principal Stresses and Strains 

While designing a machine member or a component of any structure, a designer has 
to determine in the critical region of member, where the stress developed due to loads is 
maximum, the nature and magnitude of the maximum stress. However, complex may be 
the state of stress at a point, there always exists a set of three orthogonal planes, perpendicular 
to each other on which the stresses are wholly norrr1al and the shear stress does not accompany 
these direct stresses on any of the three orthogonal planes. The normal stresses on these three 
planes are called principal stresses and the planes are called principal planes. Out of these 
three principal stresses, one is maximum, other is minimum and third one is of some inter
mediate value. The designer has to consider this maximum principal stress while deciding 
about the dimensions of the machine member under consideration. 

3'1. STRESSES ON AN INCLINED PLANE 

Fig. 3 · 1 shows a small triangular 
element of a body with thickness t. Hori
zontial · plane BC and vertical plane AC make 
a right angle at the point C. On plane BC, 
f 1 is the direct tensile stress and q is the shear 
stress. On plane AC, f 2 is the direct tensile . 
stress and q is the shear stress Shear stress 
q on ·plane AC is complementary to the shear 
stress q on plane BC. 

Let us determine the nature and ·magni
tude of the 'direct and shear stresses on the 
inclined plane AB. Now, 

----Q1 ( Hor1z$n t o. l 

(VHtica l ) 
fo rci s 

Fig. 3·2 

( 123) 

f o'r c Ii-~ ) 

f 
2 
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Normal force on piane BC, F1- J1 x BCX t 

Shear force Gn plane BC, Q1 = q X BC X t 

Normal force on plane AC, F2=f 2 X AC X t 
Shear force on plane AC, Q2= q X AC X t. 

STRENGTH OF MA TERtALS 

Forces F1 and Q2 are vertical while the forces Q1 and F2 are horizontal as shown in 
Fig. 3·2. Take the components of vertical and h orizontal forces, along and perpendicular to 
the inclined plane AB. The triangular element is in static equilibrium. So the reactions to the 
applied forces are 

From these reactions, 

R1= (F1 + Q2) cos 0, 
R3= (F1+ Q2) 5in 0, 

Normal force on the inclined plane A B, 

R2=(F2+Q1) sin 0 
R4 = (F2+ Q1) cos 0. 

Fn= R1 + R2 ... (1) 
= (F1 + Q2) cos 8+ (F2 + Q1) sin 8 (a tensile force) 

(Since R1 and R2 are pointing away from the plane AB) 

Shear force on the inclined plane AB, 
Ft= R3- R4 ... (2) 

(Since R
3 

is producing clockwise moment and R4 is producing anti-clockwise moment 
on the body) 

Fn= F1 cos 8+ Q2 cos 8+ F2 sin 8+ Q1 sin 0 

Substituting the values of the forces 

Fn=J1 x BCXt cos 0+ q x AC Xt Xcos 0 
+J2 x ACx t sin 0+ q x BC x t sin 0 

=JnXAB X t 

where fn is the direct tensile stress developed on the plane AB. 

From equation (l) 

BC AC · AC BC 
Jn=J1 x AIJ cos O+q x AB cos O+J;xAB sin B+ q+ AB sin 0 

where 

But 

So 

BC 
- = cos e 
AB 

Jn =f1 cos2 8+ q sin 0 cos 0+12 sin2 0+q cos 0 sin 0 

1 + cos 20 1-cos 20 
cos2 0 and sin2 0 

2 1 
2 sin 0 cos 0=sin 20 

Substituting these values above in equation (1) 

Jn = f1 ( __l_±~os 28 ) +!2 ( 1+ \os 20 ) + q sin 2 0 

J n= fitf2 + ( f i~fz ) cos 20+q sin 20 

... (1) 
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or 

Similarly from equation (2) 
F1=/t X ABXt= (F1+ Q2) sin O-(F2+Q1) cos 0 

=F1 sin O+ Q2 sin 0-F2 cos 0-Q1 cos 0 
- / 1XBC Xt sin O+qxAC X t sin 0-/;xACX t cos 0- qX~CXtcos 6 

· BC . AC . AC BC 
/1 - f1 X AB sm e+ q x AB Sm O- f2X AB cos 0- qx AB cos 0 

=/ 1 cos O sin e+ q sin2 0- f 2 sin O cos 0- q cos2 0 

= ( f1~f2
) sin 20-q (cos2 0-sin2 0) 

= ( f 1~f2
) sin 20- q cos 20 ... (2) 

Note that if BC is taken as a reference plane with which angle 0 is measured, then 
sl!.ear stress on this reference plane is negative (as is obvious from the figure). 

Example 3·1-1. The stresses at a point on two perpendicular planes BC and AC are 
shown in the Fig. 3·3. Determine the normal and shear stresses on the inclined plane AB. 

A 

C 

Fig. 3-3 

Solution. Normal stress on plane BC, 
./1= + 400 kg/cm~ (tensile) 

Shear stress on plane BC, 
q=O 

Normal stress on plane AC, 
/ 2= -600 kg/cm2 (compressive) 

Angle of inclined plane AB with reference to plane BC, 
6= 30° 

Normal stress on inclined plane, 

/n= Ji+J; + fl - h COS 20 
2 2 

= 400- 600 + 400+ 600 cos 600 
, 2 . 2 

= -100+250= +150 kg/cm2 (tensile) 



Shear stress on inclined plane, 
'. 

fi= 11-f2 sin 20 
2 

as·q~ () 

400 + 600 0 = 
2 

cos 60 =433 kg/cm2 ( +ve). 

1!.1: 

Example 3·1-2. The stress at a point on two planes perpendicular to each other are 
shown in the Fig. 3 ·4. Determine the position of the plane AB such that shear stress on this 
plane is zero. What will be the normal stress on such a plane. 

or 

A 

s C 
20 N/mm2 

60N/mm 2 

Fig. 3·4 

Solution. Normal stress on plane BC,f1= 60 N/mm2 

Shear stress on plane BC, q=-20 N/mm 2 

Norma l stress on plane AC, / 2 =0 

Shear stress on the inclined plane AB, 

/ 

Ji= {1 sin 20-q cos 20 

60 . , 
= y sm 20- 20 cos 20 = 0 (as given) 

So tan 20 = 
20 

=0'666 
30 

20= 33° 42' 
01=16° 51' 
02= 01+90°= 106° 51'. 

There are two planes inclined at angles 01 and 02 on the plane BC, on which the shear 
stress is zero. 

Normal stress as the inclined plane AB, ,,. 

(taking 0= 16° 51') /n= 1 + 1 cos ·20+q sin 20 

60 60 
= 2 + 2 cos 33° 42' + 20 sin 33° 42' 

= 30+3o xo·s32s+20xo·555 
= 66:075 Nffu'Jti2, 
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Normal stress on inclined plane 
(taking 0= 106° 51') AB = 30+30 cos (2l3° 42')+ 20 sin/213° 42') 

= 30-30 x o·s325 - 20 x o·555 

= - 6"075 N/mm2 • 
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Example 3·1-3. At a point in a strained body, planes BC and AC are perpendicular 
to each other. On plane BC the normal stress is 80 N/mm2 tensile, shear stress is 15 N/mm2 . 

On plane AC, the normal stress is 40 N/mm2 tensile and a shear stress 15 N/ mmi. Plane AB 
is incl ined at an angle of 25° to the plane BC. Determine normal and shear stresses on the 
plane AB. 

Solution. Let us show the stress-system graphically as in Fig. 3·5. 

~40NJ"'ml 

I Ls N/mrn2 __ ._ ______ __,c 

B l~t:ljrrm2 

Normal stress BC, 

Shear stress on BC, 

Normal stress on AC, 

Shear stress on AC, 

80 N/mm
2 

Fig. 3-5 

/ 1 = + 80 N/mm2 

q=- 15 N/mm2 

};= 40 N/mm3 

q=+ l5 N/ mma 

Normal stress as inclined plane, 

fn = fi-i/2 + Ii ;/2 cos 20+q sin 20 

_ 80+ 40 + 80-40 500+ 15 . 500 - 2 2 
cos sm 

= 60+ 20 x 0"6428 + 15 x 0"7660= 84"346 N/mm2 (tensile) 

Shear stress on inclined planc, /,= / 1
;

12 sin 20-q cos 20 

80- 40 . 500 1 0 =-
2
- sm - 5 x cos sp 

= 20 X0"7660- 15 X 0"6428 = 5"678 N/mm2. 

Example 3·1-4. The stresses at a point on two perpendicular planes A9 and CB art 
as sh.o.wr. in Fig. 3·6. D~termine the normal and shear stresses on plane AC, in<;lined at 3t to 
~~~~ ~ 

' 
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400 kg/cm2 

Fig. 3·6 

STRENGTH OF MATERIALS 

Solution. In this case no normal stress is acting on plane AB and CB, therefore, 

! 1= /2= 0. 

Normal stress on inclined plane, 

Jn=q sin 20= 400 x sin 70°= 400 X0'9397 
= 375'88 kg/cm 2 (tensile) 

Shear stress on inclined plane, f ,= - q cos 20 
= - 400 x cos 70°:c-=- 400 X0'342=-133'8 kg/cm2• 

Exercise 3'1-1. The stress at a point on two perpendicular planes BC and AC are 
shown in the Fig. 3'7. Determine the normal and shear stresses on the inclined plane AB. 

[Ans. 40 N/mm2, IO N/mm2l. 

A 

8 

Fig. 3'7 

A 

B ""------'---r----_j 
C 

200kg/ cm2 

500kg/cm 2 

Fig. 3·8 

j 200 kg/c m
2 

Exercise 3·1-2. The stresses at a point on two planes perpendicular to each other 
are shown in Fig 3'8. Determine the position of the plane AB such that shear stress on this 
plane is zero. What will be the normal stress on such a plane. 

1 [Ans. 6= 19° 19' , 109° 19' , 570'1 55, - 70'1 55 kg/cm2]. 
I 

Exercise 3'1-3. At a point in a strained body, pla nes BC and AC are perpendicular 
to each other. On plane BC, the normal stress is 400 kg/cm2 (tensile) and shear stress is 
200 kg/cm2• On plane AC the nor mal stress is 200 kg/cm2 (compression) and the shear 
stress is 200 kg/~1 2• Plane AB is incli ned at an angle of 30° to the plane BC. Determin,e the 
normal and shear strcs~ on tb,e 4.fJ, (Ans. 423'2 k~/cm·\ 1 ~9·8 kg/cm2J 
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Exercise J·t.:4. At a point in a strained body, planes BC and AC are perpendicular to 
each other. Shear stress 50 N/mm2 is acting on both these planes. Determi ne the normal 
and shear stress on a plane AB inclined at an angle of 45° to 'the plane BC. 

[Ans. 50 N/mm2, O'O] 

3'2. 
0

PRINCIP AL STRESSES 

Considering a three dimensional case is not within the scope of this book. We will 
consider only a plane stress problem i. e. the stress on the third plane is zero or say on the plane 
of. the paper, the stress is zero. Therefore we will determine two principal sfresses only and 
the third principal stress will be zero. 

Now firstly on the principal p lanes shear stresses is zero and secondly the principal 
stresses are maximum and· minimum normal stresses at a point. 

or 

Considering shear stress to be zero; from equation (2) 

fi= f 1;f2 sin 20-qcos 20=0. 

2q 
tan 20= 

11
_

12
. 

Since tan 20=tan(l80+29) 

The principal angles with reference to plane BC (Fig. 3 · 1) are 

02=01+90°. 

From equation (1), normal stress on any plane is 

fn= 11 tf2+ Ji-·;/2 cos 20+q sin 20. 

For maximum and minimum normal stresses 

df.,. =O= h-f2 (-2 sin 20)+ q (2 cos 0) 
de 2 

2q q 
tan -2°= /1-/2 = c11-f2)/2: 

From equations (3) and (4), we learn that principal plane is inclined at an angle 

8 = _!_ tan - 1 _1g__ 
2 f1-f2 

to the reference plane (refer Pig. 3 .1). ,. 
from equation (4), sin 20=+ q 

2 J (!1;!2) + q2 

q 

.( !1~/3) 
cos 20 = + =--=-=== J( !1;!2 )2+q2 J.( J; 2 

12 r +q~ 

...(3) 

... (I ) 

... (4) 
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stress 

(2) is 

or 

STRENGTH OF MATERIAU 

Substituting the first set of values of sin 20 and cos 20, we get principal stress 

( /1-/2) 
p = /1 + / 2 + ( /1 :fz X ( 2 + q X --::==q=== =-

1 2 2 J(11
2
1z y+q2 J( 11~12) +q2 

... cs; 

Similarly substituting second set of values of cos 20 and sin 20 we get other principal 

p2 = fd;_f2 -~ ( f1;h r +q2 

The third principal stress at the point is 
Ps= O. 

. .. (6) 

Maximum Shear Stress. The shear stress on any inclined plane given by equation 

f i f 1-f2 sin 20-q cos 20. 

For maximum value of shear stress : = 0 

( f 1;h) (2 ~os 20)+ q x 2 sin 20= 0 

From equation (7) sin 20 

tan 20=- (f1-f2)12 
q 

_ fz-!1 
- 2q· 

(/1-/2)/2 

= ±J ( 11 
2

12 y+q2 

Substituting the values in equation (2) 

( /1-/,) 

. .. ,2: 

. .. (T 

(J;)mau. = (f1 .h ) -2- + qXq 
- 2 , ± ~ ( ¥ r +q2 ± J ( /1 

2
12 l +'q2 

=± J (f1;!2 )2+q2. ..JS 

Example ..,.1·2.1. At a point in a strained material, on plane BC there are normal an1 
shear stresses of Sff N/mm2 and 14 N/mm2 respectively. On plane AC, perpendicular to plao, 
!3C; the~e are normal an~ shear strc~se~ of 48 N/m1112 and 14 Nf mm3 res:pectivelr as 1?how1 
m the F1~. 3·9, Determnw 



A 

28Njmm2 
1 
·., 

q I 
q-:1~N/mm2 

B -~-..I ~ C 

66#/~m.1 

Fig. 3·9 

(i) Principal stresses and principal angles. 

(ii) Maximum shear stress and the plane on which it acts. 

Solution, Taking plane BC to be the reference plane 
/ 1=+56 N/mm2 

q= -14 N/mm2 

!2= -28 N/mm2• 

Principal stresses p1= f 1ih +J( ~l.. r+q2 

= 56-:i28 +,J( 56;28 )+04)2 

= 14+ 44'27= 58'27 N/mm2 

!1+!2 J(f-1' )2 P2= - 2- - T +qa 

= 14-44'27=-30'27 N/mma 
Pa= O 
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Principal Angles 0 l 1 ___lq_ _ _!__ - 1 2X 14 1 o , 
1= 2 tan- 11_12 - 2 tan 56+28 

= 2 [18 30 J 
= 9° 15' 

02= 90°+01= 99° 15' 

Maximum shear stress, (f1)0ag; = ±J ( /1 ;/2 r + q2 

= ±44'27 N/mm2. 

Angles of planes for maximum shear stress 

e = _l_ tan-1 /2-/1 = _!__ tan-1 ( - 28- 56) 
3 2 2q 2 2x 24 

= -J- [-71° 30']=-35° 45' 

0,=03+90°= 54° 15'. 
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One can learn from the observations as above, that the plane carrying maximum shear 
stress is at an angle of 45° to the princip~ plane. 

. . Example . 3'2-2: A_t a_ point i i11 a straiµed material, on two planes BC and AC only 
t~e sh.ear stres~ o~ mtens1ty 35,Ni/,i;nmi acts. Detenhin~ the magnitude of principal stresses and 
d1rett1on of principal planes. · 

~ 

&lutl:on, Let us repres~nt· the strn~s1<~ .PU. the .. element..as..sh0wn in Fig. 3 · 10. 

Since in this case 

Principal stresses 

Principal angles. 

e 

A 

C 
· 35N/mm2 

Fig. 3'10 

/1=/2 = 0 
q= 35 Nfrnm2 

Pi, ,p2= ±i q2F ± -35 N/mm2
• 

e 1 - i 2q l -i ( 2 X 35 ) 1 0 

1:-= 2 tan Ii 
12 

=2 tan 0_ 0 = 2 (90 ) 

- ,45° 

02= 45°+ 90°= 135°. 
. . 

In this example, planes BC and AC are planes of maximum shear stress. Principal 
planes are at angles of 45° and 135° the plane BC. 

Exercise 3·2-1. - At a point in a strained material, on plane BC there are normal and 
shear stresses ofvah.;es -600 kg/cm2 and 200 kg/cm2 respectively. On plane AC, perpendi
cular to plane BC, there are normal and shear stresses of values + 300 kg/cm2 and 200 kg/cmi 
respectively. Determine 

(i) Magnitude of principal stresses. 

(ii) Directions of principal planes. 

(iii) Magnitude of maximum shear stress. 

(N) Directions of planes carrying maximum shear stress with respect to the plane EC. 
[Ans{ 310'98,-- 610.'98 kg/cm2 ; - 11° 59°, +78° 1', ±460'98 kg/cmz; 33° l', 123° l'] 

Exercise 3·2-2. At a point in a strained material, two plane EC and AC perpendicular 
to each other carry only the shear stress of intensity 2QO . kg/cm2• Determine the magnitude 
of principal stresses and directions of principal planes. · 

[Ans. 200 kg/cm2, -200 kg/cm11 ; 45°, 135°] 



3'3. GRAPHICAL SOLUTION , 

, The . strtsses on :any . ·plane inclined · to a reference pfane• .. or · 'principal str-esses and 
directions of 'principal planes can be easily obtained through a graphical solution. Followmg 
sign conventions -can be taken for stresses :-

(i) Direct tensile stress ( +ve). 
(ii) Direct compressive stress (-ve). 

(iii) Shear stress tending to rotate the body in the clockwise direction ( +ve). 
(iv) . Shear stress tending ..to rotate the body ,in the anti-clockwise ,direction ( .-ve) 

Direct stress is perpendicular to the 
shear stress on a plane. Therefore!..direct ~tress., 
can be represented along the abscissae and 
shear stress can be represented along the 
ordinate of an x-y co-ordinate system;·COnsider 
an element ABC subjected to 1the stresses as · 
hown in Fig. 3'11. 

On plane BC 
(1) / 1 is + ve tensile stress. 
(2) q is -ve shear stress .. 

On place AC 
(1) / 2 is +ve tensile stress.• 

(2) q is + ve shear stress. 

B ---+---q 

t, 

Fig. 3'11 

. 

A 

Fig 3 · 12 shows a co-ordinate. system representing diTect stresses along the abscissa and .. 
shear stresses along the ordinate. 

Sl'l~ar Stress 
Mohr~ Stress 

.--·Tl-c · circle 
( + ve) 

0 

(drigin) .: 

To some suitable scaie, take 

. , .... 

Direct S~ress 

H ( +ve) 

N 

Fig. 3'12 

... •.1 

OA=f 1 (co-ordinates of point B'k ive .the -state oNtress on plarte BCI 
AB= -q 

OC= f 2 ( co-ordinates of point D give' the st'ate of•stress on plane AC). 
CD= + q 

.-
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Join BD intersecting the abscissa at E. Since AB=CD 

CE= EA= f 1-f2
, with E as centre and radius EB or ED draw a circle. This is called 

2 

a Mohr's stress circle. 

Radius of the circle, 

This circle intersects the abscissa at points H and / where the shear stress is zero . 
Therefore, 

Principal stress, 

Principal stress, 

Angles 

a-nd 

or 

p1= 0H= OE+ EH= OE+R 

= OC+ CE+ R 

=!2+ 11 2.r2+ J (? y+q2 

= !1+/2 + '( fi-h )2+ 2 
2 \ ' ~ q 

p2= 01=0E-El= OC+CE-R 

= /1!h -J(l1 2/j )2+q2 

LBEH= 261 

LBE/= 282 are principal angles 

201= tan 1 AB =tan-1 -2:!1___ 
EA f1-f2 

01 = 21 tan -1 -2:!L_ 
/1-/2 

02 = 01 +90° as LBEI= LBEH+ I80°. 

To determine the stresses on a plane inclined at an angle 0 to the reference plane, let 
us take LBEK= 20. , 

" . . , 

The co-ordinates of the point Kon the Mohr's stress circle i.e. OM and KM give the 
normal and shear stresses respectively on the inclined plane. 

Now rJM=OF+EM 

fitf2 +R cos (20-201) 

= Ii f f z + R cos 20 cos 201 + R sin 20 sin_ 201 

where 0 EA /1- h 
cos 2 1= EB = 2R 

sin 201={! =; · 
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So normal stresses on inclined plane, 

Jn= f1tf2 +R cos 20. li;/2 +R sin 20. l 
- fi+h + f 1-f2 cos 20 + q sin 20 
- 2 2 

(as proved analytically in article 3' I) 
Shear stress on inclined plane, 

f ,=KM= EK sin (20- 201) 

= R sin 20 cos 201 - R cos 20 sin 201 

= R sin 20. 11

2
12 R cos 20. -} 

= f 1-;f2- sin 20 - q cos 20 

(as proved analytically in article 3'1) 

The resultant stress on the inclined plane, 

f,=OK= ;./ OM2+ KM2 4°Jn2 +1,2 

13S 

Points L and N on the Mohr's stress circle represent the maximum shear stress +ve 
and - ve at the point. 

(J,)1110x =±Radius of the circle 

=±J( /1-;/2 )2+q2 
To determine the direction of planes carrying maximum shear stress. 

Let us take LBEN -203, (in the opposite direction to the normal convention of 
+ ve angle) 

EA /1- /2 
tan 203 = AB = 2q 

or 6a=- -2I tan-1 /1-/2 
2q 

Example 3'3-1. At a point in a strained material, stresses on two planes BC and AC, 
perpendicular to each other are as shown in the Fig. 3' 13. Draw the Mohr's stress circle and 
determine 

B 

A 

q 

C 
q:300kg/cm 2 

600kg/cm2 

fi~. 3'1~ 



(i) Stresses on the inclined plane AB 

(ii) Magnitude -ef principal stresses 

. STRENGTH OF' MATERIALS 

(iii) Direction of principal planes with respect t~ the plane BC 
(iv) Magnitude •of maximum shear stress, 
(v) Direction of plan~s carrying maximum shear stress. 

Solution. Choe se a co-ordinate system and to some scale take 
OA=+600 kg/cm2 

AB=+300 (shear stress on plane BC is + ve) 
OC= - -200 (normal stress on plane AC is -ve) 
CD=-300 (shear stress on plane AC is -ve). 

Join BD, intersecting abscissa at E. From E as centre draw a circle with radius ED. 
This is the Mohr's stressrcircle,sh own in: F ig. 3' 14. 

Shear Stress 
, Hve:) 

K L 

( - Ve ) 

N 
I -ve) 

•Fig. 3' 14 

(i) Draw an angle 

!_~EK= 2 X 30°= 60° 

OM=Jii= + J40 kg/cm2 

KM=fi=+ 495 kg/cm2 

(ii) Principal stresses Pi = OJ/= 100 kg/cm2 

• p2= 01--300 kg/cm2 

(iii) Directicms of,prjncipal planes 

+ L BEH= 01=-_18° 30' 

1 
2 

(iv) Maximum shear stress, 

• 

Normal Stres s 

H ( + ve ) 

lANJjLES / 

2~, .: - 37• 

20 : 10 • 

203: 53: 
294 • 233 

._ ... , 

(ft)ma~ = EL= EN=-:t:-500 kg/'1m2 
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(v) Directions of planes carrying maxi mum shear stress 

-+ LBEL= 03= 26° 30°' 

2 LBEN= 04= 116° 30' . 

3·4, ELLIPSE OF STRESSES 

137 

If we know the principal stresses at a point, then stresses on any plane inclined to 
principal planes can be determined graphically with the help of an ellipse, with major axis 2A 
and minor axis 2p2 as shown in Fig. 3· 1 s. YY is the plane of major principal stress p 1 and 
XX is the plane of minor principal stress p2• Now make L YOY' = U, i e., the inclined plane. 
The normal stress on the inclined plane will be in the direction perpendicular to Y'Y' i.e., along 

v' y 

Elli p~e of 

y 

M 

Fig. 3· 15 

, 
y 

OA :: P1 

OB:: Pz 

X'X' as shown. With Oas centre draw two concentric circles one with radius Pi and the other 
with radius p 2• The straight line X' X' intersects the concentric circles at the points L and M 
respectively. From M draw a line MP parallet to OX and from L draw a line PL parallel to 
OB, intersecting the line MP at the point P. This point P lies on the ellipse with major axis 
2p1 and minor axis 2p2• The resultant stress on the inclined plane is given by OP. 

The components of OP, perpendicular to Y'Y' and parallel to Y'Y' represent in 
magnitude and direction the normal and shear stresses on the inclined plane, 

Jn = OK, /,= KP 

Resultant stress OP= ./ OK2 + KP2 

Geometrical proof 
LPMK= LKPL= 0 

Normal stress, fn = OK+ KM= p 2+ MP cos 0 
= p2+(ML cos 0) cos 0= p2 -I- ML cos20 

-p1+ (p1- P2) cos2 0 
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Shear stress, 

_ +( _ ) ( 1 +cos 29 ) - P2 P1 P2 2 

= P1iP2_ + ( P1;P2 ) cos 29 

fi = KP=MP sin 9=ML cos 9. sin 9 

= ( p 1-p2) sin O cos 9 

STRENGTH OF MATERtALS 

= ( Pi; P2 
) si n 26 (already derived analytically in article 3T 

Example 3'4-1. The major and minor principal stresses at a p<.. int are + 70 N/mm2 

and - 30 N/mm2. With the help of ell ipse of stresses determine normal and shear stresses on a 
plane inclined at angle of 30° to the plane of major principal stress. 

Solution. With Oas centre and radii equal to +70 N/mm2 and - 30 N/ mm2 to 
some suitable scale, two concentric circles 
are drawn. OA=+70 N/mm2, YY is the 
plane for major stress, OB= -30 N/mm2, XX 
is the plane for minor principal stress. Draw 
plane Y'Y' at an angle -9 to YY as shown in x' 
Fig. 3·16. 

Draw a line X'X' perpendicular to 
Y'Y' intersecting the bigger circle at C in the 
1st quadrant in which major principal stress 
is positive and i·,~tcrsecting the smaller circle 
at D in the 3rd quadrant in which the minor 
principal stress is negative. From C draw a 
line parallel to YY and from D draw a line 
parallel to XX both meeting at P. Then OP 
is the resultant stress or plane Y'Y'. Com
ponent OK is the shear stres'i and component 
PK is the normal stress 

Jn= PK= 44'4 N/mm2 

fi = OK= 43'8 N/mm2 

y 

Fig. 3·16 

These values can be verified analyticalJy (sec article 3 · 1) 

/ 1= + 70/ mm2, / 2=-30 N/mm2 , 0= 30° 

f, = !1 +!2 + /1-/2 cos 20 70-30 + 70+30 cos 600 
n 2 2 2 2 

= 20+25=45 N/mm2 

Ji = li-!2 sin 20 = 7o + 3o sin 60°=50 x 0'866 
2 2 

= 43'3 N/mm2• 

T!w ~olution through ellipse of stresses may show ~ome sraphical error, 
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Exercise 3'4-1. The major and minor principal stresses at a point in a strained 
material are - 600 kg/cm2 and - 200 kg/cm2• With the help of an ellipse of stresses, determine 
the normal and shear stresses on a plane inclined at an angle of 60° to the plane of major 
principal stress. [Ans. - 300 kg/cm2, - 173 kg/cm2] 

3·5, STRAIN COMPONENTS 

Let us consider only the plane strain of a body i.e., we consider a body whose particles 
311 lie in the same plane and which deform only in this p lane. In chapter 1 we have studied 
'.he uniform strain, i.e., all elements of a bar have been deformed by the same amount. But 
n a general case, the deformation can be non-uniform i.e., a straight line is rotated, distorted, 
iisplaced from its original state in the undeformed geometry and the deformation is non
miform, strain becomes more complicated. However if we examine a sufficiently small area, 
he deformation can be approximated uniform. In the limit as the small area centered on 0 
:hrinks to zero, this uniform deformation becomes the deformation at point 0, (Fig. 3'17). 

I 
y B . ~' ------- ;---~c 

/ 
C // 

V 

A 

Fig. 3· 17 

Consider a thin eontinuous·;body OACB, lying entirely in the xy plane and undergoing a 
nail geometric defon~rntioo in tl~e _.x-y plane. Let 1;1s express the defon,:iation in the vicinity 
· point O quantitat ively by g1vmg the changes m the length of two Imes OA and OB. The 
1rmal strain component is defined as the fract ional change in the original length of a line and 
designated by the symbol E with a subscript to indicate the original direction of the line for 

hich strain is measured. 

Strains 
. O'A'- OA 

Ea = hm OA 
.6.•-+0 

. O'B'-OB 
€ 11 = ltm OB 

.6.11-+0 

Tliis normal strain is positive when the line elongates and is negative when the line 
ntracts. 

The shear strain component is specified ~ ith re_spect to two axes which are perpendi· 
tar in the undeformed geometry of the body and 1s designated by the symbol y, with two 
bscripts to indicate these tw?. axes. Shear. strain is defined as the tang_ent of the change 
angle between these two ongmally perpendicular axes. These shear strams of engineering 



it1-terest are very .small such a ()'00t radian. it is adequate to define shear strain in terms of 
chaQ.ge in angle i45,elf. 

Yoov = lim (LAOB-LA'O'B')= lim ( 
2
" -LA'O'B') 

~.~o ~ oo~O 
So 

~.~o ~~~o 

Figure 3'17 again shows an angle 

«= LYO'B' and angle ~= LXO'A'. 

Total change in angle LBOA=or.-~ 

i e., shear strain is positive when « is clockwise and is negative when ~ is anticlockwise. 

Total shear strain = or.-~= y .,; 

Shear strain y.,. is assumed to be equally divided about OB and OA axes. i.e., shear 
strain y,,11/2 about OB axis is positive whi le the shear strain y,,~/2 about OA axis is negative. 

3·6. STRAIN COMPONENTS ON INCLINED PLANE 

Consider ;i.n element shown in Fig. 3'18 subjected to strain components Eoo, E11 and y-,/2. 
Say the block ABCD is deformed to AB1C3D2 as shown. In other words Bis displaced to 

I 
C 

ex < < 6 

L CA ( a 90° N ~~C1 

~ c ·c, 
C I 

Fig. 3·18 

M 

B1 and C is displaced to C1, Then Dis displaced to D1 and C1 is displaced to C2• Then C 
is displaced to C3 and D1 is displaced to D2• 

Displacements BB1 , C1C2, C2C3 etc. are very very small in comparison to the dimension 
AB and BC. We have to determine the normal and shear strain components atong tb 
diagonal AC, inclined at an angle 0 to the direction of strain component ""· 

As per the definition of strain 
RB1 CC1 

""= AB = AB 



Ut 

= C 1C2 DD1 

e• B
1
C

1 
= AD 

C2C3 C2C3 y-,=--= 
B1C2 B1C1+ C2C1 

but 

C2Ca 
=lie· 

Fig. 3'18 shows the components of displacements CC1, C1C2, C.;.C3 along the dfagonal 
AC and perpendicular to the diagonal AC. 

or 

OJ' 

Displacement components along AC= CN+ KC2+PC3 

FC3= CC1 cos 8+ C1C2 sin B+ C2C3 cos 0 
FC3 CC1 C1C2 . C2C3 
AC = °Ac cos e+ ~ sm &+ AC7 cos 0 

Strain ebmponent, - CC1 AB 0 + _f 1C2 BS_ . 0 C2C3 BC 
e, - AB x AC cos BC X AC sm + BC · x AC cos 0 

= e,, cos 0 cos0+ ev sin0 sin0+ ,o sin0 cos0 

= ea cos2 e+ ev sin20+-i !.. sin 20 

e,, + e11 + ea- er, 20 + Yxll . 20 = -
2
--

2 
COS -

2
- Sill 

Since II angle is very small, CF is perpendicular to AF.AC~AF. 

CF . 11 tan 0t = IX = AC- as ot 1s very sma . 

Displacement component CF perpendicular to the diagonal AC, 

CF= NC1+ C2P- KC1 

= CC1 sin0+ C2C3 sineii - C1C2 cos0 

angle °', CF CC1 . e C1C2 C2C3 • 
AC = AC sm - AC - cos o+AC sm0 

__ _ <;Ci AB .· _ C1<;'2 .. .§<;_ C2C3 BC . 
IX - AB X AC s in 0 BC AC cos o+ BC X AC sm0 

=e• cos0 sinO-e11 sin0 cos0+yd sin20 
= (e. - e11) sinO cos0+ yz11 sin20. 

Say ~ is the change in angle in the clockwise direction for the direction AC' perpendi· 

cular to AC, i.e., ( 0+ ~ ) with respect to AB 

/J = (e.-ev) sin( o+ ; ) cos ( e+ ; ) + r.11 sin1 ( e+ ; ) 

= -(e:.,- e:11) cos0 sinO+ y.,11 cos20 

Total shear strain, = «-~ 
ix - ~= 2( ez -e11) sin0 cos0+ yo (sin20- cosie~ 

or 2y,= (ez- e11) sin 20-y .. ,, cos 20 

n=( e .. -; Ev) sin 20- _Y? cos 20. 



Example 3·6-l. A sheet of metal is deformed uniformly in its own plane such that 
the strain con1pcnents related to xy axis are · :· 

Ez = -200 X 10-6 , ev=500x 10- 6 

"(o=450 X 10-6• 

Determine the normal and shear strain components on a plane inclined at an angle of 
35° to the plane of €.,. 

Solu~ion. The normal strain on inclined plane 

€:o+ "• + e.,, - ev 20+ Y•• s 1·11· 20 e, =--= 2 2 cos 2 , _ . 

[l, - 200+500) (- 200 - 500) · . 10 ,+ 4
2
50 x sin 700 Jx 10- s = 

2 
+ 

2 
cos 

= [150- 350 cos 70~+225 sin 70°]X 10-G' 

= [I 50-350 X 0'342+ 225 X 0'9397] X 10- 6 = -58'27 X 10-o 

The shear strain on inclined plane 

e:.,-e:r · 1"~ 20 y,= -
2
-- Sll1 20- l COS 

=[ (- 200
;

500
) sin 70c.-

4
;

0 
cos 70° J x 10-0 

= [-350 X 0"9397- 225 X 0"342] X 10-6 = [-.328"89-76·95] X iO 6 

= -405'84 X 10 ·6• 

Exercise 3·6-1. A sheet of metal is deformed in its own plane such that the strain 
components related to xy axes are 

e:~=400x 10- 0 ; e:.= -200x 10-6 , ; Yo= 500 x 10-0 • 

Determine the normal and shear strain components on a plane inclined at an angle of 
45° to the plane of e:,,. {Ans. 350 X 10-6, 300 x 10-0.1, 

3'7. MOHR'.S STRAIN CIRCLE 

Fig. 3 · 19 shows plane strains on an 
element i.e., on plane AC, normal strain is e:.,., 
shear strain is y,,11/2, on plane BC, normal 

sirairi ii ; e: a~d shear strain is Y;v · Choose 

the x-y co-ordinate system. Normal stresses 
are represented along the abscissa and shear 
strains _· are represented· along the ordinate. 
Tak'e -to same suitable scale OA= e., AB 
= -y.,,/2 (because the shear strain on plane 
AC tends to rotate the body in the anticlock-

wise direction. Then take OC= e:11, CD=+ 'f-

e~ . 

y 

~ '-----.------! 2 C ""--+----
y..2 

2 
'f( 

'' y 

Fig. 3·19 

·p, . 

(~eca1:1se the . shear. strain _on plane _BC tends t? rotate the body in the clockwise 
direction). Jom BD, mtersectmg the abscissa at E. Wit~ E as centre and radius equal to EB or 



PRINCIPAL STRESSES AND STRAINS 143 

· ED draw a circle as sh0wn in Fig. 3·20. This is called the Mohr's ·strain circle. The c ircle 
intersects the abscissa a~ point Hand I, where shear strain is zero. i e,, these points represent 
the principal strains. 

Principal strains 

She a r s t rain 

0 I C 

Yxy 
CD=+-

2 Ex- Ey N 
CE:EA: ---

2 

Fig. 3"20 

strain c,rclt 

Normal 

H St r a ,n 

OA =(x 

QC =t.y 
>'x y 

AB:- -. z 

Ei = OH= OC+ CE+ EH= OC+ CE+Radius of the circle 

Radius of the circle, R= .[ EA 2+ AB2= ~ l E;r; ; E y y + ( r;, r 

Ea: + Ey ] .(( )·' + ( )' = -
2
--+2 'V e-..-ey • Yzy -

e2= 0l= OE- El= OE-Radius of the circle (R) 

Ea+ E, 1 .r( )2+ ( )• =~-2 'V E z -Ey '(.c y -

Points L and N on the circle represent the maximum shear strain on the element of 
the body. 

. ~rincipal angle. To deterf!1ine the directions of principal planes carrying principal 
strams wnh respect to the reference plane AC Consider angle BEH. 

LBEH= 201 = tan- 1 AB = tan-1 y:11 y 
· EA 

·o = _!_ tan- 1 _ Y:!.._ 
1 2 Ex - e, 

L BEI= 202= 201+ 180° 

Oi= ~i + 90°. 
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Strains on the indined plane. Plane AB is inoitned ~t an a11gte ,8 to the reference pl,ane 
AC. Draw an angte BEK= 20-, i11te1·secting the Moh1•'s str.ain e<irc.le at K. Then O{N)1itfo1ates of 
the point K determine the normal and shear strains on the inclined plane. 

Normal strain on inclined plane, 

Ee = OM= OE+EM 

Shear strain on inclined plane, 
y , = KM 

Ee= OE+ EM = 

= E•~Ey + R cos 28 cos 281+ R sin 28 sin 281 

E.,+e,, + R 28 EA . e AB 
= - 2-- cos . R +R sm 2 . R 

Ez -f- Ey + Ez-Ey 20.+ Yn . 20 = -
2
-- - -

2
- COS 2 Stn • 

ye = KM= R sin (20- 201) 

= R sin 20 cos 281- R cos 20 sin 201 

. EA AB = R sm 28 . -R - - R cos 20 . -R -

Example 3·1-1. The normal and shear strains acting at a point are 
e., = + 500µ cm/cm, e,,=-200µ cm/cm, 

Y•y/2= ± 150µ cm/cm. Determine the (i) principal strains (ii) principal angles (iii) normal and 
shear strain on a plane inclined at an angle of 25° to the plane of E,.. 

Solution. Iµ cm/cm= I X 10- 6 cm = J0- 6 strain 
cm 

e., = 500 X 10- \ Ey= - lOO X 10- s 

_Y!.!._ = 150 X 10- 6 e2 + ey = I SO X 10- s 
2 ' 2 . 

E,r-Ey = 350 X 10-G 
2 

Principal strains 

c;i,+E·y ( e»-Ey )2 ( Ylt'v )i 
E1=-2-+ ~\ - 2- + -

= [150+ .{ (3'50)2+ (150)2] X IQ-6 

= [IS0+ 380·79] X 1'0. n.= 530·79 x 10-6 
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Principal angles 

= 11° 36', 

82=0d-90°= 101 ° 36'. 
Strains on inclined p1ane 

0=25° 

€o: + €y + €o:-€y 500 _ _1 Yxy • 500 
2 2 

cos .- 2 sin 

= (150+ 350 X 0"6428 + 150 X 0'7660) X 10-6 

= (150+ 224"98 + 114"90) X 10-(;= 489"88 X 10 6 

€a,-€, . 50° y.,y 50° y11 = 
2 

sm - --2 cos 

14S 

= (350 X0"7660- 150 X 0"6428) X I0- 6 =(268"10-96'42) X 10-6 

= 171 '68 X 10-o. 

Exei·cise 3·7-1. The normal and shear stra ins acting at a point are €.=450 x 10-5. 
f' y= 250 x I 0- 11, y,.,./2= ±300 X J0-6

• Determine (i) principal strains (ii) principal angles (iii) 
strains OH a plane inclined at an angle of 60° to the plane of Ex . 

[
Ans. U) 666'22 X 10-6, 33'78 x 10-a; (ii) 35° 48', 125° 48' ;l 

(iii) 559'8 X 10-6, 236'6 X 10- 0 j 

3·s. PRINCIPAL STRAINS IN TERMS OF PRINCIPAL STRESSES 

As we already know that at any point, there always exists a set of 3 orthogonal planes 
on which the stresses are only the norm:.tl stresses. The normal stresses on these planes are 
called principal stresses and the strains in the direction of principal stresses are called principal 
strains . 

Consider at a point, three principal 
stresses Pi, p2 , p 3 on three principal planes 
OAFE, OEDC and OABC respectively as 
shown in the Fig. 3·21. 

Say the Young's modulus of the 
materia l is E and its Poisson's ratio is I Jm. 

Linear strain due to p 1 in direction l 

= ...LJ?..L , E 

Lateral strain due to p1 in directic,n 2 

= - ..1!.L. 
mE 

Lateral strain due to p1 in d irection 3 
_ _ --1!.L 

mE 

3 

F 

:z 

Fig. 3·21 

Similarly the linear and lateral ~trains due to P2 and p~ in directions 1, 2 and 3 can be 
geterminedi 
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Total strain in the direction 1, 

E = P1 _ _h_ _ --'2._ 
1 E mE mE 

Total strain in the direct ion 2, 

E _ P2 Pi Pa 
2-·y- mE - mE 

Total strain in the direction 3, 
Pa Pi P2 

"a= E- mE- - mE · 

"i, " 2 and "a are the principal strains in the directions of principal stresses. 

In a two dimensional case where p 3= 0 

E = ..f!.l... _ --1!.L • 
1 E mE ' 

E = - Pi - .J!:L. • 
3 mE mE 

Example 3"8-1. The principal strains at a point in a strained material subjected to 
principal stresses p 1 and p2 are 720x I0- 6, -560 x 10-0 • Determine the magnitude of t he 
principal stresses if 

or 

E= 200 GN/m2 -
1 

= 0'29. 
'm 

Solution. Principal strain, E 1=·1i,-:,-1:=720 x l0-6 

E2 = 7::-- !E = -560 X 10-0 

P1- 0·29 P2=720 x 10-0 x 2oox l09 = 1420 x 105
• 

I 

P2- 0·29 Pi= - 560 X 10-0 x 200 X 109= -1 120X J05. 

Simu ltaneously solving these equations we get . 
Pi= 1662'4 x 105 N/m2= 166·2~ MN/m2 
p 2= -766'9 X 10P N/m 2 = - 76·69 MN/m2• 

.. .( I J 

. . . (2) 

Exercise 3'8-1. The principal stresses at a po int in a strained material are 
+ 1200 kg/cm2, +800 k1;/cm 2, -400 kg/cm 2. Determine the values of principal strains if 
E --= 2 X 10-n kg/cm 2, l /m =- 0·3. [Ans. 540x 10- 0, 280 x 10- 0, -500 x 10- 6] 

3·9, MODIFIED MODULUS OF ELASTICITY 

Whil e determining the Young's modulus of elasticity of any material, tensile test is 
performed on,a specimen of standard dimensions (as in Fig. 3'22) the tensile force P is applied 

I 
~Gauge 

Ten s il e t e~t 
~pec irn e n 
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along the axis of the cylindrical specimen. The Young's modulus of elasticity is determined 
as the ratio of axial tensile stressp(=P/A) and the axial strain e. In this case there is only 
one principal stress Pi =Pf A in the direction of load, while principal stresses p 2 and Pa are zero. 
ln actual practice a machine member or a structure may be subjected to_ principal stresses Pi, 
p2 and Pa· In that case the ratio of actual stress .and actual strain in a direction is called as 
modified modulus of elasticity in that direction. 

So modified modulus of elasticity in direction 1 (see Fig. 3'21) 

Em _ Pi_ EPi _ 
1 - -

El ( Pi- p,:i - pni) 

Similarly 

· . ~Jllfa:mple 3'9-1. The principal stresses at a point in a strained material are 
100 N/mm2·and -70 N/1111112

• Determine the modified modulus of elasticity of the m.aterial 
in the directions of principal stresses. Given E= 2 X 105 N/mm2, 1/m= 0'3. 

Solution. Principal 

modified modulus of elasticity 

. 100 70 . 121 
strams, c 1 = E + T: x O 3 = -E 

-10 1oo x o·3 - 100 
E2= y - £ = ~ 

p 1 100 
Em1 = ;; = l2l X E 

= lOO X 2 X 105 = l '653 X l 05 N/mm2 
121 

P2 -70 Em - - = - - XE z- Ez -100 

= 0'7 X2 X 105= 1'4 X 105 N/mm2. 

Exercise 3·9.1. The principal stresses at a point in a strained material are 900 kg/cm2 
and 600 kg/cm2

• Determine the modified modulus of elasticity of the material along principal 
stress. <;lire.9~i9J?.,S if £ = 2' l X 106 kg/cm2

, I/m= 0'28. [Ans . 2'58 x 10? kg/cm2, 3'62.x 10? kg/cm2] 

Problem 3'1, In a piece of material, a tensile stress / 1 and a shearing stress q act on 
a. given plane, while at tensile stress /2 and a sheanng stress q act on other plane perpendicular 
to the first plane, and all the stresses are copla nar. Find the conditions for which both the 
principal stresses will be of the same sign. 

Solution. Fig. 3·23 shows a stress system, in wh ich plane BC carries the tensile stress 
fi . and shear st11~ss. q. While the plane AC carries the tensile stress / 2 and a shearing stress q. 

~l'.il].c_ipal st_resses are 
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Now if the principal stresses are both tensile then 

J (!1 :2 r+q2 < /11/2 

Squaring both the sides 

( f1i h r + q2 < ( /1 ~/2 y 
/12 + /22 _ /1/2 +q2,< Ji:+ /12 + /1 /2 
4 4 2 4 4 2 

or q2<.fih condition for whi9h both the 
principal stresses are of the 
same sign. 

B 

A 

q 

C 
q 

Fig. 3·23 

Problem 3·2. Prove that the sum of the normal stresses on two perpendicular planes 
is constant. 

Solution. Let us consider a general 
case. 

On plane BC 
Normal stress 
Shear stress =q 

On plane AC J_ BC 
Normal stress =/2 
Shear stress = q 

Sum of the normal stresses on two 
perpendicular planes BC and AC 

=!1+h 

A 

q 

B 

Fig. 3'24 

Again consider a plane AB at an angle O to the plane BC and plane DE perpendicular 
to the plane AB or inclined at an angle 90° + 0 to the plane BC, as shown in Fig. 3·24. 

or 

Normal stress on AB, fn = k-t;_f2 + fi;f2 cos 20 + q sin 20. . .. (1) 

Normal stress on DE, fn' = /d-/ 2 + fi - f~ cos 2 (90°+ 0) + q sin 2 (90°+0) 
2 2 

= 11 ;12 
- Ii ;/2 cos 20-q sin 20. 

I'_ +J,'- !1+!2 +f1+h "+·" 
J11 n - 2 2 JI J 2• 

. .. (2) 

... (3) 

This proves that the sum of the normal stresses on any two perpendicular planes is 
constant 

Problem 3·3. On tw~ perpendict~lar planes of. a bo?Y,.direct stresses of 15 N/mm2 
tensile and 90 N/mm2 compressive are applied. The maJor pnnc1pal stress at the point is 
not to exceed 200 N/mm2, what shearing_ stress can ~e applied to the gi:7en planes ? What will 
be the minor principal stress and the maximum sheanng stress at the pomt? 
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Solution. On two planes BC and AC, perpendicular to each other, the direct stresses 
are as shown 

or 

_____ ._ q 

A 

i-.--90 Njmm 2 

(Compressive) 
.q 

C 

150 Njmm2 
( Tqnsile) 

Fig. 3·25 

Shear stress, q= unknown 

Major principal stress = f 1 ~f2 +J ( f 1~f2 )2+q2 

= l.50;-90 +J ( 150:90 r +q2 

200= 30+ .{ (l20)2-f- q2 

.{ 020)2 +q2=110, 020)2+ q2 = 110~ 

q2= 1702- J 202 = 14500 

Shear stress on given planes 

q=± l20'416 N/mmt 

Minor principal 1,tress = / 11/i -J (J1=;f2 r + q2. 

= 30- 170= -140 N/mm2 

Maximum shearing stress=±J ( f 1~h r+q2 
=± 170 N/mm2 

Problem 3'4. A piece of material is subjected to two tensile stresses at right angles 
of values 120 N/mm2 and 50 N/mm2

• Find the position of plane on which the resultant stres~ 
is most inclined to the normal. Find the value of this resultant stress. 

Solution. To draw Mohr's stress circle, take 

OA= 120 N/mm2 

OB= 50 N/ mm2 (to some suitable scale) 



LS.Q 

Shear 
stress 

Mohr's stre~s 
c 1rcle 

Normal 
--+-"--f---4~ --=--1--...._-:-__..--'::-........_-1-_j...-+.-s tress 

0 B E C A 

Fig. 3'26 

C is the eentre of AB, it is the centre of Mohr's stress circle .. 
Radius of the Mohr's stress circle 

120.- 50 
= BC=CA "'-~ = 35 N/mm2 

2 
The maximum angle ef, is obtained when OD is tang~nt to the stress citcle 

OC= 50+35=85 N/mm2 

CD= 35 N/mm2 

sin r/>,= !~ = 0'41176 

ef, = 24° 18' 
angle of inclination of resultant stress to normal stress 

OD= OCcos ef, = 85 X0'9114 
= 77"469 N/mm2. 

The plane on which the resultant stress is most indined to the normal stress is 
inclined at an angle 8 to the plane of normal stress I 20 N/mro2 

26 = 90 + 24 ° 18' = 114 ° 18, 
8= 51° 9'. 

Problem. 3'5. ln a stressed l;>ody, on a plane AB, the resultant stress is 67 N/mm2 

inclined at an angle of 15° to the normal stress and an another plane. CD, tl:tc res.ultailt stress 

Shear str.t,S,6t S. 

No_rm_ol 

( erigin) 
D, . s ~ ri.:;.sr..s 

.,I 

Fig. 3·27 
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is 45 N/mm2 inclined at an angle of 30° to the normal stress. Determine the angle between 
the planes AB and CD. Find the magnitude of principal stresses and maximum shear stress 
on the body. 

/ 

Solution. Take the co-ordinate axis with oxigin O as shown. Take to some scale 
OA= 67 N/mm2 at an angle of 15° with the abscissa and OB= 45 N/ mm2 at an angle of 30°, 
with the abscissa. The points A and B lie on the Mohr's stress circle. Therefore draw the 
perpendicular bisector EC of the line AB, which meets the abscissa at the point C, which is the 
centre of the Mohr's stress circle. 

With C as centre and r:idius CB or CA draw the circle i.e., Mohr's stress circle. 
Angle between the planes AB and CD 

8= 1/2 LACB=31° 

Principal stresses p1 = OD = 72 N/ mm2 (tensile) 
p2= 0F= 23 N/mm2 (tensile) 

Maximum shear stress, qma:.= CG = Radius of the Mohr's stress circle 
= 24"5 N/ mm2 • 

Problem 3·6. At a point in a stressed 
material, the normal stress on plane AB is 470 
kg/cm2 and the resultant stress on plane BC 
is 850 kg/cm2 as shown in the Fig. 3'28. 
Determine the magnitude of principal stresses 
and maximum shearing stress at the point and 
directions of planes carrying these stresses. 

Solution. Normal stress on plane BC, 
/ 2= 850 cos 20°=85 X 0'9397 

= 798'745 (compressive) 
= - 798'745 kg/cm2 

Shear stress on plane BC, 
q= 850 sin 20°= 850 X 0'342 

= 290'7 kg/cm~ 
So the shear stress on plane AB, 

q --= 290'7 kg/cm~ (complementary shear stress) 

/ 1, Normal stress on the plane AB= 470 kg/cm2 

Fig. 3·28 

Say the plane AB is the reference plane (on which the shear stress q is + ve). 

Principal stresses P1 = .{.1__---t;_f2 +J( j~;r'!,_ Y+q2 
470- 798'745 / ( 470+798'745 )~ 

= 2 + \J 2 + (290"7)2 

= -164'37 + .Y402428'46+84506"49 

= -164"37+ 697"60= 533·43 kg/cm2 (tensile) 

f-12=- 164"37- ,V 402428"46+84506"49 

e::- 164"37- 697"80=- 862' 17 kg/cm2 (compressive) 
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Maximum shear stres5 

qmax= ± ~ ( /1 2/2 r + q2 

= ± 697·80 kg/cm2 

Angles of principal planes 

- ?q 
tan 281 = (!.:....!;> since the shear stress on reference plane is + ve 

-2X 290"7 
= 470- 798"745 = 1

·
7685 

81 = 30° 15' w.r.t. plane AB 

02= 01 + 90°= 120° 15' 

Angle for the plane of maximum shear, 
83= 0i-f-- 45°=75° 15'. 

Problexn 3·7. Passing through a point in a material , there are two planes XY and YZ. 
Plane YZ is inclined at 45° clockwise t<.> XY. The direct and shear stresses on plane XY are 
80 MN/m2 tensile an~· 40 MN/ m_2 respectively. 01: the_ plane YZ ~here is a tensile stress of 
magnitude 150 MN/m- and a sheanng stress. Determine (1) the magnitude of shearing stress 
on plane yz (ii) magnitude of principal stresses (iii) maximum shearing stress (iv) directi ons 0f 
principal planes with the respect to tlw plane XY. 

Solution. Let us take XY as reference 
plane. Consider a plane YM at right angles 
to plane- XY, then shear stress on this plane 
will be 40 MN/m2 

Say the direct stress on plane Y M 

=!2 

Direct stress on plane YZ 

8.0 

40 

X .---, 

y 

'I 

' ' . , 
45 <. 

q' 150MN/m2 
------'M 

Fig. 3·29 

= SO+J; + 80- f 2 cos (- 90°)+ 40 sin (- 90°) 
2 2 

or 

Since the angle of plane YZ w.r.t. XY is -45° 

Therefore 150= 80+ ! 2 + SO-f2 (0)-40 
2 2 

300= 80+ !2- 80 
f2 = 300 MN/ m2 

Shear stress on plane YZ, 

q'= 80;-!2 ~in (- 90°)- ~0 cos (-90°) 

=( 80
;

300
) (- 1)~ qo MN/m2

, 

... (1) 
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Principal stresses 

Pi= 801300 +J ( 80~300 )2+(40)2 

= 190+ .f (110)2 +(40)2 

= 190 + 117'05=307'05 MN/m2 

80+300 J( 802300 )
2
+ (40); P2= 2 

= 1510- 11 7'05=72'95 MN/m 2• 

Maximum shear stress 

f( 80-300 ) 2 

qmax= ±v 2 +(40)2 

= ±117'05 MN/m2• 

Directions of principal planes 

2q 
t_an 281= 

11
_

12 
where q= 40 MN/m2 

J1=80 MN/ m2, f2 =300 MN/m2 

2X40 -80 
tan 201 = 

80
_

300 
-
220

- =-0'3636 

201 = - 90° 54' 
or 01=-9° 57' 

82=-9° 57'+90°=80°- 3'. 

163 

One principal plane is inclined at an angle of 9° 57' in clockwise direction and other 
principal plane is inclined at an angle of 80° 3' in anticlockwise direction to the plane XY. 

/ 

Problem 3'8. The m'inor principal stress at a point in the cross section of a beam is 
30 MN/m2 compressive and the magnitude of maximum shearing stress is 100 MN/m2. 
Determine: 

(a) the major principal stress if it is compressive and the direct aud shear stresses on 
the plane making an angle of 60° in the clockwise direction with the plane of minor principal 
stress and 

(b) The major principal stress if it is tensile and the direct stress on the planes of 
maximum shearing stress. 

Solution. (a) When the major principal stress is also compressive 

Say p1 =major principal stress 
P2= minor principal stress 

Pi-P2= 2.X maximum shearing stress 
Pi=Pd·2qmax=30+2x 100 

= 230 MN/ m2 (compressive) 

Taking the plane of minor principal stress as the reference plane, 

· 0= -60° (angle for the plane on which direct and shear 
~tn1sses are to de determined,) 



154 

Direct stress, 

Shear stress, 

I 
1-
1 

'( -) 80) I 

Fig. 3'30 

-30 

Shear str-.z~s 

Di rte l 
s: trtss 

Jn = P2iPi + P2~l'.! cos 20 

STRENGTH OF MATERIALS ' 

-30;230 + -301230 cos (-1200) 

= -130+ 100 cos (120°)=-130-50 

=- 180 MN/ mm2. 

/,= P2~Pi sin 20 

= - 3o + 23o sin (- 120°)=+100 (-0'866) 
2 

= -86'6 MN/m2• 

(b) When the major principal stress is tensile 
P1-P2= 2 X qmax 

P1 = P2 +2qmax= - 30+ 2 X 100 
Major principal stress = 170 MN/mm2 (tensile). 

Direct stress at the centre of the Mohr's stress circle 
"':'P2 + qma:i: = -30+100= + 70 MN/mm2

• 

This is the direct" stress on the planes which carry the maximum shear stress. 

$hear stress q 

I 
I 
I 

max 

P2 crigln I Cen trt of P1 
--3-=0+-'"'.:Co-t---=--.,-,-0-M-o-h-,rs,-.-......,1.~N or ma l 

I strizs!I st res s 
I circl~ l70 
I 
I 
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Problem 3·9, At a point in a strained material, the stresses on the planes XY and XZ 
at an angle 0 as shown in Fig. 3'32 are + 1 ·2 tonnes/cm2 normal stress, o·s tonne/cm2 shear 
stress on XY plane and - 2· 1 tonnes/cm2 normal stress, 0'6 tonne/cm2 shear stress on XZ plane. 
Determine 

(a) The angle between the planes XY and XZ. 
(b) Magnitude of maximum and minimum principal stresses. 
(c) The directions of principal planes with respect to the plane XY. 

Solution. Let us consider a plane 
XZ' perpendicular to the plane XY. 

r'I 
I 

or 

Normal stress on the plane 
XZ' =/2 (unknown) 

Shear stress on the plane XZ', 
q= - o·s tonne/cm2 

(complementary shear stress) 
Normal stress on the plane XZ, 

Jn= -2· 1 tonnes/cm2 

Shear stress on the plane XZ, 
f t= - 0'6 tonne/ cm2 

(producing anticlockwise 
moment on the body) 

cDI I 
01 1 ' 

f --~ 2 I I 
f I 

I 

0·8 

Fig. 3-32 

Now, I' - fi+ f 2 + I i f z cos 20 - q sin 20 
J I! - 2 2 

-2' 1= 1·2;r.h + 1·2~12 cos 20 - o·s sin 2~ 

t·2 • f1 

-2' l X 2= 1 ·2+ / 2 + 1 ·2 cos 20 - / 2 cos 20-1 ·6 sin 20. . .. (!) 

J,= fi-;_f2 sin 20 + q cos 20 

. ,--0'6= 
1
;-/2 sin 20+ o·s cos 20 

-1'2= 1'2 sin 20-/2 sin 20 + 1·6 cos 20 
/ 2 sin 20= 1 '2 sin 20+ 1'6 cos 20+ 1 '2 

/ 2= 1·2+ l '6 cot 20+ 1 ·2 cosec_ 20. 

Substituting the value of J~ in (1) we get . 
-4'2= 1·2+1·2+ 1·6 cot 20 + 1·2 cosec 20 + 1·2 cos 20 

... (2) 

-cos 20[ 1'2+ 1 ·6 cot 20 + 1 21cosec 20]- 1 '6 sin 26 
-6·6= 1 '6 cot 20+ 1 ·2 cosec 26+ 1 ·2 'cos 20 

- 1 ·2 cos 20- 1 '6 c~s
2 J: 1 ·2 cot 26-1 '6 sin 20 

Sill 

· 1·2 cos2 20 . 
-6·6= 0'4 cot 2e+ ---:--

20 
- 1 '6 ~

28 
- 1 ·6 sm 26 

SID ., Sill 

- 0·4 cos 26 __!_1_ / '1'6 [ 2 2 + . 2 2111 - . 20 + . 2 f1 _,. • 2 cos 6 sm "' . sm sm . · sm lj 

_ 6.6= 0.4 cos,28·~ ~ 
sin 20 sin 26 
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6·6 1 cos 28 1-cos 28 
0-4- sin 26 sin 20 = sin 28 

16.5= 1-:- cos 29 2 sin2 8 
sm 28 2 sin 6. cos e 

16·S= tan 8 
6= 86°-33 ' 

. 0 16"5 cos 0= l 
Sill = y273"25 ' y273"25 
. 28 33 28 2 tan 8. 

sm = 273·25 ' tan = 1-tan2 8 
33 

27)·25· 

Substituting these values in the expression for /2 
· = 1.2_ 1·6x211·25 · 1·2 x 213·25 

12 33 + ~3 
= - 2·01 tonnes/cm2• 

1 ·2 - 2 ·o 1 f (-1-·2_+_2---,·0--,-1-, .,---2 --

Minimum principal stress, p mtn- . 2 + \/ 2 J +(0"8)2 

= - 0·405+ l '790= l "385 tonnes/cm2 (tensile) 
2q 2 x o·8 1·6 

tan 281 = - (f1 /2) = - 1 ·2+2·01 3"21 

=-0"498 261= - 26"5°, 81 =-13° 15'. 

. . . 1"2- 2·01 . /( 1 ·2+ 2·01 )2 . 
Maximum prmc1pal stress, pmo~= 2 - V 2 +(O 8)2 

Graphical Method 

=-2·195 tonnes/cm2 (compressive) 
82= 90+ 01= 76° 45'. 

Shear strJs~, 

H 

Fig. 3·33 

Normol 
stn SStS 

l.· 



To some suitable scale take 

0 A= / 1 = + 1 ·2 normal stress 
AC= +o·s shear stress 
OB= - 2· l normal stress 
BD= - 0'6 shear stress. 

t57 

Join CD and draw the right bisector of CD and produce so as to cut the abscissa at 
the point E . Then Eis the centre of the Mohr's stress circle. 

With E as centre and radius EC or ED draw a circle. 
LCED= 26= 173°- 6.' 

or 0= 86° 33'. 

Maximum principal stress, p,, ... ,,= GI= - 2'195 tonnes/cm2 

202= 153° 30', 02= 76° 45'. 

Minimum pdncipal stress, Pmin'= OH= - l '385 tonnes/cm2 

28u= -26° 30', Bi= - 13° 15'. 

ProbJepi 3·10. A circle of 100 mm diameter is inscribed on a steel plate before it is 
stressed. Then the plate is loaded so as to produce stresses as shown in Fig. 3·34 and the 
circle is deformed into an ellipse. Determine the major and minor axes of the ellipse and their 
directions. 

Given £ = 2100 tonnes/cm2, l/m = 0·2s. 

+120 0 

- BOO - 600. 

,I 

..... ~ ~~~......,...-'-~~~--'~00 

All th e stresses 
· in k g/cm2 

Solution. Stresses 

Fig. 3·34 

/ 1=+ 1200 kg/cm2 

/2= -600 kg/cm"z 

q= 400 ~g/cm2
• 

Majo ra xi,-: ao' 

Min o r ax is:: bb 

·, I 

The circle will be deformed into an ellipse, due t o .the applied stresses. The major 
a~ds of the ellipse will be along the major principal stress p1 and minoi 'a'.xis of the · ellipse will 
be along the minor principal stress P2, · · ' 
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and 

Principal stresses, Pi = 11-;12 + v ( 11;12 / +q2 

1200;-600 + J ( 1200:600 r + 4ooa 

= 300+985= 1285 kg/cm 2. 

P2= 300-985=- 685 kg/cm2 

2q 2 X400 . 
tan 261= !1-!2 1200+600 = 0 44 

Principal strains 

Change in diameter 
Major ~xis of ellipse 

261 = 24°, (11= 12° 
82= 90°+ 81 = 102°. 

€ = 1285 + I . 685 = 1285+ 0'28 X ~85 _ . ..,
3 

i E Ill E 2100 x 1000 - 0 702 X 10 

= E1X 100= 0'702 x [0- 3 x I00 = 0·o1o2 mm 
= 100'0702 mm 

- 685 I 1285 - 685- 0'28 x 1285 
"

2-,, ---y;-- ,; x --g-= 2JOO x 1000 
= - 0'498 x 10-3 

Change in diameter = E2 X I00= - 0'498 x 10-ax 100= - 0'0498 mm 
Minor axis of the ellipse= L00- 0·0498= 99 '9502 mm 

Problem 3·11. Strains at a point on 
a specimen are recorded in direction 0°, 45° 
and 90° with the help of strain gauges. The 
readings are given below : 

€o 0 = 400 µ cm/cm 
€4t=+175J,1 cm/cm 
E90°= - 300 µ cm/cm 

, 
Determine the magnitude of principal 

strains and principal stresses! and principal 
angles. o·-x 

Given £ ~ 2x 105 N/mm2 

;1 ' .J.._= 0'3 . . 
. , ,n 

;s tr a in go gn 

+-
3 Element re c ta ngular rosette 

i 

Solution. Electrical resistance strain gauges are used to record the normal strains in 
any direction. The principal of operation of a strain gauge is that strain 

where 

... ~ : 

b.. R 
€= R X GF 

~ • . 1. 

~R= Change in resistance R of the gauge due to strain E 

GF= Gauge factor specified for the gauge. 

Let us,tak~· x a~is ~long 0° as showq
1 

in Fig. 3·35, 
Eo 0 = E..,=400 X 10-0 

<· , 
'• ., ,, 

•r ... . · .. .'J) .. ... i , 
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Since 
· cm 

lµ cm/cm=l X 10-6 -=l x 10-6 

cm 

From equation (2) 

I 

Principal strains 

Principal siresses 

· Principal angles 

_y~= 175 X 10- 6 - ..!.!..__.!..!_ = (175-200 + 150) X 10- 6 
2 2 2 

= 125 X 10-6• 

Ei= €xi€y +~ (? )2+( * r 
= 400;-300 +J \ 400!300 r + (125)2 µ cm/cm 

= 50+ 371 '65 µ cm/cm= 421"65 x 10-6 

E2 = 50-371'65 µ cm/cm = - 32 l '65 x 10-G. 

= ~-=~-~: (421"65 - 0"3 X 321 "65) X J0- 6 

2 x 105 • 
- 0.91 (325J6) x l0- 6 = + 7 I ·46N/mm2 

P2= ( l - ~ l ). ( €2+ : 1 €1 ) 
m2 

2 X 105 

1_ 0.32 (- 321"65 + 0'3X 421 ·68)X 10-5 

2x 105 

0.91 (- 195.16) x 10- 6= - 42·&9 N /mm2 

2, y.,y 
tan 1 = --

E:c - Ey 

250 
400+300 = 0·357 

159 

... (2) 

.. . (3) 
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Probletn 3·12. For a d~Ita rosette, the following observations are made with gauges 
mounted on an aluminium specimen 

En°= - I 00 µ. cm/~m 

E60°=+700 µ. cm/cm 

E 120°= -600 µ. cm/cm 

Determine the principal strains, the 
principal stresses and the principal angles 01 
and 92. 

Given 

E for aluminium = 0·7 x 105 N/m m2 

-
1
- for a luminium = 0·3J . 

m 

y 

Strain gages 
Delta rosettt 

Fig. 3·36 

o·-...x 

Solution. In the case 0f delta-rosette, 3 strain gauges are available in a combination 
along the sides of an equilateral triangle as shown in Fig. 3·36 and these are mounted on the 
specimen. 

or 

Let us choose the x-axis along 0° direction, then 

En°=E,,=- IOO x 10- 6 ... (!) 

Eoo
0 = ~ tEy + E,:~Ey COS )20°+ Y2Y Sill )2?0 

700 X 10-6= e., -\-Ey + E" - Ey (- O'S) + _y .. y (0'866) 
2 2 2 

Substracting equation (3) from equation (2) we get 

!300 x 10-s= ~ (I '732) 
2 

. f Y,w . . (2) Putting the values o E~, ,2 m equation 

. .. (2) 

. .. (3) 

. .. (4) 

700 X ]0-ij=_ IOO x
2

1Q-S + ~ + 100 \ Jo · fi + ~II + 750'58 X ~0-6 X (0°866) 

3:-' = (700 + 50- 25 - 650) X JO-ft 

e1= 100 X JO-\ 
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Prinoipal strains 

Principal stresses 

Principal angles 

Ei = Ex1Ey +J ( E:,;~Ey r +( _Y;y r 
= [ - 100~ 100 +J ( - 100

2
-100 )2+<750.58)2Jx 10-o 

= + 757.21 X 10-o 

Ee= Ey1E1 _ v ( Ey~Ey r +( Y;, r 
=-757'21 X J0-0 • 

Pi= E r E1 + -1 
E2 J 

1 
_ _ 1_ L m 

m2 

= o·7 x l0
5 

(757'21 + 0'33 (- 757'2l)]X 10- 6 
1- 0·332 

- o·7 X 
105 

(507'33] X 10-0= 36'2 N/mm2 
- 0'891 

P2= £ l [ E2+_!_ E1 J 
1- - m 

,n2 

0·1 x 105 

= 
1

_
0

.332 [-757'2l + 0·33 x~7'2l] x l0-6 

= - 36'2 N/mrn2. 

tan20
1
= y .. y -

75o·5s x 2 -7·5058 
E:,;- E y - 100- lQQ 

2!h=-82° 24' 
01=-41° 12' 
02=61+ 90°= +48° 58'. 

Problem 3'13. A rectangular bar of a material is subjected to an axial compressive 
stress p1• In addition to the axial pressure, the lateral pressures act on the bar in other two 

f i~. 3·37 

( Axia l c ompressive 
pressure ) 
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directions such that the lateral strain in direction 2 is reduced to SO per cent and in direction 
3 it is reduced to 40 per cent of the strain if the bar is free to contract or expand laterally 
under the axial stress. Determine the modified modulus of elasticity in the direction of the 
stress Pi· 

Solution. The free lateral expansion of the bar is prevented and reduced to half in 
direction 2 and 40 per cent in direction 3. Obviously with the help of compressive stresses Pi 
and p 3 in directions 2 and 3 respectively as shown in Fig. 3·31. 

or 

or 

or 

or 

or 

(a) When the bar is subjected to p1 only, strains in 3 directions will be 

E - Pt E = + ..J!.L, E =+ _f!_J_ 
1- -y• 2 mE 3 mE 

(b) When bar is subjected t0 n1, p 2, p 3 stresses, strain in 3 directions will be 

Ei'=-[P-L_ P2+ Ps J 
E mE 

E2'=-[.1!.:L- Pi+ Ps J 
E mE 

Es'= -[ 1;; _ p:n-+;:2 ] 

(c) Now E2'= {)'S E2, E31 =0·4 E3 

Therefore _h__=-[.h_- Pi+ Pa J 
2mE E mE 

P1 = -p + J!1.. + !!.a. 
!2m 2 m m 

--fi = - p2+ h 
2m m 

0·4P1 __ r .f!L_ Pi+P2 J 
mE - LE mE 

_Qih = - p + EL + P~ 
m 3 m m 

_ 0'6 Pi = - Pa+ P2 
m m 

Multiplying equation (2) by -
1
- and adding to equation (I) we get 

m 

_ P1 _ o·6 Pi = P2 _ p
2 

2m m2 m2 

_ ( o·sm+ o·6 )= ( 1-m
2 

) 
Pi m2 P2 m2 

Substituting the value of p2 in equation ( l) we get 

_ o·s Pi _ _ o·sm+0·6 + Ps_ 
m - ,n2-1 Pi m 

... ( l) 

... (2) 

. .. (3) 

.. . (4) 
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Now strain ,_ P1 + -1?:L + -1!..L 
€1 -- E mE mE 

p1 0'5m+0'6 0'6m+0·5 
=-m+ m(m2-l) E XPi+ m(m2-l) E Pi 

,_ P.1...[ - m(m2 - l)+o·sm+ o·6+0'6m+o·s J 
€ 1 -+ E m(m2-l) 

€ ' = p 1 L- -ma+m j-_0m+ 1·1 J-, 
1 E m(m2-l) 

or · Modified modulus of elasticity, 

SUMMARY 

1. If / 1 and / 2 are the direct stresses and q is the shear stress on two planes perpendi
cular to each other at a point in a strained material then (i) normal stress and shear stress on 
a plane inclined at an angle II to a reference plane (say plane of direct stress / 1) are 

Normal stress, Iii= f 1+h + f 1- f 2 cos 28+ q sin 28 1 ' 2 2 

Shear str~ss, f, = ( f 1 ~f 2
) sin 28 - q cos 20 

and (ii) principal stresses at the point are 

Pi, P2 Jiif2 ± ;(J~~f2 )2+q2 

Pa= O 

(iii) Principal angles with respect to principal planes are 

l -1 2q 
81 = 2 tan (/

1
- h) 

92= 81+ 90° 

(iv) Maximum shear stress at the point is 

ftmax = ± v( f 1~f2 )2+q2. 
2. To draw the Mohr's stress circle, direct stresses are taken along the abscissa and 

shear stresses are taken along the ordinate of a co-ordinate system. Two points representing the 
the state of stress on two perpendicular planes are located. Distance between these two points 
is the diameter of the Mohr's stress circle. The two points on the circle along the abscissa give 
the principal stresses. The maximum shear stress is equal to the radius of the circle. 

. 3. If two principal stresses. at a poit~t are ~n~wn then an ellipse with major and 
minor axes equal to two t imes the maJor and mrnor prmc1pal stresses at a point, is drawn. 
From this ellipse of stresses, normal and shear stresses on a plane inclined to a given principal 
plane can be determined. 



4. If e ., E, and yzy are tbe normai and shear strain components on two perpendicular 
planes at a point, then principal strains at the point are 

Ei, E2= Ext Ey ± J ( e.,-; Ey )2 +( Y;Y r 
and the normal strain on a plane inclined at an angle fJ to a reference plane (say the plane of 
normal strain 1aa) is 

where 

El 
Ez+e, + e.-e, 26+ y.,y . 28 2 

2 
COS -

2
- Slll , 

5. If pi, p2 and Pa are the principal srresses at a point, then principal strains are 

E =Pl-~- Pa_ ; e2=1!.!.._-1!L _ _h_ 
1 E mE mE E mE mE 

_ Pa Pi P2 
ea-E- mE - mE 

E=Young's modulus and -
1
- = Poisson's ratio. 

m 

6. Modified modulus of elasticity is the ratio of principal stress and principal strain 
in a particular direction. 

MULTIPLE CHOICE QUESTIONS 

1. At a point in a strained material, planes AB and BC perpendicular to each other pass 
through the point. The normal stress on plane AB is 80 N/mm2 and on plane BC the 
normal stress is 40 N/mm2• On both the planes there is a shear stress 15 N/mm2

• The 
normal stress on a plane inclined at an angle of 45° to AB is 
(a) 95 N/mm2 (b) 80 N/mm2 

(c) 75 N/mm2 (d) 55 N/mm2
• 

2. Planes AB and BC perpendicular to each, pass through a point in a strained material. The 
normal and shear stresses on planes AB are 600 kg/cm2 and -200 kg/cm2. The normal 
and shear stresses on plane BC are 200 kg/cm2 and +200 kg/cm2 respectively. The plane 
on which shear stress is zero is inclined to the plane AB at an angle 

(a) 22° 30' 
(c) 67° 30' 

(b) 45° 
(d) 90°. 

I ;, 

3. On two perpendicular planes passing through a point the normal and shear stresses are 
80 MN/m2, ...'....60 MN/t:12 ;. -80 MN/m2, 60 MN/m2 respectively. The maximum 
principal stress at the pomt 1s 
(a) 160 MN/m2 

(c) 80 MN/m2 
(b) 100 MN/m2 
(d) 60 MN/m2. 

4. The major and minor principal stresses at a point are 120 N/mm2 and 40 N/mm2 

respectively. If a Mohr's stress circle is drawn for the stresses, the radius of the Mohr's 
stress circle will be 
(a) 120 N/mm2 

(c) 40 N)mm:.i 

(b) 80 N/mm:.i 
(d) 20 N/mm2. 



htNCJPAL STR<ESSES AND STRAiNS 

5. Two planes XY and YZ are passing through a p o int in a strained material. The normal 
and shear stresses on plane XY are + 60 MN/ m2 and - 30 MN/ m2 respectively. while the 
normal and shear stresses on plane YZ are - 60 MN/m:i and + 30 M N/m~ respectively. 
The angle between the planes XY and YZ is 
(a) 30° (b) 60° 
(c) 90° (d) 135°. 

6. The major and minor principal stresses at a i:oint are + 120 N/111111 2 and - 40 N / mm2 • 

A plane XY is passing tltrough a point on which the n ormal sti·ess is 80 N/ mm 2 and the 
shear stress iii q. Another phi ile YZ perpendicular to tile p lane XY is also passing 
through the same point. The normal and shear stresses on plane YZ are f and q 
respectively. The magnitude of the stress/ is 

(a) 60 N/ mm2 (b) 40 N/ mm2 

(c) 20 N/ mm2 (d) 0 N / mm2• 

7. The major and minor principal stresses at a l)Oint are 1200 kg/cm:i and 700 kg/cm2 

respectively. On a plane passing through a point, the normal stress is 1150 kg/cm2• 

The shear stress on this plane will be 
(a) 250 kg/cmi (b) 200 kg/cm2 

(c) 150 kg/cm2 (d) 100 kg/cm2 • 

8. On two perpendicular planes passing through a point there are comp lementary shear 
stresses ± 150 N / mmz. The normal stress on these planes is zero. The maximum 
principal stress at the point is 
(a) 300 N /mm2 
(c) 750 N/mm2 

(b) 150 N/ mm2 

(d) None of the above. 

9. In a strained material, at a point the strains are €2) = 600 f' cm/cm, 1:11 = 200 µ cm/cm, 
y,,,,/2 = 150 µ cm/cm. 

The maximum principal strain at the point is 

(a) JOO µ. cm/cm (b) 800 f' cm/cm 
(c) 650 µ cm/cm (d) 500 µ cm/cm. 

10. In a rectangular strain gauge rosette, the readings rccorJed are .,/=400 f' cm/cm, 
1:4r,

0 = 375 µ. cm/cm, € 90°=200 µ cm/cm ; 
The maximum principal strain at the point is 
(a) 775 µ. cm/cm tb) 600 µ cm/cm 
(c) 525 f' cm/cm (d) 425 µ. cm/cm. 

1. (c) 

7. (c) 

2. (a) 

8. (b) 

3. (b) 

9. (c) 

ANSWERS 

4. (c) 

IO. (d). 

E'.XERCISES 

5. (c) 6. (d) 

3'1. On two perpendicular planes of a body, direct stresses of 1200 kg/cm2 tensile 
and 700 kg/cm2 tensile are applied. The major principal stress at the point is not to exceed 
1350 kg/cm2 ; What shearing str~ss can be . applied to the given planes ? What will be the 
minor principal stress and the maximum shearing stress at the point? 

[Ans. 312"25/cm2 ; 550 kg/cm2, 400 kg/cm2J 



STRENGi'H OF MATERIALS 

3'2, ;.._ piece of materiai is subjected to two tensile stresses at right angles of magni
tude 800 kg/cm2 and 400 kg/cm 2. Find the position of the plane on which the resultant stress 
is most inclined to the normal. Find the magnitude of this resultant stress. 

[Ans. 54° 44' ; 565 68 kg/cm2] 
I Jr 

· 3"3. ln a stressed body on a plane AB, the resultant stress is 80 MN/m2 inclined at 
an angle of 20° to the normal stress and on another plane CD, the resultant stress is 50 MN/111 2 

inclined at an angle of 35° to the normal stress. Determine the angle between the plane AB 
and CD. Find the magnitude of the principal stresses and the maximum shear stress on the 
body. [Ans. 32°, 91 MN/m2, 27 MN/m2 ; 32 MN/m2 ] 

z 

50 N/mm2 ,· 

y 

0·7 

Fig. 3-38 Fig. 3·39 

3"4. At a point in a stresse~ material the normal st~ess on a plane AB is -50 N/mm2 
and the resultant stress on plane BC 1s 90 N/mm2 as shown 111 the Fig. J·38. Determine the 
magnitude of principal stresses and maximum shearing stress at the point and direction of 
planes carrying these stresses . 

[Ans. 92" 18 N/mm2
. 17° 33'; 64'24 N/mm2, 107° 33'; n·21 N/mm2, 62° 33' ] 

3·5. At a point in a stressed material, the stresses on the plane XY and XZ at an 
angle 105° are as shown in Fig. 3·39, i.e. 2 tonnes/cm2 normal tensile stress, 0·7 tonnes/cm2 
shear stress on XY plane and 0·5 tonne/cm2 shear stress on XZ plane. Determine : 

(a) The normal stress on plane XZ. 

(b) The magnitude of tke maximum and minimum principal stresses. 

(c) The magnitude of the maximum shear stress and the direction of the planes carrying 
the maximum shear stress. [Ans. (a) 2· 12 tonnes/cm2 (b) 2·52 tonnes/cm2, I '056 tonnes/cm2 

(c) ±0"731 tonne/cm2
, 81° 33' and 126° 33' with respect to the plane XY] 

3"6. The minor principal stress at a point in the cross section of a beam is 50 N/mm2 
tensile and the magnitude of the maximum shearing stress. is 80 N/mm2 • Determine : 

( a) The major principal stress if it is tensile and the direct and shear stresses on a plane 
making an angle of 45° with a p lane of minor principal stress. 

(b) The major principal stress if it is compressive and the direct stress on the planes 
of maximum shearing stress. [Ans. (a) 210 N/mm2• 130 N/mm2, -80 N/mm: 

(b) - 110 N/mm2 ; -30 N/mm2] 

3'7. A circle of I 5 cm diameter is inscribed o n an aluminium plate beftre it . is 
stressed. The plate is then loaded so as to produce stresses as shown in Fig. 3·49 and the 
circle is deformed to an ellipse. Determine the maj)r and minor axis of the ellipse ahd their 
directions. Given E= 70 x 103N/mm2, 1/m = O· 33. 
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2 
CO N/mm (/\ 
~ 

I 

20N/mm
2 t 

100 N/mm
2 

Fig. 3"40 

2 
20 N/rnm 

2 
6.-0N/mrn 
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[Ans. Major axis 15'0195 cm 
Minor axis 15'0034 cm 

Major axis is itt an angle of 22° 30' to the direction of JOO N/mm2 stress] 

3·s. At a point in a strained material, 
the stresses on the pl::i.nes XY and XZ at an 
angle a as shown in Fig . 3·41 are +75 MN/m2 

normal stress, 50 MN/m~ shear stress on XY 
plane and - JOO MN/m2 normal stress and 
40 MN/m2 shear stress on XZ plane. 
Determine: 

(a) The angle between the planes XY 
and XZ. 

(b) Magnitude of maxi mum and mini
mum principal stresses. 

(c) The directions of pr incipal planes 
with respect to plane XY. 

X 

z 

-------50 MNjm2 

75 MN/m2 

Fig. 3'41 

y 

[Ans . (a) 86° (bJ - 108 MN/m2, + 89 MN/1112 (c) + 74° 30', - 15° 30']. 

3·9 Strains on an aluminium specimen in 3 directions 0°, 45°, 90° are recorded as 
follows : 

Eo=-1- 400 µ. cm/cm 
€4/= - 200 µ. cm/cm 
E90°=+200 µ. cm/cm. 

Determine the magnitude of principal strains, principal stresses and principal angles. 

Given E= 0·7 X 105 N/mm2, 1/m= 0'33 for aluminium. 
[Ans. 810 µ cm/cm, - 210 µ.cm /cm; 58'2 N/ mm2, 4·5 N/mm2, -38° 21', + 51° 39'] 

3·10. For a delta rosette, the following observations are made with the gauges mounted 
on a steel specimen. 
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e0= + 600 µ cm/cm 
E50°= - 200 µ Cffi/ Cm 

e12/= + 200 µ cm/cm. 

STRENG'f.H: OF MA'FERIALS 

Determine the principal strains, principal stresses and principal angles. Given 
E= 2 X 105 N/mm2, l /m=o·3 for steel. 

[Ans. 661'88 µ.cm /cm, - 261.88 µ.cm/cm, 128·2 N/ mm 2, -13·9 N /mm\ 15°, 105°] 

3·11. A brass rod of 20 mm diameter encased in a sheath is subjected to an axial 
thrust of 16 kN. The sheath raduces the lateral expansion to one-third of its value if free. 
Determine: 

(a) The pressure exerted by the sheath and 
(b) The longitudinal strain in the bar. 
Given E= 102,000 N/mm 2, l/m= 0·35 for brass. 

(Ans. J 8'28 N/ mm2, -o·0003738] 



4 
Relations Between Elastic Constants 

The deformations of a stressed body such as elongation, contraction, distortion etc., 
depend upon the values of its elastic constants. A bar having high Young's modulus of 
elasticity E will elongate much less under a tensile force in comparison to the elongation of a 
bar having low value of E. A block having high Modulus of rigidity G will distort much less 
under a shear force in comparison to the distortion of a block having low value of G. Similarly 

· a sphere having high value of bulk modulus K will have much less change in its volume under 
hydrostat ic pressure in comparison to the change in volume suffered by a sphere of low value 
of K. All these elastic constants including the Poisson's ratio 1 /m for a material remain 
constant if the material is stressed with in the elastic limit. 

These elastic constants can be determined experimentally and there is definite relation
ship between them. 

4·1. YOUNG'S MODULUS OF ELASTICITY AND POISSON'S RATIO 

To determine the values of E and 1 /m, a test piece of the material as shown in Fig. 4 · 1 
is tested under tension. To record the change in length 'SL and change in diameter oD, 
extensometers of high precision are used or the strain gauges (as discussed in last chapter) are 
fixed on the test piece so as to find 1.he axial strain (linear strain) and diameter strain (lateral 
strain). Tensile load P, vs. change in length 'SL or in other words!, stress (P/A) vs. strain, 
e (oL/L) is plotted as shown in Fig. 4· 1 (b). The slop of this curve i.e., the ratio f /1c is 
called Young's modulus of elasticity. 

Another graph between change in diameter oD and change in length 8L is plotted or 
in other words a graph between e ' lateral strain ('SD/D) and 1c, linear strain ('SL/L) is plotted 
as shown in Fig. 4'1 (c). The slope of this curve i.e., e'/e is called the Poisson's ratio of the 

Fig.4·1 

l~ 
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Strci,n 
( b) 

E 

Fig . 4·1 

£ 
0 
'
,/> 

.-; ,_ 
" 
.J 

STRENGTH OF MATERIALS 

-----·w•'"" ~ 

Linear strain 
(c) 

material. Please note that 8L/ L is positive a nd 'SD/D is negative because as the length 
gradually increases, diameter gradually decreases. .But Poisson's ratio is expressed only as a 
ratio arid no sign is attached with this. 

Example 4'1-1. A mild steel bar of 10 mm diameter and 100 mm gauge length is 
tested under tension. A tensile force of JO kN produces an extension of 0'060 mm while its 
diameter is reduced by o·OOJ8 mm. Deter mine 

Solution. 

Tensile force, 

Area of cross section, 

Stress, 

Change in length, 

Original length, 

Linear strain, 

Eand for mild steel. 
m 

P= IO kN 

A = ~ (10)2=78'54 mm2 
4 

f = _!_Q__!.N = 121·32 N/rnm2 
78'54 

8L= 0'060 mm 

L = lOO mm 

ta = 
0'060 = 0'0006 

100 

Young's modulus of elasticity, 

E- f 127'32 -212·2 103 kN/ 2 - -;-= 0·0006 - x mm 

Change in diameter, 8D= 0·0018 mm (reduction) 

Original diameter D, = IO mm 

Lateral strain, 

f9isson's ratio, 

e' = 
0·0018 

10 

_.!:__ _ 0'00018 - 0·3 
(11 - 9·900~ - ' 
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Exercise 4·1-1. A brass bar specimen of guage length 150 min and diameter 12 mm 
is tested under tension. A tensile forces of 14 kN produces an extension of 0"18 mm and 
its diameter is reduced by 0"0046 mm Determine the values of E and 1/m for brass. 

[Ans. 103· 15 X 103 N/mm2, 0"32] 

4·2. MODULUS OF RIGIDITY 

A round bar specimen as shown in Fig. 4.2 is fixed at one end and a twisting moment 
T is applied at the other end through a Torsion Testing Machine. _Keyways are provided on 
th~ ew.ts qf the spe9iroen so that specimen is firmly fixed iq the fixtures of the machine. 
'.flw ~ngJe of the rotation pf one end with respect to the fixed end i.e. , angle of twist e is conti-
111,19µsly r~r;ord~d _as t~e twisting moment T is grs.dually increased. . 

T = Res.isling twisting 
moment 

~eyway 
.__ ___ L 

Gauge l ength 

(a) 

T: Appliea tw, " ting 
moment 

Fig. 4·2 

-~ C .. 
E 
0 

~ 
[]l 

C 

-----~e 
Angular twisc 

(b) 

Within the el~stic . limit angular twist e is directly proportional to the applied twisting 
moment T. The relat1onsh1ps between shear stress q and T, between shear strain <f> and e are 
discussed in chapter 13 on Torsion. However, the expression for relations are given as below : 

16 T 
Shear stress, q= TCds 

where dis the diameter along the guage length of the specimen 

Shear strain, r/, = dO 
2L 

where L= gauge length of the specimen. 

limit. 

Modulus of rigidity is obtained by the ratio of -:- at any point within the elastic 

Modulus of rigidity, G= _!J_ = 32 TL 
"' n;d48 

~x?,µip\e 4'2-1. An aluminium specimen of gauge length 200 mm and diameter 25 
mm is. tested u11der t~mion. J:"- torque of J6'5 x 1~3• ~mm produces an angular .twist of0'2 
degree 111 the specimen. D!!termme the Modulus of ng1d1ty of aluminium. 

Solution. Torque, T= l6'5X 103 N/mm 
Gauge length, L= 200 mm 

Sp~cimien d:if!.!ll~ter, d= 25 mm 



tii. 

Angular twist, 

Modulus of rigidity, 

B=O·i0 

0"2 X 1t 
180 

STRENGTH OF MATERIALS 

re d" = 
900 

ra ian 

G 
32 TL 32X ]6"5 X 103 X200X900 

n:d48 - 1tX 254 X re 

= 24"65 x 1Q3 N/mmz. 

Exercise 4·2-1. A mild steel specimen for torsion tests has guage length 250 mm and 
diameter 25 mm. A torque of 52 Nm produces an angular twist of 0·25 degree. Determine 
the modulus of rigidity for mild steel. [Ans. 77·69 X 103 N/mm2] 

4·3. RELATION BETWEEN E AND G 

Consider a cube ABCD subjected to shear stress q at the top, while the bottom face is 
fixed. The cube is deformed as shown in the Fig. 4'3 (a) and at the same time a comple--
mentary shear q, at an angle of 90° to th~ applied shear stress is induced. The angle of shear 
r/,, within the elastic limit is very much less (much less than even 1 degree for most of the 
metals) and not so large as shown in Fig. 4·3 (a). Therefore, angle AB'D is taken as 45°. Due 
to the shear stress applied as shown in the figure, the diagonal DB is increased in length to DB' 
and the diagonal AC is reduced in length to A'C. 

Fig. 4·3 (a) 

Taking the sides of the cube as 6x= 6 11= I::,.. limiting to zero, we can consider that the 
stresses are acting at a point in a strained material. Mohr's stress circle can be drawn for this 
point, taking OP= + q an~ OQ= -q, the shear stresse~ acting O!]- the planes AB and BC, right 
angle to each other. W_1th_ 0 as the centre of Mohr s stre~s ~rrcle, the circle is drawn. From 
the diagram OR= +q= pnnc1pal ~tre~s Pi and OS= --:-- q=ynnc1pal stress p2• In other words 
diagonal DB is extended due to principal stress Pi which 1s equal to +q, a tensile stress. 

Change in the length, DB= DB' - DB 

Since angle i is very small DBet.DE where BE is perpendicular to the line DB'. 
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p 

,,r 

-q s 0 

Shear stress 

+q 

Normal 
s tre: s s 

R +q 

a. 
-q 

p ,Principal stte:ss = + q 
1 

p ,Principal stre:ss::-q 
2 

or change in length 

Fig. 4'3 (b) 

= EB'=BB' x cos 45°= !!.!!_ 
v2 

"• strain along DB 
Change in length 
Original length 

BB' BB' 
../2 DB = v 2\12 BC 

as DB is the diagonal of the square ABCD. 

or 

or 

or 

Strain along DB in terms of principal stresses 

Shear strain, 

1,= l!.1..._..J!:L _ .!L+ __g_ 
E mE - E mE 

1,= _!J_ ( I+ .l..)= BB' 
E m 2BC 

q(l + 1 /m) BB' 
E = 2BC 

BB' l>= -BC 

.!L( 1+ -1 )=1. 
E m 2 

!q_( l+ ~ )=E 

BB' 
2BC where DB= v12 BC 

but ..!L""" Shear stress - G mouulus of rigidity 
t/, Shear strain - ' 

or E= 2G ( l+ ~ )-
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ExaIDple 4'3-1. On a steel bar specimen of 15 mm diameter and 150 mm gauge 
length, when tested as a tensile test specimen, a force of 15 kN produce an extension of 0'063 
mm. When the specimen is tested under torsion, a twisting moment of 6 94 Nm produces an 
angular twist of o· 15 degree. Determine the Poisson's ratio for the material of the bar. 

or 

Solution. Diameter of the bar, 

d= 15 mm 

Arca of cross section, A= ~ (15)~ = 176·7 111111 2 
4 

P = l5 x 1000 N Tensile l_oad, 

Stress, . 

Extension, 

f
= 15000 

176
.
7 

84'89 N/mm2 

8£= 0'063 mm 

Strain, € = 3J: = 
0

·1~~
3 

= 0·00042 

Young's modulus of elasticity, 

E= _j_ - 84.89 - 202·1 103 N/ 2 
E o·00042 - x mm 

T = 6'94 Nm= 6940 Nmm Twisting moment, 

Angular twist, 

Gauge length, 

Modulus of rigidity, 

0'15 X 1C 

1 80 
ra.difln 

L = l50 mm 

G= 32 TL 
rcd4B 

32 X 6940 X 150 X 180 
n x J 54 x 0·15 x 1. 

As per the relationship between-Q. and E 

= 80·004 x 10a N/mm2 

( 
1 ) E 202' l X 103 · 

l+ m = 2G = 2 x 80'004 X 10ll=:= l'263 

Poisson' ratio -
1
- = 1 '263-1 =0'263. 

m 

• ,· .~ 1 ' . .. 

. , 

.., : : 

Exercise 4'3-1. A brass bar of · gauge . length ·100 mm and diameter 10 mm, when 
- subjected to a load of 400 kg extends by 0'024 mm. What will be angular twist produced in 

this bar by a twisting moment of 0·5 kg-m. The Poisson's. ratio for brass is 0'32. . 
[Ans. 0'363°] 

4·4. RELATION BETWEEN MODULV~ OF ELASTICIT)' AND BULK MODULUS K . .. 

Consider a rectangular block of dimensions :. l~ngtp L, llreadth Band depth D subjected 
to the three principal stresses p each in the direc~ipns 1, ·2 and 3 as-shown in the Fig. 4'4. ~· 
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Volume of the block, 

or 

V = LBD 

Taking the partial derivatives of V 
oV=LD oB+LB BD+ BD oL 

av 
V 

LDoB + LBcD + BDoL 
V V V 

cB · aD ?L = - - +-+ B D L 

Volumetric strain, 

€~=€1+<=3+ €2 
= sum of the strains along 

3 directions of co-ordinate 
axes. 

17S 

3 
p 

Fig 4·4 

When the rectangular block is subjected to volumetric stress pin each direction, this 
stress acts as principal stresses in 3 directions. 

Principal strains . 
p p p 

"1 = - - -- - -- contraction 
E mE mE 

-=2= .l!_ _ _f!_ _ _f!__ contraction 
E mE mE 

- p p p 
"~- y- mE - mE contraction 

Volumetric strain, -=•= ~ [ 1- ,! J reduction in volume 

Bulk modulus, K= _p-
3p [ 1- ; J 

pE 

or Modulus of elasticity. E= 3 K [ I-~ l· 
n1 ~ 

Example 4"4-1. What change in volume would a 20 cm cube of steel suffer at a depth 
of 4 km in sea w:ater ? 

Given E for steel= 2"05 x 106 kg/cm2 

_.!_ for steel= 0'29. 
m 

Solution. For steel, E = 2·os x 106 kg/cm2 
I . 

Poisson's ratio, -- = 0·29 
m 

Bulk modµlus ,- E 2~5 x l~ . 
K= -(- --2- ) = 30 _ 2 x 0.29) = 1·627 x 106 kg/cm2 

3 1--
m 



Depth of the cub:: in sea water, 

h=4 km=4 X 101 cm 

Density of sea water, w= t ·02 g/cm3,,_Q·00102 kg/cm3 

Hydrostatic pressure on cube, 

p = wh= O·OOI02 X 4 X 105= 4~8 kg/cm2 

Volumetric strain , - P 408 - 2·sos x 10-, Eu-y= )'627 X JQff -

Original volume of cu be, 

V= 203 = 8000 cm 3 

Change in volum ~, 

STR-,GTH Of MAl'iRIAlS 

Exercise 4'4-1. What c;1ange in volume a brass sphere of 10 cm diameter would suffer 
at a depth of 2 kilometer in sea wat'Cr. 

E for brass = 1000 tonnes/cm~ 

J_ for brass= o·32 m · 

Density of sea water = 1 ·02 X \03 kg/ms [Ans. o· J t 5 c.c.] 

Problem 4' I. Derive the relations hip between modulus of elasticity E, modulus of 
rigidity G and Bulk modulus K 

or 

or 

or 

Solution. We know)hat 

E= 2 G ( I+-
1 

) m . 

E= 3 K( 1- 2..), 
111 

E 2 
- = 2+ -
G m 

~ = 1-}_ 
3K m 

Adding the equations ( I ) and (2), we get 

E E 
cf+3K = 3 

3EK+ GE = 3 
3GK 

I 
where - is the Poisson's ratio 

m 

9GK 
E= 3K+ G 

... ( I') 

.. (2) 

Problem 4'2. At a point in a strained material the principal stress.es are Pt, P2 and 
p~; and the principal strains are E1 , E2 and E3• Show that the principal stress p1 is ~iven bf 

OI P +70 Et 
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where 
mE 

(m + l)(m- 2) 
Eo= Volumetric strain 
G= Modulus of rigidity 

1 p . ' . - = 01sson s ratio. 
m 

177 

In a certain test, the principal strains observed are 700, 1400 and - 1800 microstrain. 
Determine the three principal stresses. 

Given E=205 x 103 N/mm2 

and Poisson's ratio ...!_ = 0"28 . 

or 

or 

or 

or 

m 

Solution. The principal strains in terms of principal stresses are 

P1 P2 Ps 
" 1 =E- mE- mE 

e2= h.. - l!L - Pa 
E mE mE 

_ Pa Pi P2 
"s- y- mE - mE 

Volumetric strain, ev= E1+E2+ e3=( Pi+;2+Ps )( 1- ! ) 
mE 

Ev (m - 2)= Pi+ P2 + P3 

From equation (1) 

(p2+ P3)=( f1 
-E1 ) mE= Pi m-E1 mE 

Substituting the value in equation (4) 

But 

So 

mE 
' Eo. (m-2) = p1 + P1 m - EJ mE 

mE 
E• --

2 
+ E1 mE= Pi (I +m) m-

_e.,_ +E = &..( 1-l-m ) 
m-2 1 E m 

E=20( 1+ ~ )=2o(m:
1

) 

- ~ - + E = ( m+ l )x m _ .J!..L 
m-2 1 Pi m 2G(m+ I) - 2G 

2G Ev 
P1=--2- +20 Ei, m- again 2G-( E 1 ) - ,;r;.1 1+ -

m 
mE 

Pi= Ev. (m+ l)(m-- 2r+2G E1 

,= ex "11+2v "1· 

... (I) 

... (2) 

... (3) 

.. . (4) 



178 

where 

(b) 

mE CX = • 
(m + l )(m-2) 

E= 205 x 10s N/mm2 

-
1 

= 0'28 
m 

G 
205 X ]03 

2(1 + ~?) 

205 x 103 - 80·0 ios N/ ll 
2( l '28) - X !Jl~ 

E1 = 700 µ mm/mm, E2= 1400 µ mm/mm 

E3= - 1800 µ. mm/mm 

Ev= Ei+"2+E3= + 300 µ. mm/mm 

Em E 205 x 10s 

(m+ l)(m-2)= ( I +-1- ) (m- 2) = (I + 0·28) ( - 1 - 2 ) 
m • · 0'28 

cx= I01'94 X 103 N/mm2 

Principal stresses 

Pi= '1i 1:,+2G " 1 

= 101 '94 X 103X 300 X 10-6 +80 X 103 X 2 X 700X 10-o 
= 30'58+ Ll2 N/mm2= 142'58 N/ mm2 

p ~= r1- n+2G "2 

= 30'58+80 x 103 x 2 x 1400 x 10- 6= 30'5&+ 2~4 
= 254'58 N/mm2 

p3= CX 1:.+2G € 3 

= 30'58-80 x 103 x 2 x 1800 x 10- 6= 30'58-28& 
=-2:>7'42 N/mm2• 

.. 

Probletn 4·3. The materials A and B have the same bulk modulus, but the value of 
E for A is 2% greater than that for B. Find the value of G for the materia l A in terms of E 
and G for the material B. 

or 

or 

or 

Solution. Bulk modulus, 

Young's modulus, 

Now 

EA= l'02 En 

9GK 
E= G+ fK-

9 G,1 KA 
.PA GA+ 3 K . .' 

EA (GA + 3KA)= 9 GA ((A 

Similarly . . 

KA- __ EAGA_ 
- 9 GA- 3 EA 

Kn = EnGn 
9 Gn- 3 En 
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or 

or 

But 

But 

So 

KA = Kn 

EA GA En Gn 
9GA-3EA - 9Gn - 3En 

EA= 1·02 En 

(62 EB GA En X GiJ 
9 G,1 -3·06 EB 9 Gn - 3 En 

1·02 GA Gs 
3 G,1-1 ·02En - 3 Gn- En 

306 Gn En 
GA - 102 En-6Gn · 
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Problem 4··4. The determination of E and G for a particular thateria l gives ihe values 
as 208000 N/ mm2 and 80,000 N/ mm2 respectively. Calculate Poisson's ratio and bulk modulus. 

If both the moduli are liable t o an error of ±I%, find the maximum pfaceri.titge error 
in the derived value of Poisson's ratio . 

Solution. 

Poisson's ratio, 

£ = 208000 N/111 11,2 
G= 80,000 N/mm2 

I E 
-;j ==- 2G - 1 

208000 
= -2 X80000 - l = 0·3o 

Bulk modulus, K= E 208000 

3 ( l - ~ )= 3(1- 0'3 X2) 

= 173,333_N/mmz 

Now 
1 E m= 2G - l 

Error in the determination of E and G is ± 1 % 

So the maximum value of - 1- = 268000 
x l 'O L - l = 0'326 

m 2 X 80000 X 0'99 

The minimum value of 
1 208000 X 0·99 - l = 0.274 
m - 2X8000 X 1'01 

So Error in the calculation of _!_ = + 0·026 to -0·026, 
m 

% Error= ± 8·66. 

0·026· 
%Error = o-3 x 100 

p'robl~m 4'°5. A ste~l bar . 5 cm diameter, 1 metre _lo~g is s~pj'ected W an.fi~i~~ 
compressive lol!c\ of !O kN What will be the percentage _cha~ge m its ~olume ? \_\'hat change 
in volume would a 10 cm cube of steel suffer at a depth ot 5 kilometres m sea water 

E = 208,000 N/mm2 

G= 83,000 N/mm2 

Wt. Density of sea water= 1030 kg/m3
• 
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Solution. 

Poisson's ratio, 

Diameter of steel bar, 

Area of cross section, 

Compressive load, 

Axial compressive stress, 

Axial strain, 

Lateral strain, 

Volumetric strain, 

% change in volume 

Bulk modulus, 

£ = 208000 N/mm2 

G= 83000 N/mm2 

1 E m= 2G-l 

stitENotfl op MA iBR1Ats 

208000 
= 2 x 83000 J = 1 ·253 - 1 = 0·253 

d= 5 cm= 50 mm 

A - 2!.. x5oi= 1963'5 mm2 
- 4 

P= lO kN 

10 X 1000 . f - 1963.
5 

= 5·093 N1mm 2 (compressive) 

-5·093 
ea=- 208 000 

' 
0·253 X 5'093 

ED= + 208 000 
' 

ev=ea+2eD 

__ S-093 X 0·494 = 1.2 X l0- 6 
- 208,000 

= evX 100 
= 0'0012% (reduction) 

E 
K= 3 ( 1-..3__) 

m 

208000 _ . i 
= 3(1 _ 2 x 0.253) - 140350 87 N/mm 

Pressure at a depth of 5 km, p = wh-= 1030 x 5000 kg/m2 

= 5'15 kg/mm2= 50'47 N/mm2 

Volumetric strain, 
p 50·41 _ . _

5 Ev= y = 140350·87 _ 35 96 X 10 

Original volume, V= l03 = 1000 cm3 

Change in volume, dV= e0 X V 
= 3S-90 X 10- 6 X 103= 0·3596 ctt12. 

Problem 4'6. A small piston of area 150 mm2 compresses oil in a rigid container 
of 20,000 cm3• Wheo a weight of 90 N is gradually applied to the piston its movement is 
observed to be 27 mm. If a weight of 50 N falls from a height of 100 mm on to the 90 N 
load, determine the maximum pressure developed in the oil container. Neglect the effects of 
friction and loss of energy. 

Solution. Piston area, 
Original volume of oil, 

A= l50 mm2 

V-=20,000 cm3= 20 x 10s mma 
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Weight on piston, W=90 N 

Pressure on piston or on oil, p = {~o = 0"6 N/mm2 

Change in volume of the oil, av= 'i x V 

av= o·6 x;o x 10° 

Change in volume of the oil, 8V = Ax S 

So Bulk modulus, 

= piston area x piston displacement 

= 150x27=4050 mm3 
I 

K= 
0

·
6

~~~0x 
106 

= 2"963x 10s N/mm2 

Say the additional pressure developed on oil due to the falling load is p' N/mm2 

W',changeinvolumeoftheoil = { XV= 2~6{; 103 X20Xl06 

S', displacement of the piston 
3V' p' X 20 X l 06 _ , 

= A = 2"963X 103 X 150 - 45 P mm 

Strain energy absorbed by the oil 
p'~ p'i X 20 X 106 

= 2K X V= 2 X2"963 X 103 

Loss of Potential energy by the weight 

= W'(h+S') = 50(I00+ 45 p') 

= Strain energy absorbed by the oil. 

p'
2

x 2ox l.0
6 

5000+2250 p' 
2 X 2"963 X 103 

,
2 

2 X 2250 X 2"963 
p - 20,000 

p' 2 X5000 X2'963X 103= 0 
20 x 106 

p'~-0"666 p' -l '481 = 0 

, /0'666+ ..f (0"666) 2+ 4x l 481 
p= 2 --

0"666+ 2"5234 
2 

Maximum pressure developed in the oil container 

1·595 N/mm2 

= 0·6o+ l "595= 2·195 N/ mm 2 • 

' ' 18] 

Problem 4"7. A round bar IO mm in diameter and 100 mm long is tested in tension. 
It is observed that the longitudinal strain is 4 times the lateral strain. Calculate the modulus 
of rigidity and the bulk modulus if its elastic modulus is 200 G Pu. Find the change in volume 
when the bar is subjected to a hydrostatic pressure of 100 MP,,. 
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Solution. Longitudinal strain = 4 X lateral strain 

Poisson's ratio, 

Young's modulus, 

Modulus of rigidity, 

Bulk modulus, 

p, hydrostatic pressure 
Bulk modulus, 

Volumetric strain, 

Change in volume, 

1 Lateral strarn = O·is 
m Longitudin·a1 strain 

E= 200 G Pa 

G - . ___ E _ .. - 200 X 10
9 

P u = 80 G Pa 
l 2 (1 ·25) 

2 ( 1 +- ~ ml 

K= E = 200 G P a = 133'33 G Pa 

3 ( I - ~ ) 3 (l-0·5) 

I Pa= l Pascal= I N/m2 

M P .. = 10" N/ m 2= L N/mm 2 

= !OJ M P ,.= lOOx 106 N/mi= lOO N/mm2 
K= 133'33 G Pa 

= 133.33X 10° N/m2= 133 33 x ]03 N/mmt 
p 100 

€·=·K = 133'33 X 103 o·75 X rn-a 

8V= ev. V= 0'75 X 10- 3 x : (10)2X 100 

= 5'89 mm3 

Problem 4·8. The modulus of rigidity of a material is 380 tonnes/cma. A l'O mm 
diameter rod of the material is subjected to an axial tensile force of 500 kg and the change in 
its diameter is observed to be 0·0002 cm. Calculate the Poisson's ratio and modulus of 
elasticity of the material. 

Solution. Modulus of rigidity, 

Diameter, 
Tensile force 

Tensile stress, 

Change in diameter, 

Lateral strain, 

Say (axial) linear stra~:fr 
Young' s modulus 

Axial strain, 

Lateral strain , 

G= 380 x 1000 kg/cm2 

d= 1 cm 
= 500 kg 

500 x 4 
f = TC X(l)2 

8d= 0'0002 cm 

2000 
-- kg/cm2 

TC 

e'= O'OOOl = 0·0002 
l 

=E 
2000 

"=Tx .E 

~ E
1 = _!__ , E = 

2002.. = 0'0002 
m wE m 

G= - -E- = 380 X 1000 
2+-2_ 

m 

... (1) 

) ; ' ... l2). 
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or 

From equation (I), 

From equation (2), 

So 

E= 2000 
n X m X 0'00022... 

E= 3t0 X 1000( 2+ -1_ ) 
111 

2000 = 380 X 1000 ( 2+2) 
rem x 0·0002 m 

~1 [ lOrtOO ]=[ 1+ ,!1 ][ 760 J 
-

1 
[3183 '1-760]= 760 

m 

Pois son's ratio, 

Young's modulus, 

760 
m= 2423:-i-

_ _!_ = 0· 31)6 
m 

I 2000 _ . 
2 E = - X O 0002 - 998 2 X 1000 kg/cm . 

m rc x · 

SUMMARY 

J. In a tens ile test performed on a bar of diameter d and gauge length L , a force p 
ptoducing, change in length oL and change in diameter - 8d. 

fEI 
. . 4P L 

Young's modu.Jus o ast1c1ty, E = rcd2 X oL 
1 od L 

Poisson's ratio, m = c( X 8£ · 

2. In a Torsion test performed on a bar of dia meter d and gauge length L subjected t o 
twisting moment T producing the angular twist (} 

Modulus of rigidity, G= -
3
rr~-.,_~L. 

3. E= 2G I+ _!_\ 
m ' 

4. E= 3K ( I - -
2 

-) where K is the Bulk Modulus. 
\ m 

MUL ':PPL~ CHOICE QUESTIONS 

I. The modulus of elasticity for a material 208 x I 03 N/ m m2 and its Poisson's ratio 
is o·J. The modulus of rigidity for the material is 
(a) 160 x 103 N/ mm2 (b) l04 x [03 N/ mm2 
(c) 80 x 103 N/mm~ (d) None of the above. 

2. For a material, the value of Bulk JT\Odulus is 170 x I 03 N/ mm2 and the Poisson's ratio 
is o·J. The Young's modulus of elasticity for the material is 
(a) 200 X 103 N /mm2 (b) 204 x 103 N/ 1111112 
\c) 208 x 103 N/mm2 (d) 212 x )03 N/ mm2, 
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3. For a material E = IOOO x 108 N/mm2 G=375x 103 N/mm2• The value of its Poisson'i 
ratio is 
(a) 0·25 
(c) 0·33 

(b) 0'30 
(d) 0'35. 

4. For a material when tested within the elastic limit, the value of Poisson's 
When the same materia l is tested in the plastic stage, its Poisson's ratio 
stage will be 
(a) 0·35 
(c) 0·5 

(b) 0'4 
(d) 0'6. 

5. The ratio of Young's modulus E and modulus of rigidity G is given by-

(a) I+ -1 
(b) 2( 1-_!_) 

n1 ni 

(c) 3 ( I -
1
~
1
-) (d) 2 ( I+ ~

1
- ) 

where -
1- is the Poisson 's rat io of the material. 

m 

ratio is 0'35. 
in the plastic 

6. The r , io of Young's modulus of Elasticity E and Bulk modulus K for a material is 
given by 

(a)2( 1+,;t) (b)3( 1-;) 

(c) 3 ( I -
1

- ) (d) None of the above. 
Ill 

7. The value of Young's modulus E i11 terms of modulus of rigidity G and Bulk modulus K is 
9KG 9 GK 

(a) K+G (b) K-t-3G 

(d) None of the above. 

8. The principal strains at a point are +800 µ. cm/cm, + 400 µ cm/cm and -1200 µ. cm/cm. 
The volumetric strain will be -
(a) 2400 µ. cm/cm 
(c) 1600 µ.cm / cm 

(b) - 2400 µ. cm/cm 
(cl) o·o µ. cm/cm . 

9. A body 1s subjected to a hydrostat ic pressure of 100 N / mm2 • Young's modulus for the 
material is IOO X 1000 N / mm2 :1nd Po isson's ratio is 0'33. The volumetric strain on the 
b ody is 
(a) 340 µ. cm/cm (b) 680 µ cm/cm 

(c) 1020 µ cm/cm (d) o·o cm/cm. 
10. Which of the fo llowing materials has the value of Poisson's ratio approximately equal to 

0 '33-
(a) Cast iron 
(c) High carbon steel 

l. (c) 

9. (b) 
2. (b) 
7. (c) 

(b) Aluminium 
(d) Glass. 

ANSWERS 

3. (c) 

8. (d) 
4. (c) 

9. \C) 
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EXERCISES 

4·1. Express the value of Poisson's ratio 1 /m in terms of the modulus of rigidity. G and 
Bulk modulus, K. 

[ 
1 3K-2G J 

Ans. ;;= 6K+ 2G-

4·2. At a point in a strained material, the principal stresses are p1, p2 and p3, while 
the principal strains are e-1, e-2 and e-3 respectively. Show that 

w~ere 

Principal stress, p 1=2G [{3. e-o+E1] 

G= modulus of rigidity 

1 
{3=-' m-2 

1 p . ' . - = 01sson s ratio 
m 

The principal strains observed are 

e-1=+800 µ. cm/cm, e-2=+600 µ. cm/cm, 

e-3= -500 µ. cm/cm . 

Determine the principal stresses at the point. 

Given G= 380 tonnes/cm2 and J /m = 0'32. 

[Ans. 1216, 1064. 228 kg/cm2] 

4'3. The two ma~eria_ls A and B have the same modulus of rigidity but the value o f E 
(Young's m odulus) for A 1s 5% greater than that for B. Find t he value of Bul k modulus K 
for the material A in terms of E and K for the materia l B. 

[ Ans. 7 Es Kn J 
7 Es- 3 Kn 

4'4. The determination of modulus of elasticity and modulus of rigidity for a 
particular material gives the values as 1000 tonnes/cm2 and 380 tonnes/cm2 respectively . 
Calculate Poisson's ratio and Bulk modulus for the materia l. 

If both the moduli are liable to have an error of ± 0·5 %, find the maximum 
percentage error in the derived value of Poisson's ratio. 

[Ans. 0'316, 679·35 tonnes/cm2; 4· 1 !fo] 

4'5. A bar of steel 100 cm long, 2 cm diameter is subjected to an axial compressive 
force of 2 tonnes. Determine the percentage change in volume. 

What will be the change in volume of a spherical steel ball 10 cm in diameter when 
submerged in sea water to a depth of 5 kilometers ? 

Given E for steel= 2 100 tonnes/cm2 

G for steel = 820 tonnes/cm2 

V{ei?ht densitr of sea water = 9·00105 k~/cm3• fAns. 1·33 x 10- 3 ~. 0·173 cma~ 
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4·6. A small piston of area l '2 cm2 compresses oil in a rigid container of 15000 cm3
, 

when a weight of 12 kg is gradually applied to the piston. 

Now a weight of 5 kg falls from a height of 15 cm on to the 12 kg load. Determine 
the maximum pressure developed in the oil containter. Neglect the effects of friction and loss 
of energy. 

K for oil=35000 kg/cm2 · [Ans. 33·33 kg/cm2
] 

4·7. A round bar 16 mm in diameter and 150 mm long is tested in temion. It is 
observed that the ratio ot lateral strain to longitudinal strain is 0'32. Calculate the modulus 
of rigidity and Bulk modulus if its Young's modulus of elasticity is 100 GP u. Find the change 
in volume when the bar' is subjected to a hydrostatic pressure of 80 MPa. 

[Ans. 37'88 GP(I, 92'59 GP.; 26'06 mm3] 

4'8. The modulus of rigidity of a material is 78 x 1000 N/mm2• A 15 mm diameter rod 
of the material is subjected to an axial tensile force of 10 kN and the change in its diameter is 
observed to be 0'00126 mm. Calculate the Poissons's ratio and modulus of elasticity of the 
material. [Ans. 0·3, 202'1 x 103 N/ mm2] 



5 
Thin Cylindrical and Spherical She11s 

The thin cylindrical shell when subjected to internal fluid pressure or gas pressure, 
circumferential and axial stresses are developed in its wall. If the ratio of thickness t and 
diameter D i.e., t /D is less than o·os, it can be assumed with sufficient accuracy that the hoop 
stress and the axial stress are constant throughout the thickness of the cylinder wall and such 
a cylinder is classified as a thin cylinder. Similarly in the case of thin spherical shells, hoop 
stress or circumferential stress is developed in its wall and this stress is assumed to be constant 
throughout the thickness. 

5·1. STRESSES IN THIN CYLINDERS 

When the pressure inside the cylinder is developed, the volume of the liquid or gas 
pumped inside the cylinder is more than the initial volume of the cylinder. This additional 
volume of the liquid or gas will exer t pressure on the cylinder wall which increases the volume 
of the cylinder and in turn cylinder wall offers equal resistance and compresses the liquid or 
gas inside the cylinder a s shown in Fig. S- J. 

where 

(y l ,n df r 

Mathematically it can' be written 
8V=8V1+8V2 

Fig. 5·1 

8V=additional volume of liquid pumped inside the cylinder 
8V1 =increase in the volume of the cylinder 

8V2 =decrease in the volume of liquid or gas . 
On any element of the cylinder, three stresses orthogonal to each other are acting as 

shown in Fig. 5·2. 
fc=circumferential stress 
Ja=axial stress 
p=radial pressure 

pa=atmospheric pressure on outer surface. 

187 



188 STRENGTH OF MATERIALS 

The Fig. S-3 shows a thin cyiindet subjected to internal pressure p. The internal 
diameter is D and length is I. 

f CJ'I -lttt:~~F plato 

~r '1 
Fig. 5·2 

Considering the axial bursting force 
tending to break the cylinder along the 
circumference as shown in Fig. S-4. 

Axial bursting force, Pa=p x : DZ 

p 

Area of cross section resisting the axial bursting force 
=rcDc 

Say axial stress developed = /u 

Then for equilibrium 

1C f a . rcDt = p X 4 DZ 

fa = pD 
4t 

To determine the bursting force along 
a diameter, tending to break the cylinder 
along its length, consider a small length di 
of the cylinder and an elementary area dA as 
shown in the Fig. s·s. 

Pressure on the inner surface 
= p 

8F, Force on elementary area 
= pdA= p Rd0 di 

D 
= p 2 dedI 

Vertical component of dF= p i di. sin 6. dB 

Horizontal component of dF 
D 

- p 2 di . cos 8 . d8 

Fig. 5·3 

Fig. 5·4 

Fig. 5·5 

. .. (1) 
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The horizontal component of the force is cancelled out when the force is integrated 
over the semi circular portion. 

Therefore total diametral bursti.ng fore~, 
r; 

PD= r p ~ dl. siii 6 d9 

0 

* 
_ Pf dl I-cos 8 j 

0 

= pD dl= p X projected area of the curved surface 

Area of cross section resisting the diametral busting force 
=2X d[ X t 

Say circumferential stress developed 

f, 
For equilibrium f• x 2t x dl= pD di 

pD 
/c = 2f ... (2) 

The circumferential stress/. and axial stress J., are quite large in comparison to the 
radial stress p, therefore, in the calculation of strains the radial stress p is not considered. 

Circumferential strain, e:.= 1 - ! t 
where E= Young's modulus of elasticity of the material 

d 1 p . , . an -= b1sson s rat10 
m 

pD pl) e:c=------
' 2/E 4mtE 

=-1!.!2_( 2- _l ) 
4tE m 

= diameteral strain 

Change in diameter, SD = ec X D 

pD2 ( 1 ) 
= 4tE 2- -;;-

Axial strain, 
fa Jc 

Ea= y - mE 

_ pD _ _PE_ _ pD ( l - _! ) 
- 4tE 2mtE - 4tE m 

Change in length, 6/= ea X L 

__ pDI(· l-.1_) 
- 4IE m ' 

... (3) 

... (4) 

... (5) 

... (6) 



Volumetric strain Final volume- Initial volume 
Initial volume 

rc/4 (D+8D)2 (1+81)- rc/4 D2l 
- rc/4 D2l 

StkENGTH OF MATERlALS 

= 2
~ + ~I (neglecting higher order terms of 8D and 8!) 

=2 Ee+Ea 

= 2pD ( 2 __ 1 )+-1!!!._( 1_2) 
4tE m 4tE m 

= ..J!.!2_ ( 5- _i_ ) 
4tE m. ... (7) 

Change in volume of the cylinder, 

oV = pDV 1 5- __±_) 
1 4tE \ m 

where Vis the initial volume of cylinder 

= rcpD3/ ( 5_..±_ '\ 
16tE m I ... (8) 

Change in volume of liquid, 

8V9= L X V= _n_ XpD2/ 
~ K 4K 

where K is the bulk modulus of the liquid. 

Example s·t-1. A closed cylindrical vessel made of steel plate 4 mm thick with plane 
ends carries fluid under a pressure of 30 kg/cm2• The diameter of the cylinder is 25 cm and 
length is 75 cm,-calculate the longitudinal and hoop stresses in the cylinder wall and determine 
the change in diameter, length and,volume of the cylinder. 

t · .. 1 

£ = 2100 tonnes/cm2 

..l. = 0'286. 
m 

fiiolution. Internal pressure 

Diameter, 
Wall thickness, 

Length 

p=30 kg/cm2 

D==25 cm 
t= 0'4 cm 

/= 75 cm 

Longitudinal or axial stress, 

pD · 30 x 5 
fa = 4,= 4 X 0.4 = 468 '75 kg/cm2 

Hoop or circumferential stress, 

J. = pD - 30 x 25 937·5 'kg/cmz 
C 2( - 2~0'4 
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Cha nge in diameter, 8D= pD
2 

( 2- L) 
4tE m 

30 X 25 X 25 
(2- 0·286)=0 ·01 cm 

= 4 x 0·4 x 2lOO x lOOO 

Change in length, ~l= pDl( 1-2.) 
4tE n; 

30 X 25 X 75 
4 X 0·4 X 2100 X 1000 ( l - 2 X 0'286 1 

= 0"007165 cm 

Change in volume-, oV= ::_PD3f ( 5- ~ ) 
16tE m 

~ x30 x 25 3 x 75 . _ . 
3 16 x 0·4 x 21oo x iooo (5 - 4 x O 286) - 31 68 cm . 

Example s·t-2. A thin cylindrical shell made of copper plate 5 mm thick is filled 
with water under a pressure of 4 N /mm2• The internal diameter of the cylinder is 200 mm 
and its length is o·s m. Determine the additiona l volume of the water pumped inside the 
cylinder to develop the required pressure. 

l 
m 

E copper= 104,000 N/ mm2 

for copper = 0'32 

K for water = 2 100 N / mm 2• 

Solution. Dia meter o f the cylinder, 

D= 200 mm 

Length of the cylinder, 1= 800 mm 

Wall thickness 

Pressure 

t= 5 mm 

p= 4 N/1111112 

Initial volume of t he cylinder , 

V:-:, : D-J/= ; X (200)2 X 800 

= 2S"l328 X 106 mms 

Volumetric strain, 1:, = ..E2-.( 5-~) 
4tE m 

4 x 200 
= 4 X 5 X 104,000 (5 - 4 X 0'32) = l '430 X 10-s 

Change in volume of the cylinder, 
8V1 = 1:,, XV= l"430 x 10- 3 X 25"1328 x 106 

= 35"94 x )03 mms 

Say the compression in the volume of water , 
. = o~ 



Then total volume of water, 
V'= V+W1 +8V2. 

This has been compressed to V+8V1 

So 8V2=...£_ XV' 
K 

= 
2 

too X (25' 1328 X 106+ 35'94 X 103 + ~Vi) 

= 
2

~
0 

(25' 16874 X 106 + 8V2 ) 

8V2=48'03 x 103 mm3 

Additional volume of water pumped in, 
8V=8V1 +8V2 =(35'94 + 48'03) x I 03 

= g3·97 x I 03 mm3. 

Exercise' 5·1-1. A thin cyl indrical shell made of copper plate is subjected to an 
internal fluid pressblre of 3 N/mm2• The wall thickness is 2·5 mm, diametei; of the cylinder 
is l;§(i) mm and length o·s m .. Determine (i) axial stress Ui) h,oop stress (iii) cha.rig~ i_i.1 diamet~1\ 
length· and v.olume. · 

E for copper = 104,000 N/mm 2 

1/m for copper=0'32. 
[Ans. 45 N/mm2 (ii) 90 N/ inm3 (iii) 0·109 mm, 0'1246 mm, 22755'5 mm3] 

Exercise 5·1·2. A thin cylindrical shell made of steel plate is 3··~ mm thick and is 
filled with oil under a pressure of 50 kg/cm2• The internal diameter of cylinder is 17·5 cm 
and its length is 60 cm. Determine the modulus of compressibility of oil· if the total volume 
of oil filled in the cylinder i3 14482 cm3. 

E for steel= 2100 tonnes/cm2 

1/m for steel= 0'28. f Ans. 25000 kg/cm2] 

s·2. THIN SPHERICAL SHELLS 

A thin spherical shell of internal diameter I) a.nd waH thickness t subjected to an 
internal fluid pressure p is shown in F ig. 5'6. Due to the bursting force,. th~ ~Ph.erici;t:l. shell is 

I 

th.i c; kness 

going to fail along the circumferential area as sh.own i·u the fig.ui;e-breaking into two hemis
spheres. Diametral burstfn'g force, 

Po=px projected a're'a of die-hemisphere 

X re D2 = p 4 
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Area of cross section resisting the bursting 'f.oFce 
= n Dt 

Say the circumferential stress developed 

=Jc 

For equilibrium, 
ff 

/ctcDt=p X 4 1)2 

pD 
Jc= 41· 

The stresses acting on an element of 
the spherical shell are shown in Fig. s·7. 
Where pa is the a tmospheri c pressure on the 
outer surface and p is the radial pressure on 
the inner surface. Since the value of p is very 
sma:11 in cornpa'.rison to the 'v1alue of J. , its effect 
on the calc'ufation of diametral strain is not 
considered. 

Circumferential strain, 

E,=f~_J2.._ =_pD(l--1) 
E mE 4tE m 

= Diametral strain 

V, 1nitial volume of shell = nf3 

Fig. 5·7 

If 8D is the change in ctiameter due top then final volume of shell 

Volumetric strain, 

Change in volume, 

'It . 
= 6 W+oD) 3 

TC ff 6 (D+oD)3- 6 Da 
Eo=--------

rcD3 
6 . ~ . 

c 
3
tD (neglecting hi gher order· terms of oD). 

= 3 x diametral strain 

= 4pD ( 1 _ .J..:) 
4tE m · 

( 1--1 ) 
m i 

= rcpD4 ( 1- _!_). 
8tE m 

I 

. 1• . 

. .. (9) 

I 

.. . (10) 

. .. (11) 

. _ Exam.p~e 5·2-1. A th(n .spher!cal sh.ell of wall th_ickncss 4 '!'m and ?iameter 30 cm is 
subJected to an internal pressure 'p. Detcrmmc the magnitude of p ,f the d1ametral strain is 
1 (I 

2000· 
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or 

E= 205,000 N/mm2 

-
1 

= 0·3. 
m 

Solution, Internal diameter, 

D = 300 mm 
Wall thickness, t= 4 mm 

l pD ( 1 ) Diametral strain, Ee= 
2000 

= 
41

E 1- m 

1 p x 300 
2000 = 4 X 4 X 205,000 (1 - 0·3) 

p = 7·81 N/mm2. 

STRENGTH OF MATERIALS 

I i p' 

Exercise 5·2-1. A thin spherical shell of wall thickness 5 mm, and diameter 30 cm is 
subjected to an internal pressure of 50 kg/cm2. D etermine (a) hoop stress (b) diametral ·~train 
(c) volumetric strain. ' 

Given E= LOSO tonnes/cm2 

_!_ =0'32. [Ans. ( a) 750 kg/cm2 (b) 0'472 x 10-a (c) 1 ·4 I 6 X 10-sJ 
m 

5'3. CYLINDRICAL SHELL WITH HEMI·SPHERICAL ENDS 

A thin cylindrical shell with hemispherica l ends as shown in Fig. S-8, is subjepted to 
internal fluid pressure p. 

---- --• -------r---
/ t y f +p ', 
-, P o I'' } ---, ' l I ,.1· I P --v -- _r _ _ __ L __ _ t_ ___ _ _ 

'---------·--- - - ------
Fig. 5·8 

The internal di ameter of the cylinder, 

Wall thickness of cylindrical portion, 

Wall thickness of hemi spherical portion, 

Circumferential stress developed in 

Cylindrical portion, 

Axial stress in cylindrical portion, 

= D 

Circµmf~rential strain in cylindrical portion, = ~ 1 
- ~~ 
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or 

Circumferential stress developed in hemispherical portion 

' pD 
/.2= 4!2 

Circumferential strain in hemispherical portion, 

Eo2= ·J:R._( 1-_!_ ) 
4t2E m 

Now for no distortion of the junction under pressure, 

pD ( 1 ) pD ( 1 ) 
4t

1 
E 2-"""in = 4t

2
E l-m 

1- -1 
t 2 m 
-=---
t1 2-_!_ 

m 

... (12) 

For maximum stress to be the rnme in both cylindrical and hemispherical portions 

fc1= fc2 

or .. . (13) 

Example 5 '3-1 . A thin cylindrical steel shell of diameter J 50 111111 and wall thickness 
3 mm has hemispherical ends. Determine the thickness of hemispherical ends, if there is no 
distortion of the juoction under pressure. 

Estee1= 208qoo N/mm2 

-1 = 0·3. 
m 

Solution. Thickness of cylindrical portion, 
t1 = 3 mm 

Thickness of hemispherical ends= t2 

For no distortion of the junction under pressure, 

1-_!_ 
t2 _ m 1- 0·3 
ti - 2- 1 = 2-0·3 

m 

0'7 
!2= n x 3. 

Thickness of hemispherical ends= 1 ·235 mm. 

Exercise 5'3-1. A thin cylindrical shell with hemispherical ends is of diameter 
2 metres. It is subjected to an internal pressure of 4·5 N/ mm2• Determine the thickness of 
cylindrical and hemispherical portions if the maximum a llowable stress is 90·0 N/mm2• 

[Ans. 50 mm, 2S mm] 
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5'4. WIRE WINDING OF THIN CYLINDERS 

We have observed in the. previous ariticles that the hoop stress developed in a thin 
cylinder is twice the axial stress and therefore, the chances of bursting the cylinder longi
tudinally are more than those for circumferential .failure of the cylinder. Thus to increase 
the pressure-carrying capacity of the cylinder and t o reduce the chances of longitudinal burst, 
the cylinder is strengthened longitudinally. 

In order to achieve the above objective, the cylinder is wound with layers of wire kep1 
under tension. In other words the cylinder wall is put under diametral compression, initially. 
When this wire wound cylinder is subjected to internal pressure, farther hoop stress developed in 

(; I 

1 4 
t ! fc 
VI 

' I 

( 

Fig. 5·9 

the cylinder and wire is tensile. The resultant hoop stress in the cylinder is the sum of the initia 
compressive stress due to wire winding and further tensile stress du~ to internal pressure. Th, 
resultant hoop stress in the wire is the sum of two tensile stresses developed due t, 
wire winding under tension and interna l pressure in the cylinder. Thus the pressure-carryin, 
capacity of the cylinder is increased. 

Consider a thin cylinder of diameter D, wall thickness t wound with a single layer c 
wire of diameter d. The wire is wound with an initial tf; \lSion f w, 

or 

Number of turns of wire per unit length, n= 1/d 

Say f• is the compressive circumferential stress developed in the cylinder. 

Tensile force exerted by wire per unit length, 

Tt 
= 2n X - d 2 f w 

4 

Compressive force developed in the cylinder, 
= 2fo X t 

For equilibrium, 
,; 

2fe. t = 2 , n .4 d2 fw 

(putting the value of n) 
I 

... (l· 
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Now when the wire wound cylinder is subjected to internal ·pressure P,. say the axial 
and circumferential stresses developed in the cylinder areJ,/ and// and the stress developed 
in wire is Jul. 

or 

or 

Longitudinai bursting force 
Tt . = p X · Di 
4 

=fa' X rcDt (for equilibrium) 

l •'= pD 
4t · 

Diametral bursting force per unit length, 
= p XD X 1 

'It 
-f.' x 2x t+J,.,,' x 2n x 4 d2 

pD=f, 'X 2t+Jw' 1r; 
Moreover the circumferential strain in the cylinder 

... (15) 

(fur equilibrium) 

.· ... ,(16) 

= circumferential strain in wire 

If 

Then 

B,= Young's modulus for cylinder 
Ew= Young's modulus for wire 

- 1- = Poisson's ratio for cylinder 
m 

Jc' pD _ fw' 
-E-;-- 4tmE - Ew · 

(for compatibility) 

... (17) 

From the equations ( 16) and (l 7) stresses Jc' and /w' can be determined. 

Resultant stress in wire 

Resultant hoop stress in cylinder=J.'-/c ... (18) 

Example 5'4-1. A thin cylindrical shell of diameter 30 cm is closely wound 
around its circumference by a 2 mm diameter steel wire under a tension of 800 kg/cm2. The 
cylinder is further subjected to an internal pressure of 20 kg/cm2• Determine the wall thickness 
of the cylinder if the resultant hoop stress in the ·cyljnder wall is 200 kg/cmi (Tensile) and the 
cylinder is made of copper. 

E for copper 
1/m for, copper 
E for steel 

= 1050 tonnes/cm2 
= 0·31 
= 2100 tonnes/cm2. 

Solution. Initial tension in wire, 

Diameter of the cylinder, 
Wall th_ickness-, 

/..,= 800 kg/cm~ 
D= 30 cm 

t =? 
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. ·ab.a 

where 

or 

STRENGTH OF MATERIALS 

Internal pressure, p = 20 kg/cm2 

Wire diameter, d = 0·2 cm. 

f., initial hoop compression in cylinder 

nd nx o·2 
=41 XJ10= 4 Xt X800 

125"6 
= -- kg/cmi 

1 

Due to internal pressure, axial stress developed in the cylinder , 

Now 

So 

Moreover 

From (2) 

J, 
,_ pD _ 20 X 30 150 

· " - 4/ - 4t t 

pD= ;d J10'+2fc'. t 

f.,,' f,' l fa ' 
E 10= E~-~ E0 

Jc' hoop stress in cylinder 
f 10' hoop stress in wire 
Ew Young's modulus for wire 
E, Young's modulus for cylinder 

1/m Poisson's ratio for cylinder 

20 X 30= rt Xi°"2 XJ,/ + 2Jc' . t. 

J,v' J,' 0. 
31 

1 so 
2100 X 1000 = 1050 X 1000 - X t X 1050 X 1000 

Jc' - Jo= 200 

Jc'- 125·6 = 200. 
. t 

Jw'= 2 [ Jc'- 4~·5 J 
Substituting in equation (1) 

60') = 0·3t4 x 2[ Jc'-
4

~·
5 

] + 2/c'. t 

But fe'=( 200+ 1;5·6) 

Substituting above 

• I 

600= 0'628 [200+ 
1
~

5
·
6 

-
4

~·
5 

]+2{200+ 
1
;

5
'
6

] 

400 t 2-348"8 t+ 49.615= 0 
t= 0·693 cm. 

'I 

. .. (1 ) 

... (2) 

. .. (3) 

'.txerdse 5'4-1. A thin cylindrical shell of internal diameter 40 cm and wa1i thickness 
10 mm is closely wound around its circumference by a 3 mm diameter steel wire under an 
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initial tens ion of JO N/ mm2• The cylmder is further subjected to nn internal pressure of 2·4 
N/ mm2• Determine the resultant hoop stress developed in the cyl inder and the wire. The 
cylinder is also made of steel. 

E sreet= 208,000 N/ mm2 

I / 111 for steel = 0" 30. f An!<i,. 37"864 N / mm~, 43·02 N/ mm2] 

Problem s ·t. A stea m boiler 150 c m interna l dia meter is subjected to an internal 
pressure of 12 kg/cm~. What will be the tl.! nsion in the b 1J ilcr per linear cm of the longitudina l 
joint in the boiler sh ell. Calculnte the thickness of the p late if the maximum tensile stress in 
the plate section is not t0 exceed 1000 kg/cm2, taki ng the eflkiency of the longitudinal riveted 
joint as 75% . 

Solution. Interna l diameter of bo iler shell, 

D = l 50 cm 
Wa ll thickness, t = ? 

lnternal pressure, p = 12 kg/cm! 
Circumferential stress developed, 

I' pD _ 150 x J 2 =- 900 kg/cm2 
J c = 2t - 2 X t t 

pD 12 X 150 
Axial stress developed ,/11= 41-= 

4
X t 

= 4
-~ kg/cm2• 
t 

Tension in the boi ler per l int'ar c m of the longitud inal joint 

= /eX 21 X I 

900 
= 1 -- X 2t X I = 1800 kg. 

E ffici ency of the longitudina l jo int = 75% 

Therefore a llowable circum ferential stress 
= 0·75 x 1000 = 750 kg/cm2 

900 7~0 1·2 - -- = :, or / = crn t . 

Problem s·2. A cylindrical tank 2 m inside d iameter and 20 m high is fi lled with water 
of specific weight 10000 N/ m 3• The material of the tank is a structural steel with a yield 
strength of 250 N / mm2 • • What is t he necessary thickness at the bottom of the steel tank, if the 
efficiency of the longitudinal seam is 80% ? Take factor of safety as 4. 

Solution. Weight density, 

T 
.. ." ' 

w= I 0000 N/m3 \ 
p 

I 
or w= 10-s N/ mm3 

~ I 
The hydrostatic pressure at the bottom h 

of the tank I --v' p= wh 
l 

J 
= 10- 5 X 20 X 1000 N 

t.. ~ . . ...... -·-·--· -

= 0·2 N/mm2 Fig. s. io 
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or 

Diameter of the tank, D=2000 mm 
Yield strength of the material 

= 250 N/ mm2 

Allowable stress in the materi al 
250 

= -
4
-=62·5 N/mrn2 

Efficiency of the longitudina l seam, '1) = 0·8 
Allowable stress in the joint 

= O·Sx62'5= 50 N/rnrn2 

Now the maximum stress developed 

= Hoop stress= pD 
2t 

< 50 N/111111 2 

50 _ 0·2 x 2000 
2 :x t 

400 or t = ---
2X50 

Thickness of the steel tank at the bottom= 4 mm 

:STRENGTH .O,.F MAil'.ERIAllS 

Problem 5·3, To what depth would a copper fl oai '30 cm 'in diameter and , 31 mm thick 
has to be sunk in sea water in order that its diameter is decreased by 0·003 cm_? 

E for copper= 1050 tonnes/cm2 

J_ for copper ==f' 0 '32 
111 

Density of sea water= l 025 kg/m3 

Solution. 

w, density of water = 1025 kg/m3= I 025 x I 0-,6 :kg/ems 

Say depth through which float is sunk= h cm · 
' ' 

Pressure on the float, p= wh 
= 1025 x 10-~x h kg/cm2 

Diameter of float, D= 30 cm 
. ;wall thi~,R~e'ss, t= 0·3 cm 

C. r . ' pD 
1rcum1erent1al stress,J.= 41 = 1025 X J0- 6 X 30/z 

4 x 0·3 

Diametral strain, 

= 1·025h 
40 

€ c = ~ ( 1- ~) 

1 ·025/i 
- 40 X 1050 X 1000 ( I -o·32) 

0'68 X ] '025/z 
40 X I 05010QO 

,,,·. 
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Decrease in diameter, 8D=e 0 XD 

0'003= 0'68 X 1 '025 h X 30 
40X 1050,000 

h=6025'8 cm =60'258 metres 

Problem 5'4. A thin copper pipe 8 cm internal diameter, 2 mm wall thickness and 150 
cm long is closed at the ends with plugs. The pipe is filled with water under pressure . . Deter
mine the increase in pressure when an additional 10 c.c. of water is pumped into the pipe. 

E for copper= 1050,000 kg/cm2 

-
1 

for copper= 0'32 
m 

K for water = 2IOOO kg/cm2• 

Solution. Initial volume of pipe 
R = 4 (8)2 x 150= 7539'84 cms 

.. Let the increase in fluid pressure, 

=p kg/cm2 

Additional volume of water pumped in, 

IW=IO cm3 =&V1 +0V2 

oV1 = increase in volume of cylinder 
oV2 =decrease in volume of water 

[5-~J m 

_ p X8X 7539'84 
- 4 X 0'2 X 1050,000 

oV2 = (10- 0'267 p) c.c. 

Bulk modulus of water, K= oV
2
/C/+oVi) 

10-0'267 p = _]!__ 
7539'84+0'267 p 21000 

p= 15'96 kg/cm2. 

[5-4 X 0'32] = 0·267 p 

Problem s·s. The dimensions of a steel cylinder are length 200 cm, internal diameter 
25 cm and wall thickness I cm. The cylinder is initially filled with water at atmospheric 
pressure. Considering this to be a thin cylinder, find the increase _in v.olume. when the water 
is pumped in so as to raise the internal pressure to 60 kg/cm 2. If the quantity of water which 
has to be pumped in so as to produce the required pressure is 350 c.c., determine the 
modulus of compressibility of water. Neglect the deformation at the ends. 

E for steel=2100 tonnes/cm2 

1 
- for steel = 0'28. 
m 

Solution. Initial volume, 



- 202 STRENGTlj OF MATERIA~ . .S 

Volumetric strain in cylinder, 

Ev= J!!l.._ ( 5- _i_) 
4tE m 

60x25 
4 X 1X2100 X 1000 (5-4X0'28)=0'693XI0-S 

Increase in volume of cylinder, •,,. 

8Vi= 0·693 x 1.o- 3 x 31250 r. = 68·03 cma 

8Vi= 350-68"03= 281"97 cm3 

Modulus of compressibility, 
K= __ P __ = 60x (312501t + 68"03) 

8V2/CV+ 8V1) 28l"97 

= 20905 kg/cm2. 

Problem s·6. A steel tube having a bore of 10 cm, wall thickne1;s 1 ·5 mm is plugged 
at each end to form a closed cylinder with internal length of 30 cm. The tube is completely 
filled with oil and is subjected to a compressive load of 6 tonnes. Determine 

QT 

(a) the pressure in kg/cm2 produced on oil 

(b) the resulting circumferential stress in tube wall. 
K for oil=28000 kg/cm2 

E for stee1 = 2100 tonnes/cm2 

1 
- for steel= 0·28. 
m 

Solution. Say the pressure developed on oil, 
= p kg/cm2 

p 

~30cm ---I 
Fig. 5 11 

Circumferential stress developed in cylinder, 

P:6 Ton n\':S 

pD p x 10 
f, = 21 = -2 x o·15 33·33 P 

Say the axial stress developed = /u 
TC 

For equilibrium p X 4 , D2+Ju. TC Dt= 6000 kg 

p X ; X 102 +/a XTC X I0 X 0"15= 6000 kg 
• fa= 1i73"23- 16'66 f 

) 

I I j 
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Axial strain, 
fa Jo 

E:"a= - -- -
E mE 

C. fi . l . f r f a ircum erentia straw, eo = y- mE 

Volumetric strains, 

_ 2/c _ 2j,, f,, _ Jr_ 
- E mE + E mE 

= ~ [ l '72 f ,+0"44 f,] 

Now bulk modulus for oil, 

K= L 

Since Ell in this case is negative 

- ~ = ~ [l '72 J. + 0·44 f ,] 

-
28

~
00 

= 
2100

! 
1000 

[ l'72 x 33 '33p+ 0·44 (1273'23-l6"66p)] 

(fa is negative) 

-75 p = 57'327 p - 560'22+ 7'33 p 

p 560"22 - 4'01 k / 2 
139"657 - g cm 

Ci1cumferential stress, J.=33"33 p 
= 133'699 kg/cm2 (Tensile) 

. iO~ 

Problem s·1. The ends of a thin cylindrical shell are closed by flat plates. It is 
subjected to an internal fluid pressure under the following conditions : 

(i) The ends are free to move axially (alo ng the axis of the cylinder). 
(ii) The ends are rigidly stayed and no axial movement is permitted. 

Determine the ratio of the increase in the volume of the shell under the above condi-
tions. Take Poisson' s ratio=0·2s. 

Solution. Say interna, diameter of cylinder =D 
Wall thickness · = t 
Internal pressure = p 
Young's modulus of elasticity =E 

Poisson's ratio, -
1
- = 0·25 

m 

V= Initial volume of the cylinder. 

(i) When the ends are free t o move axially 
lnqrease in volume of shell, 

8V'= pD ( 5-...i_) V 
4t e m 



= :it (5 - 4 x 0'25) V 

pD 
= tE V. 

(ii) When the ends are stayed and no 
axial movement is permitted i.e., axial strain=O. 

This is possible only when compressive 
force P acts axially on the shell 

; (. 

or 

/a'=axial compressive stress due to P 
p 

... (2) 

Circumferential stress due top, 

pD 
fc=2t 

pD 
Axial stress due top, fa = ·41 

Axial strain, €a=-l (fa-Ju') - L 
E mE 

pD P 0'25 x pD 
':"' 4tE - rcDtE- ~-

pD p 
= 8tE - ;DtE = O 

1r.pD2 
P=~-. 

; ' ~ ' • • I fr 1 
Circum1erent1al Stram, €c ==If- mE ( f a-J u' ) 

Volumetric strain , 

Change in volume, 

Ratio 

pD 0·25( pD P 1 = 2tE -E- 4t- - r;Dt 1 

pD pD P 
= 2tE - 16tE+ 4rcDtE 

1 pD 1 ( rcpD2 ) 
= 16 tE + 4rcDtE -8-

7 pD pD 15 pD 
=16 tE +321.E =32 -TE 

15 pD 
ev= 2e 0 +ea= 16- tE as ea=O 

SV"=E pD xv 
16 tE 

8V' 16 
8V"= 15· 

. .. (1) 

Fig. S·l~ 

... (3) 

... (3) 
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Problem s·s. A closed pressure vessel of length 40 cm, thickness 5 mm, internal 
diameter 12 cm is subjected to an internal pressure of 80 kg/cm\ Determin~ th~ nor~al and 
shear stresses in an element of the cylin.der-wall on a plane at 30 to the long1tudmal axis. 

Solution. Fluid pressure, 
p = 80 kg/cm~ 

Internal diameter, 

Wall thickness, 

D = l2 cm 

t= O·s cm 

. , . pD 80 X 12 960 k / ~ 
CJrcumferent1al stress, J.=2t - 2 xo·s = g cm· 

pD 80 X l2 _ 2 Axial stress, fu = 4t = 4xo·s -480 kg/cm 

Normal stress on inclined plane, 

Jn = f• i a + Jc-:; f a COS (2 X 30°) 

- 9601"480 + 960;480 cos 600 

= 840 kg/cm2 

Tangential stress on inclined plane, 

/,= f.-; fa sin (2 X 30°) 

960- 480 . 
= 2 x O 866= 207'84 kg/cm 2. 

fn 

Fig. 5·13 

Longitudinal 
axis 

Problem 5 9. A thin spherical shell made of copper is of 30 cm diameter with 
_1·5 mm wall thick~es~. It is ~ull of water at atmospheric pressure. Find by how much the 
mternal pressure will increase 1f 20 c.c. of water is pumped inside the shell. 

E= I 00,000 N/mm2 

1 .p . 
--;;;, 01sson's ratio = 0·29. 

Bulk modulus of water = 2200 N/mm2 

Solution. 
Diameter, 
Wall thickness, 

D= 30 cm= 300 mm 
1= 1·5 mm 

Say, due to additional pumping in of water, the increase in iuternal pressure 
= p N/mm2 

rtD3 rt X303 
Initial volume of shell, V= -

6
- = 

6 
. = 14137·2 c.c. 

Additional volume of water pumped, 
. 8V=20 c.c. 

Total volumetric strain, 

(wat.er ~nd shell) 
20 . 

tao = 1413ii = 14· 147 X 10-4 



or 
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Volumetric strain on shell, 
, 3pD ( 1 ) 3p X 300 . 

€o = 4tE l-m = 4Xl'5Xl0,000 (l-0 29) 

= 10'65 pX 10-4 

Volumetric strain on water, 

"- P - _p_ - 4·545x 10-4 
€' - K - 2200 ~ P 

Now c.'+€.*= €• 
(10·65 p+4'545 p) X 10-4 =14'147 X 10-4 

14'147 
p = 15'195 

Increase in internal pressure 
= 0'931 N/m m2. 

,. 

Problem 5'10. A copper tube 30 mm bore and 3 mm thick is plugged at its ends. 
It is just filled with water at atmospheric pressure. If an axial compre~sive load of 8 kN is 
applied to the plugs, find by how much the water pressure will increase. The plugs are 
assumed to be r igid and fixed to the tube. 

. i· 

E= 100,000 N/mm2 

Poisson's ratio, _!_ = 0 '33 
m 

Bul~ modulus, K= 2200 N/mm2 

Solution. Internal diameter of the the tube, 
D=30 mm 

Wall ~hickness, 
Axial force, 

t= 3 mm 
P = 8 kN= 8000 N 

Area of cross section of tube, 
A= nDt = rc X30 X3= 282'744 mm2 

Axial compressive stress, 

- ..!__ 8000 - . 2 f - A - 282.744 -28 29 N/mm 

Ea, axial strain, 

Ee, diametral strain 

= - { (compressive) 

· 28'29 _ · . ~s 
= -lOO OOO --28 29X 10 , 

=+L = 28;29 x 0·33 x 10-s 
mE 

Total volumetric strain = 2 diametral strain + axial strain 

= 2 x 28'29 x o·33 x 10- 5- 28'29X 10-~ 

= -0'34X 28'29 X 10-11 

,. 

Now say the increase in internal pressure due· to axial compressiv~· force = p 

• J 1 ·: 

.. . (1) 
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Volumetric strain in cylinder 

h'= f1t ( 5- ~ ) = 4 x /:i~~,ooo (5-4 x o·33) 

= 9·2 x 10-5 p 

Volumetric strain on liquid, 

" P P O 0 "•• = K = 2200 = '4545 x : - a p 

= 45'45 X 10- 5 p. 
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.. . (2) 

. . . (3) 

Now due to the axial compressive force, 
-0·34 x 2s·29 x 10- 5 i.e. if V is the original volume 
has been co mpressed to the volum~ (V- 9'6188 x 10- 5 V) 

there is compressive strain of 
of water, then it means that V 

So from equations (1), (2) and (3) 

9·2 X 10- 5p + 45'45 X I0- 5p=9 '6l88 X 10-5 

54'65 p = 9'6188 

- 9'6181 - . 2 
P- 54.

65 
- 0 176 N/mm 

Increase in internat pressure 
= 0' 176 kN/ m2• 

Problem s·n. A solid cylindrical p iece of Aluminium 75 mm long and 50 mm 
diameter is enclosed within a hollo w pressure vessel. With th.:: piece inside the vessel, 
20 x 103 mm3 of oil is required just to fill the pressure vessel. Measurement sho ws that 50 mms 
of o ii has to be pumped into the vessel to raise the oil pressure to 7N/mm2• 

The experiment is repeated using the same pressure vessel and o il , but without the test 
piece inside the vessel. This time, after initia lly fi lling the pressure vessel, a further 364 mms of 
o il is needed to raise the pressure to 7N/mm2 • Find the bulk modulus of oil. 

E for aluminium= 70 GN/m 2 

Poisson's ratio of aluminium = 0'3 

Solution. Length of a luminium piece= 75 mm 
Diameter of aluminium piece = 50 mm 

V2 , Volume of aluminium piece 

= -7: (50)2 x 75 = 147262'5 mms 
4 

Additional volume of oil to fi ll the vessel, 
V1 =20 X 103 mm3 = 20,000 mms 

Therefore volume of vessel, 

Oil pressure, 

V1 = 147262'5+20,000 
= 167262'5 mm 3 

p= 1 N /mm2 

Say the expansion in volume of vessel 

= Wi 

(P.U.) 
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or 

Compression in volume of aluminjum piece 

sv'.l= P xv~ 
Kal11mi1dum • 

Bulk Modulus, 

K al11111i11i 11111~ 
E 

3(1 - 2/m) 
70 GN/m2 

3((- 0·6) 

STRENGTH OF MATERIALS. 

= 58'333 GN/1112 

= 58.333 x 103 N/ mm2 

7 · 
8V2= 58'333 X I oa X 147262'5= 17'67 mm8 

Compression in volume of the oil , 

oi' = - P_ X V 
a Koil s 

= ~ X 20000= 
140

}
00 

mms 

Now oVi+ oV2+oV3 = 50 

8V1 + 17·67+ 
14•~.QQ_ = 50 

Using t_!le vessel without aluminium piece 
Expansion in vo lu me of vessel 

= ~Vi 
Compressio n in volume of oil 

= _fl_ x p= 167262'5 x 7 
Ko;! Kou 

oV + 167262'5 X 7 364 
i Koil 

From equation (2) and (1), 

1030837'5 = 38 1 '67 
Ko;/ 

K . _ 1030837'5 
oil - 38 1'67 

Bulk modulus of oil= 2700 N/mm2 

... (1) 

... (2) 

Problem s ·12. A gun metal tube of 5 cm bore, wall thickness I /8 cm is closely wound 
externally by a steel wire 0·5 mm diameter. Determine the tension under which the wire must 
be wound on the tube, if an internal radial pressure of 15 kg/cm2 is required before the tube is 
subjected to the tensile stress in the circumferential diTection. 

E for gun metal = !020 tonnes/cm2 

_ l_ for gun metal= 0'35 
m 
p for steel = 2100 tonnes/cm2 
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Solution. Internal diamete1· of the 
tube, D=5 cm 

Thickness of the tube, t = O 125 cm 
Wire diameter, d= 0'05 cm, 
Number of wires per cm length, 

l 
n = - = 20 0·05 

Say the ,lnitial tension in wire = Jw 
"Initial compression in tube due to. wire 

winding =Jc · 

OJ: 

or 

Fig. 5·-14 

rtd 
Jr. = 4t. fw 

= tJ'31416/w (compressive) 

When the tube is subjected to internQI pressure 

p = \?. l.<g./c;m2 
·Jo' = circµ,n:i.ferei:it i~l. stre.s.s developed in (~be 
f w' = further tension developed in steel wire 

For equilibrium p x D=fc' x 2t+- 2n x ~ d 2 /,/ 

So 15 X 5=f /X4X 0'125.+2X20X : X(0'05)2 fiv' 

Axial burstin_g stress J, ' - .E.!2.. =-• f. 
5 ~ 

- a - 4( 4x o·125 

= 150 kg/cm2 (tensile) 

For compatibility of strain 

f.' _ fu' _ Jw' 
·if; mE.~ - Ew 

Jc' ...2.12-0 -2_ - f.,,' 
1020 X 1000 I 0,20 X I OQQ 2100 X I QCO 

/.'-52'5 = 0'4857 f .. ' 

1:= 52·5 + 0·4857 fin' 

Substituting in equation ( I ) 
75 = 0'25 (52'5 -l- 0'4857 /111'). + 0·0185 fw' 

15-13' 125 
f,.' = co· ·1214+ o·o785) 

= 309'53 kg/cm2 

fc' = 52·s+ o·4857x 309·53 

= 202'84 kf/cm2 teqsi\~ 

... (1) 

... (2) 



21-0 STRENGTH OF MATERIALS 

But f.'-J. = 0 (as given in the problem) 
J.= 202'84 kg/cm 2 (compressive) 

_ fc _ 202'84 
f,. - o·3J4]6 - 0"31416 I 

Initial tension in wire = 645'66 kg/cm2 

Problem 5'13. A thin cylinder made of brone 250 mm internal diameter and 6 mm 
thick is wound with · a single layer of steel tape I ·s mm thick under a tensile stress of I 00 
N /mm2• F ind the maximum internal pressure if the hoop stress in the cylinder is not to 
exceed 50 N/mm2• Determine also the final stress in the steel tape. 

or 

where 

or 

Po isson's ratio of bronze= 0·33 
E for bronze · = 117000 N/ mm2 

E for steel = 208,000 N/mm2• 

Solution. Internal dia. of cylinder, D= 250 mm 
Wall thickness of cylinder, t = 6 mm 
Steel tape thickness, tw= 1 ·5 mm 
Init.al tension in tape, f w= 100 N/ mm2 

Initial compressive stress in cylinder due to tape tension= / 0 (say) 
Now Jc. t = f w . tw 

/c X0'6= 1'5X 100 
lOO x 1·5 . 

f, = 6 = 25 N/mm 2 (compress!ve) 

Say the internal pressure of liquid in cylinder=p 

Axial stress due to p=Ja'= pi = P=~~Q_ = 10'4167 p 

Circumferential stress in cylinder =Jc' 
Additional stress in tape =f.o' 
Now 2fc'Xt+2Jw'X tw = pD 

(considering unit length of cylinder) 
fc' x 6 x 2+ /.,,'x 1·s x 2 = p X250 

12/e'+ 0'3 fiu'= 250 p 

Now diametral stra in in cylinder = diametral stra in in tape 

/.' 1 / «' f w' 

E. -m y; = E,.,, 

-
1 

= 0'33 
m 

Ee =--= 117000 N/ mm2 (bronze cylinder) 
E .. = 208,000 N/mm2 (steel wire) 

_fr_' _ _ 0'33 X 10'4167 p f.,,' 
117000 117000 -= 208000 

fc'-3'4375 p = 0'5625f,.,,' 

fe '= 3·437s p+ o·s62Sf 10' 

, l ' 

.. . (I) 

... {2) 

... (3) 

.. . (4) 

, •. (5) 
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or 

Substituting in equation (3) above 
12 (3"4375 p+0·5625fw')+3fw' = 250 p 

9·75 /w' = 208"75 p 
fw' = 21"41 p 

Moreover f.+fc'=50 
-25-f.'= 50 

/e'=75 N/nuni 

From equation (5) 75 = 3'4375 p+0"5625 fw' 
/w' = 233"333-6"1 I l p 

Equating equation (6) and (7) 
21'41 p=l33'333-6"111 p 

Maximum internal pressure 
_ 133·333 _ . 

2 p -
27

.
521 

- 4 844 N/mm 

fw' = 133'333-6' I I 1 X 4'844 = 103'731 N/mm2 

Final stress in steel tape =J .. + f w'= 100 + 103'731 
= 203'731 N/mm2 . 
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... (6) 

... (7) 

Problem 5'14. A brass cylinder 120 111111 outside diameter, wall thickness IO mm is 
strengthened by a single layer of steel wire 1 ·5 111111 diameter wound over it under a constant 
stress of 50 N/mm2

• If the cylinder is then subjected to an internal pressure of 18 N/mm2 
with rise in temperature of the cylinder by 80°C. Determine the final values of 

(i) stress in the wire (ii) radial pressure between the wire and the cylinder, (iii) cir
cumferential stress in the cylinder wall. The cylinder can be assumed to be a thin shell with 
closed ends. 

or 

Estee/= 208,000 N/mm2, <Xsteet= 11 '8 X 10- 6/°C 

Ebrass= 90,000 N/mm2 ocbrass= 18'6 X 10- 6/°C, Poisson's ratio for brass=0'32. 

Solution. Outside diameter of cylinder 
Wall thickne'>s, 
D, Inside diameter of the cylinder 

Wire diameter, 
Initial tension in wire, 
Say initial compressive stress in cylinder 
Thus considering length l of the cylinder 

= 120 mm 
t = IO mm 
=100 mm 

d=I'5 mm 

/111 = 50 N/mm2 
-fc 

2/c XIX t =2 ( ~ .)( : d2
) fw 

fc . t = :d . fw , putting value 

/ . x lO= 1t x
4

i·5 x 50 

/.= 5'8905 N/111m2 (compressive) 

Now internal pressi.ir'e p = 18 N/mm2 

... (I) 
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I, ' 

or 

where 

or 

:r· 

Rise in temperature = 806C 
Ct.brass = l8'6 X 10-6 /°'C 
a steel = 11 '8 X 10- 6/°C. 

Considering the equilibrium 

2Je' x l x t+2 XJw' (; )( ~ d~J =pDl 

. rr.d 'r,. 
2fc' X1+2 Jw'X 4 = pv 

2XJ/Xl0+2x/,.' X 1-X
4

J·5 = f8 X'f00 

20/c' -f-2'3562Jw'= 1800 

Jc' + o· t 178 /,,; = 90 

Equating the strains in cylinder and wire 

J/ f, ' 80- · Jw' . £. m E; + (/ brass X - Ew + atstee[X 80 

Ja'=axial stress 

= pD = 18 X 100 = 45 N/ 2 
4t 4 x 10 mm 

O~~::oi5 
+ I8·6 x 10-6 x80 = 2{ 8w~OO + 11·8 x l0-6 X80 

_ f/ - 14'4+ 133'92=0'4326J .. ' + 84'96 

Jc' = 0'4326 fa'-J4'5\5 

•S'ufisf!ifiltiill:g Ure vlalue of Jo' in equ·afio':iJ. (2) 

0'4-316 fw' + 0' 1178 J .. ' ....:....34'56='9'() 

fw' = ~~f;i1 = 226'308 Njmm2 ·(tension) 
I :, 

(i) Final stress in the wire 

= J w+ Jw' = 226' 308 + scrooo 
= 276'308 N/mm2 {tension). 

lii) Final circumferential stress i'n cylinder b /c+/o' 

where Jc' = 0'4326 Jw'-34'56 

= 0·43i6 x 276.308- 34'56 

= 84'9708 N/mm2• 

Final circumferential stress in cylinder 

= 84'9708-5'8905= 79'0803 N/mm2. 

... (2) 

... (3) 

... (4) 

... (5) 

j • 
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Say the radia l pressure Wfween tfie 
wire and cylinder= pr · 

(This is due to wire winding and 
temperature rise) 

Final circumferential stress 

_ pD _ pr D0 
- Tt 2t 

79.0803= 18 X 100 _ pr X 120 
2 X 10 2 X l0, 

or 6pr = 90-79'0803 

Fina l radial pressure between wire and cylinder. 

10·9191 .
1
.82 N'./ ., 

p r= 
6 

= mm·. 

. 21.3 

Fig. 5·15 

Proble:rn s·1s. A bronze sleeve of 20 cm internal diameter and 6 mm thick is pressed 
over a steel liner 20 cm external d iameter and 15 mm thick with a force fit a llowance of 
o·os mm on diameter. Considering both the bronze sleeve and steel liner as thin cylinders, 
determine: 

(a) radial pressure at the common radius, (b) hoop stresses in both, (c) the percentage 
of fit a llowance met by the sleeve. 

Given Ebronze= 120,000 N/mmt 
Poisson's ratio for bronze= o·33 

Estee/= 208,000 N/mm2 

Poisson's ratio for steel= 0'30. 

Solution. 

~ . -- - -t---=- - ·- ' -
I ~17cm~~sj-
f----·- ZO c. m----t 

Fig. 5'16 

I 
- --+ --· .. 

l..-----20~ L 
0 16 

Say the radial pressure at the common surface 
= p, N/mm2

• 

fli1>nze slee'\re. Circun1fere'iitial strefS, 
pr D f•'a= - - tensile 
2tb 

, _, 



where 

where 

or 
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.b= inner dia of sleeve= 200 .mm 
tD= wall thickness of bronze sleeve. 

So / f,o= P;\
2io 16'667 pr N/mm2 (tensile) 

Steel liner. Circumferential stress, 
prD 

f,.=-u. 
I • ~ 

t,= wall thickness of steel liner. 

I' - + prX 200 
JCs- 2 X 15 + 6'667 pr (compressfve) 

Now radial strain in bronze sleeve 

_ j,b + { _ I ) X .P!._ 
- Eo '\ m bronze Eo 

= 16.667 pr + 0'330 p , 
Eb Eb 

Radial strain .in steel liner '. 

_ J .. -( I ) Pi:_ 
E, m • E, 

=-
6'667 pr 

E, 

Total radial clearanc.: = 0'04 mm 

Common radius = 100 mm. 

Therefore ( 16.997 p , + 6'367 pr ) X 100= 0'04 
Eb E, 

16'997 X~ + 6 _ _)67 pr = 0'0004 
120,000 208,000 

pr (1'4164 + 0'3061) = 4 

4 
pr= 1·122s· 

16'997 pr 
Eb 

(a) Radial pressure at common radius 

(b) Hoop stress in sleeve 

= 2'32::! N/mm2 

= 16'667 p,= 2'322 X 16'667 
= 38.70 N/mm2 (tensile) , 

. . .,.:,1 

r I j · ; • 1 ~ 

. . . I I ) 
J 

.. . (2) 

', ,~ 

.. . (3) 

Hoop stress in liner = 6'667 pr= 15'480 N/mm2 (compressive) 

% of fit allowance of sleeve 
I '4164 _ . o; 

- l '4164+ 0·306! X l00-82 23 % 

(From equation (3) above). 

Problem 5'16. A brass hoop of 40 cm inside diameter and l ' cm walL thickness fi ts 
snugly at 180°C over a steel hoop which is 1 ·5 cm thick. Both the hoops are 5 cm wide. If 
the temperature drops to 20°c , determine the · circumferential stress in each hoop and the 
radial pressure at the common radius. 
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Estee1= 20 X 105 kg/cm 2 

Ebrass= !O x 105 kg/cm2 

rl.steel= 12 X I 0- 0 /°C 

rJ.brass= 20 X 10-r. f°C. 

Solution. Say radial pressure at common radius= p kg/cm2 

Temperat11re drop = 180- 20 ---~ 160°C 

Inside diameter of brass hoop, 

Wall thickness of brass hoop 

D= 40 cm 

tb= l cm 

fen,. tJoop stre$S in brass hoop 

Outside diameter of steel hoop 

Wall thickness of steel hoop 

fe., Hoop stress in steel hoop 

= P/2 = P
2

X 
40 

= 20 p kg/cm2 (tensi le) 
2to X I ' 

= 40 cm 

t ,-= 1 ·s cm 

pD pX40 
=u, = 2X 1'50 

=13"33 p kg/cm2 (compressive) 

Now, ( {: +~; )D 
= (20- 12) x L0- 6 x 160 

20 p 13·33 p 
!O x 10'5+ 2ox 1or. 
= 8 X 160 X 10-6 

20 p + 6·665 p = 1280 
1280 

P= 26·665 

Radial pressure = 48"00 kg/cm2 

Circumferential stress in brass hoop, 

feb = 20 p= 960 kg/cm2 (tensile) 

Circumferential stress in steel hoop, 

Fig. S·J7 

Jc ,= 13·333 p= 640 kg/cm2 (compressive). 

SUMMARY 
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I. Additional volume i!V of liquid pumped inside the cylinder is equal to the sum of 
increase in volume of the cylinder av1 and decrease in the volume of the liquid llV:i. 

2. _In a thin cylindrical shell of diameter D, wall thickness t subjected to internal 
pressure P! . 

. ! •• 

hoop stress, f , s-=- ~ ; axial stress, f a= ~~ 
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Circumferential stra in, €c = :
1
~ ( 2- ~i ) . Axial stra in, €a= :/~ ( 1- ; ) 

where £ =--= Young's moduh,1s, 1/m= Poisson's ratio 

where 

Change in diameter , oD = €, D, Change in le_ngth , 8/= €a . / 

Volumetric strain, €, = 2€c+Ea, 
Change in volume of the cylinder, oV1 = n. V 

p 
Change in volume of the liquid, oV2 = K . V 

K= Bulk modu lus, 
V= Original volume of cylinder. 

•11 ·1 

:,, . 

3. Tn a thin spherical shall of diameter D, wall thickness t suhjected to internal flu id 
pressure p 

where 

Hoop str~ss, 

Circumferential s.:train 

Volumetric strain, 

pD f, = --41 

€. -d:. _pD__ ( 1- - 1 -) 
· 4t~ m 

Change in volume of shell , 

4. If a wire of diameter dis wound over a t hin cylindrical shell, under tension f w, 

f ro Initial compressive hoop stn;ss in cylinder 

1td = -4t- . f,,, 

t = wall thickness of cylinder. 

ff the cylinder is now subjected to internal pressure p anct // a1'.d fit/ ,,re the tensi le 
hoop stresses developed in cylinder anct wire respectively, th<;n 

pD = fc' X 2t+fw' X ~d 

Jc' pD f,,,' 
E,. - 4tmE. = JI;; 

where D = diameter of cylinder 

Ee, Ew= Young's modulus fot cylinder a od wire respect ively 

Resultant stresses in cylincler= /c + /c' 
in wire=Jw+J,a' . 

MULTlPLE CHOICE QUESTIONS 

· ·L Thin cylinclrica·l shell of dia 100 mm, watl thickness 2·5 mm, is subjected to an ii;t.t~.xn~l 
flui d pressure of 1 ·5 N / mm2 • The maximum stress developed in cylinder wall is 

(a) 15 N/ mm 2 

(c) 60 N/ mm2 
.(bl 30 N/ mm! 
1(1) 120 N/mm2, 
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2. A thin cylindrical shell of dia D , ,, a ll thickness t is subjected to an internal fluid pressure 
p. If E is the Young's modulus and 1/m is the poisson's rat io for the material of the 
cylinder, the expression for volum etric strain of the cylinder is 

(a) - 5- -pD ( 4) 
4tE m 

(b) pD ( 4 5 ) 
4tE m 

(c) .P_ l 5- -D ' 4 ) 
2tE \ m 

(d) pD ( 4- 2-) 
2tE m · 

3. A thin spherical shell of diameter 200 mm, wall thickness 5 mm is subjected to an internal 
fluid pressure p. If the maximum a llowable stress in the shell is not to exceed 120 N/mm2, 
the magnitude of p-

(a) 3 N/mm2 

(c) 12 N/mm2 

(b) 6 N/mm2 

(d) 24 Nimm2 

4. A thin spher ical shell of d iameter D, wall thickness t is subjected to an internal fluid 
pressure p. If Eis the Young's modulus and 1/m is the Poisson 's ratio for the material 
of the shell, the expression fo r the change in d iameter is 

pD2 
• 2 ) 

(a) 4tE ( l-m (b) ~~; ( 2- ! ) 
pD2( l ) 

(~), 4tE l-m (d) None of the above. 

5. A thin cylindrical steel shell of diameter 400 mm and wall thickness 10 mm has spher ical 
ends. If there is no distortion of the junction at pressure and Poisson's ratio for steel is 
J /3 the thickness of the hemispherical end wi ll be 

(a) 6 mm (b) 5 mm 
(c) 4 mm (d) None of the above. 

6. A thin cylindrical shell of diameter 250 mm, wall thickness 6 mm is closely wound 
around its circumference by a 1 ·s mm thick steel tape under a tension of 100 N/mm2. 
The circumferential stress rleveloped in the cylinder wall is--

(a) + 25 N/ mm2 (b) - 25 N/mm 2 

(c). +so N / mm2 (d) -50 N/ mm2 • • 

7. A steam boiler of 150 cm internal diameter is subjected to an internal pressure of 20 kg/ 
cm2• If the efficiency of the longitudinal riveted joint is 80% and the maximum tensi le 
stress in the plate section is not to exceed 1250 kg/cm 2, the thickness o f the p late wi ll be 
(a) 6·d cm (b) 3·0 cm 

(c) 1 ·s cm (d) 0·75 cm. 

8. A cylindrical tank I m inside d iameter and 20 m high is filled with water of specific 
" weight 1000 kg/ m3• lf the thickness of the tank is 2·5 cm, the maximum stress developed 

in the wall of the tank is 
(a) 40 kg/cm2 
(c) 10 kg/cm2 

,. (b) 20 kg/cm 2 

(d) 5 kg/ cm~. 

9. A thin cylindrical shell of volume 2000 cm3 is filled with oil at atmospheric pressure. An 
additional 1 c.c. of oil is pumped inside the cylinder to produce an interna l pressure of 
10 kg/cm2

• If the effect of the expansion of the cylinder is neglected, then modulus of 
compressibility of water is 
(a) 200 kg/cm2 · (b) 2000 kg/cmi 

(c) 20,000 kg/cm? (d) 200,000 ks/cm2, 
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10. A clps~cl pressure ve.ssel of len~th 40 cm, wall thickness 5 mm interi:ial diameter 10 cm is 
l•' ~41:>Jr ctep to ari iMernal PJ essure of 8~ kg{cm2. _Th~ n ormal stress Ill an elemei;i.t 9f the 

cylinder on a plane at 30 to the long1tud11,1al a.xis will be 

(a) 1400 kg/cm2 (b) 700 kg/cm2 

(c) 350 kg/cm2 (d) None of the above. '
1

·
1 

; . 

ANSWERS ,., 
1,1 • 

" 

1. {b) 
6. (b) 

't 

' i 
2. (a) 
7 . (c) 

3. (c) 
8. (a) 

EXEl\CISES 

4. (c) 
· 9. (c) 

5. (c) · 
19. (b). 

\ ' I •,1 

~ ,' 'JI i 

5·1. A steam boiler 1 m internal d jameter is subjected to an internal pressure of 
1 N /mm2. What will be the tens ion in the boiler per linear cm of the longitudinal\joint ·of the 
boiler shell, 

Calculate the thickness of the plate if the maximum tensi le stress ii;1 the pla.te sedion is 
not to exceed 120 N/mm2 taking the efficiency of the longitudinal riveted joint a s 80 % . 

·:.· ·. ,, , . , , " · ,i fAns·.· 20000 N ,-1 1'0'417 mm] 
, , ! I . , • J"1 ,,. 

5·2. A cylindrical tank 3 rn insid~ diameter and 24 m h igh is fj lled with .qil, of, specific 
weight 9000 N/m3. _The material of th_e_ tauk is a structural steel with a Y_i~f1

1 
~trr.,ngth 0 f 

300 N/mm2. What 1s the necessary thickness at the bottom of the steel tank ; if ~He e:fflciency 
of the longitudinal seam is 75% ? Take factor of safety as 5. [An!'i!1 '-s·64 mmJ 

. . 5'3 . . To what depth would a copper float 250 mm diameter and 3. mm thick hhs I to " l:Jc 
s11nk in sea ·w.ater in,order that its d iameter is reduced by 0·012% ? .1 . ' • ·, 

E for copper= 105000 N / mm2 · ' 1 
' ' ' • ' I 

l j ,n for copper = o·32 · · ·11
• , 

D ensity of sea water = 10250 N./m3• [Au;: i86'77 metres] 

• '. 1'.'.. s··4. ~ ~h\~): copper._ pipe ' lOO_mm intff.~i}l''. 1.i~m~ter, 2·5 ··)11m .. ,J~11
1 

fhr~~-fl{~s and 
200} tn . lon,( 1~ · ·ctpcd. aLt};le :ends with plug~· .. ,. ,Th,e pipe 1s filled ';Vl!h wn~er :1;19.F/~r. p~;tssure. 
Deten h tne t He increase m pressure when an add1t1o'nal 20 cm3 of water IS pumped mto the pipe. 

( l f \ t ~ ; , 

E for copper = 105,000 N /mm2 · · 
' ,l 

1/m for copper = 0'32 
11:1 • ,Kf'Or water ,l!i t ·· = 2100 N/miµ 2 

' · [Ahis. i l'\3' N/m·in2] 
! 

1
, t\l 

1
, 11 !I•, J • • 111 I f•,• , 

5·5~ The dimensions of a copper cylinder are length 2'5 m, interna l d iameter ·· 200 mm 
and wall thickness 8 mm. The cylinder,is initially filled with water at atm,osph~ri~ IDmssure. 
Considering this t o be a thin cylinder, find rhe increase in volume when the water is pumRed i11 
so as to ra ise the internal pressure ·to 3 N/mm2

• If the quantity of water which' h
1

as to be 
pumpy~ iD: is qq c.c. determine the modulps of ~9tnPres~~bility of ·water. D{~gl~~t . th.e 1 defor
-P1a;fRt~t j li~ en,,9,~. • EcopN rJT' l.0500p N/m1~2

, . lf.m= q·n. . [AJJ.~. 52' 173 c~, ZOQl'. ~ (mm2: 

·11 ,J·5··6'. •ksteei'tube h l:1-ving a ? Or~ of 150 mm, wall thicknes~ iwlfl (~ pl,~~~F,d ~; eacli 
end to for~ a c!osed cylmder with ~nternal length of 400 mm .. The tube is co,nir,I~t7iy filled 
with oil and 1s subJected to a compressN0 fore~ of 40 kN. D t:teqmn,e , , ' , • ·.- · 1 

(a) the pressure :produced ,o il oil n,, ·' \ •· · ' ,· 
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(b) the resulting circumferential stress in the tube wall. 
Given K for oil = 2200 N/mm2 

E for steel=210000 N/mm2 

21~ 

1/m for steel= o·3 [Ails. 0·112 N/mm2, 4'2 N/mm2] 

5·7. The ends of a thin cylindrical steel shell are closed by flat plates. It is subjected 
to an internal fluid pressure under the following conditions- , . 

(i) The ends are free to move axially (along the axis of the cylinder). 
(ii) The ends are rigidly stayed and no axial movement is permitted. 

Determine the ratio of the increase in volume of the shell under the above conditions. 
Take Poisson's ratio of stecl=0'30. [Ans. l '044] 

5·s. A closed pressure vessel of length l m, thickness 4 mm and internal diameter 
160 mm is subjected to an internal pressure of 10 N/mm2. Determine the normal and shear 
stresses in an element of the cylinder wall on a plane at 60° to the longitudinal axis of the 
cylinder. [Ans. 125 N/mm2, 43·3 N/mmz] 

5'9. A thin spherical shell made of copper is of 0·5 m diameter with 5 mm wall 
thickness. It is full of water at atmospheric pressure. Find by how much the internal 
pressure will increase if 25 cm3 of water is pumped inside the shell Take E = 205,000 N/mm2 

1/m=0'30, for the material of the shell. 

Bulk modulus of water=2100 N/mm2. [Ans. 0·52 N/ mm2] 

5·10. A steel tube 55 mm bore and 2·5 mm thick is plugged at its ends. It is just 
filled with water at atmospheric pressure. If an axial compressive load of 2 tonnes is applied 
to the plugs find by how much the water pressure will increase. Tt·.e plugs are assumed to be 
rigid and fixed to the tube. 

Estee/=2000 tonnes/cm2, 1/m for steel=0'3 

Bulk modulus for water, K= 21000 kg/cm 2
• [Ans. 1'783 ,kg/cm2] 

5·11. A solid cylindrical p iece of copper 8 cm long and 4 cm diameter is enclosed 
within a 'hollow pressure vessel. With the piece inside the vessel, 500 c.c of oi'l is required 
just to fill the pressure vessel. Measurement shows that 1 ·5 c.c. of oil has to be pumped into 
the vessel to r aise the oil pressure to 60 kg/cm2

• 

The experiment is repeated using the same pressure vessel, and oil but without the test 
piece inside 'the pressure vessel. This time after initially filling. the pressure vessel, a further 
J '65 c.c. of oil is needed to raise the pressure to 60 kg/cmZ, Fmd the bulk modulus of oil. 

E for copper= 1050 tonues/cm2 1/m for copper = 0'32. 
[Ans. 23068 kg/cm2) 

5·12. A gun-metal tube of 60 mm bore and wall thickness 1 ·5 mm is closely wound 
externally by a steel wire of 1 mm diameter. Determine the tension under which the wire 
must be wound on the tube, if an internal radia l pressure of 2 N/mm2 is required before the 
tube is subjected to the tensile stress in the circumferential direction. 

E for gun metal = 102 '!<. 103 N/mm2, l /m for gun mctal= 0'35, 

E for steel= 210 x 103 N/mm2
• [Ans. 43'69 N/mm2] 

5·13. A thin cylinder made of bronze 30 cm internal diameter and 6 mm thick is 
wound with a single layer of steel tape l mm thic~ under a. tensil~ stress of 150 N/ mm2• Find 
the maximum internal pressure if the h oop stress m the cylinder 1s not to exceed 120 N/mm2. 
Determine also the final stress in the steel tape. 

Given Poisson's ratiocfor bronzc= 0'33. 
E for bronze = 117000 N/mm2, E for steel= 208,000 N/mm2

• 

[Ans. 7·t5 N/mm2 ; 3S2'96 N/mm2] 
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5'14. A copper sleeve of.15 cm lnternal diameter and 5 mm thick is pressed over a 
steel liner 15 cm external diameter and 2·0 cm thick with a force fit allowance of 0·05 mm on 
diameter. Considering both the copper sleeve and steel liner as thin cylinders, determine 

(a) radial pressure at the common radius 

(b) hoop stresses in both 
, ,. , .(~) the p~rcentage of fit allowance met by the sleeve. 

Given Ecopper= 102,000 N/mm2, 

.Poisson's ratfo for copper= 0'32 

Esteel= 208,000 N/mm2 

Poisson's ratio for steel = 0'30. 
[Ans. 1 N/mm2

, + 15 N/mm2, - 3'75 N/mm2, 90%] 

5'15. · A' bronze cylinder 100 mm outside diameter and 5 mm wall thickness is 
strengthened by a single layer of steel wire I mm diameter wound over it under a constant 
stress of 105 N/mm2. lfthe cylinder is then subjected to an internal pressure of 20 N/mm2 
with rise in temperature of the cylinder by 50°C. Detmm,ine the final values of 

(i) stress in wire 
(ii) radial pressure between the wire and the cylinder 

(iii) circumferential stress in the cylinder wall 
The cylinder can he assumed to be a thin shell with closed ends. Given 

Estee/= 208,000 N/mm2, Ebro11ze= 104,000 N/mm2, 

ex steel"'.'° 12 X 10- G(C ~bronze= 12 X 10-r.j°C. 

Poisson's ratio for bronze = 0'32. 
[Ans. (i) 367'373 N/mm2, (ii) 7'272 Njmm2, (iii) 107'276 N/mm2) 

5·1~. A thin steel cylinder of inner diameter 42 mm and outer diameter 44 mm just 
fits over a copper· cylinder of inner diameter 40 mm. Find the tangential stress in each 
cylindrical shell due to a temperature rise of 60°F. 

Neglect the effects introduced by longitudinal expansion. 
Given Estee/= 208,000 N/mm2, Ecopper= 90,000 N/mm2 

«steet= 6 '8 X 10-6/°F °'copper= 9'3 X I0- 6/°F. 

[Ans. - 9'408 N/mm2, + 9'408 N/mm2] 

·, 



6 
Thick Cylinders 

In the last chapter on thin shells, we determined the hoop stress in the section of the 
shell on the assumption that the st1ess remains constant across the thickness of the shell. For 
thin shells the ratio of D/t is large, or in other words the thickness is much smalkr than the 
diameter ; variation of the hoop stress along the thickness is neligible and one can safely 
assume uniform hoop stress. But when thickness is considerable as in the case of thick shells, 
hoop stress can not be assumed uniform along the thickness and expression for hoop stress is 
derived which shows that the stress varies along the radial direction of the shell. 

61. LAME'S EQUATIONS 

Stresses in the section of the thick cylinder are determined on the basic assumption 
that sections which are perpendicular to the longitudinal axis of the cylinder before the appli
cation of the internal fluid pressure remain perpendicular to the axis of the cylinder after the 
cylinder is subjected to internal fluid pressure. Consider a cylinder of inner radius Ri, outer 
radius R2 closed at the ends. This is filled with fluid at atmospheric pressure. Nbw additional 

FLUID AT 
ATMOSPHERIC 

PRESSURE 

Fig. 6·1 

ENO PLATE 

AXIS OF 
CYLINDER 

fluid is pumped inside the cylinder so as to develop the internal fluid pressure p as shown in 
Fig. 6·1. A plane section X-X perpendicular to the axis is shifted to the new p::isition X'-X' 
after the cylinder is subjected to internal pressure p. X' -X' is also one plane perpendicular 
to the axis of the cylinder. · · .. · · · 

Considering the overall len_gth, t~ere ~s increase in length di which is uniform through
out irrespective of the radius. This assumption also means that there is no distortion of the 
end plates. Thus the axial strain in the cylinder is the same at any radius of the cylinder. 

· 221 
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Consider a transverse section of the cyiinder (as shown in Fig. 6'2) subjected to internal 
fluid pressure p. This pressure acts radially on the inner surface of the cylinder and at the 

• i 
'.I 

ii 

Fig. 6·2 

1,I 

,. 
I• 

_, 

outer surface of the cylinder this radial pressure is zero, showing there by that radial stress 
(or pressure) varies across the thickness of the cylinder . 

When the cylinder is subjected to i:::ternal pressure p , it will try to expand the cylinder 
resulting in increa.se in length and increase in diameter. i.e., axial and circumferentia·l stresses 
are deyeloped in the wall of the cylinder and both these stresses ar:e tensile. Now 
copsider a small elementary ring of radial thickness '8r at a r~dius r from the axis of the 
cylinder say the stresses on an element of this ring are 

(1) le , circumferential stress (tensile) 

(2) fa , axial stress (tensile) 

(3) pr at radius r and p,+'8pr at radius r+ 3r as shown in Fig. 6·3, radial stress 
(compressive). 

Slrtss) 

Fig. 6·3 

Taking E as the Young's modulus and -
1
- as the Poisson's ratio of the mater,ial @'f the 

m 
c'ylinder. 

A.xiaJ strain - / a - _,f_ + J!!_ 
- E mE mE 

.. . (I) 
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where f,, axial stress - p X 1tR12 pR12 
- rr.(Rl-R1~) = R?-R1

2 

i.e.,fa is constant across the thickness of the cylinder 
] 

E and are elastic constants of the material 
m 

So (f.-pr)=a constant 

=2A (say). 

i23 

. .. (2) 

Now let us consider the equilibrium of the elementary ring under consideration. 

or 

where 

or 

or 

or 

where 

or 

The bursting force per unit length 

So 

= pr . 2 , r - 2 (pr+8pr)(r.+8r) 

= 2J.x8r 
pr . 2r-2pr. r- 2opr r-2p,or-28p,'iir 

= 2Jc. 81' 
28p,or is a negligible term. 

-op, . r-pr. or= fc. or 

-r8pr 
~ - fc+p,. 

From equation (2) and (3) i.e. subtracting w1uation (2) from equation (3) 

'tlpr 
2p,=-r3r - 2A 

in the limits 
\"'. It/ 1 • 1 

2A+2pr= - r op, 
'iir 

- 2 'iir - --3.l!.!_ 
,. -- A+ p, 

_
2 

d, _ dpr 
r - tA + p ,) 

Integrating both the sides 

ln(A + p , )=-2/n r+ln B 

Radial stre\ _s, 

ln B is a constant of integratipn 
B 

= ln,.2 
B 

p,+ A = -2 
I' 

B 
p,= -o -A. ,~ 

From equation (2) circumferential stress, or hoop stress 

B 
f• = ",:2 + A. 

·: 

... (?.) 

... (4) 

... (5) 

. . , .. (()) 

In these equations A and B are called Lame's constants aT\d these equations are calleq 
the Lame's equations. · 
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The values of the constants are determi ned by using boundary conditions. Note that 
units of B will be those of force and units of A will be those of stress. 

Boundary conditions 

At radius r= R 1 , radial pressure= p 

'. 

or 

) 
or · 

and 

, .... 

At radius r= R2 , radial pressure = O 

Using these conditions in equation (5) 

' I ' ! • ~ 
So 

., •J•"• r., 

' ·B 
P- --A - R 12 

B B 
P= R 2 - R 2 

1 2 

R12Rl 
B=p R22-R12 . 

B ·p Ri2 
A= RQ2 = RQ2-R:,. 

The expressions for J c and p, can now be written as 

p R12R22 p R12 
Jc=,2 . R22- R12+ Rl- R12· 

I 

_ P R2:__ 
R 2- R 2 . 2 1 , 

... (7) 

'I 
... (8) 

.. . (9) 

... (10) 

As the obvious from equation (9) J c will be maximum . at inner radius R1 and is 
minimum at outer radius R2 

p Ri2 R2
2 p R12 

Jc ma:11= R2 X -R 2 R2 + -R 2 _ R 2 
1 2 - 1 2 l 

( 
R 22 + R12 ) ·1 

=p R22 - R12 tens, e 

p , Ri2R2
2 p R12 

Jc mfo = R---;;- X R 2 R 2 + -R ~ 2 
2· 2 - 1 2 - 1 

=p( Ri;~1
;/ ) tensBe 

Similarly pr is maximum at inner 
ra'dius R1 and minimum at outer rad ius R2 

lf·· Prm"-•= .P ~omp,y,e
1
s~iy~:•. 

pr mtrt = 0 6ompressiv~ 
, ·r · 

b 

,S tr,ss d is tribution ocros· 
~y l if'dtr thickn ess · 

. ' ·r 

• I , 

, I 

.,, 
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Fig. 6"4 shows the variation of fc and pr along the thickness of the cylinder 
oa=Jc ma~ 

bd=Jc m!fl 

OC=p 

225 

Exa:mple 6"1-1. A cylindrical shell of inner radius 60 mm and outer radius 100 mm 
is subjected to an internal fluid pressure of 64 N/mm2 • Draw the distribution of stresses 
f c and pr along the thickness of the cylinder. 

or 

Solution. Inner radius , R1= 60 mm 
Outer radius, R2= 100 mm. 

Boundary conditions. p, = 64 N/mm2 at r= 60 mm 
= 0 at r= 100 mm 

B 
602 - A= 64 

B B 
1002 -A= O, A= 1002 

Circumferential stress. 

At radius 60 mm, 

Similarly 

Radial stress 

64= 6Bo2- lOBo• ; B= 64 X 602 X 1002 360000 N 
- 1002-602 

A=36 N/mm2. 

Jc= ~ +A= 360000 + 36 r · ,.2 
360000 

[ c so= (60P +36= 136 N/ mm2 

J. 10= 
317°0~?0 

+ 36= 109'47N/mm2 

360000 . • 
Jc so= (80)2 +36 = 92 25 N/mm-

360000 
l o 110= ( 90)2 +36=80.44 N/mm2 

360000 
Jc 100 = (I00)2 + 36= 72 N/mm2 

Pr= _!!_ - A= 360000 _ 36 ,.2 ,.2 

360000 _ 2 p, r.o = (60'12 -36 - 64 N/mm 

360000 36-37·47 N/ • Pr 10= ( 70)2 - - mm-

360000 
pr so= (80)2 36= 20"25 N/mm2 

360000 36 8"44 N/ • P• oo= (90)2 - = mm-

360000 
pr 100= (I00)2 - 36=0, 
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The Fig. 6'5 shows the distribution of circumferential and radial stress along the radius 
60 mm to 100 mm. 

Exam.pie 6'1-2.' A thick cylinder of inner radius R 1 is subjected to internal fluid 
pressure p. If the maximum hoop stress developed is 2·5 p, determine the external radius R2• 

Solution. Inner radius = R1 

Outer radius =R2 
Internal fluid pressure =p 

. R22 +R12 

Maximum hoop stress, Jc mao:= 2 5 p = p R
22

_ R
12 

or , 2'5(R?-R1
2)= R 2

2 +R1
2 

1 '5 R.2= 3'5 R1
2 

R3=.J; R1 = 1'527 R1• 

Exercise 6·t-l. A cylindrical shell of inner radius 50 mm and outer radius 80 mm is 
subjected . to an internal fluid pressure of 500 kg/cm 2. Dra-w the distribution of hoop and 
radial Stresses along the thickness of the cylinder. 

[Ans. Jc 50 , 
60

, 70 , 80= 1141'02, 890'3 1, 739'14, 320'51 kg/cm2 

pr 50> Go, 70, so=500'0, 249'29, 98' 12, 0'00 kg/CID
2

] 

Exercise 6'1-2. A thick cylinder of 120 mm internal diameter is subjected to an 
internal fluid pressure of 80 N/mm2. If the maximum stress developed in the cylinder is not to 
exceed 270 N/mm2, find the th ickness of the cylinder. [Ans. 21 '43 mn1J 

6'2. THICK CYLINDER SUBJECTED TO EXTERNAL FLUID PRESSURE 

If a thick cylindrical shell is subjected to exiernal fluid pressure as shown in Fig. 6'6, 
the effect of p will be to reduce the diameter of the shell or in other words compressive hoop 
or the circumferential stress will 1:,e developed in the cyli_nder. 

p 

p 
Inner Radius= R1 
®uttr Radius:R 2 
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or 

Let us again consider Lame's equations taking A, B constants 
B f,, hoop stress = 2 + A 

pr, radial stress 

Boundary conditions 
At 

r 

B 
= -2 - A. 

r 

R zR 2 

From these equations B=-p R}- ~-;_i 
R 22 

A=-pR2 RZ" 
2 - 1 

~sing these values of the constants, hoop stress can be determined 

221 

Fig. 6·7, shows the distribution of hoop and radial stresses across the thickness of the 
cylinder. Both the stresses are compressive. oabd-stress distribution for hoop stress 
while acd-stress distribution for radial stress. 

~ ·~.1 tf. ~ 
~-·· 
· St_re ss dis tributi on along the c,1.lind'er 

thickn ess 

Fig. 6•7 
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Example 6·2-1. A thick cyiinder with inner diameter 14 cm and outer diameter 
20 cm is subjected to a pressure of 200 kg/cm2 on its outer surface. Determine the maximum 
values of the hoop stress developed. 

Solution. Inner radius, • 
Outer radius, 

External pressure, 

Maximum hoop stress, 

Minimum hoop stress, 

R1 = 7 cm 

R2= IO cm 

p = 200 kg/cm2 

2Rz2 
f cR1 =-pR22- Ri2 

2 X 102 

= -200 X 102_ 72 =-784'31 kg/cm2 

R22+ R12 
f cR2 =-p R 22- R/ 

=-200 x 
102

+?.: =-584'31 kg/cm2 
102 _ 72 

Example 6'2-2. A thick cylinder with external diameter 240 mm and internal 
dian1eter D is subjected to an external pressure of 56 N/mm2 • Determine the diameter D if 
the maximum hoop stress in the cylinder is not to exceed 220 N/mm2 • 

Solution. External radius, R2= 120 mm 

Internal radius, 

External pressure, 

D 
R1= 2 
p = 56 N/mm 2 

Since maximum hoop stress occurs at inner radius and is compressive so 

f cR
1 

= - 220 N/mm2 

Diameter, 

2 X 1202 

- 220= -56 X 1202- R12 

220 
(1202- R i2)= 2 X 120a 

56 

R1 = 84'08 mm 

D = 168'16 mm. 

Exercise 6'2-1. A thick cylinder with inner diameter 110 mm and outer diameter 
200 mm is subjected to an external fluid pressure of 60 M N/m2• Determine the maximum and 
minimum hoop stresses developed in the cylinder. [Aus . - 112·04 MN/ m2, - 112·04 MN/m2] 

Exercise 6'2-2. A thick cylinder with internal diameter 22 cm is subjected to ah 
external pressure of 300 kg/cm2. Determine the external diameter of the cylinder, if the 
maximum hoop stress in the cylinder is not to exceed 800 kg/cm2• [An!i. 44 cm] 
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6'3. COMPOUND CYLINDERS 

In the article 6' 1, Fig. 6'4 we observe that maximum hoop stress occurs at the inner 
radius of the cylinder and the stress varies across the thickness of the cylinder i.e., whole of 
the material, is not put to use uniformly. The pressure bearing capacity of the cylinder is 

Compound cyl,nd<H lnn~r cylindH 

Fig. 6·8 

Tensile 

Outer cy l,nH 

limited by this maximum hoop stress which should not exceed the allowable stress for the 
material. Firstly to increase the pressure bearing capacity of the cylinder and secondly to 
reduce the variation in hoop stress across the thickness, two cylinders are compounded together. 
One cylinder is shrink fitted over another cylinder developing compressive hoop" stress in the 
inner cylinder and tensile hoop stress in the outer cylinder. When this compound cylinder is 
subjected to an internal fluid pressure, hoop stress at the inner radius developed due to internal 
fluid pressure is tensile while the hoop stress due to shrink fitting is compressive. Thus the 
resultant stress at the inner radius is Jess than the hoop stress developed due to internal pressure 
only and consequently the pressure bearing capacity of the cylinder is increased, if the allowable 
stress in the cylinder remains the same as in a single cylinder. 

Consider a compound cylinder as shown in Fig 6'8 . . A cylinder of inner radius R1 and 
outer r:i.dius say R3' is compounded with another cylinder of inner radius say 
Ra" and outer radius R2 . Initially the inner radius of outer cylinder i e., R/ is smaller 
than the outer radius of inner cylinder i.e., R8'. The outer cylinder is now heated so 
that its inner radius becomes equal to the _outer radius of the inner cylinder i.e., R3" (after 
hcating = R3' ) and then outer cylinder is pushed over the inner cylinder. After cooling down 
to room temperature, the outer cylinder tries to contract and exerts radial pressure over the 
inner cylinder and the inner cylinder offers equal and opposite reaction. The final radius at 
the juncti on of the cylinders is R3 which is less than R3' and greater than Ra". Due to the 
shrink fitting radial pressure p' acts on the outer surface of the inner cylinder and on the inner 
surface of the outer cylinder. Let us determine the hoop stre·sses developed in both the 
cylinders due to shrinkage fitting. Let us take A1, Bi and A2, B2 Lame's constants for the inner 
and outer cy tinders respectively. 

Inner Cylinde1·. 

At 

Boundary conditions : 

From these equations 

B 
r=R1 , radial stress p,=0= R:, -Ai 

1·= R3 , p,=p'= : 1
2 -Ai 

3 
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C f . 1 I' ' B1 + A p' R12R32 , Ra2 
ircum erent,a stress, 1• = - . 1= -~ (R . 2) - p .(Ra'-~~2) : r• r· 3~-R1 "-

. -i t ra<;iius Ri; f
, , 2Ra2 

r' R1 =-pR2-R 2 
3 1 

compressive 

At radius R8, ' f.
, , Ra2+ R12 

• 
. c 11,

3 
= - P R 2 _ R 2 compressive. 

8 1 

Outer Cylinder. Boundary conditions : 

At R d. 1 ' B2 . A r = 3, ra ia stress, p,= p = R 2 - 2 
8 

At 

From these equations B2= + p' ::~ 1;~2 
2 3 

A + , Ra
2 

2 = p R22_ Raz . 

B p ' R ZR 2 R 2 
Circumferential stress f "= _2. + A.= - 2 3 + p' -~3

--,-
• c ,.2 - ,.2 (R.2- R.2) (R2- R2) :u - 3 2 8 

At radius R 8 , 

At radius R2, 

.1 .. 

Hoop s.tress di s trib.ut,ion 
• l • • .~ : 

due to sh r inkag11 fitting . 

Pig_. 6·9 

h ns ile 
s tr ess 

·-
STRE$$1::S 

ab = fc' . 
R' ' , 

C ~ & fA 
. Q1 

-le _ /' II 
" ~ ~ Jc Ra 

fg= fc"R~ 

I • I ~ , 

\ 

'If' 

( ~. . 

Fig. 6·9 shows the distribution of hoop stress in the inner_ and out~r cylinc:lers across the 
thickness. · 1 ' 

Now the compound cylinder is subjected to the internal fluid pressure p. Let us take 
4 and B as Lame's constants. 
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Boundary conditions are 

or 

or Constants 

Hoop stress at any radius, 

Hoop stress at R2 , 

Hoop stress at R 3 , 

Resultant Stresses 

Inner cylinder. 

Outer cylinder. 

p,= p at r= R1 , inner radius of compound cylinder 
p,= 0 at r= R2 , outer radius of compound cylinder. 

B 
P= R 2 - A 

1 

, B 
',=-+A J , r2 

2p R? 
R? - R 1

2 

231 
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Fig. 6· 10 shows the stress d istributioP. of the resultant hoop st ress across the thickness 
of the compound cylinder. 

/ 
outer 

cylin der 

abcde f-Hoopstress 

due to 
shrinkage 
pressure p' 

a b'c' - Hoops tress due 
to lntcrrial 
press ure p 

,, 1, '11, 

a b c d e- Resultant 
hoo p stre s<.:. 
dist r i bu ti on 

Fig. 6·10. Hoop stress distribution across the thickness of compound cylinder. 

Example 6'3-1. A compound cylinder is obtained by shrink fitting of one cylinder 
of outer diameter 20 cm over another cylinder of inner diameter 14 cm, such that the diameter 
at the j unction of the t wo cylinders is l 7 cm. If the radial pressure developed at the junction 
is 50 N /mm2, what are the hoop stresses at the inner and outer radii of both the cylinders. 

Solution. Inner radius, 

outer radius, 

Junction radius, 

Junction pressure 

R1 = 70 mm 

R2= 100 mm 

R3 = 85 mm 

p'= 50 N/mm 2
• 

Inner cylinder. Hoop stress, 

2R 2 2 X852 

f/Ri =-p'X R 2_ aR 2=- 50 X 852- 502 
3 ) 

=-152·91 N/mm2. 

R 2+ R z 85Lf-- 50S 
fr' R3 =-p' x R:2-R> =--sox 852- 502 

= - 102'9 1 N/ mm 2 • 

Outer cylinder. 
R ·+R 2 1002+ 852 

Jr''Ra = + p' X -.R:;- R:2 = 50 X 1002-852 

=+ 310'36 N/ mm~ 

2R 2 2 X852 

r ,"R-.=- + p' X 3 50 X 1 ' · R 2 - R 2= 1 002- 852 
3 3 

=+760'36 N/mm2, 
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Example 6"3-2. A compound cylinder is made by shrinking a cylinder of outer 
diameter 200 mm over another cylinder of inner diameter 100 mm. If the numerical value of 
tJie maximum hoop stress developed due to shrink fitting in both the cylinders is the same, find 
the junction diameter. 

Solution. Inner radius, 

Outer radius, 

Say Junction radius 

R1=50 mm= 5 cm 

R2= 100 mm = -10 cm 

= Ra 

Junction pressure = p' 

Maximum hoop stress in inner cylinder 

Maximum hoop stress in outer cylinder 

-+ 'R22+Rs2 
-- p R 2_ R 2 

2 3 

I 
I 

or as given in the problem 

c,r 

' 2Ra2 ' R22+ R32 
p X Ra2- R

1
2 = p X R22 - Rl 

2R3
2 X 100 - 2R3

4= iOOR3L 25R3
2 + R/ - 2500 

3R8
4 -125R/- 2500 = 0 

Junction diameter 

R/ = 125 + ../I 25 2 ±J 2. x_;so_o = 12s + 2 13·6 = 
56

.
433 6 6 

R3 = 7"512 cm. 

= 2X7"512 

= I 5·024 cm = 150·24 mm. 

Exercise 6"3-1. A compound cylinder is made by shrinking a cylinder of outer 
iiameter 240 mm over another cylinder of inner diameter 160 mm such that the junction 
Jressure is 60 N / mm2

• If the diameter at junction is 200 mm determine the values of hoop 
;tress at the inner and outer radii of both the cylinders. 

[Ans. - 333'33, -273"33, + 332'73, + 272·73 N/ mm2] ,. 

Exercise 6"3-2. A compound cylinder is made by shrinking one steel cylinder of 
,uter radius 100 mm o:ver another . steel cylinder of inner radius 50 mm. The shrinkage 
,llowance provided is such that the maximum hoop stress developed in both the cylinders is 
10% of tht. yield strength of the material. If the yield strength of steel is 270 N/mm2, find 

(i) junction pressure 

vn wall thickness of ~oth the inner and outer cylinders. 

[Ans . Go- 6 N/ mmz; 25· 12 mm, 24"88 mm] 
,I • • ' • • • • ~ 
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6. 4. SHRINKAGE ALLOWANCE 

Before the two cylinders are compounded, the inner radius of the outer cylinder Rs" is 
less than the outer radius of the inner cylinder R 3' (as shown in Fig. 6"11). The outer cylinder 

Outer cylinder 
'l ,, 

R3 < R3 

I . 
Com pound cyl1nd.er 

R
3 

< R3 
R3 > R'3 

Fig. 6·11 

is now heated upto a temperature such that R3" increases to Rs' and then it is pushed ove1 
the inner cylinder. When the outer cylinder is allowed to cool down to room temperature, i1 
tries tQ contract exerting compressive radial stress p', on the outer surface of the inne1 
cylinder. The inner cylinder, in turn, offers equal and opposite reaction exerting compressive 
radial stress p' on the inner surface of the outer cylinder. The final junction radius is R3 whict 
is smaller than Rs' and greater than R/. 

Now, hoop stress in inner cylinder at R 3, 

f. ' _ _ , Rs2+R1
2 

C R3 - p Rs2 - Ri2 

Hoop stress in outer cylinder at R 3, 

Say 

f
,, - + , R22 + R3

2 

c R3 - p Rl-Ra2 

£ 1 = Young's modulus for inner cylinder ' 

-
1
- = Poisson's ratio for inner cylinder 

m1 

E2= Young's modulus for outer cylinder 

-1- = Poisson's ratio for outer cylinder 
m2 

Then circumferential strain at R3 in inner cylinder 

1 
p'(Ra2+ R12) p' 

~c = - ·E
1
(R

3
2 - R/ ) +m1E; ' 

" · 
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Circumferential strain at R3 in outer cylinder 

e ." = + J!.._ - ~--a~_\+ ___£_ I ( R 2+R ~ I 

E 2 R 2
2 - R3

2 I m2E2 

R3'-R3=ec' XRa, 

contraction in the outer radius of inner cylinder. 

Ra- Ra" =ec'' x Ra, 

~xpansion in the inner radius of outer cylinder. 

Now e.' is the compressive strain and ec" is the tensile strain, so 
' 

The total shrinkage allowable 

In case 

Or 

8Ra=Ra[ p'( R2: + Ra: )+LJ+Ra [L( Ra
2
+R1

2)-LJ 
E2 R2 - Ra m2E2 E1 R3

2- R
1

2 m
1
E

1 

E1= E2=E 

1 I 1 - = -- = -

8R = R [L ( -R1
2
+ Ra2 )+L( R32+ R12 ) ] 

a a E R22_ Ra2 E Ra2_ R12 

aR = Rap' ( R2
2+Ra2 + Ra2+R12) 

a E R22_ Ra2 Ra2_ R/ 

8R3 1 ( . I f h ~ = E numenca sum o t e hoop stresses at the common 
a surface of two cylinders) 

= k (algebraic difference of the hoop stresses at the 
common surface of the two cylinders) 

·Example 6'4-1. A co'mpound cylinder is formed by shrinking one cylinder on to another, 
the final dimensions being internal diameter 12 cm, external diameter 24 cm and diam eter at 
junction 20 cm. Afte.r s~ril}king ~n t~e radial pressure at the common surface is J 00 kg/cm 2. 

Calculate the necessary difference m diameters of the two cylinders at the common surface. 
Take £ = 2000 tonues/cm2

• What is the minimum temperature through which outer cylinder 
should be heated before it can be slipped on ? ix =o·oooo 11 per 0 c. 

Solution. Inner radius, R1= 6 cm 
Outer radius, R2= 12 cm 

Junction radius, R3= 10 cm 

Di,ffer. ence . 1·1.1 radii, 8R = Ra X p' (. _ R?+ Ra2 + Ra
2
+ R12 ) .,, .,· a E R22 -Ra2 Ra2 - R12 

Io I '• f l = 2d6ox/~ioo ( ~;:~ ;~: + !~:~~:) 
= 

20
~0 (5'545 + 2·1 25)= 3"835 x 10-a cm • 

. \' ·~: ·Differerice!in Dia'meter, 8Da=2X3"835X 10-3 =0'00767 cm 
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,.. 

Coefficient of linear expansion, 
a.= 11 X ,l0- 6/°C 

Say the temperature rise = T °C 

Or 

8D3 = D3 X a.x T 

0'00767 =20 X 11 X 10-o X T 

T = o·oo767 x 106 = 7670 = 34.86 oc 
220 220 

Example 6'4-2. A cylinder of outside diameter 350 mm is heated by 40°C !i_bove th€ 
room temperature, before it is slipped onto another cylinder o'f inside dia~ter t50 mm. II 
the junction diameter is 250 mm, what radial pressure is developed at the common surfac€ 
after the outer cylinder cools down to room temperature. 

or 

.· j ' 

, Given (!:= l 8 x 10-0rc 
E=lOOx 10a N/mm2. 

Solution. Inner radius, 

Outer radius, 

Junction radius, 

R1=75 mm 

R2= 175 mm 

R3= 125 mm 
Diameter difference, sp8~ D3 x a. x T · where T=temperature rise 

= 250x 18 x 10-6 x 40= 0'18 mm 

8R3= 0'09 mm 

Say the radial pressure at common surface 

= p' 

o:-R _ Ra P
1 

I Rl+Ra2 + R3
2 +R1

2 J 
o s- B !._ R2- R 2 R2- R 2-2 - a s, l 

If!:' . 

.. ~ 125 p' [ 1152+ 1.252 Jts2+1~2 J· 0·0.9.---: 10o x 1000 1152-1252 + 1252
1 752. 

I '' I { 1 ... ,: Ii 'i/ 
9
1~

0
5° =:=p' ~3 '083+ 2·125) 

9000 
p'= - J2_5_x_5-.2-08-=l3'825 N/mm2. ,, 

,,,1 

, /;. 

• I 

. ;I 

· Exercise 6'4-1. · A ~\::om.pound cylinder is formed by shrinking one cylinder ont 
another, the final dimerrsi€111s b~ing internal·diaineter 100 mid, external diamefer·18'o mm an 
diameter at common sut;face

1 
4o·· np11, the1 radial pres~ure developed at the common surface 

15 N/mm2 • Calculate the riecessar)'. difference in diameters of the two cylinders at the commc 
surface. Take E= 102000 :N'/mm2• What is the · minimum temperature through which tl 
outer cylinder should be hea~ed before it can be slipped on ? Take 

·' .. · 
• I, 

I{'• J 



TMICK CYLINDERS"" 

Exercise 6'4-2. A cylinder of outside diameter 25 cm, is heated by 35°C above the 
room temperature before it is slipped on to another cylinder of inside diameter · 15 cm. If 
the diameter at the junction after shrinking ts 20 cm, what radial pressure is developed at the 
common surface ? 

a= 11 X 10- 6/°C 

E=2000 tonnes/cm2 

6'5 . HUB AND SHAFT ASSEMBLY 

LAns. 94·757 kg/cm2] 

Generally the hub of a gear, a pulley or a flywheel is fitted on the shaft with the help of 
key inserted in the keyways provided on shaft and hub. But a ,keyway cut on a shaft or a hub 
reduces its strength, introduces stress concentration and the material bece mes weak. To avoid 
these defects, the hub can be either force fitted or shrink fitted on the shaft as shown in 
Fig. 6'12. 

Fig. 6· ,12 

. . "•i . 

Let us consider that a hub of outer radius R is force fitted over a shaft and the final 
radius at the junction of the two is r. Due to for~e fitting or shrink fitting, say the ·radial 
pressure developed at the common surface is p'. Assume Lame's constants A

1
, B1 for shaft and 

A 2, B2 for hub. ' 

Shaft. Bou11dary conditions are, ,at 

R , B1 A r= 1, pr= p = R~- 1· 
1" ., 

. '. 
,•r ",··· 

Since it is a solid shaft? i.e.! at the centre, radius is zero, and the radial or c jrcuq1ferential 
stress at the centre cannot be mfi111te. Therefore, . ·· . · · ,'. ,. , · .1 · .,JJI , 

Constant , .' B1 =iO ,\ 
\ p'= - A1 ; or ,A1='.p'i' 

Circumferential stress at any radius 

Jc= !!: +Ai 
I' 

But B1 = 0 

fo =+A1=-p' (coni~ressi've) 

• ,.· I j i j f; : • ' • ~ 

i.e., in the solid shaft , both radial and circum(~r'en:tial stre~~es are compressive and are constant 
throughout. · 
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· Circumferential strain in shaft at common radius 

where 

"• iJt I ~! ,. ! • 

'i:d ·• 
J > ! ~ j J I I 

where 

. e.'=- Ep' + pE' (compressive strain) 
1 m1 1 

E1 = Young's modulus of shaft material 

-
1
- = Poisson's ratio of shaft material. 

m1 

Hub. Boundary conditions are at 

I j' 

R , B2 A r= i, pr= p =Jfz- 2 
1 

R12 

A2=p' Rl-R12 

Circumferential stress at any radius 

B2 
= -2 +A, r 

Circumferential stress at radius R1, 

• - ' R
22+ R12 tensile J•-P R22-Ri2 

Circumferential strain at radius R1, 

eo"= _Ep' X ~ 2
:~;

1
: + 'p~ (tensile strain) 

· 2 2 1 m2 2 

E2= Young's modulus of hub-material 

-
1 

= Poisson's ratio of hub-materia l. 
m2 

Shrinkage allowance on radius, ! 

l>R1 =_ e/ X R1 - ea ' X R1 
,J- ' ;,·JI l.J iJ.J 'J )t:: ; ' I ., • i •,t I i • ' I; .JI 

· · :since ec' is compressive and e .'' is tensile 'strain 

l>R = p'R1 ( R2
2+Ri2 +- 1-)+ p'R1 ( 1 __ 1_) 

i E2 . ·, R22-R1a . m2 E1 m1 

In a particular case where 

E1= E2= E 
I I 1 - =-=-

m1 m2 m 

8R = PR1 ( R/+R1
2 +l) 

1 
,./;, \. Rl- R1

2 

! ,rn tw , ,;.-,,: \JJt'D , .·',··,:i1.'·,· ·~ · , =·!'.}1
: :R~;!.~2 ·' .,. · 

.. ~ 

JI :.,1· ,,[ 
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Example 6·5-1. A steel shaft of diameter 10 cm is driven into a steel hub. The 
driving allowance provided is I / 1000 of the di ameter of the shaft. Determine the thickness 
of the hub if the maximum bursting stress in the hub is limited to 130 N/mm2 and 

or 

£ = 208,000 N/ mm2 • 

Solution. Radius of the shaft, 
R1 = 5 cm = 50 mm 

Say the outer radius of hub = R2 

Junction pressure = p' 
SD1 '1 ~R 1 -D-: = I 000 = -R-: 

So SR1 l p' ( 2Rl ) 
T = 1000 = E- R22- Ri2 

p '=O·oo1 X E X(R22-R12) 
2R22 -· 

p'= O·oo1 X 208000 X ~~:
2
-2500) 

= 104 (R2
2 - 2500) 

R22 

Now the maximum bursting stress in the hub 

' R.2+R12 
=- p X R:2- R.2 = 130 

' x Rt2 + 2500 = i~o 
p R} - 2500 .) 

p ' = 130 (R2
2

- 2500) 
R22+25oo 

From equations (I) and (2) 

104 (R2L·2500) 130 (R22-2500) 
Rl R22+ 25oo 

'·' '!1 

104 (R2
2 + 2500) = 130 Rl, 

0·2 Rl= 2000, 
o·s R?+2ooo= Rz2 

R2
2 = 10,000 

R2 = 100 mm 

Thickness of the hub = R2- R1 = 100-50= 50 mm. 

... (1) 

.... . , 

... (2) 

Example 6·5-2. A steel shaft of 12 cm diameter is forced into a steel hub of 20 cm 
external diameter, so that the radial pressure developed at the common surface is 120 kg/cm2• 
Jf £ = 2100 tonnes/cm2, determine the force fit allowance on the d iameter. What is the maxi
mum hoop stress developed in the hub. 

Solution. Shaft radius, 
R1 = 6 cm 

Outer radius of hub, R 2= 10 cm 
Junction pressure, 

Younts modulus! 

p'= 120 kg/cm2 

E= 2100 X 1000 k~/c~ 2 
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Allowance on radius, 8R
1 
= p'R1 (-2R2

2 
_ 'I 

· . £ . Rl- R/ ) 
: . 6 

= llO x 21·oo x JOoo( 
= J '07x 10-3 cm 

So Allowance on diameter, 
8D1 = 2'14 X 10 3 cm 

Maximum hoop stress in the hub 

_ , R}+R12 

- p X R 2 R 2 
2 - 1 

STRENGTH OF MATERIALS· 

102+62 
= 120x 102_ 62 = 255'0 kg/cm2 (tensile). 

Exercise 6'5-1. A steel shaft of 80 mm diameter is driven into a steel hub. The 
driving allowance provided is 0'06 mm of the diameter of the shaft. Determine the thickness 
of the hub if the maximum bursting stress in the hub is limited to 100 MN/m2. 

£=208 GN/ m2 

Note 100 MN/m2= 100 x 106 N/m2= 100 N/mm2 

208 GN/m2 = 208 x 109 N/m2 = 208 x 10s N/mm2 [Ans. 35'317 mm] 

Exercise 6'5-2. A steel shaft of l40 mm diameter is forced into a steel hub of 200 
mm external diameter , so that the radial pressure developed at the common surface is 25 
N/mm2• If E = 210 X 1000 N/ mm2, determine the force fit a llowance on the diameter. What 
is the maximum bursting stress developed in the hub. [Ans. 0'064 mm, 73·04 N/mm2] 

Problem 6'1. A steel cylinder I m inside diameter and 7 m long is subjected to an 
internal pressure of 10 MN/m2• 1: Determine the thickness of the cylinder if the maximum 
shear stress in the cylinder is not to exceed 40 MN/1112 • What will be the increase in the 
volume of the cylinder ? 

. ' I. 

or 

Poisson's ratio 

Solution. 
Inside diameter, 
Length of cylinder, 
Internal pressure, 

.. Maximum s,tiear stress 

E=200 GN/m2 

= 0'30. 

D= lm 
L= 7m 
p= IO MN/m2 

= 40 MN/m 2 

f, .,,n,.+p 
- 2 -

f• m0 ,,= 70 MN/m2 

/ 0 mu,.+ JO 
2 

where/. m11:z, the maximum circumferential stress which occurs at inner radius 

Say outer radius = R2 
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Now 

Wall thickness 

7R2
2-1'75= R2

2 +0·25 

6Rl= 2'00, R2 = 0'577 111 

= 0'577- 0'500= 0·077 m. 

Now at the inner radius 

Jc ona•= 70 MN/1112 . te,nsi le 
p = 10 MN/1112 compressive . 

,! 

Axial stress, R1
2 lO x 0·52 _ 

j .. = p R2
2-R

1
2 = (0'577}2- (0'5)2 

Diameter strain, 

Axial strain , 

Volumetric strain, 

10 x o·25 . . . , 
= 0'333- 0'250 = 30 12 MN/111~ 

Jc lj., . ] p 
ED = E - m 7 +m E 

70 o·Jx 30·12 0·3 x 10 - - - -----·+---- E E E 

63'964 
E 

. f,, f , p 
""= E - mE + mE 

30' 12 0'3 X 70 0'3 X 10 
=~ -: E + E 

12· 12 
~ -E -

Ev= 2,;v + "'' 

2 X 63'964 12' 12 140'04·8 
= E + - E= E 

7T 
Original volume, V= 4 (1)2 X7= 5'4978 .i;n~ 

Increase in volume, 8V = "v x V 

- _!:l0'048 5'4978 MN/ 2 rr E .. X , 111 

140'048 X 5'4978 MN/m2 
200 X GN/ 1112 

140'04£_x 5'4978 .. ~
0

.
00385 3 

200 X IOOO m : 
i,' • • ~ 

24.l 

.1 j,:. 

J • 

~ ~ • r • ' 



242 STRENGTH OF MATERIALS 

P1·oblem 6'2. A pressure vessel 20 cm internal radius, 25 cm external radius, 1 metre 
lung is tested under a hydraulic pressure of 20 N/mm2. Determine the change in internal and 
external diameters, if 

E = 208000 N/mm2 

Solution. Pressure, 

Internal radius, 

External radius, 

-
1
- , Poisson's ratio= 0·3. 
m 

p = 20 N/mm2 

R1= 200 mm 

R2= 250 mm. 

Hoop stress at inner radius, 

Rz2+ R1
2 

Jc, = p. R 2- R 2 
2 1 

- 20 2502+2002 _ 91 · 11 N/ z ( ·1 ) - x 2502_ 200" - mm tens1 e 

Hoop stress at outer radius, 
2R12 "c. = p X ---=---J, . R22-R12 

2 x2002 
= 20x 2502_ 2002 71"11 N/mm2 (tensile) 

Axial stress, - pR12 
J:,- R22-R12 

20 X (200)2 . ~ . 
= 2502_ 2002 = 35 55 N/mm~ (tensile) 

Diametral strain at inner radius 

_ f c1 f a p 
EDi - y - -mE + mE 

91 ·11 0 ·3 x 35'55 2o x o·3 
=-y- - E + E 

Change in internal diameter 

86'445 
E 

86'445 
= ED1 x 400= -208000- x 400 = 0'166 mm 

Diametral strain at outer radius, 

ED2 = f c2 _L<:.. 
E mE 

71" l 1 0"3 X 35'55 60'445 - _E ___ __ E_ __ E 

(:h~nge in external diameter 

_ X 500_ 60'445 X500 . 
- ED ~ - ;w~OOQ = 0 145 mm, 

• !, 



Problem 6·3. Strain gages are fixed on the outer surface of a thick cylinder with 
diameter ratio of 2·s. The cylinder is subjected to an internal pressure of 150 N/mm2• The 
recorded strains are : 

(i) Longitudinal strain= 59·87 X 10-o 
(ii) Circumferential strain= 240·6s x 10-o. 
Determine the Young's modulus of elasticity and Poisson's ratio of the material. 

Solution. Say the inner radius of cylinder=R1 

Then outer radius of cylinder= 2·5 R1 

Internal pressure, p = 150 N/mm 2 

Axial stress, 
pR12 

f a Rl-R12 

150 x Ri2 
=6·25 R1

2-Ri2 

Hoop stress at outer surface, 
2R12 

· f.=p R 22-Ri2 

2s· 57 N/mm2 

R12 

= 2 X 150 X 6·25 R12~ jff 

Say Young's modulus=£ 

P 
. . 1 

01sson's ratio= -
m 

Longitudinal strain, 

Circumferential strain, 

= 57·14 N/mm2 

/ u 1 /c 
"a= -y - ;- E 

28"57 1 57· 14 
= -y- - ,;; x ~ 

J. 1 /,, 
"

0 =E-m E 
57·14 1 28"57 

=-y- - ,:;:; x -y-

or 59·87 X 10- 6= 
2
~

57 
( 1- ! ) 

28·57 ( 1 ) 240'65 X 10- 6 = ~ 2-_ m 
Dividing equation (2) by (1) 

240'65 ( 2- ! ) 
59'87 = ( 1- ! ) 

•. (l) 

•.. (2) 

... (1) 

... (2) 



or 

or 

i 
or 
; ·1' m 

4"02--2= - _1 + 8"04 
m m 

2·02 l 
, ,; ?"04=m 

Poisson's ratio=0"287 

Substituting the value of -
1
- in equation ' (I) 

m 

59
.
87

x 
10

-0 = 28'57 0 _ 2 x .287)- 0'428x28 57 
E E 

Young's modulus, 

E=0'428X28'57 lQG N/ 2 
· ·. 59'87 x ' mm 

= 0'204 X 106 N/tnm2 

E=204,000 N/mm2 ', 

Problem 6'4. A thick cylinder 120 111111 internal diameter and 180 mm external diameter · 
is used for a working pressure of 15 N/mm2. Because of external corrosion the outer dia
meter of the cylinder is machined to 178 mm. Determine by how much the internal pressure 
is to be reduced so that the maximum hoop sttess remains the same as before. 

Solution Inner radius, .R1 = 60 mm 
Outer radius, R2 = 90 mm 
Radial pressure, p ,= 15 N/mm2 

Maximum hoop stress occurs at the inner radius 
R22+ Ri2 

Jc rn,u = p,. Rl- R12 

902+602 
= l5 X 902 _ 60z:- .= 39 N/-mm2 

When the external diameter is turned to 178 mm due to corr.osion, ·s'ciy •the. 'pressure 
required is pr'. 

• :.1 

or 

Inner radius, R1 = 60 mm 
Outer radius, R2' = 89 mm 

Maximum hoop stress developed=39 N/mm2 

I 892+ 602 

39= pr . 892- 602 

(as above) 

( 
892 - 602 ) . 

pr' = 39 892+ 602 = 14:627 N/mm2 

Reduction in internal pressure= p,-p,' 
= 15- 14'627 N/mm2=0'373 N/mm2 . 

. 
Problem 6'5. Two thick cylinders A and Bare of the-s~~e dimensions. The external 

diameter is double the internal diameter. A is sulbj¢cted to internal pressure Pi, while B is 
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subjected to external pressure Pz only. Find the ratio of Pi and p 2 if the greate~t circumferential 
strain developed in both is the same. Poisson's ratio of the material of both cylinders=0'3. 

Solution, Cylinder A-subjected·to ·internal ,pressure p 1 only. Greatest circum
ferential stress occurs at inner radius 

where 

So 

R.2
2+ R12 

Jcma~= P1. R 22- R12 

R2 = exter-nal radius 
R 1 = inter-11al radius 
R2= 2R1 (as given) 

Jcma" = ; p1 (tensile) 

Axial stress in cylinder, 

r. nR1
2 Pi ( , ·, ,1 ) 

. u=P1 X '1t(R22_ Ri2) =+3 tens·ne 

Greatest circumferential strain at R 1, 

Jc max Ju Pi 
Ei - E - mE+ mE 

1 "867 Pi {tensile Mra:ih) 
E 

I 

\ 
- -Pa 

., 

F ig. 6·13 

Cylinder B-subjected to external 'pressure Pz only. Greatest circumferential 
stress occurs at radius R1 

8 
= - 3 Ps (compressive) 

Axial stress, 
, ' nRl 

fa =-P2 R 2 R 2 
'It 2 - 1 

· 4 - 3 p~ (compressive) 
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Greatest circumferential strain, 

f .' m ae Ju' P2 
€ 2 -=: -E- - mE - mE 

8 P2 4 0·3 p2 x o·3 
= - 3--y+3x7 +-E-

(all the stresses/.' ma•,fa', p2 are compressiv,e) 

€2= PE ( - ~ +0A+o·3 ) · 

So 

or 

1 ·867 Pi 
E 

1 '967 p2 
= - E 

l '967 P2 
E 

1 ·967 p2 = E 

(compressive strain) 

(numerical value) 

..J!.L = 1 '967 = L ·053 
p 2 I ·867 

Problem 6·6. The maximum stress permissible in a thick cylmder of 5 cm internal 
diameter and 20 cm external diameter is 200 kg/cm 2. If the external radi al pressure is 40 kg/ 
cm 2, determine the intensity of the internal radia l pressure. 

Solution. Fig. 6' 14 shows a cylindri
cal section subjected to external and internal 
radial pressures. Say the internal pressure= p. 

: ~. 

Boundary Conditions 
at radius r= 7·5 cm, pr= p 
at radiu5 r= IO cm, p = 40 kg/cm2 

Taking A and Bas Lame's ~ontants 
B 

p / 7·52 -A ... (i) 

B 
40=- - A 102 . .. (ii) 

Solving the equation (i) and (ii) for A, B we get 

5625 
B= (p - 40) 43·75 

A=( 56'25 p-4000 ) 
43·75 

Circumferential strbss at any radius r, 

B 
/,=~+A 

_ (p- 40)(5625) (56'25 p- 4000) 
- 43·75 rZ + 43·75 

- i t.Okg/ m 

Fig. 6·14 
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r is in the denominator and to get the maximum value off,, r should be. minimum i e. 
7"5 cm for the given case. . 

So (p-40)(5625)
0 

( 56'25 p-4000 ) 
f, .,, •• = 43·75 X (7'5)2 + 43·75 

= ( -40) _ _!QQ_+ 56'25 p-4000 
p 43·75 43•75 

=( 156'25 p -8000 ) 
43·75 

or 200= 156'25 p-8000 
43·75 

Internal pressure, 200 X43"75+8000 = 107"2 k / 2 
P 156"25 g cm 

Problem 6·7. A thick cylinder of internal diameter D and wall thickness t is subjected 

to an internal pressure p. Determine the ratio of ; if the maximum hoop tension deve

loped in the cylinder is 2·5 p. 

or 

or 

or 

or 

Solution . Internal radius, 
D 

Ri=-
2 

External radius, R2= ( i +t ) 

Maximum hoop tension, 

. R22+R12 
}c mac= p , R}-R12 

. R22+ R12 
2 5 p=p . R z_ R z 

2 l 

2·5 (R22- R 1
2)=Rl+R12 

1·5 R2
2= 3'5 Ri2 

Substituting the values of R2 and R1 

1·s ( t+ ~ r = 3·5 : i y 
D D J 3·5 

t+2=2 X ~ 

t+ _!2 = !}___ X l '526 
2 2 

D ividing throughout by D we get 

..!....+0·5= 0·163 ./) . ' ~ = 0'263 , 
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Problem 6·8. A cylinder of internal diameter D and wall thickness t is subjected to 
internal pressure p. If it is assumed to be a thin cylindrical shell, what is the maximum 

value of ~ if the error in the estimated value of maximum hoop stress is not to exceed 

by 10%. 

or 

or 

or 

or 

or 

Solution. Internal diameter = D 

Wall th ickness= t 

External radius= ~ +I 

f. "'""" Maximum hocp stress as per L9me:s theory 

( 
D )z I D )2 
-2-+1 +._2 

= pX ( i +t Y- ( ~ r 
J., Hoop stress (considering thin shell)= ~~ 

Now 

,P.atio, 

Jc ma.,,-/. = O" l 
J c m'la, 

(as given in the problem) 

0"9 Jc ma.,=Jc 

r 
n2 n2 
-+Dt+t2+-4 4 

0.9 px n2 Dz 
- + Dt+t2-·-

4 4 

( n2 °" 
'I -2-+Dt + t2 \ D 

0·9 L I=-Dt+t2 j 2t 

0"9 X 2t ( ~
2 

+ Dt+t2 ),= D2t+ Dt2 

0·9 1D2+ l "8 Dt2+ 1 "8 t3= D2t+ Dt2 

- 0· 1 ,n2 +0·3 Dt2+ 1 ·3 t3=o 
l 08 t2 + 0·8 Dt - o· L D2 = 0 

- 0·8 D+ ,J o·64 n2+ 0·12 n2 
t= - - --- --

3"6 

- 0·8 D+ 1·166 D 
= 3"6 

~ = 0"l016, 

0"366 D = 0"1016 /J 
3'6 
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Problem 6·9. A thick cylinder of internal diameter D and wall thickness t is subjected 
to the internal pressure p . If the maximum hoop stress developed in the cylinder is 1 ·5 times 
the internal pressure, determine the ratio of t/D. 

Find the increase in the internal and external diameters of such a cylinder with 160 mm 
internal diameter subjected to internal fluid pressure of 50 N/mm2

• • 

or 

or 

or 

E=200X 1000 N/mm2 

-
1 

=0'28. 
m 

Solution. 

(a) Internal radius, 
D 

R1 = 2 

External radius, D 
R2=2 + t 

Internal pressure = p 
Maximum hoop stress = 1 ·5 p 

(Maximum h oop stress is developed at the inner radius of the cylinder) 

- • - R22+R12 
fc maz - 1 5 p - p R22_R12 

( 
D )2 n2 
- +t +-

1·5 2 2 
= D 2 (D 2 

( . f + t ) - ·2) 
f D ) 2 

.' D )~ 0 · 5 \ 2- -H = 2 · 5 \ 2 , D D 
- - + t = - X J 5 2 2 

(b) Inner radius, 

Wall thickness, 

Outer radius, 

Internal pressure, 

Hoop stress at R1, 

floop stress at R2 , 

D + 1= 2·236 X D 
2 2 

f = J "236 

t . 
- = 0 618 D . 

R1 = 80 mm 

D 
2 

t = 0·61 8x 160= 98"88 mm 

R2= R1+r = L78"88 mm 

p= 50 N/mm2 

R 2+R 2 178"882 + 802 

f •R1 = 50 X R:2- /;- = 50 X !78 '882- 802 

= 75"00 N/ mm2 (tensile) 

2Ri2 2 X 802 
/eR2= 50 X R 22 - R12 = 50 X 178·882- 802 

;=75·00 N/mm2 (tensile) 
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Axial stress, 
1tR12 802 

f~ = p x n(R?- R
1
2) = SO X (178'882 - 802) 

= 12·5 N/mm2 (tensile) 

Radin! stress at inner radius 
= 50 N/mm2 (compressive) 

Radial stress at outer radius 
= 0 

Circumferential strain at inner radius, 

, 75 12·5 50 
£o = 7 - mE + mE 

= ~ (75 - ]2'5 X0'28 --J-50 X0'28] 

85'5 
=-r 

Change in internal diameter, 

= 0'0684 mm 

G rcumferential strain at outer radius, 

,, 25 12·5 
Er = £ --;,;E-

85'5 
X 1000 X 160 

l 
=-" E r2s - 0·28 x 12·5J 

2l'5 
=-y-

Change in external diameter, 

'aD2 = £/ X D2 

21 ·5 (2 x 178'88) =
0

.
038 

mm 
- 200 x 1000 

Problem 6'10. A thick cylinder of internal diameter 160 mm is subjected to an 
internal pressure of 5 N/mm2

• If the allowable stress for cylinder is 25 N/mm2, determine 
the: wall thickness of the cylinder. The cylinder is then strengthened by wire winding so that 
it can be safely subjected to an inter("Jal pressure of 8 N /mm2 • Find the radial pressure caused 
by wire winding. 

Solution. Say the outer radius of the cylinder 

= R2 

lnner radius of the cylinder, 

µ.i = 80 mm. 
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Wall thickness, 

Internal pressure, p = 5 N/mm2 

The maximum hoop stress occurs at the inner radius of the cylinder, which is 

Jc moir,=p 

So 25 = 5 

or R2
2 + 802 = 5 Rl- 5 X802 or 4 R 2

2 = 6 X802 

R2 = 97'98 mm 

Wall thickness, = R2-R1 = 97'98 -80 
= 17'98 mm 

Say the radial pressure developed after 
wire winding is p r as shown in Fig. 6' 15. 

Using lame's equations 

B 
p, = R 22 - A ... (1) 

... (2) 

B 
f• ma<ll = R12 +A ... (3) 

~ 25 N/mm2 

where A and B are constants 

or 8+25= i~ From equations (2) and (3) 

B= I6'5 R 1
2 = I05600 

A=25- _!!_ = 25- 16'5=8'5 
R12 

Substituting the values of the constants in equation (1) 

Radial pressure, 

Fig. 6·15 

pr 105600 
(97'98)2 8'5= 10'999- 8'5= 2'499 N/111m2• 

Problem 6'11. A compound cylinder is made by shrinking a tube of-150 mm outer 
diameter over another tube of 100 mm inner diameter. Find the common dlariieter if the 
greatest circumferential stress in the inner tube is numerically 0·70 times of that of the outer 
tube. 

Solution, 

Say the common radius = Ra 
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or 

Junction pressure (due to sluinking) 

Inner radius, 

Outer radius, 

= p 

R1 = 50 mm 

R3= 75 mm 

, , • : • ' \' I 
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Greatest circumferential stress in the inner tube occurs at its inner radius, R1 

... (1) 

The greatest circumferential stress in the outer tube occurs at its inner radius R2 

p(Ra2+ R2
2) p(752+ R22) 

(Jc ma,.)outer tube Ra2- R
2

2 = 752_ ji22- ... (2) 

Now 2p R22 - [ P (752+R22) J x o·7 
R22_ 502 - 752_R22 

2R22 (752 - R22)= 0·7 (752 + Rz2)(R2
2 - 50Z) 

R24-3356'48 R2
2- 3647076'4= 0 

R2
2= 4220'59 

Common radius, 

Common diameter, 

R 2= 64'96 mm 

= 129'92 mm. 

Problem 6'12. A steel cylinder of outer diameter 180 mm is shrunk or a nother 
cylinder of inner diameter 120 mm, the co~mon diameter being I. 50 mm. If at:ter shrinking 
on the radial pressure at the common surface 1s 12 N/mm2, determme the magmtude of the 
int~rnal pressure p to which the compound cylinder can be subjected so that maximum hoop 
tensions in the inner and outer cylinders are equal. 

Solution. 

Inner radius, 

Outer radius, 

Junction radius, 

Junction pressure, 

R1=60 mm 

R 2= 90 mm 

R3= 75 mm 

p'= I2 N/mm2 

Maximum hoop tension due to shrinkage pressure p ' and internal pressure p occurs at 
the inner radius of both the cylinders. Let us first determine shri nkage stresses. 

Shrinkage stresses. Hoop stress at R1 in inner cylinder, 

I', ' 2Ra2 
JC R1= -p X Rs2- R12 

2 X752 

=- 12 x - - - = - 66 67 N/mm2 1s2- so2 
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Hoop stress at R3 in outer cylinder, 

f/Ra=+p' ;~:~ ;:: 

902 +752 
= 12X 902_ 752 = 66'54 N/mm2 

Stresses due to internal pressure p. Say Lame's constants for compound cylinder 
are A, B 

or 

Boundary conditions, at r=R,, p,= p= t2 -A 

B 
at r=R2, pr = O= RT-A 

2 

Hoop stress at any radius, 

B p R1
2 Rl R1

2 

fc=--;:z-+A = r2 X R22-Rt2 +p R22- R 12 

p 602 X 902 602 

= ,.2 X 902- 602 + p X 902- 602 

= 4-x6480+ 0·8 p ,. 

At r = R1··· . .Jc R,== :02 -x6480+ 0'8 p 

= i ·8 p + o·8 p = 2·6 p 

At r= R3 ...... fc R3 = 7 ~2 X 6480+ 0·8 p 

= 1 ·152 p + o·8 p= 1·952 p 

Now resultant hoop stresses at the inner radius of both the cylinder 
Jc'" R1= fc' R1 +/c Ri=-66'67+2'6 p 
Jo"' Rs--'fc" Rs+/. R3= 66'54+ 1'952p 

Now as per the condition given 

- 66'67 + 2'6 p = 66'54+ 1 '952 p 

0'648 p=133'21 

Required internal pressure, 
p=205'51 N/mm2 

Problem 6'13. A compound cylinder has a bore of 120 mm, the outer diameter is 
200 mm and the diameter at the common surface is 160 mm. Detsrmine the radial pressure 
at the common surface which must be provided by the shrinkage fitt ing, if the resultant maxi
mum hoop stress in the inner cylinder under a superimposed internal pressure of 50 N/mm2 is 
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to be half tile va1ue of the maximum hoop tension in the inner cylinder if this cylinder alone 
is subjected to an internal radial pressure of 50 N/mm2• 

Determine the resultant h oop stresses at the inner and outer radii of both the cylinders. 
Sketch the variat10n of resultant hoop stress along the thickness of the cylinder. 

Solution. 
Inner cylinder. Inner radius, R1 = 60 mm 

Outer radius, R8 = 80 mm 

Outer cylinder. Inner rad ius, R3= 80 mm 
Outer radius, R2= 100 mm. 

A. Inner cylinder alone is subjected to internal pressure of 50 N/1111112 

. d' R 50 Ra2+ R12 J. ma"' at inner ra IUS 1= X R 2_ R 2 
3 l 

( 
802 + 602 ) 1250 . 

-=SOX 80:i_ 602 = -
7
-N/mm2 (tensile) 

B. Let us say the junction pressure cl ue to shr inkage is pr at the common radius R3 

in the case of compound cylinder. 

or 

Hoop stress due to pr at radius R1 in the inner cylinder 

, 2Ra2 
f • R1=-p,. Ra"· - if;_2 

2X 802 32p, . 
=-pr. 

802
_ 602 = - y (compressive) 

c. The compound cylinder is subjected to an internal fluid pressure of 50 N/mm2
• 

Hoop stress at radius R1, 

• " - 50 .!Y + R1~ 
JC R1 - X R 22-R12. 

1002 + 602 425 = SO X 
1002

_ 602 -
4
- N/mm2 (tensile) 

Resultant hoop stress at radius R1 , (due to shrinkage and internal pressure) 

/eR1=/ / R1 + f e''R1 

= - ;2 pr+ 4~5 

-- as given in the problem --- 21 ( 1_2750 ) 

32 425 625 
--r p,+-4- =-·r 

425 625 32 
4 - --7- = 7 P,. 

475 7 
pr= 28 X 32 = 3'7 1 N/mm2 
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i.e. Radial pressure at the common surface provided by the shrinkage fitting is 
3·71 N/mm2. 

Now let us first determine the shrinkage stresses in both the cylinders. 

Inner Cylinder. The junction pressure p, is acting as the external pressure on this 
cylinder. The hoop stress developed wi ll be compressive in nature. 

2R 2 

f•R1= - pr Rl-R12 
2x802 

=-3·71 x 802_ 602 = -16'96 N/mm2 

R 2+ R 2 

j,Ra= -pr. R\-R\ J 
3 1 

. 802 +602 • 
=- 3 71 x 802 _ 602 = -13 25 N/mm2. 

Outer Cylinder. The ~unction pressure pr is acting as the internal pressure on this 
cylinder, the hoop stress developed will be tensile in nature. 

f'cR3= +pr . 

1002 +802 

= 3'71 X 1002 _ 802 =+ 16°90 N/mm2 

2R 2 

f.R2= +p, . R22-~a2 

= 3'71 x 1g;~~~2 =+ 13·19 N/mm2 

Now consider the compound cylinder with inner radius 60 mm, outer radius ioo mm 
subjected to internal fluid pressure of 50 N/mm2• Let us take A and Bas Lame's consta:n.ts. 

Boundary Conditions 

B 
p, =50 N/mtn2=- - A 

6r2 

At r= R2 = 100 mm, p, = 0 

From these equations, the values of constants are 

B= 28 1250 N 
A= 28 ' 125 N/ mm2 

Hoop _stress at any radius r, 

f. == ~. + A=--= 281250 + 28 '125 
/' " /' 2 

B 
= 10()2 -A 

at radius R 1, j.'"R1 
28~i;0 

+28·125 = 106·250 N/mm2 

at R 3, f.'"R3= ~!~5
0 + 28' 125 = 72'070 N/mm2 

/ " 'R = 281250 
+ 28'125 = 56°250 N/mn12 

C 2 1 Qu2 
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Resultant Stresses 

Inner cylinder 

at R3 , 

Outer cylinder 

at R2 

//R, ~f,R1 +-f.' "R1 =· - 16·96+! 06'25 = 89'29 N/mm2 

/ r1R ~ 0 ~.f,R2+ .fr.'"R2=--c - l3'25+72·07= 58'82 N/mm2 

/c°R3 = .f.'R3+ / c'"R3 = I 6·90 -1-72'070= 88'97 N/mm2 

/ c°R2=.f,R2+/c'" R2 .,....,,; 3· 19 + 56'250= 69·44 N/mmi. 

Fig. 6·16 shows the sketch of the d istr ibution of resultant hoop stress across the thick
ness of the compound cylinder. 

ab: 89 -29 N/mm2 

Ce: 5 8 ·82 

Cd: 8 8 -97 ; 

tg: 69 44 

Fig. 6· J6 

g 

Problem 6·14. A compound cylinder consists of a steel cylinder 18 cm internal and 
25 cm external diameter and a bronze liner of L8 cm external and 15 cm internal diameter. 
Assuming the liner to be thin cylinder and that there is no stress in the compound cylinder 
due to fitting, determine the maximum direct stress and maximum shear stress in each material 
due to an internal pressure of 100 N/mm2• Ignore the longitudinal stress and strain. 

For steel 

For bronze 

Solution. 

E=208000 N/ mm2 

-
1 

= 0·2s 
m 

E= 112,000 N/ mm2 

J_ = 0'30 
m 

Internal radius, R1 = 75 mm 
External radius, Ra= 125 mm 
Common radius, R2= 90 mm 
For the compound cylinder radial 

pressure, 
B 

p = 7- A 

Hoop stress, 
B /c= ,.2 +A. 

,. 
Bronz e cyt, nde r 

Ft~. 6·17 
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where A and B are Lame's constants. 
Now p = lOO N/mm2 

p= O 
at r=75 mm 
at r = l25 mm 

So 

From these equations 

B 
100=--A 

752 

B 
0= 1252 - A 

As t here is no shrinkage stress 

I 00 X 7 52 X 1252 
B= ( 1252 - 753) 

100 X 752 
A = ( 1252- 752) 

Radial pressure at the common radius, 

B 
p, = 902 - A 

JOO X 752 X 1252 100 X 752 
- 902 (1252- 752) (1252- 752) 

= !08'50-56'25= 52'25 N/mm2 

257 

... (!} 

... (2) 

Treating the liner and cylinder separately. Liner is to be treated as thin 
cylinder. 

Circumferential stress developed 

Jc' = pD1 _ prD.:L 
2, L.( 

I 00 X I 50 52. LS X 1 80 
== 2 X 15 2>< 15-
= 500-313'5= 186'5 N/ mm2 

Pr= 52·25 Njmm2 ' 

• 

Maximum direct stress 

Maximum shear stress 

f4- 75 --j 
90~ 

D1 = 150 mm 

D2 = 180 mm 

t = 15 mm 
Fig. 6·1 8 

= 186'5 N/mm2 (tensile) 

Bronzr lin 

186'5 + 100 . --· --
6
---= 143 25 N/111111 2 As p is c;ompre~~iy~ 
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Steel cylinder 

p,= 52'25 N / mm2 

M aximum hoop stress occurs at the inner radius R" 

~:o :1--::~ d ia . D2:~80mm 

Outer d ia o3:250mm 

jfig, 6· 19 

r ,, Ra2+ R22 
J • = p r• Rs2- R2'! 

,, . (12s2 + 902) 

/ . = 52 25 X (1252- 902) 

52'25 X 23725 
= 7525 

Maximum direct stress = 164'73 N/mm2 (tensi le) 

164'73+ 52'25 = --- = 108'49 N/ mm2 

2 
Maximum shear stress 
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Problem 6'15. A steel tube of outside diameter 220 mm is shrunk on another tube of 
in~ide di ameter 140 mm. T he diameter at the junction is 180 mm after s,hrinking on . The 
shrinkage allowance provided on the radi us of the inner tube is o·os mm. Determine 

(a) junction pressure 

(h) hoop stress at the outer and inner radii of the inner tube 

(c) hoop stress at the outer and inner radii of the outer tube. 

E= 2l0 X 10a N /mm2. 

S.~~~ion. After shrinking on of the outer cylinder over the inner •cylinder, radial 
pressure ~9ts_ on the outer surface of the inner cylinder and radial pressure of same magnitude 
acts on the inner surface of outer cylinder . • 

Inner radius, 

Outer radius, 

R1 = 70 mm 

R2= 110 mm 

Junction radius, R3= 90 mm 

Shrinkage allowance, 8R3 = 0'08 mm 

Sa~ junction pressure = p' 
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Now 8R = p'Ra [- R22+Rs2 + Ra2+ R12 J 
a E R22- Ra2 Ra2- R12 

0.08 p' x 9o [ 1102+ 902 902+ 1oi J 
210 x 1000 1103-902 + 902-102 

0 08 X 210 X I ('00 [ J 
90 p' 5·05 + 4·0625 

186'67 , 
9·112s = p 

Jur,iction pressure, p '=20'485 N/mm2 

Hoop stresses 

Inner tube f. , 2R3
2 

, 2 X 902 • 
,R1= - R32_ ·i1° Xp =- 902 _ 702 X20485 

at inner radius, = -103'705 N/ mm2 

at the outer radius r ' - Ra2+ R12 ' 
r R3 ·- - R 2 - R 2 X p 

3 J 

/,JI 
902+ 102 

=- 902_ 702 x 20'485 = -&3·22 N/ mm! 

Outer tube 

at the inner radius R 8, 
,, R22+Ra2 ',' 

J. Ra= R22- Ras X p 

1102+ 902 

= 1102_ 902 X20'485= 103'45 N/mm2 

at the outer radius R2, f. ,, + 2R3
2 

p' 
e R2= R22_ Ra2 

=+ 
1
~; ~

0
; 02 x 20'485= +&:r96 N/m$8 

Problem 6'16. A steel cylinder 10 cm internal diameter and 15 cm e,cternal diameter 
is strengthened by shrinking a11other cylinder onto it, the internal diameter of which before 
heating is 14'992 cm. Determine the outer diameter of the outer cylinder if the pressure at the 
junction after shrinkage is 200 kg/cm2

• 

Given E for steel= 2100 tonnes/cm2• 

Solution. 

Inner radius, 
Outer radius 
Junction radius, 
Junction pressure, 

R1= 5 cm 
= R2 (say) 

R3= 7·s cm 
p'= 200 kg/cm2, 
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Shrinkage allowance, 8D3= 15- 14.'992= 0'008 cm. 

or 8R3= 0'004 cm. 

or 

0.004= R3p' ( R2
2+ R3

2 + Ra2 + R12 
) 

E R22- R3
2 • Ra2- R12 

. 7·5 X 200 ( R2
2+ 7·52 7·52+ 52 ) 

ooo4= 210o x 1000 ·R
2

2- 1·52 +7.52- 52· 

o·oo4x 21oo x 1000 Rl + 56·25 + 2.6 
7 5 X 200 R2

2- 56'25 

5
.
6

_
2

.
6
= Rl + 56'25 

R2
2- 56'25 

3R2
2 - 3 X 56'25= R22 + 56'25 

2R2
2= 4X 56'25 

R?= ll 2·5 

R2= 10'60 cm 

i.e. outer diameter of outer cylinder = :o·60 X2= 2 t ·20 cm. 

Problem 6'17 . A thick steel cylinder of inner diameter 120 mm and outer diameter 
160 mm is subjected to an internal flu id pressure qf 200 N/mm2• A cylindrical jacket 20 mm 
thick of the same material is shrunk on to the cylinder so that the maximum hoop stress 
developed in the cylinder is not to exceed 280 N/mm2• What should be the initial difference 
between the internal diameter of the jacket and externa l diameter of the cylinder. 

E= 200 X 1000 N/mm2, 

Solution. 

Inner radius of cylinder, 
Then outer radius of jacket 
Junction radius, 
Internal pressure, 
Say junction pressure 

1 
-=0'3, 
m 

R1= 0'60 mm 
= 100 mm 

R3= 80 mm 
p= 200 N/mm2 

= p' 

Maximum hoop stress in the cylinder due to internal pressure, at R1 

R22+R12 
= p X R22-R12 ,. 

(< 

1002+ 602 ' 
= 200 X 1002_ 602- = 425 N/mm2. 

But the miximum hoop stress is not to exceed 280 N/mm2. 

So hoop stress provided at R1 by shrinkage 

= 280- 425=- 145 N/mm2 (compressive) 

2R 2 
= p' X - a 

Ra2- Ri2 

11 

,·i. 



or p' X 2 X802 = 145 
802-602 

145 x 28 
p'= = 31 '72 N/mmll 

128 

Jacket and cylinder are made of the same material. 

h . I II R p' Ra [R22+ R? -+ R3
2+ Ri2 J S rm :age a owance, 8 3= -r Rl- R/ · R/_: Ri2 

= 31·12 x so [ 10oi+802 so2..1- 602 J 
200 X 1000 1002-802 + 802-602 

= 12'688 x 10- 3 [4'555+3·571]= 0'103 mm 

8D3= 0'206 mm. 

Initial difference between internal diameter of the jacket and external diameter of the 
cylinder = 0'206 mlli . 

Problem. 6'18. A high tensile steel tyre of thickness 25 mm is shrunk 0 11 a cast iron 
rim of internal diameter 500 mm and external diameter 600 mm. Find the inside di ameter of 
the steel tyre , if after shrinking on, the tyre exerts a radial pressure of 5 N/mm2 on the cast 
iron rim. 

Estee/ = 210 X 103 N/mm2 

Poisson's ratio for steel = 0'30 
Poisson's ratio for C/= 0'25 

Ec1 = lOO x 103 N/ mm2
• 

Solution. 
Inner radius of rim , R1 = 250 mm 
Outer radius of tyre, R2 = 325 mm 
Junction radius, 
Radial pressure, 

R 3= 300 mm 
p'= S N/mm2• 

Hoop stress in rim at R3, 

R 2+ R 2 
f 'X 3 I 
'R = -p R 2_ R 2 

3 3 1 

3005+ 2502 
=-5 x 3002_ 2502 =-27'72 N /mmt 

Hoop stress in tyre at R3 , 

~ , + , R22+Ra2 

J CR = p X R 2- R 2 
3 2 :i 

3252 + 3002 

= 5X 3252_ 3002 62'6 N/mm2. 

Circumferential strain at R3, in rim 

"•'=- 21·12 + -~x o·25 
Ee£ Ee, 

I, 

I 
- lOO x 1000 [ ---- 27·72+ J ·25] = -2Q·47 1. (compressive) 
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Citcumferentiai strain at R3 1n tyte, 

E "= 62'6 + 0'3 X5 
• Es Es 

64'1 
2l0 x iOOO 

Shrinkage allowance, oR3= e o'' x Rs- e .' X Rs 

[ 
64"1 26"47 J 

= 210 X 1000 + IOOx 1000 x 300 = 0"l? mm 

Inside diameter of the steel tyre 
= 600-:- 2oR3= 600- 2 X 0'17 

= 600-0'34= 599'66 mm. 

Problem 6'19. A compound cylinder is formed by shrinking one cylinder over the 
another. The outer diameter of the compound cylinder is 24 cm, inner diameter is 16 cm 
and the diameter at the common surface is 20 cm. Determine (a) shrinkage allowance (b) the 
·temperature rise of outer cylinder so that it passes on the inner cylirider, if the junction 
pressure after shrinking is 50 kg/cm2

• 

Given £=2100 tonnes/cm2 

(/.= 6·2 X 10-8/°F 
'•_ The comr.ound cylinder ~s i:ow subje~ted to an internat' fluid p1:essure of 500 k'g/~11)2, 

determine the maximum hoop tens10n m the cylmder. How much heavier a single cylinder 
of internal diameter 16 cm would be if it is subjected to the same internal pressure in order to 
withstand the same maximum hoop stress. 

or 

Solution. 

Inner radius, 

Outer radius, 

Junction radius, 

Junction pressure, 

R1= 8 cm 

R2 = 12 cm 

R3= 10 cm 

p '= 50 kg/cm2
• 

(a) Shrinkage allowance 

Shrl.nkagc allowance, oR= Rap' ( Rl+ Ra2 + Ra2+ R
12 

) 
E Rl'- Ra2 R3

2 - Ri"· _ 

10 X 50 ( 122+ 102 102+g2 ) 
.= 2100 X 1000 122- 102 + 102 - 82 

= 
4
J

00 
(5'545+4·555)= 0'0024 cm on radius · 

(b) Temperature rise 
8R3= R3 X<XX T 

0'0024= ]O X 6'2 X 10-sx T 

Temperature rise, T o·oo!~x 106 
=38'7 °F 

Now the cylinder is subjected to an internal pressure of 500 kg/cm2 • To find out the 
maximum:hoop tension, l,et us first find out the hoop stresses due to shrinkage pressure p' at the 
inner radii of both the cylinders. 
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Hoop stresses due to shrinkage pressure 

I I. d R f. , , 2Ra2 

In nnercy tn er at 1, c R1=-p R
32

_ R
12 

2 X 102 

= - 50 x 102_ 82 - 277·77 kg/cm2 

In Outer cylinder at R3 , 

122+ 102 

= 50 x 122_ 10t +277'27 kg/cm2 

Hoop s tress due to the internal pressure 

N ow the compound cylinder is subjected to an internal pressure of 500 kg/c'm2. Let 
us assume A, B as Lame's constants. 

or 

Boundary conditions 

Radial stress, pr=p = 500 kg/cm2~at r= R1 

pr= O at r= R 2 

B B 
500= R

12 
-A= gi -A 

B B 
0= R 22 -A = i 22 - A 

B= 500 X I 22 X 82 = 57600 k 
122- 82 g 

·A= 500 x-8~ = 400 kg/cm2 

122- 82 

Hoop stress at any radius r, 
B 

f.,=-+A ,.2 

Hoop stress at R1, f, R1 = 
57:~o + 400 

= 900+ 400 = 1300 kg/cm~ 

57600 
H oop stress at R3, f. R 3 = ~ + 400 

= 576+ 400 =- 976 kg/cm2 • 

Resultant hoop stresse s 

R 

at R1J •R1 = fr'R1 +f,R1 = -277'77+ 1300,- + 1022·23 kg/cm2 

R 
;,t RaJcRa=f "Ra-f-/cR3= 277'27+ 976 

,. • I 
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In this particular case, maximum hoop stress occurs at the junction radius and it .is 
equal to 1253'27 kg/cm2• 

Single cylinder. Single cylinder of inner radius 8 cm and outer radius say R2, is 
subjected to internal fluid pressure of 500 kg/cm2 such that the maximum hoop stress is 1253'27 
kg/cm2• In the case of a single cylinder maximum hoop stress occurs at the inner radius and 
it is equal to 

or 
2'506 R22-2'506 X 82= Rl+82 

1 '506 R2
2 = 3'506 X 82 

R2 = 12'20 cm 

A,, Area of cross section of single cylinder 
= 1t( l2'202-82) = 84'84,. cm2 

A c Area of cross section of compound cylinder 
= ,;(122 - 82)= 80,. cm2 

Weight of single cylinder 3A .L A, 84'84 n 
Weight of compound cylinder= 3A,L = T. = 80 .,,. 

1'0605 

where £ = length of the cylinder 
a = density of the material. 

Therefore single cylinder is about 6'05% heavier than the compound cylinder. 

Problem 6'20. A bronze liner of outside diameter 60 mm and inside diameter 39·94 
mm is forced over a steel shaft of 40 mm diameter. Determine (a) the radial pressure between 
shaft and liner (b) the maximum circumferential stress in liner (c) the change in outside dia· 
meter of the liner. 

Steel, 

Bronze, 

Es = 208000 N/mm2 

_l__ = 0'29 
m 

fa = l25,000 N/mm2 

1 . - = 0 33. 
,n 

Solution. Diametral allowa nce between shaft and liner 
= 40- 39'94= 0'06 mm 

Say the radial pressure at the common radius 
= p N/mm2 

S_haft diameter, D1= 40 mm 
Shaft radius R1= 20 mm 
Liner outer radius, R2= 30 min 
<;:: ircumferential stress in shaft 

=p (compres~ive) 
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Circumferential stress in liner at inner radius, 
R22+ R12 

fc = p R22- R12 

302 +202 

= pX 302_ 20~ = 2'6 p (tensile) 

Diametral strain in shaft (at common radius) 

= ...f!.._- -
1- P_= ..!?_ {1-0 29) 

E, m E, E, 
0 ·11 p 

= E, (compressive) 

Diametral strain in liner (at common radius) 
/. I p 

= Eb +m Eb 

= Ep-: (2'6+0·33) = 
2

·93 P (tensile) 
u Eo 

Total diametral allowance, 

0'7l p X40 + 2·93 p X40= 0'06 
E, Eb 

o;~8~~4o + 2·ii5~;040 -=0·06 

p (0' 1365+0'9376)=60 

(a) Radial pressure, p = __ __§Q_ = 55'86 N/mm2 
1'0741 

(b) Maximum circumferential stress in liner occurs at inner radi us 
Jc maz= 2'6 p = 2'6 X 55'86= 145'23 N/1111112 

(c) Circumferential stress at the outside radius of the liner, 

- 2R12 
Jc mtn - p X R 2 R 2 

2 - 1 

2 x 202 • 

= p X 302- 202 = I 6 p 

= l '6 X 55'86= 89'376 N/mm2 

Change in outside diameter of liner 

= f "e:'" X 60 

89'376 . = 125 OOO X 60= 0 043 mm 
' 
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Prohlein 6'21. A steel sleeve 1 ·5 cm (radial thickness) thick is pressed on to a solid 
steel shaft of 5 cm diameter, the junction pressure being p ' . An axial tensile force of 10 tonnes 
is applied to the shaft. Determine the change in (a) radial pressure at the common surface 
(b) hoop tension in sleeve. If 

p' = 250 kg/cm2 

_!__ = 0'285 for steel, 
m 
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Solution. 

Radius of shaft, R1=2· 5 cm 
Outer rad)us of sleeve, R2= 2·5 + t ·5= 4 cm 
Radial pressure at com m.on surface, 

p'=250 kg/cm2 

STRENomH<DF, MsltlEl!b\LS 

~ SI" I ' '"" ~F-~;--I ~alOto~:/.:-s 
. . ..._ ........ ~..__.,z....,._ t Steel shaft 

Axial tensile stress, 

Fig. 6·2()-· 

p . 
fa=-TR{2 

IO X 1000 
= ... x 2·52 · 

509"29 kg/cm2 (tensile) 

Tensile stress in shaft introdµces a lateral strain and.its diameter will tend to decrease. 
Consequently the pressure at: the :..common surface decreases. Say the decrease in rad ial pressure 
is p". 

or 

Change in circumferential-stress :it outer surface of shaft 
=-p" 

Change in circumferential stress at inner radius of sleeve 
II R}+R12 

II 4~+2·52 

= -p R22- Ri =-p X 42,- 2·52 

=-2'28-p" 

Change in circumferential strain in shaft at R1. 
p" p" Ja • 

€i=-E + mE -~nE 

Change in circumferential strain in sleeve at Ri, 

But 

2'28 p " p" 
€ 2 E + mE· 

€ 1 = € 2 (strain compatibility) 

p" p" f,, 2'28 p" p" 
- E! +-niE; - mE_• = E +mE 
- p"-0'285 X 509'29= 2'28 p" 

3'28p"=-0·285 X 509'29 
p"=-44'25 kg/cm2 

i.e., Radial pressure is reduced by 44'25 kg/cm2 

Change in hoop tension in sleeve 
=-44'25 x 2"28 = -100'8~·-kg/cm2 

j.e. 1 the hoop tension in ~leev~ is decreased by 100'89 kg/cm2, 

,, 
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Problem. 6'2:2. A steel sleeve is pressed on to a steel shaft of 5 cm diameter. The 
radial pressure between the steel shaft and sleeve is 200 · kg/cm2. and the hoop stress at the 
inner radius of the sleeve is 560 kg/cm2. If an axial compressive force of 5 tonnes is now 
applied to the shaft, determine the change in 1he radial-pressure. 

E=2100 tonnes/cm2 

1 . - - = 0 3 
m 

'•·Solution. 1 Radius bf steel shaft, 

;,Say outer radius of steel sleeve = R 2 

Junction pressure, . p'= 200 kg/cm2 

Shaf t 

Fig. 6·21 

Hoop stress at inner radius of sleeve= 560 kg/cm2 

p 
Axial stress on shaft, fa= n x 2·52 

P: S ton nu 

5 X 1000 
= i. x 

6
.
25 

254'647 kg/cm2 (compressive) 

This axial compressive stress. intro.duce~ -l~teral stra_in whi~h is positive i.e. the radius 
of the shaft increases. But sleeve will resist this· mcrease m radms and radial stress at the 
common surface1 :incruases. 

where 

Say the increase in radial pressure= p" 

Due top", increase in circumferential stress at the inner radius of sleeve 

- 56Q_ Xp"= 2'8 p" 
- 200 

Additional circumferential strain in sleeve at inner radius 
2'8 p" p" 

€a= -E- - + rhE 

Additional circumferential strain in shaft at radius R1 

p" p" ' fa 
Ei=- y + mE + mE 

p" = circumferential ·stress in· shaft 
, p" = r adial stress in shaft 

fa= axial stress in shaft 

But ~9 = £1 (for strain compatibility) 
2'8 " " p" p" f ., _ f!_+_P _ __ -+- .- +-, 

E mE - ·E .. mE ··mE 

' (c6tt1pi"es~ive) 
(compressive) 
(compressive) 
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2'8 p" =-p" + 2$4'647 
m 

3'8 p"= 0'3 X 254'647 

p"= 20' 10 kg/cm2 

i.e., radial pressure at the common surface is increased by 20· 10 kg/cm2. 

. ' 

Problem 6'23. A steel rod 50 mm in diameter is forced into a bronze sleeve 80 m 
outside diameter, thereby producing a tension of 40 N/mm2 at the outer surface of the sleev 
Determine (a) the radial pressure between the bronze sleeve and steel rod (b) the rise 
temperature which would eliminate the force fit. 

E,=E,1 ,e1= 210 x 10s N/mm2 

Es= E&ronu= ll4 X ]03 N/mm2 

-
1
- for steel= 0'28 

m 

1 
for bronze= 0'33 

m 

0Catee1= 11 '2 X 10-0/C0 

e<bronzc= 18 X 10-6/C0 

Solution. Radius of steel rod, R1 = 25 mm 

Outer radius of bronze sleeve, R 2= 40 mm 

Hoop stress at the outer surface of sleeve 
I 2R12 

= p X R 22-R12 

where p' = radial pressure between the sleeve and rod 
I 2 x 252 

40= p X 402-252 

'= 40 X975 = 31 .2 N/ 2 
P 1250 mm 

Hoop stress at the inner surface of the sleeve, 

f. "R = p' X R 22+ R12 
C 1 R 22- R 12 

402- 252 
= 31 '2 X 402_ 252 71·2 N/mms 

Circumferential strain at R1, in sleeve, 
,,_ Jr''R1 + p ' 11 ·2 31 ·2xo·33 

eo - ~ msEs = 114 x 10s+ 114X 10a 

= ('624 + '090) X 10- 3= 0'714 X 10-a 

Hoop stress at outer surface of rod 
=-p'=-31'2 N/mm2 
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Circumferential strain at R1, in rod 

I p' p' 
€0 =- -·+---

E, m,Es 

31·2 0·23x31 ·2 . _ 
= - 210 ;< 103 + 210 X l 03 = - O l 07 X JO 3 

Force fit allowance, 8R1 = •• "xR1-.o'XR1 

Temperature Rise 

= (0'714 x 10- 3 + 0·107 x 10- 3) X25 
= 0'821 x 10-3 x 25 = 0'0205 mm. 
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Say the temperature of rod and sleeve is raised by T°F, the sleeve will expand more 
than the rod as a.s><1.s. When the differential expansion at radius R1 equals the force fit 
allowance, then force fit will be eliminated. 

or Temperature Rise 

8R1 = R1(rJ.s - as)T 

0'0205 = 25(18-11'2) X 10 .. 6 XT 

= '0205 X lOH= 120.59 0 C 
95 X 6'8 

Problem 6'24. A bronze sleeve of outside diameter 80 mm is forced over a steel 
shaft of diameter 60 mm. The initial inside diameter of the sleeve is less than the diameter 
of the.shaft by 0'06 mm. This compound rod is subjected to external pressure of 25 N/ mm2 and 
the temperature is raised by 80°C. Determine : 

(a) radial pressure between the sleeve and shaft, 
(b) maximum hoop stress developed in the sleeve. 
Given for steel Es=20800 N/mm2 ; 

For bronze 

_!_ = 0'30 ; rl = ll x 10-6/°C. 
m 

Eo= 105,000 N/mm2 ; 

! = 0'33 ; rA = 19 X 10-6/°C. 

Solution. Let us first determine the junction pressure developed due to the forcing-
fit of sleeve over shaft. 

Say pressure at common radius= Pr 
Shaft diameter =60 mm 
Shaft radius, R1 =30 mm 
Outside radius of sleeve, Rf=40 111111 

Circumferential stress developed in sleeve; 

R22 +R12 402 +301 
Jci - P1 X R22 - Ri2 - Pi >< £!02- 302· 

= ;5 
P1=3'57 P1 (tensile) 
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2Ri2 .2 X-302 

.f,2 = P1 X Ri- R/ - p1 X40·2_302 

= 2'57 Pi (tensile) 

Circumferential stress developed •in shaft 
= Pi · (compressive) 

D
. l . . l f /?1 · 0·3 Pi · 0 '7.p1 iametra stram m s 1a t = - - -- = -E., Es E, 

D
. I . . I ~/ ,1 · 0'33p1 iametra strain ms eeve = - + - -

Eo Eb 

Now 

'Radiat 'prcs'Sure, 

3·57 p1 + 0·33 Pi 
= - · fa 

3'90 P1 = ~ (expansion) 

( o· 7 Pi .) x 4o+ ( -3 '90p~) x 40 = ·06 
E, . Eb .. 

0·1 P1 X4 0 _ 3:9o x 40 Pi = ·o6 
208000 I- . 105;000 

p1(0·t346+ l '4857) = 60 

60 
Pt= t:'G:20:3 N/mm2 = 37'03 N/mm2 

Circumferential stress in sleeve, 
/. 1 = 3·57 x 37·03 =--- 132· 19. N/n.11nt 

f 2= 2'57 X 37.03~ 9S-l•67>Nfm2 

(comra"ction) 

Stresses due to external pressure and rise in teu11>eratu1·e 

Say the pressure at the common 
radius= p2 

Circumferential stress in sh aft 
..,= - p 2 \ .(oomp;-ess.ivc) 

Using Lame's equations for the sleeve 

B 
25 = 402 - A 

B 
p 2 = 

302 
- A (given in problem) 

where A and B are constants. 
Fig. 6·22 
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or 302 X 402 
B~ - (25 ~ JJ2) 402~ 302 

B, 302 

A= 402 ·-25=-(?..5-p2~ 402 - 302. - 25 , 

Circumferential stress, at inner radius 

Jci'= 3g2 +A 

402 302 

= (p2-25) 402-302+(p2-25) 402- 302 - 25 

= (p2- 25) ;
5 

-25 = 3·57 p 2 - l 14'28 

At outer radius, fc2'=4i +A 

30l 302 

= (p2- 25) 4QL 302· .+ (JJ2-;- 25) 402-302 25 

2 x 302 

=(p2- 25) 
40

r,_ 302 - 25 = 2·57 p 2-89·2s 

Equating the 1strams at the common radius 

p 2 - o·3 p~ + J I X I0-6 X 80 
E, E, . 

?, 57 J'J., - 114'28 0·33 f'J., 
---- -I .. + 19-X 10-fi X 80 = E,. - E,, 

o~~P2.+ 11 ,o-G 80 - 390~ ..!._1 4'2_8_.J_J9 10- r; 80 
208000 x x - I 05000 - l 05000 ' x x 

0 ·336 p 2= 3·71 p 2 - I08·8J+ 64.I 

44' 83 = 3·374 P2 
p2 = 13 '287 N/mm2 

(a) Final radial pressure between s leeve and sha ft 

= l 3'28'H - 37'03 •=50·3n N/mm~-

Resultant ci1cumferential stress at the im10r ·radiuS: of the sleeve 
= 132· 19 +3·57 p2 - I J4·28 

CCC 132"19+ 3"57 x 13"28:l "-- J 14"28 
-.~ 132· 19+ 47°434- 114°28 

= 6S-344 N/mm2 

Resultant circumferentia l stress at d1e outer radius of the sleeve 

= 95' 167+ 2· 57 1J2...,- 89 '28 .. 
" 95"167 + 2·_57 x 13·2s1-s9·2s 
0 =95· I 67 + 34' 148 - 89'28 
= 40°035 N/m m2 . 

So the rn;:\.x imum h oop stress developed in sleeve 
c= 65".344 N/1111112 , 

211 ,; 
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Problem 6"25. A steel ring of internal radius r a nd external rad ius R is shrunk on to 
a solid steel shaft of radius r+dr. Prove that the intensity of pressure p at the mating surface 

is equal to ( 1- ~: ) E -;; where E is the modulus of elasticity of steel. 

Solution. Radius of shaft = r 

Outer radius of ring = R 
Junction pressure = p 

The mating surf:~ce between ring and shaft is at radius r. The r ing and shaft are made 
of the same material. 

Hoop stress in shaft at junction = - p (compressive) 

Hoop stress in ring at 
. . R2+r2 
Junct10n= p R 2_,. 2 (tensile) 

Shrinkage allowance, dr= ~ [ p ~ :~::: + p J 
dr = .J!.!_[R2+,-2+R2_ ,.2 ]= 2pr [_B:._ J 

E R2-r2 E R2-r2 

or _ ±:_ [ R 2-,-2 ] - E.__[ _..!:_] 
p - 2r X E R2 - E 2r l R 2 

Problem 6"26. A steel plug 80 mm in diameter is forced into a steel ring 120 mm 
external diameter and 50 mm wide. From a strain gage fixed on the outer surface of the ring 
in the circumferential d irection, the strain is found to be 0·41 X 10- 4

• Considering that the 
coefficient of friction between the mating surfaces, µ = 0·2, determine t he axial force required 
to push the plug out of the ring. £ = 210 x 103 N/ mm2

• 

Solution. 
Inner radius, 
Outer radius, 
Breadth of the ring, 

R1 = 40 mm 
R2= 60 mm 
B=50 mm 

Say junction pressure = p' 

Hoop stress or circumferential stress at outer surface of r ing 
I 2Ri2 

=+p X R • R 2·· 
2·- 1 

, 2 X 402 
_ l. 6 , 

= p X 602 -40~ - p 

Radial stress at outer surface of r ing= O 

So circumferential stra in on outer surface of ring 

= t ·1 p' = 0"41 X 10-4 

J ·6 p'= 0"41 X 10-~ X 210 X 103 

p ' = S-38 N/mm2
• 

FR, Radial force acting on the plug 
= p 'X2TtR1 X B 
=~-3~x7n x 4() X~0= 67607·23 N 



Coefficient of friction, µ = 0 '2 

Axial force, F,1 = µ FR = 0'2 X61607'23 N 

= 13521 '446 N 

Axial force required to push the plug out of the ring= l 3'521 kN. 

Problem 6'27. A cylindrical steel plug 8 cm in diameter is forced into a brass sleeve 
.. of 14 cm e.xternal.diameter and 10 cm long. If the greatest hoop stress developed in the sleeve 
· · is 600 l<g/c·m2, 'determine·the torque required to turn the plug in the sleeve assuming , µ = 0' 18, 

i.e., the coefficient of friction between steel plug and brass sleeve. · · 

Solutiqn,. 
• . . 

Inner radius, R1 = 4 cm F = ,UR IP =Radial torce 

Outer radius, R2= 7 cm 
Say junction pressure = p' ---· ,....... ~-Br ass s,l ~evt 

Length of sleeve, / = lO cm 
, .. ........ > l 

Greatest hoop stress in sleeve occurs 
at radil!ls R 1 and is equal to 

I' _ 1 R22+ R12 

J' m""' - p R22-R12 

•·· I • 72+42 
.. 600 =:=p .x 72_ 42 

n'= 
6

00 x
33

= 304 '6I kg/cm2 
65 

Total radial force P acting throughout the mating surface 

= 21t R1 X/ Xp' 

I 

= 21t X4 X lO X 304"61 = 76557'0 kg 
Tangential force, F= µ R 

= 0' 18 x 76557= 13780'26 kg 

Torque required to turn the p lug in the sleeve 

T = F X R1 = 13780'26 X4 kg-cm 
= 55 1'21 kg-m 

• I 

SUMMARY 

Fig. 6·23 . 

1. Single thick cylinder of inner radius R1, .outer radius R
2 

subjected to internal 
pressure p 

Rad,ial st,:ess , 
. ~ ., . . . . . 

Hoop,strf)s~, 

I:•, 

p,= _!!_-A _ (compressive) . r2 

B 
fo == ,:-i' + A (tensile) 

B=p. ( 

' : • JI i 
••. •I• , ' • •. 
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Maximum hoop stress at R1 , 

Minimum h ~op ,s~;e.:ls at R.?., 

( 
2R1

2 
) 

Jc mtn=_p. R 2_ R- 2 
· 2 1 

t:r: 
2. ~in,gle t~i,c

1
k cylinder subjec~~d to externa_l w e~sure p , :i.~~e.r r¥1.i,~.s Ji, _9L~ter 

radius R2 

Lame's constants 

Maximum hoop stress at R1, 

2p R? 
Jc m •1111 = - R22- R12 

Minimum hoop stress at R 2, 

3. A cylinder Qf outer _r adius R2 is shrunk over another cylinder of inner radius R1 ; 

junction radius R3 and junction pressure developed is p'. C,qmP.9.und cylinder subjected to 
internal pressure p. J-l<?OP stresses due to shrinkage. 

Hoop stresses due to intern;;1J pressw e p 

_ ( R 2
2 +R1

2 
) 

J ,Ri - p R 22- R12 

R1
2 

( .82
2+ F,s~ ) 

JcR3= p Rs2 R22-R/ 

2pR12 
JcR2 Rl-R12 

Resultant hoop stress at any radius is obta ine_d by combining the stresses due to 
shrinkage and internal pressure. 

4. Shrinkage allowance at common r~(iijus in a ,c_ompo,und cylinder where 
R1= Inncr radius, R2 = outer rl,ldiu s, R 3 = jw1cti on radius and p '= junction pressure. 

l · ' 1 ' El , - - and £ 2, :atf ,the cl a~tic <;:oPstants foJ inner and outer cylinder~ respectively, 
m1 m~ 
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[
. p' ( R 2+ R 2 ) p' j 

8R3= Ra E1 R:2-R:2 - m1E1J 

[ 
p ' ( R2

2+ R3
2 

) p' ] + Rs E2 R22-Ra2 + nt'2E2 ' 

when both the cylinders are of the same material 

8R = Rap' [ Ra
2+ R1

2 + R22+ R32 J 
3 E Ra2-R12 R22-Ra2 

8R3 = ll R3T wher~ ex = coefficient · of llnear expansion of' outer 
cylinder 

T = Temperature rise. 

5. A shaft of radius R1 forced into the hub or liner of outside ra'dius R2, junction 
pressure developed p'. 

Hbop stress' iri shaft = -p' (compressive) 

Maximum hoop stress in hub at Ri, 
, R22+R12 

/cR1= P X R22-R1a 

Minimum hoop stress in hub at R2 , 

I' I 2R12 

J•R2 = P X R 2-R i 
~ 1 

Force fit allowance on hub, 

p'R1 ( 2R2
2 

) 
8R1 = ~ R22- R12 

when hub and shaft are of the same material. 

MULTIPLE-CHOICE QUESTIONS 

l. A thick cylinder of inner diameter 60 mm and outer diameter 100 mm is subjected to an 
internal fluid pressure of 64 N/mm:1, the maximum hoop tension developed in the 
cylinder is 
(a) 32· N/mm2 
(c) 12s' N/mrri2 

(b) 64 N/mm2 
(d) 136 N/mmz. 

2·. A thick cylinder is subjected to an internal pressure of 50 N/mrri2, which produces 
maximum hoop tension at the inner radius of the cylinder and is equal to 90 N/mm2• 

If the inner radius of the cylincer is 40 mm, the maximum ~hear stress developed in the 
cylinder is 
(a) 140 N/mm2 
(c) 45' N/mniz 

tb) 70 N/ mm2 

(d) 20 N/mmz. 

3. 1;1 a thick cylinder or"inner radius R1 , wall thickness t, an internal pres.sure p' produces 
maximum hoop tension 1 ·25 p. The magnitude of wali thickness will bo 
(a) 2 R1 (b) 1·5 R1 

(c) R1 (d) o·s R1• 
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4 . The variation of hoop stress across the thickness of a thick cylinder is 
(a) Linear (b) Uniform 

(c) Parabolic (d) None of the above. 
' 

5. A thick cylind)lc<!l \'.~hell of -inner radius 4 ~m and outer radius 6 cm is subjected to 
external pressure of 20 N/mm2• The maximum h oop stress developed is 

• • . I ••• 

(a) - 72 N /mm2 (b) - 52 N/mm2 

(c) + 72 N /mm 2 ; , · • · (d) + 52·N/mm•. 

6. The purpose of com,pounding cylinders is. 
· (a) To increa~e the pressure bear_ing capacity of a single cylinder 

(b) To make th~ hoop stress distributi on uniform 
(c) To increase the strength of the cylinde1 

j' ·' (d)1 Alitheabove!,: ·;· · · '.f ~ , • I 

•• t •• • 

7. A compound cylinder is made by sµxin king a cylinder of outer R2 over another. ~ylinder 
of inner radius R 1 such that the junction pressure is p at the ' j unction ·r~dius R3• The 
shrinkage allowance over the diameter is given l;,y · · · 

(a) 2Ra p [ R 2
2+ R3

2 2R1
2 J 

E Rl-Ra2 + Ra2- R1
2 

(b) 2Ra P [ 2Ra
2 + _Ba

2+ R1:_ J 
E Ra2-Rl R3

2- R1
2 

, r 

(d) 2R3 p [ __R?+ Ra2 
_ _ Aa2+ Ri2 J· 

E R2
2 - Ra2 Ra2- R1

2 

where E is the young' s modulus. •• 1 

8. A compound cylinder is obtained by shrinking on one steel cylinder over another steel 
cylinder . The circumferent ial stresses developed at the junction in the outer and inner 
cylinders are + 840 kg/em2 and - 660 kg/cm2

• 1f E= IOO x 1000 kg/cm2 and junction 
radius is 10 cm, then shrinkage allowance on diameter is 
€a) · 0·3cm -:.. (b) o·I5cm 
(c) o ·036 cm (d) 0'018 cm. 

9. A compound cylinder is obta ined by shrinking on one cylinder over another, the 
dimensions of the compound cylinder are inner radius 3 cm, outer radius 5 cm and 
junction radius 4 cm. If the hoop stress developed in the outer cylinder at the junction 
radius · ill · Q~7 kg/cm2• Then the hoop stress developed · in .the inner cylinder at the 

· junctioJJ. radius is 
· · (a) ·'7 287 •kg/cm'l 

(c) - 162 kg/cm2 

(b) - 225 kg/cm2 

(d) None of the above. 
I•"!•, 

JO. A bronze sleeve of outer d iameter 10 cm is forced over a solid steel shaft of' 8 cm dia. 
lf the maximum hoop tension developed in sleeve is 164 N/mm 2, maximum hoop stress 

' . . tension"developed in steel shaft is . . .. ' . 

(a) +36 N/111m2 (b) - 72 N/mm2 •i' 

(c) - 3.6 N/mm2 (d) - 18 N/mm2• 
I ' 
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11. A steel sleeve of outer diameter 10.cm ishforced over at ts
1
olid stteei sld1~ft ofrd

1
iamet~r 6 cm. 

If the junction pressure is 32 N/mm\ the oop stress a 1e ou er ra ius o s eeve 1s 

(a) 68 N/mm2 (b) 36 N/mm2 

(c) 32 N/mm2 (d) 16 N/mm2
. 

ANSWERS 

I. (d) . 2. (b). 3. (a). 4. (c). 5. (a). 

6. (a). 7. (c). 8. (a). 9. (b). 10. (c). 

11. (b). 

EXERCISES 
,, 

6'1. A steel cylinder 50 cm inside diameter and 3 metre long is subjected to an internal 
pressure of 200 kg/cm 2. Determine the thickness of the cylinder if the maximum shear stress 
in the cylinder is not to exceed 450 kg/cm2• What will be the increase in the volume of the 
cylinder. 

E=2000X 10a kg/cm2 

-
1 

= 0'285. m 
[Ans. 8'54 cm, 435'6 c.c] 

6'2. A pressure vessel 40 cm internal diameter and I 00 cm external diameter is subjected 
to a hydraulic pressure of 500 kg/cm2• Determine the change in internal and external diameters. 

Given E=2100 tonnes/cm2, 

-
1
-=0'30. [Aus. o ·Ot546 cm, 0'00771 cm] 

m 

6'3. Strain gauges are fixed on the outer surface of a thick cylinder with diameter 
r atio of 2. The cylinder is subjected to an internal pressure of 1000 kg/cm2• The recorded 
strains are 

Longitudinal strain = 560 X 10-e 
Circumferential strain = 120 x 10-u 
Determine the Young's modulus and Poisson's ratio of the material. 

[Ans. lO X 105 kg/c1112, 0'32] 

6'4. A thick cylinder 150 mm internal diameter and 200 mm external diameter is ' 
used for a working pressure of 200 kg/cm2. Because of external corrosion, the outer diameter· 
of the cylinder is machined to 197 mm. D etermine by how much the internal pressure is to 
be reduced so that the maximum hoop stress developed remains the same as before. · · 

[Ans. 10 kg/cm2) 

6'5 Two thick cylinders A and B made of brass have the same dimensions ; the 
outer diameter is 1'8 times the inner diameter. The cylinder A is subjected to an internal 
pressure while Bis subjected to an external radial pressure only. Determ ine the ratio of these 
pressures when the greatest circumferential strain is of the same numerical value for both. 

Take Poisson's ratio of brass = 0'32. 

'I [ Ans. PA = l'l8 .·] PB . 



6·6; 'Ph:e· maxirrnim. pernHssil51e stress· in. a' tnick cylinder· of 5d' mm inteirial' radius 
and 80 mili' exfefrial1 radius is· 30;N/nim2• If the· exterrilil raoiaFpres'sute is 5 N/rhm2, determine 
the intensity of internal radial pressure. [Ai:ts: 20"337 Ntmm2J 

6·7. A think cylinder of internal diameter D and wall thickness tis subjected to an 
internal pressure p. Determine the ratio of t/D if the maximum hoop tension developed in the 
cylinder is 3·8 p. [Ans. o· 1546J 

6'8. A cylinder of internal diameter D and wall thickness t is subjected to an internal 
press\ire p. Considering'this to be a thin cylindrical shell, what is· the maximuh1 value of 
t/D ifth(; error in the estimated value of maximuh1 hoop stress i!r not' to exceed 5%? . 

[Ans. 0·050J 

6'9 A thick cylinder of internal diameter D and wall thickness t is subjected to the 
internal pressure. It is maximum hoop stress developed in the cylinder is 2·6 times the internal 
pressure, determine the ratio of t / D. 

Find the increase in the internal and external diameters of such a cylinder with 12 cm 
internal diameter subjected to internal fluid pressure of 600 kg/cm 2. 

£ = 2100 tonnes/cm2 

~ = 0·3 [Ans. 0·5, 0·00912 cm, 0'00699 cm] ' 
m 

6·10. A thick cylinder of internal diameter 18 cm is subjected to an internal pressure 
of 80 kgjcm2. lfl the allowable stress for the cylinder is 350 kg/cm2

, determine the wall 
thickness of the cylinder. The cylinder is now strengthened by wire winding so that it can be 
sa'fely subjected t o an internal pre,;sure of 120 kg/cm2

• Fiild' tHe rndia1"ptessure,exehed by 
wire wioding: [A'rlM: 2·353 cm ; 32' 56 k'g/cm2J 

6'11. A compound cylinder is made 'by shrirrkini a cylinder of 18 cm outer diameter 
over another cylinder of 11 cm inner diameter Find the common diameter if the greatest 
circum:fete·ntial stress in the inner cylinder is numerically 0'81titnes ·of that of the outer cylinder. 

[Ans. 15'2 cm] 

6·112~ A stee1 cylirider · of outef dianietei-' 20 'cm is slirunlc ori'ah othe r cylinder of inner 
d-ia-i11eter· 10 cm, the common diameter' being 16 cm If a fte"f' shfin'k'iri'g on·; the radial pressure 
at the common surface i~ 150 kg/cm2

, de~erminc the. n:i,a~,~it~d~ of th~, .!~lt~i;n~l pr~ssure p to 
which the compound cylmder can be subJected so thai ·tHe ·maxrmum IMop- tensions m t)J.e inner 
and outer cylinders are equal. [Ans: 14'46'22 kg/cm2

] 

6'13. A compounfiPcylinder"l1a's1a bore' of 16. cn.'r., tlie' outer diaiiieter is 24 cm and 
dt~nieter' a-t : the· common; surface which is 20 cm. Determine the radial pressure at the 
common surface which must be-provided by the shrinkage fitting, ·ifth:e· reshltant hoop· stress in 
the' i\'i'i1~r·cylinder'p nder .. a sup~ri_~P.~~_ec(i1:i-.tern~l pr~ssure ?t 4~0 kg/cni.2 is -to ~e 40% of the· 
v··atue·'of the'max imilm hoop teP.s1on m the rnner cylmder, 1f thrs·cyl1nder alone 1s subjected· to 
aii h'iteri~ar"pressufe of 400 kg/cm2

: 

Determi11e· the resultant hoop stresses at t he inner and outer radi i of both the cylinders. 
[Ans. 56 kg/cm2, inner ·cyli'n-der 728'89, 525'69 k'g/cm2

: outer cylinder H191 '345, 
894·545 kg/cm2

]. 

6·1~. A cort1po1.ind cylinder cdnsists of' a ste~t cylin1e1: 20 _c1~? ii1t~n_1al piameter and 
30 cm external diameter and a bronze liner of 20 cm; external diameter and 18 cm internal 
diameter. Assuming the liner to be a thi? cylin~er and that there is .no stress in the compound 
eylinder due to fitting, determine the maximum direct stress and maximum shear stress in each 
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material due to an internal pressure of 400 kg/cm 2. _Ignore the longitudinal ~tn;s.s and )ongi-
tli'dinaJ strain. . .. 

~.1.,,=2100 tonn~s/cm2 

_!. steel= 0·30 
111 

[Ans. 

E~ronu= 1050 .tonnes/cm2 

l 
- brouze = o·32 
m 

liner 1280, 840 ~g/cm2
, J. 

cylinder 605' 176, 418'97 kg/cm2 

6"15. A steel tube of outside diameter 30 cm is s hrunk an another tube of inside 
diameter 22 cm. The diameter .at the junc\io:i;i is 26 _cm after shrinking on. The shrinkage 
allowance provided on the radius of the outer tube is o· 1 mm. Determine 

(a) Junction pressure 

(b) J:Ioop stre,sses at ~he out~r and inner radii of the ,i1;mer tube 
(c) Hoop stresses at the outer and inner radii of the outer tube 

E= 1050 tonnes/cm2 • 

[Ans. (a) 61'81 kg/cm2 (b) - 435"24, -373·43 kg/~m2 (c) + 434"88, 373"07 kg/cm2] 

(>",1.6. A steel cylinqer 80 mm internal diameter anc;l 120 ~m ex~ernal .di~merer is 
strengthened by shrinking another steel cylinder onto it, the interna:1 diam1:rter of which before 
heating is 119·9 mm. Determine the outer diameter of the outer cylinder if the pressure at the 
junction ~.fter shrinkage is 25 N/~m2. 

Eforsteel= 2_1-0X.103 N/mm2 [Ans. 144"72.mm] 

6"17. A thick steel cylinder of inner diameter .15 cm and outer diameter 20 cm is 
subjected to an internal fluid pressure of 1600 kg/cm2• A cylindrical jacket 2·5 cm thick vf 
the same material is shrunk on to .the cylinder so that -t,hc .n,[l.ximum hoop stress develc.ped in 
the cylinder is not to exceed 2400 kg/cm2

• What should be the initial difference between the 
inner diameter of the j;1cket and the outer di fLrneter .Q-f t)1e ~y lil\~er. 

E= 2000 tonnes/cm2 

..!._= 0"28 [Ans. 0"0589 cm] m 

6"18. A high tensile steel tyre 3 cm thick is shrunk on a cas~ iron rim of internal 
diameter 60 cm arid (external diameter 80 cm. Find the iqside ~iameter of :the _steel tyre i,f 
after shrinking on, the tyre exerts a radial pressure of 100 ~g/cm 2• Given : 

-E,tee1= 2100 tonnes/crn 2 Ec.,. = 1000 tonnes/cm2• 

-
1 

for steel = 0·3o, -
1
- for C.I. = 0·25 [Ans. 79·92 cm] m m · 

6"19. A compound cylinde.r is formed by shrinking one cylinder over another. The 
outer diameter of the compound cylinder is 200 mm, inner diameter l40 mm and the diameter 
~t the common surfa~e is 170 mm. Determine: . 

. (a) Shri.nk.age allowance. 

(b) Teipperatu_re r~se of ou_ter cylinder ~o ~ha_t it passes 
junction pressure after shrinking is 5 N/mrn2'. 

f:?= 210 X 10s N/mm2 

a:= 6"2X 10-6/°F. 

on the inner cylinder, if the 

the compound cylinder is now subjected to an internal fluid pressure of 40 N/mm2 , determine 
the maicimuni 11oop te.nsion in the cylinder. How much heavier a single cylinder of inn,er 
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diameter 140 mm would be if it is subjected to the same internal pres~ure in order to witl1stand 
the same maximum hoop stress. 

[Ans. o·046 mm, 43.64 °F ; maximum hoop stress at inner radius of inner cyl inder 
= 85"785 N/mm2 ; 67 ·8% heavier] 

6·20. A bronze liner of outside diameter 100 mm and inside diameter 69'92 mm is 
forced over a steel shaft of 70 mm diameter. Determine (a) the radial pressure between the 
shaft and liner (b) the maximum circumferentia l stress in liner (c) change in outside 
diameter of the liner. 

Es toe ,=2080 tonnes/cm\ Eo,on ze= 1200 tonnes/cm2 

-
1 

steel = 0·29 
m 

. I 
- bronze= o·32 
m 

[Ans. (a) 376·77 kg/cm2 (b) 917.284 kg/cm2 (c) 0'060 mm] 

6'21 . A steel sleeve 10 mm thick is pressed on to a solid steel shaft of 60 mm diameter . 
The junction pressure being p ' . An axial tensile force of 50 kN is applied to the shaft. 
Determine the change in (a) radial pressure at the common surface (b) hoop tension in sleeve. 

. l 
If ,p'= 30 N/mm2, - for steel = o·30 [Ans. (a) 2·s2 N/mm2 (b) S-996 N / mm,2] 

m 

6"22. A bronze sleeve is pressed on to a steel shaft of 80 mm diameter. The radial 
pressure between steel shaft and sleeve is 15 N/mm2 and the hoop stress a t the inner radius of 
of the sleeve is 50 N/mm2• If an axial compressive force of 60 kN is now applied to the shaft 
determine the change in radial pressure 

E,iee1= 208 X ]03 N/mm2 

Eorou,e= 120 X l 03 N/mm2 

J_ steel = O·Jo 
m 
1 

bronze = O· 3 3 
m 

[Ans. o·ss N/ mm2J 

6·23. A steel rod 80 mm in diameter is forced into a bronze sleeve 120 mm i 11 di a
_meter, tl).ereby producing a tension of 200 kg/cm2 at the outer surface of the sleeve. Determine 
(a) the radial pressure between the bronze sleeve and steel rod (b) the rise in tempernture 
which would eli minate the force fit. · · 

E, = 2100 tonnes/cm2 

-
1
- for steel= o·2g 

m 

Es= l 140 tonnes/cm2 

1 
- for bronze=o·33 
,n 

e1.o,011 .. = 18 X J0- 6/°C 
[Ans. 125 kg/cm2, 53·54°q 

, ... , 6'24. A bronze sleeve of outside dia meter 12 cm is forced over a steel·shaft of di a. meter 
8 cm. The initial inside diameter of the sleeve is less than jhe diameter of the sltaft by 
o· 1 mm. This compound rod is subjected to external pressure of 160 kg/cm2 and the tempe
rature is raised by 50°C. Determine (a) radial pressure between sleeve and shaft (b) maximum 
hooN,str1ess dcv_eloped in sleeve. , 

,, 

I, 

· E, = 2080,000 kg/cm 2, 

-
1
- steel= O· JO 

m 

Es= 1050,000 kg/cm2 
1 

- bronze = o·33 
m 

~B=19 X lQ-6/°C 

f...\ns. 460·41 k~/cm2, 621·0~6 k~/rn12 J 
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6"25. A steel plug 10 cm in diameter is forced into a steel ring 12 cm external 
diame,er~and 10 cm wide. From a strain gauge fixed on the outer surface of the ring in the 
circumferential direction, the strain is found to be 50 microstrains. Considering that the 
coefficient of friction between the mating surfaces, ,u = 0·22, determine the axial force required 
to push the plug out of the ring. 

E = 2100 tonnes/cm1 [Ans. 1596.56 kg] 

6·26. A cylindrical steel plug 60 mm in diameter is forced into a brass sleeve of 
100 mm external diameter and 5 cm wide. If the greatest hoop stress developed in the sleeve 
is 80 N/mm2, determine the torque required to turn the plug in the sleeve assuming µ.=0 '2 i.e. 
the coefficient of friction between steel plu~ and brass sleev~. [Ans. [2'128 k NrnJ 



7 
~h~~r For9y and Bending Moment Diagrams 

In chapters 1 to 4 we have studied the effect of axial forces applied on machine 
members, producing tensile or compressive stresses and elongation or contraction along the 
length of the member. ln this chapter we will study the effect of forces applied transverse to 
the axis of the member, producing bending in the member. 

Any structural member sufficiently long as compared to its lateral dimensions, 
supported along the length and subjected to loads (forces) transverse to its longitudinal axis 
is called a beam. The applied transverse loads are such that they lie in the plane defined by 
an axis of symmetry of the cross section. Generally the beam is horizontal and the applied 
loads are in a vertical plane. 

7·1. VARIOUS TYPES OF BEAMS 

The ends of a beam can be simply supported, fixed or free as shown in the Fig. 7·1, 

A ·and B are si rn p I y 
suppofted ends. 

Simp l y supp·orte d beam 
(a) 

A~--- ~ ~8 
c' D 

A and Bore fi xed ends 

Fixed Beam 

Cc ) 

8 

wall 

W· 

A 

( 
~-L - ---j 

A - F r ee end 

B · F,xed end 

Conti lever 
( b) w 

E C 

E 
--.1+-- L2 

A,B an d Care simply 
suppe r e d ends 

Continuous Beam_ 

( d) 

F ig. 7·1 
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Fig. 1· 1 (a) shows a horizontal beam with longitudinal axis ACB supported ort ends A 
and B subjected to vertical point loads br concentrated loads W1 and W2 . After the application 
of these loads transverse to the axis, the beam bends and takes the shape AC' B. At the end 
A, the slope of the beam has changed from zero to iA , but the vertical displacement of the 
point A is zero. Similarly at the end B, the slope of the beam has changed from zero to in 
but the vertical displacement of the point B is zero. The ends where slope changes but the 
vertical displacement or deflection remains zero, are called supply supported end.s. With two 
simply supported ends, the beam is said to be a simply supported beam. The distance between 
the two supports A and B is called the span of the beam. 

Fig. 7' l (b) shows a horizontal beam with longitudinal axis ACB subjected t9 a ver,ical 
concentrated load W and a uniformly distributed load of intensity w per unit length on the 
portion CB. The end A of the beam is free and the end B is fixed in the wall. After the 
application of the loads, the beam has bent and axis has taken the shape A'C'B . . At the 
end A, there is vertical displacement or vertical deflection AA' and slope has changed from 
zero to iA. Such an end which is free to take any slope and any position is called a free end. 
At the end B, there is no vertical deflection and slope remains unchanged i.e., slope remains 
zero before and after the application of transverse loads, such an end is called a fixed end i.e., 
an end whose position and direction (i.e., slope) remain unchanged. 

A beam with one end free and the other end fixed is called cantilever. -------
Fig. 1·1 (c) shows a beam with both of its ends A and B fixed . ACDB is the longi-

tudinal axis of the beam before the applicat ion of transverse load W at point D and a 
uniformly distributed load w over the portion AC, which changes to AC' D' B after the 
application of the loads. At ends A and B, there is no deflection and slope remains zero. 
Such a beam is called a fixed beam. 

Fig. 7'1 (d) show a horizontal beam with longitudinal axis ADBEC, subjected to 
uniformly distributed load of intensity w per unit length over portion AB and a concentrated 
load W at point E. The ends A and C of the beam are simply supported . This beam is also 
supported at the point C. Such a beam which is supported on more than two supports is 
called a continuous beam. 

. 111 this ~hapter we will discuss the bending of simply supported beams and cantilevers. 
Ther.e will be detailed discussion on fixed and continuous beams in chapter 11 . 

7·2. SHEAR F.ORCE DIAGRAM OF SIMPLY SUPPORTED BEAM SUBJECTED 
TO CONCENTRATED LOADS 

Fig. 7'2 shows a horizontal beam ACDB, of rectangular cross section, of length L add 
carrying a vertical concentrated load W at the centre of the beam and js simply s,upportcd at 
the ends B and D. To determine the reactions at the supports, let us take motnen:til of the 
forces about the point B. . 

w 
l 

- - t'7,;! 8eo rn 
0 _{&I sec t ion 
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Wx ~ ) - .ifoxL )=o 
Wt =Rn t +Rv t 

STRENGTH OF MATERIALS 

. .. (l) 

.. . (2) 

For equilibrium, the vertical forces must balance and resultant moment of forces at 
any point is zero_. 

From equation (1) 

From equation (2) 

w RD= -t 
2 

RB = W-RI> 

w w 
=W-2 =2 t 

Consider a small element of the beam (abed) of length 8x, at a distance of x from the 
end A. After bending, the element is distorted to the shape a'b'c'd', which is the result of the 
application of a shear force. 

Resultant force on the left side of the element 

w 
= 2 t 

Resultant force on the right side of the element 
. w w 

= W-2=2 ,I, 

This type of shear force which tends to rotate the element in a clockwise direction is 
called a positive shear force. 

Consider another small element pqrs of length ox in the portion EC of the beam . 
After bending, the element is distorted to the shape p'q'r's', which is the -result of the 
application of a shear force on the element. 

Resultant force on the left side of the element 

= W ,I, - ~ t =..!f.. ,I, 
2 2 

Resultant force on the right side of the element 

w 
=2 t 

This type of the shear force which tends to rotate the element in an anticlockwise 
direction is called a negative shear force. In the limit ox -+O, the shear force is defined at a 
certain cross section of the beam at a certain distance x from any end of the beam. 

. From thi~ discussion, we can ~efine that the magnitude of the shear force at any cross 
section of a beam 1s the unbalanced vertical force to the left or to the right side of the section. 
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Considering any cross section of the 
beam in the p')rtion AE, the shear force on the 
left side of the section is W/2 t . Similarly 
considering any cross section of the beam in 
the portion EC, the shear force on the left 
side of the section is W/ 2 t or in other words, 
shear force in portion AE is + W/2 and shear 
force in the portion EC is- W/2. 

Fig. 7·3 (a) shows a beam of length L, 
simply supported at ends and carrying a 
concentrated load Wat its centre. Reacti on') 
at both the ends= W/2 each. 

Generally the depth of the beam is 
not shown while showing the transverse loads 
on any beam. 

~Ar=- L 
2 -

2 

S . F O,ogram 

Fig. 7·3 
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Fig. 7·3 (b) shows the shear force diagram of the beam. To some suitable scaks take 
AE= EC= L/2 and AA'= + W/2 and CC'= - W/2. The shear force remains con~tant along the 
portion AE and then along the portion EC. Then section lines are shown a long the boundary 
of the shear force diagram as per the general convention. 

Example 7·2-1. A beam 6 metres long simply supported at ends carries two con
centrated loads of 4·5 tonnes and 3 tonnes at distances of 2 metres and 4 metres from one 
end. Draw the shear force diagram for the beam. 

Solution. Fig. 7·4 (a) shows a beam ABCD, 6 m long supported at A and D. To 
determine support reactions let us take moments of the forces about the point A 

4·s x 2;> + 3x 4--;)-RD x 6, = 0 
RD= 3·5 Tonnes 

Ro+ R A= 4·5+ 3 T 
RA= 1'5- 3'5= 4 T 

4 5 T 3T 

A D 

B C D A~~~:=] -+ 
s'' - J 5 T 

- 0 5T ....1.-

(1 d ( b) 

S F o·,ogram 

Fig. 7'4 

Consider any section in the portion AB, and taking the resultant of the forcee only 
on the left side of the section. 
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Portion AB. Shear force F1 = RA = + 4 T "t 
Portion BC. Shear force F2 = +R,1- 4'5= + 4- 4'5=-0'5 T t 
Portion CD. Shear force F3=+4-4'5- 3= - 3'5 T t. 

Note that if the shear force on the left side of the section is vertically upwards t , It tends 
to rotate the element in a clockwise direction, it is a positive shear force . Similarly if the 
resultant vertical force on the left side of the section is downwards t, it tends to rotate the 
element in the anticlockwise direction, therefore it is a negative shear force. Fig. 7·4 (b) shows 
the SF diagram for the beam. -· . 

Exercise 7·2-1. Fig. 7·5 shows a beam 6 meters long supported at ends, carrying 
transverse loads of 600 kg and 400 kg at distances of l m and 3 m respectively from the end 
A. Determine the support reactions and draw the SF diagram. 

600 kg 400 kg 

A B C D 

1m ~ 2111 + 3m 

Fig. 7·5 

[Ans. R,1=700 kg, RD =300 kg, FAn=+700 kg, Foc=+ lOb kg FCD=-300 kg] 

7·3. SF DIAGRAM OF A SlMPLY SUPPORTED BEAM SUBJECTED TO 
UNIFORMLY DISTRIBUTED LOAD 

Fig. 7·6 (a) shows a beam AB of length L simply supported at the ends and carrying 
a uniformly distributed load of w per unit length. 

For reactions let us take moments of the forces about the point A. 

Total vertical load on beam = wL 
C.G. of the load wL lies at a distance of L/ 2 from the end A. 

..__ X 

: . · •, j 

X 

L - - - -.-, Rs:wl 
2 

( 0. ) 

( b ) 

Fi&. 7·6 
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or 

and 

So 
L 

wL X 2 ")-RA. L ,=0 
wL 

R»=2 

RA+R»=wL 

1vL wL 
RA=W L- 2 =-2-

Consider a section X-X at a distance of x from the end A. 

Shear force £,.= RA - WX 

wL = 2 - wx 

wL 
F~ = 2 atx= O 

wL L =+4 at x=4 
L 

= 0 at x=2 
wL 3L 

=- - 4 at x= 4 
wL 

= - 2 atx= L. 

The shear force diagram for this case is shown in Fig. 7·5 (b). 

Exarnple 7"3-1. Fig. 7·7 (a) shows a 
beam 7 m long supported at a distance of 
1 m from left hand end and at the other end. 
The beam carries a uniformly distributed load 
of 1 ·2 tonne/metre run over a length of 4 
metres starting from left hand end. 

Draw the SF diagram for the beam. 

Solution. In this case there is an 
overhang of 1 metre of the beam from the 
left hand support. 

Total vertical load on the beam= 1 ·2 x A 
4= 4'8 tonnes. 

C.G. of the uniformly distributed 
load (udl) lies at a distance of 2 m from the 
end A or 1 m from the support B. 

To find out reactions, let us take 
mom~nts of the forces a.bout the point B. 

Of 

4'8 X l") -6X RD, = 0 

Rn= 0'8 tonnes 
flo = 4"8- RD= 4 tonnes, 

SF O,og r om 

( b) 

Fig . 7·7 

.28.7 
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Let us consider the portions AB, BC and CD separately taking x positive in the right 
direction and origin at A. 

Portion AB. Considering resultant of the vertical forces on the left side of the section 
only . 

Shear force F~ = - wx 
= 0 at x = O 
= - 1·2 x o 5=-0·6 tonne at x = O·s m 
=-- 1·2 x I :c-·- 1·2 tonne at x= I m 

Portion BC. Shear fore..: 
F11= - wx+ R B= - J ·2x+ 4 tonne 

= - 1·2-r-4= + 2'8 tonne at x= l 
= - 1 '2 x 2+ 4=+ 1 ·6 tonne at x= 2 
= - 1'2X 3+4= + 0·4 t onne at x= 3 
= - 1 ·2 x 4+ 4= - 0·8 tonne at x=4 

Portion CD. Shear force 
F.,= - 4'8+ 4=-0·8 tonne 

(constant throughout the portion CD) 

= - 0'8 tonne at x= 4 to 7 m. 

Note : T stands for tonnes. 
Fig. 7·7 (b) shows the SF diagram. 
Slope of SF diagram in portion AB, 

dF., 
dx =-W 

Slope of the SF diagram in portion BC, 
dFx 
dx = - W 

The slope of SF diagram in any portion ' of the beam gives the rate of loading win 
that portion. 

Exercise 7'3-1. A beam ABCD, 8 m long, supported at B and D carries a uniformly 
distributed load of 0·8 tonne/metre run as shown in Fig. 7·8. Determine the support 
reactions and draw the SF diagram. 

,--w = o~Jlmeter run 

·~:,m=r 
[Ans. 

Fig. 7·8 

RB= 4'0 t onne, RD= 0'8 tonne, FAB= - 0'8x to.nne, 'j 
FBc= - 0'8x+ 4 tonne, FAD= - 0' 8 tonne 

7'4. SF DIAGRAM OF A CANTILEVER SUBJECTED TO A CONCENTRATED 
LOAD 

A cantilever AB of length L , free at end A and fixed at encl B 9arries a concentrate<:l 
lo~d W at th~ fr~e end1 as ~hown in the Fi~. 7·~, · · · · · · 
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There will be a reaction RB= W at the 
fixed end and a fixing couple WL ;:> exerted by 
the wall at the fixed end B, for equilibrium. 
At any .section X- X at a distance of x from 
end A, there is a vertical force W t on the left 
side of the section and a vertical force Wt on 
the right side of the section. This shear force 
is a negative SF tending to rotate the element 
of cantilever at {he section in an anticlockwise 
direction. 

Shear force is constant throughout the 
length L of the cantilever, as shown in the SF 
diagram Fig. 7·9 (b) . . 

f-x-r tWL 
A~xL -----,8~ Wo ll 

(a) RB• W 

A 8 

SK O,ag rom 

Fig. 7·9. 
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Example 7'4-1. Fig. 7' 10 (a) shows a cantilever ABC, 5 metres long, free at end A 
and fixed at end C. A concentrated load 4 k N acts at A and 8 kN acts at B. Draw the SF 
diagram. 

L. k N 

~ x 

A x-jx 

8k N 

l 

8 

I . :< I X 

X 

C 

F,x ,ng 
couple 

Woll 

l-- ?. rn --r-- 3 m 
(a) Re= 12 k N 

j_A B C 

L. k N ~~: 7 J 7 ) l Tl1 T 
TA B - 12 k N 

'I / ( ( < ( ( J " _J__ 8 
( b J c' 

SKO ia 9r am 

Fig. 7·10 

Solution. For equilibrium, there will be reaction 

Rc = 4 + 8= 12 kN 

and fixing couple offered by the wall 

Mc~ 4 x 5+8 x 3= 44 kNm at the fixed end C. 

Shear force in portion AB, Fx = -4 kN 

Shear force in portion BC, Fx = -- 4-8=-12 kN 

Fig. 1· 10 (b) shows the SF diagrnm. 

· Exercise 7'4-1. A cant ilever ABC 6 m long free at end A and fixed at end C carries a 
concentrated load 400 kg at A and 500 kg at B (at a distance of 2m from end A). Dr;w the SF 
~ia~ram: · [Ans . FAs = - 400 kg, FBc= - 900 kg"I 
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7·s. SF DIAGRAM OF A CANTILEVER SUBJECTED 

STRENGTH OP :r.,A,TERJ.\L$ 

TO UNIFORMLY 
':H~:~~UTED Lq~~ f; 

A cantilever AB 9.f length L, free at 
end A and fixed· af end B carries a uniformly 
distribu'ted load w per unit length as shown in 
Fig. 7· 1 l (a)~ ,. 

Total vertical load on cantilever = wL 

CG of the load lies at a distance of 
2
L 

' l I 
1 

from the fixed end B. 

For equilibrium, reaction at B, 

Rn= wL 

8 

F,x,ng 
.;,ouptqwL! 

=2 

~~,-
- Wl 

l 
( b > a'. • 

Fig. 7·11 

L wL2 "\ Fixing coup~e offered by the wall at B=wL X 2 =-2- ,; 

Consider a section X-X at a distance x from the end A 
Shear force, F,.=-wx 

= 0 at 
wL = --- at 
4 
wL 

= --- at 
2 

x=O 
L 

x=4 

L 
X= 2 

= -wL at x= L 
SF diagram is shown in the Fig. 7'11 (b). 

Slope of the SF diagram, dl'F., =-w, i.e., rate of loading. 
ex 

Example 7·s-t. A cantilever 5 m long carries a uniformly distributed load of 
200 kg/metre run from the free end upto the middle of its length as shown in the Fig. 7·12 (a). 
Draw the SF diagram. 

Solution. Total load on the cantilever 
=200 X2'5= 500 kg 

C.G. of the load lies at a distance of l 25m 
from the end A or 3·75 m from the end C. 

For equilibrium 
Reaction at fixed end, R. = 500 kg 
Fixing cou'ple offered by the wall 

= 500 (3'75) 
= 1875 kg-m. 

For the SF diagram, consider a section 
X-X at a distance of x from the end A, in 
portion AB 

• ~J l , • 

Shear force1 

A I B X 

l- 25 m+ 25m 
(a ) 

F,x ,ng 
C OU pte 

Al IB C 

~::J}o,9 

s' c' 
SK D ,a gro m 

Fi~. 7 ·12 
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SHEAR FORCE AND BENDING MOMENT DIAGRAMS 

Fz= -wx= -200 x 
= 0 at x = O m 
= -200xo·s=-100 kg at x=o·s m 
= -200 kg at x= I m 

= -400 kg at x = 2 m 
=-500 kg at x=2·s m 

Again consider a section X-X at a distance of x from the end A in the portion BC. 
F~=-500 kg. 

This SF remains constant in the portion BC, i.e., from B to C. 

Slope of SF diagram, ~F/ = - w (rate of loading) in portion AB. 

Slope of SF diagram in portion BC, ~1;"' = 0. 

Exercise 7'5-1. A cantilever ABC 7 m long carries a uniformly distributeJ load of 
2 kN/m run from the free end A upto B, 5 metres from end A. Draw the SF diagram. 

[Ans. F,u=-2x kN, Foc= -10 kN] 

. ; • I:.. ..:t ; I ~ ~. I • \ • • • ., .. 

r·6. BENDING MOMENT DIAGRAM OF A SIMPLY SUPPORTED BEAM CARRY-
ING A CONCENTRATED LOAD 

A beam AB of length L simply supported at ends A and B carries a concentrated load 
¥ at its middle as shown in the Fig. 7· [ 3 (a). Initially the beam ACB is straight and after 
he application of the load the beam bends to the shape AC'B (showing concavity upwards 
liroughout the length of the beam. 

W ( L -x) 

"!!.x t~•Vj_ xT f t Conc avity u·pwards 
.2 f I 2 W ( L - x) 

X T 
+-X-j W 

.Mxf x_! _ ~!~~ 
8 A 

Fig. 7'13 

To detetmine support reactions, let us talce moments of the forces about the point A 

wx !::_ ;) - Rn XL :, = o For equilibrium 
2 
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But for equiiibrium 

w w 
RA=W - 2 = 2 t 

SfRENGTH OP MA TE~.JAtS 

Now consider a section X - X at a distance of x from the end A in the portion AC o'. 
the beam. 

Portion AC. Bending moment at any section 

M. = <!._ + }x (clockwise) 

(taking moments of the forces on the left of the section). 

Taking the moments of the forces on the right side of the section, 

M-.=} (L- x) , - W (; -x )J 
w 

=+ 2x' 
A small length considered at the section will bend showing concavity upwards. (Se, 

the top of the Fig. 7· J 3 a). 

Portion CB. Consider a section X - X at a distance of x from the end A in th, 
portion CB. 

Bending moment (taking moments of the forces on the left side of the section), 

MA = <!..~ (x)- (;: w (rx- ~ ) 

w 
= <!.. 2 (L-x) 

Similarly taking moments of the forces on the right side of the section, 

Mz = ~ (l-x), 

A small length considered at this section will bend showing concavity upwards. (Se 
the top of the Fig 1· 13 (a) ). 

A bending moment which tends to bend the beam producing concavity upwards is said t 
be a positive bending moment, or in other words, if the resultant moment of the forces on th 
left of the section is clockwise, it is a positive bending moment. 

Conversely a bending moment which tends to bend the beam producing convexity UI 
wards is said to be a negative bending moment, or in other words, if the resultant moment c 
the forces on the left side of the section is anticlockwise, it is a negative bending moment. 

Portion AC. Bending moment at any section, 
w 

M~= TX 

= 0 at x=O 
WL L =s:- at x= 4 

WL L 
1:: -

4
- . at x= 2 
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Slope of B.M. diagrams, 

dM., = + ~ (shear force in portion AC) 
dx 2 

Portion CB. Bending moment at any section, 
w M.= 2 (1-x) 

WL 
4 

WL 
==; -8-

= 0 at 

at 

at 

L 
x= y 

3L 
x=-4-

x= L 
Slope of the B.M. diagram, 

dM., W 
dx =- 2 (shear force in portion CB) 

Fig. 7· 13 (b) shows the bending moment diagram. In this case maximum bending 

moment occurs at the centre of the beam and is equal to ~L 

Example 7'6-1. A beam ABCD, 6 m long supported at A and D carries a concentrated 
load 3T at B, 2 metres from A, and another concentrated load 6T at C, 4 metres from end A. 
Draw the BM diagram. 

Solution. 
the point A 

-··- ·- X ----......i 
3T 6 T 

X X X 
A 1---i---"-=---+---4~_...- D 

X IB X C X 

2m ~ 2m + 2m Re =5T 

. ' a) , I 
/ C 

·&=hi 
A B C D 

8 .M Diagram 

Fig. 7· 14 

To determine support reactions let us take moments of the forces about 

3 X 2 Tm;> +6x 4 TmJ-RD X6, = 0 
where Tm stands for tonne-metre 

30 
RD= 6 = 5 Tonnes t 

But RA + RD= 3+ 6= 9 Tonnes 
RA = 9- 5= 4 Tonnes 

For bending moment, consider any sectiou X-X at a distance of x metre from the end A 
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Portion Ai 
Benct·mg moment, .M.,= -f-4x tm (a clockwise moment on left of section) 

= O at x = O 
= + 4 Tm at x = l m 
= + 8 Tm at x= 2 m 

Slope of BM diagram, 

Portion BC 
Bending moment, 

dM. = 4T (_SF in portion AC). 
dx 

M .. =+4x-3(x- 2) Tm 
= 8 Tm at x= 2 m 
= 9 Tm at x= 3 m 
= 10 Tm at x = 4 m 

Slope of the BM diagram, 

dM~; = I 
dx 

T-(SF in portion BC) 

Pori'ioi\ Co; Be11diil1g 1honient at any sectloh, 
M~ = + 4x- 3(.x-- 2)-6(x - 4) 

= Jo Tm at x= 4 m 
= 5 Tm at x=5 m 
~"'o Tm at x ~ 6 1\1 

Slope of the BM diagram, 

dM., = 4- 3- 6= - 5 Tonne 
dx (SF in portion CD) 

It can be verified by the reader that SF ii1 portion AB it is + 4T, in portion BC is + IT 
and in portion CD it is - 5 T , by drawing the SF diagram. ' 

Fig. 7· 14 (b) shows the BM diagrain where AB", B'C' and C'D are the straight lines. 
Exercise 7·6-1. A beam /f. BCD, ~ metres· long; ~imply supported at A and D , carries 

a concentrated load of 21 kN at B, I metre from A and· 28 kN at C, 5 metres from end A. 
Determine support reactions and draw the BM,diagi·am. 

[Ans. RA. = 26 kN, Rs= 23 kN, 'vls = + 26 kNm Mc = + 46 kNm] 

7·7. BENDING MOMENT DIAGRAM OF k. S.S . BEAM SUBJECTED TO UNI
FORMLY DISTRIBUTED LOAD 

A beam AB, of length L , simply 
supported (S.S.) at ends A and B; car ries ~ 
uniformly distributed load of w per u111t 
length throughout its length. The bea111 !s 
initially straight as ACB but after the apph
cation of the load, the beam bends showhrg 
conGavity upwards .-

T otal load on the beam = ivL 

· C.G. of. the load· lies· at a· distance of 
L 
2 from the end A. 

To determine support reactions, fitkP.· 
momen!s of the forces about the point A_ 

wt 
1 

c' 
X 

, . (-a) I j 

C~'~ 
8.M Diagram 

{ b ) 

Fia--. ns· 

wl 
z 
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But 

wL . ~ ;) - Rn . L J =0 

wL 
Rn= - t 

2 

wL wL 
RA=wL- - 2- = 2 

Now consider any section X-X at a distance of x from the end A 

Bending moment, M,=+RA . x - wx . ( ; ) 

Note that C.G. of the load w.x lies at a distance of ; from the section X- X 

nending moment, 
wL wx2 

Mz = +2 x - -
2
-

= 0 at 

&t 

at 

at 

at 

Slope of the B.M. diagram, 

x =O 
L 

X=4 
L x=y 
3L 

~= 4 
x=L 

dM,, wL 
~ =2 -wx (SF ~t any section, see article 7'3) 

dF d 2M dx = d x2 = - w (rate of loading) 

Fig. 7·15 (b) shows the B.M. diagram for th_e IJeam. 

Example 7'7-1. A beam ABCD, 1 metres long, supported at B, 1 m from end A and 
at D carries a un!formly distrib,u~~d load of 2 tonnes/metre run starting from end A upto the 
point 5 metre from end A. Draw the B.M. diagram. · 

Solution. The beam AB.CD initially 
straight bends to the shape A.' .89' b after tli.e 
appl ication of the transverse load. · 

Total load on the beam 
wx5= 2X 5=10 tonnes 

The C.G. of the load lies at a distance 
ofi 2 '.5 ni from end A or 1 · 5 m from the 
point B. 

For support reactions, let us take the 
pioments of the forces a bout the· point B, 

c -: a2T/m con 
~x~--~~ ( C X 

8 X ( X f0 

4m - --r-2ml 
Rs= 7· 5 T RO : 2 5 T 

Fi~ 1'1~ 
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or 

But 
So 

lO X 1 '5-;) --Ro x 6:) = 0 

Ro= 2'5 tonnes 

Rn+ Ro = 10 tonnes 
R u= 10 - 2'5= 7'5 tonnes. 

STRENGTH OF MATERIALS 

For bending moments, consider portions AB, BC and CD separately taking x pos1t1ve 
towards right with origin at the point A. Take moments of the forces only on the left side 
of the section. 

Portion AB 

Bending moment, 

Portion BC 

Bending moment, 

Portion CD 

M& = - WX (; ) 

( i.e. load = wx and its C.G . lies at ; from the section X-X ) 

M -- ~xz 
z - 2 

=-x2 since w= 2Tm 

= 0 at x=O 

=-0'25 Tm at x=0'5 m 

=-1 Tm at x=l m 

wx2 
M.=- 2 +Rs (x-I) 

xz 
= -2. T + 1·5 (x--1) 

= -x2+ 1·5(x-1) T. m 
= -lT.m at x = lm 
= + 3·5 Tm at x = 2 m 
=+6 Tm 
=+6·5 Tm 

=+ 5 Tm 

at 
at 
at 

x = 3m 
x=4 m 
x=5m 

Behding moment, M: = - IO(x.- 2'5)+ 7'5(x - 4) m 

(total udl= 10 tonnes and its C.G. lies at a distance of 2·5 m from 
end A) 

=+ 5 Tm 
=+2·5 Tm 

=Q 

at 
at 
at 

x=Sm 
x=6 m 
X= 7m 
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Fig. 7' 17 shows the BM diagram for 
the beam. At the point E in the BM diagram, 
BM=O and BM changes sign from negative 
to positive. Such a po int is called the point 
of contra flexure. 

Point of contraflexure in this case lies 
in the portion BC 
where M.=-x2+7·s (x-1)=0 
or x2 - 1'5 x+1·5=0 

,r' "; 

7'5--.f (7'5)2-4 X 7' 5 
x = 2 

7'50-5'12 = l .19 m 
2 

Fig. 7·17 

.. i.e. point of contraflexure lies at a d istance of 1·19 m from the end A. 
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) ., · 

Exercise 7·7-1. A beam ABC, 5 m long is supported at B, l m from end A and at C. 
The beam carries a uniformly distributed load of 10 kN/m run, throughout its length. Draw 
the BM diagram and determine the position and magnitude of maximum bending moment. 
Find the position of the point of contraflexure, if any. 

[Ans. Mmaz= 17'578 kNm at 3' 125 m from A 
Point of contraflexure lies at l '25 m frcm end A] 

7'8. BENDING MOMENT DIAGRAM OF A CANTILEVER SUBJECTED TO CON
CENTRATED LOADS 

Fig. 7'18 (a) shows a cantilever AB of length L 
at the free end A. Initially the cantilever 

subjected to a concentrated load W 
Wx AB is straight, but after the application of 

the load W, the cantilever is bent to the 
shape A' B, showing convexity upwards. 

For equilibrium, the reaction at B 
i.e. RB= W and fixing couple offered by the 
wall is wL. 

Consider a section X-X at a distance 
of x from the end A. Taking moments of 
the forces on the left side of the section, 
M.,= - Wx (the resultant anticlockwise 
moment . o~ the left side of the section is 
negafive'.) I• ,I • ,t f . • 
• : .: ·:· , . : ·, ! . . 1.,·., .: 

Taking moments of the forces on the 
right side of the section 

~ rx· J~_' ' 
X 

~ - - -L 
( a ) 

Fixing couple 
WL 

Ai B 

~1 ... -, 
B.M. Di a gram . _9 ' .

( b) 
. / ' :. 

Fig. 7·18 

M., = + W(l-x) , - wL-;) 

= - Wx (the resultant clockwise moment of the forces on the 
right side of the section is a negative BM). 

A small element considered at this section will bend with convexity upwards. ', As per 
t4e 9onventjon the BM which tends to produce convexity upwards is said to be a negative BM1 . ' . ... 
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Now BM at any section, 
M.=-Wx 

= 0 at 
wL 

x = O 
L 

= - at 
2 

x=-
2 

= -wL at x=L 

The slope of the BM diagram, 

dM., =- W (shear force) 
dx 

The BM diagram for the cantilever is shown in Fig. 7'18 (b). 

STRENGTH OP MATJiR~AU 

Example 7'8-1. A cantilever ABC, 6 metres long, fixed at C, carries a point load 10 kN 
at free end A and a_nQther point load 20 kN at B, 2 metres from A. Draw the BM diagram. 

') I ') 

Solution. For equilibrium. Reaction at C, R. - 30 kN 

Consider section X-X at a distance of x from the free end A and taking momenta of 
the- fore.es only on the left side of the section. 

I • 

Portion AB 

10kN 20kN ~all ·~x'4 t>\=-140kNm 

AC1x-t~8- c 

A 

!...- ,/~ ~m 1 R dOkN 
(a ) C 

B.M Diagram 

( b) 

Fig. 7·19 

C 

T 
-140 k Nm 

I 
'_j_ 

BM at any section, M.,= - 10 Xx kNm (anticlockwise moment on the left side,:af th~ 
section is negative and produces convekiiy 
upwards) 

Portion BC 

M. = O at 
= -10 kNm 
=-20 kNm 

X= O 
at 
at 

x=lm 
x = 2m 

·/, J3.M,at any se~~ion, M.,=-10 x - 20 (x - 2) kNm .. 
II 1 'ii =-20 kNm at x= 2m 

,rt 
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=-50 kNm at 
=-80 kNm at 
= -110 kNm at 
=-140 kNm at 

x=3m 
x=4m 
x=5m 
x=6m 

The BM diagram for the cantilever is shown in Fig. 1·19 (b). 

Exercise 7·8-1. A contilever ABC 5 m long carries a point load of 800 kg at its 
free end A and 600 kg at the middle of its length, B. Draw the BM diagram for the cantilever. 

[Ans. MA=O, Mn=-2000 kg/m, Mc= -5500 kg-m] 

7'9. BENDING MOMENT DIAGRAM OF A CANTILEVER CARRYING A 
UNIFORMLY DISTRIBUTED LOAD 

A cantilever AB of length L, free 
at end A :and fixed at end B carries a 
uniformly distributed load w per unit length 
throughout its length. The beam is initially 
straight and· bends ,showing convexity upwards 
after the application of load. 

A 

Total load .on c_antilever = wL 

For equi1ibrium, reaction at B, 

Rn=wL 
Bending moment at B, 

wL2 
MB= ---

2 

8.M. Diagram 

( b) 

Consider a section X-X at a distance of x from the end A. 

Moment of the forces on the left side of the section, 

M~=-(wx) ( ~ ) 
wx2 ( . 1 k . ) = - - 2- antic oc wise moment 

Moment of the forces on the r ight side of the section, 

w(L-x)2 

M~ = - 2 + Rn (L- x)+ Mn 

- - wLa - w(L-x)2 +wL (L-x) 
- 2 2 

wx2 

= - 2 (ol.ockwise moment) 

Slope of the EM diagram, 

dlvf~ h 'cfx = - wx ( SF on t e cantilever J 

Fig.7-20 

Fi xin g coup.le 

'MB : - wt2· 
2 

R = wL 
B 

A slila-11 element ' .c0nsidered at the section will bend showing ·O@l.li\'·e~it:y upwards,. as 
·~~-Ii -en the ,t 0p of the P ig 1·20 (a~. 



Now bending moment at any section, 
wx2 

Mx= --
2
-

= 0 at x=O 
L x= -
2 

wL2 
- -8- at 

x=L 
., wL2 

=-
2 

at 

Fig. 7'20 (b) shows the BM diagram of the cantilever. 

Exam.pl~ 7'9-t: A beam ABC, 5 m 
long, free at end A and fixed at C, carries a 
uniformly distributed load of 1 ·5 tonne/metre 
run from the point B, l m from end A, upto 
the point C. Draw the BM diagram for the 
cantil_ever. · 

Solution. In this case, the cantilever 
does not carry any load between A to B, even 
if this part of the cantilever is removed, it 
will not affect the BM on the cantilever at any 
section. 

(a) ~ 

A I B 3 Tm IC ------=~.---T 
Consider a section X-X at a distance 

of x from the end A, and taking moments 
of the forces on the left side of the section 
only. 

-12 Tm 

8. M D1 agram 

{ b) 
C 
,i 

Portion AB. BM at any section, 

M.:= 0 

Fig. 7·21 

= 0 at x=O 
=0 at x=l m 

Portion BC. BM at any section, 

M.:= -w(x-1) (x-l) 
2 

= - ; (x-1)2 (an anticlockwise momen~) 

1 '5 =-2 (x- 1)2 

= O at x= l m 
=-0'75 tonne-metre at x= 2 m 
= -3'0 tonne-metre at x = 3 m 
=- 12'0 tonne-metre at x=S m 

The BM diagram is shown in Fig. 7'21 (b). 

. •/,.; 

Exercise 7'9-1. A cantilever ABC 1 m long, free at end A and fixed at end C carries 
a uniformly distribu.ted load of 500 kg from the point B, 2 m from end A and upto the point C. 
Draw the BM diagram. [Ans. M.f=Ms= O, M5 = -'-2250 kig-m, ¥c = -62SQ kg~pi] 
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7·10. SF AND BM DIAGRAMS OF A BEAM WITH VARIABLE LOADING 

A beam AB of length L simply supported at ends A and B carries a varying load 
increasing from zero at A to w per unit length at B as shown in the Fig. 7'22 (a). 

wL 
Total load on the beam = 2 
CG of this load lies at a distance of 2L/3 from end A or L/3 from end B (as is obvious 

for a triangle). To obtain support reactions take moments of the forces about the point A 

or 

But 

So 

wL X 2L - Rn.L= O 
2 3 

SF Di agram 

J:..---j 
ff (c) 

BMD1agrarr, 

Fig. 7·22 

wL 
R,1+ R n= 2 

R •= wL _ wL _ wL 
n 2 3 - 6 

wl 

-_L 

Consider any section X-X at a distance of x from the end A. 

Rate of loading 
wx =y 

Vertical load upto section 

Shear force, 

wx · wxa 
X-X= 2L . x= 2L . 

wx2 

P.,= RA- 2l 

.... : ... 

f' 

(upwards force to the left side of th<'! i::P.r.ti""' ; r ... ~ .. :+: ... , 
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where 

I.e., 

or 

or 

wL wx2 wt 
= 6 - 2£ = - 6- at x = O 

wL 
= 9 
= wL 

24 
wL 

=-18 

L 
at x=3 

L 
at x=2 

2L 
at x= -

3
-

wL 
=--

3
- at x= L 

wx2 ( x ) BM at any section, M,, = + RA. x- 2£ T 

. ' ' !: 

' l 

(clockwise moment on the left side of the section is positive) 

'V: =rate of loading at X 

1wx2 · 
2

L = vertical load upto X 

; = distance of CG of this load from section X-X 

wLx wx3 

M,, = -6- - 6L 

= 0 at x=O 
4 L = 81 wL at x = 3 
wL L 

= 16 at x=2 
5 2£ =sr wL at x= 3 

= 0 at x=L 

To obtain maximum BM, put 

dM.,, = O 
dx 

wL _ wx
2 

= 0 (a point at which shear force is :zero) 
6 2£ 

wL wx2 

6 = 2£ 
.. . t2 1L 
xz= 3 or x= .f3 

Mma,, = wi ( 13 )- 6~ ( ;3 r 
wL2 · w , L2 wL3 

( 1 J 2wV 
- 6v3 - 6 ,>i: 3.f3 - fil 1 3 - 3x 6v3 

wL2 L 
= 9v3 at X= .,/3 

; ,c,.• ,',I • ~ ~- ,,.·: J ,• 
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Maximum bending moment occurs at the point where shear force is zero. 

Fig. 1·22 (c) shows the B.M. diagram for the beam. 

Example 7'10-1. A beam 6 m long, simply supported at ends carries a linearly 
varying load with maximum rate at the centre of the beam i .e. , 1 ·5 tonne/ m run as shown in 
Fig. 7·23 (a). Draw the SF and BM diagrams for the beamJ 

·, 

Solution. Total vertical load on the beam 

1 ·5 -
= 2 X 6=4'5 tonne 

The beam is symmetrically loaded so the reactions 
4·5 

RA = Ro= -
2
- = 2·25 tonnes t 

8 M Diagram 

( C ) 

Fig, 7·23 

run 

Mmoi . :i. . 5 Tm 

SF diagram. Consider a section X-X at a distance of x. from tl~_e end A . . 

Rate of loading at the section 
1·5 x _

0
.
5 

_ 
= - 3-- X ·1 

Vertical load upto x = 0'5 ; . X = 0'25 x2 

Takin$ the resultant of the forces onl~ on the left side of the sectio~. 

• •. ·...t . ..., 
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Portion ~C. S.F. at any section, 
F.,=2'25-0'25 xz 

= 2·25 tonnes 
= 2·00 tonnes 
= 1 ·25 tonnes 

= 0 tonnes 

at 
at 
at 
at 

x=O 
x=l m 
x=2m 
x=3 m 

There is no necessity of determining SF in the portion CB, since the beam is symmetri
cally loaded . 

(See article 7'2) 
SF=-1 ·25 tonnes 

= -2·00 tonnes 
= - 2·25 tonnes 

Fig. 7·23 (b) shows the SF diagram. 

at 
at 
at 

x=4m 
x=5 m 
x=6 m 

BM diagram. Taking moments of the forces on the left side of the section X-X. 

Vertical load upto x =0·25 x2 

Distance of CG of this load from section XX 

BM at any section, M.= + RA . x-0·25 x2 

xs 
= 2·25 x-12 T-m 

= 0 at x= O 
13 

= 7T-m at 

= ~T-m 
12 

at 

= 4·5 T-m at 

X 

3 

x = lm 

x=2 m 

x=3m 

Again there is no necessity. of dete_rmining bending moments in the portion CB, as the 
beam is symmetrically loaded about its centre. 

46 
M.=12 T-m at x=4 m 

13 
M., = 6- T-m 

M., = O 

at 

at 

x=Sm 

x=6m 

Maximum·bend·ing moment occurs at the centre where SF is zero. 
Fig. 7'23 (c) shows the BM diagram of the beam. 

Exercise 1 ·10-1. A beam AB, 6 metres long carries a linearly variable load from one 
end to the other end. At the end A the rate of loading is 1 tonne/m run and at the end B the 
rate of loading is 3 tonne/m run. Determine (i) support reactions (ii) magnitude and position 
of the maximum bending moment. · 

r Ans. RA= 5 tonnes, .Rn= 1 tonnes, Mma.= 9'062 T-m at 3'245 m from end A] 
J • • ., • • • • • • • ~ • 
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'·H. SF AND BM DIAGRAMS OF A CANTILEVER WITH VARIABLE LOADING 

A cantilever AB, free at end A, fixed 
t end B, of length L, carries a linearly 
ariable load with rate of loading zero at A 
11creasing to w at B. 

Total load on cantilever 

=-wL -1, 
2 

X 

A 

For equilibrium, reaction at B 

wL 
Rn= 2- t 

----L 
( a) 

.l~r,' 
Consider a section X-X at a distance of 

from the end A. 

wx 
Rate of loading at x = L 

WX X 
Vertical load upto x = L - . 2 

wx2 

2L 

F Diagram 

( b) 

Fig. 7·24 

At any section, F = _ wx2 
( downward force on the left side of the ) 

x 2L section is negative 

= 0 at x = O 
wL L 

at X = l 8 

wL 
·-

2 
at x=L 

Shear Force diagram is shown in Fig. 7 ·24 (b). 

M Diagram 

Th CG f h I d wx
2 

1· d. f x f h XX e o t e oa lL 1es at a 1stance o 3 rom t e sectwn - . 

BM at any section, M _ wx2 x ( ~ Clockwise moment on the left side of ) 
x - · - 2L · 3 the section is negative 

wx3 

-rr-
= 0 at x=O 

wL2 

at L = - X= -2-48 

wL2 

at x= L = -
Q 
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The BM diagram is shown in Fig. 7'24 (c). 

Example 7'11-1. A cantilever ACB, 
5 m long carries a linearly varying load 
starting from zero rate of loading at A to 600 
kg/m run at C, 4 m from the end A as shown 
in Fig. 7'25 (a). Draw the SF and BM dia
gram. Total vertical load on cantilever 

= 600 
X 4= 1200 kg 

2 

For equilibrium, reaction 
Rs= 1200 kg t A~__,.._,'"'"T"'.r-r--r-t?C~~ 

Consider a section X-X at a distance 
of x from the end A. 

-1200 kg 

, _J_ 
SF Diagram s ' 

( b ) I Rate of loading at X= 
6
~

0 
x 

= 150 X 

Vertical load upto X= l50 x 2x 

= 75 x2 

A C 8 
i--=-,,--r-r-r--'.M'7'....,...., _,,.--.... t-

SF Diagram 
Portion AC 

BM Diagram 

{ C ) 

-1600 kg- m 

__ , ~-2sJo kg -m 

t 

Fig. 7·25 

SF at any section X, Fx= -15 x2 (downward force on the left side of the sectior 
is negative) 

= 0 at x=O m 
=-300 kg at x = 2 m 
=-1200 kg at x= 4 m 

Portion CB 

SF at any section, F.,= - 1200 kg at x= 4 m to 5 m. 

The shear force diagram is shown by Fig. 7'25 (b). 

BM Diagram 

CG of the vertical load upto X lies at a distance of ; from the section X-X. 

Portion AC 

x ( anticlockwise moment on the left side) 
BM at any section X, M. = -15 x 2 

• J. of the section is negative 

=-25 x3 

= 0 at x= O m 
= -25 kg m at 
= -200 kg m at 

:=;= - 1600 k~ m at 

x= l m 
x = 2m 

~= 4m 
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Portion CB 
8 

CG of the total vertical load lies at a distance of 3 m from end A. 

BM at any section X-X, 

Mz=-1200 ( x--}) kg-m 

=- 1600 kg-m at x=4m 
= - 2200 kg-m at x=4·5 m 
=-2800 kg-m at x=5 m 

Fig. 7"25 (c) shows the BM diagram for the cantilever. 

Exercise 7·11-1. A cantilever 5 metres long carries a linearly varying load starting 
om zero rate of loading to 2·5 tonnes/metre run at the fixed end. Determine the shear force 
1d bending moment at the fixed end of the cantilever. 

[Ans. F=-6·25 tonnes, M=-30·416 tonne-metres] 

12 . SF AND BM DIAGRAM OF A BEAM SUBJECTED TO A MOMENT 

A beum AB of length L hinged at both the ends is subjected to a turning moment M 
its centre. The hinged ends will prevent the lifting of the end A due to the application of 

e moment, Mand the beam can take any slope or any direction at the hinged end. 

To determine support reactions. Let us take moments of the forces about the point A 

M;> - Rn XL' = 0 

For equilibrium, 

Rn= 1t t 

RA= Mt 
L 

as shown in Fig. 1·26 (a) 

c' c': M 

BM Diagram 

cd 
Fig. 7·26 
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SF diagram. Consider any section in the portion AC or CB. 
Shear force = - RA (downward force on the left side of the section i 

negative) 
M 

=-T 
Fig. 7"26 (b) shows the SF diagram of the beam, 

BM diagram 

Portion AC. BM at any section, 
M.,,= - R A . X (anticlockwise moment on the left of th 

section is negat ive) 

M 
=- yx= O at x = O 

M 
at 

at 

Portion CB. BM at any section, 

M~=-RA.x+ M 

M 
=- yx+ M 

M =+ 2 at 

M = + 4 at 

= 0 at x= L 

L x = - -
2 

3L 
X= 4 

Fig. 1·26(c) shows the BM diagram for the beam. 

Ex:iinple 7·12-l. A beam 5 m long, 
hinged at both the ends is subjected to an 
anticlockwise moment M equal t o 6 tonne-
metres. At a point 3 m away from one end 
A. Draw the SF and BM diagrams . 

Solution. Taking moments of the 
forces about the point A 

6Tm = 5X RB 

or · Rn=l '2 T ,I, 

For equilibrium 

R11=1·2 T t 

A j 11 , 11 1 

A~·- . 
SF 01ogro m1 

Fig. 7·27 

Rg "i 2 T 



I .-. 

SHEAR fORCE AND BENDING MOMENT DIAGRAMS 309 

SF diagram. 
Shear force, 

For portion AC or CD, 
F,,=+1·2 T (tend ing to rotate the body in the clockwise 

direction) 

Shear force is constant throughout the length of the beam. F ig. 7'27 (b) shows the SF 
diagram. 

BM diagram. Consider a section X- X ut a distance of x from the end A and taking 
moments of the forces on the left side of section only. 

Portion AC. BM at any section, 
Af.,=+1·2 xx 

=0 at x = O m 

= 1·2 T-m at x = l m 

= 2"4 T-m at x == 2 111 

= 3"6 T-m at x = 3 m 

Portion CB. BM at any section, 

M.,=1·2 x-6 

=-2'4 T-m at x=3m 
=0 -1 ·2 T-m at x -= 4 m 

=-0 at x = 5 rn 

F ig. 1·21 (c) shows the BM diagram for the beam. 

Example 7·12-2. A cantilever AB, 6 m long, free at end A, fixed at the end B is 
subjected to a clockwise moment 8 kNm at the end A. Draw the SF and BM d iagram. 

or 

Solution. For equilibrium, fixing couple, 
BM at B = 6 kNm 

Bending moment is constant throughout, 
M.,=6 kNm 

Shear force, dM"' = O 
dx 

at any section. 

Fig. 7"28 (b) shows the BM d iagram of the cantilever . 

Fig. 7-2.8 
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7'13. RELATIONS BETWEEN RATE OF LOADING, SF AND BM 

In the previous articles we have learnt about SF and BM diagrams of cantilever and 
beams (with and without overhangs) subjected to concentrated and distributed loads and we 
have observed that 

(i) the portion in which SF is constant, BM curve is a straight line. 

(i;) the portion in which SF is varying linearly, BM curve is parabolic. 

(iii) maximum bending moment occurs at a point where either the SF is. zero or 
the SF changes sign. 

In other words, the curve for bending moment in any portion 0f the beam is one degree 
higher than the curve for S.F. 

w M+bM 
Fig. 1·29 shows a beam with a con

centrated load W and a distributed load w. 
Any other beam or cantilever with any type of 
loading can also be considered. Consider a 
small section of the beam of length ox at a 
distance of x from the end A. 

M 
w=roteof 

loadi n g 

Say on the left side of the section, 
SF= F and BM = M. 

On the right side of the section, 
SF=F+ RF and BM= M+ oM. 

Considering the equilibrium of forces 
F= F+ oF-1- wox 

or oF=-w ox 
In the limits, 

dF - = -w 
dx 

... (i) 

A 8 

F+fr 
-.-- X --~bX 

Fig. 7·29 

i.e. rate of change of SF at a section is equal to the rate of loading at the section. 

Now taking the moments of the forces about the right hand end of the section, 

ox 
M+ oM= M + F8x - w.8x. -, n 

the value of n is 2 if the rate of loading is uniform 

or 

= M + Fox - w/x2 

neglecting higher order of small quantities ox 

In the limits 

oM= Fox 

dM = F 
dx 

i.e. the rate of change of BM at a section is equal to the shear force at the section. 

Now (i) if rate of loading is zero, then 

dF = - w= O 
dx 

F= a constant 

... (2) 
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and 

or 

dM 
dx = F (a constant) 

I dM= j F dx 

M = Fx+C 

(ii) If the rate of loading is uniform, 

dF 
dx =- w 

8F=-w8x 

Integrating we get F= - wx-J-C1 

dM +c -- =-wx 1 dx 

which is the equati on of a stright line 

where C1 is the constant of integration 

Integrating further 
wx2 

M=--,- -
2
- + c1x+C2 

The BM curve is a parabola in this case. 

Now for a maximum value of BM, 

dM = 0 but dM = F 
dx dx 

where C2 is another constant of integration 

or the shear force is zero. 

Examp!e 7'13-1. A beam 10 m long simply supported at the ends carries transverse 
loads. The SF diagram for the beam is shown in Fig. 7'30(a). Draw the BM diagram for 
the beam. 

Solution. Let us consider 3 portions of. the beam i.e. A.[], BC and CD separately. Jn AB, 
SF is constant and equal to + ST. In BC, SF 1s constant and 1s equal to IT. In CD, SF is not 
constant but varies linearly as shown. This shows that portion CD of the beam carries a 
uniformly distributed load. 

Since the beam is simply supported at A and D, 

Now 

Integrating 

BM at A = O 

BM at D= O 

dM 
- - = F 
dx 

B 

M=J Fdx 
A 

or dM = F dx 

BM at B-BM at A = area of SF diagram between B and A 
or Mn-0 = 5 X 2=I0 Tm 
or 

SiJnilarly 

Mn= IO Tm 

Mc-Mn= area of SF diagram between C and B 

f.1c = Mn + 2 x l= !O+ J = Ii Tm 

... (I) 

... (i) 
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Say C' is the centre of the beam. 
Mc'-Mc=arca of SF diagram between C' and C 

Mc'=I2+ }x IX 1= 12'5 Tm 

f 
+ ST 

t A 

0 f 
- 5 T 

t 
o· 

Fig. 7"30 

Now in lhe portion C'D. SF is negative . 

Let us take a point Eat a distance of 7·5 m from A or 2·5 m from C'. 

Now SF, EE'= - ~ =-2·5 T (in SF diagram) 

Similarly 

M£-Mc'=area of SF diagram between E and C' 

2·5 
=-2'5 X l 

Me= 12'5-3' 125= 9'375 Tm 

Mn-Mc'=,trea cf SF diagram between D and C' 
s·oxs 

=- - 2-

MD=-12'5+ 12'5= 0 

The BM diagram is shown in Fig. 7·30(b). 

Exercise 7'13-1. Fig. 7·31 shows SF diagram of a beam 8 m long, supported over a 
span of 6 mat Band E. Draw the BM diagram and determine the position of the point of 
c<:mtraflexurc. 

Ms=-20 kNm, Mc = +llO k Nm, M;=+10 kNm 
Point of centraflexure lies at a distance of 2'307 m from 
end A] 
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However for the sake of explaination of a graphical method which may be useful in certain 
cases, the method is detailed as below (Consider a beam of length/, simply supported at its 
ends and carrying concentrated loads W1 and W2 at distances of /1 and /2 from one end of the 
beam. We have to draw SF and BM diagrams for the beam). 

(i) To some suitable scales say 1 cm= S1 m of beam length draw the load diagram 
for the beam as shown in the Fig. 7·32 (a). 

(ii) Give Bow's notations to the spaces. AB represents load W1, BC represents load W2 
then, CD represents reaction R e and DA represents reaction RA. 

(iii) To Sl'me suitable scale say 1 cm = S2 tonnes take ab= W1/S2, be= W2/S2• Choose 
a pole O at a horizontal distance of S cm from the load line. Join oa, ob and oc as shown in 
Fig. 7·32 (b). 

(iv) Draw vertical lines along reactions R A, Re and loads W1 and W2, 

(v) Draw lines Y1 Y2' parallel to ao, Y2' :f 3' parallel to bo and Y3' Y4 parallel to co. 
(1,i) Join points Y1 and Y4 • Then the funicular polygon drawn gives the BM diagram 

to some suitable scale. 
(vii) From the point O draw a line od parallel to the line Y1 Y4• Then cd represents 

the reaction Re and da represents the reaction RA. 

m &=~-~ 
RA= S 2 • da 

(viii) Draw a horizontal line from the po int d which gives the base of SF diagram. 
Draw horizontal lines from the points a, b and c which intersect the vertical lines drawn from 
the reactions and the loads intersecting at X 1', X2', X\, X3' , Xs", X4 as shown in Fig. 7·32 (d). 
The figure as shown gives the SF diagram for the beam. 

SF in the portion of length J, 
F1= S2.X1 X1' = S2 RA 

SF in the portion of length /, to /2, 

F2= S2.X2" X2= S2 (RA- W1) 

SF in the portion of length, /2, /, 
F3= S2 • X3X3" = S2 x Re 

(ix) The funicula, polygon Y1 Y2' Y3' Y4 gives the BM diagram. Let us consider a 
section X-X at a distance of x from the end A. 

BM at the section, M.,=RA x-W1 z 

where z is the distance of the load W1 from the section 
then M.,= (Y., Y.,') S1 S2 S 

where Y., Y.,' is the vertical projection along the section X-X. on the BM diagram. 

or (Y .. Y.,') S1 S2 S=RA . x- W1 z 

or 

= S1 S2. da. x- S1 S2 . ab. z= S1 S2 (da. x-ab. z) 

(Y .. Y./) .S = da. x-ab. z 

Extend the line Y1 Y2' to Yo:" so as to meet the projection thro~gh the section X-X. 
11 Y1 Y.," Y., = !:::,.oad 

(similar) 

da od horizontal projection of od S 
Y.,Y.," = Y., Y1 = horizontal projection of f.Y1 = x 

9f f/a I x= S. y\l' r~t . . .. ~l ) 



or 

Similarly 

6. Y1' Ya• Y.' = !::,. oab 
(similar) 

ab ob horizontal projection of ob 
Y .. 'Y,.11 = Y2'Y.,' = horizontal projection of Y2'Y..' 

abz=S. Y.,' Y.," 

From equations (1) and (2) 

da. x-abz=S(Y., Y:io"-Y.,' Y..,") = S. Y2: Y.,' 

So the bending moment at any section 

j1S 

s 
z 

... (2) 

= (vertical intercept through the section on the funicular 
polygon) x length scale X load scale x S 

S is the horizontal distance shown for the pole of the force polygon. 

Example 7'14-1. A beam 10 m long, simply supported at the ends, carries concen
trated loads of 4 tonnes, 5 tonnes and 3 tonnes at distances of 2 m, 5 m and 7 m from one end. 
With the help of graphical method determine the bending moments under the loads. 

Solution. Let us take scales for length of the beam and for vertical loads as 

1 cm= 1 metre length of beam 

1 cm= 1 tonne load. 

Draw the loading diagram as shown in Fig. 7·33 (a). Give Bow's notations to the 
spaces i.e., AB, BC, CD representing loads 4 tonnes, 5 tonnes and 3 tonnes respectively. Draw 
vertical .load line taking ab= 4 cm, bc= 5 cm and cd= 3 cm. Choose a pole oat a horizontal 
distance of 5 cm from the vertical load line abed. Join ao, bo, co and do. 

Draw vertical projection lines through the reactions and loads. Draw lines y
1 

Y2' 

II ao, Y2' Ya' II bo, Ya' Y4' II co and Y,' Y5 II do intersecting the projection lines at Y
1 

Y
2
', 

Y' Y4' and Y5 • Join Y1 Yu. Then the diagram Y1 Y2' Y3' Y,i' Y5 is the bending m~ment 
di1gram. In the force polygon draw a line eo parallel to Y1 Y5• Then 

Reaction, ea= RA= 6·6 cm= 6"6 tonnes 

de= RD= 5"4 cm=5·4 tonnes 

Length scale, 

Load scale, 

Distance 

BM at the point 2, 

S1 = 1 cm for 1 m length 

S2= 1 cm for 1 tonne load 

S=5 cm 

M2 = Y2 Ya'. S1 S2 S 

= 2·6xl mxl tonnex5 
= 13 tonne-metres 

at point 3, M3= Y3 Y3'. S1 Sa S= 4"1 X i X l X 5= 20'5 tonne-metres 

at point 4, M,= Y, Y,' S1 S2= 3"15 X l X 1 X 5= 15·75 tonne-metres. 

By Analytical Method. Reaction, 
RA=6·6 tonne, RD= 5·4 tonne (by taking moments) 

BM at point 2, · M:1=6·6 X 2= + 13'2 tonne-m~tres 

; l • 



~16 

BM at point 3, 
BM at point 4, 

.M3=6·6 x 5-4 x 3= 21 tomie-metres 

M4=6·6x 7- 4 x 5-5 X 2= 16·2 tom;1e-~etres 

This shows that there are slight graphical errors in the answer. 

A 

RA= 

v, 

4T ST 

B C 
I 

2 E 3 
6· 6 T 

2m 3m 2m 

Loa d scale IT • 1 cm 

dea54cm:5-4T :Ro 

ea =66cm:6-6T:RA 

Vertical in tercep ts 

. , 
v3 v3 = 4,1, cm 

v4 Y~ = 3-15cm 

Di s tanc e S :Scm 

Sco les 51 = 1m per c m 

s2 = 1T percm 

3T 

0 

5 .. 
R0:5 -4T 

3m 
Y5 

Fig.7-33 

0 

e 

C 

d 

ea :6 - ~cm 

: 5 ~Cm 

·r-- S: 5cm 

Exercise 7·14-1. A b~am 12 m long si1pply s~ppo~ted aJ the ynds carries 3 concentra• 
ted leads of 60 kN each at distances of 3, 6 and 9_ m from one end. Draw the load diagram, 
force polygon, SF diagram and BM diagram graphically and indicate the bending moments 
under the loads. [Ans. M2= 270 kNm, M3 = 360 kNm, M,= 270 kNm] 

Problem 7·1. A beam ABCDE, 14 m long supported over a length of 10 metres, 
over hang on both the sides being equal, carries a lo~~ 40 kN a.t one end, 40 kN at the other 
end and 80 kN at its centre. Draw the SF and BM diagrams. State the positions of the poi11ts 
of contraflexure and the maximum bending moment. 

(b) Determine the position of the supports if the maximum positive BM is equal in 
ma£nitude to the maximum negative BM when the position of ~e. loads rei;nains unchanged. 
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Solution. Total vertical load 
= 40+80+40= 160 kN 

Since the beam is symmetrically loaded 
about its centre, reactions, · 

160 
Rs= RD= --= 80 kN 

2 

Consider a section XX at a distance 
of x from the end A and taking upward forces 
to be positive. 

SF diagram. 

Portion AB. F,, = - 40 kN 
(constant from x = O to 2 m) 

Portion,c. 

Portion CD. 

Fx = - 40 + 80= + 40 kN 
(constant from x = 2 m t.o 7 m) 

F .. = -40+ 80-80= - 40 kN e. M. Diogro"' 

(constant from x = 7 to 12 m) Fig. 7·34 

Portion DE. F,= -40+ 80- 80-1- 80=+40 kN (constant from x = l2 m to x= l4 m) 

The SF diagram is shown in the Fig. 7·34 (b). 

BM Diagram. Taking the clockwise moments on the left side of the section to be 
positive. 

Portion AB. BM at any section, 

Mx=-40 X 

= 0 at x = O m 
= - 80 kNm at x=2•m 

Portion BC. M.,=-40 x+80 (x- 2) 

=-80 kNm at x=2m 
= + 20 kNm at x=4'5 m 
= +120 kNm at x = 7 m. 

Portion CD. M.,=-40 x+80 (x-2)- 80 (x-7) 
= + 120 kNm at x = 7 m 
= +20 kNm at x=9'5 m 
=-80 kNm at x= I2 m. 

Portion DE. M.,= - 40x+ 80 (x-2)-80 (x-7)+ 80 (x-1 2) 
= -80kNm at x = l2m 
= 0 kNm at X= I4 m 

Maximum bending moment 120 kNm occurs at the centre of the beam. 
Points of contraflexure lie in the portions BC and CD. 
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For portion BC, 

For portion CD, 

M. = -40x+80 (x-2)=0 

40x= I60 

x= 4m 

M., = -40x+80x- I60-80x+560 

= -40x+400= 0 

x = IO m. 

Sti.ENGTH OF MA TEitJAis 

Fig. 7·34 (c) shows the BM diagram and points of contraflexurc. 

(b) We have seen that maximum 
negative BM occurs at the support B or D 
and maximum positive BM occurs at the 
centre C. 

Say the beam is supported at a 
distance of a metre from both the sides as 
shown in the diagram 7'35. 

A r: 80:N O :O kN 

I R
8
~-:0-k N_-1-__ R_o_;=;...8_0

0

k_N.J I 
jO 14- 20 ., 

Since the beam is symmetrically loaded 
about the centre. 

Reactions, RB = Rn= 40 + 80+ 40 = 80 kN 
2 

Mn = BM at B= -40 X a kNm 

Fig. 7'35 

Mc = BM at C= -40 x 7+ 80 (7 - a) = 280 - 80 a 

But 

Of 

M c= -Mn 

280- 80 a = 40 a 

280 
120=a 

a = 2'333 m 

Problem 7·2. A beam ACB, hinged at the ends A and B, carries a uniformly 
distributed load of intensity w1 per unit length acting downwards from the end A upto 
its centre C. Rest of the portion of the beam is covered with an upward unif0rmly distributed 
load of intensity ~2 per unit length. 

(a) Draw the SF and BM diagram if w2= 2111i 

(b) Locate the position of the point of contrafl.exure. 
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Solution. Total vertic al load on the 
beam 

W1/ W2f W1f 2W1/ 
= -2- - 2 = 2 - 2 

(as w2 =2w1) 

W1f W1f = 2 - w1/= - 2 
For support reactions, take moments 

of the forces about the po int A 

w1[ X _!__ ""'\ _ W2/ X B._' 
2 4 ¥ 2 4 

+ Rn X f°-;) = 0 

w1/
2 

-
3'.!!1~ + Rn X l= O 

8 4 

5 
Rn= 8 w1l ,I, 

----)\ --~ 
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R - 5 w,t 
- 6 

R W1/ J_ But A+ Rs= - 2 {c) 

5 w1/ • -
RA--8 W1l=--2 Mmax . 

B.M. Dia gram 

RA= Wil t ' ,,.. 
8 f ig. 7'36 

Consider a section X- X at a distance of x from end A and take upward forces on 
the left of the :.ection to be positive and clockwise moments on the left of the section to be 
positive. 

SF Diagram 
Portion AC. SF at any section, 

Portion CB 

F,,= ,.!!!11 -W1X 
8 

=0 

at x=O 

I 
at x= s 

W1l / 
=- 8 at x= 4 

3w1/ I 
=- - 8 at x=2 

W1/ W1l + ( ] ) F .. =+ -8-- 2 w2 x-2 

= -
3;i£ + 2w1 ( x-; ) 

at 
I x= -
2 
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BM diagram 

Portion AC, 

Portion CB. 

-+ W1/ 
- 8 

= + 5w1/ 

8 

at 

at 

at 

5/ 
x=s 

3/ 
x= 4 

x=l 

M = + ~L x-w1x2 
X 8 2 

= O at x = O 

I 
at x=r 

I 
= 0 at x=-

4 

3 /" =- 128 IV1. 

3 
W1/2 =-12 

3 
=--w /2 

32 1 

i r = - 64 W1 • 

= 0 

3/ at x=-
8 

at 

at 

at 

at 

at 

I 
x= z 

5/ 
X= -

8 

3/ 
X=-

4 

7l 
x= 

8 

x = I 

StREN'GtH OF MATERIATS 

F ig. 7'36 (c) shows the BM diagram. The point of contraflexure lies at a distance of 
I 

4 from the end A. 

Problem 7·3, A beam 6 m long carries a uniformly distributed load of 2 Tm run. 
Counter clockwise moments of 4 Tm and 8 Tm are applied at the two ends. Draw the SF and 
BM diagrams. Find the magnitude of greatest BM and the position of the se~tion where it 
099µr§, · · · 
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Solution. Fig. 7'37(a) shows the load 
on the beam AB, 6 m long. 

Taking moments of the forces about the 
point A. 

2x6x 3= 6 Rs+ 4+ 8 
36-12= 6 Rs 

Rs = 4T 
But R A+ Rs= 2X6 = 12 T 

RA = l2 - 4= 8T 
For the SF diagram 
Consider a seccion X -X at a distance 

of x from the end A 
Shear force at any section, 

F., = 8-2x 
= 8T at x = O 
= 4T at x=2 m 

= 0 at x = 4 m 
= -4T at x = 6 m 

BM diagram. Fig. 7·37 (b) shows 
:he SF diagram. 

Taking moments of the forces on the 
eft side of the section and clockwis-:: moments 
o be positive. 

t: 

-Hm 

w:2T/m run I a Tm 

. 8 .M.Diagrom 

( C ) 

Fig. 7·37 

- 4 T 

T 
_j_ 

BTm 

T 

BM at any section, 
w(x)2 

Mz = RA.x-4 - -
2
- where ll' =-2T/m . · and 

M, = 8x-4- x:1 
= - 4 Tm at 
= + 8 Tm at 
= + 12 Tm at 
= 8 Tm at 

Mma,, = 12 Tm at 

x = O m 

x =- 2 m 
x=4 m 
x=;: 6 m 

x = 4 m, where F,, = 0 as is obvious 
from the SF and BM diagrams 

· Problem. 7·4. A beam ABCD, 10 m long supported at B, 1 m from end A and at C, 
· m from end D. The beam carries a point load of 1000 kg at end A and a uniformly distri
·Uted load of 400 kg per metre run throughout its length. Determine the value of x if the 
entre of the beam becomes the point of contraflexure. Draw the BM diagram. 

Solution. Total vertical load on beam 

= l000 + 4QO X 10 = 5000 kg. 

Reactions R s + Rc= 5000 kg 

Taking moments of the forces about the point A 
400 X IO X 5= Rn X l+ Rc( lO-x) 

20,000= Rn+ (5000 - Rn)(l0 -x) 
= !~0 + 5000 ( 10- x) - RB(IO-x) 
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or 

W:400 kg/m 
1000 l(y 

X 

X C X 0 

X 
( 9- X) .,. 

RB Re 
( 0) 

-1800 kg -m 

8. M. Oia·gram 

( b) 

Fig.7-38 

20,000 = Rs+ 5000( 10- x)-Re(lO - x) 

= Rs+ 5000(IO- x) - 10 Rn+Rs.x 

= - 9Rs+ Rs.x+ 5000(10-x) 

R _5000( 10 -x)-20,000 
B - (9 -X) 

BM at the centre of the beam = 0 
x2 

= - 5 X (000 + 4 X Rn-400 X 2 

=-5000+ 4 Re-
4
00;

52 

0=-5000+ 4 RB-5000 

4 Rn= l0,000 

STRENGTH OF MATERIAL: 

.. . (I 

4 
[ 5000(10-x)-20000 ] = 10000 

(9 -x) 
(Putting the value of Rn in equation 1 

So reactions, 

2(10-x) - 8= 9-x 

20--2x-8= 9-x 

- x=-3 

x = 3 metres. 

5000(1 o- x)- 20000 
Rn= (9-x) 

5000 X 7 - 20000 = 2500 kg 
= 6 
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BM diagram 

Portion AB. At any section, 

Portion BC 

Portion CB. 

wx2 

M.= - 1000 x--
2

-

= -1000 x- 400 x2 
·2 

=-1000 x-200 x 2 

= 0 at x=O m 

=-550 kg-m a t 

=-1200 kg-m at 

x=o·s m 

X=l 111 

wx2 
M .. =-1000 x+Rn (x-1)- -

2
-

=-1000 x+ 2500 (x-1)-200 x2 
~- I200kg-m at x= lm 
= + 200 kg-m at x = 3 m 
=+300 kg-m at x = 4 m 
= Ok~m ~ x = 5m 
=-700 kg-m at x=6 m 
=-1800 kg-m at x = 1 m 

M,,=-1000 x-200 x2+ 2500 (x-1)+2500 (x-7) 

==-800 kg-m at x = 8 m 
= - 200 kg-m at x = 9 m 
= 0 at x= lO m 
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The BM diagram is shown in Fig. 7·38 (b). In this case there are two points of contra
:xure lying in portion BC. To obtain the position of the second, let us put M,, = O for 
.e portion BC. 

-1000 x+2500 (x - 1) - 200 x2= 0 

1500 x-2500-200 x2= 0 

2 x2- 15 x -25= 0 

15 ± .f 225 - 200 
x= 4 

= 15i 5 
= 2·5 m, 5 m 

Second point of contraflexure Ii.es at a distance of 2·5 from end A. 

Problem 7'5. A beam ABCDE, 12 m long, cantilevered over the portion AB= 4 m 
1g supported at points Band E, BE= 8 m long, carries a concentrated load 2 tonnes at end 
3 'tonnes at C, 2 m from Band 4 tonnes at D, 2 m from E In addition it carries a uniformly 
:tributed load of 1 tonne/metre run over the portion CD. Draw the SF and BM diagram. 
:tennine the position of point of contraflexure if any. 
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Solution. 

Calculation. The transverse loads on 
the beam are shown in Fig. 7'39 (a). 

For equilibrium 

Rs+ &=2+3+ 4+4 x 1= 13 tonnes 

For support reactions let us take 
moments of the forces about the point A. 

4 x Rs, +12 &, - 3x 6::> 

2T 

E 

- 4 (6+ 2>~ - 4x .JO~ = O 
or 4Rs+ l2 Ri,;= 18+32+40= 90 joo,;;::;~-,+,-<J~-"'-'-~<t-,-,"71 .L 

Rs+ 3R1~= 22·5 

But Rn+ RE= 13 
RE=13--: RB 

So Rn+3(13- Rn) = 22'5 
-2Rn= 22'5-39 

Rn=8'25 tonnes, 
Rs = 13- 8'25= 4·7s tonnes 

SF diagram . Considering forces on 
the left side of the section and taking upward 
forces (tending to rotate the body in the 
clockwise direction) to be positive. 

Shear force at any section, 

- 8 Tm 
B M. Oiagrarn 

Fig. 7·39 

F1J=·-2 tonnes (constant in the portion) 

F .. = -2+8'25 = + 6'25 tonnes (remains consta'nt) 

-~-75T 

Portion AB. 

Portion BC. 

Portion CD. Fx=-2+8'25-3- w (x - 6) 

= 3'25- (x-6) 
where w= i tonne/m 

Portion DE. 

= 3'25 tonnes at x=6 m 

= l '25 tonnes at x= 8 m 

= - 0·75 tonnes at x= 10 m 

F.:= - 2+ 8'25- 3- 4- 4 

= - 4'75 tonne (constant in the portion DE). 

Note that at ·x = 4 m, there is shear force - 2 tonnes and t-hen + 6·-25 tonnes i. 
considering a section very near to ~oint. B bu~ on its left side, SF= - 2 tonnes, then anoth 
section verv near to .the point B b.ut on its n ght side, .SF=+6'25 tonnes. Similarly there r 

two vah1es ·or SF at each of the poin'ts C and D: · ·. ~ 

BM diagram. Considering the moments of the forces on the left .side of the secti 
and taking clockwise moments to be positive. 



~HE~i· FORCE AND BENDING MOMENT DIAGJ1AMS 

Portion AB. · BM at any section, 

M~=-2x 
= 0 at x=O m 
=-4 Tm at x = 2 m 
= -8 Tm at x = 4 m. 

Portion BC. M:z:=-2x+8·25 (x- 4) 

Portion CD. 

=-8Tm 

=-1·75 Tm 
at x=4 m 

at x= 5 m 
=+4·5 Tm at x=6 m 

. . . w (x-6)2 

M.,= - 2x+8 25 (x-4)- 3 (x- 6)-
2 

where 
=-2x+8"25 (x - 4)-3 (x- 6) - 0·5 (x - 6)2 
=+4"5 Tm at x = 6 m 
=+9 Tm at x = 8 m 

= 9·s Tm at x= io m 

iv= 1 tonne/m 

Portion DE. M.=-2x+s·25 (x-4)-3. (x-6)- 4 {x-8)- 4 (x- 10) 

i.e., 

(Note that 4 (x-8) is the BM due to the uniformly distributed load) 

= 9"5 Tm at x = 10 m 
= 4'75 Tm at x = 11 m 

= 0 Tm at x = l2 m. 

Point of contraflexure ·lies in the port ion BC, as is obvious from the BM diagram, 

Mx = -2x+ 8·25 (x- 4)= 0 
-2x+ 8"25x-33 = 0 

6"25x= 33 m 
33 

X = 
6

.
25 

, , 5'28 m. 

i.e., Point of contraflexure lies at a distance of 5"28 m from the end A. 

BM d iagram is shown in Fig. 7·39 (c). 

· · Problem 7"6. A beam 8 m long, supported over a span of 4 in 1fri.d ha\l{ng equa,1 
overhang on both the sides, carries a concentrated load of 60 kN at one end and 'ariotliet 
concentrated load of 40 kN at the other end. In addi tion there is. a uniformly distributed 
load of 20 kN/m run over 4 metres length starting from a point 2 m away from the end 
carrying the 60 kN load . Draw the SF and BM diagrams. Determine the magnitude and 
position of the greatest bending moment. What is the posit ion of the point of inflexion ? 

Solution. Total vertical load on the beam 

= 60+ 40+20 X4= 180 kN 

Support reactions, 
Rn+ Re= 180 kN 

(as shown in the Fig. 7·40 (a)]. 
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or 

or 

STRENGtH OF MATERIALS 

For support reactions, let us take moments of the forces about the point A. 

But 

RB Re 

f--2rn 4m 2rn1 
1 (a ) 

_i__' _J_ 
_j_~ 50kN~H'; ,'_,'j t 40kN 

- 60k N 

1

: t l IT 
T < t L ~ ~ 1ogrom I J_ 

T 
-120kNm 

l 
B M.D109rom 

( C ) 

Fig. 7•40 

-80 kNm 

' 
2o x 4 x 4;> + 4o x s;> - 2 Rn,-6 Rc: , = O 

640=6 Rc+ 2 Rn 

RB+ Rc= 180 kN 
RB= (l80- Rc) 

640= 6 Rc+ 2 (180- Rc) 
640- 360= 4 Re 

Rc= 10 kN 
RB= l80- 70= 110 kN 

· . . . SF Diagram. Take a section at a distance of x from the end A and vertically upwards 
forces on the left side of the section to be positive. . 

Portion AB. SF at any section, 

F,,=-60 kN (constant at x = O to x = 2 m) 

Portion BC. Fx= - 60+ 110-w (x - 2) 

= 50- 20 (x-2) 

=+50 kN at X= 2 m 

= + lOkN at x = 4m 

= -30 kN at x=6m 

where w= 20 kN/m 
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Portion CD. F,, = -60+ 110-20x 4+70 
= +40 kN (constant at x = 6 m to x = 8 m) 

The F ig. 7"40 (b) shows the SF diagram. 

3-27 

BM Diagram. Taking clockwise moments on the left side of the section to be 
positive. 

Portion AB. BM at any section, 

M.,= -60 x 

Portion BC. 

Porti001 CD. 

= 0 at x = O m 
0 - - 60 kNm at x = I m 

= - 120 kNm at x = 2 m. 

IV M,, = - 60.x+ 110 (x- 2) -:- 2 (x-2) 2 

= -60x+ ll0 (x-2) - 10 (x- 2)2 

= -120 kNm at x=2 m 

= -80 kNm at x=3 m 
=-·60 kNm at x = 4 m 
= -60 kNm at x= 5 m 

= - 80 kNm at x=6 m. 

as w= 20 kN/m 

M,, = -60x+ 110 (x-2)-20x 4 (x- 4)+70 (x-6) 
= -60 x + 110 (x-2)-- 80 (x-41+ 70 (x ~ 6) 

[Note that at (x-4) C.G. of uniformly distributed load lies]. 
= - 80 kNm at x = 6 m 

= -40 kNm at x = 7 m 

= 0 at x = 8 m. 

. Fig. 7'40 (c) shows the BM diagram. In this case the maximum bending moment 
occurs at the point B, where the SF has changed sign . 

Mmu= - 120 kNm 

The section where SF j5 zero, there is maximum bending moment. 

Portion BC. Considering again, 
F,,= 50-20 (x- 2) 

= 50-20x + 40 
or x = 4·s m, where SF= O 

M,,= -60 x+ 110 (x-2)-10 (x- 2)2 at x = 4'5 m 
Mm111= -60x4·s+ 110 (4'5 - 2)-10 (4·5-2)2 

= -270+ 275- 62'5 
= -57'5 kNm. 

Note that there is no point of contra.flexure or the point of inflexion in this case. 

Problem 1·1. A propped cantilever ABCD 10 m long, carries the transverse loads as 
shown in Fig. 7'41 (a). Draw the SF and BM diagrams. Find the position and magnitude 
of the maximum bending moment. Determine also the position of the point of contraflexur~ 
if any, · · 
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Solution. Total vertical load on th.e cantilever 
= 3+ 5+ J·4 x 7= J7·8 tonne 

Propping force at the end A 

= 5 tonnes 
Reaction at D, Rn = t7·8 - 5= 12'8 tonnes. 

3 T 5 T 

F "ed end 
D 

5T 
, .. 

T 
-12 8 T 

-25·3Tm 

Fig. 7 41 

· ··· · SF diagram. Consider section )!-X at a dis~ance of x from the end A . Considering 
the forces only on the left side of the section, the vertica lly upward force is positive. , 

Portion AB. SF at any section, 
F.,=+5 tonnes 

(Constant throughout the portion AB). 
at 

Portion BC. SF at any section, 
F .. = 5-3-w (x- 3), 

= 2- 1'4 (x- 3) 

= 2 tonnes 
= +o·6 ron11e 
= -0'8 tonnes 
= - 2·2 t onnes 

Fortion CD. SF at any section, 

at 
at 
at 
at 

x = O to 3 m 

where w= 1 ·4 tonne/ m 

x = 3m 
x=4m 
X= 5m 
x = 6m. 

F., = 5- 3-5-w (x- 3)= -3- 1 ·4 (x-3 ) 
' !':?· ·:.•. · = - 1·2 tonnes at x = 6 m 
I-•• •_. 

1·., . =- lO tonnes 
;;= - q·~ ~onne~ 

at 
at 

X= 8m 
x = IO m 
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BM Diagram. (Taking clockwise moments on the left side of the section as positive). 
Portion AB. BM at any section, 

Ma:=+5x 
= 0 at x=O 
= 15 Tm at x = 3 m. 

Portion BC. M., = 5x-3 (x-3)-~x-3)
2 

• \Vhere w= 1·4 Tm 
2 

Portion.CD . 

=5x-3 (x-3) - 0·7 (x-3)2 

= 15 Tm at x=3 m 
= 22'5-4'5- J ·575 Tm at x=4·5 m 
= 16'425 Tm 
=14'7 Tm 

at 
at 

x = 4'5 m 
x = 6 m. 

M.,= 5x-3 (x-3) - 5 (x-6)-0·7 (x-3)2 

= 14·7 Tm at x = 6 m 

=-2'5 Tm at x=8 m 
=-25·3 Tm at x=lO m. 

Mma,., BM. Occurs at the section "'1here SF=O i,t portion BC 
i.e., i~ 1 ·4 (x~ 3)= 0, x=~~·43 m 

or 

Putting the va~ue of x in the expression for M,,, 
Mma.,=5X4'43-3 (4'43-3) - 0'7 (4'43-3)2 

=22'15-4'29- I '43 = 16'43 Tm 

The BM diagram is shown in Fig. 7·4_1 (c). 

The point of contraflexure lies in portion CD. 
l !,·: So :. ,,M.x in ·portion CD= 5x- 3 (x-3)-5 (x- 6)~ 0·7 (x-3)2= 0 

·, .. 5x-3x+ 9-Sx+30-0·7 (x2- 6x+9)= 0 
-3x+39-o·7x2+_4·2x-6'3= 0 

0'7x2- l '2x-32'7= 0 

,, . 
• J 

x = 7'745 m 

Problem 7·8. A beam 6 m long, simply supported over a span of 5 m ; carries .tqe 
transverse loads as shown in the Fig. 7'42 (a). Draw the SF and BM diagrams and find the 
position of the point of contraflexure if any. · 

Solution. A force of 50 kN can be applied at the point B, both in downward and 
upwards directions, so as not to disturb the equilibrium of the beam. In other words, a 
:force of- SO kN acting at a lever of I m length (at point B') can be replaced by a force of 50 kN 
at Band a couple 50 kN x l m at B, as shown is the diagram 7·42· (b) . . The transverse 
loads shown on the beam are equivalent to the transverse loads and couples shown in 
Fig. 7'42 (b). 

Total vertical load on the beam 
= S0+.10 X3=80 kN . 

Reactions RA+ RD=80 kN 

Taking moments of the forces about the point A 

?9 X 1;> + 50;> + 10 x 3(3+1's);> - s RD., = O 
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50kN 
I 

B 

m lrn 

I 

50kN 

Note that total 

or 

50kN (W:10kN/m 
B' 

D 
E - A 

1m 2m 1m 

( Cl ) 

A 

Fig. 7·42 

( b) 

I 
5.F Oi,agram 

l C) 
I _e 

~ .M.O iagram 
( C ) 

STRpNqT-H Qf MA!fl;~I~J.S 

Wz10k Nm 

It> ; 

'. 

u.d.l = 10 x 3= 30 kN (udl=uniformly. distributed load) 
its CG lies at a distance of 3+ 1'5 = 4'5 m from end A 

235= 5 RD 
Ro = 47 kN 
RA = 80-47=33 kN 

~9nsi~.e~ a secti9'1 at a distance of x from the end A and taking tlw forces onJy on the 
\tft S,\q~ of ~µe &_~cti.91',, 

SF diagram 
f~ffi?D AB.. SF at any sec~ion, 

F. = +33 kN (at x = O to. 1 m) 
(upward force on the left side of the section is po~,Wy.e) 

Pcu:tion.AC:. SF at any section, 

J>ortion CD 

F .. =+33-50 
=- 17 kN at x= I to 3 m 

F .. = 33-50- w(x - 3) 
= - 17- IOtx- -3.J 
=-17 kN at 
= - 27 ~N at 

r.r -'n ~N at 

wliere 

x=3 m 
X= <\ m 

-t= ? m 

w.= 10.k Nj,m 
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l'drtionDE. F11= +33-50+47-w(x-3) 
= 30- lO(x-3) 

=10 kN at x = 5 ni 
=0 kN at x=6 m 

33i 

BM diagram. Taking the clockwise moment~ oii the left side of the section to be 
positive. 

Portion AB. BM at any section, 

M,.=+33 x 

Portion BC. 

Portion CD. 

Portion DE. 

=0 at x = O m 
= 33 kNm at X=l tn 

M:r=33 x+S0-50 (x - 1) 
= 83 kNm at x = 1 m 
= 66 kNro at x=2 m 
=49 kNm at x= 3 m 

w(x-3)3 

M.,=33 x+50-50(x-1) -
2 

where W = 10 kN/m 

=33 x+50-50(x-l)-5(x-3)2 

= 49 kNm at x=3 m 
=27 kNm at x=4 m 
= -5 kNrn at x=5 m 

w(x-3)2 •• Ma: = 33 x + 50-50(x-1)- · 
2 

+ 47(x- ·5) 

=33x+50-50(x - l)-5(x- 312+ 41(x-5) 

= -5 kNm 

= 0 

at 

at 

x = 5m 

x = 6m 

Note that maximum bending moment occurs at the point B where SF changes sign i.e. 
from +33kN to - 17 kN and Mma:s = 83 kNm. 

Point of contta\flexure lies in the portion CD 
where M.,= 33 x+50- 50(x - l) - 5(x-3)2 

or 

= 33 x+50 - 50x+50- 5(x2 - 6x + 9) 
= - 17 x-5x2+30x+55 
= - 5x2+13 x + 55 
= 0 for point of contraflexure 

5x2-13- 55 = 0 

13.+ V 169+ 4 X § X §§ 
x = 10 

= 13 +1tS'62 = 4'862"rn 

Point of contratlexure lies at a distance of 4°862 m from etid A. 



Problem 7·9, A cantilever 7 m long, carries a unifotm1y distributed Joad of 100 kg/m 
run and a concentrated load of 700 kg at the end of a lev~r at B, 2 m ~rom free end A, as 
shown in Fig. 7·43 (a). Draw the SF di.agram and BM diagram. Determine 

(i) magnitude and position of maximl}ID bending moment 

(ii) position of the point of contraflexure. , __ ,,; i 
• I· •'. , • 

Solution. The loading on the cantt- 700 kg 
lever shown in Fig. 7·43 (a) is eq~ivalent t_o 
that shown in Fig. (b). The portion AB ts 
ineffective. 

Consider a section X - X at a distance 
of x from the end B. Take downward for?es 
on the left side of the section to be negat!ve 
and anticlockwise moments on the left side 
of the section to be negative. 

SF diagram 

Portion BC. SF at any section, 
F .. =-700 kg. 

(constant from x=O to x=l m) 

Portion CD 

F.,=-700-w(x-: 1) 

= -700- lOO(x - 1) 
= -700 kg at x = l m 
= - 900 kg at x=3 m 
= -1100 kg at x= 5 m 

BM diagram. Fig. 7·43 (c) shows the 
SF diagram. 

Portion BC. BM at any section, 

Mz = - 700-100 X 

= -700 kg-m ·at x= O 

X 

X 

( b) .. 

BM Diagram 

( (l > 

- 5000 
kg - m 

I 
-~ .·(! 

=-1400 kg-mat x=l m Fig. 7i·43.,, , " 

Portion CD. M .. = -700-700 x- ; (x_:.l)a 

= -700-700 x-50(.x-1)2 
= - 1400 kg-m at x=l m 
=-3000 kg-m at x=3 m 
=-5000 kg-m at x = 5 m 

where w=lOO kg/m 

Fig. 7·43 (d) shows the BM diagram. The maximum bending moment - 5000 kg-m 
Dtcurs at the fixed end and there is no point of contraflexure in the cantilever. 

Problem TlO. A simply supported beam ACB carries a linearly varying distributed 
load as shown in the Fig. 7·44. The maximum intensity of loading is w at each end of the 
beam,. Determine the magnitude and position of the maximum bending moment. 1 '' ' 
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Solution. Total vertical downward 
load on beam 

beam 

from 

tance 

or 

and 

wl x-1 - ~ 1 
2 2 - 4 ,.. 

Total vertical upward force on the 

_ wl X _!_ _ wl t 
- 2 2 - 4 

CG of •;l + lies at a distance of f 
' · wl 

end A and CG of 4 t lies at a dis-

5/ 
of 6 from end A. 

Fig. 7'44 

For support reactions, take moments of the forces about the point A 

wl x J_ , _!)!]_ x ~ , - Rs x l) =O 
4 6 Y 4 6 

For equilibrium, 

Rs= •~I + 

R..c= wl t 
6 

Consider a section X- X at a distance of x from the end A. 

Rate of loading, w'= 27 (+ -x ) 
w = T a-2x) 

Total load upto x can be considered in two parts, 

with X 
CG at 2 from X-X 

W2 = (w - w') ~ with CG at ;x from X-X 

' So 

2 

... (1) 

Portion AC. Taking clockwise moments on the left side of the section to be positive. 

BM at any section X-X, 
. ··. ·,. 

or 
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Taking 
) 

wix wx 2 2wx3 

= -6-- 2T" ([-ix) :._ 31 

w/x wx2 wx3 2 wx3 

= 6 --2-+-,-- 1" -1 

wlx wx2 wx3 

= -6- - -2-+ 31 

l 
X=2, 

w/2 w/2 wZZ 
Ma = 12- -8- + 24 = O 

.,, .. 

i.e., the point of contraflexure lies at the centre of the beam. For maximum bending moment 
in the portion AC 

dMz = O= w/ wx 2 

6 - wx+ - = 0 
dx I 

I x2 
or - -x+ -,=o 

6 

12 
or x~- lx+6 =0 

l±J /2- ~

2 ' l 
1--

,{3 
x= - 2 2 

= 0'211 I. 

Maximum bending moment 

wl w w 
M maz = 6 (0'21 l /)- 2 (0'211 /)2+ 3/ (0'211 /)3 

{l) . 
= w/2 [0'0351 - 0·0222+ 0·0031] 

= 0'016 w/2• 

The beam is symmetrically loaded about its c~ntre, though in the opposite direction. 
The maximum negative BM will occur at a distance of 0·211 / from tM end B. 

Problern 7·11. A beam ABCD, 8 m long, supported at Band D 6 m apart carries 
a concentrated load of 16 kN at end A and 96 kN load distributed over a length of 4 m from 
C to D. Point C is at a distance of_ 2 m from B. Rate of loading varies from pat C to q 
at D. Determine p and q such that reactions at B and D are e~ual. Draw the SF ··imd BM 
diagrams. Find the position of the point of contrafl.exure. 

Solution, · Total 'Vertical load on the beam 
= 16+ 96= 112 kN 

·, · · · :. Sup~ott reactions · 

(as given in the problem). 

· · il. 12 .. 
Rn= Rb= - = 56 k N 

2 

Taking moment of the forces about th~ paitit A 

56 x 2+ §6 X 8= p X 4 (6) -'.- (q-p) ( ~ )( 4+ -~) 
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or 

112+ 448= 24 p+ (q - p) ( ~o ) 
40 40 

560= 24 P+ 3- q- T p 

But ( p+q) x 4= 96 (as given) 
2 

p+ q= 48, q= 48 - p 

Substituting the value of q in equation (1) 

24 p- 40 p + 40 (48 - p)= 560 
3 3 

40 40 
24 P-3 p + 640- T p = 560 

8 
- -p=-80 

3 

p = 30 kN/m, and q= 18 kN/ m. 

f--2 Bm 

S.F. Diagram 

Mmox. 

( C ) 

Fig. 7·45 

T 
- 56 kN 

J_ 

, hf 

SF diagram, Taking resultant of the forces only on the left side of the section. 

:Portion AB. SF at any section, 

Fx=- 16 kN at x = O to 2 m. 

336 

... (I) 

... (2) 

l ); 
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Portion BC. SF at any section, 
F= = - 16+ 56 = + 40 kN at x = 2 to 4 m. 

Portion CD. Rate of loading at the section, 

= p+ q- p ( x-4) 
4 

= 30+ 18- 30 (x-4) = 30-3 (x-4) 
4 

Downward distributed load 

, =( p+ 30-{ (x - 4) ) (x- 4) 

= ( 30+ 30~3 (x- 4) ) (x- 4) 

= [30- -J ·5 (x- 4)] (x- 4)= 30 (x-4)- 1 '5 (x-4)2 

Shear force at any section, 
F:= -16+56-[30 tx- 4)-1'5 (x- 4)2] 

= 40-30 (x-4)+ 1 ·5 (x-4)2 
= 40 kN at x = 4m 
= - 14 kN at x = 6m 
0= .:__ 56 kN at x = 8m. 

BM diagram. Taking moments of the forces only on the left side of the section. 
(Clockwise moments are positive). 

Portion AB. BM at any section, 

Portion BC. 

Portion CD . 

M. = -16xkNm 
= 0 ac x= O ro 
= - 16kNm at x= lro 
= -32 kNm at x = 2 m. 

Mm= -1.6 x + 56 (x- 2) 
= - 32 kNm at x = 2 m 
= + 8 kNm at x = 3 m 

=+ 48 kNm at x = 4 m. 

M .. = - 16x -+ 56 (x-2)-p (x-4) (3~4
) i-

- (q - p~x- 4) ( x;4 ) 

Note that moment of the distributed load is considered in two p arts as shown in 
Fig. 7-45 (a). 

M,.= -16x+56 (x-2)-l!.. (x- 4)2- (q-i)_ (x- 4)2 
2 6 

Pqtting the values of p and q as 30 and 18 respectively 
'= - 16x+56 (x- 2)-15 (x-4)i+2 (x- 4)2 
.= +48 kNm at x = 4 Pi 

.. . (1) 
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=+76 kNm at x = 6 m 
=0 at x=8 m. 

Maximum bending moment occurs where F.,= 0, i.e., in portion BC 
Fro= 40-30 (x-4)+ 1·5 (x-4)2=0 
40-30x+ 120+ I '5x2-12x+24=0 

1'5x2-42x+l84= 0 

x 42- ~(42)2~4x 1·5x 184 42~25'69 = 5.43 m 

Substituting the value of x in eqn. (1) 
Mrna .. = -16 X 5"43+56 (543-2)-15 (5 '43 - 4)2 + 2 (5'43-4)2 

= -86'88 + 192'08-30'67+4·09= 78'62 kNm 

;337 

Point of contraflexure lies in the portion BC as is obvious from the BM diagram 

So -16x+ 56x- I 12= 0 
40x= 112, x=2'8 m. 

The BM diagram is shown in Fig. 7·45 (c). 

Problem 7'12. A horizontal girder IO m long is hinged at one end and rests freely 
on a roller support at a distance of 7 m from the hinged end. The beam carries a uniformly 
distributed load of intensity 1000 kg/m run from the end A for a length of 5 metres, a point 
load 2000 kg inclined at 30° to the vertical at a point D, 6 metres from end A and a point load 
of 3000 kg inclined at 45° to the vertical, at the point E, L m from the hinged end as shown. 
Determine the support reactions. Draw the SF and BM diagrams. 

Solution. Let us first resolve the inclined loads into vertical and horizontal com
ponents 

Vertical component of 2000kg load. 
= 2000xcos 30°= 1732 .t 

Horizontal component of 2000 kg load 
-+-

= 2000 X sin 30° = 1000 kg 
Vertical component of 3000 kg lood 

= 3000 cos 45°= 2121 kg t 
Horizontal component of 3000 ·kg load 

+-
=3000xsin 45°= 2121 kg 

The beam hinged at end F, 
~ +- -+ 

Horizontal reaction at F = 2121 - I000, RFH= l 121 
For vertical · 6omponents of reactions, let us take moments· of the fbrces ab.out the 

. . .. ~ -, . . . 
·point A. 

1000 X5X2'5)+1732X6;)+2121x9;) =3 Rn:)+·10 RF~, 
12500+ 10392+ 19089= 3 RB+ 10 RFII . 

41981 = 3 Rn+ 10 RFv 
,1 ! • 

._ .,. 

For equilibrium 
R(l+ RFv = 5 x )900+ 17~2f 21~1= 8853 k~ 



or 

2000kg 121'21 kg 
I 3000 kg 

114'5° 

~,--r-7"~~~~~.,,u_ 

-4500kg. . 

I j__ s' 
r-1. 57m 

1 
B.~ .Dio'gram 

( C) 

Fig. 7·46 

So Rn=(8853-RFY) 

10 RFv+3 (8853-- RFY) = 41981 
7 RFv= 15422 :kit-ru 

RFv= 2203 kg, RB= 6650 ·kg 

-2203 kg 

Total reaction at F = RF= -1(2203)2 +(112°1)2 = 2472 kg 

Angle of Inclination of RF to the v'ertical, 

tan 6= !~: = ~~~~ = 0'5088 

9= 26° 58'. 

_ ... ,.,r,~r,-.SF _and , B"t1, ,,d!a~ams _con~i~er a section, X-X ~t ·a -~~~ia~ce 1of jc 'rip'~ the en~ A 
in portions AB, BC, C:D, DE ~nd EF respectively. Take upward forces ·on rtre 1eft of t'tte section 
to be positive, and clo~kwise moment on the left side of the section to be positive. 

SF diagram. 
J>ortion AB. SF at any section, 

F .. =-wx where w=°lOOO kg/m 
= 0 at x= O m 
~- ;,ooo 1~ at x=~ ·m 



Portion BC, F.,=-wx+6650=- 100Qx+6650 
=+3650 kg at x=3 m 
= + 1650 kg at x= 5 m. 
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Portion CD. F .. = --1qp9x 5+6650= 1,650 (c<?n~t.~p.t t,ltr,o'}t~~.?~t t.h.i~ J?Ortion). 

Portion DE. Fz= - 5000+ 66 0- 1132= - 82 kg 
(C!:mAAao.,t th;r_9u.g1t9p,t w~ p ortion). 

Portion EF. F.,=-5000+ 6650-1732- 2121 = - 2203 kg 
(constant throughout this portion), 

F ig. 7'46 (b) shows the SF diagram. 

B.M. Diagram 
Portion AB. B.~. at any section, 

wx2 

M. = - 2 where w= 1000 kg/m 

Portion BC. 

Portion CD. 

Portion DE. 

PortionEF. 

= -500 x2 

=0 at x=O m 
= -500 kg-m at x=l m 
= -2000 kg-m at x=2 m 

= -4500 kg-m at x= 3 m. 

wx2 

M~= - 2 +Rn(x-3)=-500.x2 +6650 (x- 3) 

= -4500 kg-m at x=3 m 
= -1350 kg-m at x=4 m 
=+800 kg-m at x= 5 m. 

M.,=-5000 (x-2'5)+6650 (x-3) 
=+800 kg-m at x=5 m 
=+2450 kg-mat x=6 m. 

M,,= -5000 (x-2·s)+6650(x-3)- 1732(x-6) 
= + 2450 kg-m at x=6 m 

=+2368 kg-mat x=7 m 

= +2204 kg-mat x=9 m 
(There. is slight er i:.or due ~o calcula,t;ioW i e. ip. ]?J.a<;<;: of 

2203 kg-m we are getting 2204 ~&-m). 

M.,=-5000 (x-2'5)+66§0(x -3}-1732(x-6)-2121(x-9) 
= 2204 kg-m at x=9 m 

= 0 at x=I@ m 

Fig. 7'46 (c) sh ow the Bill diagram. The maxjm um ,bcns:l i:i:ig 11\QPl(iJ?,,t -4\00 kg-m 
Jccurs at the support B where SF has changed sign 

Point of contraflexure lies in the portion BC 

Puttiing - 500x2 + 66;5Q(.x-3.)=0 
5QOx2- 6650x+ 1-9950= 0 

x2- 13'3+~9'9= 0 
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X= 13'3- 1 (13'3)2 - 4X39'9 
2 

=4'51 m. 

'stilENG'nt ·o'F MATERiA'L'S 

13'3- 4'16 
2 

Point of contraflexure lies at a distance of 4·57 m from end A 

Problem 7'13. A beam ABCD, 8 metres long, supported over a length of 6 metres at 
points Band D has the SF diagram ~s shown in Fig. 7·47. Determine the various loads acting 
on the beam. Then draw the BM diagram and find. · 

(l) Magnitude and position of the greatest bending moment. 

(2) Position of the point of contraflexure if any. 

Solution. The beam. is supported o~ the points B · ~nd D, there will be support 
reactions say Rn and RD. Consider the three port10ns of the beam 1s AB, BC and CD. Consider 

':> K o ,a gram 

Fig. 7·47 • ! 

a section X-X at a distance of x from the end A. Taking upward force on the left side of the 
section to be positive. 

or 

in SF. 

Portion AB. F,.= - 40 kN (constant in the portion AB). 
This shows that there is a ve1tical load of 40 kN acting on the point A. 

Portion BC. F,,=+80 kN (constant in the portion BC). 

At th·c point B, SF has changed from -40 kN to +80 kN showing thereby that 
-40+ Rn= 80 kN 

Rn = l20 kN , : l , •I.; , , :• 

Reaction at the support B, 
Rn= l20 kN. 

P~rtion CD. At the point C, 
SF= O. 

Which shows that a vertical load of 80 kN is acting on this point. 

From C to D, the SF is not constant but has a straight line relation, gradual de~reasl 
Showing uniformly distributed load over the portion CD. 

Say the rate of loading = w 
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'o"r 

Then SF, Fc-FD= -w X4 (4 m is the length of the portion CD) where 
0-40 kN=- 4w Fc=shear force at C and 

w=lO kN/metre run. 
At the point D, there is a SF 

FD=-40 kN. 

FD=shear force at D 

(Note that vertically upward force on the right side of the section 1s taken as a 
negative SF). 

So reaction at D, Rn=40 kN. 
The load diagram on the beam is as shown in Fig. 7'48 (a). 
Total vertical load on the beam 

= 40+80+4x 10= 160 kN 
Reactions, Rs+Rn = 120+ 40= 160 kN 
Which shows that load diagram is correct. 

40kN 

--,- qPoint of c~ nt raflexure -eo l<Nm 
B M Diagram 

--- 3 rn 
( b) 

Fig. 7-48 

B.M . Diagratn. Taking clockwise moments on the left side of the section to be 
positive. 

Portion AB. B.M. at any section, 
M.,=-40x 

= 0 at x = O m 
= -80 kNm at x= 2 m. 

Portion BC. M.,= - 40x+ 120 (x-2) 

Portion CD. 

= -80 kNm at x= 2 m 
= +80 kNm at x=4 m. 

M.= - 40x+120(x-2)-80(x-4) w (x- 4)
2 

2 

where 
= 80-S(x- 4)2 

= 80 kNm at x=4 m 
= 75 kNm at x=5 m 

w= lO kN/m 
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=60 k.Nm at x= 6 m 
= 35 kNm atx= 7 m 

= 0 kNm at x = 8 m. 

Fig. 7'48 (b) shows the B.M. diagram. Maximum bending moment ±80 kN m occurs 
.. at, <li~tances of 2 ai;id 4 m from the end A. Point of contra_flex~re lies a~ a d4,Jance .of -3. m from 

the chd A. 

Problem 7'14. A beam ABCD, 10 1~ long and hi~ged at its ends is su,bjected to 
clockwise couples 60 kNm and 80 kNm at distances of 3 m ahd 7 m from the left hand end 
support. Draw the SF and BM diagrams and determine the p.osition of the p.oiut of contra
flexure if any. 

Solution. Taking moments of the forces about the pojn_t A 

60)+80:;)-Rvx 10:,=o 

For equilibrium 

RD= -14 kNt 

RA = 14 kN i 

w-------X 

S M.Oiogram 
(·c_)--

Fig. 7-49 

- 8 8_kNm 

t 
P
1 
, P2 , 'p3 are t r, e 

po}.~_ts of contr o fluure 

SF Diagram. Con~ider a section X-X at a distance of x from the end A. Taking 
upward forces on the left's.ide of·the s'ection to be::positiMe. 

·,Jrqrq.pn AB. S~.aJ any secti0n, 
F.,=-14 kN 

(constant from x=O to 3. m). 

l»ortion BC. F111= -14 'k.N (constant from x= 3 m to 7 m) 
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or 

Portion CD. F .. =-14 kN (constant from x=7 m to IO m) 

Fig. 7·49 (b) shows the SF diagram. 

BM Diagram. (Clockwise moments on the left side of the section are positive). 

Portion AB. BM at any section, 

Portion BC. 

M .. =-14 x 

= 0 at x=O 

= - 42 kNm at x=3 m. 

M .. = - l4x+60 kNm 

= + 18 kNm at x = 3 m 

=- 10 kNm at x =5 m 

= - 38 kNm at x=7 m. 

Point of contraflexure lies in this portion also as the BM has changed sign. 

Putting 

We get, 

Portion CD. 

M _.= 0 
- 14x+ 60= 0 

x = 4'29 m (from end A). 

M,.=- 14x+ 60+ 80 
=+42 kNm at x = 7 m 
= + 28 kNm at x = 8 m 
= 0 at x= lO m. 

The BM diagram is shown in the Fig. 7·49 (c).~ 

As is obvious from the BM diagram there are 3 points of contraflexure lying at 
distances of 3 m, 4·29 m and 7 m from the end A. 

Probletn 7·1s. A beam ABCD, hinged at one . .end and simply supported at other 
carries the loads/forces as shown in the Fig. 7'50. Draw the SF and BM diagrams. 

S0lu1ion. The load diagram is equivalent to the diagram shown below in Fig. (bJ, which 
can be obtained as follows : 

( i) At point B, an inclined load of 5 tori'n'es is resolved into two components 'of 3T t 
-+ 

and 4T. The component 4T at a le.ver of I m le·ngth is equivalent to an anticlockwise moment .... 
4T-m and a force cf 4T at the point B. 

-+ .... 
(ii) At the point C, Forces 4T at lever length of 1 m and 3T at lever length of 2 m 

-+ 
are equivalent to a force IT and a clockwise moment 10 Tm at the point C. The end A of the 
beam is simply supported, while the end D is hinged. 

'So h orizontal reaction at D, 
-+ 

fl p11 = 4- l=~T 
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' 5 T 

I ~ ~ 
Ai===.:d_L~4

=====~ ~~1-m 
-;ij;r;, I B C 2m 

l 
31 

3m -- - 3m--...J lm 

3T t 
r, 

(a) I 

0
+2·1L.3Tm 

~~T 

B.M. Oiogrom 
( d ) 

C 
Fig. 7'50 

- 7·857 Tm 

_L 

For support reactions, t ake moments about the point A. 

3 X 3 ~ - 4' + 10 ~ - 7XRm,' = 0 

15= 7 RDY 

But 

RDv= 2·143 T . 

RDv+ R,w=jT 
RAv= 3- 2°143= 0°857 T 

STRJ:NGTJ-J OF MATERIALS 

SF diagram. (Taking upward forces on the left of a section to be positive) 1 • 

Portion AB. Fx = + 0·857 T (constant from A to B) 
Portion BC. F.,=+o·ss7 T-3T= - 2·143 T (constant from Bto C) 

Portion CD. Fx= + o·ss1T-3T= - 2·14J T \Constant from C ~o P} 
fi~. 7'50(c) show~ \he SF dia~am, 
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and C. 

BM diagram. Taking clockwi~e moment on the left side of the section to be positive. 

Portion AB. BM at any section, 
Mx=+o·g57 x 

=0 at x = O 
=+2·570 Tm at x=3 m 

Portion BC. M:. = 0'857 x-4-3 (x-3) 

Portion CO. 

=-=- 1·43 Tm at x=3 m 
= -3'572 Tm at x=4m 
= -5'715 Tm at x=5m 
=-7'857 Tm at x=6 m 

M., = +o·s57- 4-3{x- 3) + 10 
= +2·143 Tm 
= 0 Tm 

at 
at 

x=6m 
x=7 m 

Fig. 7·50 (d) shows the BM diagram with two points of contraflexure at points B 

SUMMARY 

l. Resultant of forces parallel to the section of the beam carrying transverse loads 
on the left or on the right side of the section is called shear force. 

2. On the left side of the section vertically upward force is a positive shear force. On 
the right side of the section, vertically downward force is a positive shear force. 

3. Resultant moment of the forces on the left or on the right side of a section is called 
Bending Moment. 

4. Clockwise moments on the left side of the section are positive BM. Anticlockwise 
moments on the right side of the section are positive BM. 

5. For a cantilever of length L, carrying load W at free end, max(mum bending 
moment - WL occurs at the fixed. end. 

6. For a beam of length L, simply supported at it ends, carrying a concentrated load 
. b d' I WL h . Wat its centre, the maximum en mg moment 4 occurs at t e centre of the beam. 

7. For a cantilever of length L, carrying uniformly distributed load w per unit length, 
wL2 

maximum bending . moment -
2
- occurs at the fixed end. 

8. For a beam of length L simply supported at its ends carrying uniformly 
. 1 . b d. wV h f distributed load w per umt lengt 1, maximum en mg moment -

8
- occurs at t e centre o 

the beam. 
9. Maximum bending moment in a beam occurs at a point where shear force either 

is zero or shear force changes sign. 
10. A point of contraflexure in a beam occurs at a point where benqini moment 

changes sign. 
' ,: " 
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l l. For a beam of length L, hinged at both the ends subjected· to a, turning moment 

M, the reactions at ends are 

of the beam. 

M ± L. The shear force remains constant thr-0ughout the length 

12 If for a certain portion of a beam, bending moment is constant, then shear force 
is zero. 

1. 

13. For a beam carrying transverse point loads and distributed loads 

(i) dF = -w 
dx ' 

W) dM = F 
dx ' 

i.e., rate of change of S.F. is equal to the rate of loading 
at a particular section 

i.e., rate of change ofB.M. is equal to the shear force 
at a particular section 

MULTIPLE CHOICE QUESTIONS 

A cantilever 5 m long, carries a point load of 5 tonnes at its free end and a uniformly 
distributed load of 2 tonnes/metre run throughout its length, the maximum bending 
moment on the cantilever is 
(a) 100 tonne-metres (b) 50 tonne-metres 

(c )• 25 tonne metres (d) None of the above. 

2. A cantilever 8 m long carries a point load of 5 tonnes at its free end and 5 tonnes at its 
middle. The bending moment at the middle of the cantilever is 
(a) 10 tonne-metres (b) 20 tonne-metres 
(e) 40 tonne-metres (d) None of the above. 

3. A cantilever 10 metres long, carries a uniformly distributed load of IO kN/metre run 
statt-ing from free end upto the middle of its length. The BM at the fixec:il end of the 
cantilever is 
(a) 2SkNm 
(c) 75 kNm 

(b) 50 kNm 
(di JOO kNm. · 

4. A cantilever 8 ffi' Jong carries throughout its length a uniformly d istributed load of iv 
kg/m run. If the maximum bending m,,ment is 3200 kg-metre, the rate of loading w is 
(a) 100 kg/m (b) 50 kg/m 

5. 

(c) 25 kg/m (d) None of the above. 

A c:mtilever 6 m long, carries a point load of JOO kN at its free end and 
load Wat the middle of its length. If the maximum BM on cantilever is 
valve ef load W is 
(a) 50 kN 
(c) 150 kN 

(b) 100 kN 
(d) 200 kN. 

an0ther p0int 
900 kNm, the 

6.· A cantil~ver JO m long carries a uniformly distributed load of 20 kN/m run throughout 
its length. ff it is propped by a force P at its free end so that the centre of the ·cantilever 
becomes the p oint of inflexion, the magnitude of P is 
(a) 200 kN (b) 150 kN 
(c) 100 kN (d) 50 kN 
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7. A beam 8 m long, simply supported at its ends, carries a point load of 800 kg at a dis
tance of 3 m from one end. The BM under the load is 
(a) 4000 kg-metre (b) 1600 kg-metre 
(c) 1500 kg-metre (d) 1000 kg-metre. 

8. A beam 10 m long supported over 8 m span, having equal over hang on both the .sid!!S, 
carries loads of 8 tonnes each at its ends and a load of 2 tonnes at its centre, the pofots of 
contraflexure lie at 
(a) at the supports 
(c) at 2 m from each end 

(b) at the centre 
(d) None of the above. 

9. A beam 8 m long, supported over a span of 6 m, carries a concentra,ted load of 20 kN at 
its centre. The maximum bending in the beam is 
(a) 80 k Nm (b) 60 k Nm 
(c) 40 k Nm (d) 30 k Nm. 

J 0. A beam 8 m long, simply supported at the ends, carries a uniformly 
2T/m from one· end to a distance of 2 m, aod from the other end to 
The SF at the centre of the beam is 
(a) 4 T 
(c) 1 T 

(b) 2 T 
(d) 0. 

distributed load of 
a distance of 2 m. 

11 . A beam carries transverse loads and is simply supported with over hang on both H1e 
sides. The point of contraflexure is a point where-

(a) Shear force is ma,ximum (b) Shear force is zero. 
(c) Bending moment changes sign (d) Bending moment is maximum. 

12. A beam 10 m long hinged at both the ends is subjected to a clockwise turning moment of 
40 k Nm at a di stance of 3 m from one end. The SF at the centre of the beam is 
wo~ w2~ 
(c) 4 kN (d) 8 kN. 

13. A beam carri~s tr.ansverse loads. Its SF and BM diagrams are qrawn. In a portion of 
the beam where SF is zero, the bending moment is 
(a) maximum (b) minimum 
(c) coRst-ant (d) zero. 

14. A beam 10 m long is supported over 6 m gpan with equal over hang on both the sides. It 
carries point loads of 40 kN each at its ends and a point load of 80 kN at its centre. 
The points of contraflexure lie at a distance· of x metres form each end. The \lalue of 
Xis 

~2m W3m 
(c) 4 m (d) 5 m. 

15. A beam 10 m long carries point loads. When SF diagram is drawn, there are two rec
tangles of the sii;e IO .kN x 2 m, one is starting from ~nd and above the . base. '.f:-he other 
starting from 1the other end but. below the base line. The BM at th~ c~ntre qf tb,e 
beam is 
(a) 50 kNm 
(c) 30 kNm 

1. (b) 
6. (d) 

i 1. (c) 

2. (:b) 
7. (c) 

12. (c) 

I (b) 40 kNm 
(d) 20 k:Nm. 

ANSWERS 

3. (c) 
8. (d) 

13. (c) 

4. (a) 

9. (d) 
14. (c) 

5. (b) 

10. (d) 

15. (d) 
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EXERCISE 

1·1. A beam ABCDE, 16 m long supported over a span ABCD of 12 metre carries 
concentrated loads of 6 tonnes at B, 4 m from A, 5 tonnes at C, 8 m from A and 4 tonnes at 
E. Draw the SF and BM diagrams stating (i) the position and magnitude of maximum BM 

· (ii) the position of the point of contraflexure. 
[Ans. Reactions, R,4 = 4·33 tonnes, RD= 10.67 tonnes, Mma:ii=I7·32 tonnes/mat a 

distance of 4 m from end A, points of contrafl.exure l-ies at a distance of 9'6 m 
from A]. 

7·2. A beam AB, hinged at the ends A and B, of length / carries a uniformly dis
tributed load cf intensity w acting downwards on half of its length and an upward uniformly 
distributed load of intensity w acts on the rema ining h alf of the beam (a). Draw the SF and 
BM diagrams. (b) Locate the position of the point of inflexion, if any. (c) What is the 
maximum bending moment and where it occurs. 

[Ans. Reactions ±wl/4, (b) Point of inflexion lies at the centre of the beam, 
(c) Maximum bending moment ±w/2/32 occurs at l/4 from both the ends]. 

7·3, A beam 8 m long carries a uniformly distributed load of 10 kN/m run, through
out its length. Clockwise moments of 50 kN m and 30 kN m are applied at the two ends. 
Determine the support reactions. Find the magnitude and position of the greatest tending 
moment. 

[Ans. Support reactions 30 kN and 50 kN Mmare=95 kN m at 3 metres from one end] 

7·4. A beam ABCD, 8 m long supported at B, I m from A and at C x metre from' D. 
The beam carries a point load of 4 kN at end A and a uniformly distributed load of 2 kN/m 
run throughout its length. Determine the value of x , if the centre of the beam becomes the 
point of contraflexure. Draw the BM diagram and find the position of any other point of 
contraflexure. 

[Ans. x= 16/7 m, RB=32/3 kN, Rc = 28/3 kN ; other point of contraflexure lies at 7/ 3 
m from end A] 

7·5, A beam ABCDE, 12 m long cantilevered over the portion AB= 4 m long, 
supported at points B and E, BE= 8 m, carries a concentrated load 2 kN at A, 2 kN at C, 
2 m from A and 2 kN at D, 2 m from E. In addition it carries a uniformly distributed load 
of 1 kN/m over the portion CD. Draw the SF and BM diagrams, indicating the values of 
BM at B, C and D. Find the position of the point of contraflexure . 

[Ans. RB= 7 kN, RE= 3 kN, MB=-8 kNm, Mc=+2 kNm, MD=+6 kNm; Point 
of contraflexure lies at a distance of 5'6 m from A] 

7'6. A . beam ABCDE, 14 metres long supported at Band D, the overhang on both 
the sides being 3 metres, carries the transverse loads as shown in the Fig. 7'51. 

,\ . \ 

(a) Draw the SF and BM diagrams 

(b) Find the p osition of the p oint of inflexion. 

(c) Determine the position and magnitude of maximum BM. 

[Ans. RB= 6 tonQ.e, RD= 8 tonnes, (b) There is no point of inflexion in th~ beam, 
(c) Mm•• 15 tonne-metres occurs at the support D] 
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3 Tonnes ~Tonne; 

/

W= 1 Tonne/me ter 
A B C 0 

--1 3m ~~~ 3m -

Fig. 7'51 

20kN 40kN 
Ws 10 k Njrn 

Apx.ra:x:q~::o::~m:r::ci::o::~o 
B C 

2m- 2m 3m 
L,OkN . 

Fig. 7'52 

1·1. A propped contilever ABCD, 7 m long carries the transverse loads as shown in 
the Fig. 7·52. Draw the BM diagram and determine (i) magnitude and position of the 
maximum BM (ii) Position of the point of contraflexure. 

[Ans. Mma.,= - l 85 k.Nm at the fixed end. Poi1i.t of contraflexure l.ies at a distance of 
4·633 m from end A] 

1·8. A beam 8 m long simply supported over a span of 6 m, carries the transverse 
loads as shown in the Fig. 7·53. Draw the shear force and bending moment diagrams. 
Determine (i) the position of the point of contraflexure if any (ii) position and magnitude of 
the maximum bending moment. 

[Ans. Point of contrafl.exure lies at a di:.tance of 5'48 m from one end, Mrn,,,, = -15.833 
tonne metres at a distance of 1 m from one end] 

9T 
W= 21/m J 5T 

W: 2T/ m 
A 

C B 
2m 

. ~ 2m 4m 
Im lm Im 3 rn 

Fig. 7·53 Fig. 7 54 

. · 7'9. A cantilever 6 m long, carr ies a u niformly distributed load of 2 tonne/m run 
from B, 2 m from free en<;! A, upt? the fixed end C _and a concentrated load 5 tonnes a~ the end 
of a lever at A, a s shown m the Fig 7·54, Determme 

(i) the point where shear force is zero. 

(ii) magnitude and position of the maximum bending moment. 
(iii) position of the point of inflexion. 

7·10. A beam ACB of length l hinged 
at both the ends carries a linearly varying 
distributed load as shown in Fig. 7'55. 
Petermine the maximum bending moment 

· and its position . Locate also the point of 
contra flexure. 

f Ans. Mm a;,; = ± w/2/36'1 3 at l/2'13 
from both the ends. Point of 
contrafl.exure lies at the centre] 

fAns. (i) at no point SF is zero · 
(ii) - 36 tonne-metres at the fixed end 
(iii) at 2 m from end A] 

Fig. 7•SS 
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7'11. A beam ABCb, 12 m iong suppotted at Band b, 8 m apart carries a concentrated 
load of 3 tonnes at A and 18 tonnes load distributed from C to D. Point C is at a distance 
of 4 m from support B. Rate of 10ading varies from p at C to q at D. Determine the 
values of p and q such that reactions at B and D are equal. Draw the SF and BM diagrams. 
Find the magnitude and position of the maximum bending moment. Where is the point of 
contraflexure? 

[Ans. Rn= RD= 10·5 tonne, p= 9 tonne-metre, q= O, . ' 
Ms= - 12 tonne-metres, Mc=+ 18 tonne-metre 

Mmo:11= 21 ·3g tonne-metres at 8"945 m from end A. 

Point of contraflexure lies at a distance of 5'6 m f~cJ111 A] 

7·12. A horizontal girder. ABCD. 8 m long is hinged at end A n.nd rests freely on a 
roller support at D. The girder is loaded with vertical and inclined loads as shown in 
Fig. 7'56. Assuming the direction of the reaction at D to be vertical, determine (a) magnitude of 
reaction at D (b) magnitude and direction of reaction at A. Draw the BM diagram to a 
suitable scale. 

w = IT/m 

A 
( 

- -4 m 
I 

[Ans. RD= 6'121 tonnes, R,1 = 7'447 tonnes, inclined at an angle 34° 46' to the 
vertical] 

6T 
GT 

D 
B C 

2m 7 m 

Fig. 7·:6 Fig. 7·57 

7'13. The SF diagram of a beam ABCD, 12 m long, supported at the points A and C 
is shown in the Fig. 7'57. Draw (a) the load diagram, (b) the BM diagram of the beam. (c) 
Determine the position of the point of contraflexure. 

Ans Ms = +8 tonne metres, Mc= -8 tonne metre, Point of contraflexure lies at 6'47m 
from A] 

7'14. A beam ABCD, 8 metres long and hinged at ends is subjected to two.couples 
M

1
= 4 Tm and M2= 8 T-m at points B and C. Both the couples are in anticlockwise 

direction and the points B and Care at 2 m and 6 m respectively from the end A (as shown 
in Fig. 7'58). Draw the SF and BM diagrams and find the position of the .points of contra
flexure. 

[Ans. Points of contraflexure lie at distances of 2 m, 2'667 m and-6 m from end A] 



SHEAR FORCE AND BENDING MOMENT DIAGRAMS 351 

5T 

4T 

f 
Al lrn 

CL 

lm ~2rn 

B 

3m 

A 

Fig. 7·58 Fig. 7·59 

7·1s. A beam ABC, 6 m. long, hinged at C and simply supported at A carries load/ 
force at a lever l m X 2 mas shown in the Fig. 7·59. Determine reactions at A and C. Draw 
SF and Bl\4 diag-rams. Find also the position of the point of contraflexure if any. 

[Ans. RA = 4 ·g33 tonnes, RcH= 4 tonnes, Rev= o· l 67 tonnes ; 
Mn= + 14·5 tonne-metres, = O·s tonne-metr<!S, 
No point of contraflexure any where] 

/ 



Theory of Simple Bending 

In the last chapter we have studied about the Shear Force and Bending Moment dia
grams of cantilevers and beams subjected to transverse loads. Shear stress is developed across 
the section of the beam due to the shear force on the section and longitudinal or direct stress 
is developed on the section of the beam due to the bending moment on the section. An 
element of the beam may be subjected t o posit ive bending moment (i.e. a bending moment 
which produces concavity upwards in the beam) or a negative bending moment (i.e. a bending 
moment which produces convexity upwards) as shown in the Fig. s· 1. An element of the 
beam initially straight, bends to the shape a'b' d ' c' due to a positive bending moment. 

a b 

~E- - - --3~ 
;(;-a ' b)\ 

M/c~ ~)M 
(a ) 

Fig. 8·t 

As is obvious, the upper layer ab gets contrac~ed to a'b' i.e. ab>a'b' and the lower 
layer gets extended to c' d' i.'j- , c' d'>cd. . There is a layer (sh?wn dotted) which neither 
contracts nor extends i. e. ef = e'f . There will be compressive stram and compressive stress 
in the upper layers and tensile strain and tensile stress in the lower layers. Similarly when the 
element of the beam is subjected to a negative BM, the upper layers will extend and lower 
layers will contract i.e. a'b'>ab and.c'd' ~c? as shown in Fig. s·1 (b). Again there is a layer ef 
which neit,her extends nor contracts 1.e. e f = ef 

The layer which neither contracts nor extends due to bending moment and does not 
have any strain or any stress in it is called a neutral layer. . It will be shown that this neutral 
layer passes through the centroidal axis of the sections of the beam. 

There is a definite relation~hip ~etween t~e di~ect ~tress f developed due to bending 
and the bending moment 1!-f, which ;¥111 be derived m this chapter. To develop the relation
~hip between[ and M certam assumptions are taken. 
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s·t . ASSUMPTIONS FOR THE 1 HEORY OF SIMPLE BENDING 

For developing the theory of simple bending or for working out relationship between 
the stress f and the bending moment M, following assumptions are taken : 

(i) The beam is initially straight before the application of transverse loads o~ the 
beam. 

(ii) The material of the beam is homogeneous and isotropic. i.e. the material possesses 
the same elastic properties in all directions through out the length and breadth of the beam. 

(iii) Elastic limit is not exceeded i.e. if the beam is unloaded it returns to its original 
shape and ·dimensions. 

(iv) Transverse sections which are "j ~c 
plane before bending remain plane after bend- I j 
ing. Fig. s·2 explains the meaning of this . -
assumption. Transverse sections of the beam b d 
such as ab which is in one plane, after bending J::::F!_.~ 
changes the direction a'b' but a'b' section ~b' ·-- ·d 
remains in one plane. Similarly the section 
cd in one plane after change remains in one 
plane c' d'. In other words this assumtion means Fig. 8·2 
that transverse sections of the beam are not 
distorted in shape after bending. 

(v) Each layer of the beam is free to expand or contract independently of the layers 
above or below it. 

(vi) The value of the Young's modulus of elasticity E of the material is the same in 
tension and in compression. 

(vii) The beam section is symmetrical about the plane of bending i.e. about the plane 
passing through the neutral layer. 

8'2. THEORY OF SIMPLE BENDING 

Consider an element ABCD of the beam of small length ax as shown in Fig. 8'3 (a). 
After the application of the transverse loads on the beam, the beam bends arrd say that on this 
small element, the bending moment Mis positive i.e. producing concavity upwards. The beam 
section can be of any shape. Say the beam section is trapezoidal as shown. Due to bending 
moment, the upper layer AB contracts and lower layer CD extends. A layer EF which neither 
contracts nor extends is called the neutral layer. After bending AB changes to A 1 Bi, EF 
changes to E1 F1 and CD changes to C1 D1. Such that A1B1 <AB, C1D1>CD and E1 F1 = EF. 
Say for the small infinitesimal length ax, the bent length can be considered as a part of a 
circle of definite radius, ~s shown in Fig. s·3. (b) Say the centre of circle ' or centre of curvature 
is 0 . Radius of the circle or radius of curvature upto the neural layer E1F1 is R . 

• l• ' · ··, ; ' ' 

Consider a: layer GH at a distance of y from the neutral layer, which is reduced in 
length to G1H1 rafter the bending of the beam. 

Strain in the layer 

But initially 

GH= Final length-Original length 
Original length 

G1H1 - GH_ 

GH 

GH= EF= E1F1 

Strain in the layer GH, 
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where E1F1 =R0 
G1H 1=(R-y)fJ 

STRENGTH Of MATERIAJ,S 

The distance between the layers GH and EF i.e. y is changed toy'. But the change .in 
this thickness is negligible and y'e!y. 

or 

M r6x -1 M 

( A B ! B F, IN ; H y 

C 

( 0) 

( b) 

ft Yt 
0 

·-.:jft I- . 
( C ) ( d) 

0- Cent re of corvature 
R- Radius of corvoture 

Fig. 8·3 

So the strain in the layer GH, 

_ (R-y) 0-R0 
E - R0 

- y 
= R 

e ex y 

b 

The strain in the layer is a compressive strain or a negative strain. 

.. . (1) 

I t can be deduced from this equation that strain in any layer is proportional to its 
distance from .the neutral layer. The strain -is compressive or tensile depends 1:1-pon the position 
of the layer i.e. whether the layer is above or below the neutral layer. In this particular cas~, 
maximum negative or compressive strain will be at the top and maximum positive or tensile 
strain will be at the bottom layers. 

Say y4 = distance of the top layer from the neural layer 
y 1= distance of the bottom layer from the neutral layer 

Then Ee, maximum compressive strain=>;; 

~t i maximqm ten~ile strain 
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The variation of the strain is shown by the Fig. 8'3 (c). The strain: distribution is 
linear across the thickness of the beam. 

8'3. NEUTRAL AXIS 

The intersection of the plane of the neutral layer with the cross section of the beam is 
called the neutral ax.is, as shown in the Fig. s· 30 by NA across the section of the beam. 

The strain in any layer is directly proportional to its distance from the neutral axis 

Say the stress in the layer GH 

-f 
But / = £ E 

where £ = Young's modulus of the material 

So f= _)'_, XE 
R 

Consider an elementary area, b"oy as shown in the Fig. 8'3. Force on the layer GH of 
thickness, 8y 

Total force on the section, 
-y • . 

F = j 8F , - i J y)~a 

Yi 

For equilibrium resultant force on the section is zero. i.e. Total compressive force 
i. .. acting on the section above the neutral axis is equal to the•totat-. tensile force Ft acting on the 
ection below the neutral axis. 

i.e. 

Therefore 

Now 

So 

Therefore 

-y. 

F=O or - i J y 8a= O 

Yi 

E#O, R#O 
-y. 

I y 8a= A .Y=O, 

i.e. the first moment of area about the neutral axis is zero 
.Y= O because A#O 

The first moment of area of section about its centroidal axis is zero· . . This shows that 
:utral axis of the beam passes th.rough. the centroid of the section. In other words, the neutral 
yer along the length of the beam passes through the centroids of all the sections along the 
ngth of the beam. 
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Example 8'3-1. A brass strip 80 mm wide and 30 mm thick is bent into an arc of 
radius 60 m. What is the maximum stress develo ped in the strip if 

Ebrass = 1 X 105 MN/m2 . 

Solution. Say the maximum stress developed = / 

Strip is ·of rectangular section, neutral axis will pass through the centre e1f the thickness, 

So, y=± ~ where t=thickness 

Radius of the arc, 

E for brass 

Now 

= ±15 mm (since it is a rectangular section) 
R= 60'm 

= 60000 mm 
= 1 X 106MN/m2 

= 1 X 105 N/mm2 
I E 
y=R 

f ERy = ± 1 S X 1 X 105 

60000 
= ± 25'0 N/mm2. 

Example 8'3-2. A mild steel beam of depth 200 mm is bent into an arc of a circle of 
radius R . What is the minimum value of R if the stress in beam is not to exceed 600 kg/cm 2. 

The beam section is symmetrical about the neutral layer. £ = 2 X 106 kg/cm2. 

Solution. f, maximum stress 
= ±600 kg/cm2 

y, distance of extreme layers from Neutral axis 
= ± 100 mm (as the beam section is symmetrical about NA) 
= ±10 cm 

I E 
-;=If 

Radius of curvature, R= JY = 
2 x ~~~ x IO = 3·3333 x 104 cm 

=333'33 m. ·· 

Exercise 8'3-1. A round steel bar of diameter 50 mm is bent into an arc of radius 
SO m. What is the maximum stress developed in the bar. 

Given, E=2 X 106 kg/cm2 • · '1 [Ans. ±500 kg/cm2! 

Exercise 8'3-2. To what radius an aluminium strip 100 mm wide and 20 mm thid 
can be bent if the maximum stress in strip is not to exceed SO N/ mm2? E for aluminiurr 
= 70 x 103 N/mm2• [Ans. 14 m: 

8'4. MOMENT. OF RESISTANCE 

Refering to Fig. 8'3 (d) 

Force on elementary 8a, 

'SF=- i y. 8a 
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or 

Moment of the force 'SF about the neutral axis, 
oM= -y oF 

= - i y 8a(-y) = ; y28a. 

Total moment about the neutral axis 
-yo 

= ! i yzsa. 

Yt 

Moment of resistance due to internal stresses developed in the section of the beam, 
-y. 

But 

-y. 

M, = i J y 2Sa = Applied Moment, M 
Yt 

J y2oa=second moment of the area about the neutn~l axis 

Yt 
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Say CG is the centroid of the section and XX and YY are the horizontal and vertical 
axis passing through the centroid. Neutral axis of the beam passes through the centroid of the 
section, as shown in the Fig. 8'4. 

or 

or 

So, INA=l .. 
E 
R. l.,:c= M 

M E 
I .,. = Ji · 

Morever / = ; . E 

I E 
y=1r 

... (3) 

The value of y is negative when it is 

A- X 

Iv 

Fig. 8·4 
taken towards the centre of curvature from the 
neutral axis, and y is positive when the distance 
curvature from the neutral axis. 

of the layer is taken away from the centre of 

From the above equations 

M - Ji. __ L (flexure formula) I,,,, - R - y. ... (4) 

Moreover we see that Fe and Ft i.e. total compressive force on the section on one side 
of neutral axis is equal to the total tensile force on the section on the other side of the neutral 
axis and they constitute a couple of arm h [see Fig. 8'3 (d)). 
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Moment of resistance Afr= .Fc Xi1= F , Xh= Applied Moment, M . 

Fig. 8'3 (d) shows the str~ss distribution across the section. The axis of the resultant 
forces Fe and F1 and the length of the arm of the couple can be determined. 

Equation (4) in terms of maximum tensile and maximum compressive stresses can be 
written as 

f ,= - M~=- M 
J.,. z, 

My, M 
Ji=- = -· 1... z, 

W~ re Z sta,ndi; for the modulus of the seeti on ~nd is eq11al to the moment of inertia 
of the section about the neutra l axis divided by the extreme value of y. 

If the section of the be.am is symmetrical abou t the neut:al axis i .e. about its centre of 
gravity, and if dis the depth of the secti6n then 

d d 
)'.=- 2' y,=+ 2 

[.,., 
Z .= Z ,= Z = -

d/2 

Then, the expression fo r the moment of resistance, 
M = fZ. 

s·s. MOMENT OF INERTIA OF SECTIONS 

Before we proceed to determine the stresses in t11e beams due to bending moment, le,t 
us revise the information on t he posit ion of centro id and moment of iner tia of different 
sections, most commonly used for beams. 

' (i) Rectangular Section. Fig. s·s shows a rectangular section of breadth B and 
depth D. CG lies at distances of 

( x = 1, J = ~ ) and 

BD3 DB3 

l..: = 12, lr11= 12 • 

• 
y 

X X 

: : 

Fig. 8·5 Fig. 8·6 
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(ii) Circular Section. Fig. 8 6 shows a circular section of diameter D, with C G at 
its centre · 

rtD4 

I:u = lvv = M. 
, 

(iii) Semi-Circular Section. Fig. 8"7 shows a semi circular ~ection of radius, R. 

CG lies along YY axis and at a distance cf ;: from the c\iametral axis 00 as shown. 

y 

X 

0 

Fig. 8.7 

nD4 

loo-- - · -
128 

D4 
fu = foo--

l81t · 

X 
- 4R 
Y:-
O 311 

I y 
0 

0 
Y. 4'R x = y = 

Jll 

Fig. 8·8 

(iv) Quarter-Circular Section. F ig. 8"8 shows a quarter-circular section of radius 
R with C.G. ~ing at 

4R 
x=J=~ 

TCD4 
foo = l oo' = --

256 

.. 
(v) Triangular Section. F ig. g·9 shows a triangular section DEF of base B and 

Height H . Its C.G. w-ill pass through X-X axis at a dist ance of f from the base. Say NF 

equal to H., is the altitude on side DE from the point F. PQ is parallel to the side DE at a 

distance of 1!. frbm the side. 'CG lies at the inter section of X-X axis and line PQ. 

BH3 

l.r:,, = ~ 
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H 

i .. y 
X y 

H 
3 7?8 F 

X - - X 

J' -._ 
01 X 

1-t, ------ x r- y 

Fig. 8·9 Fig. 8·10 

(vi) Any Section, Consider a section of any shape as shown in Fig. s·IO. 
Tot:tl area can be considered as a summation of small areas 8a1 , 802, 803 ..... . San. 

Say the co-ordinates of aver) small area Sa are x and y. 

Then moment of inertia, Tu= Jy2da 
l 11v= Jx2da. 

_ Jxda 
Location of CG, x = A 

Jyda 
y= --x-. 

Perpendicular Axis Theorem. Fig. 
s· 11 shows any area with its CG lying at 0. 
X-X and Y-Y are the horizontal and vertical 
axes passing through the centroid 0 . If 0 -0 
is the polar axis of the area, then 

Moment of Jnertia= /oo 

= Ir1.., + I11 11 

l oo is generally called the polar moment 
of inertia. · 

A 

)(-~ r--- ~--l-, 

X 

Fig. 8·11 

' P arallel Axis Theorem. Fig. s· 11 show a plane lamina with its C.G. at 0. X-X 
and Y-Y are the horizontal and vertical axes passing through the centroi d 0. Axis X'-X' is 
parallel to X-X axis and is at a distance of h. Axis Y' Y' is para llel to Y-Y axi s and is at a 
distance of h' from YY. 

Moment of inertia, Jy'y'= /yy+.A.h'2 

Moment of inertia, lx'x'=Ixx+Ah2 

rt= ap~a of the plane lamina,, 
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s·6. BEAMS OF RECTANGULAR SECTION 

Fig. 8' 12 shows a beam of rectangular section subjected to bending moment M. The 
breadth of the section is B and depth is D. The neutral axis passes through the centroid of the 
section, and the rectangular section is symmetrical about its CG. 

Fig. 8'12 

Therefore distance of extreme layers from the neutral axis 

D =y= ± -
2 

The longitudinal stresses or the direct stresses developed on the extreme layers are 
:qual and opposite. 

So f.= -f, (as shown). 

The stress distribution across the depth of the section is linear. Upper half of the 
ection comes under compression and the lower half comes under tension. 

Compressive force on upper half, 

F =( O+f0 ) BD _ fc . BD 
C 2 2 - 4 

Tensile force on lower half, 

F,=( Oi ft ) Br = fi 4BD . 

The resultant force, Fe passes through an axis at a distance of 1/3 x D'/2 from the top 
Lyer and the resultant force F, passes through an axis at a distance of D/6 from the bottom 
.yer. 

Fe and Po form a couple of arm 2D/3 

. 2D 2D 
Moment of resistance, M=F,x -

3
- = F. x -

3
-

BD 2D 
=fi . -4 x 3 =/cX BD 2D 

T' T 
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BD2 BD2 

= /1 . -
6

- - fc -6-

= ft .Z,=f • . z. 
The section modulus Z1= The section modulus Zc 

BD2 

= -6-· 

Example s·6-1. · A timber joist _of rect~ngular s~cti<;m 10 cm x 20 cm deep is simply 
supported over a span of 4 metres and carries a umformly distributed load of 1 tonne /metr;~ 
run. Calculate the skin stresses at the centre of the beam. 

Solution. 

Length of the beam, L= 4 metre 

Rate of loading, w= 1 tonne/metre 

BM at the centre of the beam, 

w/2" J X 4 X 4 
M = 8 = . 

8 
= 2 tonne-metres 

= 2 x 105 kg-cm 

Breadth of the section, B= lO cm 

Depth of the section , D = 20 cm 

' ...... :. • t , : '. • ~ ·• - • 

·section modulus, ·z= Bf2 = 10:2os J°-3 33 X 1Q4 ems . ; l' 

Skin stresses, 
M 2x 106 · Jc= ·2 = 1.333 X 104 15 kgJcm2 (compressive) 

l ~.. . . ··- •-" < 
0

.:. J 17.:. ·. / ! 
.,.· M . 
J, =2 = 15 kg/cm2 (tensile). 

Exatnple 8'6-2. A steel beam . of hollow square · section with outer side 50 mm and 
inner side 40 mm is fixed as a cantilever with a length of 3 mei.rcs. Now much concentrated load 
can be applied at the free end of the cantilever, if the m::iximum stress is not to exceed 60 
N/mm2

• 

Solution. Length of the cantilev.er, 

L = 3 m = 3000 mm 

. . .. fay the. load at free end, 
·· ··:.: : .. ; · .·, · . = W Newtons. 

;.:' 1 

•The maximum bendin_g momer~t W .f: occurs at the fixed .end of. the contilever'; and so 
the max i mum stress in the cantilever sect10n. will be developed at the fixed end. The F ig g· I 3 
sh ows the hollow square section and the stress distributi on with extreme stre~~c~ :!:60 N7~m2, 

Di~tance of extreme layers from Neutral axis, 
. .. . ?' ::;:= :!:25 JP.Pl , 



tHEORY OF SIMPLE BENDlNU 

1 

Moment of Inertia, 

Maximum stress, 

Therefore 

y 

Section ~ 
+ 60 N/m m

2 

St ress d is tri bu tion 

Fig. 8·13 

501 404 

INA= lxx = --rr- - u 
104 

= 12 x 369 mm' 

/ = 60 N/mm2 

y = 25 mm 

M = L X l xx= j!}_ X J_Q4 x 369 
y 25 12 

= 73'8 x 104 Nmm 

= WL=3000 W Nmm 

Concentrated load at the free end, . .. 
73' 1 X 104 

246 N . 
W= 3000 

363 

... ; 

Exercise 8'6-1. A timber joist of square sectiqn 200 mm X 206' mm f~ fixed as a 
cantilever with a length of~ metres .. What unifo~mly distributed load ca]l be aBplied ·through
out the length of the beam 1f the maximum stress 1s not to exceed 5 N/mm2 ? · . , 

[Ans. 1 ·4~ kN/mJ 
Exercise 8'6-2. A steel beam of hollow rectangular section with outer sides 50 mm 

wid'.), JOO mm deep and inner sides 30 mm wide and 80 mm deep is simply suppcrted over 
a span of 6 metres. How much central load the beam can carry if the maximum stress is not 
to exceed 75 MN/m2• [Ans. 2'88 kNJ 

s·7. CIRCULAR SECTION 

Fig. 8'14 shows a circular section of the beam subjected to b\:mding moment M. ·· The 
diameter of the circular section is D and its CG lies at the centre of .1he circle. Under the' 
action of the bending moment shown, upper half of the section comes under tension aud 
lower half comes under compression. 
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under tens ion 

X 

M M under 
compression St ress 

distr1but10M sect ,on 

Fig. 8·14 

Moment of inertia, 
~D4 

fu orfNA=~ 

Distance of extreme layers from neutral la¥er 
D 

= ±2 

Stresses developed in extreme layers, 

M D 
/, or Jc=± /~-,, · 2 

M D 32M M 
= ± ~D• x64x -y=± ,.D3 =z 

Section Modulus, Z.=Section mod't'iius, 
wDa 

Z1=Z= -- · 32 
' . ) 

Example 8'7-1. A cast iron water pipe 50 cm t?ore and 2 cm thick is supported over 
a span of 10 metres. Find the maximum'sttesi; in the metal when the pipe is running full. 

Density of cast iron =7300 kg/m8 

Density'of w,~ter = 1000 kg/m3• 

'S0b1tlon. T]J.'~ fig. 8' 15 !?hows a 
sec;:ti,0n qf cast iron pipe with a bore of 50 cm 
·ahi i:>lltside dia. 54 cm. 

Area of crbss section of pipe 

Area of cross section of pipe carrying 
'<Water 

.= : X 502= 1963'5 cm2 

water 

Fig. n ·5 
, I , ' - ' 
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Density of cast iron 

Density of water 

= 0'0073 kg/cma 

= O·Ool kg/cm:i 

Weight of CJ. pipe per metre length 

= 326·72 x ·oo x o·oo73= 238'50 kg 

Weight of water carried per metre length 

= 1963'5 X IOO X0001 = 196·35 kg 

Total weight of pipe per metre length 

= 238'50+ 196'35= 434'85 kg 

Span length, 1= 10 m 

Load on the ·beam per unit length, 

w= 434'85 kg/m 

Maximum bending moment occurs at the centre of the beam, 

wl2 434'85x JOx 10 
Mma:=-

8
-= 

8 
5435'62 kg-m 

= 543562 kg-cm 

1 •• , moment of inertia of Cl section , 

= ~ (D4-d4) 

= 6~ (544 - 504)= bl-0596'9 cm4 

Distance of extreme layers from the neutral axis, 

yo or y1= ±21 cm 

Stress developed in metal, 

Mmaz J;=--. y, 
f xx 

543562 X 27 
= 110596·9 132·7 kg/cm2 

= -f •. 

Exercise s·1.1. A steel tube 8 mm bore and J mm wall thickness is fully charged 
with mercury and forms the part of an apparatus of a laborat0ry. The tube is 600 mm 
long and is supported over a span of 500 mm. What is the maximum stress in the tube due to 
bending. Given 

Density of steel = 0'0078 kg/cms 

Density of mercury = O·o 136 kg/cm3 [Ans. 446'9 l kg/cm9l 
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s·s. I-SECTION 

Fig. 8'16 shows a symmetrical I 
section most commonly used as a structural 
member. There are two flanges on the top 
and bottom of the dimensions B X t and one 
web in the centre of dimensions b X d. Since 
the section is symmetrical, its CG is located 
at the CG of the web as shown. 

Moment of lnertja, 

BD3 (B--b) d3 
f xx=--i-z- 12 

Distance of the extreme layers from the 
neutral axis 

Section modulus, Zt=Zc=Z 
fxx BD3-(B-b) d3 

= D/2 = 6D 

y 

In this case most of the bending moment is resisted by the 'flanges. 

D 

d 

1 
t 

Example 8-8·1. A beam of I section 30 cm x 12 cm, has flanges 2 cm thick and web 
I cm thick. Compare its flexural strength with that of a beam of rectangular section of the 
same weight, the depth being twice the width. What will be the maximum stress developed 
in l section for a bend~ng moment 30 kNm. 

Solution. Fig. 8 · 17 shows I section 
of given dimensions. 

Area of cross section 
= 12 x 2+ 12x2+ (30- 4)x 1 

= 74 cm2 • 

Rectangular beam is of the same 
weight and same material. 

section 

or 

or 

So Area of cross section of rectangular 

=74 cm2 = B X D 
= B X 2B= 2B2 

J14 ' 
B= 2- = 6"08 cm 

D·=6'08 x 2= 12· 16 cm 

I-Section. B= l2 cm 
b= l C'm 
D= 30 cm 
d= 30- 4= 26 cm 

i 30c ni 

2,m l__ . 1 
T~1 2c m~ 

! -Section 

- 1 s 1- · 
-f~T 
1~7cm 
-J6·06f-cm 

Re c t angular 
sec t ion 

Fig. 8·17 
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Section modulus, z = 12 X 303
-( 12- 1)263 

_ 324000- I 93336 
1 

6X 30 - 180 

Rectangular section, 

= 725'9 cm3= 725'9 X 103 mms 

BD2 
ZR=--

6 

= 6'08x 12·162 = 149'84 cma 
6 

where B = 6·os, D = 12'16 

The flexural strength of a beam is directly proportional to its section modulus 

Z1 _ 725·9 = 4.84 
' ZR -149'84 

Bending moment on I section beam, 
M = 30 kNm 

= 30X 106 Nmm 
= f,naxZ =/max X 725'9 X 103• 

Maximum stress developed 

30X 106 

- 725·9x 10a = 41·32 N/mm2 

Exercise 8·8-1. A beam is of I section 20 X 15 cm with thickness of the flanges 2'5 cm 
and thickness of the web 1 · 5 cm. Compare its flexural strength with that of a beam of circular 
section of the same weight and same material. What will be the max imum stress developed in 
I section for a bending moment of 2·5 tonne-metres . [Ans. 7_' 14, 403'024 kg/cm2] 

8'9. T-SECTION 

Fig. 8'18 shows a T section of breadth 
B and depth D. The thickness of the flange is 
t1 and thickness of web is t2• The section is 
symmetrical about Y- Y axis as shown but 
unsymmetrical about X - X axis passing 
through the centroid of the section. To deter
mine distance of the CG from the lower 
edge. 

Let us take, area of flange, a 1 = Bt1 

Yi', distance of C.G. of the flange from 
lower edge 

=(D- i) 
Area of web, a2= ti(D-t1 ) 

y 2', distance of C.G. of the web from lower edge 

=( D;t1
) 

Distance of the C .G. of the T-section from lower edge, 
01J'i' +a2Y2' 

,Y2 = a~+a3 

. r-section 

Fig. 8·18 
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T~n Ji=D-h 
Neutral axis passes through the centroid of the section. 
So moment of inertia, 

B11a ( 11 )2 
ln= 12 + Bt1 Yi-2 

STRENGTH OF MATElUAI:.S 

tiD-t1)3 

+ 12 +tiD-f1)(y2-Y2')2 

(Using parallel axis theorem) 

Section modulus, 

Example s·9-l. Find the position of the C. G. and calculate l xx for 15 cm x 1 O cm x 
1 ·5 cm. T section shown in Fig. s· 19. A canti lever of length 3 metres and of the section shown 
with flange at the top carries a load W at its free end. What can be the maximum value of 
W so that the stress in the section must not exceed 50 N/mm2• 

Solution. Area of flange, 
a1=l0X1"5=I5 cm2 

Yi' from bottom edge 
=15-0.75=14·25 cm 

Area of web, 
a2 = 1"5X(15-l.5) Bottom edge 

=20·25 cm2 

y,/, from bottom edge 

= 
15

- /
5 

=6'75 cm. 

y1, distance of C.G. of the section from bottom edge 

Fig. 8·19 

15 X 14"25+ 20·25 X 6·75 _
9

.
94 15+20·15 - cm 

y 2, distance of C.G. of the section from top edge 

= 15 -9.94= 5"06 cm 

Moment oflnertia, lxx= I0 ~
2

1 
·
5

a + lo x 1 ·5 ( S-06- ~~/ 

St:ction modulus, 

+ l 'S Xl~·sa + 1 ·5 X 13·5 (9.94 - 6.75)2 

= 2'8125+278"64 15+307'5469+206'0660 

= 795"07 cm' 

Z 
_ f xx _ 195"01 

19 987 1 - Yi - 9.94 = · cm3 = 79·987 x 10s mm3 

Z = fx x _ 195"01 = ] 57.13 3 
z - 5·06 . cm ;v~ . 
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1 The stress due to bending in a layer is proportional to its distance from the neutral 
fayer. Therefore maximum stress in the section will be developed at the lower edge. The 
<:antilever is fixed such that flange is at the top. Cantilever carries a load W at free end. 
So the flange will be in tension and the lower portion of the web i:e. below the neutral axis 
will be in compression. So Jc should not exceed 50 N/ mrn2• 

Max. B.M. on cantilever= WL 

(at the fixed end) = 3000 W Nmm 

= / o.Z1 

if W is in Newtons 

3000 W= 50X79"987X 103 

W= 50 X79'987 1333 N 
3 

= 1"333 kN. 

Exercise 8"9-1. A beam of T section, 4 m long·carr ies a uniformly distribuled load w 
per metre run .throughout its length. The beam is s imply supported at its ends. The T 
section is 2o·x '10 x 1 ·2 cm. What is the maximum value of w so that stress in the sec'tion does 
not exceed 600 k_g/cm2 • f Ans. 340·8 kg/metre run] 

8'10. L-SECTION 

Fig. s·20 shows on unequal L-section, of bceadth Band depth D and thickness t. 

a1 , area of leg L1 = B.t 

Distance of C.G. of area ai, from 
edge PO 

B 
-2 

Area of leg L 2 , a2= (D - t) t 

Distance of C.G. of area a2 from edge PO 

t 
- 2 

Distance of C.G. of L section from PO, 

t 
Distance of C.G. of area a1 from edge OR= 2 

Distance of C.G. of area a2 from edge OR=( D 
2 

1 +t ) 

···· ( Q±i..) -- 2 
' ' 

Fig.8·20 



3.70 STRENGTH OF MATERIALS 

' 

Distance of C.G. of L section from edge OR, 

., 

t ( D · )2 Moment of Inertia, lxx= 
12 

(D - 1)3 -\- t(D - t) Y2-T 
Bta ( t )2 +12 + Bt Yi-2 

Section modulus, Z = fxx 
1 J'1 

Example s·t0-1. Find the position of C.G. and calculate moment of inertia J.," ·of an 
unequal angle section 10 cm X 8 cm X I cm. A beam of this angle section is used as a cantilever 
of length 3 metre subjected to a turning moment M at its free end . What is the maximum 
value of M if the stress in the section is not to exceed 70 MN/m2

• 

Solution. L section is also called an angle section. 
area, a1 = 8 cm2 

area, a2= (10- l) x I= 9 cm2 

_ 8 x 4+ 9 x o· s 36'5 
x = 8+ 9 · = 17 -

1--r . 
1 10cm 

= 2·147 cm 

8 x o·5+ 9(1 -t-4·5) ( = 
I 

6 853 

-t-- X 
3 147 

" 

X 
G /Q. 

Yi = 8+ 9 - -

= 3'147 cm 

y2 = 10- 3'147 

,_L, 
-w,,m--j T ,m 

t · 147 cm 

Fig. 8•21 = 6·853 cm 

Moment of inertia, 

Admissible stress, 

8 X 13 

l ,x= - ,-2- + 8(3' 147 - 0'5)2 

1 X 93 

+-12-+9(6'853 - 4'5)2 

= 0'667+56'053 + 60'750+49'829 
= 167'299 cm4 
= 167·299 x 104 mm4 

J = 70 MN/m2 

= 70 N/1111112 

The stress in a ~ayer.due to ben~ing is c.lirectlJ'. proportional to its distance from the 
p<;l}trnl layer: therefore 1n th1~ ca~e µiaxup~m stress w1!l o<;:cur at the top ed~c because y~>Yi· 
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Maximum admissible turning moment, M 

=fX lxx 
Y2 

70X 167.299 X 104 

6·853 

= 1708·88 x 104 Nmm 

= 17·08 kNm. 

311 

Exercise s·to-1. Determine the position of the centroid of an unequal angle 
120 mm X 60 mm X 8 mm. A beam of this section is simply supported over a span of 8 m. 
A load 1 kN acts at a distance of 2 metre from one end of the beam. What is the maximum 
stress developed in the angle section. 

[Ans. x=13.07 mm, J = 43'07 mm, l xx=206.44 X 104 mm4 

/maz =55.898 N/mmZJ 

Note that in this case, maximum bending moment occurs under the load. 

s ·u CHANNEL SECTION 

Fig. 8'22 shows a channel section of depth D, breath B and thickness t. CG lies at 
a distance of x from edge PR and at distanc~ of D/2 from the edge RN or the edge PM. 

B B t 
B. t . 2 + B . t . 2 +(D-2t) t. 2 

B t+B t+(D-2t) t x= 

t2 
t B2+ 2 (D - 2t) 

= 2 Bt+t (D-2t) 

B 2+-t (D - 2t) 
2 

2B+(D-2t) 
D 

Ji=Y2= z 

Moment of Inertia, 

EDS (B-t)(D-2t)8 

l.u= -rr-- . 12 

Section modulus, 

M 

Fig. 8·22 

Example s·u-1. The thickness of flange and web of a channel section are 10 mm 
and 8 mm respectively, while its breadth and depth are 50mm and 100 mm. Find the position of 
the CG of the section and its l xx· If a beam of this channel section is used, what maximum 
bending moment can be applied if the stress is not to exceed O'S tonne/cm 2. 
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Solution. Considering the channels and web separately as· shown in the fig. ·s·23. 

sox 10 x 2s + so x 10x2s+ so x sx 4 
X sox 1o+ so x 1o+ sox8 

25000+ 2560 = 16.801 mm 
1640 

Moment of Inertia , 

SOX 1003 
. 12 

42 X 803 

12 
= 237'467 x 104 mm4 

= 237'467 cm4 

Allowa:b!e stress due to bending 

= 0'5 tonne/cin:2 

. • I 

Maximum allowaole B. M. 

M -- 0·5 lxx __ o·sx237'467 
max- X D/2 - s·O 

{ = s cm J 

I chaoo,1 *IOmmr 

,, rmm f~:b 100mm 

y1 = 50 mm char;inel J 1 
i 10mm 1:-so~~ ~ ,T . , 

ii:: 16·8-0mm 

Fig. 8·23 

= 23'7467 tonne-cm= 0'23-7467 T-m. · 

... · 

Exercise s·n-1. A 20 cm x 8 cm channel with thickness of web 10 mm and thickness 
of flanges 12 mm is used as a beam with the 20 cm base yertical. - At' a certain cross section 
it has to resist a bending moment of 14 kNm. Calculate the maximum intensity of stress due 
to bending a:t that section. · · [Ans. 65 N/mm2) 

8'12. UNEQUAL I SECTION 

Fig. 8'24 shows an unequal I section. The top flange B1 x ti, bottom flange B
2 
x t

2 
and 

web t3 X dare symmetrical about the Y-Y axis. So C.G. of the section lies along Y-Y axis. The 
overall depth of the section is D. 

" 

To determine position of C.G. along the Y-Y axis, take area df iop flange, 

a1= B1 !1 

C.G. of a1 from bottom edge PQ 

= D-~ 
2 

C.G. of a~ from edge PQ= 1 2
• 

Are'a of the web, 
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then 

r-B1 ~ J_ 

Tr 
ti 

a, TT 
Cl 3 

0 +--, C.G 

X d 
N A 

l t 3 

Y1 
0 2 

t2 

pl~ 
12~~ 

Jnegual I - Section 

Fig. 8·24 

d 
C.G. of a3 from edge PQ= t2+ 2 

B1 11 ( D- f )+B2 !2 · t+t3 . d ( t2+ 1) 
B1 t1+ B2 l2+ t3 d 

Section modulus, 

373 
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Example 8'12-1. A CI beam of I section 
flange 20 cm X 2 cm and web 27 cm X I cm is 
supported over a span of 6 metres. - If the 
permissible stresses are 1 tonne/cm2 in com
pression and 0·25 tonne/cm2 in tension , what 
uniformly distributed load can be safely 
applied on the beam. 

with top flange 15 cm X 1 cm, bottom 

/Y r- 15 C rn -~/ ==-r-:b 
i -/ rem 

Solution. 

Top flange area, 

Bottom flange area, 

Web area, 

a1= 15 cm2 

a.= 40 cm:i 

a3= 27 cm:l 

i +2 

27cm 
X __ ·..._c_. G_ X 

1 C rn 
. YI 

Section is symmetrical about Y-Y axis , 
so C.G. will lie along this axis. Pl V - ](d j2cm 

l'<---20cm-~ 
The distance of C.G. of I section from 

bottom edge PQ, Fig. 8·25 

15 X (27+2+ 0'5)+40 (1)+27 {2+ 13'5) 
15+ 40 + 27 

Moment of Inertia, 

Section modulus, 

442 ·5+40+ 418·5 901 
= 82 = 82= 10'988 cm 

Y2 = 30-10'988= 19'012 cm. 

15 X JS 
f xx = -

1
-
2 
-+ 15 (19'012- 0'5)2 

l X 273 
+ 12 +27(2+ 13'5- 10'988)2 

20 X23 
+ 12 + 40 (10'988-1)2 

= 1 '250+5140'412+ l 640'25 + 549'670+ 13'333+3990'406 

= 11335'32 cm4 

f xx 11335'32 , , 
Z1 = Yi = 10.988 = 103161 cma 

Z = ~ = 11335·32 = 596'22 s 
Y2 19'012 cm · 

Now the stress due to bending in any layer is proportional to its distance from the 
neutral axis. As the allowable stress in tension is much less than the allowable stress in 
compression and y1 < y2, the bottom flange should come under tension . 

Taking f ,=0·25 tonne-cm2 

Bending moment /1 . Z1 

= 0'25 X 1031 '61 = 257'90 to nne/cm 
= 2'579 tonne-metres 
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where 

Taking 

Bending moment 

Jc= 1 tonne-cm2 

= f,XZ2 

= I X 596·22= 596"22 tonne-cm 
= 5"9622 tonne-metres 

Therefore allowable moment, 

Rate of loading, 

11'/2 
= 2"579 tonne-metre = -

8
-

w= rate of loading 
/= length of beam, 6 m 

IV X .i.§._ = 2"579 
8 

2·579 . 
w= ----;fs = 0 5731 tonne/metre 

= 573' I kg/ metre run . 
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Exercise s·12.1. The cross section of a cast iron beam is an J section with top flange 
15 cm x 5 cm, web 22 cm x 4 cm and bottom flange 25 cm X 8 cm. The load ing being in the 
plane of the web. The upper portion o f the sectio n is in compression. If the a llowable 
maximum stresses are 60 N/mm2 in tension and 150 N/ mm 2 in compression, find the moment 
of resistance ot the section. · [Ans. l xx= 52559 cm4, 233'25 kNm] 

8'13. MODULUS OF RUPTURE 

Flexure formula Mflxx= f /y= E/R is derived on the assumption that stress developed 
in beam due to bending does not exceed the proportional limit stress. It is also proved that 
stress strain in any layer is proportional to its distance from the neutral layer. But if the 
stress developed in any layer exceeds t"ke propor ti onal li mit stress as obtained from the stress 
str:i in diagram of the material Fig. 8"26 (a), though the strain in any layer remains pro
protional to its distance from the neutral layer but the stress in the layer does not remain 

Stress s t ra in diagram 

(a) 

a 
Strain distribution 

( b) 

Fig. 8·26 

d 
Stress 

distr ibution 
( C) 

proportional to its distance from the neutral layer. Consider a beam of rectangular section 
subjected to a bending moment M. The stress-strain diagram is the same in tension and in 
compression as shown. From the stress-strain diagram, e1 is the strain at t he proportional 
limit upto which stress is proportional to strain, we get linear stress distribution diagra m as 
:-;hown in dia~ram (c). At the strain f:? in the extreme la~er, stress ish, stress distributioQ 
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diagram is linear upto certam distance froin neutral layer but beyond which the di~_gram is 
non linear and stress is / 2. Similarly / 3 is the stress in the extreme fibres corresponding to 
strain c 3 as shown. If the bending m0ment applied is such that stress in the extreme layer 
reaches the ultimate stress, the beam is su13posed to haye failed. 

If Mu11= ultimate bending moment determined experimentally. 

Modulus of rupturc= ultimate stress in extreme fibres calculated on the basis of flexural 
formula. 

where 

This modulus of rupture is higher than the true stress. 

Modulus of rupture 
6 Murt 

bd2 

b= breadth of rectangular sect ion 

d=depth of rectangular section. 

The theoretical value of modulus of rupture is given by cb while the true ultimate stress 
is/3 as shown in Fig. 8 '26 (c). 

' 4 :J 
' ·ExarnHle 8"13-1. I 5 cm x 15 cm pine beam was supported at the ends on a 4·5 m 

span and load~d at the third points. The beam fa iled when a o·s tonne load was placed at 
1 ·5 pi fr.om ~ach end . Find the mopulus of rupture. 

Solution, The beam is of square section 15 cm side 

Section modul us, 
aa 153 

Z-=-= 6 =6- cma. 

The beam is of 4·5 m length and 
carries loadc; of o·8 tonne each at a distance 
of 1 ·s m from each end. 

Reactions RA= R n=0'8 tonne 

.. 
0 ·8T 

A B 

0·8T 

C D 

(be9ause o f symmi:try) 
B.M. at Band C= .0'8 X 1 ·5 

R.A=O·BT l5m 1-5m l5m R0=0·8T 

= 1 ·2 tonne-metres 
The B.M. diagram is as sho~n in the 

Fig. 8'27. 
Mult . . = 1 ·2 tonne-metre 

=f,,. X section modulus 

153 

1'2 x lOOO x 100 kg- cm=/'" x 6 

modulus of rupture, 
i'2 X 105 X 6 

/m = J 53 = 213'3 kg/cm2• 

t 
1·2Tm 

Fig. 8·+7 

. E:x:er,c.ise 8 13-1. A 10 cm x I_ 5 cm wooden beam ~ m long was tested to failure by 
applying a concentrated load at the middle of the span . F md the JTi odulus of rupture if tp.e 
!Tlaximu!TI !oad was 1520 k~. f.~ns. ~04 kg/cm~~ 
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8'14. BUILT UP SECTIONS 

A number of compound sections can be built up using standard· rolled sections 
such/, T, (channel) and Angle (L) sections and flat plates making beams and columns 
of required strength and stiffness. In the previous articles we have seen different sections with 
sharp edges and corners. To reduce the effect of stress concentration at the corners and to 
eliminate sharp outer edges, the steel sections of different shapes are rolled out having fillet 
radius at the corners and rounded edges. The di~ensions of standard rolled steel sections are 
given in Indian standards. The properties of standard sections such as l xx, l v11 and distance of 
centroid from edges are also provided iu these tables. A few examples are given below. 

I 

An I section ISLB I 50, a channel section ISLC 75, an equal angle section TSA 6060 and 
an unequal section ISA 5030 are shown in the Fig 8'28. 

1v y 

.Jx t 
T T 

G T-tll 75 X X f GX -+ _l 
X 

150 X G 
X 

l I ISLB 150 ~ 46 f- !-- 6YO --l f . 
ISLC 75 ISA 6060 

~ aqv~ 

(b} ( C ) 

i (a) T v 
50 _L 
~ X y 

i\ ; : ...j-/o ~ - .. .,., . 

ISA 5030 
(d) 

. . , 
Fig. 8·28 \' 

I section ISLB 150 has weight 14'2 kg/m, Area 18 '08 cm2, Depth 150 mm, width 
80 mm, Flange thickness 6'8 mm, web thickness 4'8 mm, moment of inertia l xx=688'2 cm4 and 
IY11 = 55'2 cm4 • Channel section ISLC 75 has weight 5'7 kg/metre. Area= 7'26 cm2, Depth 
75 mm, flange width 40 mm, flange thickness 6'0 mm, web thickness 3·7 mm, fxx=66' I cm4, 
!vu= 11 ·5 cm", distance of C.G of the section from outer edge of web, x = 1.35 cm. ISA 6060 has 
weight 4·5 kg/m, Area= S'75 cm2, l xx= l vt = 19'2 cm4, x=y= 1'65 cm for a thickness of 5 mm. 
The thickness of the section can also be 6, 8 and l O mm and correspondingly the properties 
change ISA 5030 has size 50 X 30 mm, weight 1 '8 kg/m, Area 2'34 cm 2, l xx= 5'9 cm4, In = l '6 
cm4, x = 0'65 and y = I '63 for thickness of 3 mm. For other thicknesses of 4, 5 and 6 mm, the 
properties of the section change correspondingly. 

Combining the standard sections with plates built up sections are made. A few 
examples are given in the Fig. 8'29. 

The built up sections are made with the help of riveting or welding of plates with the 
standard sections. The CG of a built up section is found out and then moments of inertia l ~x 
and I{r are determined taking the help of p~rflllel ax is theorcn~. · 
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, 

)( 

" 

X 

y 

I Section and 
p~ates 

y 

x~-B,5:2:z~~~~~x 

I - Se-ct ion with 
two I -Sections. 

I '. 

X X 

, I 

Two I Sec tions and 
plates 

y 

STJIBNOO'S OF MNJ;BRJAl!.S 

X, 

Two channel s 11. ctions 
and plate~ 

4 Angle sec;tions 
with plate.~ . 

Fig. 8·29 

Example 8'14-1. A compound section is built up of two rolled steel beams JSJB 150 
standard section placed side by side with two plates 10 mm thick and 150 mm wide each riveted 
to top and bottom flanges. the rolled sections are placed symmetrically about the centre of 
the plates. Calculate the lxx a,nd / n for the built up section. For each 1SJB 150. 

A', Area = 9'01 cm2 Depth=l50 m:µ,, Flange width=50 mm, l xx'= 322'1 cm' and 
l>,'=9'2 cm'. 

T 
~o 

l_ 

I Iv 
--- . '"~ .. ·-~ ... 

'. I ~ mm I 
x-i-1° fr-j 

_j_ TlOmm 
15orrrn 

- ·==r. 
cJ7, 5 37. 5 
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. ' 
Fig. 8'30 'shows the ·built up section having 2 I-sections and two plates on top and 

bottom. Since the I-section or beam section are placed symmetrically about' the centre of the 
plates 150 mm x 10 mm, the CG of tlie built up Section wm 'lie at the centre G as shown. The 
X-X and Y-Y axis of the built up section. are shown, passing through G. 

Distance of CG of I section from Y-Y axis=37'5 mm . 
. (Sit'lce ·tfie I 'sections are symmetr'ically placed abo'ut the centre of the plates). 
Distance of CG of the plates from X-X axis=15+ 5= 80 mm. 

Using the parallel axis theorem 
15 X l 3 

l xx= 2frx'+ 2 x 12 + 2 x l5 X 1X82 

= 2 X 322'1 +2·5+ 1920= 2'566'7·c1114 

frrv= 2[y'y' + 2A' (3'75)2 + 2 X 1 X li;2 

= 2 x 9·2+ 2 x 9·01 x 3'752 + 562'5 
= 18·4+253 '40+'562'5 =·834'3 cm4• 

Note that I section is 'also called a beam section. 

Example 8'14-2. A box section is made by joini ng 4 equal angle sections ISA 75 75 
ana hvo ' toj> plates 200 mm X 10 min and two side plates J 80 ram X J'O rh m ~is-sho\.vn m the 
Fig. 8°3'1. Determii1e tlie 'moment of inertia l xx and /,,. Properties of equal -angle ·sections are 

A', Area = 7'27 cm2 

lxx' = l ,y'= 38'1 cm4 

x'= y'= 2'02 cm. 

ffh:e· box ·secfi0n ·made is shown in Fig. 8°31 . The equal angles are placed symmetrically 
about the centroid G of the whole of the section. 

Distance of G' of angle sect ion from 
X-X axis 

= 10- 1-2·02= 6'98 cm 

, . ,bistance of G' of angle section frcm 
YYaxis 

= 10- 1- 2·02= 6°98 cm 

. bista:ii.be of CG of top plates from 
'x1x ·a:~is 

= I00-5=95 mm= 9·5 cm 

1:. . . J 

Distance of CG of sides plates from 
YY''axis 

= 100-5= 95 mm = 9·5 cm. 

Using parallel axis theorem 

2·02cm 

,j_,., ~ -·- .:: .. , y. . 
2'-02cm · I T 

x ----\:I- _j_ ,. 
1
i00rnm 

. /G -- ; I. _:._.x 

\ 

,. 'bf"'"' 
·~1 ciorn m· \oornm~ 

flii:. 8·31 

2 X20 x 13 • 2 x I X 183 
l u = --12- - +2 X20 X l X9 52 -J- -

1
-
2

- + 4 x / x'x.' 

+4X A' x·!)'5l, 
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. . • ; ~? 

~. ! ~ ) . . -~' ~. 

= 3'333+ ~610+ 972+ 4 x 38·7+4x 1·21 x 9·52 

= 4585'333+ 154'8+ 2624'47 ···1 
= 7364'603 cm4 • "f • .,. 

• " e . ... :. 

1,,.-= 2 X\; 203 
+ 2 x ~~x is +2x l8 x 9'52+ 4I11,'+4A'x9·52 

= 1333'333+ 3+ 3249+ 4 x 38·7+4 x1·21 x 9·52 

= 7364·603 cm4
• 

We have obtained ln= I.,., because the section is symmetrical about X-X and YY-axis 
and forms a square type box section. 

Exercise 8'14-1. Two channel sections 1SJC 100 placed back to back at a distance 
30 mm are joined by two plates 120 mm x 15 mm at the bottom and top flanges. Determine 
the moment of inertia In and I,..,.- Properties of a channel section are, Area= 7'41 cm2, Depth 
100 mm, flange width= 45 mm, l x'x' = 123'8 cm4, ly'y' = 14'9 cm4, x'= l '40 (distance of C.G. 

from outer edge of web). Determine moment of inertia Ix» and In . 
[Ans. 1444'6 cm4, 586'43 cm"] 

,. .. 
Exercise 8'14-2. A beam section ISLB 250 is riveted to the beam sections ISMB 100. 

The smaller se.ctions· ate riveted by .coinciding the XX axis of ISLB 250 to the J:'Y axi$: ·of 
ISMB 100. Determine the moment of inertia I,,,, and, luv of the built up section. Properties 
of ISLB 250 are, web thickness= 6· J mm, Arca 35·53 mm2, depth 250 mm, width,· :1,25 mm, 
l x'x' = 3717'8 cm\ ly'y' = 193'4 cm4. Properties of ISMB 100 are, area=14'60 cm2, depth 

100 mm, width= 75 mm, l x'x' = 251'5 cm4 and l y'y' = 40'8 cm4
• 

,, ,.. _[Ans. · 3799-·4 cm4, ' ~530'17 cm'] 
. r~:5 

8'15. BEAMS OF UNIFORM STRENGTH ···;-: : ·t . .:r. 

Generally the beams and cantilevers which are commonly emJ)loyed are of :uniform 
section throughout their lengtfi. Limiting stresses are reached only at the s~ction subjected to 
the maximum bending moment. At all other sections of the beam, maximum· allowable stress 
is not . reached and the material is not put to its most economical use and as a resuff:''.'a 
considerable amount of the material is uuderstressed and is wast~d.:. To ~chieve the most 
economical use of the .material, beams and cantilevers of uniform strength throughout their 
length can be suitably designed, so that the maximum stress . deveJoped anywhere, . along the 
length . remains the same. Stress f at any section subjected to bending moment Mi:; equal M. J., .. "" .&., .. t..· . 

to 2 , w~ere Z is the section modulus. Therefore to achie:ve unifo1:?1 st~·ength it is necessary 

to have 1 cons~; nt throughout. Plate girders, ca~riage s~rings, t~pere_d ~ast_~, ~l~~~fic poles 

are some of the examples in which concept of uniform strength has been used to sonie extent~\\' 
,.r1 1,, ~ 

Let us consi4er a cantilever of length /, of rectangular section· ·and carrying a concen· 
trated load at the free en"d. M, Bending moment at any section= Wx (numerically) 

Z, section modulus 

or 

bd2 

= 6 
M 6Wx 
Z = kd2 ' 

• J 

. .. (1) 



In this case either b is varie~f an·d ~/ is· kept ·constant throughout or ·b is 'kept ·tionstant 
and d is varied along the length. 

(i) f~- 6b:: = 6::: ( ; ). 
To achieve uniform strength, b is uniformly increased from zero at one end to maximum 

. . 6Wx '6-Wl 
at the fixed end as shown m Fig. 8'32 where b,,= fd 2 and the breadth at the fixed end, B = fd 2 • 

Fig. 8·32 Fig. 8·33 

Secondly, the width of the cantilever section is constant say B throughout and the depth varies. 

6Wx J 6Wx . Then f = Bd2 or d.,= Bf - as shown in Fig. g·33 and at the fixed end, depth of the 

. r 6WI 
section, =~ Bf • 

Let us consider that the cantilever carries a uniformly distributed load w per unit 
• . . • 2 . 

length. The bending moment at any section= w;_ (numerically) . Say the depth of the rect~ 

\lngular section is kep(constant?as d and breadth v~ries for the_ uniform strength t.·· Then . ·. ;. , 

Fig. 8·34 

6wx2 6 J2 
breadth at any section b.,= fd2 and breadth, Bat the fixed ertd wiii be _;2 • Secondly, we 

consider breadth to be constant say Band depth variable i.e. d,,2= ~~"
1 

· or qepth at any 

( 6w · { 6w 
section, d"'= \J fB x and at the fixed end D='\J fB . I as shown in r ig. 8'34. 
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Breadth, B= 10 cm 
/, length of the cantilever= 200 cm 
Uniform strength, f = 1 ·2 tonne/cm2 

Rate of loading, w=2 tonnes/ metre run 
= 0'02 tonne/cm 

I 6 IV 
Depth at any section d:i:='\J. fB. x 

= f 6x002 x=- O·Jx \J 1·2 x 10 

d at t:h~ middle of the len~th = O'I x 100= 10 cm 

D.epth at tbQ fixed end = O·l x200= 20 cm. 

3,-83 

. J;:xa,;nple s·tS-2. A beam of uniform strengtl). and va,rying rectangular sc<;tion is 
simply supported over ~ span of 3 metres. It carries a u~i-(ormly d,i~tr ib~ted load <:>f H) k~ 
per metre run. The umform strength is 80 N/mm2• (a) Determine the depth at a distance of 
I m from one end if the breadth is the same throughout and equal to 15 cm. (b) Find out 
the ~readth at the centre of the span if the depth is constant throughout the length of the beam 
and 1s equal to 10 cm. 

Solution. 1=3 metres= 300 cm 
w=IO kN/m=IOO N/cm 
/=80 N/mm2= 8000 N/cm2 

(a) Breadth is constant, 

B= 15 cm 

d .. =J}; (lx-x2) 

x= lOO cm 

d =J3 x IOO X(300 X 100- 1002) 
" 8000 X 15 

= . f 3 X IOOX 10000><2= 4.08 \J: I 5 x 8000 cm 

(b) Depth is constant, d= IO cm 

Breadth at any section b~= };: (Jx - x2) 

x = l50 cm 
_ 3 X 100 ( _ 2 B-8000 x 102 x 300 x 150 150) 

= 8·4375 cm 

(i.e. at the centre) 

Exercise s·t?-1, A canii!ever 250 cm long carries a load of 20 kN at the free end. 
The c1;1.nfl1ever i~ of rectangu·lar section with constant breadth b= 5 cm but of variable depth. 
So as to hav·e a cantilever of uniform strength. Determine the depth at intervals of 50 cm 
ffOJll, the free end if the uniform strength is ·1·00 N/mm2. 

[Ans. 0, 10'95, 15'49, 18'97, 21'90! 24'495 cmJ 
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Exercise 8'15-2. A beam of span 4 metres carries a concentrated load 4 tQnnes· at its centre 
and its ends are simply supported. The beam is of rectangular section with uniform breadth 
10 cm throughout. If the beam has uniform strength throughout and is equal J<;> 1 ·2 tonnes/ 
cm 2, determine the depth of the section at quarter spans from the ends and at the mid ·point. 

[Ans. lO cm, 14'14 cm] 

~·t6. BIMETALLIC STRIP 

When two metal strips having different coefficients of thermal expansion are brazed 
·,together, a change in temperature will cause the assembly to bend. Fig. g·37 shows a compo
:site bar of rectangular strips of metal 1 and metal 2 permanently joined together. Say 
"the coefficient of linear expansion of metal 1 is cx 1 and that of metal 2 is c,:2 and 11.1 <C1.2, 

say the Young's modulus of metal 1 is E1 and that of metal 2 is E 2• When this composite 
bar is heated through T 0 it will bend because C1. 2>cx1 and both the strips will deform together 
introducing compressive stress in metal 2 and tensile stress in metal 1, because°'~ < cx2, metal 
1 will exert compressive force on metal 2 along the interface reducing its free expansion 

·· of C1. 2lT and metal 2 will exert tensile for.ce on metal 1 and further increas ing its free . expansion 
: u.iLT. This we have already discussed in chapter 2. · 

.. .. ,·-. 
·1 .. ' . . ~. .• . . :., .. ' 

• ' • .- I~ 

;,. ,. 

1, Fig. 8·37 

For equilibrium, compre_ssive (orce ori sj.rip of metal 2 

= tensile force on strip of metal 1. 

Say b is the breadth and t is the_thickness of each strip. 

f1bt=J~ bt . , 
where / 2 = compressive stress in strip 2 

( :·~ · ·· ., : ... /
1 
= tensile stress in strip L 

The bending moment exerted on the bar, 

M = Pt 

M= M1 + M2 

. .. ( 1) 

~ • I I • = Bending moment resisted by . strip · 1 + bending ·mo!11ent . re
. sisted by stnp 2 ·, 

br3 bt3 bt3 · ." 

Pt= l2 RXE1+ Ii R E2 = l2 iE1+ .E2_) 
., \...._, -. 

. ... n) 

, 
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Let us assume that the composite bar has bent into the shape of an are of a circle. Th~ 
radius of curvature upto the interface is R' and Radiu~ of curvature R is the same for both the 
strips because~ is very large in comparison to t. 

or 

or 

Resultant strain in strip 2, 

Resultant strain in strip 1, 

t 
E1 = - 2R 

Moreover resultant strain in strip 2, 
p 

= - - -- +a2T 
bt E2 

and resultant strain in strip I, 
p 

= + bt E
1 

+cxiT 

Difference of strains 
t p p 

"2- "1 = - = - --.r\--a2T--- -a1T 
R bt E2 btE1 

-
1
- = (a2-cx1)7'-~(-1- +-1

-) 
R bt E1 E2 

(az- 0:1) T = _t +..!._ ( J_ + -1 ) 
R bt E1 E2 

Substituting the value of P from equation I I) 

(from flexure formula) 

... (2) 

t bt2 l ( 1 I ) 
(cx2- a1) T = If + 12 R (E1 + E2)bt Ei + E2 

= _t _ +_t _ (E1 + E2)2 

R 12 R E1E2 

=.!__[ I+ E1
2
+E2

2
+2E1E2 J 

R 12 E1E~ 

t 
= 12 R E1E2 (E12+ E22 + 14 E1E2) 

Radius of curvature, R ... (3) 

Example 8'16-1. A bimetallic strip is made of brass and steel strips of width 6 mm 
and thickness 1 ·2 mm each. The composite strip is initially straight. Find the radius of bend if 
the temperature of the composite strip is raised by 80°C. 

<XB = 19 X l0-6/°C, as= l1 X l0 "8/°C, 
EB= 0'9 X 105 N/mm2, Es= 2 X 105 N/mms 

Solution. In this problem as~aB~ so the e~uation for the r~dius of 9urva~ure can be 
modified as ., ...... , 



j I , • ' j J 

,, 11 : i d I I 

J. I. j j ~\. :._,,, I J •d (1 11 .. ! 
(faking E1=Es and E,=es) 

I l • 1 r 1 :t ·, i 1; :• , I f r, , · f 

If we take 

t=1·2 mm 
T=80°C 

Es =m= 2-= 2·22 
Eo 0·9 

( m+-
1 

)+14 , 
R- m X .!_ 

- 12(ocB - aS) T , !" · 

c2·22+0·4sJ+14 1·2 
12(19 - 11) X 10-li X 80 
16'67 l '2 X 106 =

2604 
.
7 96 x 80 ·· mm 

=2'60 m. 

, 1 • I ii 1/ , .I\[ 

'! 

Exercise s·16-1. A bimetallic strip is m,ade fr c,m copper and steel strips of width 
50 mm and thickness 15 mrri each. , The composite. strip i{l initially straight. Find the radius 
of the bend if the temperature of the composite strip is r a'.ised by I00°C. 

Given : (/.C = 18 X 10- 0rt Ee= 1 X 105 N/mm2 
11s= l l X !0-6/°C Es= 2 X [05 N/mm2 

[Ans. 29°464 metre] 

8:17. COMPOSITE BEAMS 
,. 

In this chapter uptil now, we have studied beams of vanous sections 
1

but of single 
material c;ubjected to bending moment. A beam h~ving two or more than two materials 
rigidly fixed together is called a comp-osite beam. A beam of two materials is most common, 
such as wooden beam reiriforc~d by metal strips ai1d concrete beams reinforced with steel rods. 
We will discuss the three cases as below-

1. Fig. g·3g shows a beam of rec
tangular section B X D of material l strengthen
ed by two strips of section t x D each of 
material 2. 

Say the skin stress in ~ 'aterial l =i1 

Skin stress in material 2= / 2 

Modular ratio = !2 = m 
1 . , Fig. 8·38·- , 

;, I • • 11 11 I ()t~·:"'J.,,~ • I .fl • 1 

,,. 

Mopient , of Resistance= Resisting moment offered by bea,m of ,material 
moment offered by strips of material 2.11 

M= M 1+M2 

it D2 ) 

1 +resisting 

~/ 1. ! BD2+2 ( /2. 
,, , ) 

= 1 . BD2+{t. 2t D~ •.. (!) 
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Since the beam and strips arc perfectly joi1~ed together, the deformatic.m . or the strain 
in the layers of both the materials at a particular distance from the Neutral axis ts the same. 

or !1 !2 
7;= E2 

or . .. (2) 

Substituting in equation (1) 

M = / 1 !D~ + m/1 4t D2= 1 D2[B+ 2mt] . .. (3) 

2. Fig. 8'39 show a plate of width t an~ depth . d of material. 2 sandwiched be~ween 
two beams of rectangular section B x D of matenal 1. fh0 neutral axis passes symmetrically 
through the section. 

and 

Say the skin i;tress developed in beam of materia l l =/ 1 

E2 modular ratio, m= -
E1 

Stress in material I at a distance of 
d/2 from neutral axis 

d/2 d 
=f1X D/2 -f1 D .. . (1) 

Skin stress developed in material 2, 

d 
f2=f1 m -D- . .. (2) 

Moment of resistance, M = M1 + M
2 

Fig. 8·39 

= Res)sting moment offered by two beams of rectangular 
sect1on + resisting moment offered by the plate in between 
two beams 

. .. (3) 

Fig. 8"40 (a) shows a rectan.gular beam of section B x D of material 1 strengthened by 

two plates at the top and bottom, of materia l 2. Say the modular ratio E2 = m 
E1 . 

In this case_ equivalent sections either of material I or of materia l 2 can be considered. 

. P ig. 8"40 (b) shows a 1~ equivalent sectio.n of material I, the width of the plates is 
mcreased to mB. Neutyal axis passes symmetncally thr9ugh the equivale~ti1-sec,ion . . 
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Mater ial 

tj_ 
1 Xrt•OI D D .-

D 1 

_t - XN X 
A -

t 0 D 
T~s-1 µ:~ sJ'~ 

Co) ( b) m Cc) 

Fig. 8·40 

Say skin stress in material 1 at a distance of 

~ from the neutral axis = / 1 

Theo skin stress at a distance of ( t + ~ ) from neutral axis 

Moment of Inertia, 

/ 1 (D+2t) 
D 

mB(2t+ D)3 BD2 
IN,1 or IH= 12 - t"2 

Section modulus 

Moment of resistance 

Z = f.,. 2 lam 
t+ E._ (2t+ D) 

2 

=fl (D+ 2t) _ 2 l xx -- I' X /.,., 
D X (D+2t) - n D/ L. 

... (1) . 

... (2) 

Fig. 8'40 (c) shows the equivalent section for material 2. The width of the beam, B 
of material 1 is reduced to B/m and the width of the plates remains unchanged. Neutral axis 
passes symmetrically through the equivalent I section. 

Moment of inertia, I = B(D+2t)
3 _!!.. ( D

3 
) 

H 12 tn 12 

Say the skin.stress developed at a distance of t+ -f from neutral axis, 

=/2 

Section modulus, 

Moment of resistance, M=/2. Z 

... (1) 

... (2) 
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Example 8"17-1. A wooden beam 
20 x 30 cm is strengthened by two steel plates 
Ix 25 cm each as shown in Fig. 8"41. Deter
mine the allowable bending moment if the 
allowable stress in steel is 1500 kg/cm2 and in 
wood is 80 kg/cm2• Given 

Sreel 

30cm Estee/= 2 X 106 kg/cm2 

Ewood =8 X 104 kg/cm~ 
~lf..---2 0 - ...J1f-

l Cm 

Solution. Fig. 8·41 

Modular ratio, 

The section is symmetrical, the neutral axis passes through the centre as shown. 
Say the skin stress in wood, 

/.,,= 80 kg/cm 2 (at a distance of 15 cm from NA) 

Then skin stress in steel at a distance of 12 · 5 cm from NA, 

12·5 
/,=80xmx-g-

= 80X25 x 
1f~5 

= 1666"66 kg/cmt 

But allowable stress in steel, 
/, = 1500 kg/cm2 

Then skin stress developed in wood (corresponding to allowable stress in steel), 

J. D 1500 15 
f,,, = ~ X c1 =25X 12·5° 

= 72 kg/cm2 

So allowable bending moment, 
M = M, + Mw 

I l =f . . (> X 2 (1 X 252)+/w. 6 (20 X 302) 

1500 1 
=-

6
-x2x25~+72x 6 x 2ox302 

= 312500+ 216000 kg-cm = 528500 kg-cm 

= 5·285 tonne-metre. 

Example s·t7-2. Determine the allowable bending moment about horizontal neutral 
axis for the composite beam of wood and steel shown in the Fig. 8"42. The allowable stress 
in wood = 8 N/mm2 and allowable stress in steel= !50 N/mm2. 

Estee1= 2IO X 103 N/mm2 

Ewood = lO X 103 N/mm1( 
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Solution. 

Modulus ratio, = ;; = 21 

y 

5c m x lcrn. \ . 
,.-...Lt.4!'-"-- _j_ t Cm 

the equivalent steel section is shown in Fig. 
8'43 (a) thickness of the web 

:T .. _, 
20 =n crn 

20 cm 

CG will lie along YY axis due to 
symmetry. 

10cm ,1 l 
cm'-.._4---"'- _ If rem 

!,.-- ,5 -
Let us dete11mio,e . the position of CG 

along Y-Y axis. 
y "' 

Fig . 8·42 

J'i= lO x t x o·s + 2o x 20 x (lO+ l)+ sx1xc21+o·s) _ 
21 

10+2o x 
20 

+s 
21 

_ s + 209·s2+ 107·5_ = 9.46 - 34·048 cm 

Distance, J2 = 22-9"46 = 12·54 cm 

Momentofinertia, lu= 
10;,ia + 10x(9"46-0'5)2 

+ ;~ X ~~ -j- ;~ X 20(1,1-9.'46)2 

+ S X } B +5 (12'54-0'5)2 

12 

= 0'833+ 802"816+634"920+ 45' 173-1- 0'416 + 724'808 

= 220_8'966 cm4= 2208"966 x 104 mm4. 

-j 5c m )-- j__ 
t 1cm 

if-cm j '2 T 
f--105cm---j 

0 0 

J 20cm I T X X 

J_ • I l , cm CJ ,......_ __ 2~0 c_rn_-_,::Jt:::l 

~10cm-J T J.. 210cm ---i>o-J 
I • ,,, I 

Eq1:.i1v'ci!ent' •s t ee l 
se ction · IJ 

( 0 ) 

Equi, a lent wooden 
secti o n 
( b) 

Fig,; 8\43 

!· 
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Since Y2 > Yi, maximum stress will occur at the upper edge. 

Allowable stress in ste.el, f = 150 N/mm2 

Section· modulus, 

Bending moment, 

Z = I,,,. -
2 Y2 -

M=f. Z2 

2208 '966x 104 = 17'61 x l01 mm3 
12S-4 

= 150x 17'61 x 104 N-mm 

=2641'5X 104 N-mm=26'41 kNm 

3"91 

:, 

The equivalent wooden section is shown in Fig. s·43 (b). If we compare the two 
equivalent sections, we find that both are unsymmetrical I sections and in tlie case of wooden 
section, all the widths of flanges and web are 21 times the width of flanges and web in the 
equiva lent steel section. 

So 

Section nioahi~s. 

, Allowable stress 

Bending moment, 

Yi= 9'46 cm, Y2= 12·54 cm 
l x:v=2 1 (2208'966) cm4 = 21 X 2208·966 x 104 mm' 

z- 21 X 2208'966 X l04 = 2l X l 7.61 X J04 mms 
2 - 12S-4 

=8 N/mm2 

M=f Z 2 = 8 X 21 X 17'61 X 104 Nmm 

= 2958.48 x 104 Nmm= 29'58 kNm 

So the allowable bending moment about the neutral axis 
=26.41 kNm. 

I! 

Exercise s·t7-1. A wooden beam 15 cm X 20 cm is strengthened by two steel plates 
of thickness 1 cm and depth 20 cm on both of its sides. Determine the allowable bending 
moment around the horizontal neutral axis if allowable stress in wood= IO N/ mm2 and allow
able stress in steel= 150 N/mm2

• 

Given Esteez= 200 X 103 N/mm2 

Ewood = 10 X 103 N/mm2
• [Ans. M=55 kNm] 

Exercise 8'17-2. A wooden beam 20 X 30 cm is strengthened by two steel plates of thick
ness 12 cm and width 20 cm on its top and bottom. Determine the skin stresses developed in 
steel and wood if a bending moment of 4 tonne-metres is applied to the beam of this section. 

Given 

Estee/ = I 5 Ewood = 2 100 tonnes/cm 2. 

[Ans. fw=42.40 kg/cm2, f. = 712.476 kg/cm2) 

s·ts. REINFORCED CEMENT CONCRETE (R.C.C.) 

We have learnt that a portion of the beam comes under tension when the beam is 
subjected to a bending moment. Concrete is. a common building material and when a column 
or a beam of concrete is subjected t o a bendmg moment, a portion of the concrete comes in 
tension . Concrete has a very useful strength in compression but in tension it is very weak. 
Minute cracks are developed in concrete when subjected to even a small tensile stress. There
fore the tension side of a concrete beam is reinforced with steel bars. Concrete and steel 
make a very good composite because cement concrete contracts during setting and firmly grips 
the steel reinforcement. Moreover coefficient of thermal expansion of steel and most common 
µ1 ix of c;oncrete f.e. 1 : 4 : 4 i~ more or les~ the same. R~tio 1 : i : 4 stand§ for l part of 
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cement, 2 parts of sand and 4 parts. of aggregate by volume. Therefore, the stresses developed 
in R.C.C. due to temperature changes are negligible. 

In order to develop a theory for stresses developed in R.C.C. beam section, following 
assumptions are taken : . 

1. Concrete is effective only in compression and stress in concrete on the t~~sion side 
of the beam is zero. 

2. Sections which are plane before bending remain plane after bending. ' 
3. Strain in a layer is proportional to its distance from the neutral axis. 
4. Stress is proportional to strain in concrete. 
5. Modulus of elasticity of concrete bears a constant ratio with the modulus of elasti-

city of steel. I 
,! 

The last two assumptions are not true since concrete does not obey Hooke's law , 
but it is possible to take a mean value of Young's modulus of concrete over the r ange of 
stress used. The allowable stresses for concrete and the value of the Young's modulus depend 
upon the type and mix of the concrete used. 

Rectl!lngular Section-R.C.C. Beam. In the Fig. 8'44, say Bis breadth of the section 
and D is the depth of the reinforcement from the compression face. 

Let H be the distance of neutral axis from the compression face and the maximum 
stresses developed in steel and concrete are f s (tensile) andf. (compressive) respectively. 

or 

or 

f 
p 

,·,~ D 
p 

, ... 
( b) ( C) 

Fig. 8·44 

Now the strain in any layer is proportional to its distance from the neutral axis. 

Therefore, , 0 ex H 
, , ex (D-H) 

€c H 
€1 

Jc E, - x - = 
E, f, 

D-H 

H 
D-H 

!, 
r; 

E, (D-H) - - x ---
E~ H 

where E, = Young's modulus of steel 
P~ = Yount& modulus _of co~cryt«? 
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So 

= m 
(D-H) 

H 

]!_ = m ( D-H) 
Jc H 

h E. d 1 . w ere m = E. , mo u ar ratio 

..• (1) 

If the beam is under the action of the pure bending, then the resultant force pin steel 
is the same as the resultant force P in concrete, 

i.e. P = J. Ac = f, A. 

or f (BH) = f,. A, 

where A, = area of cross section of steel reinforcement 

The stress in concrete linearly varies along the depth H. Therefore the mean stress in 

concrete is taken as {
0 

, where f. is the maximum stress in concrete. 

~ (BH) = f , . A , ... (2) 

Theo the resultant compressive force P in concrete and tensile force P in steel form a 
couple resisting the applied bending moment. The arm of the couple as shown in Fig. 8'44(c) 

is (D- ~). 

M = P ( D-!!_) = /c BH (D-.!!._) 
\ 3 2 3 

= f,. A, ( D- ~) ... (3) 

If the maximum all_owable stresses in steel and ~oncret~ are. given, then knowing the 
ratio of J ff• we can determme the value of H fo! the given .dimensions of a beam, with the 
help of equation (1). After that area of ste~l remforcement 1s found by using the equation (2). 
Finally we can determine the moment of resistance from equat10n (3). Thus is known as the 
"ECONOMIC SECTION" in which the allowable values of stresses in steel and concrete have 
been realised. 

In case the dimensions of the beam i.e. Band D, area of steel reinforcei:nent A, are 
given, then H can be determined from equations (1) and (2) as follows : 

or 

or 
or 

J. (D- H) Tc = m H- ... (1) 

J. - BH 
fc - 2A, 

m(D- H) BH 
= 2A, H 

2A, (mD - mH) = BH2 

BH2+2 m A,H - 2 m A,D = 0 

... (2) 

... (3) 

.. . (4) 

The value of H can be determined from equation (4) and the actual stresses in steel anq 
~oµcrete are then cleteriµined froµi the ma~nitude of a~)~lied mo~ent !ef! · ·. · 
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Example 8 18-1: A reinforced concrete b~'am is 40 cm wide and 40 cm deep. The 
maximum allowable stresses in steel and concrete are ·1200 kg/cm2 and 75 kg/cm2 respectively 
What area of steel reinforcement is required if both the stresses are developed and steel rein'
fdrcement is 6 cm above the tension face. Modular ratio = 16. 

What uniformly distributed load can be carried over a spah of 5 metres. The weight 
dens ty of ~Qncrete is 2360 kg/m3• Neglect the weight of steel reinforcement. 

Solution. 
Allowable stress in steel, 

f . = 1200 k~/cm2 
Allowable stress in concrete, 

1 .. /• = 75 kg/cm2 
Width, B = 20 cm 
Depth of the beam = 40 cm 
Cover for steel = 6cm 
Distance of steel reinforcement from the compression face, 

D = 40- 6= 34,cm 

Both the allowable stresses are to be realised, i.e. we are finding out the economic 
section of the beam. 

From equation (I) 

Modular ratio, 

So 

or 

From equation (2) 

j. 
fc 

= 
rn(D - H) 

H 

m = 16 

_120Q_ = 
16 

(D - H) 
15 H 

16 = 16 (D- H) 
H 

2H = D 
34 

H = 2 = 17cm. 

f, BH 
j. = 2A, 

Area of steel reinforcement, 

Moment of resistance, 

20 X 17 
A. = 2x 

16 
= 10'625 cm2 

M = f. BH (D- H ) 
2 3 . 

- ~
5 x2ox 17 ( 34- ~

7
) 

85 = 750X 17 x -
3
- = 36 1250 kg-cm 

= 3'6125 tonne-metre. 

Say the u~ifopnily-' clistrib\,lted load per metry P..lll = IV tonnes 
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Maximum bending moment 

w/2 = W X 52 = 3'6125 
8 8 

w = 1' 156 tonnes/metre 

Wei~ht of th,~ beam per metre ru_u 
= 0·2xo·4 x I x236.0 kg 
= 188'8 kg 

= 0' 1888 tonne. 

Uniformly distributed load carried by the beam 
- 1'156-0'1888 

= 0'9672 tonne/metre run 

395 . (\ 

Exercise 8'18-1. A reinforced concrete beam is of rectangular section 250-mm wide 
and 550 mm deep. Steel reinforcement of 1200 mm2 is placed 50 mm above the tension face. 
The maximum stress in eoncrete is 5 N/mm2

• The nwd,ular ratio is-15. Calculate ,the stress 
in steel and moment of resistance. [Ans. 107' 18 N/mro~. 5,5·5 kNm] 

' - ,• . . · .. 
Problem s·1. A wooden joist of span 8 metres is to carry a brick . wall 23 cm thick 

and 3·5 m high. The depth of the joist is~ tim,es its µreadth and the maximum permissible 
stress is limited to 80 kg/cm2• Find the dimensions of the joist. 

Density of brick wall = 1800 kg/ma 

Solution. Uniformly distributed load per metre length on the wooden joist, 

w = l X 0'23,X'3'5•X 1800 kg 
= 1449 kg. 

Span length, l = 8 metre 

Maximum bending moment 

144? X8 X 8 
8 = 11592 kg-m 

= 115g200 kg-cm 

Allowable stress, f = 80 kg/cm2 

Required section modulus, 

Z 
M.,a., _ 

· = ~ 

= 14490 cm3 

1-159200 
' 80 ' 

= ~ x BD2 but D= 3 B 
() 

= } x B x 9 B2= 1'5 Ba 

1 ·5 BS = 14490 

lJB ==-~ = 96.60 cm3 
l'::, 
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Dimensions of the j oist, 
B = 21 ·3 cm 
D = 63'9 cm. 

. . 
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Problem 8'2. A floor has to carry a load of 1000 kg per sq. metre (including its 
own weight). If the span of each joist is 5 metres, calculate · the spacing centre to centre 
bet\\oeen the joists. The breadth of the joist is 10 cm and depth is 30 cm and the permissible 
stress due to bending is 8 N/rnm2. 

Solution. 

/, span of each joist = 5 m 

Say the spacing between the joist 
= xm 

Floor area per joist = 5x m2 

tloor ~-r 
• I . 9 J . 30 Cm J.-,_J<o,st t j_ 

-I o/-jo i s t 
cm · 

w, uniformly distributed load per metre 
length of joist 

Fig. 8·45 

or 

= X X 1 X 1000= 1000 X kg/m 

= x tonne/metre run 

M1110:a Maximum bending moment 

Section modulus, 

Permissible stress, 

w/2 xX 5 X 5 25 X 
~ tonne-metres = -8-= , 8 

BD2 ; 10 X 30 X 30 _ 
1500 3 Z=-

6
- = 6 - cm 

/ = 8 N/mm2= 800 N /cm2 = 81 '63 kg/cm2 

Mma:a=JZ 

= 81 '63 X 1500 

25 X 
= 122445 kg cm= -

8
- tonne-metres 

25 X 1011 
X k -

8 
g-cm 

x= 
122445 x8 

25 X 105 0'3918 m = 39' 18 cm. 

Problem s·3. A beam subjected to bending moment M is of T-section as shown 
in Fig. 8 '46. Determine the thickness of the flange and the web if the flange is 2 times as 
thick as web and the maximum tensile stress is 2 times the maximum compressive stress. 

Solution. The stress in a layer due to bending is proportional to its distance from 
the neutral layer. With the type of bending moment shown, the flange will be in compression 
and lower portion of web will be in tension. Extreme fibres at top and bottom will have 
maximum compressive and maximum tensile stresses. Say the 11eutral layer lies at a distance of 
of y1 from the bottom edge. As given in the problem. 

y t= 2yo 
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or 

or 

But 
Y1=2Y2 

Y1+Y2=20 cm 
2Y2+y2= 20 

y2= 6"67 cm 
y1 = 13"33cm 

FLANGE 

M r- 10- _L 

'11 2t 

M 

-1r~ i4-1t~ 
Fig. 8·46 

Now flange area, a1 = 10 x 2t = 20t 
CG of a1 from bottom edge, 

= 20-t 

Web area, a2= (20-2t) t= 2t (LO-t) 

CG of a2 from the bottom edge 
_ (20-2t) - (10 ) 
- 2 - -t 

Now 
_ 20t (20- t) + 2t (10- t)(LO- t) 

Yi - 20t+ 2t (10-t) 

13"33- 10 (20-t)+ (l0-t)2 
- 10+ (10-t) 

13"33 (20-t) = 200-10t+ 100-201+ 12 

266"6-13"33t=300-30t+ t2 

Thickness of web 
Thickness of flange 

fZ- \ 6"61t+33°4=0 

16"67- 'V (16"67)2-4x 33·4 
t= 2 

16"67- 12"012 2·3 = 
2 

= 3 cm 

= 2·33 cm 
= 4·66 cm. 

397 

, / 
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Problem 8'4. A T-beam of depth 12 
cm is used as a beam with simply supported 
ends, so that the flange comes under tension. 
The material of the beam can be subjected to 
900 kg/cm2 in compression and 300 kg/cmi 
in tension. It is desired to achieve a balanced 
design so that the largest possible bending 
stresses are reached simultaneously. Deter
mine the width of the flange. Find how much 
concentrated load can be applied to the beam 
at its centre if the span length is 4 metre. 

Solution. Stress due to bending in a 
layer is proportional to its distance from the 
neutral layer 

ji = 300 kg/cm2 in flange a Yi 
fr. = 900 kg/cm2 in web a y2 

3cm 

Fig . 8·47 

where y1 and y 2 a_re the distances of extreme layers from neutral layer 
i.e. 300 ex y1, 

900 ex y 2 
l'. 

or 

But Y1+ Y2= 12 cm 

So Yy=9 cm, .v, = 3 cm 

This means that neutral axis is passing at the intersection of web and flange. 
Area of web = 27 cm2 · 

Area of flange =3w cmi 

3 wx 1·5+ 27 x (3+4-5) 
Yi 3 w+27 

4·5 w+202'5= 9w+ 81, 

Area of flange, 

Area of web, 

w= 27 cm 

a1= 27 X3= 81 cm2 

ai= 9 X 3= 27 cm2 

4'5 w+81 + 121 ·5 
3 w+ 27 = 3 

Moment of inertia, 
27x 33 3x9a 

fx x = 12 - + 81 X l'52 + 12+ 21 x 4·52 

Section modulus, 

= 60·75+ 182'25 + 182'25+ 546'75= 972 cm' 
1%% 972 '· . ·, 

Z1= - = - -=324 cm3 

Y1 3 

Section modulus, Z lu 972 
2= - = --= 108 cm3 

Y2 2 

Permissible bending moment, 
M =fi. Z1 = f•. Z2 

= 324 >< 300= 97200 kg-cm 
Span length, L = 4 m= 400,cm 
At the centre of the beam, 

where W is the central load, 

! 
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or central load, 

W x400 
4 

= 97200 

W= 272 kg 

100 W kg-cm 

,,, 
,•t,. 
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Problem s·s. A cantilever has a free length o f 3 metres. It is nf T section 
with the flange 100 mm by 20 mm, web 200 mm by JO mm; the fl ange being in tension. 
What load per metre run can be applied if the maximum tensile stress is 40 N/mm 2 ? What 
is the maximum compressive stress? 

Solution. The T-section is sym
metrical about the vertical ax is Y-Y so the 
C.G. of the section will lie on this ax is To 
determine the position of X-X axis, the 
mol)'lents of ar.eas can be taken about the top 
edge of the flange 

Area, 

Area, 

ai'= 100 x 20 mm 2 

J'i' = iO mm 
a2'=200 x 10 
y2'=20+ 100= 120 mm 
I 

Now (a/+a2:) Jli = ai' y/+a2' Y2' 
(2000+2000) y1 = 2000 x 10 

+ 20oo x 120 
J'i = 65 mm 

Y2= 220- 65 = 155 mm. 

FLANGE ~r-100----

y 
Fig. 8·48 

Maximum teri~ile stress is developed in the flange. So the maximum compressive stress 
will be developed in the web 

f t m,,., = Y.1.. 
f, maz Y2 

y 2 155 
Jo m•x = )\Xfi m,x=~ X40 

= 7·07 N/mm2 

Say the load per mm run= l!' Newtons 

Length of the cantilever = 3 m = 3000 mm 

Maximum bending moment 

'J • 

I .. , of T section 

_ w~
2 = w x (3

2
000)2 Nmm 

-- <16'0) (:?~~+ 2000 (65 - 10)2 
12 

IO X (200)3 . , + 12 + 2000(155- 100)2 

= 198J"33 x I()' rnm4 
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or 

Now 

ft m ax 
Mmn x = f x,, - - 

Y1 

;
1 

x (3000)2 = 1983'33 x I04 X :~ 

3966'66 
w= 

325 
, w= 12'205 N/mm 

Load per m run, w= l2205 N/m 
= 12'205 kN/m. 

STRENGTH OP ¥A TERI A LS 

Problem 8'6. A compound beam for a crane runway is built up of a 150 X 50 mm 
rolled steel joist with a 100 x 50 rolled steel channel attached to the top fl ange. Calculate the 
position of the N.A. of the section and determine moment of inertia lu of composite section. 
For I section, Area= 9'01 cm 3, I.'•' = 322' l cm"', J,/ ,/ = 9'2 cm", and for the channel section, 
Area= I0'02 cm2, web thickness= 4 mm, J.,'.,'=164'7 cm4 l,'v'= 24'8 cm'. Distance of CG 
from outer edge of web = 1 '62 cm. 

Solution. The composite section 
is shown in the Fig. 8'49. The section is 
symmetrical about YY axis but unsymmetrical 
about XX axis. Let us determine the po~ition 
of neutral axis. 

9'01 X 7·5+ 10'02(15'4- l '62) 
Yi = 9'01 + 10'02 

= 67'575+ 138'07~ = 10'80 
19·03 cm 

J2= 15'4- 10'8 = 4·6 cm 

Moment of lnertia 

0 ·4crn t 

Fig. 8'49 

(322' l cm4 is J,,' .,' of T section and 24'8 cm4 is the l y' ,/ of channel section) 

l:u= 322' 1 + 9·01 (10'8 - 7'5)2 + 24'8+ 10'02(4'6-1 '62)2 · 

= 322' 1+ 98'119+24'8+ 88'981 

= 534 cm4
• 

Problem 8'7. Two channel sections 300 mm X 100 mm are placed back to back and 
only the top flanges are joined by a plate 200 mm x 10 mm. This compound section forms a 
simply supported beam 2 m long and carries a uniformly distributed load of 10 tonnes/metre 
run. Determine the- maximum stress developed in the sections. Properties of a channel 
~ection. 
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Solution. The compound section is 
shown in the Fig. 8"50. The section is 
symmetrical about YY axis but . unsymmet_ri_cal 
about X-Jt ax-is. I:.et us determme the pos1t1on 
of G from the b0ttom edge. 

2 x 42"19 X 1s+ 20 x 1 ·o x 30'5 
Ji= 2 X42"19 + 20 X 1 

(taking the dimensions in cm) 

G 

Y1 
1265"7+ 610 

- 104"38 lc:=.:::..i~ 
~100-~-100 ~ 1875"7 -

104"38 
17·97 cm 

y2= 31 - 17"97= 13"03 cm Fig. 8·50 

Moment of Inertia, l xx= 2 X l x'x'+ 2 X 42' 19 (Yi -15)2 

+·l X 
2~;.J:.'.3 + 2 x 20(y2-0"5)2 

= 2 X 6066 + 84"38 (2·97)2 + 3"333+ 40(12'53)2 

(putting the values of y 1 and J12) 

= 12132+ 744·30+ 3"333+6280'0 

= 19159'633 cm4 

Length of the span, /= 2 m = 200 cm 

Rate of loading, w= 10 tonnes/metre=o· 1 tonnes/cm 

Maximum bending moment 
w/2 0' l X 2002 

= -8-= 8 

= 500 tonne-cm 

Maximum stress due to bending 

Mmar 
= -- XYt 

fxx 

As, y1>y2, maximum stress will occur at the lower edge. 

500 X 17'97 
f w,x = 191 sf 633 

= 0"469 tonne/cm2 

Proble111 s·s. A girder of I section is simply supported over a span of 8 metres. A 
uniformly distrihuted load of 1000 N/cm is earried throughout the span. The beam is 
strcngthen~d wherever necessary by the additi~n of fl.angle plates 1 S mm thick. Find the 
length and width of the flange plates such that the maximum stress due to bending does not 
exceed 120 N/ mm2• · • ' 
• • I • 
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Solution. The section is symmetrical, 
therefore C.G. of the section will lie at the 
centre of the web 

Yi=Yi= 300 mm 

Moment of1lnertia, 

I = 240 X 60q3 
_ 220 X 5503 

xx 12 12 

== 106[4320-3050"2] 

= 1269"8 X 106 mm" 

The beam carries a uniformly distributed load 

w= IOOO N/cm 

= 100 N/ mm 
If / = length of span 

= 8000 mm. 

The maximum bending moment will be at the centre 

j
'f ,, = w/2 _ . !_90 ~ 8Q_OO x 8000 .• .,.. 8 - 8 

= 8 X JOB Nmm 

Maximum stress developed 

.Mm ,, 
= I - · Y1 

x x 

8 x 108 

- 1269"8 X 106 x 300 

= 189'00 N/mm2. 

STRF.NGTH OF MATERIALS 

Fig. 8·51 

This stress is more than the allowable stress of 120 N/mm2 • Therefore it is necessary 
to strengthen the section by the addition of flange plates as shown. 

Thickness of the flange plates= 15 mm 

Say the width of the flange plates = b mm 
The moment of inertia with additional flange plates 

lxx'= l xx+ 
2x~; 152 

+ 2 x b x l5 X(300 + 7·S)2 

= fxx+ 3T5 b+ 30 b (307"5)2 

= l xx+ 31'5 b + 2836687°5 h 
= lxx+2836725 b 

y/= 300+ 15 
:,= J l5 1nm 



or 

. . 
Allowable stress, 120 = #/ ·~·" X Y1' 

xx 
8·x 10s·x 31 S-

120= Uu:+2836725 M 

lxx+2836725 b= g X l~~; 
315 

2836725 b":"' 21 X 108- 1269'8 X 106 

= 830'2 X 106 

830·2x 106 

b= 2836725 mm 

Width of additional flange plate 
= 292'66 mm 

Now it is not necessary to provide the strengthening of the beam throughout its length. 
For some central portion of the beam, additional flange plates can be provided. 

or 
or 
or 

so 

The bending moment Mx, corresponding to allowable stress, 

fxx 
Mx = fu11ow1~I• X -

Y1 

125 X 1269'8X 106 

300 

= 507·92 X 106 Nmm 

The beam is loaded as shown in the Fig. 8'52. 

Reactions, RA= RB 
_ 100 X8000 = 40 X l04 N 
- 2 

wx2 

M x= RA .X - 2 
100 xl 

= 40 X 104 x--
2

-

= 40 x 104 x - 50 x2 Nmm 

= 507'92 X 106 Nmm 

40 X 104 x- 50 x2= 507'92 X 106 

A 

50 x2- 40X L04 x + 507·92 X 106 = 0 
x2-8000 x+ 1015'84 X 104= 0 

J-x X 

X 
8000mm 

RA 

Fig. 8·52 

X 
8000±./(8000)2- 4 X (1015'84><-i04) 

2 

= 4000± \ 1 (4000)2 - (10 15'84 X 104) 

= 4000±100\i' 1600- 1015'84 

= 4000 ± 2417 

= 6417 and 1583 

W =100 N/mrn 

9 

Re 



This shows that upto a length of 158 3 
mm from both the sides, there is no necessity 
of additional flange plates because Mx<507"92 
X 108 Nmm, 

Therefore length of the additional 
flange plates 

= 8000-1583-1583 
=4834 mm 

Problem. 8 '9. The section of a beam 
in shown in Fig. 8'53. X-X and YY are the 
axes of symmetry. Determine the ratio of 
the moment of resistance in the plane YY to 
that in the plane X-X, if the maximum 
stress due to bending is the same in both the 
cases. 

Solution. 'The section is symmetrical 
about X-X and YY axis. Its CG •lies at G 
as shown in Fig. 8"53. 

T 
3cm 

+ 

Fig. 8·53 

Moment of inertia, 

its base) 

6 X 93 
l rx= ~ - 4 x (moment of inertia of triangle shown about 

where 

Section modulus, 

Mbment of inertia, 

So 

Section modulus, 

= 364'5- 4 ( 1·5 7; ·5a ) 

= 364'5- I "6875= 362"8125 cm4 

y 1= J2= 4·5 cm 

z = 362"8125 = 80"625 3 
" 4·5 cm 

9 X63 

I,= ---rr---2 (moment of inertia of tniangle 3 X 1 ·5 about YY) 

= 169-2 [ B!3 
+''Bf (3-0'5)~] 

B=3 cm 

H=l·5 cm 

[
3 x 1·5s 3 x l"5 

/ yy = l62- 2 36 + 2 

= 162- 2 (0'28125 + 14'0625) 

= 162-28"6875= 133"3125 cm4 

X1=X2= 3 cm 

(2"5)2 J 

Z,= 1
YY = 138'3125 = 44'4375 ems 
3 3 

Moment of resistance, 
Mx =Zx f · 1wherc maximum stress due to bending is the same 



Moment of resistance, 

M,=Z1..f 

M, = z~ = 0·55 
M,, Z,, 

Problein.8 '10 . A beam of l section of momeIJt of in~rtia 954 9.914 an,p~deRth l4 cm 
is- freely supported at its ends. Over what span can a uniform load. of 5~00 ,kg/rrietre ,·be c~rried 
if maximum stress is 60 N/mm2

. 

,What adcl:itional. central.load can be carried when ,maximuni,stress. is 100 N/inm2• 

Solution. For a uniformly dis.tr-ibuu;d load over a siµiply .&upponJ!,d . J?F,i;t.~, .l he 
maximum bending moment occurs at the centre of the beam 

where 

and 

where 

and 

Now 

So 

w/2 
Mma.,,=-

8
-

w= rate of.loading 
= 500 kg/m 
= 5 kg/cm=5 x 9·8 N/cm 

/= length of the beam p~tween the supports 

I 
Mma•=frnaeX -

y 

w/2 =[ma• X _254 cm4 
8 7cm 

, Y.9': .lil.alf the. depth of Lswtion 

fma.,, = 60 N/ mm2=6000 N/cm2 

5 9
.
8 
~ _ 6000 X954 

X X 8 - 7 

12= 6000x954 ___ 8_=
133504

.
37 2 

7 x 5 X 9'8 cm 

/= 365'38 cm = 3'65-38 metre 

Say the additional central load 
= W 

Additional maximum bending moment at the centre. of the beam 

WI - I -
4
--M mas 

wx 365 '38 
4 

Nern 

Additional maximum stress due to central load 

fin a11 '=100-160-.40 ~/mm2 = 4000 N/cm2 

So ,.Mmar;' = [mat: X )_ 
y 

365'38 j£_ = 4000 X -954 
4 7 
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Additiona1 central toad, 
W= .i_x4000x 954 5961.95 N 

7 x 365·38 

= 5'968 kN. 

Problem s· 11. A steel tube 4 cm outside diameter and 3 cm inside diameter safely 
carries a central load of 40 kg over a span of 6 metres. 

Three of these tubes are firmly fixed together so that their centres make an equilateral 
triangle of the side 4 cm. Find the maximum central load which the beam can carry if the 
maximum stress is not to exceed to that of a single tube. 

Solution. 

Single tube. Moment of inertia, 

l = ...!:_ (43-33) = 8'590 cm4 
64 

Distance of extreme layer from the neutral layer = 2 cm 

Section modulus, 

/, span length 

Central load, 

Maximum BM, 

= s·59 = 4'295 cm3 

2 

= 6m 

W= 40 kg 

Mmo~= W
4
L __ 40 x

4
600 

w 600 kg-cm 

Safe stress developed in tube 

Mm a• 600 =- z- = 4·295 = 1396'97 kg/cm2
• 

3 Tubes. The three tubes formly fixed 
together are shown in the Fig . 8'54. Their 
centres make an equilateral triangle of side 
4 cm. 

Vertical height ad= ac sin 60° 
= 4 X 0'866=3'464 

C.G. will lie along ad but at a distance 
of 3'464/3= 1'155 cm from the base be. So 
the neutral axis is parallel to be and at a dis
tance 1 · 155 from the base. 

Area of cross section of each tube 

=~ (42- 32)=5'4978 cm2 
4 

Fig. 8·54 

Moment of inertia, l xx= 2 [8'590+ 5'4978 (Yi- 2)2]+ 8'590+ 5'4978 (y2- 2)2 
= 17' 18+ 14'668+ 8'590+ 29 '311 = 69'749 cm4• 

Since y2 > yi, maximum stress will occur at the upper edge 
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Z = liX _ 69"749 = 16"187 3 
2 y

2 
- 4"309 cm 

/ = 1396"97 kg/cm2 

Section modulus, 

Safe stress, 
Allowable BM =f. Z2= 16"187x 1396"97= 22612"5 kg-cm 

Span length, 1= 6 m= 600 cm 

Say the central load= W kg 

Mma•= :L = Wx/'.)O = 150 kg-cm 

So 150 W= 22612"5 kg-cm 

W= 22612"5 = 150"75 k 150 g 

Problem 8·12. The 50 x 150 mm I 
section shown in Fig. 8· 55 is simply supported 
at its ends over a span of 3·6 metres and 
carries a central load of 4 kN which acts 
through the centroid but inclined at an angle 
of 6l,0 to the horizontal. Calculate the maxi
mum stress. 

Solution. Length of the beam, 
L = 3"6 m 

Inclined load 4 kN can be resolved 
into two components 

Pv= 4000 cos 30°== 3464 N 
PH= 4000 cos 60°= 2000 N 

4kN 

.~---x-

1 ,mtrm 
I..,,_ C---1-v----'o I 
~50--j 4 -6mm 

Fig. 8·55 

· ... ·. ,. 

Moment of inertia, 5 x 15a 4·7 x 14"083 . . . . 
l xx= --12- - 12 = 313 cm4 takmg d1mens1ons m cm 

0"46 X53 14"08 X 0"33 
ln= 2X 12 + 

12 
= 9"55 cm1 

Bending moment due to vertical component, Pv 

M x= Pv/ l = 3464; 3"60 3117.6 Nm 

Bending moment due to the. horizontal component, PH 

Mv = P~. I = 200~x3 6 = 1800 Nm 

Stresses due to bending at extreme layers 

Due to Mx, {AB=- Mx 1'5 =-· ~117"6 x7·5 = -74"7N/cm2 
· Ix 313 

M 
f c v =-c-:+ - x- X7'5= -l- 74·7 N /Gnl2 . [ ~ . ' 
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Due tQ Mv /Ac=- f"· x 2 5=-
18~~~ 2·

5 
=-- 471 ·2·N/ fn'm2 

flJ-'u= + !fr X2'5 = + 471 :2 N/mm 2 

I11 

Maximum stress at A =-74'7- 471'2= - 545'9 N/m2 

Maximum stress at D = + 14·7 ... 1-471 ·2= 545'9 N/m2 • 

Problem 8'13. A vertical flag staff 
10 m high is of circular section 200 mm 
diameter at the ground and 80 mm diameter 
at the top. A horizontal pull of 2 kN is a:pp1kcf 
at the top as shown in Fig. 8'56. Calculate 
the maximum stress due to bending. 

Solution. Height of the flag staff 
-= 10 m = 10,000 mm 

Diameter at top = 80 mm 

Diamet'er at ground 
= 200 mm 

Consider a section at a distance of x 
mm from t'h'e' top 

Diameter-, 
200-80 

D . .-= 80+ 10 000 x 
' 

120 
= 80+ 10000 X 

= (80+ o·o12x) mm 

Se~fibtt' '!Woijl)lfos· of the section 

T1.D·.,s· ,; . ,_ .. 3 
Z .,= J.2 = 3'2 (80+ 0 01·2 x) 

Bending moment at the section, 

Mz= 2 kN x x= 2000 x Nmm 

Stress in extreme layers at the cross-section considered 

f = Mx ·= __ ..... 2000 X __ 

z,, l (80+ o·on x)3 
32 

= 2000 x 32 x (80 + 0·012 x)- 3 
Tt 

= kx (80+ o·o12x)-3 

k = 64'b0-0 a constan_t 
. ff i 

F ig. 8·56 



or 

or 

or 

For the stress to be maximum 

df = 0 
dx 

rx =k !80+ o·o12x)-3 +kx (- 3) (80+ 0·012x)-4 (0'012) = 0 

k (80+ o·o12x)-3 [1- 3x (0'012) (80+ o·o12x)-1]= 0 

3xx o·o12 
l - (80+ o·o12x) = O 

so+ o·o12x-0·036x= O 

80- ·024x= O 

80 . 
x = 

0
.
024 

= 3333'33 mm 

x=3'33 m 

Maximum stress due to bending, 

fma'l:= ·64
000 (3333'33) (80+0'012 X 3333 '33>-3 
ff 

_ 20371 '8 (3333'33) =
39

.
29 

N/ 2 
- (120)s mm 

Problem 8'14. The original dimensions of a tie bar of rectangular section are 

80 mm X 30 mm. The dimensions are reduced by -fc th of their original values by re

moving the material from two adjacent faces. If an ax'ial load of 120 kN is applied through 

the centre of the original section, find the value off for a maximum tensile stress of 100 

N/mm2
• Determine also the magnitude of the least stress. 

Solution. The Fig. 8'57 shows the C.G. of the final section of the tie bar, but the 
tensile force is acting at the P i.e. at the C.G. of die original ·section of the tie bar. 

eccentricity, 

e =40 - - 80- -· I ( 80 ) 
.. 2 k 

40 40 , 
= 40- 40 +7c = y mm 

eccentricity, 

e = I 5 - _!_ ( 30- lQ. ) 
• 2 k 

15 
= - mm 

k 



where 

Moment of inertia, 

Section modulus, 

Section modulus, 

_ ( 80- to )( 30-to r 
fxx - 12 

= 80 X 30
3 

X ( l - _!_ )
4 

12 k 

( 30- t0 
)( 80-{Q r 

f>v = --~ 12 

= ~X 803 X ( l - _!_)4 
12 k 

z - I .. ,, 

~- l 15- ~5 ) 

80X 303 
12 X 

( 1-+ )'' 
_is ( 1- t ) 

= 12000( 1-· k y 

30X 803 
= -i2 

( 
I 4 

1-k) 

40 ( 1- +-) 
/ 1 )8 

= 32000\ 1- k 

Bending moment about plane X - X, 

Mr = F. ey 

F= tensile force 

= 120 kN 

15 1800 
M,.= 120 XT = - -k kNmm So 

Bending moment about plane Y-Y, 

My = F. ey 

= 120 X 
4
0 

k 

,;:=: 48;0 kN!Tim 

STRENGTH OF MATERIALS 
· I ' ~ 1 , 1 I I 
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I, , , 

,, , · 



Bendini stress due to Mt , 

· M,l 
f b• = - -Z., 

1800 i 
= k X 12000 ( 1- t r k:N/mmi . 

0·15 
= 1 3 kN/mm2 

k ( 1- F) 
_ 150 N/ 2 
- ( l )a - mm 

k 1- - -
k 

Bending stress due to M11, 

fu = 1: 
4800 . 1 

= k X 32000 ( l-! t kN/mm2 

0·15 
= ( 1 3 kN/mm 2 

k 1-T) 
150 

= - N/mm2 

k ( 1--1 )3 
·- k 

Tensile stress due to direct force 
F --- - -------

80 ( 1 - ~ ) 30 ( 1-+ ) 
120 

- --- kN/mmi 
80 x 30 ( 1- ! r 

0·05 = 
1 2 kN/mm2 

( 1-k) 

50 N/ 2 = 1 2 mm 
( 1-y) 

Now maximum tensile stress 

50 150 150 
= I )2 + -+-- -( 1-" k(1-+r k(1-+r 
= 100 N/mm3 

411 



. ~ 

4J2 

or 

'dr 

or 

or 

2 1 3 . 3 .. 

= ( 1-+ y + k ( 1.- .~ y + k ( 1~ k )3 

;k ( 1-. .!__) +~+3=2k( 1- J_J'a k •.. . k 
' ( 

k ( 1- ~ ) + 6 = 2k ( 1- ~ r 
2k · 

k-1+6= F(k-1)a 

kS+5k2=2k3 -6k2+6k-2 . 

k3-llk2 + 6k-2~0 

Sclving the equ,Ltion, k=. 10·4 

-
1 

= 0'096 
k 

Now k ( 1- J_ )
3 

= 10·4 ( 1- -
1
-)

3 

= 7·r,.79..l . k,, 10'4.. '1 , · 

( 1- t r = 0'817 

Least stress 
50 -----

( 1- t. r 
!SQ 

50 150 150 
=o·s11- 7·679 - 1·619 

150 

= 61' 199- 19'53 - 19'53= 22~1·39 ·N/mm2• 1 · 

. . Proble~ s·ts. A bimetal~ic strip i&_for!'l?:ed_ by u~i~g strips of copper and steel. E~ch 
stnp 1s 60 mm wide and 12 mm tht(;k. Both the_ stnps are fastened together so that no relative 
movement can take place between them. This bimetallic strip is now heated through 100°C. 
Assuming that both the strjp~, \Wnd by the ' sa'me radiu~. and stresses are transmitted only 
through end c<;>nnect ions, find radius of the bend, m'}XiQ;uµi ··tensile and compressive stresses 
in both. ·· iT iw 

Given : E,=2 x 106 kg/cm2 
O(,= 11 X 10-6/°G, I 

E = l X 106 kg/cm2 
tf ' 

tXf= 18 X 10-6/°C 

Solution. Thickness of each strip, t = 12 mm 
Temperature rise, T= J 00 °0 . 

Radius of bend, 

where 

Then 

R= E,2 +E.2+ 14 E, _Ee X ...!._ 
12 E, E 0 (O(c - !X;) T 

E, = m=2 
Ee 

1 
m+ - + 14 · 

R= m xL 
12(a.-O(,) ~ 



' (6'.'5 ·12-
12·X 1·X l0-6 ~ 100 

=23571 mm 

=23'571 m. 

There will be tensile stress devel0ped u; s~~-~~ . a~d co_!llpre.s.~ive_ ,;tres.,_ q~~~lpped in 
copper becaiu,~. ~ > N, 

Com:rm~~sive for!,:,e iJ1.CQP.per 
= T.~nsile force in steel (due to temperature rise) 

1 

bt2 

P 0 = !2.R (E,+ E.) 

Direst. c.ompr~~sivt,: .stress io copper 

= :; = l~R (E,+Ec) 

12 
= 12X2357l X(E,+Ec) 

E,=2X 104 kg/mm2 

E,+E.=3 x 104 kg/mm2 

E 0 = 1 X 104 kg/mmz 

Direct stress in copper = 
12

x~;
571 

x 3 x 104= t21 kg/n1m2 (Compressive) 

Therefore direct tensile stress in steel= 1 ·27 kg/mm2 

Stresses due to bending. Bending moment shared by copper 
E bt2 

Mc = R X [.=fo X 6 

b 
. ± E, bt 3 6 

~tr~&~-Q,~y to endmg, Jc = R X 12 X Ttz 
Er.t 1 X L04 X 12 

= ± 2R = ± 2 X 23571 

= :b2 · 5A, kg/mm2 

Maximum stress developed in copper strip 
= 2'54+ 1 ·27= 3'81 kg/mm~ 

Minimum stress developed in coppe1 striP: 
= 2'54-1 '27 = 1 ·27 kg/mm2 

Similarly bending stress in steel,!, 
E, t 2 X 104 X 12 

= ±,2:JV ,;= 2 X 2357 l --

= ± 5'08 ~if.µin1:= 
Maximum stress in steel strip 

= 5'08+ 1·27= 6·35 kg/m_m2 
Minimum stress in steel strip 

(compressive)· 

(tensile) 

(tensile) 

= 5:-08 - I '27--3.81 kg/mm2· · · (compressive) 
. ' 



STRENGTH OF MA TERI ACS. 

Problem s·t6. A steel bar 12 cm in dianteter in corttpiete1y euca5·)d in an aluminium 
tube of 18 cm outer diameter and 12 cm inner diameter so as to make a composite beam. 
The composite beam is subjected to a bending moment of 1 '2 Tm . Determine the maximum 
stress due to bending in each material. 

E,t,,1=3 Ea111mfnfum, 

· · Solution. The composite section is 
shown in Fig. 8'58. The neutral axis will pass 
through the centre of the section as shown. 
Strain in any layer is proportional . to its dis-

aluminium tu be 

tance from the neutral layer. · 
Steel 
bar 

Say maximum stress developed in N 
steel=/, 

At a distance of 6 cm, from N.A., 

strain in steel= {; 

Si:rain in aluminium layer at a distance 

of 6 cm from N.A.= {: 

Strain in aluminium layer at a distance 

f 9 f 
, NA f, 9 t·5J, 

o cm rom . . = -E, x 6 = ~ Fig. 8·58 

· d 

C 

distribution 

ac = f 5 

ab =CC Ea 
g Es 

dc=-x ab 
6 

Stress in aluminium ,layer at a distanc.e of 9 cm N.A. (or the maximui;n stress), 

fa = I'5J. XEa 
E, 

Bending moment, 

fa= I'5f, =0'5f, 
3 

M = M, + M a 

= Moment of res is ta nee of steel bar 

[putting E, = 3 Ea] 

+moment of resistance of aluminium tube. 

Z,, section modulus of steel section 

,; X 123 .. 
= 32 = 169'64 cm3 

Za, section modulus of aluminium section 

n(184~ '124) _ • 
3 

32 X 18 - 428 82 cm 

M. f, . Z s f, X 169'64 

Ma=fa, Za= 0'5f, XZa 

= 0'5f, x 428'82= 2L4·4t /, 

M = l69'64/,+ 214'4l /,= 384.05 / ,= 1·2 Tm 

' f , 
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384·05f, = I·2x 105 kg-cm 
f,=312.46 kg/cm2 

fa=0·5 f.=156·23 kg/cm2 

Maximum stress in steel=3J2·46 kg/cm2 

Maximum stress in aluminium 
= 156·23 kg/cm 2. 

Problem s·11. A timber beam of breadth B and depth 32 cm is simply supported 
over a span of 8 metres. This beam is to be strengthened by the addition of steel ftitches 
fixed on both the sides as shown in Fig. 8"59. With the original timber beam a load of 
200 kg/m gave a maximum stress of 50 kg/cm2• If the flitched beam is loaded with an extra 
load of 120 kg/m with the maximum stress in the steel of 600 kg/cm 2, the stress in timber 
remaining the same, determine the dimensions of timber beam and steel flitches . 

Given: 

Solution. 

/ 
E. = 20 
E, 

(a) Timber beam without steel flitches 
Section modulus, 

Z = B(32)2 

6 

w= rate of loading 
= 200 kg/m 

14- B --f s tee.I 

~ Timber 
d 

X 

]_ 32cm 

= 2 kg/cm 
/ =length of the beam 
= 8m 

I ':----I· -1- i 
-l_i_ I-- --l t 1-- . 

2 2 

= 800 cm 

Maximum bending moment at the centre of beam 

w/2 
Mmu:,; = -

8
-

Now 

2 X 800 X 800 _ l 6 l 04 k 
- S - X g~m 

Mm ax= fxZ 

16 x 104 50 x Bx322 
6 

16 X 10,1x 6 
B= 50 x 322 = 18"75 cm 

Now considering steel fl.itches fixed on timber beam 

Fig. 8·59 

M'ma. = maximum bending moment at the <;!Cf\tre of the ge<> 'm 
considering add itional load "' 

Additional load = 120 k~/m = 1'2 k~/cm 



or 

Total load 

Stress in steel, 
Str'l!ss 'in t imber 

Now 

= 2+ 1 ·2= 3·2 ·kg/cin 

Mma,,,' = 3·2 ~ 
8002 

~ 25:6 x fo4 kg-c·m 

y,= 16 cm 
d 

y,=2 

/s = 600 kg/cm2 

Jt= 50 kg/cm 2 

M;,.a/ Ji . Et 
I, Yt =R 

M~!i_ = J. = E, 
/ , Y• R 
f . ft 

ys E, = y, Et 

E, f• 1 600 
y,= E. Xy1x 7, = wXl6XS0 

1 . .• 
y,= 20 x l6X 12= 9'6 'cm 

= 2 y,= 19·2 cm 

.. t i) 

... {2) 

or depth of stedi 'ftftthes 
Now It = Moment of inertia considering equivalEnt section in timber 

18"75x323 tX 19'23 E. 
= --1-2-- + 12 x & 

where ~ i's "thte.kness df each s'tde'I ilitch 

or 

T,= 51200 + 11796'48t cm4 

From equation ·(1 ) above 

I - M,''d· I X!.. 
,- m " /1 

51200+ 11796'48 t= 25'6 X l04 X ~~ = 81'920 

l 1796'48 ! = 30720 

t=2'60 cm 

So thickness of each steel fl.itch 
Depth of each steel fl.itch 
Width of timber beam 

=1'3 cm 
= f9'2 cin 
= 18'75 cm. 

Problem 8'18. A composi~e Heam consists ot two wooden beams of breadth B and 
depth D each and a steel plate of width b and depth d sandwiched symmetrically between 
them. The allowable. stress in ste~l . \5 169 ,N/mm2 ~~~ in ~.?<?9. i~ is Ip N/mm2• Determine 
(i) ratio of Did if maximum stresses m ~te'el an.~ "".ood rea_ch s1muJtaneously (ii) ratio of /3/b, 
if the m~ment of resistance ·of ·0ne WtYod'e'n beam 'is equal to that of steel plate . 

Qiven Estee1= MO x jtis N/mm2 

Ewood = lO X 1'03 Nimm2
i .,,.. . 
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Solution. Maximum skin stress in wood, 

f w= I0 N /mm2 

Modular ratio, 
E. 200X 103 

m = E,
0 

= 10 x I 03 20 

Distance of extreme layer of wood from neutral axis 
D 

=2 

At a distance of D/2 from neutral axis, 
Stress in steel, f ,'=m fw = 20x 10=200 N/ ri1m2 

But the allowable stress in steel 
/,= 160 N/mm2 

Therefore the depth of the steel plate has to be less than D. 

Stress in a layer is proportional to its distance from the neutral layer. 
So the value of d/2 for a stress of 160 N/mm 2 

D 160 . 
= 2 X 200 = 04 D 

or d= 0'8 D 

_Q_ = 1 '25 
d 

(ii) Moment of resistance of one wooden beam = moment of r"esis'tarice of steel plate 
lS beam 

BD2· bd2 

-6- Xf,,, = 6 Xf, 

BD2 X IO= bd2 x 160 
b D 2 D2 D2 

13= 16d2 = 16 x (0'8 D)2 = 16 X0'64 D2 

,r ~ = 10"24. 
b 

Problem 8'19. The reinforced concrete beam of T-section shown in the Fig. 8"60 
as maximum stresses of 5/ Nmm2 in concrete and 100 Nimm2 in steel. The modular ratio of 
:eel and concrete is 16. Assume that the neutral axis lies within the full width of the section, 
nd the area of steel reinforcement and the moment of resistance. 

Solution. Say the distance of the 
eutral axis from the compression face is H. 

Breadth of concrete section in com
ression 

= 600 mm 

Depth of steel reinforcement from the 
impression face, 

D = 300 mm 

~aximum stress in steel, 
f, = LOO N/mm 2 

Te ns ion face 
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Maximum stress in concrete, 

Modular ratio, 

We know that 

Now 

fo = 5 N/ mm2 

E, 6 m= -=1 
Ee 

f. = m ( D-H) 
f• H 

l ~O = I 6 ( 30~- H ) 

1·25 H = 300- H 

H = 
300 = 133·33 mm 2·25 

J. · BH= f, . A, 
2 

; X600 X J33·J3 = 100 XA, 

Area of steel reinforcement, 
A,= 15 x 133.33=2000 mm2 = 20cm2 

. ( H ) ( 133'33 ) Moment of resistance, M = f , . A, D - 3 = I 00 X 2000 300-
3 

= 2 x I05 x 255'55= 511 · 1 x 105 Nmm= 51' l kNm 

SUMMARY 

1. Flexure formula is, 

M = !_= E 
/,,, y R 

... (I) 

. .. (2) 

where 1'1= bending moment at a particular section 
IL» = moment of inertia of the section 

where 

/ = stress due to bending in a layer at a distance y from tt 
neutral layer 

E = young's modulus of elasticity 
R= radius of curvature at the section. 

2. Maximum stress in compression, 

J.=3£ z. 
Z.=section modulus in compression 

M;iximum stress in tension, 
M 

fi = . i , 
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where Z 1= section modulus in tension 

Z _ lxr Zt = 1,,:, . - -• 
Y• Yi 

y 0 = distance of extreme layer in compression from neutral axis 
y,=distance of extreme layer in tension from neutral axis. 

where 

where 

3. 

'4'. 

Rectangular section, 
BD2 

Z, = Zt = -
6

-

m/3 
Circular section, Zc = Z1= - 32 

5. I section, 
],.,, 

Zc = Z 1= D/2 

6. 

D= depth of 1 section. 
6M.,,t 

Modulus of rupture = bF'" 

Muu = ultimate bending moment on the beam 
b, d= breadth, depth of a rectangular section. 

7. In beams, cantilevers of uniform strength, M /Z i.e., ratio of bending moment and 
section modulus is kept constant through0ut the length of beam/cantilever. 

8. Bimettallic strip, 

Radius of the bend, R Ei2+ £ 2
2+ 14 E1 E2 

12 E1 E 2 (o:2-a1) 

where != thickness of each strip 
T = temperature change 

E1, E2= Young's modulus of str ips I and 2 respectively 
ix2, oc2= coefficient of linear expansion of materials 1 and 2. 

9. In a fl.itched beam 
Moment of resistance= Resisting moment offered by beam of material (I'+resisting 

moment ofI:ered by beams of strengthening material (2). . ' 

· . Equivalent section of the beam is made by considering the modular ratio E2/E
1

• 

where 

10. In reinforced cement concrete beam 

A = m ( D-H) 
f. H 

P= Jr . Ac=f. A, 

1-E_ ) 
2 

(EH =f , A , 

M = P ( D-1 ; = {• BH ( D- ~ )=f, A, 

/ ,= maximum stress in steel 
/.= maximum stress in concrete 
m=E,/Ec 

.. . (1) 

... (2) 



D = d; pth. of ~teel reiJ;1.fot~em~nt from compression face 
H = distance of neutra,l axis from compression face 
B= breadth of concrete section 

A, = ~rea of steel reinforcement. 

MULTIPLE CHOIC~ QUESTIONS 

1. A beam of rectangular section of breadth 10 cm and depth 20 cm is subjected to a 
bending moment of 2 tonne-metres. The stre~~ devetopeq at~ q\~sl_nS:J?, ~ \0 9ffi from 
the top face is 

(a) 1200 kg/cm2 
(c) 300 kg/cm 2 

(b) 600 kg/cro2 
(d) o·o. 

2. A beam of T section is subjected to a bending mom.~nt M. The depth of the section 
is 12 cm. The moment of inertia of the section about plane· of bending is f200 cm'. 
The flange of the section is in compression. If the maximum tensile stress is two times 
the maximum compressive stress, then the value of section modulus in compression. for 
the section is 

(~) 300 cro3 

(c) 150 cm3 

(b) 200 cro3 

(d) 100 cm3• 

3. A mild steel beam is subjected to bending moment, a stress of 1 to.n.n~/~m~ is. de".~oped in 
a layer at a distance of 10 cm from th~ neutra~ layei;. If E=2000 tonnes/cm2, the radius 
of curvature is 

(a) 400 m 
(c) 100 m 

(b) 200 m 
(d) 50 m. 

4. A beam of I sectioa. of depth 20 cm is subjected to a bending moment M. The flange 
thickness is 1. cm. · If the maximum stress developed in I section is iOO N/mm2, the stress 
developed; ~t ~h~ i.tHWr edge of thy flange is 
(a) 95 N /mm2 (b ) 90 N /mm2 

(c) 41·5 N/ fm2 (d) 45·0 N/mm2• 

5. A beam of rectangular section (breadth b, depth d) is tested under bending a~'d Mu
11 

is 
the ul.timat\'l \:>.en_gJ_i;i,g moment recor.ded. The modulus of rupture of the beam.ii, given by 

(a) 6 Muu/bd3 (b) 6 Muit/bd2 
(c) 12 Mu1i/bd2 (d) 12 Mu11/bd8. 

6. A beam of square section (with s ides of the square horizonta l and vertical) is subjected 
to a bending moment Mand the maximum stress devylop,ed is 100 N/mm2. If the dia
gonals of the section take vertical and h orizontal directions, bending moment remaining 
the same, the maximum stress developed will now be 

(a) 100 .,,J2 N /mm2 

(c) SO N/mm2 

(b) ~~ N/ mm2 

(d ) None of the above. 

7. A cantilever of uniform strength / having rectan gular section of constant depth d but 
variable breadth b, is subjectec,l to. a _Point load W at its free end. If the length of the 
cantilever is /, the lfteadth of the cantilever at the mid9le of its length is 
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6 wl 
(~) Jd2 

(b) 3 wi 
fd2 

8 .. 

9. 

10. 

2 wl 
(c) fd3 

wl 
(d) fd2 

A cantilever of uniform strength /, having rectangular section of constant bteadt],i, b 
but variable depth dis subjected to a uniformly distributed load throughout its length'. 
If the depth of the section at the fixed end is 16 cm, the depth at the midd\e of the 
length is 
(a) 2 cm 
(c) 8 cm 

(b) 4 cm 
(d) 12 cm. 

A steel plate of breadth 1 cm and depth 15 cm is sandwiched betwe.en two wooden 
beams of breadth JO cm and depth 20 cm each. The composite beam is subJected to a 
be.nding moment such that the maximum stress developed in steel plate is 150.0 kg/,cmz~ 

If ;~ = 10, the maximum stress developed in wooden beam is 

Ca) 50 kg/cm2 (b) 100 kg/cm2 

(c) 150 kg/cm2 (d) 200 kg/cm2• 

In an R.C.C. beam, the depth of the steel reinforcement froqi compression face is 30 cm. 

The modular r~tio EE, = 15 and the ~·atio of maximum stress developed in steel and the 
'0 

maximum stress developed in concrete is alsp 15. The ~\stance of the. neutral a)l:is fron;t 
the compression face is 
(a) 20 cm (b) 18 cm 
(<:) 15 cm (d) 12 cm . 

1. (d) 
6. (a) 

2. (a) 
7. (b) 

.i\NS,WE~~ 

3. (b) 
8. (c) 

EXER€1SES 

4. (b) 

9. (d) 
5.. (b) 

10. (c) 

s·t. A wooden joist of span 6 m is to carry a brick wall 23 cm thick and 3 m high. 
The depth of the joist is 2·5 times. its breadth an:d the maximum permissible &tress, is limited 
to 70 kg/cm 2. Find the dimensions of the joist. Density of brick wall = 1800 kg/m3. 

[Ans. B = 19'72 cm, D=49,'3.0. ~m,] 

s·2. A floor has to carry a load of 8 kN/m2 (including its own weight). If the span 
of each beam is 6 m. Calculate the spacing centre to centre between the joists. The breadth 
of each joist is 12 cm and depth is 30 cm and permissible stress due to bending is 5 N/mm2• 

[Ans. 25 cm] 

8:3. A b.eam subjected to ben9ing moment Mis of T section, having flange JO cm x 2t 
and w.,e,1;> t~ic.lc.r;i.e~.s t. Th~ overall depth of T section is 20 cm. Determine the thicknes.ses of 
the flange <,1nd the web, if the maxii:n.~1yi tensile stress is doubly th,e maximum c.oippressive 
stress. '(The flange being in compression). · ["n,s. 4:64_8 C,Wi, 2'324 GD};] 
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8'4. A girder of T section of depth 25 cm is used as a cantilever with uniformly 
distributed load w throughout its length. The width of the flange is b and thickness 5 cm, 
while web is 20 cm X 5 cm. The flange comes under ten5ion. The material of cantilever 
can be subjected to 80 N/mm2 in co mpression and 20 N/mm2 in tension. It is desired to 
achieve a balanced design so that the maximum permissible bending stresses are reached 
simultaneously. Determine the width of the flange. Find the intensity of the load w on the 
cantilever if it is 2 m long. [Ans. 80 cm, 33·333 kN/m] 

8'5. A cantilever has a free length of 2"4 m. It is of T section with the flange 
12 x 2 cm and the web 24 X 1 cm. The flange being in tension . What load can be applied 
at the end of the cantilever if the maximum permissible stress in compression is 500 kg/cm2

• 

What is the maximum stress in tension? [Ans. 359 kg, 202'7 kg/cm2
] 

.. 8'6. A compound beam for a crane runway is built up of a 250 x 125 mm rolled steel 
joist with a 150 x 75 mm rolled steel channel attached to the top flange. Calculate the position 
of the neutral axis of the section and determine moment of inertia / ,,.,. For I section ; 
area = 35'53 cm2 . lx'x'=3717'8 cm4, lv'v'= l93'4 cm4

• For channel section; area= l 8'39 cm2
, 

web th1ckness=4·8 mm, Ix' / = 698'5 cm4, l.,'/=103' l cm4, distance of C.G. of channel section 
from outer edge of web = 2·39 cm. [The over all depth of compound section is 254'8 mm] 

f Ans. Neutral axis lies at a distance of 16' l 1 cm 
from lower edge ; 5179'9 cm4

] 

8'7. A 2oo' x 60 mm I section is strengthened by joining a plate 60 mm x 10 mm at 
the bottom flange only. The compound section is used as a beam of span 4 m carrying a 
central load W. What is the maximum value of W if the stress due to bending in the section 
is not to· exceed 80 N/mm2• Properties of I section are. Area= l 2'64 cm 2, Ix' x' = 780·7 cnr1 

///= 17'3 cm4• [Ans. 7·35 kNJ 

8'8. An I sectio n, is to the used as a cantilever 2 m long. In 1 section, flanges are 
100 mm x 20 mm and the web is 210 mmx 10 mm. If the permissible stress is 80 N/mm2

, 

What concentrated load can be carried at the end of the cantilever. If the cantilever is to be 
strengthened by steel plates 20 mm thick, welded on the top and bottom flanges, find the width 
of the plates required to withstand an increase of 40% in the load and the length over which 
the plate should extend, the maximum pennissible stress remaining the same. 

[Ans. 19'44 kN ; 52 mm ; 572 mm length] 

8'9. The section of a beam is shown 
in the Fig. 8·61. X-X and Y-Y are the axes of 
symmetry. Determine the ratio of its 
moment of res istance in the plane YY to that 
in the plane XX for bending, if the maximum 
stress due to bending is the same in both the 
cases. [Ans. · 0'366] 

I 

. I 8·10. A beam of I sect.ion of moment 
of inertia 1125 cm4 and depth 16 cm is freely 
supported at its ends. It carr ies a central 
load of .2 tonnes. Over what span can the 
beam be carried so that the maximum stress 
does not .increase beyond 800 kg/cm2

• ·' 

R:15mm 

Fig. 8·61 

· (b) ·lfthe allowable stress is increased to 1200 kg/cni2, what load uniformly distributed 
throughout its length can be applied on the beam. [Ans. 2·25 m, 888'8 kg/m run] 

8 '11. A steel tube 35 mm outside diam cte~· and 30 mm inside diameter saf~ly c~rrie~ 
a 'ioad of 300 N over a span of 4 metres. 
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Four of these tubes arc firmly fixed together w ith their centres forming a square of 
side 35 mm. Find the maximum central load which the beam can carry if the maximum 
stress is not to exceed to that in the single tube. [Ans. l '98 kNJ 

' 
8' l2. An ISMB 250 I section is supported as a beam over a span of 2 metres, A load 

W acts at an angle of 45° to the vertical axis at the middle section of the beam. Determine 
W if the maximum stress in the section is not to exceed 560 kg/cm 2. 

Specifications of the section are : 
Depth=250 mm, Width = 125 mm 

Flange thickness= 12·5 mm, Web th ickness = 6'9 mm 
fx., =5 131'6 cm4, '~y = 334'5 cm4 [Ans. 750'7 kg] 

s· 13, A vertical flag staff IO m high is of square section 160 mm x 160 mm at'. the 
ground, uniformly tapering to 80 mm X 80 nim at the top. A horizontal pull of 200 kg is · 
applied at the top in the direction of a diagonal of the section. Calculate the maximum stress 
due to bending f Ans. 490·9 kg/cm2J 

8'14. A bimetallic strip is formed by using strips of brass and steel, each of width 
75 mm and thickness 20 mm. Both the strips are fastened together so that no relative move
ment can take place between them. The bimetallic strip is now heated through 120°c. 
Assuming that both the strips bend by the same radius and stresses are transmitted through 
end connections, find the radius of the bend and the maximum and minimum stresses in both 
the strips, 

E,=2 x ]05 N/mm2, £&=0·9 x 105 N/mm2 

a,= 11 X 10-0/°C, ao = 19 X 10-6/°C 
[Ans. 28'559 m; +86'95, - 53'11 N/mm2 (in steel) 

-5 1'93, +18 ·09 N/mm2 (in brass)] 

8'15. A steel bar 5 cm in diameter is completely encased in a brass tube of IO cm 
diameter, so as to form a composite bea~, . fhis co.mposite ~earn is subj~cted to a bending 
moment of 2 kNm. Determine the maximum bending stress rn each material. 

E,=2Eb=210X 103 N/mm2 

[Ans. Js=±19'09 N/mm2, .fb = ±I9'09 N/mm2] 

8"16. A timber bea m of breadth Band d~~th 30 cm is simply supported over a span 
of 6 m. The beam is to be strengthened by the add1<1on of steel flitches fixed on both the sides as 
shown in Fi g. 8'62. With the timber beam 
alone a load of 10 kN gave a maximum stress 
of 5 N/mm2 • If the flitched beam is loaded 
with an extra load of 5kN, with the maximum 
stress in steel of 60 N/mm2, stress in the timber 
remaining the same, determine the dimensions 
of the timber beam and steel fitches. 

_§ = 15 
E, 

~0_-. 30cm~o--i 
1!-.+ 

2 2 

Fig. 8·62 

[Ans. B= 20 cm, d=_24 cm, ! = 13'02 mm] 

8·17. A composite beam consists of two wooden beams of breadth 10 cm and depth 
30 cm each and a steel plate of width b and depth d is sandwiched between them. The allow
;:ible stress in steel is 1500 kg/cm2 and in wood it is 90 k~/cm~. Deterµiine the dimensiOI\S of 



the steel plate if (a) maximum stresses in steel arid wood reach simultaneously (b) moment of 
resist'aiice ·of one wooden beam is equal to the moment of resistance of steel plate. 

E,=2100 tonnes/cm2, E, = 21 E, 

8'18. The reinforced concrete beam 
of T section shown in Fig. 8'63 has maximum 
stress of 70 kg/cm 2 in concrete and 1540 kg/ 
cm2 in steel. The modular ratio of steel and 
concrete is 15. Assuming that the neutral 
axis lies within the full width o~ the section 
find : (i) distance of the neutral axis from the 
top face (ii) area of steel reinforcement (iii) 
moinent of resistance. 

[Ans. 10'135 cm, 11'52 cm2, 3'835 Tm] 

[Ans. d=23 81 cm; b=9' : mm] 

j-socrn-~ 

=t Im 
~L 

Fi~. 8·63 
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Combined Bending and Direct Stresses 

In the last chapter, we have studied about the variation of direct stresses due to bending 
moments along the depth of the beams and cantilevers of various sections. We have learnt 
that bending stress varies from maximum tensile stress in an extreme layer to. the maximum 
compressive stress in other extreme layer on the other side of the neutral axis. Now, if in 
addition to the bending moment, the beam is subjected to axial pull or axial thrust, the direct 
stress due to pull or thrust will be superimposed on the bending stresses and for a certain value 
of thrust and bending moment, the section may have only one type of stress i.e., either tensile 
stress or the compressive stress throughout the section. When a column carries a vertical load 
at a point not on its C.G. but away from C.G., the column will be subjected to a combination 
?.f ~ ?ending moment and a thrust. 

9:1: BENDING MOMENT AND AXIAL THRUST 

Fig. 9·1 shows a short column of rect
angular cross section of breadth Band depth D. 
G is the centroid of the section abed i.e., the 
top edge of the column. A vertical load P acts 
at point G' along the X-X axis passing through 
the centroid. If the load acts on the C.G. 
of the section, there will be only direct com
pressive stress. But now the position of the 
application of the load is G', at a distance of 
e (eccentricity) from the centroid G. The 
effect of this will be to bend the column and 
as a result of bending, the edge be will 
experience maximum compressive strain or 
stress and the edge ad will experience the 
maximum tensile strain or stress. 

Let us apply an equal and opposite 
.vertical load of magnitude P at the centroid G 
of the section. A load P at G' can .be replaced 
by a load P at .G and a clockwise bending 

()i . 

moment P . e at G. 

Bending moment, 

Direct load, 

M= Pe 

= P (compressive force) 

I 
Pl 

Fig. 9·1 

Direct stress, f<1. = B~ (which is constant throughout the section) 
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Bending stress on a layer mn, at a distance of x from the neutral layer hf 

/b= P.e . x 
!vu 

fb is positive or negative depending upon the value of x. 

Now 
BDa 

lyy= ~ 

.12 Pe 
jb= .13vs xx 

= O at x=O 
.6 Pe 

= + BJJ2 ,(compressi:ve) at 
D 

x=-
2 

'6Pe . 
= - BD2 r(tens1le) 

.Pe 
=±z 

Z = seation ,modulus. 

']) 
at x= - 2 

Fig. 9·2 shows the stress distribution along the depth of the section, "a'no is given by 
line a'" b'". The stress on the edge bc ,is :bb"' r(comp1:essiv.e) .11i1.d the ,sttess .on ,the -edge ad ,i~ 
aa"' (tensile). · 

Fig. 9·2 

Example 9·1-1. A cast iron column .of 20 cm tl rame.ter ·dn:rres ;a ·v'ertica'l load~f-21'6 
tonnes, at a distance of 4 cm from the centre. Heterni'i'ne 'the .n'la~im'um ·ana mtn:imum ~ trdss 
developed in section, along the diameter passing through the 1pdirft o'f l6'a:ding. 

Solution. 
Vertical load, 
Diameter of section, 

Area ·of :Gt;Qss.se,c~ion, 

P= 40 tonnes = 40,000 kg 
D= 20 cm 

A= -~ (20)2= 314'16 cm2 
4 
P 40,000 

/d = 4 = ' ~14' 19 = 127·32 k~/cm2 (compressive) 

'\.I 
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Eccentricity, 

Bending moment, 

Section modulus, 

Bending stress, 

e= 4cm 

M = P.e=40,000 X4= 160,000 kg-cm 

Z= rcD3 - T X 203 = 78s··A 3 
32 - 32 "t cm 

y 

a __ tjeTG'-:-- b 

--J4cm!.- 20cm 

y' 

,-
I 331 Ot. kg/c m2 

..::L rnP'"""---'--L-L-.l.-.l.-L--....!._ (1- (compressive ) 

7 6 40 kg /c m2 

(Ten s i le) 

Fig. 9'3 

Pe 160,000 _ :1: 203.72 k / i fo=±y= - 18514' -: g cm 

Resultant stress at the edge b 
= 127'32+203'72= 331 '04 kg/cm2 (compressive) 

Resultant stress at the edge a 
= 127'32-203'72= - 76"40 kg/cm2 (tensile): 

Exercise 9'1-1. A cast iron column of rectangµ,lar s~ctipn 20 cm x 3~·1-i:w carries a 
vertical load of 25 tonnes at a point 3 cm away from the CG of the section on a line passing 
through the centroid and parallel to the larger side. Detevmine the maximum stress at the 
edges of the line passing through the centroid on which the point of application of load lies. 

9'2, LOAD ECCENTRIC TO BOTH THE AXES 

[
Ans, 66'66• lcgfcm2 (compressive) J 

16'66 kg/cm2 (compressive) 

Consider a rectangular section B X D of a column subjected t_o a vertical load P at the 
point G', at a distance of e from the centroid G (as shown in the Fig1 9;4 (a)! 'Flie load is 
eccentric to both the symmetric axes XX and YY passing through the centroid. Component 
o~ ~:c~~tricity e along X-X axis is e1 an<l along y. Y axis is e~. 

Direct load on the column= P 
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~ I ; • ' ,. j , . 

' ; 

Area of cross section, A=.B.b 

Direct stress, fd= Jn (compressive) . 

Bending moment about axis YY, 
M1= Pe1 

Section modulus, Z ! yy BD2 

"'= D/2 =-6-

Fig. 9·4 

Bending stress due to M1 along the edge be 

Mi 6 M1 ( . ) = -- - --- compressive Z:. - BD2 

Bending stres$ due to M1 along the edge ad 

.. 

6 M1 ( .1 ) = - -- tens, e 
BD2 

Stress distribution is shown in Fig. 9·4 (b) 

: Bending moment about axis XX, 

M2=P.e2 

Se~tiQ.~ mo.dutus 
J.,, DB2 

Z,.= B/2 = 6 -

Bending stress due to M2 along the edg~ cd 

M2 6 M2 ( • = --= -- - compressive) 
Z,. DB2 

Bending stress due to M2 along the edge ab 

6 M 2 ( •1 ) =- DB2 tens1 e 

Stress distribution is shown in Fig. 9·4 (c). 
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Resultant stresses at the corners 
fa= fa-fo-fo' 
fo= fd+fb-jb 1 

J.=Ja+Jb+fo' 
fd=fa-fo+f•'· 

In this case, the compressive stress has been taken as positive and tensile stress is taken 
as negative, because the columns are subjected to compressive loads or thrusts and materials 
of columns like cast iron and concrete are strong in compression but weak in tension. In 
co:e.crete columns it is desired that load should be placed at such an · eccentricity that the 
resultant stress at any point in the section is only a compressive stress. 

Exatnple 9'2-1. A cast iron column 
of section 20 cm X 30 cm is subjected to a 
compressive load of 10 tonnes acting at a point 
4 cm away from its CG and along a diagonal. 
Determine the resultant stresses at four corners 
of the top face of the column. X 

d C 

~ 
- _20crn 

Solution. 

Vertical load, 
--------t---.J_L 

Q y . ' lb P=lO tonnes 
= 10,000 kg 

Area of cross section, A=20 x 30 
= 600 cm2 

~ 30 c m - ~ 

Fig. 9·5 

Direct stress, " = .!._- lO,OOO = 16'66 k /cm2 
Jd A - 600 g 

Eccentricity about the diagonal ac 

= GG' = 4 cm 

Component of eccentricity along X-X axis, 
4 X 15 . 

e1 = -:r - 3 328 cm 
'V 102+ 152 

Component of eccentricity along Y-Y axis, 

4 xl0 = 2'218cm 
e2= 1102+ 152 

Bending moment about YY axis, 
M1= P.e1 = lOOOO X 3'328= 33280 kg-cm 

Bending moment about X-X axis, 

Section modulus, 

Section modulus, 

M2= P.e2= 10000 X 2'218= 22180 kg-cm 

Zx= l11u = 206x 302 = 3000 cma 
15 

Z - I.,., - 30 x 202 = 2000 . a 
y- 10 - 6 cm :1, 
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Maximum bend'ing stress ciue to M1 , 

fi =± Pe1 _ 33280 =±ll·09 k / 2 0 z. - 30oo· g cm 

Maximum bending stress due to M 2, 

f.' = Pe2 _ 22180 =±ll.09 k / 2 
D ± Z-y - 2000 g cm 

Note that due to M 1 bending stress at b and c will be compressive and equal to 1.1"09' kg/ 
cm2 ; and the b~nding stress at a and d will be tensile and equal to 11 ·09· kcg/cm2• 

Due to bending moment M 2, bending stress at c and d will be compressive· and equal 
to 11 ·09 kg/cm2 and bending stress at a and b will be tensile and eqµal to 11 ·09 kg/cm2• 

Resultant stresses 

fa = r6·66 - 11 "09- J l ·09= -5·52 kg/cm2 

Jo= 16'66+ 11 ·09-11 '09= + 16'66 kg/cm2 

fe=t6·66+ 11 ·09+ 11 "09= +38.84 kg/cm2 

fa = l6.66-ll·o9+ 11·09=+ I6·66 kg/cm2 

(tensile) 

(compressive) 

(compressive) 

(compressive) 

Exercise 9'2-1. A cast iron column of square section 40 X40 cm is subjected to a 
compressive load of 50 tonnes acting at a point which 6 cm from X-X axis and 8 cm from Y-Y 
axis, where X-X and Y-Y are the axes of symmetry passing through the C.G. of the top section 
of the column. Determine the resultant stresses at the extreme corners of the section. 

[Ans. -34'375, +40'625, 96'875, +21 ·875 kg/cm2
] 

9'3. CORE OR THE KERNEL OF A RECTANGULAR SECTION 

Fig. 9'6 shows a rectangular section of 
breadth B and depth D with C.G. located at 
its centre G. Say this is the section of a 
column and a load P is applied at G' at a 
distance e1 from G along the axis X-X. 
Moment about the axis Y-Y. 

M 1=Pe1 

Maximum bending stress due to M 1 

= ± 6P.e1 

BD2 

Resultant stress along·th'e edge, 
P 6Pe1 

ad= DB - BD2 

Fig,9·6 

= direct compressive stress - tensile stress due to bending 

Along the edge be, resultant stress will be compressive throughout. 

If the material of the colum~ is brittl.e which is weak in tension, then it is desired 
that tensile stress should not be de:vel'ep·ed a:nyw.)tere in the section, for. that, 
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or 

direct stress> bending stress 

P 6P.e1 

BD > BD2 

D 
e1< 6 

Similarly we can consider the ap~lication of load on the other side of the neutral 
axis YY, for the resultant to stress be only the compressive stress, 

' D e1 < 6 
In other words, load can be applied anywhere along pq or on the middle third of the 

depth, the resultant stress in no part of the section wi ll be tensile. 

Again let us consider that load is applied at G", at a distance of e2 from the centroid G 
of the section. 

or 

Bending moment about axis XX. 

M2=P.e2 

Maximum bending strese due to M 2 

= ± 6P.e2 

DB2 

Resultant stress along the edge ab 

P 6Pe2 

BD - DB2 

The resultant stress along the edge cd will be compressive throughout. 

If it is desired that tensile stress should not be developed anywhere in the section then 

direct compressive stress> bending stress 

P 6Pe2 

BD> -DF 

,JJ 
e2< 6 

Similarly we can consider the a·pplication of che 1l0ad ,on the 0tiher side of -neutral r.~~is 
XX, and for the resultant stress to be only the compressive stress, 

I B 
e2 <! 6 

or in other words, load can be applied anywhere along rs or on the middle third of the ·breadth, 
the resultant stress in no part of the section will be tensrle. 

Joining the points p, q, r and s gives a di~mond shapeli figure lWhioh is calle'd core-or 
k ernel of the section. If the vertical load is applied on the column on any point inside the 
area marked core or kernel, the ,resultant stress anywhere in the section of the column will be;: 
~ompressive, 
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9·4. CORE OF A CIRCULAR SECTION 

Fig. 9·7 shows a circular section of 
diameter D, of a column carrying, the vertical 
load at G', at a distance of e from the centre 
G of the section. 

Say X-X axis passes, through G and G' 
and axis . YY is perpendicular to XX and 
passing through the centroid of the section, G. 

Bending moment, M = P.e 

TCD3 

Section modulus, Z:c= 32 

Resultant stress at the extreme edge a 
4P 32 Pe 

='11n2 - - r;D"il 

X. 

y 

0 
1 Q. I r:, b 

L~'=12j 
Fig. 9·7 

,, 

While the resultant stress at edge b is wholly compressive. 

or 

or 

- If the resultant stress throughout the section has to be compressive, then 

4P _32 Pe >O 
rcD2 TCD 3 

4P 32 Pe 
TCD2 > TCD3 

D 
e< .. 8 

X 

·,. 

Similarly eccentricity on the other side of the neutral axis YY can be considered and 
we get 

e< 
D 

8 
for no tension in the section anywhere. 

The area covered by a circle of diameter D/4 at the centre is called the core or kernel 
of circular section. If a load is applied on the column on any point within this core, the 
resultant stress at any point of the section will be only compressive. 

Example 9'4-1. A short hollow cylindrical column carries a compressive force · of 
400 kN. The external diameter of the column is 200 mm and the internal diameter is 120 mm. 
Ffnd the maximum ·permissible eccentricity of the load if the allowable stresses are 60 N/mm2 

in compression and 25 N/mm2 in tension. · 

~ ! • j • 

,\ 

:, . 

Solution. 
External diameter, D= 200 mm 

Internal diameter, d= 120 mm 
TC 

Ar.ea· of cross section, A= 4 ( D2- d2) 
·.I.••: 

() 

11 /. 

I, ~ ~ (2002- 1202) = 2'01 X 104 Plll\2 

1, • 
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or 

Compressive load, 

Direct stress, 

P=400 kN=4X 105 N 

p 400 X 103 -19·90 N/ 2 
/a=7 = 2·01 x 104 - mm 

Say the eccentricity of the load=e mm 

Bending moment, M= P.e= 4e X 105 Nmm 

1;(D4-d4) n (2004-1204) 
Section modulus, Z= 32 D = 32 X 200 -

n 13'9264Xl0S 
3 

= 32 x 200 mm 

=0'6836x 106 mm3 

Maximum bending stress, 

M 4exl05 
• 

fb= ± Z =± 0·6836 X 106=±0 585 e 

Resultant stress at extreme layers= 19'90±0'585 e 

Allowable stress in compression=60 N/mm2= 19·90+ '585 e 

e=68'55 mm 

Allowable stress in tension =-25 N/mm2=19'90-'585 e 

_ 25-19'9 8'72 
e- "585 mm 

(compressive) 

Maximum permissible eccentricity is 8'72 mm from the centre of circular section. 
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Example 9'4-2. A short hollow pier 1 '6 m X 1 '6 m outer sides and 1 m X 1 m inner 
sides supports a vertical load of 2000 kN at a point located on a diagonal 0·5 m from the 
vertical axis of the pier. Neglecting the self weight of the pier, calculate the normal stresses at 
the four outside corners on a horizontal section of the pier. 

Solution. Fig. 9'8 shows the section 
of the pier. Vertical axis passes through the 
centroid G of the section. ac is the diagonal 
and GG' = 0' 5 m. 

At G' the load 2000 kN is applied on 
the pier. 

Load applied P = 2000 kN 

Area of cross saction= l '6 2-12 

= 1'56 m2 

. ( 1'64 - 14) 2 Section modulus., Z~= Zy = 12 l'6 

= 5·553G = 0·5785 ma 
~·~ . . 

-. 
Jm 

j_ 
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Eccentricity about YY axis 
Eccentricity about XX axis 
Bending moment about YY axis 
Bending moment about XX axis 

= e1= '5 X'707 = 0'353 m 
= e2= '5 X'707= 1)·353 m 
= Nf1= P X 0'353 
= M2 = P X 0'353 

Maximum bending stress due to M1 

= ± ~ - + 2-~_9·~]= ± 1220'4 kN/m2 z% - 0·5785 

Maximum bending stress due to M2 

= ± ,tvf2 _ _1_2'000 >< 0'353= ±l220.4 kN/ 2 
Z:1 - :::i:: 0'5785 m 

D irect compressive stress, 
. p 

j a= 
A 

Resultant Stresses at Corii'ets 

2000 kN = + 128.l"05 kN/ 2 
l'56 m 

f.= 1282'05 - 1220'4- 1220'4= - 1158'75 kN/m2 

/b = l282·05 + 1220·4- 1220·4= + 1282·05 kN/m2 

f•= 1282'05+ 1220·~+ 1220'4= + 3722'85 kN/tn2 

/d= 1282"05-1220'4+ 1220'4= + '1282'05 kN/m2 

Negative stress is n 'tehsile !itress. 

9·5, WIND PRESSURE ON WALLS A~ CHIMNEY SHAFTS 

}vf~nY. .a.. tirn.es _mas9,nry ~alls and chim1wy shafts are subjected t.o strong wi~d pressures. 
The werg'ht t>1''tlte w~tlt ·Cir the chimney produces compressive stress in t'he ·base while the wind 
pressure introduces bending moment producing tensile and compressive stresses in the base. 
'Fi'g. 9·9·shov.•s a tnatofity w a11 of heiglit Hand rectarrgular section B x D. The 'horizontal wind 
p--~essttte ofint6rts1ty p ·1s ·.atltittg on the face df width B. 

Say density of masonry structure= p 

Weight of the masonry structure, 

W= p BDH 

Area of cross section at the base= BD 

Compressive stress due to the weight 
of the structure on its base, 

. .. (I) 

Total wind force on the vertical face, 

P= pBH 

Distance of C.G. of the wind force 
from the base, 

H 
=2 

Wind 
p res sur e-

H 

Masonry 
wall 

bl 
d N c 

1~!.ect;oc 
~ b 

--l D I-
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Bending moment, 

-Section modulus, 

Bending stress, 

M
= PH _ pBH2 

2 - 2 

BD2 

Z=-6-

- M pBH2 6. jb-±z =±~x Di 

3p H 2 

=±~ 

/ 

Due to bending moment, there will be maximum tensile stress along edge ad and 
maximum compressive stress along edge be of the base. 

",pH2 
Resultant stresses, jR= fd- ·D2 along ~dge ad 

Fig. 9' l O shows a cylindrical chimney of height H, external diameter D and internal 
diameter d, subjected to hqri?:ont~I wind pressur~ p as shown. 

If p is the weight density of the masonry structure, direct stress due to the weight of the 
structure on its base= pH 

Consider a small strip of width R ae, subtending an angle 38 at the centre and making 
an angle e with the axis ac of the section. 

p 

w ind 
pres sure 

Fig. 9·10 

T 
H 

C 

C_X 



8P= Wind force reaching the small strip 

-+ 
= pX R 80.H cos 0 

= pH R 8/J cos 0 

Cmponent of the force normal to the strip 

= 8Pn=8P cos IJ 

pHR cos e . 80 cos IJ= pHR cos2 0 89 

Horizontal component of 8Pn, 

8P1 = 8Pn cos e= pHR cos3 O • 89 

SttlENGTH OF MAtEkIAL~ 

I'· 

Another horizontal component of 0Pn1, 8P2 = 8Pn sin 8. This component is cancelled 
out when we consider a strip in other quadrant (as shown), while the components 8Pn coi 6 
are added up. 

where 

Therefore total force in the direction X-X 

= WPn cos 8=2pHR cos3 IJ • 8/J 

Integrating over the whole exposed surface from (J = 0 to 90°. 

1r/2 

Total wind force, . P = J 2pHR cos3 d(J . 

0 

2 
= pDH. T =kpDH 

k = coeflicient of wind resistance 

DH= projected area of the curved surface 

CG of the force lies at a distance of H/2 from the base. 

Bending moment due to wind force, 

Section modulus, 

Bending stress 

M = PH 
2 

= pDH 1_ x!!.... - pDH2 
3 2 - 3 

n(D4-d4) 

Z= 32D 

M =±z· 
Generally the coefficient of wind resistance is taken as o·6 for cylindrical chimneys. 

Example 9'5-1. A 10 m high masonry wall of rectangular section 4 m x 1 ·5 m is 
subjected to horizontal wind pressure of 150 kg/m2 on the 4 m side. Find the maximum and 
minimum stress intensities induced on the base. 

Density of masonry is 2200 kg/m3• 
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Solution. 
Height, 
D, depth 

B, Breadth = 4 m 
H= lOm 

= l'Sm 
Area at tho ba'le 

Weight of the masonry structure 
= pBDH= 2200 X 4 X 1'5 X 10= 132000 kg 

Direct compressive stress at the base due to weight, 

fa = 132000 = 22000 kg/m2 
6 

Wind pressure, p = 15'() kg/ m2 

Wind force on the vertical face of side 4 m, 

P= pBH 
= I 50 X 4 X l O = 6000 kg 

Distance of CG of P from base, 
H 

= 2 =5 m 

PH 
Bending moment, M= -

2
- = 6000 X 5= 30000 kg-m 

Section modulus, 

Bending stress due to bending moment, 

M 
fb=±z: 

- 3o,ooo = 20 000 k / 2 
- 1·5 ' gm 

Maximum stress = 22000+ 20000=42000 kg/m2 (compressive) 

Min imum stress = 22000- 20000= 2000 kg/m:i (compressive). 
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Example 9'5-2. A masonry chimney 20 m high of uniform circular section · 5 m 
external diameter and 3 m internal diameter has to withstand a horizontci l wind pressi:re of 
intensity 200 kg per square metre of the projected area. Find the maximum and minimum 
stress intensities at the base. Density of masonry structure=2100 kg/m•. 

Solution. 

Height of the chimney, H = 20 m 

External diameter, D= 5 m 

Internal diameter, d=3 m 

Density of masonry, p= 2100 kg/m3 

Direct compressive stress due to self weight on the base of the chituney, 

/a=pH= 20 X2100=42000 kg/m2 

Wind pressure, p=200 kg/m2 
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Projected area, 

Wind force, 

A=DH=5 X 20=100 m2 

P=pA= 200X 100=20000 kg 

Distance of CG of the wind force from base 

= 1 =!Om 

Bending moment, 
PH 

M= 2 = 20,000x 10=200,000 kg-m 

. StRBNGTH OF MATijRJI\LS 

Section modulus, Z = _!"C - (D4-d-i) - ~ (54-34) - 10'68 m3 
32 D - 32 5 -

Bending stress, I'. = ± M _ _ ± 200,000 kg/m2 
Jb Z - 10'68 

= ± 18626'6 kg/m2 

Maximum stress intensity, 

f,naz =fd+/D = 42000+ 18726'6=60726'6 kg/m2 

Minimum stress intensity, 
/vi.cn = /11- /b = 42000-18726'6=23273'4 kg/m2• 

Exercise 9·5-1. The section of a masonry pier is a hollow rectangle, external 
dimensions 4 m x l"2 m and in~en~al dimens~ons 2·4 m >,: 0·6 _m. A horizontal thrus't of 3000 kg 
is exerted at the top of the pier m the vertical plane b1sectmg the length 4 m. The height of 
chimney is 5 m and density of the masonry is 2250 kg/m3• Calculate the maximum and 
minimum intensity of stress at the base. (Ans. 28142 kg/m2, - 5642 kg/m2] 

Exercise 9·5-2. A cylindrical chimney shaft of a hollow circular section 2 m external 
diameter and I m internal diameter is 25 m high. Given that horizontal intensity of wind 
pressure is 100 kg/m2 ; determine the ~xtreme inte11sities of stress at the base. Take the 
coefficient wind resistance as 0'6. Density of masonry= 2280 kg/m3

• 

(Ans. 107930 kg/m2, 6070 kg/m2, both compressive] 

Problem 9·1. A fl.at plate of section 20 mm x 60 mm placed in a testing machine is 
subjected to 60 kN of load along the line AB as s_hown in Fig. 9· 11. An extensometer adjusted 
.along the lini:: of the load recordeq an extens10n of 0'078 mm on a gauge length of 150 mm. 
Determine (i) maximu.m and minimum stresses set up, (ii) Young's modulus of the material 
of the plate. 

Solution. 

Section of the plate, 
60 k N 

8 60kN 
= 20 x 60 -;;- - --
= 1200 mm2 

Eccentricity of the load, = 48- 30 
= 18 mm 

60 mm 
48 mm 

...___ _ __.__ _ __J_l 
Bending moment, 

Section modulus, 

Fig. 9·11 

M= 60 x IOOO X 18 Nmm= l08 X 104 Nmm 

bd~ 
Z=-

6
- where b= 20 mi;n, d= 60 mm 
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or 

= 20 x ~o x 60 = 12000 mm3 

Stress due to bending, jb= ± 1 
= ± 1

~~~0~
04 

= ±90 N/rrnn2 

Direct stress, r = 60 x 1000 =-50 N/ 2 
.1d + 20X60 mm 

Minimum stress =fa+/b 
= -50+90= 40 N/mm2 (compressive) 

Maximum stress = /d + /o 
= -50- 90= -140 N/ mm2 (tensile) 

Now stress along the line of the load 
18 

= -50-fo X 30 

= -50-90 X ~ =- 140 N/mm2 (tensile) 
30 

Say Young's modulus = E 

Then extension along the line of the load 

104 = y x gauge length 

So 
l04 x 150 

E 

104 x 150 = --£-- = O·o78 mm 

0'078 

Young's modulus, W4 x l~ • 
E= 0.078 = 200,000 N/ mm" 

Problem 9·2. A large C clamp is shown in the Fig. 9· 12. As•the ·screw is ,tightened 
down upon an object, the strain observed in the vertical direction at the point B is 800 micro
strain. What is the load on the screw ? 

E=2X 105 N/mm2. 

Solution. The section shown is symmetrical about the axis X-X. CG lies along X-X. 

13X3X 1·5 + 2 x 15X8 

A.rea of ihc; $ection 

39+30 

_ 5s·s+240 = 4.32 - 69 

x1 =4'32 cm 

x2= 13-4'32= 8'68 cm 

= 30+ 39= 69 cm.2 
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Moment of inertia, 

1 - i 3 x 3a +13x3 (4·32-1·5)2+2x1·sx 
103 

u,- 12 12 

+ 2 x 1·5x 10 (8·6s-s·o)a 

= 29"25+310'1436+ 250"00+ 406'272 

= 995"66 cm4 

a 

..._ ____ ., 
Sec t ion a t a-a 

Fig. 9·12 

Distance of the point B from neutral axis, 
x= 8'68-3=5"68 cm 

Say the load on the screw= P Newtons 

Distance of CG of the section from the load line, 
e= 50+4"32= 54'32 cm 

Bending moment on the section, 
= P.e Nern 

Direct force on the section, 

On the point B 

Resultant stress, 

Strain at the point, 

= P (compressive) 

/a= direct stress is compressive 

/e= bending stress is also compressive 
p 

jtJ= 69 N/cm2 = 0"0145 P 

Ji
= M. x = 54·32. PX5 '68 _ 0.3098 

b l yy 995"66 - P 

f• =J<i+Je= 0·3243 P 

E= jR = 800 X 10-o 
E 

0 3243 P _ = $ =800 X 1 Q 6 w4ere ~ = ~ X 107 N/crn,9 

., 
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'So o ·3243 p = 800 10- s 
2 X 107 X 

Load on the screw, P = 
80~.;;4~ IO = 49337 N = 49'337 kN. 

. . Problem 9·3. A rectangular plate 1 cm thick with a hole of 5 cm diameter drilled 
m it as shown in the Fig. 9'13, is subjected to an axial pull P = 4500 kg. Determine the 
greatest .and the least intensities of stress at the critical cross section of the plate. 

A t _____ r ·c:i p 

-w-r 15cm F p . 

'\ 
K 

( a l 
t 

5cm di o 

Fi ; . 9'13 

icm 

o1 rc- Y
7

='.l 5 c ms. 

..- 1 5cms. 
5c T- v

1 
=-6 5 cm 

1 - - t 
·,--A B 

Cr 1t 1c o 1 se c t i o n o t, t he p l a t e 
a l o ng K K 

( b ) 

Solution. For locating centroid al axis, take moments of areas about AB, 
1 x I x o·5+ 4 x I x 8 

Yi= 1+ 4 

Moment of inertia, 

32'5 
= "s= 6'5 cm 

J2= 10- 6'5= 3'5 cm 

/ ,,., = ~ (4)
3 

+ 4 x (3'5 - 2)2+ l x (t)s + t x (6'5 - 0·5)2 
12 12 

= ~~ + 4 X 2·25+ 36 

605 4 
= )2 Cm 

Area of cross section, A= l x 1+ 4x I = 5 cm2 

Axial load, P= 4500 kg (tensile) 

Eccentricity, e=6·5-5'0= 1·5 

Maximum stress along the edge, 

AB= _ _!_ . P.e. Y1 
A Tu 

_ 4500 _ 4500 X 1 ·5 X 6.5 X 
12 - - 5 605 

= - 900- 870 

=:=a= - 1770 k~/cm2 (tensile) 



Minimum stress along the edge, 

__ 4500 4500 x 1·5 x 3·5 
12 - 5 + 605 X 

= -909+468= -432 ·kg/cm2 (t~nsile). 

Problem 9·4. A short column of hollow circular section of internal diameter d and 
external diameter D is loaded wit4 a s;ompressive load W. Determine 1the maximum distance 
of the point of appli,ca.tion of the load from the centre pf the section such that the tensile stress 
does not exist at any point of the cross section if .P= 1 ·5 d. 

Solutiqn. Area of cross section, 

n A=- (D2-d2) 
4 

Moment of inertia, 

I=_!!_ (D'-d4 ) 
64 

Say P is the point farthest f; pm G 
(centre of the section) where the load acts ; 
eccentricity e=distance GP 

Stress at the point D = _!f:_ + W.e. X D 
A I 2 

W W.e D =--x--1- ·2 St;e_ss at !h,~ point C 

C 

Fig. 9·14 

(compressive) 

t 
-0 

To satisfy the condition that tensi!~ stress sh.ould 11-ot occur at any point of the section, 

.W _ W.e.D ~O 
A 2I ~ 

I e. D 
or -,r=21 

4 e . D Q4 
rc(D2 -d2) = 2Xit X {l)4-,iJ.4) 

D2+f D2 13 
- SD = T;.D, or 

Problem 9·s. A shoft c.as! j,:-op. coJumn 1has an external diameter of 20 cm. and interna· 
diameter of 16 cm, the distance between the centres of the outer and inner circles due to th€ 
displacement of the core during casting is 6 mm. (\. !oad of 40 tonnes acts through a vertica 
centre line passing through the centre of the outer c1ral~. Calculate the values of the weates 
f\P:d Jea~t 9ompresstv~ stre~~Y~ i11 a ~ori~o.ijHl:l WO§l? ~~~H;m of th~ 9olumn, 
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Solution. 

C1=Centre of outer circle 

C2 =Centre of inner circle. 

Dia. 'of outer circle=W cm. 

Dia. of irinei' circle= 16 cm. 

Taking moments of areas about AA', 
to locate C.G. of the section, 

So 

_!:.. X(20)2 X 10-~(16)2 X 10"6 
4 ...... _ 4 . 

. 'It (20)2 -2!... (16)2 

4 4 

4000-2713"6 = 8'93 
400-256 cm. 

GC1 =10-8"93=1'07 cm, 

GC2= 10'6-8'93 = l '67 cm. 

Moment of inertia about Y-Y axis, 

11111=[ ~ (20)4 + ; (20)2 (G C1)2 J 

Fig. 9·15 

- [ 
6
~ x (16)4 + % (16)2 (G c2)2l 

=[: X 104 + toO i (1'07)2 J-[1024 1;+ 64 ff (1'61)2J 

= 4436 cm4
• 

Area of cross section, A= .!:. X (20)l - ~ X(t<W= ll3'2 cm2 4 4 

Vertical load at the point C1, W= 40 tonnes 

Eccentricity, e=G Ci:= i·o1 cm. 

Greatest compressive stress, 
W We =7+-1- XX2 

YY 

40 40 x 1·01 x 11·0'7 
= 113·2+ 4436 

= 0·353 + 0· 107= 0'460 torttre'fcm.2 

Least compressive stress, 

W W.e 
= -x- Ty; • X1 
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=0'353-0 ·os6 = 0·267 tonne/cm 2. 

Pfoblem 9·6. A steel rod 2 cm diameter passes through a copper tube 3 cm ' internal 
diameter and 4 cm external diameter. Rigid cover plates are provided at each end of. the tube 
and steel rod passes through these cover plates also. Nuts are screwed on the projecting ends 
of the rod as so that the cpver plates put pressure on the ends of the tube. Deterpline the 
maximum stress in the copper tube, if one of the nuts is tightened to produce a linear strain 

of 10~0 ii;t the rod. , ) · ·, 

(a~ ~f the rod is concentric with the tube. . · . 
(b} !if the centre pf the rod is 5 mm. out of the centre of the tube. 
Gi~en: E,teei=2100 tonnes/cm2 

I 
i . E •• ,,,.,= 1050 tonnes/cm2 

Solution. (a) Strain in the steel rod, €s = 
1
~

00 
tensile, by tightening the nuts the 

steel rod will be stretched. 

Modulus of elasticity of steel, E,= 2100 'tonnes/cm2 

I' 

I 

Fig. 9·16 

Stress in steel, /, = €,XE, 

= 
1
~
00 

x 2100= 2· 1 tonnes/cm2 (tensile) 

Area of cross section of the steel rod, 

Pull in steel rod, 

For equilibrium, 
Pull in steel rod 

A,= 1!_ x (2)2 = 3· 14 cm2 

4 

P, =f ,.A, 
= 2· 1 X 3· 14= 6'6 tonnes. 

= Push in copper tube 
f 0 xA. 

Area of cross section of the copper tube, ; 

A.= : (16 - 9)=5'5 cm2 

6'6 
Stress in copper tube, /.= ~ = 1·2 tonnes/cm2 (compressive) 

'I 
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tb) When the centre of the rod is 5 mm .out of the centre of the tube. 
Moment of inertia of the tube section, · · . , ;:, 

0 -u 
E· 
u 

"' 

11111 = ~ (44 -34 )= 8'59 cm4 64 .. 

0 5cm 

Fig. 9 ·17 

Eccentricity of the load P., e= 0'5 cm. 
Maximum bending stress in tube, 

/' I - !..:!!_ ·( •~ ) 
J O - I"" . 2 

0 - 0 u -
E D 

V E ....... 
u 

" 

t 

· 6'6 X0'5X2 =± 8.59 ±0'768 tonne/cm2 

Therefore maximum stress in the copper tube 

·a 1 

' ' 

' 

" 

._ .. 
;= 1 ·2 + 0·768= l '968 tonnes/cm 2. (compressive) 

, . 
Problem ')'7. The cross section of a short column is as shown in the Fig. 9' 18. A 

vertical load W tonnes acts at the point P. (a ) Determ ine the value of W if the maximum stress 
set up in the cross section is not to exceed 750 kg/cm2 (b) Draw the stress distribution 
diagram along the edge AD. . ,. · 

Solution. (a) The section is symmetri
cal about the X-X axis, the C.G. of the section 
lies at the point G, therefore, 

Vertical load 

Eccentricity, 

8 X 83 rc(4)'4 

J,..,~ 1 2- - ~ 

= 328'77 cm4 

= W tonnes 

e=.1 cm. 

Bending moment, M= W. e 

= WX 1 tonne-ems. 
~. • I ! 

D l 

Bern 

J~ 
-A~ 8(m ---JB · ,,. 

Fig. 9·18 
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Area of cross section, A=8 x 8- -
4 

-=51 '44 cnt1 

Greatest stres! along the edge 

W W.e 
AB= A + I.e . Yi 

w W x l x 4 
= 51'44 + .328'77 

= 0'75 tonne/cm3 

W= 23'72 tonnes. 

(comp'ressive1 

(b) Stress distribution along AD 

Considering origin at the centre and y t ct be + v! downwards. 

Stress at y=O, /o=23 '72 + 23.72 ~ Q-
A I •• 

Stress at y= 1 cm, 

Similarly stress, 

= .,. • : • Stress at y _:;i eni, 

Stress at y= 3 em, 

Stress a.f y=4 cm, 

,, .. 

23'72 
= 51·44 +o 

= 0'462 tonne/cni2 

23'72 23 '72 X 1 
Ii= 51'44 + - 328'77 

= 0'462+ 0·012-= 0·53-4 tenne/cma 

. 23'72 ~ 1 
f-1=0 462 - 328''77 

= &462- 0'072=ti'39 tonne/cma 

"=0.462 + 23:72x2 
Jt 328'77 

= 0'462+0' 144= 0'606 tonne/cmi 

/_2=0'462-0'144= 0'3Ut tonile/cma 

· 23'72X3 
fs= 0'462 + 328'77 

= 0'462+ 0·216= 0'678. tonne/cmil 

/_8= 0''462-0'216=0'246 to:t!ne'/em2 

23'72 X4 
/,=0'462+ 328'77 

= 0'462+ 0'288= 0'75 tonne/cmi 

/-,=0'462-'288 

= 0' 114 tonne/cffii (~ohipt'essiv, \ 

ti 

• t ' r~ . 
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0 17( 

D 

A~---' 
· o 7SO t /c m'· 

Stress o ,s t r , D•,t,o() 
along AO 

Fig. 9' 19 

Problem 9'8. The crosssection of a short cq}µµm is as shown in tl}.e Fig. 9'20. A 
vertical load of 15 tonnes is applied at the point P. Determine the stresse, at the ·corners A, 
B, Cand D. 

Solution. The section is symmetrical about X-X axis, therefore 

Y1 = J2= ±6 cm 

To locate tfle centroid of the seqtion, take moments of areas about the edge BC, 

12 x 3 x 1 ·5+ 2 x 1o x·2·5 x (5+ 3)+ 12 x 2 x (13+ 1) 
36+50+24 

1- ·-

i X 

l 
~2 

cm 



and 

Moment of inertia, 

Eccentricity, 

' ' 
• Area· or'cross section, 

Direct stresses 

Compressive load, 

Area, 

79 
= ucm 

79 86 
x1 = 15- 11= 11 cm 

15X )23 10X73 
l zz= 

12 
- -

12
- (because of symmetry) 

= 1874'17 cm4 

1 = 2x2·sx103 +2 2.5 10 ( 8- 79 . )2 12x33 

yy 12 X X 11 + 12 

+ 36 (~- 1 ·s )2+ 12x2s + 24 (Ji__ l )2 
11 12 11 

= 416'67+40'90+ 27+ 1162+ 8+ 1116 
= 2770'57 cm4 

e .. =~-6= 
20 

cm 
11 11 

ey=6- 4= 2 cm 
A = l 10 cm2 

W= lS tonnes 
A= l 10 cm2 

Direct stress at all the points, 

I' _ 
15 ~

1
~
000 

= 136'4 kg/cm2 (COtnpreSSiV<!) 

Bending stresses 

(i) Considering couple, 

M1=W1 e" 
Compressive stress at A and D 

W .e .. 
=-/ -XX1 

:,y 

15000 X 1'818 86 k / 2 
= 2770'57 x 1T g cm 

= +76'9 kg/cm 2 (compressive) 

Tensile stresses at the points Band C, 

(ii) . Considering couple, 

W. e~. X2 

1-.y 
15000 X l '818 X 79 

= · 2110·57 x 11 =-70·7 kg/cm2 (tensile) 

M ij= W ~r1 
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Compressive stresses at A and B 

W. ey 
= --,;:-- . y 1 

Tensile stresses at C and D 

= 

15000 X 2 X 6 _ . 
2 1874' 17 -+% O kg/cm 

w. Cy. Y 2 

fxx 

l 5000 X 2 X 6 . , . 
1874

.
17 

= -96 0 kg/cm- (tensile) 

Resultant stresses at the corners, 
/A= 136"4 + 76'9+96'0= 309'3 kgf/cm2 (compressive) 

fn = I 36·4-70'7+ 96·0= 161 '7 kgf/cm2 (compressive) 
Jc= 136'4+ 10·7- 96'0 = - 30'3 kgf/cm2 (tensile) 
jD= 136·4+ 76'9-96'0= 117'3 kgf/cm2 · (compressive). 

Problem 9·9. A rolled steel I section, flanges 15 cm wide and 2·5 cm thick, web 20 cm 
long and I cm thick is used as a short column, to carry a load of 80 tonne. The load line is 
eccentric, 5 cm above XX and 3 cm to the left of YY. Find the maximum and minimum 
stress intensities induced in the section. · 

Solution. Area of cross section of I 
section, 

and 

= 2 x 15 x 2·5+ 2o x 1 
= 95 cm2 

Moment of inertia, 

In= 15 ~ (25)~ _ 14 x t20)3 

12 12 
= 8565 cm4 

Moment of inertia, 
2x2·5 x (15)3 2o x (IP 

lyy 12 + - -12--

= 1407 cm4 

Eccentricity, ex==3 cm 

ey= 5 cm 

Vertical load, W= 80 tonnes 

Direct stress, jd at any point, 

80 
= 95 = + 0·842 tonne/cm2 

MatCi~µpi pending stress (compressive) will occur at the edge (4) of the section , 

{4 = !_:.!.!._ X 7·5+ p :_<'~ X 12 '~ 
, lu I.,11 



stfttNCirl-t at MAfEitALs 

-. 80;4~;1·s + 80x8ss;s12·s = t·28+0·534 

= 1 "864 tonnes /cm2 

Maximum bending stress (tensil·e) will o'ccur at the edge (2) of the section, 

J~= 1 "864 tonnes/cm 2. 

Maximum resultant stress in the section, 

= 0"842+ t ·864=2'706 tonnes/cm2 (compressive) 

Minimum resuitant stress in the section, 

= 0'842-1 "864= - 1 ·022 tonnes/cm2 tensile). 

Proble1;11 9·io. A cylindrical chimney shaft 20 m high is of hollow circular section 
2·4 m externat diameter and I m internal diameter. Tl\e intensity of the horizontal wind 
pressure varies as x213 where xis tne height above the ground . Determine the maximum and 
minimum intei:isities of stress of the base. Given then 

(I) Density of masonry structure is 2240 kg/cm3 

(2) Coefficient of wind hsistance is O·o 
(3) Wint\ press'ure At :i freight of 27 m is 180 kg/ni2• 

Solution. Say the intensity of 
I pressure, 

p -:- c x21a 

where c is any constant 

At x= 27 m, p= 180 kg/m2 TCJ 
or 

So 180= cX272 ' 3 -= cX9 

c= 20 

So the pressure at any height 
p = 20 x 2 13 

Let us consider a small projected area 
of thickness Sx. 

Area 
Pressure 

'8a = 2·4 'Bx 
p= 20 x 2 / 3 

Force on the area, 
'8P= kp '8a = 48 kx2ts dx 

20m 

where k = 0"6 

Moment of the force about the base, 
8\-{='BP. x=28·s x5 /3 dx 

20 20 

J [ 28"8 1-M = 2s·8x613 dx= 8/ 3 Xx8
'3 . 

0 O 
Total pioment 

p win d pressure 

Fig. 9·22 



20 

= j 10·~ x 8 i ~ I= 1~ X 298 13= lQ 0 8 X 2946 kg-m 
0 

Section m~q.~!~s. 

Bending stress, 

Density of masonry, e= 2240 kg/1,11 3 

Height of the chimney, H=20 m 

Direct compressive stress on base due to self weight 
= pH=2240 X 20=44800 kg/1112 

Maxjmµm ~tre~s at base = 44~00+24176"9 = 68976"9 ~g/m2 
=6°891 kg/cm2 (compressive) · 

Minimum stress at base =44800-24[ 7.6"9=20623· 1 kg/m2 
= 2'062 kg/cm2 (compressive). 

Problern 9·11. A tape~ing r;p.imney of hol\o-y _circular section is 45 m high. Its 
external diameter at th~ basy l& 3·6 m anq at thy top!~ rs 2·4 m. lt is subjected to the wind 
pressure of 220 kg/1112 of the projected area. Calculate the overturning moment at . the base. 
If the. weight of. the chimne:y _is 600 tonn~s an?. the ii1t~1:pf.!.l pi~m~ter at th~ ·l,),~~ is 1 ·2 m, 
deternHJHl ~9~ m~~!ffiUffi and m1~1murµ st-ress m~en,&1t1e~ at the base. 

S?l~t~on. 

B~se. External diameter, 
=3·6 m 

Internal diameter = 1 · 2 m 

Area of cross section 

= ~ (3"6 2
- l '23

) 

= : (11°52) 

= 9°048 m2 

Weight of the chimney, 
= 600 tonnes 

Direct compressive stress at base d1,1~ 
to self weight, 

r - 600 = 67"31 T/m2 

;d - 9°048 

Wind pressure, p= 220 kg/m 2 

Projected area of the exposed surface, 

=( 3·,~±14 
) x45 = 135 m2 

m~ 
/ )Sm 

Bps_e s.ectt0r:t 

Fig. 9· 3 
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Total force due to w·ind, 
·P = 220 x 135= 29700 kg=29"7 tonnes 

Distance of the centroid of the trapezoid abed from the base, 

2·4x45x-¥+2x( 
3·1;i·4 

) x 45X15 

2·4x45+ 2x o·\x 45 

2430+ 405 2835 = 21 
- 135 135 m 

Bending moment, M = 29"1 X 21 = 623·7 tonne-metres 

Sectio n modulus of base, 

Z = ~( D4.-d4_) - ~ x ( 3·64._
1.24 ) - 4·524ma 

32 D - 32 3·6 -

M 623"1 
Bending stress, Jo = ± Z = 4.524 = 137"86 tonue/metre2 

Maxi mum stress at the base, 
=fa +fo = 61·31 + 137"86 
= 205' 17 tonne/metre2 (compressive) 

Mit1imum stress at the base, 
= fa- /0 = 67"31 - 137"86=-70·55 tonne/metre2 (tensile). 

Problem 9·12. A masonry pillar D m in diameter is subjected to a horizontal wind 
pressure of intensity p kg/m2 • ff the coefficient of wind resistance is k, prove that the 
maximum permissible height for the pillar so that no tension is induced at the base is given in 
metres by · 

py;Dz 
H = · -- where p= density of masonry ." 

I6kp 

Solution. 

Density of masonry = p kg/ m3 
Say p~rmissible height = H m 
fa; direct stress due to self weight 

Intensity of wind pressure 
Coefficient of wind resistance 

! 

Diameter, of exposed surface 
Wind force 

= pH kg/1112 

= p kg/ m2 

= k 
= D metre 

P= kpHD 

Distan~e Qf C.G." of wind force from the base, 
H 

= 2 
W, Bending moment due to wind force, 

PH kpDH2 
= - 2-= 2 

•, I , r1 { 

i. 
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or 

nD3 
Z. section modulus at the base = 32° 

M kpDH2 32 
Bending stress, b = - L -=---,-- x -na 

...J._ Z 2 .• 

16 kpH2 

·-...J... ---:---- --· rtD2 

For the condition that no tension is induced at the base, 
fa'";it--/b 
H> 16 kpH2 

P nD2 

H~ prr.D2 
I6 kp 

p .,,D2 
· or the maximum permissible height is equal to 

16 
kp · 

SUMMARY 

I, A short column of rectangular section with section modulus, Zx = BD2/6 and Z" 
DB2/6 carries the load P with eccentricity e., or e y, the resultant stresses in the extreme layers 
of the section will be 

fR = 2_ ± p. ex 
BD Z,, 

where Z = In , Z = f xx 
x D/2 y B/2 

B Pey 
fR=-±-· 

BD Zx 

2. A short column . of circular cross section of diameter D supports a load P at on 
eccentricity e from its axis. The resultant stresses developed in the extreme layers of the 
section will be 

3. A short column of rectangular section Bx D, supports a load P eccentric to both 
the axes XX and YY. If the eccentricities ahout XX and YY axes are e:11 and ey and section 
modulus Zx=BD2/6 and Zy= DB2/6 then stresses developed at the four corners of the section 
are (depending upon the location of the load P) 

P Pe.. Pey 
Ji, 2; s, 4= BD ±-zx - ± Zy 

i.e., f _ _!____ + 1

Pex _ Pey 
1 - BD Zx Zy 

/
2
=_J!__ + !ex + Pe> 

BD Z,, Py 

f: _ _!_ Pe" + Pe, 
3 - BD - Z x Z y 

! 4= :n--1" - ~ y • 
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4. Core or the kernei of a section is a small area located around the centroid of the 
section of a column and if any vertical load is applie9, oµ the colµq11~ within this ~rea, there 
will not be any tensile stress developed any where in the section. 

5. Core or kernel of a rectangular section B x D is a rhombous with its centre at the 
C.G. of the rectangular section and the two diagonals of the rhombous are 

B/3 in the direction of length B 
D/3 in the direction of depth D. 

6. Core or kernel of a circular section of diameter D is a circular area with its centre 
at the C.G. of the section and its diameter equal to D/4. 

7. If a column is of any section ; square, l19llow sqMare, rectangular, hollow rectan
gular, circular solid and hollow and p is the density of the material of the column, then direct 
compressive stress due to self weight developed at the base of the column will be pH, where 
H is the height of the column. 

8. For a wall of rectangular section BX D, wind pressµre p acting on f~c.:e of l;>rtar;ith 
B, stress due to bending moment created by tlw wind pressure will be ±3pH2/D2 at the base 
of the wall. 

9. For a chimney of hollow circµlar ~ecfion, outer diameter D, inner diameter d, 
height H. 

Stresses at the base of the chimney due to bending moment created by wind pressure p, 

jb=± 1 
where 

~ (D4-d') 
Z= 32D 

PDH2 2 ·r ffi · f · d · M = -
3
- 1 coe c1ent o wm resistance= 3 · 

MP~ T1P~~-C~OJCE Q.UESTIQNS 

1. A short cast iron column of 20 cm diameter is s.µbjected to a vertical load P passing at 
a distance e from the CG of the section. What is the maximum value of e if no tensile 
stress is developed any where in the section · 

(q) 4 0 _µ.ffi (b) 3 ·o Y111 
(c), 2·5 cm (d) 2·0 cm. 

2. A short column of square section of the side 20 cm carries a ver,tical load of 40 kN at a 
distance of 2 cm from its CG along ope sym_metric axis. The maximum stress developed 
in the section is 
(a) 240 N/mm2 

(c) 80 N/cm2 

(b) 160 N/cm2 
(d) Noµe of t)l~ above. 

3. A short cast iron column of cirpular s~9tion with area equal to 40 cm2 subjected to a 
thrust 0"40 tonnes. Thrust is applied at a point 2 cm away from the centroid on the 
axis passing through the centroid. The section m~dulus ?f circular section is 89 C!11

3
• 

The maximum stress at the extreme }ayer on the Y-Y axis passing through the centroid 1s 

(a) 20 kg/cm2 (b) 15 k&fcm2 

(c) 13 kg/em~ (d) No9,e .of tp._e above. 
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4. A hollow cast iron column of circular section carrries a vertical load at a distance of e 
from the centroid of the section. The section modulus is 1 ·2 m3• The maximum and 
minimum intensities of the stress developed in the section are 42000 kg/m2 and 12000 
kg/m2 (both compressive). The magnitude of the bending moment on the section is 

(a) 42000 kg-m (b) 36000 kg-m 
(c) 18000kg-m (d) 14400kg-m. 

5. A short column is of hollow square section with outer side 2 a and inner side a. A load 
P acts at a distance of a/4 from the CG of the section, and along one diagonal. The 
maximum and minimum stresses at the corners of the section are 48 kN/m 2 and - 12 
kN/ m2• The bending stress introduced at the extreme corners of the section, by the 
eccentric load is 

(a) ±24 kN/m2 
(c) ±12 kN/m2 

(b) ±18 kN/m2 
(d) None of the above. 

6. A short masonry square section I m side is i O m high. Wind pressure of 200 kg/m2 

acts on one vertical face of the column. The weight density of masonry is 2000 kg/ms. 
The greatest stress acting at the base of the column is 
(a) 80 tonnes/m2 (b) 40 tonne/m2 

(c) 20 tonnes/m2 (d) None of the above. 

7. A masonry chimney of hollow circular section is 10 m high. Outside diameter of 
chimney is l m and inside diameter is 0·5 m. The compressive stress on the base of the 
column due to its own weight is given by (if the weight density of masonry is 2200 kg/ms). 

(a) 44 kg/cm2 (b) 2·75 kg/cm2 

(c) 2·2 kg/cm2 (d) 1'65 kg/cm2. 

8. For a cylindrical chimney of hollow circular section subjected to wind pressure, the 
coefficient of wind resistance for calculating the total wind force on the chimney is 
generally taken 

(a) 0'3-0'5 
(c) 0'6-0·75 

(b) 0'45-0'6 
(d) 0·15-0·90 _ 

9. A short column of circular section of diameter D supports a load P at an eccentricity e 
from its axis. The maximum and mirlinium stresses developed in the section are 8 kg/cm2 
and 3 kg/cm 2. If the eccentricity is doubled and load remains. The same, the maximum 
stress developed in the section will be 

(a) 10·5 kg/cm2 
(c) 7·5 kg/cm2 

(b) 8"5 kg/cm2 
(d) 6·0 kg/cm2 • 

10. A cylindrical chimney of hollow circul.ar cross section is subjected to wind pressure p. The 
height of the chimney is H metres and density of masonry is 2000 kg/m3• The maximum 

and minimum stresses developed at the base of chimney are 65000 kg/cm2 and 15000 
kg/m 2

• If the intensity of wind pressure increases by 50%, the maximum stress developed 
at the base will be 
(a) I ,30,000 kg/ro2 

(c) 77,500 kg/m2 

I . (c). 

Q. (a). 
2. (b). 

7. (c). 

(b) 1,19,000 kg/m2 
(d) 70,000 kg/ni2. 

ANSWERS 

3. (a). 

~. (c), 
4. (c). 

9, (a). 
5. (d). 
io. (c). 



456 

EXERCISE 

9'1. A flate plate of section 3 cm x 
8 cm is placed in a test ing machine and is 
subjected to 12 tonnes of force along a line as 
shown in Fig. 9'24. An extensometer adjusted 
a long the line of force recorded an extension 
of o· 11 8 mm on a guage length marked of 
200 mm. Determine 

STRENGTH OF MATERIALS 

111 f 'lm f' __, __ T _ _ _ -
5 cm 

Fig. 9·24 

(a) maximum and minimum stresses set up in plate 

(b) Young's modulus of the materia l of the plate. 
[Ans. (a) 875, 125 kg/cm 2, (b) l '006 X l 06 kg/cm2) 

9·2. A cantilever hydraulic crane is required to lift a load of 5 tonnes as shown in 
F ig. 9'25. The single rope supporti ng the load passes over two pulleys and then vertically 
down the axis of the crane to the hydraulic apparatus . The section of the crane at CD is 
also shown . Determine the maximum and minimum stress intensities in the section. 

[Ans. l ' 5235 toune/cm2 (compressive), - l '4865 tonne/cm2 (tens ile)] 

·5 Tonne s 

Fig. 9·25 

9'3. A rectangular plate 2 cm thick containing a square hole of 2 cm side as shown 
In Fig. 9'26, is subjected to an axial pull of 3 tonnes as shown. Determine the greatest and 
least tensile stresses at the critical section of the plate. 

T 
4cm 

3_..T --..t - - _ Lt 
le m 

- 4 

[Ans. 388"06 kg/cm2, 91 '81 kg/ cm2] 

)T 
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9'4. A short column of hollow square section of inner side a and outer side A is 
loaded with a compressive load W. Determine the maximum distance of the point of appli
·Cation of the load . from the CG of the section, along the diagonal so that the tensile stress 
does not eKist at any point of the cross section if A= l '4 a. [Ans. 0' 178 A] 

9'5. A short cast iron column has an external diameter of 24 cm and internal dia
meter of 16 cm, the distance between the centres of the two circles due to the displacement 
of' the core during casting is 1 cm. A load of 100 tonnes acts through the vertical line passing 
through the centre of the inner circle. Determine the greatest and least compressive stresses 
in a horizontal cross section of the column, neglecting the weight of the column. 

[Ans. 579 kg/cm2
, (compressive) 239·5 kg/cm2 (tensi le)] 

9'6. A steel rod 3 cm diameter passes through a cast iron tube 4 cm internal dia
meter and 6 cm external diameter, 200 cm long. Rigid cover plates are provided at each 
end of t:\].e tube and steel rod passes through these cover plates also. Nuts are tightened on 
t!:\e projccfa;ig ends of the rod, so that the, cover plates bear on the ends of the tube. Deter
m ine the maximum stress in the cast iron tube, if one of the nuts is tightened to produce a 
stretch of 2'5 mm in the rod. 

{a) if the rod is concentric with the tube . 

(b) if the centre of the rod is 4 mm out of the centre of the tube. 

Given E,tee,=2100 tonnes/cm2 

Ec.,.=1080 tonnes/cm2 

[Ans. (a) l' 18 tonnes/cm2, (b) 1 ·616 tonnes/cm 2] 

9'7. The cross section of a short column is as shown in the Fig. 9 27 A vert ical 
load W tonnes acts at the point P. Determine the magnitude of the load W and the eccentri
city e if the stresses at the points C and D are 1200 kg/cm2 and 800 kg/cm2 compressive 
respect ively. [Ans. 48 tonnes; 0 ·333 cm] 

9·s. The cross section of a short vertical column is as shown in the Fig. 9 '28. A 
vertical load of 12 tonnes is applied at the point P. Determine the stresses at the corners 
A, B, C, and D . 

[Ans. 53'2 kg/cm2 (tensile), 142'6 kg/cm2 (compressive), 

303'2 kg/cm2 (compressive), 107'4 kg/cm2 (compressive)] 
~ 

T 
4cm 

-i-
Scm 

+ 4cm 2cm 

~ 2 cm ~ 4 c m -~2 cm~~ ~"-"--2 r-L..L.L..L..L1 2 c+<-'--m '-'C-1.-- ~'-"--"-'2 ~ : 
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9 ·9. A rolled steel I section, flanges 10 cm x 2 cm and web 26 cm X 1 cm is used as a 
short column to carry a load of 100 kN. The load acts eccentrically, 5 cm to the left side of 
axis YY passing through the centre of the web and 6 cm above the axis X-X passing through 
the centroid of the section. Find the maximum and minimum stress intensities induced in the 
section. [Ans. 112·6 N/mm2 (compressive), -82"3 N/mm2 (tensile)] 

9·10. A cylindrical chimney 30 m high, external diameter 2 m and internal diameter 
1 m is exposed to wind pressure whose intesity varies as the square root of the height above 
the ground. At a height of 9 m, the intensity of wind pressure is 18 kg/m2• If the coefficient 
of wind resistance is o·6, calculate the bending moment at the foot of the chimney. If the 
density of masonry structure is 2280 kg/m 3, what is the maximum stress developed at the base 
of the chimney. [Ans. 14195·52 kg-m, 81679'5 kg/m2

] 

9·11. A tapering chimney of hollow circular section is 24 m high. Its external dia
meter at the base is 4 m and at the top it is 2·0 m. It is subjected to a wind pressure of 
240 kg/m2 of the projected area. Jf the weight of the chimney is 380 tonnes, and internal 
diameter at the ba$e is 2 m, determine the maximum and minimum stress intensities at the base. 

[Ans, 71 "6 L T /m2 (compressive), 9·028 T /m2 (compressive)) 



10 
Distribution of Shear Stress in Beams 

In the chapter 7, we have studied about the Shear Force and Bending Moment diagrams 
of beams and cantilevers and learnt that in a portion of the beam where B.M. is constant, 
there is no shear force and for an infinitesinal length of the beam where there is variation 
of BM, oM=-F8x where oM is the change in BM along the length ox and F is the shear 
force transverse to the axis of the beam. Further in chapter 8 we have studied about the 
longitudinal stress/ developed in the section due to bending moment M. When there is 
variation in M, there will be variation in f on both the sides of elemen,ary length ox of the 
beam as shown in the Fig. 10· 1. This figure shows a beam of rectangular section subjected 
to bending moment producing concavity upwards in the beam. The neutral axis passes 

I,; M M+ 6M 

0 b \f 
0 

d C 11 
r, 

I I r-ox-i 
( 0) 

Fig. 10·1 

f / 
C 

'j 

~ytbmetrically through the section. Upper half of the section will be under con'lpression and 
lower half will be under tension . 

• l 

: . 459 
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The Fig 10·1 (b) shows the distribution of longitudlna·l stress ac'ross the thickness of 
the section. The compress~ve stress in extreme layer ab on one side i.e., Jo' is greater than 
/. on the other side. Similarly, the tensile stress 
i-q the ixtreme layer cd on the lower side i.e. , 
ft' is greater than /1 on the other side. Due to 
the difference in longitudinal stresses on both 
the sides, there will be difference in resultant 
pull or push on the two sides which will be 
balanced by a horizontal shear force developed 
on the longitudinal plane of the beam or 
horizontal shear stress is developed on the 
horizontal section. Consider a rectangular 
block at a distance of y from the ne:ijtral axis 
anp upto the extreme layer ab. The stress 
intensities on both the sides of layer fe i.e., 
Jc• and Jct are smaller than f.' and f • respec
tively as shown in Fig. I 0·2. The resultant 
push F.' on the righ,t side of the section is 

Fig. 10·2 

greater than the resultant push on the left side of the section. For Gquilibrium, a shear force is 
developed on the horizontal plane fegh. Say the intensity of shear stress on this plane is q, 
then ' 

or shear stress, 

Fc' - F.=q X Sx x B 

Fc' - F 0 

q= B8x 

With the help of flexure formula derived in chapter 8, we can determine Jc' andf, or 
Fe' an<l F. and the magnitude of shear stress q can be determined. It can be further observed 
that intensity of shear stress on plane abjk will be zero and the intensity of shear stress on the 
plane pqrs on the neutral axis Fig. Io· I (b) will be maximum in this case of rectangular section. 

10·1. SHEAR STRESS DISTRIBUTION 
,. 

Consider a sm~ll length Sx of a beam subjected to bending moment producing concavity 
upwards. Fig. 10·3 ~µ.~ws a trapezoidal section of a beam. Say NA is the neutral axis and 
Mis the bending moment on the left side and M + SM is the bending moment on the right side 

b -

Fig. 10·3 

0 I S th e c b o f 
ore a k fro 

of the element of the small length 8x considered. Now consider a layer of thickness 3y, at a 
distance of y from the neutral axis (as shown in Fig. 10'3.) · . 

I I 

Due to the type of the bending moment shown, the upper portion of the section above 
NA will be in compression and the lower portion of the section below NA will be in tension. 
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where 

Stress due to bending on the left side of the element, 

M 
!= INA . y 

Stress due to bending on the right side lilf the element, 

! '= M+oM 
INA .y 

lNA= moment of inertia of the section about the neutral axis 

Area of the elementary layer, 
'8a = b oy 

where b is the breadth of the layer under consideration. 

Compressive force on the left side of the section, 
oF=f. 'Sa=/ . boy , 

Compressive force dn the right side of the section, 
8F'=J' oa=J' b ~Y 

Unbalanced force on the elementary slice of length 8x and thickness :;y , 
= 8F''.-:.oF 

=( M~8M y - Af y ) boy 

'?3M =J Y. oa 

t:"' 

Summing up all these unbalanced forces on all element~rr areas from y to Y2 we get 

Yi 

""'. 8M oF= ~ - 1- . y . oa 

JI 

Jl2 
'SM ""' q . b oX= -J-L., y oa 

y 

where q is the shear stress developed on -Hie li'orizontal plane b X ox to resist the unbalanced 
force oF for equilibrium. 

So 

';I f: ; 

where ,, 1 ' 

Y2 
\ . \' 

oM ""' q . b . ox= 1 · ""' y oa 
. 1 . , y . I .. 

I . oJt1 . . 
q=lb ax 

Y:? I' 

Y1 

2; y 8a· 
)1 

• . . . ;,,, ,1 ,, fl "•l .~ 

:)"');' ,, 

·""'-V . oa = fir~t mo ~nent ,of ~rea of t4e section above the layer kl and 
L.., upto the extreme layer ca. 

,, Ii , I Jllf : 



where 

STRENGTii OF MA tEitIAL~ 

= first moment of the elementary area k/ca about the neutral 
axis 

=A.J 
A= area klca 
y = distance of CG of k/ca from the neutral axis. 

Shear stress or horizontal plane, 

q= oM . Ay 
l>x lb · I 1 

Fay oM dM , 
= -- because --=--= F 

lb ox dx 
ax~O 

where F is the transverse shear force on the section. 

Example 10·1-1. A round beam of circular cross section of diameter D is simply 
supported at its ends and carries a load W at its centre. Determine the magnitude of the 
shear stress along the plane passing through the neutral axis, if the particular section lies at a 
distance of //4 from one end, where I is the span length. 

'I 

Solution. For a simply supported and centrally loaded beam, SF diagram is shown 
in Fig. 10'4. At the section X-X, at a distance of l/~ from one end, shear force, 

' 

·,,. '.l.ll, IJ,(i ,·1• I J;: 1;·,: '; 'f l,. 

Shear stress at NA, 

where 

F= W 
2 

X W 

i ,: 

Fay 
q= INAb 

Fig; 1Ci·4 I{( • 

nD~ 
a= -

8
- , area NYA, above N.A. (neutral axis) 

r--/ · 2D 
J = C.Gt of, tne area from N.A. = -

3-::, ,. 
ffD' INA=~· moment of inertia about neutral axis 

:.-~· 

• • i) 

b'= breadJ~
1 
o_tfll~ s~ction a.t the laye'r unper consideration 

r= D (in the present case) 
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Shear stress at neutral axis, 

W rcD2 2D 64 I 
q= - -x -x-x--x-

2 8 3rc rr;D4 D 

8 W --x-· - 3rt D2 

Exercise J0-1-1 . A beam is of rectangular cross section of breadth B and depth D. 
At a particular section of the beam, the shear force is F. Determine the intensity of shear 
stress at the nei1tral ax is. 

Ans. [ }Jv J 
10'2. SHEAR STRESS DISTRIBUTION IN A CIRCULAR SECTION OF BEAM 

Consider that a beam of circular section of diameter D has shear force Fat a particular 
section. The neutral axis of the section will pass through the centre Oas shown in Fig 10·5 
shear stress at any layer , 

Fay 
q= 

Ib 

Let us consider a layer at a distance of y from the neutral axis, subtending angle 0 at 
the centre. Then 

and 

sin 8= ..l.... 
R 

or y=R sin 8 

dy= R cos 8 d0 

R= ~ = radius of the circle 

breadth b= 2R cos 0 

R 

aY= Ib 8y.y 
y 

R n/2 

Fig. IO·S 

= I 2R cos 0.R sin 0.8y = f 2R2 cos O.sin 0(R cos 0)df 

r o 

Shear st ress 
d1st ri but1on 
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.) . 

rt /2 tt/2 

= 2R3 j cos2 0.sin 8 d8 = 2R3 ' c~sae j 
e e 

2R3 re J 2R3 cos3 8 = --
3
- ! cos3 

2 - cos3 0 = - 3 

F x 2R3 cos3 8 4 4 
q - - 3(2 R cos 9) x ~R4=- ·3· 

0- 0°, 

0= 30°, 

8= 45°, 

0= 90° 

4F 
q=- 3- ~- R- 2 

F 
q= - rcR2 

2F 
q= - 3~R2 

q= O_ 

F cos2 0 ----rcR~ 

STRENGTH OF MA TE&IALS 

Fig. 10'5 shows the shear stress distribution which is symmetrical about the X-X axis 
: 0~ lhr fiC\}ttal .axis.. 

Example 10'2-l. At a particular section of a beam carrying transverse loads, the shear 
force is 40kN. The section of th beam is circular of diameter 80 mm. Draw the shear 
stress distribution curve along the vertical axis passing through the centre of the section. 

Solution. 

Shear force, 

So 

Diameter~ 80 mm 

R= 40 mm 

F=40 kN= 40000 N 

4 _ _ F __ _i 40000 _ . 
2 

3 X rcR2 - 3 X 'f"X40 X40- 10 61 N/mm 

Shear stress at any layer sub·tending angle 8 at the centre 

4F 
= -- cos2 8 

3~R2 
• I 

• Ii! ;, 

She ar stress d1s':r1but 1on 
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At 0= 0°, q= 10·61 N/ mm2 

0= 30°, q= 7·957 N/ mm2 

0= 45°, q= 5'305 N/mm2 

8= 60° q= 2'6525 N/mm2 

0= 75° q= 0"71063 N/mm2 

0= 90° q= O 

The section is symmetrical about the neutral axis, therefore the shear stress distribution 
diagram is symmetrically repeated below the neutral axis a s shown in Fig. 10·6. · 

Exercise 10·2-t. A beam of circular section 5 cm radius subjected to transverse loads, 
has the shear force 8 tonnes at a particular section. Dra w the shear stress distribution diagram 
along a vertical diameter of the section. 

r;.·· . . ,, . , . 

Ans. 

I l 
f o jo 30 60190 1 ,.-,- ·- --- ', 
) q 0·136 · 102 ·029 0 tonne/cm2 I 
L ~~~~~~--~~~-~-~-~ J 

tO·J. SHEAR STRESS DISTRIBUTION IN A BEAM OF RECT.ANGULAR SECTION 

. Fig. 10'7 shows a rectangular section of breadth Band depth .D, .. Say at a particulat-
section of the beain, shear force is F. ' . . . . .. 

Shear stress at any layer, .. ' - ,j, : 

\ y 
d FaJ 

q= fNAb .-rr-,,--,-;....,......,...T"--.: 

.Q 

a = area of the section above the layer ·--t -- 0 

Ji = distance of the CO of the area a. J1. N 
from the neutral layer 2 

_J_ --+--'--"" 1 ,,·, 1fos! 
INA=--

12 

' . 

. ~a~--J. _r fr 

b= JJ (breadth at the section) 
I 2BO 



Now 

area, 

or 

D 
--y 

Y=(y+~)={ ~ +y ) 
'1) 

a=B(i -y ) 

aJ = ~- B (g -y )( ~ +y )= ~ ( ~2 

-y2 ) 

F x 12 
q= -BDs x B 

)'= '0, 

D y= ·4, 

'D 
y= 2- · 

X .!!..._l( _EJ: - y2)= _j!'___ ( n2 -y2) 
2 4 BD3 -_ 4 

, 3 F 
'<J= i" BD 

9 F 
q = - -

8 BD 

q= O. 

The section is symmetrical about neutral axis, therefore shear stress distribution diagram 
is repeated symmetrically below the neutral axis as shown. 

Maximum sl\ear stress occurs at N)t, 

qmax = I '5 o]J~ 

but 
F . 
BD = qmean, mean shear stress 

so .qm,., = I '5 q., ,an 

Example t0·3-1. A wooden beam of rectangular section 20 cm x 30 cm is used as a 
sin~ly ·su'pp~rtM ~earn .earty,.i.ng uhifor·mty dist,r:ill>uttd , of w it6nnes/,metre. What ,1s the maximum 
value of w if the maximum shear stress developed in the beam section is 50 kg/cm2 ' and s]"an 
length is 6 metres. 

Solution. Maximum shear stress at neutral axis. 

1·5p 

so 

or 

qw,afll = BD 

1·5 x F 
50= 2o x 30 

F~ 50 X 60Q 
1 ·5 

20,000 kg 

N'o~ for-a si-inply' sllPl,-orted beam, carrying uniformly d-istributed load, 

M~ximtlm slfearJ orce 
wL 

= 2 
II f,= 6 metre~ 



or 

wX6 
Fmam= 2 =3 w tonnes 

= 3000 w kg 

3000w=20,000 

20,000 20 
w= 

3000 
= 3 tonnes/m,etre 1\UJ1 

Permissible rat~,of loading=6·667 tonnes/metre run. 

Exercise 10·3-1. A wooden beam of square c.r:oss-section 20 X 20 cm is used as a 
cantilever of 3 metre length. How much load can ·be 'applied at the end of the cantilever if 
shear stress developed in' the section is not to exceed 10 N/mm2• What is the shear stress 
developed at a depth of 5. ~II} fr~m. th~ toP,. 

Ans. (266"67 kN, 7·5 N/mm2) 

t0·4. SHEAR STRESS DISTRIBUTION IN~ HOI:,"OW CIRCULAR SECTION 

Fig. 10"8 shows a hollow circular section with outer radius R2 and inner radius R1• 

Say the section of a beam is a hollow circular section and., subjected to a shear force F. 

Shear stress at any layer 

and 

Case}r.; 1->..\ 1 

Fay 
q= IN.4,_. b 

'It 
INA= 4CR24-R14

) 

Consider a laye.r cd. il,t a di ~tallCC of y from the neutral axis . 
. ' . \ 

· ,W.idth·,ofJt9:e la~e~, f? = t(Rl- y2
)

1
/

2 



Shear stress 

Case II. 

R, 
q= ___!!_ rby dy 

INAb 
y 

R, 

= F I2[R22-y2)1/2y dy 
INA 2 4 R22-y2 

y 

R1 

F / 2 = -- 2_ 2 8 2 · . . '2/ ' 4 . 3 {R2 y ) / I .. NA R22- y2 - . 
. y 

= 21. F I o+2-(.k22-y2)a12 1·· . 
NA V R22- y2 3 . 
F = 31NA [R22-y2J . 

=0 at y=R2 

F .. 
= 31NA (R22_ R12) at y = R1 

y<Ri 

b 2= V R22-y2-VR12--:-y2 

Shear stress at any la~er 
R2 

q= IN:. b J by dy 
y 

R1 

,= IN:. b[ J (v R22-y2- "R12-y2) 2. y dy 
y 

R, 

+ J 2 V(R22-y2) y dy] 
R1 

(., 
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Substituting the value of 

_ IN:. b [; (R22-=._ji~ia 12 ,:_; ._ (R1;~j2)a/2 J 
. i ; -

2F [(R22-y2)3fz-(':R12 -y2)3/!] 

3lNA :[2,f R22-y2 .:,_ 2V R12;-y2 ] 

p [ (R22-y2)at2_(R12_y2)a12 .J 
- 3INA (R22-y2)1/2-(R12_y2)1/2 · J· 

F X ( R2
3-Ri3) 

3fNA R2 - R1 

F . (R22-R12)a/2 

31 NA (R22 - Ri2)1'2 

at y=O 

INA = : (Ri4 -R14) 

F 4 (R23 - R1
3) 

qma:o= 3 X -; (R24-R14)-(R"-2'-_-R-1.,.-) 

F F 
qmean= area = 1tlR22 - R?) 

qma• 4 . R23
- Ri3 4 R22+ R2R1 + R1 2 

qmt an _= 3 X(R22+ R12)(R2-R1) = 3 x R22+R12 

if the section is very thin R1 -:1:= R2 

qmo=._ = 2 
q111,a11 

Example to·4-1. A hollow circular section of a beam with int1er radius "20 mm and 
outer radius 40 mm is subjected to a transverse shear force of 40000 N . Draw the ·shear stress 
distribµtion .over the depth of the section. • 

,f • 

Solution. Moment of inerti{ 
ff 

INA = - (404 -20•) =60rt x 104 mm4 
4 

Shear Force, 

Inner radius 
Outer radius 

F= 40000 N 

_!_ = 40000 = 2·12 x ·10:...2 N/m4 
INA 601t X 104 .• 

R1 = 20 mm 
R 2= 40 mm 

Shear stress distribution 

at y=R2 q= O . 
F 2·12 x 10~2 

y = 30 mm, q= --31NA [Rz2-y2]= 
3 

[402-3()~] 

, (y>R.1) = 4'95 N/mm2 

. . r. 

-· 
• • • ' • r • 

:: (. ~ 

I ) ' :.. -



· · Y.=2o mm q= :-f_JA('2 -202) 
2.·12 ; 10-

2 
[1200) 

I ' ) ' 1 - ' 3['1(,4 ~~ 

=:=&'9q N/mm2 

F [ (R22-y2Hf2-(R12_ya)a/2 J 
y= lO mm, q= JINA (R

2
2_yi)1,2_(R?-y2)112 

(y<R1). 

_ 2 '12 X 1_0- 2[ ( 402 - l 02)2/2 - (202- l 02)312 J 
- 3. ~(402 - lQr)l/2-(202-102)1 /2 

= 2·12 x 10- 2L- 58094'8 - 5196'2 ] = 17.47 N/ 2 

3 38'73-17'32 mm 

Y=O ·' 
= _!_[ 403-203 

] - 2·12 x 10-2 
[ 5600 J 

q 3 INA 40-20 : 3 20 

=19'78 N/mm2 

Fig. 10'9 shows the shear stress distripution ~cross the depth of the section. 

i- .. 
i.Omm . 

I 
-l -

' 
s t r~ ss 

r-1,s :11but1on ,. 
Fig. 10·9 

Exercise 10'4-1. A cantilever is pf hollow circular section, with outer diameter 
10,cm ana imier diameter 4 cm. 1 Ai a particular section SF is 5 ·tonne·s. · Draw the shear 
stress distribution·1diagrarit across the depth of the section. . . 

[Ans. q0 = l3S'97 kg/cm2, q1= 123'73 kg/cm2 q2 = 73'20 kg/cma 
q8= 55'770 kg/~m2, q,= .31'37 kg/cm, , q6 = 0] 

I t r•J / , ·• t. 

to·~. DIRECTIONAL DISTffrl»U'J;'~Q~. O_F ~HE~R ~TRJ}:~S 

In chapter 1 we have learnt that every 
shear stress is accompanied by ap. e,quaJ colll· 
plementary shear stress on planes· at right 
angles. The directions of shear stresses on an 
element are either both towards the corner or 
both away from the corner to produce balanc
ing couples. Moreover, near a free boundary, 
the shear stress on any section acts in a 
direction parallel to the boundary. This is due 
to the reason that if there were a shear stress 
in a direction perpenp,\9ulat, ,f'? the bo~1:9afy I . 
then it would require a complementary shear 
stress in the direction parallel to the boundary. 

D1rect1onat d1s tr1 bu t 1on 
of s.h eor stress 



tNsn uBU!fION OF SHEAR STRESS IN BEAMS 

The Fig. 1 o· 10 shows a solid circular section 
subjected to shear force . The shear stress 
distribution along the boundary is parallel to 
the boundary and at the centre, shear stress 
direction is perpendicular to the boundary so 
as to provide complementary shear stress to 
to the shear stress along the boundary. 

Fig. 10· 11 shows the directional distri
bution of shear stress in I-section. Since the 
shear stress direction has to follow the 
boundary in flanges and in the web, the shear 
stress distribution must be of the form shown, 
i.e. horizontal in flanges and vertical in the 
web. 

D i re c ti o n a l ·dis t ribu ti on 
o f shea r s tre s s 1n I se c ti o n 

Fig. 10·11 

Problem 10·1. A 12·5 X 30 cm RSJ of I section with flanges 12·5 X 1 ·2 cm and web 
27 '6 x I cm is subjected to a bending moment Mand a shear force F. What percentage of M 
is carried by the flanges and what percentage of Fis carried by the web. 

Draw the shear stress distribution over th'e 'depth of the section. 

Solution. The section is symmetrical about XX and YY axes and its G lies at the 
centre of the web as shown in Fig. 10'12(a). 

Tt 
Ft o n g~ 

y 

we b 
30 27 ,6cm 

1 - x N A X 

Moment of Inertia,-
1 

( a ) 

Shea r ·s tre ss 
d is t rib ut ion 

{_ b) 

Fig. 10·12 

12'5 X 303 .. 11 '5 X 27'63 
lmx= 12 ~ 12 

= 28125-201 48'55= 7976'45 cm;'-

1, 

.. 

.'( 

. '), ,. 

' ~• ; I 
. ·. 
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Flanges. Direct stress due to M, 

f = M.y 
lxx 

where y is the distance 9f the~layer from N.A. 

r' : . .-
\ . . 

i.e. 

web. 

Consider a layer in the fl ange, 

f = MI y where y = J3'8 to 15 cm. 
xx 

Say the thickness of the layer = dy 

Force in layer, 'fiP= 12'5 dy . f 

My X 12'5 dy 
- l x.1. 

Moment of 8P, about N.A., 

SM= My
2 

X 12'5 dy 
. fx x. 

Total moment shared by flanges, 

' / 

' . ' 

15 

M'= 2 J 
]3·8 

MJ,'2 
- ·-. X 12'5 dy 

lxx 
,(. 

i 
15 I I ]5 

= ~ M J y2 dy = 25 M I ya·/ 
l~z Ixx 3 

13'8 ]3·8 

7;~6~ 5 [1125- 876J= 0·78 M 

B.M. shared by flanges is 78%. . 

Web. Shear stress at any layer at a d istance y from the NA, 

. q= t:.} = 7976~5 XI[ 12·5 X 1 ·2 X 14"4 

,, 
. ' 'l. : t 

I • 

+ (13·8-y) ( y+ 13·!-y )] 

_ _ 
7
_
9
_
7
,_: -.

4
-
5
- [ 3 J 1 ·22- ~:_ J since ld= INA 

J 

Shear force in the elementary layer of thickness 8y and breadth 1 cm considered in 

F 
dF= q X 1 x dy = 7976.45 [311·22-0·5 y 2] dy 

Shear force shared by web 
,. \ ,·( . ]3•&:, J ( , I 

~
19
;:~45 X 2 r (31'1 '22~ 0·5·j,2) d)7 

,: I .·,,,r,-:- Q I . 

··,qi I() 1w,rr,!/ 



/·· 

' . ' . 

2
F [ 31 J'22x 13'8- 13

6
.
82 J 

7976·45 

= 0'961 F 

Shear force shared by the web is 96'7% 

Shear stress distribution 

Flanges 

at=l5 cm, 

y=l3·S cm, 

web. b=l cm; 

at y=t3·8 

(y>13"8) 

b= I2'5 cm 

q= [~ = lu:12·5 [12·5x(15-4)( y+I5;-y )] 

= _!_ [225-y2] 
2Iii• 

q= O 

q=2x1:16·45 [225 - 13"82] 

=0"00216 F 

y=I3'8 cm or y< l3'8 cm 

q= F -- X 12'5 (225-y2) 
2Iu . 1 

=i. X 1: 16.45 X 12.5(225-13"82) 

= 0"027 F 

·at-y=O, (neutral axis), q= 1~. 1 [t.2·5 x 1·2x 14·4+13·8 x I x6·9] 

F 
= 7976·45 [216+95"22] 

= 0"039 F 

Shear stress distribution is shown in the Fig. 1,0· 12 (b). 

413-

Problem 10·2. Show that the difference between the maximum and the mean shear 
stress over-the depth of the web of an I section is Fd2/24 lN.4 where INA is the tnom'ent of 
inertia of the section along an axis perpendicular to the shear force F and passing through the 
centroid of the section and dis depth of the web. 

Sola.tion. Fig. 10·13 shows an I section of flanges B x t and web b X d. An approxi
mate ak~tch of the shear stress distribution is also shown. Maximum shear stress occurs at the 
neutral a1tili, NA. 

Say Fis the shear force at the section. lN,4 is the moment of inertia about .-NA. Then 

F [ ( d t) d d] qma.,= IN~ b _ Bi z+"f +b 7- x 4 . . .. (!) 



_L 
f.longe 

y 
t 

T 
( 

d 

_.L e t .----:."+'-----, 

-i-r-8 Sh"~o r s t ress 
drstn but ,on · .... 

(a) ( I) J 

Fig~ 10·13 

'· ·, 
Shear stress at the edge of the web 

!fr= IN:. b [ Bt ( ; + ~ : ) J 
F [ - d2 J . F 

qmox- q1= fN A . b b 8 =. 8[;(,; 

.1 

In the diagram for shear st~~ss distributio~ (S.ee Fig. ;0·13 (b)) 

cc' or ee'= q1, shear stress at edges of ;web 

: /!!"; ... d. 

; I r ! ! '!~ i ,; .. . (3) 

nt/~ q,,."~, shear SL!ess at ·ct.mtre ... o!_ web, { ~:()~f1hel
1
~rabolic 

curve. · , 

So h " " qmean= mean s ear ~tress.=cc · or ee 

2 
= qi+ -f (qm.,z- q1) 

- . _ __!d2 .: 
-qi+ 12 INA 

.•.• ,rr. . . .. . , . "! ., ·'; -~·(,I ·~!'.'!~-!(>".°'i 
-;~~ ;'° :fa~~ equations, (3) and (4)~ .Difference between the maximum andf~eamiSheatt:stressl~ 

in1,he,~eb'ls · · . G: )'.): ;:>tfJ ·i:) uitt:tai 

Fd2 Fd2 Fd 2 I,·· : <)~ : :)! u l "", ~- >)·;L":!}!) 

q,narz-qmean= ~- 12J = 24 INA 

-ix,·::.'l· ·: . .... . . . ·. ;. . . . ' rv.1 •, !'fA. ._,., -~ I; ::~;·,1 .:1. ,11t:''.. 3 

~ ·· 1 : Proble11110··3: A bea~ ol circular cross section, diameter · cl and ·- ~i,M. {~9g~ ffs~, 
supported at the ends. It carries a central load W. Show that the principal stresses· ·devef6pecfh, 
~t arJ_~fer q/~rfr:~fT! -the-edge ~t.~ sec*m under the load· are . · , · 1;_ ?.i ··~ 'C ::~ _ 

·'··· 
' 2Wl [ · { d2 J 
.. r,d3- .. I :r V . 1 + -/2 ... 
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Solution. 
(a) Direct Stress. Span length=l 

Central load = W 
Bending moment at the c_entre 

WJ 
· =4 

Moment of inertia about neutral axis, 
.,,d11 

INA= 7;4 
; 

~15 

Direct stress at d/4 from the neutral axes (or· d./4' frnm the edge) 

! ~ Mmaa X 3_ 
1\ ;) \;< / : ·.:. : . .. . INA . 4 
...:\i\ ·io l· , .. : ,, ;:; .·· . . WI 64 d 

10·14. 

(b) i Shear Stress 

= 4 X rrd11 x4 
4WJ 

= rrd3 

Fay 
q= - -

INA b 

Angle ·subtended by the layer ab Fig. 

Breadth, 
iL~:.-~ :.1 :: 

sin 0=1/4 =O·s 
d/2 

8= 30° 
cos 0=0.866 

./3 ' 
ab= d COS 60°= d X 

2 

Shear stress at any layer subtending angl~ ~ at the cemre 
4 F cos2 6 

q= 3 x _ nr2 

In this case cos' 8""10·866 

~, '. -~os
2 

~= ! 

( " 
\ 

But shea1 f~rce,_. 
\ .. 

So 

. d 
r=2• 

16 F 3 4 F 
· q= 3n d2 X 4 = nd2 

w 
F= 2 at the centre 

·2W 
q= .nd2 • 

....... 

.. 
·-

I J ! • • • " 

..: 
. : ... ( l.) ""\ 

. y - ' : . 
J. \ • 

A 

. -·. · ... 
. · . ·: J ;"; 
.. . . . ...... ,¥ 

Fig. 10·14 

,
: :.,, Ji::: I ,.t • 

:, • .'I 

. . . (1) 
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Problem 10·4. Show that for a beam section of triangular shape base b, height h 
subjected to shear force F, the maximum shear stress is 3F/bh and occurs at a height of h/2 
from the base. 

Solution. The Fig. 10' l 5 shows a 
tri-lmgle ABC of base b and height h. Its 
neutral axes is parallel to the base and at a 
distance of h/3 from the base BC. Consider 
a layer ef a:t a distance ef y from the neutral 
axis. 

_J b 

Now 
bh3 

fN,4 = -
36 

Shear stress at the la.yer under con
sideration 

Shear stress, 

Fay 
= INA . b' Fig. 10'15 

a = area (shaded) above the layer 

J = CG of the shaded area from the neutral axis 

b"- brea'cltn· of the' fayer 

( 2h )" 
- T-y Xb=(l ~ l'.. }b 
- h j1 h ' 

.. :.;-o: 



or 

i.e., maximum shear stress occurs at a height of h/2. 

Now substituting the value of y 

.,= _F_ [2 h2+ l!:_ X _!!.. ~ _h2_ J---=-F.~'h2_ 
qma · fNA · .. '1.7 9· fr · 108 - 12 JN,' I!" 

, .:.1 •1 U1 

Jiftl.· 36' 3F 
=u X bh8 = htz 

F 2F 
qmean= mean shear stress lift/2 = bh .. 

1:, 

qma• = I ·5. 
qm•an 

-1 ; . .,,:._, 

Problem 10·5_ A rolled steel joist of T-section shown in the Fig. 10" 16 (a) is 
used as a be~m . . At a p~rtieulat sectroii:, fFie transverse· shear force is F. Plot_1}lie.: sh~l!:r stress 
distribution ovef the depth of the section·.-

Solution. The seefi-ort is sy'rfrmettical abou't YY axiit 
Distance of di ft'o'n\' fl\'e' !owe\' etl.ge' 6'f fife' \lve'b' 

G lies on this axis. 

· . _ 40 x ~ ;( iP+ 3'JJ>< 1 e· (4~ + 5). 
Yi - 41:f* S-+ :ffilx 10' 

35 mm 

-3 
3· 9-Gl x,1_(), f 

s·wea,, sh e·~·s
: cfrst'r'i-but ion 

_( _b) 

Figl, 10·16' . ', · 

... 
' - ~ ... 

·.;, j ,. 

' ,· :"'; -::'! 
~. . . ..... ri.• ,d 



then . r ·y2= .5Q-35= 15 mn1 
Moment of inertj.i., .. 

INA or fxx ~ sxl~os + 200 (35-2,0)~+ 
30

~2
103 

+ 300 (15-5)2 

= 29166"7+45000+30,000 · ,· ·. 7. ·,? ··r~.' ~;.,·:j 

=104'1667« 1os_pim' 

Shear stress at any layer (at a distance y from NA), 

At 
·• 

At lo 
' .. , I'. 

y = mm -

At y=5 mm 

FaJ q=--
fxx b 

ay= first moment -of area above the layer 
F =shear force 
b= breadth of the layer 

y =:= 15 mm, q= O 

_ Fx (15-10)(30)(13 + 2·5) 
q- 104' 1667x 103x 30 

Fx 150X 12'5 _ . -a 
- I04'l667 x 30 x 103 - O 60 x 10 F 

._ Fx 30 X 10 X !Q__ _ . . :.:_
3 q- I04'1667 x 10ax30 - O 96 x 10 F 

...... 

... •,1 
•, • ! .L 

(when h=30 mm) 

r: <1·) ?,; ·o· .·~- .. 
a .~.')llt :1 ' Atrit y;,,:o,, ·! :_: 

q=S'76x 10-a F, (when b= 5 mm) 
. ' 

. ·. F X (30 X JO X 10+.5 X 5 x .i·5.) (S' b S · ·) · <1 • .• . ·,~r, · q= - · 1nce = mm - .. ·' .... · ., .,. 
104'1667 x l03 x 5 .. · .· _ .. ·v,, ·j.;-f·,i:1ib 

.:'.'-'(" ,.<· ,;'., ,: .: ~-- ~ -~'88 -x -1~- 3 F, (at the neutr~l axi~).,:;,. .. · ,. . ·!:! 
At y= 20 mm ·_on th~ ot_her side 9f. neu~~al. ~~is ·, .. -..-:...,,:. 1~ 1<...i 

_ ;= A [l~X5X(2J+7'-5)] , 3'96 x 10- sF 
·· · . . -~--- q l,04'16.67x 10sx5 · 

At y = 35 mm 
on the other side of neutral axis, q= O. 

Shear stress qi~tribution is i.hown in the. Fig. 10'16 (b). 

Problem 16·6. ' Tw; peam~ oqe with I $ection and anothei ~ifh -t section are simply 
supported at the ends and carry concentrated load at their centres . The $pan length for both 
is tb.e same but the central_ loa:ds app!~ed are such that. the maximum stre~s due to bending in 
both is the same. Determtne th-~ ratio of th;;: maximum shear stresses developed in these 
sections. The dimensi~~s of the sections are giv~n in Fig. 10'17. \ _.". 

Solution. Let·-us first calculate INA for both the sections. 

T-Section : . . . __________ _(· . 

Distance of C.G. from lower ~dge of web, 
'.:., '10X5.+ 12 X 10'5 

Yi= ·.· 10+ 12 -

=8 'cin 
then y2= 11-8 =;;p 1CID .. ;. , 



ti>is'FR1BUTION OF· SHEAR STRESS IN BEAMS 

.. ,•;· . ( 

' I •ft , : 

( 0) ( b ) -

Fig. 10·17 

Moment of Inertia, INA = l X l0
3 
+ 10(8- 5)2 + 12 

X l 3 + 12(2"5)2 
12 12 

•_, ••~ t H'~ 

. = 83'333+90+ 1+75=249'333 cm' 

I-Section. Section is symmetrical about YY and XX axis, therefore CG is located at 
the centre of the web. 

.·, .. ~· 
. \ 

Moment of inertia, / = 12 x 1is_ 1I x 93= l33r-668'25 
Ntl }2 12 . 

=662'75 cm4 

ii . ?.""-:,'Now .!i~y the load"·bn the beam of T section= W1 
:'.}~· . ··:. ·and -~~~d Ot\ ~h'e ~earn of I section = W2 

W1L 
B.M. at the centre of T section beam - 4 .-

B.M. at the centre of I section beam 

where 

W2L 
= 4 

L=span length: 

:t . -1 

. ., ·: . .... l .. r ~ ':i 
. ·: , . , t \- _r(11:t:-1 :i1.in 

~ ~-: __ ~.:; · . ~ ,·yt #J ,~ 2 ;1! 

. : , ., . . :· • · . . ,:. •. ,.a '{':l 
J \ J .. ~: ~ : .•• :;. "! j~ 

In T-section, maximum bending stress will occur at the lower e'dg~l 9(t'h~~w~~. ~ince,, 
• .-. , ) :Z • I j • ' Ii \f ... ·., .. I. 7~ 

V1>Y2• • ·~-. t 
In I-section, maximum stress due to bending will occur at the extreme ~edge of the 

langes. 
· b W1L 8 2W1L 

fmaz m T-section earn= 4 - x INA = 249·333 . Since Y-1=8 cm 

f, . 1 . beam-_ W2L x _5·5 W2Lx s·s 
mo~ m -section 4 INA' 4 X 662'75 

' . } ·:: ! . ' . . ~ 
i . 
\ 

But /.n arc = fmaz' 

2WiL W2 X L X 5·;5 
249'333 - 4 X 662'75 · 

Of W1 S-5 X 249?33 = 0·23~ 
W~ = 4 X (i62'7~ fII ... (1) 



Since the beams are simply supported at their ends and carry the central loads. 

w 
Maximum SF in T s.ection b.eam= --z1 

w 
Maximum SF in I scctipn beam = ---!.. 

2 

In both the cases, maximum shear sµ-e.ss across the section occurs at the neutral 
axis. 

In T section, 

W1 8X I >< 4 
qma~= 2 X 249"333 X I = 

16W1 

249"333 

(Note that for convenience, ay is taken for the lower position of the web) 

In /-section, 

Now 

I W2 oi x 1 X ~+4"SX J X2"25) 
q · ,n!J.f/l = rx I '661:15'x 1--

W2 70"125 
= 2 x 662"75 

q;a"' = 16W1 x . 662"7S; 2 .. = J·213 W1 
q "'""' 249'333 W2 X 70 125 W2 

= 1"213 X0"23~ 
= 0"285 

Problem 10·1. Determine the p@i,ition 9f the layer at whi~h tnmllveri;e ~hta.r uress is 
maximum. The section of the beam is squ_are of 10 cm side with one diagonal verfo;al, and the 
shear force at a particular section is F. Draw the shear stress distribution diagram. 

Solution. Section symmetrical about 
YY and X-X axis as shown Fig. 10·18(a) with 
centroid at the centre of the section. 

IO' 
lxx= 12 cm4 = 83r3J <;m4 

. . 'i;Ql}Si~ f\ l~~r 3it A vertjca,1 !wight 
y from the neutral axis. 

; . ,, 

I • 

_H~~gh~ ?,f tµe tri~gle ygp :- ·a . 
= 2 -y where dis the diagonal 

of the squar<r 
base of the triangle 

= 2 ( ~ -y) 
at"ea of the triangle yob, 

=; ( ~ - y )( ~ - y) 
{ d -)? 

9 \ ~-y 

-
0 
C 
0 

xg' . .--

. "Q 

0 ... 
__J_ 

Fig. 10·18 (a) 
. !, 

r, 



iDISlll,JBUTION '.OF 'SHBA:R STRES IN BEAMS 

Distance of the centroid of the triangle from the neutral layer, 

Y=y+ +( ~ -y ) 

= ~+2y 
6 3 

= ~ (; + 2y ) 

The shear stress at any layer, 

Fay q=-
lxxh 

Fx( !!_ _ 4 )
2 

2 1 ( d \ 
· --(-. d )x 3 2 + 2Y) 

fuX2 2 -y 

= ·_!_ ( :!!._ -y )( ~ + 2y ) 
6fxx 2 2 

= _f_[,~ +yd -2y2] 
6fx x 4 2 

'For maximum shear stress 

or 

or 

dq = 0 
dy 

d 
- -4y=O 
2 

d y=-
8 

In the problem, diagonal, 

d = l0\/2=14'14 cm 
' 

10</2 • y= -8- = 1 767 ems. 

At q=O 

481 

... (I) 

d 
y=4· 

Fd2 

q= -
24/xx [Putting values in equation (1)] 



482 

y = O, 

F(¥ )(3f) 
q= 6 X833'33 

FX9d2 

= 192 xg33·33 

9Fx w14z 
= 192 X 833'33 

= 0'01 l2F 

Fd2 

q=--
24 fxx 

F X 14'142 

= 24 x 833"33 
= O·OJ F 

Fig. 10'18(b) shows the shear stress 
distribution. Maximum shear stress occurs 
at d/8 from N.A. 

STRENGTH OF MATERIALS 

y 

T 
d 0 1 F 
2 

+ 0112F 
'1 

f----//>t-~ 01 F 

1--~..=./- .£1·0112 F 
d 
2 

l_ 
y 

·O lF 

Sh ea r stress di stri but ion 

( b} 

Fig. 10·18 

Problem 10'8. A bar of hollow square section (as shown in the Fig. 10'19(a) is used 
as a cantilever of length 2 metres . What is the magnitude of the uniformly distributed load 
if the maximum shear stress in the section is not to exceed 150 kg/cm3• Draw the shear stress 
distribution over the depth of the section. tfor the maximum shear force on the cantilever). 

Solution. 
centre as shown. 

The section is symmetrical about the XX and YY: axis and its G lies at the 
•1 

Semi diagonal 

Moment of inertia 

8if2 . 
= --= 5 656 cm 

2 

y 

( a } 

t 
:i 656cm 

Shear s tress 
d 1s tr1bution 

( b) 

2 
150 kg,km 



DI°STR!BUTION OF SHEAttSTRESS IN~BEAMS 

Consider a layer be at a distance of y from the neutral axis (y <12:828 cm). 

I 5'656-y ) ( 2'828-y) aJ about N.A.=(5'656-y)\ y+ 
3 

-(2'828-y)2 y+ -
3
-

(5 '656-y)2(5'656+ 2y) (2'828-y)2(2'828+ 2y) 
= 3 - 3 

Breadth of the layer 

=2(5'656-y)-2(2'828-y) 

= 5'656 cm 

aY (5'656-y)2(5'656+2y- 2'828- y)2(2·s28 + 2y) 
b = 3XS'656 

Shear stress, 

q=FaY 
fxxb 

For the shear stress to be maximum, 

r!!l=o or !!_ (ay )=o 
dy dy b 

or 2(5'656-y)(-1)(5'656+ 2y)+(S'656-y)2(2) 

_ -2(2'828·-y)(- 1)(2'828-l-2y)-· (2'828 -y)2.2= 0 
or (5'656-y)(S'656 + 2y) - (5 '656-y)2-(2'828-y)(2·s2s+ 2y)+(2'828-y)z= o 

5'656- 2y2+ 32- 32+ 2 X S'656y- y 2 - 8 + 2y2- 2'828y+ 8-5'656y+ y2= 0 

or 8'484 y=O 
y=O 

In this case maximum shear stress occurs at the neutral axis. 

ay t NA = 5·6563-2'8283 _ 180'937-22'617 
b a . . 3 X 5'656 - 16'968 

or 

= 9'33 
Fay F x 9·33 

qmae= l xxb = 320 = 150 kg/cm2 

F = 5144'7 kg 

=wL (in the case of cantilever maximum SF occurs at 
fixed end) 

=w X 200 
5144'7 

w=200= 25'7235 kg/cm 

= 2572'35 kg/ metre 
=2'572 Tonne/metre mm. 

Shear stress distribution 

at y= S'65fi, 

y= 2'828 

q= O 

Foy 5144'7 {~'656
2
)(2'828) X ( 

2
.
828

+2·s
3
2g) 

q=-y:b- = 320 X 5'656 X 



5144"7 . . . 
320 

X 
5

•
656 

X (2 828)(2 828)(3 770) 

= 85"73 kg/cm2 

At y = O, q= J 50 kg/cm2 

The shear stress distribution is shown in the Fig. J0'19(b) 

Probletn 10·9, A beam section shown in the Fig. 10·2o~a) is subjecte~!Jtb a shear 
force of 1 tonne. Plot a graph showing the variation of shear stress along the depth of the 
section. Determine also the ratio of the maximum shear stress and tlie-mean shear stress. 

Solution. The section is symmetrical about the Y-Y axis shown. CG will lie on 
YYaxis. 

Distance of G from the lower edge, 

Shear force, 

6 X 3X 1'5+2x3X2X4"5 
6 X3+2X3X2 

2"7 cm 

F = l T=IOOO kg 

r a ) 

Fig.10·20 

Shear st ress 
d1 s tr, bu t 1on 

( b ) 

Moment of Inertia 

INA or fxx=[ 6
(/

3 

+36(3-2'7)2 J-[2
~

33 
+6(3·3-1"5)2

] 

= c108+ 3·24)-(4·5+ 19·44) 
= 101·24- 23'94 
= 77'30 cm~· 

Shear stress at any layer at a distance of y from N.A. 

y= 3'3 

y=2·0 cm 

Fu.Y q= - 
lxxb 

q= O 

l000[2 X 2 X 1"3 X(2+ 0'65)] 
q= 2 X2X77"30 

250 X 5'2 X 2"65 
77·30 

= 44'56 kg/cm2 



y=0'3 cm, 

y=O, 

1000[2 X 3 X 2{0~3+ 1 :5)) 
q= 11·3ox2-x.2 -- (breacith=4 cm) 

_ tooox 12x 1'8 _,
6
,
9

.
8
.
6
. k ,, 2 - 4X7;7'3o' · - , ' gyam .. 

q'=46'57 kg/cw (breadth= 6 cm) . •: 
lOOOx6x2·7x 1·35 (we have taken first moment of 

q 6 x 77'30 the area ay on the other side of 
N.A. to avoid long calculations) 

= 47'15 kg/cm2 

At y= 1 '3 cm on the other side of neutral axis 

1000 . . . 
q= 77.

3
x

6 
[6x 1 4(13+07)) 

= 1000X8'4X2 = 36.22 k / 2 
77 ·3x6 g cm 

Fig. I 0'20(b) shows the shear stress distribution over: the depth. One can notice in this 
case, that maximum shear stress does not occur at the neutral axis·. 

Problem 10·10. A beam of hexagonal section with side a, is subjected to a transverse 
shear force Fat a particular section. Shear force Fis perpendicular to one of its diagonals. 
Derive an expression for the sl_!ear stress. q at'a distance y from the diagonal and plot the shear 
stress distribution over the depth. 

, . 
Solution. The section is shown in Fig. 1Q'2l(a). The d~th of the section is ,/3 a 

· and diagonal is 2a. The section is symmetrical about X-X and Y.Y. axis and centroid lies at 
the centre G as shown. 

Moment of inertia 

[ a (v3 )3] 
INA = 1; (v' 3a)3+ 4 

2 
X ;; a = 

1
~ y'3a•· -,, 

Now consider the layer cd at a distance of y from the neutral layer X-X. 

( 
v3 ) (~3 ) v3 ) 

(
./3a ) "'Ta-y 2 a-y Ta-y 

a'j= a z-Y Y+ 2 +2 V3 2 X 

r v3 1 i -ya-y J 
LY+ 3 J 

Note that in 6. caa', ca' = aa' x tan 30° 

and aa'= v 3 a-y 
2 

'.· i . . ' . 
,_: •,. ".jj.cea;dth·at-<:d( , 

.• I t! 



~ 2v3a-2y 
- - .,r3 

Simplifying the expression for ay we get 

' • I • 

I/,., I • ~ •,. •" " 

- ' ' ~· 

.,:' 

a• 2ya 1 [ J ~J= 2 -ayi+ 
3
v

3
= 6.,,

3 
3\13a3- 6,j3 ay2+4ya 

Fig. 10'21 

X 

r::hear stress 
d 1str1but1on 

. ( b) 

So the shear stress, 

J 

when 

a 16F 
y= 2· q= Sv3a 4 

F · 
= 0'387 a2 

y=O, 
16F [iaa J 

q= 5 ,j3a' , , 3a 

4F I 
= 5,v'3Xd.i 

·. = 0'462 -~ 
a 

.·.· 

Fig. 10·2l(b) shows the shear stress dis_tribution over the depth of the section. 

Problem 10·11. . A rolled steel section 60 mm X 40 mm is shown in the Fig. 10'22(a). 
A transverse shear force of S tonnes is acting on this section: Plot the shear stress distribution 
over the depth of the section. c ·

1 
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Solution. Fig. 10·22 (a) shows the section, symmetrical about X-X and YY axis i.e. G 
lies at the centre as shown. 

S h t ar stre ~i 
d1st r I b ut ton 

( a 1 

Fig. 10·22 

Moment of Inertia 

fNA = 40~ 603 _ 4( lOI~ 103) 

V 

( b ) 

. · 1 

• I • 

-···· . .. , '· 

• N""! 

(Note that moment of inertia of 4 triangles of base 10 mm and height JO mm is 
substracted from the moment of inertia of a rectangle of 40 x 60 mm) 

INA = O' [ 72- ; ] = 71'667 x 10' mni . 

Shear stress at any layer (at distance of y from the neutral layer) 

FaJ q= -
INAb 

F= SX9'8 X 1000 N= 49X 103 N 
y= 30 mm, q= O 

y = 20 mm, 49 x 10s[40 x 10 x (20 + S)] 
q= INA X 40 

49 x lO* x 104 
- -=--=--=---,----

7l ·667 x 1o« x 40 
= 17'09 N/mm 2• 

y=IO mm, 49 X 103 X [20 X 40 X (10 + 10)] 
q= 11 ·667x JO' x 40 

49 X [16 X 103) 
- 71·667 x 400 
=27°35 N/mm2 

)'= 0 mm, 
49 X 103 [ 40 X 30 X 1s-2

X (l~ x lO) x -¥!-J 
q= 71 ·667 X l04 X 20 

(at the lly~tnil a~is (J = 2Q Qlm) 

-: j .. : u 



·) " . , '' 49 Xii 03 X I r/.66'6,··66'7 
71"667 x IO' x 20-

= 60·40 N/mm2 

J • 

The shear stress distribution is shown in the Fig. 10·22 (b)_. 

Problem 10"112:- A. beam is of rr 
section, with flange 12 cm x I cm and .web 
10 cm x I cm. What percentage of -s-lrearin-g 
force at any section isrs-~~!.ed/by the web. 

, I 

Solution. Fig. I 0·23 shows the 'T 
section of given dimension. 'The section iis 
symmetrical about -the .Y-\Y -axis. .LeLus fimd 
position of G along YY axis. 

10cm 
8c m:: Y1 ~i---,,=dy l 
j ~ 3 .y~--- - l

''··' · .. '11~ 
Taking first moments of the areas 

about the lower edge of the web 

or 

oo+ 12) Yi= 10 x 1 x s+ 12 x 1 oo+o·s) 
22 Yi = so+ t.26 

y1= 8 cm 

Y2= tO+ 1-£=:3 cm 

Moment of inertia about the neutral axis, 
. . 

, . . 1cm 

Fig 10·23 

INA = 
12 x i s +12(3- 0·5)2+ l x ios·+I0(8- 5)2 

.12 12 

where 

r •.• . :i . t 

= 1+ 75+ 83'333+90 

= 249"333 cm4• 

Shear force shared by the portion abed of the web 

Shear stress at any layer 
Fay 

q= 
INA. b 

Say thickness of the layer= oy 

Area of the layer 'b Sy_ 
' b= breadth of the web 

Shear force at the layer considered 

= qbdy 

1. fl! 
1(1' 

- ::F-aJ X'bd 
- INA b y 

I '• t 

F aJ 
=; T«-1 dy 

, ) ' ,~ . 

<1 • 

,:,, 

ff 'I 

1,1• J 



DISTRIBUTION OF SHEAR STRESS IN BEAMS 

where 

ay= 12X I X 2'5+(2-y) ( y+ Z~y ) 

4-y2 64-y2 

=30+ - 2-= 2 

Total shear force shared by the portion abed 

2 

J F r 64-y2 J 
= INA L 2 dy 

0 

2 

F [ ys J = -- 64 y--
21NA 3 

0 

F 376 F 
F1 = --x- = 62'667 - -

2 INA 3 INA 

Shear force shared by the portion cdef 

Shear stress at any layer at a distance y from N.A., 

Fay 
q= INA b 

Shear force in a layer of thickness dy, 

Fay 
dF= q . bdy= - - - bdy 

I NA. b 

= Fay dy 
INA 

. 8 1 
aJ= (8-y) ( Y+ ;:y- )= 2 (8 -y)(8+y) 

(64-y2) 

- 2 

Total shear force shared by the portion cdef, 

8 

F =I-F- (64-y2) dy 2 2 INA 
0 

8 

= 2 ~NA [ 64 y - ~3 J 
0 

=-F-[64 x 8- ~]= 170'667_!_ 
i i{VA ~ _ ft.{,1 

489 
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Total shear force shared by the w~b 

= F1+F2 = (62'667+ 170'667) 

= 233'3·34, F = 0'9358 F 
249'333 

F 
ftvA 

The shear force shared by the web is 93' 58 % of the sh.ear foree acting ·0n' tlie 'section. 

Problem 10·13. A tee section with a fla:nge 10 X 1 ·s cm and web lOX 1 cm is 
subjected to a bending moment of o· f2 fonne-1m:tre i(ro~ucing tension in flange and a shear 
force of , ·6 tonnes. Determine the principal stresses at the (ollowing points. 

(a) A, bottom edge of the flange 

(b) B, at the neutral axis 

(c) C, at the bottom edge of web. 

Solution. The figure of the T section 
is shown in Fig. 10·24. · ' 

Let us calculate the moment of inertia 
INA or lxx. " 

The section is symmetrical a,bput J:'Y 
axis and its G will lie on this axis, 

Momeat of inertia, 

Stresses due to BM 

where 

Stresses due to SF 

_ 1o x I x s + 1o x 1·s 00+ 0·1-5) 
Yi - !0+15 . 

Y2 = IO + J ·5- 8'45= 3''0§ ~m 

J _ _ I X \0,3· • lO x J·5s 
NA - fxx - - \~ --HO (?, 45-5)~+ 

12 
+ 15 (3·05 - 0'75)2 

= 83'333+ 119·025+ 2·8125 + 19·35 
= 284'52 cm4 

M = 0·12 'F-m= i-2.: x 104 kg-cm 

/A = -/:A X (yA) 

y,4 = 3'05- I 'S= I·ss 

1 ·2 x 104x 1·55 · ·· , • i . 

284.52 =65·11 l<g/cm2 (tensile) 

/s=O (at nl!µtr 1:1I a:xes) 
]'2 X J04X8'45 

Jc=-, 284·52 = -3'56'39 kg/cm2 (compressive) 

F= J '6 tonne = 1600 kg 
1600 

JI 



(The width of the flange at bottom is 10 cm) 

_ ·l600 X 15 X-2'3 = l9'40 k / 2 
- 284·52 x 10 g cm 

· 15X2'3+( 1'·55·X lX1X 
1'15

) 
qB=l600 X lx.cXl 

(Width at neutral axis is 1 cm) 

_ 35·1ox 1600 = 200.76 k 1 2 
- 284'52 g cm 

qc= O 

Principal str!"sses 

P!A, P2A= 
1; ± ,J( 1; r + qA 2 

= 6
;

77 ± J( 6
\

77 
/+19'40)2 =32'885±38'181 

= 71 '066, -5,.296 kg/cm2 

'PiB, P21J= ±4' qB2, Since /11 = 0 
= ±200'76 kg/cm2 

p 1c=-356'-39 kg/cm2 
p2c = O at this point. 

Problem 10'14. The Fig. 10'25 shows 
a bracket of T -section s:upporting a ~haft 
transmitting power. At a' part'\'cular instant 
the thrust P on the bearing is 4000 N 'in
clined at 45° to the vertical. Determine the 
principal stresses along the section a-a at the 
point b. 

Solution. Resolving the ,inclined -load. 

Vertical component, 
Pv = 4b00 >(0'707= 28~8 N 

0 

\o;m - i 
-: 2or:- 120mm ~ 

·a 

p 

Horizontal component, 
Pn= 4000 X0'707= 2828 N 

Due to the vertical component Pv, 
there will be a bending moment and a shearing 
force on the section. 

__Lr2o~m1 
Y2: 875 ~-1--,- X- N A-Tr 
Y1=1625 GB - 20mm 

t .. !' __:!_~ 

Bending moment at the section a-a 
M= Pvx 120= 2828 X 120 Nmm 

Shear force at the section a-a 

F= 2828 N. 

_,..jv l-
s rr,rr• 

Section 9 t O:,-,O 

Fig. 10·25 



then 

where 

T-Section 

Section is symmetrical about the Y-Y ax"is. G lies on YY axis. 

Distance of C.G. from lower edge of web, 

_ 20_x 5 x 10+_20 x 5 x 22·5 _
16

.
25 Yi - JOO+ 100 - mm 

Y2= 25- 16.25= 8'75 mm 

Moment of inertia, 

INA or lu= 
5
~;

03 
+ 100 ([6'25-10)2 + 

20(i53 
+100 (8'75-2·5)2 

= 3333'333 + 3906'250+ 208'333+3906'250 

= 11354'166 mm4 

Due to the bending moment M, there will be compressive stress at the point B, 

f' = _J!__ y 
lx,c 

Y= Yt- 10= 6'25 mm 

__ 2s2s x 12o x 6·25 ___ 186.
80 

N/ 
2 

- 11354'166 mm 

Shear stress q (at y=6'25 mm from neutral axis) 

FaJ 2828 X 10 X5 X5 
= l xx b-= 11354'166 X5 12'453 N/mm2 

Moreover the horizontal component PH acts at an eccentricity 

e=8·7S+ 25= 33.75 mm 

Bending moment due to Pe, 

M'= 2828 X 33·75 N mm 

Due to PH there will be direct compressive stress on the section 
PH 2828 

fa=-area=- lOO+ lOO -14'14 N/mm2 

Due to M' there will be tensile stress on the point b 

1 
"= M ' xy 2828 x 33·75 x (16'25- 10) 

f xx 113.54' 166 
=+52'54 N/mm2 (tensile) 

Net direct stress at point B 

= -1s6·so+52·s4- 14·14 
f =-148'40 N/ mm2 (compressive) 

Shear sttess at the point B 
q= 12'453 N/mm2 
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Principal stresses at the point B 

or 

P1>P2= { ± y( f )2+q2 
, 

= - 74.2±4(- 74'2)2+ (12'453)2 

= - 74'2±75'23 

Pi= - 149'43 N/mm2 (compressive) 

p2 = + 1'03 N/mm2 (tensile) 

Problem 10'15. The box section shown in Fig. 10'26 (a) is made up of four 18 X 3 
cm wooden planks connected by screws . Each screw can safely transmit a load of 150 kg. 
Determine the minimum necessary spacing of screws along the · length of the beam if the 
maximum shear force transmitted by section is 1000 kg. · 

D <.,.s crew J_ -Ftl f I -H-=t=£t_24cm• 
be a m 

D= p it ch o f sc r e ws 

( b ) 

Fig. 10·26 

X 

Box sec t i on 

(a) 

Solution. Fig. 10'26 (a) shows the box section. The section is symmetrical about yy 
a.nd XX axis and its CG lies at the centre as shown. 

Moment of inertia, 

Jxx = l8 X243_ 12 X 
182 

= 20736-5832= 14904 cm"' 
12 12 

j / 

q at the edge of the web 
Fay lOOOx (2x9 x 3 x 10·5) 

= Jxxb 14904 X3 X2 
= 6'34 kg/cm2 (breadth is 6 cm) 

say p cm is the pitch of the screws 

Then shear force per pitch length 
= p X3 X2 X6'34 kg 
= 38'04 p for two screws 
= 19·02 p for one screw 



Load safeiy tta11smitted by a screw 

=150 kg:-19;.02 'p 
Pitch p=7'886~8 cm. 

1. Shear stress at any '!'ayer at a tl i~taii~e' of y froin the neutral axis, 

Fa) 
q= INA b . . 

.where F= sbear force on ,the section 
4--J=<first moment about neutral axis of the art% ·a.:bbve the layer'l'(irttlir 

consideration 

/N,1 = moment of inertia of the section about the neutral axis 
b= breadth of the layer 

2. In a .circular section, maximum shear stress=! X mean shear stress. 

3. In a rectangulllr section, maximum shear stress= 1 ·5 mean shear stress. 

4. In the case ;of a thin ci.rcular tube, 
·Maximum shear stress=2 mean shear stress. 

5. In the ease of I section, most of the .m.oi:r.:ient Mis cartied by the flanges and most 
of the-,shear force Fis carried by'fue web. 

6 In the case of rectartgular, square, circular and / section maximum shear stress 
occurs at the neutral axis. 

7. In the case of sqi,iar,e section with diagonal lying in the plane of bending, maximum 
shear stress is 9/8 times the mean shear stress and occurs at a distance of d/8 from 
the neutral axis, where d is the dia;gonal of the section. 

8. Near a free boundaiy, the shear stress on any s~ction acts in a direction parallel 
1tp the ,boun<ilait . 

MULTIPLE CHOICE QUESTIONS 
r 

1. A rectangu\ar sec,~~?~ o( ~ .~eai;n ls,subj~ct~p .to ~ ·~h~A!~ng. for~e. The ratio of maximum 
shear stress ,to··the ~mean -shear .stress 1:ievelo,ped m tbe section 1s 

2. 

(a) 2 (b) 1 ·75 
(c) l '50 (d) 1 ·25 

A square section with side a, 6f a' .bea.n;i .i~ subjected to a shear force F, the magnitude 
of shear stress at the top edge of-the square is 

(a) 1 ·5 F/a6 

(c) O'S F/a2 

(b) F/a2 

(d) 0 

3. In I-section of a beam subjected to transverse shear 'fotce f'. ·The ·niax'Ifmtm ,\iliear stress 
is developed at 

(a) at the top edge .of·,the ,t@p dlange 
(b) at the bottom edge 0f, the ,to.p ·flange 
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(c) at the centre of the web 

(d, None of the above. 

4. A circular section with area 100 mm2 is subjected to a transverse shear force 6 kN. 
The magnitud~ of the maximum shear stress, develo.ped at the section is 

(a) 120 N/mm2 (b) 80 N/mm2 

(c) 60 N/mm2 (di 50 N/mm2 

5, A thin circular tube is used as a beam. At a particular section it is subjected to a trans
verse shear force F If th_e mean shear stress in the section is q, the maximum shear 
stress developed in th,e se'ction is 

(a) 2'5 q 

(c) 1 '5 q 

(b) 2'0 q 

(d) 1'25 q 

6. A beam with a squary cross-section 10 cm X 10 cm is simply supported at its ends an'd' 
carries a centrar load W. If the maximum shear stress developed is not to exceed 
6N/mm2, the maximhm value of W is · 
(a) 20 kN (b) 40 kN 
(c) 60 kN (d) 80 kN 

7. . In an J section of a beam, subjected to. a s~ear force F, the most of the sb:e~~ foWe is 
shared by the web · · 

(a) Trl,l,e (b) Fa.ls,e 

8. In an /-section of a beam, subjected to a bending moment M, the most of the m·omerit 
M. is sq~red by t~e w~b 
(a) True (b) False 

9. A beam with a square secti01:r of side a, is, plaeed with one of its diaigonals in dl'e vertical . 
plane. 1f the transverse shear force at a particular section is F, then the ma~itn'IMff 
shear stress developed in the section is 1 

• 

(a), rs FJ.42 

(t) 1'12'5 F/a2 

(b), l · 25 F/a2 
(d) None of the above. 

10'. A beam with square cross-section of side 100 mm, is placed with one of its 
diagonals in the horizontal plane. At a particular section shear force is 15 kN. The shear 
force developed a:t the neuti;al axis of the section is 

(a) 3N/mm2 (b) 2·25 N/mm2 

(c) t ·8 N/mm2 (d) 1 ·5 ~/mm2 

1. (c) 
6. (d) 

2. (d) 
7. (a} 

ANSWERS 

3. (c) 
8. (b) 

EXERCIS~ 

4. (b) 
9. (c) 

5. (b) 
10. (d) 

10·1. A20X40cmRSJof /section with flanges 29 X~cm ~nd -.y~l> 36XJ cm i-s
subjected to a bending moment Mand a shear force.F. What percentage of bending 'mometi'i 
is <;arried by the fl.an~e and 'YQ.at percentage of shearmg force is carried by the web ? 

· A:ais. [88'14% of M, 95;28% of FJ 
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10·2. A beam of rectangular section with breadth B and depth D is simply supported 
with a span length L. It carries a concentrated load P at its centre. Show that the principal 
stresses developed at a depth of D/4(in the central section of the beam) are 

3PL [ J 9D
2

] 
8BD2 l± l + 4£2 

10'3. Show that for a beam section of triangular shape base B, height H subjected to 
8F 

shear force F, the shear stress at the neutral axis is 3BH 

10·4. A rolled steel section shown 
in the Fig. 10 27 is used·as a beam. At a parti
cular.section the shear force is 5 kN. Plot the 
shear stress distribution over the depth of 
th,e section. 

Ans: [qNA=48"256 N/mm2
] 

Fig. 10·27 

~ 1o·s: Two beams, one with I section and the other with angle section are used as 
cantilevers with equal lengths and carry the uniformly distributed load on one w1 and on the 
other w

2
, such that the maximum shear stress in the web for both is the same. I section has 

flanges 12 X 1·5 cm and web lS X l cm. The angle section is 18 cmx 18 cmx 1·5 cm (thickness). 
Detern;iine the ratio of the maximum stress due to bending developed in both. 

Ans. ['2:'.!...= 0"806, Ji =0"3296 J 
Wz /2 · 

· · 10·6. A beam o.f square sec!ion. is placed with its diagonal in the vertical plane. The 
shearing force at a certain cross-section 1s F. Show that the shear stress at the centroidal axis 
is equal to the mean shear stress in the section. 

10·1. The section of a beam is a square with a small square cut-out from the centre 
as shown in the Fig. 10·28. Determine the shear stress at the neutral axis if the· shear force at 
th!;!_section is 10 tonnes. Ans. [404'44 kg/cm2

] 
'I . . 

4cm 

.._______, J_ 
Fig. 10·28 Fig. 10'29 

10'8. A beam section subjected to shear force F is shown in the Fig. 10'29. Plot 
a graph showin.g the variation of shear stress over the thickness of the section. Determine 
ratio· of maximum to mean shear stress. . . 

Ans. [qA = O, ([8 = "0696 F, qB'= ·osi2 F, . qc = O, q .... ., ·=· 1 ·53 J 
' · · · <.(mea-p 
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10'9. A timber ~be_a;lll of hexagonal section (side 10 cm) placed with one of its 
diagonals in i hor.i,z.ontal plaQ.!,': ; is simply supported at its ends and quries .a central load W. 
Determine th~ dis.tance betweei;i the supports and the load W if the maximum shearing stress 
is limited to i kgi.~m2 and the maximum direct stress due to bending is limited to 5.0 kg/cm2 • 

10·10J A r_elle.d steel section shown 

in the Fig. !P'30 .i~ subjected to a vertical 

shear force of 20 to~:Q~s. Petermine the 

shearing stresses at the corners A, B, C and D. 

Ans. [qA=O, qs= 161 '4 kg/cm 2, qc= 695'2 
kg/cm2, qv = 1108·5 kg/cma] 

A 

[866 kg, 1 ·443 mxtre] 

I I I 6cm 

C l 
o+o - ---+ 1 
I I Ge m 

'-----+------' . L 
,_._ _ _ ,0 Cm __ ,._,, 

Fig. 10·30 

10·11. A beam is of 10 X 30 cm I section, flanges 10 x 1: 5 cm, web, 27 X l cm is 
subjected to a bending moment 20 k Nm (producing tension in top flange) and a shear force 
120 kN. Determine principal stresses : 

(i) at the bottom surface of top flange 

(ii) at a distance of 5 cm from the top edge 

(iii) at the neutral axis. 

Ans. [(i) 54'896, - ~O·O N/mm2, (ii) + 50'54, -24'70 N/mm2, 

(iii) ±47'28 N/mm2J 

10·12. A bracket of I section fixed in a wall supports a load of 3000 N as shown in 
the Fig. 10'31. Determine the principal stresses along the layer BB across the section aa. 

Ans. [89' I 3 N/mm2, - 0·25 N/mm2] 

Se c t ion at 0- 9 

I_ _JP: 3000 N. r:-- lOO mm 
a 

a 

1 

~Omm 

2_0..,._m_m __ r--8::_~B--, _ _J_ 10mm 

T ~ t 
Se r t1on at a - a 
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10'13. The box section shown in 
· Fig. 10·32 is made up of four 10 X 2 cm 

wooden planks connected by screws. Each 
screw can safely transmit a shear force of lkN. 
Estimate the maximum spacing between 
screws along the length of the beam if the 
maximum shear force transmitted by the 
section is 5 kN. Ans. [6 cm] 

. . ~T.RE,N.GTH OF MAl'.~RIAl:S 

Fig. 10·32'· 

-· ~. 

; ') : : ~ J -~ 

.. \ 



Deflection of Beams and Cantilevers 

In chapter 8, we have derived the flexure formula M/l=E/R=f/y and studied about the 
maximum stresses developed in the extreme layers of the beam. The beam section is designed 
taking into consideration the allowable skin stress developed. When the beam carries the trans
verse points loads and distributed load over its length, the axis of the beam deflects. The deflec
tion in the flexure elements of the machine must be with in the permissible limit so as to prevent 
misalignment and to maintain dimensional accuracy. Stiff flexural members are required in 
most engineering applications. 
I 

In this chapter basic differential equation relating slope and deflection with the bending 
moment will be developed. Only the deflection caused by bending will be discussed in this 
chapter and deflection due to shear will be discussed in the chapter on strain energy. 

11·1. RELATION BETWEEN SLOPE, DEFLECTION, RADIUS OF CURVATURE 
AND BENDING MOMENT 

Fig. 11 · 1 (a) shows a beam simply supported at its ends and carrying a point load W 
and a uniformly distributed load w as shown. Under the acti on of these transverse loads, the 
beam is deflected and its axis is bent as shown by ACDB. The radius of curvature of the 
beam at one section may be different than the radius of curvature at the other section. 

As the bending moment along the length of the beam changes, its radius of curvature 
also changes as is obvious from the formula M/l=E/R. Consider a very small length M 

y 

0 

B 

0 

( b) 

rr .. ,, ....... . Fjg. 11·1 
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marked by points C and D and for this very small length radius of curvature, R may be 
assumed as constant. Enlarged view of the length CD is shown in Fig. 11 · 1 (b ), where R is 
the radius of curvature, 0 is the centre of curvature. CG is the tangent to the curve CD at the 
p0int C and DF is the tangent to the curve at the point D. 

Slope of the curve at the point C 

Slope of the curve at the point D 

then Angle subtended by length 3/ or CD at the centre of cur'varture 

=3</> 

So R3,f,= 3l ... (1) 

When az~o. then segment CD. can be approximated by ~ straight I.ine CD having 
components 3x and 'Sy along x-axis and y-axis respectively. 

'Sy 
tan</>=- -Sx 

or -in the limits 
dy 

tan 'P = dx 

or 

Differentiating both the sides of equation (2) 

d2y 
sec2 if, . di/>= dx2 dx 

But sec2 </> = I + tan2 ¢,=[ 1+( t )1' 

So 
d<fJ = [ 1+( dy )21 

_ dx ..; 

From equation (1) Rdcf, =di= ;./ (dy)2+(dx)2 

= dx J 1+( rx r 
Substituting above 

d2y 

J d )2 cfxz dx 

dx i+(lx ~ R [ i+(t)'] 
d2y 
dx2 1 

V 1+(: y X [ 1+( t }2] 

... (2) 

... (3) 

... (4) 



t)BPLEC.TION- 0F BEAMS· A:ND CANTILEVERS 

Since dy/dx is the slope at a point in the beam is a very small quantity then (dy/dx)2 
will be much smaller than dy/dx and therefore ca;u be neglected m comparison to 1. 

or 

l d2y 
If = ax2 So 

But from the flexure formula 

Therefore 

1 M 
R= El 

M d 2y 
EI= dx 2 

El d
2
y =M 

dx 2 ... tS·) 

This differential equation gives the relationship between the moment. of resistance at 
a particular section and the cartesian co-ordinates of the point in the bent beam. ___ 

11·2. SIGN CONVENTIONS 

In the chapter 7, we have taken the following conventions : 

c i) Shear force tending to rotate the body in the d ockW'ise direction is positive. 
(ii) Bending moment producing concavity upwards in the beam is taken as positive. 

(iii) If x-y is the cartesian co-ordinate system, then x is positive towards the right side 
of the origin 0 . 

(iv) y is positive upwards. 

Fig. 11·2 shows the bent shape of a 
beam loaded with transverse loads. ¥ 

Slope at point A = iA is negative 

Slope at point B = is is positive 

Deflection at point C = ye is negative -
When we follow these conventions, and 

consider a section X-X in the beam then i ·g.._u,,· r.--- - -------
upward orces on the left side of the section . 
are positive and (ii) clockwise moments of the forces on the left side of the section. are positive. 

11'3. A SIMPLY SUPPORTED BEAM WITH A CONCENTRATED LOAD 

A beam AB of length / is simply 
supported at the ends A a1I1d B and carries a 
load W at its centre C, as shown in the Fig. 
11 '3. By symmetry the reactions at A and B 
will be equal i.e., RA=Rn= W/2. Now 
consider a section X-X at a distance of x from 
the end A. 

Bending moment at X-X, Fig. 11 ·3 
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':.', ·; i ,~, ••• . w 
M=+R,1.x=-y x 

d2y W 
EI dx2 =2 x or ... (1) 

Integrating the equation (1) 

dy W x2 

EI dx=2X2 +Ci ... (2) 

where C1 is the constant of integration. 

As the beam is symmetricaily loaded about its centre, slope at the centre of the beam 
will be zero. 

i.e., 

or 

. 'i-: 

dy I 
- -=0 at x= -
dx 2 

Substituting the values in equation (2) we get 

w12 
0=-

2
-+c1 

w12 
C1 = -~-

Equation (2) will now be 

dy Wx2 W/2 

EJ -------dx - 4 16 

Integrating the equation (3) we get 

Wx3 Wl2 
El y = 12- 16 x+ C2 

where C2 is another constant of integration. 

At the end A, x=O, Deflection,y= O 

Substituting in the equation above 

O= O- O+ C2, or C2 = 0 

.::::,:i::,: therefore' 

Maximum deflection occurs at the centre of the beam at x= i-
W ( I )3 W/2 

( l ) Wis w/s 
Elymao,= 12 2 -16 2 = % - 32 

WJs 
= -48 

W/s (' d' . d l'mu=- 48 EI m 1catmg ownward deflection) 

- '' 

... (3) 

.. . . , '.) 

' ' '[; , .. 
. . ~ · ... 
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Slope at tl"ie end A, i.e., at x = O 

w12 
EliA= 0---

16 

or iA=-

By symmetry the slope at B, 

wz2 

16 EI 

w12 
is= 16EI . 

503 

Note that bending moment is considered only in the portion AC. The equation (3) 
is valid only from port ion AC. The slope at B can not be detemind by using equation (3). 

Exa1nple 11·3-1. A girder or uniform section and constant depth is freely supported 
over a span of 2 metres. Calculate the central deflection under a central load of 2 tonnes, if 
l xx=780·7 cm4 . Determine also the slopes at the ends of beam. 

Given E= 2 X 106 kg/cm2. 

Solution. Say a beam AB of length 2 m is simply supported at the ends and carries 
a central load 2 tonnes at C i.e., the centre of the beam. Maximum deflection occurs at the 
point C. 

wJs 
ymae= 48 El 

W = 2 tonnes= 2000 kg 

/= 2 m = 200 cm 

E=2 X 106 kg/cm2 , 1= 780·7 cm4 

2000 X (200)3 

Yma ,= 48 X 2 X 106 X-7---=8-0-·7- 0·21 3 cm or. 2· 13 .mm:·:,~: 
~·' , · . 
~ ! i J ' !!! . , .' J 

In comparison to the span length of 2000 mm, deflection at the centre, 2:13 mm is 
very small. 

Slope at the end A, 

Slope at end B, 

. W/2 2000 X (200)2 

u =-16 El = - 16 X2 X I06 X780·7 

= - 0'0032 radian 

iB = + 0·0032 radian 

or - 0·1s3° 

or + 0·1s3° 

Slope at the ends is also very small. 

Exercise 11'3-l . A wooden beam of breadth IO cm and depth 20 cm is used as a 
simply supported beam over a span length of 4 metres. If E for wood = l x 1011 kg/cm2, what 
will be the magnitude of the load Wat the centre of the beam to ·cause a deflection of 2 mm 
at the ~ntre. What will then be the slope at the ends. 
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11·4. A SIMPLY SUPPORTED BEAM WITH A UNIFORMLY DlSTRIBUTED LOAD 
OVER ITS LENGTH 

A beam AB of length/ simply supported at the ends A and B carries a uniformly 
distributed load of w per unit length throughout its length as shown in the Fig. 11 4. 

w pu unit l~ngth 

~ __ __. ... 

Fig. 11 ·4 

;f .o,1;~ v,er.tical load on t.l:t.e beam = wl 

B 
we Re=-y 

By symmetry, reactions at A and B will be equal i.e., 

wl 
RA=RB= -

2 

Consider a section X-X at a distance of x from the .end A 

Bending moment on the section, 

wl wx2 

M = +- x- -2 2 
(note that C .. G. of the ioad w . .;t" l.i.e~ at a 

distance of x/2 frOi;ll %-%) 

So 
d2y wl wx2 

El-=- x- -dx2 2 2 

Integrating the equation (I) we get 

EI dy _ wlx2 wxs +c 
dx - . 4 - 6 1 

... (1) 

where C1 is the constant of integration 

Sinc.e the be.am -is sy1mmetrieaUy loaded ~b::>u.t its centre, slope at the centre of the 
beam will be zero. 

j_e:, 4Y -·O at 
dx 

I 
x=·-

2 
Substituting in the equation above 

,@= ,wJs - .wJ.s +c1 
16 48 

wJa 
C1= - 24 

EI dy wlx2 wx3 wi,8 

dx = -4-- y - 24 

_li:tJepating .the ec;i1,1.~tion .(2J ~ain 

wb:8 ' wx4 wl8x 
fly = ---rr- - 24 - u +.c2 

... (2) 

wb,ere C~ is another 9onstant of inte~ration, 
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at the end· A, x = O, y=O. 

0 = 0-0-C2 or C2= 0 

Then El = wzxa _ wx4 _ w/sx 
y 12 24 24 ... (3) 

In this case, maximum deflection occurs at the centre of the beam i.e., at x = l/2. Putting 
this value in equation (3) 

w/4 wl' w/4 

El yrna:11= % - 384 - 48 

5 
= - 384 w/4 

or 
5wl4 

Yma:11 = ·- 384E/ (indicating downward deflection) 

At the end A, x=O, ddy =iA, slope at the end A 
X 

Putting x = O in equation (2) 

or 

w/3 
EliA = O- 0 - -

24 

w/S - --
24El 

By symmetry, slope at B, 

w/3 
ia= + 24 El 

Example 11'4-l. An I section steel girder of/ = 2502 cm4 and depth 225 mm is used 
as a beam for a span length of 5 metres. The beam carries a uniformly distributed load w 
kg/cm run throughout its length. Determine the magnitude of w so that the maximum stress 
developed in the beam section does not exceed 600 kg/cm2• Under this load determine slope 
and, deflection in tl:re beam at a distance of 1·5 m from one end. 

Solution. 

Span length, 

E=2 X 106 kg/cm2 

/=5 metres 
=500 cm 

Rate of loading, w=? 

X 

Allowable stress, /=600 kg/cm2 
Fig. 11·5 

Maximum bending moment occuts at the centre of the beam, 

w/2 
M.,a.,=-

8
-

w X 500 X 500 31250 k 
- 8 = w ~ cm 
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' Maximum stress will occur at the extreme layers at a distance of ± d/2 from neutral 
axis, where di s the depth of the section and 1s equal to 22·5 cm. 

and 

f = M X d _ 31250 w X 22'5 
I 2 - 2502 2 

or 600 = 31250 w x 22·5 
2502X2 

w, rate of loading = 4'27 kg/cm run 
' 

At any section at a distance of x from the end A, 

dy wlx2 wx3 wza 
EI - - - ---- - -dx -- 4 6 24 

at X = 150 cm i.e. , at point P 

Slope at point P; 

Then 

Putting 

if , 

E
. _ 4·21 x 500xl50 x i'5o 4·27 x (150)3 4·27 x (500)3 

f zp - 4 - 6 - n 24 · 

El ip = ( l200'9315 X 104 - 2401 '875 X 103 - 22' 2396 X 106) 

= ( l 2'009375 - 2'401875- 22'2396) X 106 

= - 12 63 X 106 

12"63 X 106 . 
i p= -

2502 
x 

2 
X 100 = - 0·0025 radran 

= - o· 145 degree 

El yp= ~( l50)3- ~ (I 50)4 - wl~ ( 150) 
12 24 24 · 

w= 4'27 kg/cm run, /= 500 cm 

l ·'"1" 

El y p= 4·27]~ 500 x (I50)3 - \!7 X (150)4 - 4'27 ~~500)3 x (I50) 

= 6004 68 X 105 - 9007"03 X 104 -333'59 X 10 7 

= (60'0.47 - 9'00 - 333'59) X 107 

= -282'543 X 107 

' . 
282'543 X 107 

Deflection at point P, yp=-2502 x 2 x 100 

=-0'5646 cm= -5'646 mm 
·,•I:, 

Exercise 11'4-l. A roll~d steel j~ist _having ! = 3600 cm4 is simply supported over a 
span of 6 metres. It carries a u111formly d1stn buted load of 0'8 tonne/ metre length. Determine 
~lope and de~ec::,tio~ 3:t a di~tanc::,e of 7 r11e~res frorn Qnc end of the beam. E = 2000 tonnes/cm 2. 

· f. :i:0'2°, - 1 ·74 cmJ 



DEPiECTlON dF BEAMS AND CANTILEVERS 

11'5. A CANTILEVER WITH A CONCENTR.ATEDILOAI) 

A cantilever AB of length /, free at end 
A and fixed at end B carries a concentrated 
load W at the free end as shown in the 
Fig .. 11 '6. At the end B, there wi ll be a 
reaction, Rn= W aDd a fixing couple Mn = WI 
(This we have already discussed in Chapter 7) 

Consider a section X-X at a d istance of 
x from the end A. 

Bending moment at X-X, 

w X 
j_ 

Ymax 
-t- A 

i---- t 

Fig. 11·6 

M = - Wx (a bending moment producing convexity upwards) 

or 
d2y 

EI -= - Wx 
dx2 

Integrating the equation (I) we get 

dy Wx2 

El ,t;=- - 2- +c1 (a constant of integration) 

at the end B, a fixed end, t = 0 

Therefore, EIXO= - W/
2 +c 

2 1 
or 

So EI dy =-Wx2 + W/2 
dx 2 2 

Integrating the equation (2) 

... (I) 

... (2) 

Wx3 W/2x 
Ely= - - 6- + -2-+C2 (another constant of integration) 

at the end B, a fixed end , y=O 

Therefore Eix O= - ~/a + iv_;3 +c2 or 

Ely=- Wx 3 + W/2x __ w1s 
6 2 3 

Maximum deflection takes place at the free end where x = O 
WJ3 

,. Eiymaa,=--
3

-

WJS 
Ym~..,= - 3 El (showing downward deflection) 

Maximum slope a lso occurs at the free end, where x=O 

w12 
EI ima.., = 0 +-

2
-

W/2 
im11x= 2£/ 

... (3) 



Slope and deflection at any other po1nt of the beam · can be d.etermi'ned hy using . fl1e 
equation!, (2) add (3). 

Ex~m,pl~ 11·s.1. A cantilever 2 metres long is. -loaded with a point load of SO kB a,t 
the free end. If the seoti9n is ,rectangular 8 cm x 16 cm deep, calculate slope and detleetroil 
at (i) fre~ end of the cantilever, (ii) at a distance of o·6 m from the free end. E :;;105 lr:.g/cfll!. 

! ; 

\•.' . 

Solutio:q. 
Width of the secti_on, 
Depth of the section, 

Moment of inertia, 

B= 8 cm 
D= l6 cm 

I= BDS = 8 X 
163 =2730"67 cm' 

12 12 .. 

Lo~d at the free ~nd, W=50 k~ 
Length of the cantilever, 

/= 2 metre = 200 cm 

Young's modulus, E= 106 kg/cm2 

(i) At the free end 
' . W/3 50 X (200)3 • 

deflection,yma"- - 3EI --3 x 2730.7 X 105=-0488 cm 

Slope, 
. , WI2 50 X (200)2 
lma:i,= '2EI =2x 2130·1x 105 

= 0"003662 radian = 0"21 ° 

{ii) At a distance of 0'6 m from. free end 

Taking x=60 cm from free end 

And 

EI dy = - W x2+ W/2 
d~ . 2 . 2 

EI i = - ~o x 602 + 50~2002 = ,~IOQQ~. 

9100.QO 
i= 2730;67 x 105 0·0033 radian=o· 19° 

Wx3, W/2x W/a 
Ely= --6-+-2--3 

Putt;iug x ::::;:6Q ci;n 

EI y= _ 50 ~ 6 0
3 

+ 50 X 2~0
2 ,?( _6?. _ ~.O ~ 200a 

= - 1800 X 103+6QOO X 10'-133·33 X 105 

= ( - 1"8 + 60-133"33)x 106= -75'133x 10s 
75"133 X I06 

y= ~ 27"3ff·67 X 10s= -0·275 cm 

Exercise 11·s-t. A rolled steel joist of I section, depth 15 cm and moment of inertia 
1455'6 cm4 is fixed at one end and a load W acts on the Qther end at a distance of 6 m from the 
fixed end. What is the maximum value of W such that the deflection at the centre of the 
qanWever does not exc.eed 2·5 mm. £=2 x 106 kg/cm 2. [Ans. 32'346 kg] 
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11'6. A CANTILEVER WITH A UNIFORMLY . i>ISRiBUTED LOAD 

A cantilever AB of length I, fixed at 
end Band free at the ena A carries a uni
formly distributed load w per unit length, ·as · 
shown in the Fig. 11 ·1. There is reaction, 

. wl2 Rs=wl and fixmg ·1;9uple, MB= -
2
-· - to 

maintain equilibriµro. 

Consider a section X-X at a distance 
of x from the end A. 

. x wx2 

B.M. at the section XX, M = - wx . 2 =- T 

or El d 2y =- wxz 
dx2 2 

Integrating the equation (l) we get 

Fig. 11'7 

EI dy = - wxs +c (a constant of integration) 
dx 6 1 

At x=l; fixed end ; dy = 0 
dx 

So wJs w/3 
0= - - 6-+C1 or C1=+T 

... (1) 

El dy _ wx3 + w/3 
( 2) 

dx -- 6 6 ... 

Integrating the equation (2) further we get 

EI y= - wx' + !vzax + c (another constant of integration) 
24 6 2 

At the fixed end B; x=l; y= O 

So w/4 w/4 wl' 
0= - 24 +-

6
-+c2 or C2= - 8 

Therefore, wx4 w/3x wl' 
Ely=- 24 + - 6 - --8-

Maximum deflection occurs at the free end, i.e., at x = O. 

Substituting this in equation (3) 
wl' 

El Ymae = - O+ O- -
8

-

. fl · w/
4 

( ' d' · d d d fl · ) Maximum de evtion, y,na•= - SEI m 1cating ownwar e ect1on 

... {~ 

Moreo:ver maximum slope in the cantilever also takes place at the free end as is obvious 
from the diagram i.e., at x = O, substituting this value in equation (2) 

w/3 
E{ i,,. ,,.,,= -0 +T 
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Maximum siope, 
. w/S 
i ,,a.,= 6El 

STRENGTH OF MA TERiAi..S 

• I 

The slope and deflection at any other point of the beam can be found out by substi tut-
. ing the va lue of x in equations (2) and (3) respectively. , , 

Example 11·6-l. An aluminium cantilever of rectangular section 48 mm wide and 
36 mm deep, of length 250 mm cirries a uniformly_ d is tributed load. What fs the maximum 
value of w if the maximum deflection in the cantilever is not to exceed l mm. · 

E for aluminium = 70 x 1 oa N/mm2 

Solution. 

Length of the beam, 

Breadth, 

Depth, 

Moment of inertia, 

Young's modulus, 

Maximum deflection , 

/ = 250 mm 

b= 48 mm 

d= 36 mm 

bd3 48 X 363 
I = u = 12 186624 mma 

E= 10 X 103 N/mm 2 

wt• 
Yma:io = 8EI = l m m 

wx 2504 

or 70 x 103 x 186624 = l 

70 X 103 X 186624 
(2S0)4 =3"344 N/ mm or w= 

= 3 344 kN/metre run 

Exercise 11·6-l. A cantilever of circ ular section of diameter d and length l metre 
carries a uniformly distributed load of 500 kg/metre run. What is the minimum diameter of the 
section if the deflection at the free end is not to exceed 2 mm. E= I x I 06 kg/cm 2 . 

· [Ans. 15·022 cm] 

11'7 MACAULAY'S METHOD 

The method followed so far for the determination of slopes and deflections in a beam is 
laborious when we consider each portion of the beam (between two adjacent loads) separately, 
making equation for the bending mom~nt for ~ part icular porti_on and integrating the expres
sions and finding out the constants of mtegrat1on for each portion and then finding out slope 
deflection at a particular section lying in that portion of the beam. The method devised by 

· Macaulay gives one continuous express ion for the bending moment which applies for all the 
portions of the beam and the constants of integration determined by using boundary condi
tions, are also applica ble for a ll portions of the b~am. By using this method slope or dcfkcr ion 
at any section throughout the length of the beam is determined by a single expression. This 
method can be best explained by taking an example. 
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(a) Concentrated Loads. Fig. 11 "8 
shows a beam ABCDE of length /, supported 
at A and at D, at a distance of x 2 from A. 
There are concentrated loads on the beam 
i.e ., W1 at B, at a distance cf x 1 from the end 
A, load W2 at C, at a distance of x2 from the 
end A and load W3 at the end E of the beam. 
R1 and R2 are the support reactions at A 
and D. 

. Macaulay's method can be briefly out-
lined as fo llows : 

A 

511 

·- -x 
w, 

Fig, 11·8 

. I. Consider a section ~-X, in the last portion of the beam starting from on~ end, and 
at a distance of x from the starting end. In the example shown, last portion is DE. 

2. Make an equation for the bending moment at the section X-X in the last portion 
of the beam. In the example shown, 

B.M. at the section X-X, 

M= R1x - W1 (x-x1)-W2 (x- x2)+R2 (x-x
3

) 

or ... ( 1) 

3. Integrate the expression for the bending moment and the brackets as shown above 
will be integrated as a whole, such as 

dy R1 x 2 W1 ( ) W2 ( ) R2 9 El 7x=-2- - - 2- x-x1 2- 2 x-x2 
2+ 2 (x - x 3 · + C1 

and 

where C1 and C2 are the constants of integration. 

4. Boundary conditions are used to determine the constants C1 and C2, subject to 
the conditions that a ll terms for which the quantity inside a brackets is negative is omitted. 
As an example at the end A, x=O, deflection y = O. This boundary condition can be used to 
determine one of the two constants. The terms (x-x1), (x - x 2) , (x_:.x3 ) all become · negative 
and are to be omitted. In other words, when x = O, the point lies only in the portion AB · 
expressions other than R1 x are not valid for the portion AB. ' · · 

5. Similarly the value of other constant is determined. Say in the example at x=X3, 

y=O i.e., we have. t() 'consider the portion CD. 

6. Once the constants C1 and C2 are determined, they are applicable f?r all the 
portions of the beam. 

7. Say slope and deflection are to be determined in portion BC. then x will be taken 
in this portion and (x- x2) is either zero or negative and (x- x3) a negative term are to be 
omitted. Similarly for the calculation of slope and deflection in the portion ;I B, th~ term1; 
(x-xi) and (x - x;i) become ne~ative ancl ar~ to l.?e omitteg, · 
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(b) Uniformly distributed loads. 
Consider a beam ABCD of length / supported 
at A and D and carrying uniformly distributed 
load of intensity w per unit length over BC, 
where B is at a distance of x 1 from A, and C 
is at a distance of x2 from A. There are 3 
portions of the beam i.e., AB, BC and CD. 
Consider a section X-X at a distance of x 
from the end A, in the portion CD of the 

~--ll-- -1.x 
D A,__.._._._._._.__.._._........_...__ 

)( 

....... __ e -----" 
R'"' 
' 

beam. Now in order to obtain an expression Fig. ll·9 
for the bending moment, which will apply 
for all values of x (i. e., in the portion AB, BC also) it is necessary to continue the loading 
upto the section x and applying equal and _opposite load of intensity w from x2 to x as shown ' 
in the Fig. 11 '9. 

BM at the sectio1t X-X, 

I II III 

First term is applicable for portion AB, upto II term for BC and upto III term 
expression is applicable for the portion CD. 

d2y IV IV 
EI dx2 = R1 x-2 (x-x1)2+ 2 (x-x2)2 

After integrating EI y: = R~ x
2 

- ; (x-x1) 3+ ~ (x-x2) 3 +C1 

and EI Y= R1
/

3 
- { 4 (X-x1)4 + ; 4 (x-x2)4+C1x+C2 

The constants of integration are C1 and C2 which are determined using boundary 
conditions. The values of slope and deflection at any section in any portion of the beam can 
be determined as per the procedure explained in part (a). 

Example 11·7-I. A beam ABCD, 6 m long carries a concentrated load of 20 kN at 
etidl A and 40 kN at point C, at a distance 
ot: 4· m from A. The beam is supported over 
a· spa,n 0£ 4- metres at points B and D as 
shown in the Fig. 11 ·10. Determine maximum 
deflection and state where it occurs. 

E=iX 106 N/mm2 

/ =8000 cm4 • 

Solution. For support reactions take 
moments of the forces about the point D. 

20 x6+40 X2=R11 X4 

Ra = 50 kN 

• 

t4en µu = 20f 40- Rs= l0 kN 

20kN 

2in 

" 
40 k' 

I C 
l 
X D 

21n ...i.. 2'm 
IX 

Fig. 11 · 10' 
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Using Macaulay's method ·consider a section X-X in the last position CD of the beam 
at a distance of x from end A . 

or 

and 

BM at the section, M =-20 (x)+50 (x-2) - 40 (x-4) 

EI d
2

y = - 20x+ 50 (x-2)-40 (x-4) 
dx2 

Integrating equation (I) we get 

El ~ -- 20 x2 +12_ (x- 2J2- 40 (x-4)2+c1 
dx - 2 2 2 

JO xa 25 20 
Ely=- - -3-+3 (x - 2)3 - 3 (x- 4)3 + C1x+c2 

... (I) 

... (2) 

. .. (3) 

Boundary conditions are at x = 2 m, y = O, putting t his value of x, in this case term 
(x- 4) will bec0me negative and, therefore, is to be omitted. • 

or 

or 

2s 
So 0= - 10 x -3-+0- omitted 1term+2 c 1 +c2 

2 C1+C2=+26.667 

Another boundary condition is that at x = 6 m, y = O, putting this value of x, 

63 25 20 
0=- lO x 3 +3 (6 - 2)3- -f (6- 4)a+6c1+c2 

0-=-720+ 533.33 - 53.33 + 6 C1+c2 

=-240+6 C1+C2 

6 C1 +C2 = 240 

From equations (4) and (5), the values of constants are 

C1 = 52'333, C2=-80 

Equation for deflection will now, be 

... (4) 

. .. (5) 

xa 25 20 
El y= - 10 -

3 
+ 3 (x·- 2)3-- 3 (x- 4)3+53·333 x - 80 . .. (6) 

At x=O 

Now 

So 

At x=4 m, 

y=yA 

El YA=-80 \ 

E=200 kN/mm2 =200 x 106 kN/m2 

1= 8000 cm4 = 8000 x 10-s m4 

E!= 200 x 106 X8000 x 10-s= l6000 kNm2 

YA=-
1
;g

00 
=-0·005 m 

=-0 '5 cm or - 5 mm 

y= ye, deflection at the point C 

43 25 
f l yc=- lO X -f + "'"f (4- 2)3- 0 +53·333 X 4- ~Q 
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= -213"333+66'667+2 13"332-80 

= -13'333 

13·343 
ye=-

16000 
=-0"0008 m=-0"08 cm 

STRl!NGTH OF MATERIALS 

In this case maximum deflection occurs at the free end where the load 20 kN is applied. 

Example 11"7-2. A beam 6 m long 
simply supported on ends carries a uniformly 
distributed load of 2·4 tonnes per metre length 
over 3 metres length starting from the point 
B, at a distance of 1 m from the end A as 
shown in Fig. 11' 11. 

Determine the magnitude of slope at 
the ends A and D. Determine also the 
maximum deflection in the beam. Fig. 11·11 

and 

E=2000 tonncs/cm2 

/ = 4800 cm4. 

Solution. For support reactions take moments about the point A 

2'4X3X(L+ I ·5) = 6 Ro, 

Ro = 3 tonnes, R,i -== 3X2"4-3= 4'2 tonnes 

Now consider a section X-X at a distance of x from the end A, in the portion CD of 
the beam. Continue the uniformly distributed load upto the section and apply equal and 
opposite uniformly distributed load from C to x as shown in the figure. 

BM at any scct i"on X-X, 

M =+4·2x- ; (x-1)2+ ; (x-4)2 

d2y 2·4 2'4 
EI dx

2 
= 4"2 x - 2- (x- 1)2+ 2 (x- 4)2 or 

Integrating 
dy 4·2 x2 2·4 (x-1)3 2·4 

EI dx = --2-- 3 X2 + 2 x 3 (x-4)3 + C1 

=2.J x 2-0·4 (x- 1)3+ 0'4 (x-4)a+c1 
J 

2· 1 x3 0·4 · 0·4 
Integrating further EI y = - 3- - ·-4- (x -:- 1)4 + 4 (x - 4)4 + C1x+C2 

or EI y = 0 ·7 x3- 0"1 (x- 1)4 + 0·1 (x- 4)4 +C1x+C2 

Taking the boundary conditions that at x = O, y=O terms (x- 1) and (x-4) are to be 
omitted 

or 

0 = 0-omitted term+omitted term+c1 x o+c2 

C2 = 0 
Taking another boundary condition that is at 

x=6 m , y = O 
we get 0 = 0·7 X 63- 0' 1 (6-1)4 + 0· 1 (6 - 4)4 +6 CL 

w 0= 1~1·i-92·~ t n, + 6 c, 
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or 
0 = 90·3+ 6 C1 

C1=-15'05 

The expression for slope will now be 

At A, 

Therefore 

Slope at A 

At B, 

So 

Slope at B 

EI dy = 2'1 x2- 0·4 (x- 1)3 + 0·4 (x- 4)3 - 15'05 
dx 

x=O dy = i ,4 
' dx 

El iA=- l 5'05 
£ = 2000 x 104 tonne/metre2 
1= 4800 x 10-s m4 

E l = 960 tonne metre2 

. 15'05 0 0157 d' IA=-~ =- ra ,an 

= -0'9° 

6 
dy . 

x= m, dx = 1n 

El io=2 1 (6)2- 0'4 (6- 1)3+0·4 (6- 4)3- 15'05 
= 75'6-50+3'2-15'05 
= + 13'75 

in= 
13

·
75 = + 0'0[433 radian 

960 

= 0'82°. 

515 

Maximum deflection. Maximum deflection in the beam may occur at a section 
in the portion BC. The ter m (x-4) wi ll be negative and is to be omitted. At this section 
dy/dx will be zero. 

or 

or 

For the portion BC, 

El dy =2'1 x2-0·4 (x-1)3 +C1 dx 
= 2' l x2- 0'4 (x- 1)3-15'05 
= 2·1 x2- 0'4 (x3-3x2+3x- l)-15 '05 
= 2' l x2-0'4x3+ 1 ·2x2-1 ·2x+ 0'4- 15·0S 
= - 0'4xa+3·3x2- 1 ·2x-14'65 

x3-8·2sx2+3x+36'625=0 
x e!: 2'92 m from end A. (by trial) 

El Ymax=0·7 X 2'923-0' l (2'92- 1)4 - 15'05 x 2'92 
= 17'428- I '359 - 43'946 
=-27'877 

27 '877 . 
yma:i:= - 9~ = ~0 029 m 

Maximum deflection =-2'9 cm. 



516 STRENGTH OF .MA,TERIALS 

Exercise 11·7-1. A beam 4 m long simply swgported at the ends carries loads of 2 
tonnes each at a distance of 1 m from e&ch end. Determine the slope at the ends and the 
maximum deflection. · 

Given E= 2X 106 tonnes/cm2 

1=5000 cm4. [Ans. ±0'171°, 0'366 cm] 

Exercise 11'7-2. A beam 7 m long carries a uniformly distributed load of 2 tonnes/ 
metre run throughout its length. The beam is supported over a span of 5 metres with over
hang of 2 m on one side. Determine the slope and deflection at the cantilevered end. 

E=2000 tonnes/cm2 

/ = 802 cm4
. [Ans. 0'506 °, 9'35 mm] 

u ·s. ECCENTRIC LOAD ON A SIMP,LY SUPP-OR/J'ED BEAM 

Fig. 11·12 shows a beam AB of length/, 
simply supported at the ends and carrying a 
load W at a point C, at a distance of a from 
the end A or at a distance of b from the end 
B. Say a<b. For support reactions, take 
moments of the forces about the end A 

W.a=RB.1 
Wa 

Rn=-1-

Wb 
RA = W-RB = ·-1-

A 

x----.l 
w 

C -X B 

a< b 

Pig. 11·12 

Macaulay's method can be used to determine the slope and deflection -at ,1any point of 
the beam 

B.M. -at the section. M= RA. x-W(x- a) 

or El d
2
y = Wb x - W(x-a) 

dx2 I 

Integrating equation (1), 

El dy = Wbx2 _ W(x-a)2+c 
dx 21 2 1 

EI = Wbx3 
_ W(x-a)3 +c +c 

y 6/ 6 1X 2 

.. . (1) 

... (2) 

... (3) 

where C1 and C2 are consta1;1t$, Of integration 

Boundary CondtdonS 

at x = O, y = O 

and at x = l, y=O 

Substituting the first condition we get 

O= O+ C1 x o+C2 or C2 = 0 (term (x - a) to be omitted), 
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Substituting the second boundary condition 

or 

0= Wh/3 W(~-a)a +C1l 
61 

C _ W(l-a)3 Whl 
i- 6/ - 6 

_ Wh3 
__ If!hl _ Wh (h2-/2) 

- 61 6 - 61 

Wh 
C1 = 6/ (h+l)(h-1) 

Wah Wah 
=-61 U+h) = - ~ (a+2h) because l=a-tib 

The expressions for slope and deflection will now be 

dy Wbx2 W Wah Eldx = 21 - 2 (x-a) 2
-~ (a-l-2h) 

Wbx3 W Wah 
Ely= ~-6 (x-a)s-~ (a+2b)x 

The constants determined above-are valid for both the portions AC and CB. 

Example 11·8-l. A beam 6 m long, simply supported at both the ends carries a load 
4 kN at a distance of 2 m from one end. Determine the slope at the ends and maximum 
deflection . Given E=2X l05 -N/mm2 1= 4800 cm4 

Solution. 

Load 

Distance 

-Length 

W = 6kN 

a= 2m, 

l=6 m 

h= 4 m 

E = 2x 105 N/mm2= 2 x 1011 N/m2 = 2 X 108 kN/m2 

/ = 4800 cm4= 4800 x 10-s m4 

E/= 2 X JOBX4800x 10-s= 9600 kN m2 

E~pressions for ,·slope and deflection will now -be 

E/EJ!..=6 x·4x
2 

_ _§_(x- 2)2 6X2 X4 (2+8) 
dx 2 X 6 2 6X6 

Slope at the end A, 

40 = 2x2- 3(x-2) 2- - 3 ,,, 

Ely= 6 X4 x xs _ i_ (x-2)3- 6 X2 x~(2+8)x 
6 x 6 6 6x6 

2 40 =3 xa- (x- 2)s-3 x 

where x= O, (term (x-'2) ,is negati~.at\d so OJ:Qitt~) 

... {1) 

·, ... (2) 
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E1 iA=2XO- 40 
3 
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. -40 1 . . 
lA = - 3- X 9600 = -0 00139 radian= -0°08° 

Slope at the end B, where x=6 m 

E1iB=2X6 2 -3(6-2)i- 40 = 72- 48 _.iQ..=+10·667 
3 3 

. 10·667 +0·0011 d' 0 
lB= 9600 = ra 1an= 0'063 

Maximum Deflection. Maximum deflection will occur at the section where the slope 
is zero. This section may lie in the portion CB. (Fig. 11 · 12) 

So, 2x2-,(x- 2)2-13.333= 0 

or 

2x2-3x2 +6 x 2x-12-13.333= 0 
-x2 + 12x-25.333=0 

x~-12x+25·333 = 0 

12-Vl44-lOI·332 12-6·532 
x = --- 2 = --2~~ 

= 2·734 m 

Substituting x=2·734 m for the maximum value of deflection 

Eiymam= ; (2.734)3-(2.734 - 2)3- ~O X 2·734 

= 13·624- 5.213-36'453=-28·042 

2s·o42 
Ym 1•x= -

9600 
= -0·00292 m- -0'29 cm 

Exercise 11.8-1. A beam of length l simply supported at both the ends carries a load 
Wat a distance of //3 from one end. Determine : 

(i) Slope at the ends 

(ii) Deflection under the load. 

EI is the flexural rigidity of the beam. 

[Ans. (i) 5WL2 4W/3 

- 8 I EI ' + 81 EI ' ( ··) 2 W/
3 J 

u - 243 EI 

11'9. IMPACT. LOADING OF BEAMS 

If a load W is dropped from a height h onto a beam supported at the ends, the kinetic 
energy of the load is converted into t!1e stra in energy f~r the beam .. An instantaneous deflection 
8, is produced in the beam at the pomt where the fall1.ng l?ad strikes and an instantaneous 
stress/ is developed in the beam. The bea~ starts v1bratmg and finally settles down to a 
deflection 8<81 which would have occurred if the load W had been applied gradually. , ' 

Potential energy loss by the falling weight= W(h+8,) 

Strain energy absorbed by the beam =}P 8, 
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Where 81 is the instantaneous deflection and P is the equivalent gradually applied load 
i.e., if Pis appl ied gradually on the beam at the point where load W strikes, the deflection 
in the beam will be 8,. 

Consider a bea m of length /, simply supported at the ends and the !oad W falling from 
a height h strikes the beam in its middle, sa y under the falling load, the instantaneous deflection 
is 8,. 

Then 

where equivalent gradu ally appl ied load is 

P= 48EI llt_ = K8, 
/3 

where K is a constant an d equa l to 
48£ 1 -,3-

So W(/1+8,)=~ KS,.8,= t KS,2 

j KS,2 - WSi- Wh= O 

. .. (i) 

. . .. ( ii) 

... (3) 

If W and h are given, then 81 can be found out and the maximum instantaneous stre.,s 
developed in the beam section is determined. 

Example 11·9. 1. An ISJB 150 rolled steel joist is simply supported over a span of 
4 metres A weight of 40 kg is dropped onto the middle of the beam, producing an instan
taneous maximum stress of 800 kg/cm2• Calculate the height from which the weight was 
dropped and the maximum instantaneous deflection in the beam. 

/ = 322" 1 cm4 ; E= 2000 tonnes/cmz 

Solution. Say the equivalent gradua lly applied load = P kg 
Maximum bending moment at the centre of the beam 

Pl 
M mnx= 4 

where / = span length= 400 cm 

So Mma"= Px:oo 100 Pkg-cm 

f, Maximum stress produced =~OO kg/cm2 

I for the section = 322·1 cm4 

d, depth of the section 

N ow 

= I.Scro 

f = M x !!_ 
I 2 

800 = 100 'I!_ 7·5 
322·1 X 

P= 800 X 322· 1 = 343.57 k 
750 g 

P/3 
Instantaneous deflection, 8, = 

48
Ef -

w!1c;rc; JI=7,000 X 1000 k9/ cm2 
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So · 

So 40(h+0'711) = y X 3~3·57 X0'71 l = 122' 139 

h= 122.139 - 0'711 = 3'053-0'71 l =2'342 cm 
40 

Exercise 11'9-l. A gradually applied load of 250 kg at the middle of a beam simply 
supported at the ends, produces a deflection of 0'5 mm. What will be the maximum instant
aneous deflection produced by a weight of 50 kg dropped onto the middle of the beam from a 
height of 20 cm. [Ans. 0'645 cm] 

1U10-. PROPPED CANTILEVERS AND BEAMS 

Av cantilever of length / earring 
uniformly distributed load w per unit length 
is propped at the end, so that the level at the 
free- ·end is the same as th'e level · of fixed end, 
thtm ·th'e ·reaction of the prop will be equivalent 
to a k>ad producing deflection in the opposite 
direction so that the deflection produced by 
the uniformly distributed load is :nullified. 

If the prop is not provided .. then 
deflection at the free end due to uniformly 
distributed load w (throughout the length of 
the cantilever) 

or 

w/4 
=- 8 EI 

Deflection due to prop at the ftee end 

P/3 
=+ 3El 

So 

R 
. p 3 wl 

eact1on at prop, = -
8

-

----x---, 

p 

Prop 

w )( 

X 

I· e----
Fig. 11·13 

... (I) 

Consider a section X-X at a distance of x from the,end A as shown in the Fig. 11 '13. 

BM at the section 
wx2 

= +Px- -
2 

d 2y wx2 3 wl wx 2 
EI - = Px- - ·- x d?r2 7, =T -T 
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or 

or 

Integrating equation (2) 

Slope is zero at 

Therefore, 

So 

EI dy - 3 w/x2 - wx3 +C1 
dx - 16 6 

x=l 

0= 3 w/3 - wl3 +c1 
16 6 

wl3 3 wza w/3 

C1=6--w=-48 

EI dy 
dx 

3 wlx2 wx3 w/3 

16 - -6-- 48 

Integrating again equation (3) 

At 

So 

So 

El = 3 wlx3 

y 48 

x= l, at the fixed end, deflection is zero 

w/4 w/4 w/4 

0= 16- 24 - 48+C2 

wlx3 wx4 w/3x 
El y=16- 24 _ _ _ 48 

521 

... (3) 

... (4) 

Equations (3) and (4) can be used to determine slope and deflection at any section of 
the cantilever. For the maximum deflection the slope is zero on the section where maximum 
deflection occurs. Therefore to find the position of the section where maximum deflection 
occurs 

or 

or 

dy 3wlx2 wxa w/3 
EI -=0= ------

dx 16 6 48 

3lx2 x~ 13 
- - ---=0 

16 6 48 

9/x2-8x3-l3 =0 

After solving this equation, x=0·425 I 

At x = 0'425 l 

wl4 w wl4 

El )Ima .. = - (0'425)3- - (O 42514 14- - (0·425) 
16 24 48 

=[o·oo4s - 0·00136- o·oo885] w/4 

0·0054 wl4 

Yma,o= El 

Exa.m.ple 11·10-1. A beam of length 6 metres, simply supported at the ends carries a 
vniformly distributed load of~ l<N per metn~ run throu~hout its len~th. The beam is propped 
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at its centre so that centre of the beam is brought back to the level of the supports. Determine 
(i ) reaction of the prop (ii) slope at the ends (iii) maximum deflection in·the beam. 

length , 

Solution. 

1= 760 cm4, E= 200 kN/mm2. 

A I
X w=Gk N/ m 

c,z.,,. 

-- i~B 
: .. ~LC - ·1 RB ; 6 7 5 k N 
.:1m--r-.1m1 I 

P :225 k N 

Fig. 11·14 

£ = 200 kN/mm2= 200 x 106 kN/m2 

! = 760 cm4 = 760 X 10-s m4 

El= 200 X l0°x 760 x 10- 8= 1520 kNm2 

Deflecti on at the cent re of a beam having uniformly distributed load w throughout its 

5wl4 

=- 384 EI 

Say Reaction of t he prop = P 

Upward defl ection due t o P at the centre of the beam 

pzs 

So 

= 48 El 

P/3 Sw/4 

-- - - -=0 
48 El 384 El 

5 wl 
P= -f-

w= 6 kN/m, /= 6 m 

Therefore P= ~ X 6 X6=22'5 kN 

T otal load on the beam = 6X6=36 kN 

Reactions, RA= Rn= 
36

-}
2

'
5 

= 6·7s kN 

(Reactions RA and R JJ are equ al because of symmetrical loading) . 

Ta ke the portion AC only of the beam and consider a section X-X at a distance of x 
from the end A. · ' 

!3M at the section 
wx 2 

M= =-1-6'75 x - - i 
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Therefore 

= 6'15x- 6x
2 

=6'15x-3x2 

2 

d2 
El-Y- = 6'15x-3x2 

dx2 

Integrating equation (I) we get 

EI ;~ = 6'15 ~
2 

- x3 +C1 (constant of integration) 

523 

... (1) 

Slope is zero at x= 3 m i.e., at the ce11tre because of sy mmetrical loading on both the 
sides of the centre of the beam 

Therefore 
32 

0 = 6'75 X 2 -33+C1 

C1 = 27-30'375= _ 3·375 
dy x 2 

EI dx =6'75 -2- - x3- 3'375 

Integrating equation (2) we get 

At the end 

So 

Therefore 

Slope at the end A 

xa x1 
El y=6·15 6 _ 4 -3'375x+ C2 (constant o f integration) 

x = O, y = O 

0 = 0- 0- 0+C2 or C2 = 0 
x3 x4 

El y = 6'15 -6 - 4 _ 3·375 X . 

x = O 
El iA = 0-0- 3'315 

Slope at B, 

iA=- 3·375 =-0·0022 radian= --0' 127' 
1520 

io= + o·121° (due to symmetry). 

Maximum Deflection. For the maximum deflection, slope is zero 

So EI dy = 0= 6'15 ~
2

2 
- x 3-3'375 

dx 
will give section at which slope is zero 

3·375 x2-xS-3·375= 0 

Solving this equation gives 
x = l '264 m (by trial) 

Now El y,,, ,.x= 6·; 5 (l '264)3- ( t ·2: 4)'
1 

- 3'375 x I '264 

= 2'272- 0'638- 4'266 
=-2'632 

2'632 ., 
yma,.=-

1520 
=-0 d017 m=- t·7 mm. 

... (2) 
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Exercise 11'10-1. A cantilever 3 metres long carries a load of 1 ·5 tonnes/metre run 
throughout its length. The free end of the cantilever is propped so that this end is brought 
to the level of fixed end. Determine (i) reaction at the prop (ii) slope at the free end (iii) 
maximum deflection and where it occurs. 

E=2000 tonne/cm2, / = 448 cm4• 

[Ans. (i) l '6875 tonne, (ii) - 0'495°, (iii) -6·72 mm at 1 '275 m from free end] 

11·11. SLOPE AND DEFECTION BY THE USE OF BENDING MOMENT DIAGRAM 

Slope and deflection at a section of a 
beam carrying transverse loads can be 
obtained by the use of BM diagram. Fig. 
11 ·15 shows the BM diagram for a portion 
AB of a beam subjected to transverse loads. 
Let M be the bending moment at a distance 
of x from the origin A. 

EI~~ = M 

(bending moment at any section) 
- d2y 

or EI dx2 • dx= M. dx 

(area of the BM diagram for a very small 
length dx). 

Integrating both the sides 

X 1 X2 

J El ~~ dx= J M dx 

x, 

Fig. 11-15 

EI It != area of BM diagram between x2 and x1 

X1 

then 

Say X1 X1' X2' X2 is the area of the BM diagram for the values of x between x2 and x1• 

If i2= slope at section X2 X2 ' 

i1 = slope at section X1 Xi' 

( . _ .)= area of the BM diagram between the sections X 2 and X1 (l) 
12 11 E l ... 

Let us consider the differential equation again 

EI Z = M 

Multiplying both the sides by x . dx and integrating between the limits x 2 to x1 we get 

x. 

J 
EI d2y 

dx2 

x. 

x dx= J Mxdx 
X1 
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X2 

El J x '!( -y \= moment of the BM diagram between the s~ction X1 and X2 
x about the origin A 

X1 

or EI [(xi i2-Y2)-(x1 i1-Y1)]=ax where 

a = area of the B.M. diagram between X2 and X1 

x = distance of the centroid of the area a from the origin A 

Consider a cantilever of length /, fixed 
at end 2 and free at end 1, carrying a concent-
rated load W at the free end as shown in 
Fig. 11 · 16 (a). The cantilever will bend show
ing convexity upwards throughout its length. 
So negative bending moment acts on every 
section of the cantilever. Fig. 11' l 6 (b) shows 
the B.M. diagram for the cantilever with 

B.M.= - WI at the fixed end 

End 1 is the free end 

End 2 is fixed end, 
where slope and deflection are zero 

El(i2-i1)=area of the BM. diagram 
2 and 1 

l W/2 
=-WI x 2 =--2 

Slope, i2= 0, at the fixed end 

. W/2 
So E/(-11)= --

2
-

1w 

,l·-----......r2 

Ca) 

T 
-Wt 

..J_ 

Fig. 11·16 

Slope, 
. w12 
11 = + ZEI i.e., the slope at the free end of the cantilever 

Again, 

El [(x2 i2-Y2)-(x1i1- Ji)] = moment of the B.M. diagram about the origin 1 

Now 
. w12 
11= + 2EI 

i2 = 0 fixed end 

X1= 0, X2= / 

Y1 = ? Y2= 0 (at the fixed end) 

. wz2 

Area of B.M. diagram, a = - - 2-

C.G. of the area from end 1, 

_ 21 
x=3 
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Substituting the vaiues in the equation above 

W/2 21 W/3 
EJ[(/xO-O)-(OXi1-Y1)]= - -2- x - =--

3 3 

W/3 
EIYt=--

3
-

Deflection, 
W/3 

Yi= -
3
EI (indicating downward deflection at the free end) 

Consider now a beam AB of length l 
simply supported at the ends and carrying 
uniformly distributed load throughout its 
length. Say the intensity c,f loading is w per 
unit length. B.M. diagram is a parabolic 
curve as shown in the diagram 11·17 (b). Since 
the beam is symmetrically loaded about its 
centre, slope at the centre C is zero. Using the 
relationship for slopes between C and A. 

EI (ic-iA)=area of the B.M. diagram 
between C and A 

w/2 2 I w/3 

A 

wt 
T 

A· 

r 

+ 

( b) 
= +-g-X3X2= 24 

ic =0 at the centre of the beam 
B.M.Ologrom 

or 

So 
w/a 

iA-.- 24El 

Deftection at C. Reactions at A and C are equal, 

wl RA= Rs= -

I 

2 

B.M. at a distance x from the end A, 

wl wx2 

=yx-T 

(Clockwise B.M. on the left side of the section is positive) 

Now EI d
2
y - ( wlx _ [wx

2 
) 

dx2 - 2 2 

Fig, 11· 17 

EI d2y d ( wlx wx 2 ) d ( wtx2 wxs ) 
dx2 x x.= -y~ T xx= -2- - 2- dx 

Integrating both the sides between the po~nts C and A 

C l/2 

EI I d
2
y d J I wlx

2 wx3 
) d 

dx2 x x = \.-2- - 2 x 
A 0 

8 

't!f 

I~ 
wt2 
T s-, 

·, 
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/ /2 
wlx3 wx

4 I EI[(icxc-yc)-(iAXA - yA)]= i -
6
-- -

8
-

0 

El[( Ox ~ -ye )-(iAX0- 0) ]= ~~4

: - 1~: 

5 
- Elyc=

384 
X w/4 

5 w/
4 c· d. ' d d d fl . ) ye= --384 x EI m 1catmg ownwar e ect1on 

,§27 

Similarly any beam or cantilever with any type of loading can be considered and 
deflection and slope at any section can be determined by using the area and moment of the 
area of the B.M . diagram. 

Example 1t · I1-1 . A cantilever of length / fixed at one end and free at the other end 
carries a load W1 at the free end and a load W2 at its centre. If EI is the flexural rigidity of 
the cantilever determine the slope and deflection at the free end of the cantilever using the 
B.M . diagram. 

Solution. Fig. It ·8 shows the B.M. 
diagram of the cantilever of length / and 
carrying load W1 at free end and load W2 at 
the centre. 

For the fixed end B 

Slope, iB= O 

D eflection, yB=O 

Let us divide the B.M. diagram into 3 

parts, ai, a2 and a3 as shown. ( JU.4.0logram) 

Fig. 11·18 

Area , 

Area, 

Area, 

l I I 12 
a1=- (W1 + W2)2 x 2 X 2 =- (W1 + W2) 8 

x1 = Distance of C. G. of a1 from A = ~ 

W1I l W1/ 2 

a2= --2- X 2 = --4-

x2= Distance of C.G. of a 2 from A = l.!_ 
4 

a = -Wi_l X _!__ X _!_ - - W1z2 
3 2 2 2 - 8 

x3= {-· (d istance of C.G of a 3 from A) 

'' ., 
,I 
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No~ 

Now 

But slope, 

So, slope, 

Moreover 

+ + _ -[W11
2 

W2l
2 

+ W11
2 

+ W1l
2 J 

a1 a2 as- 8 + 8 4 8 

=-[ ~1/Z + ~a/2 J 
EI(in-iA)= -[ ~!: + w;,12

] 

iB=O 

5/3 
a1x1=-(W1+W2) 48 

3/3 
02X2=- (W1) 16 

W1Js 
a3X3= -~ 

/ 

STRENGTH OF MATERIALS 

Js [ 5 5 3 W1 J a1x1 +a2x2+a,x8= - 8 6 W1 + 6 W2 + 2 W1 + 3 -

= - ~
3 

[ ~

6 
W1 + ; W2 J 

- -[ W1Ja +J_ w1a] 
- 3 48 2 

Now EI[(xn. in-yn)-(x,i . iA- yA)]= a1x1+a2x2+a3x3 

But 

Therefore, 

=-[ ~1JS + is W2za ] 

in = O, yn= O, XA= O 

Exercise 1111-1. A beam AB of length l carries concentrated loads W each at a 
distance of a from both the ends. The beam is simply supported on ends A and B. If EI is 
the flexural rigidity of the beam, determine (i) slope at ends (ii) maximum deflection. 

[ Ans. ± i£; (/- a), _ ra (~_a:)] 
11'12. SLOPE AND DEFLECTION OF BEAMS BY A GRAPHICAL METHOD 

In the Chapter 7, we derived relationship between rate of loading, shear force and 
bending moment at any section of a beam carrying transverse loads producing bending in the 
beam. Say w is the rate of loading, Fis the shear for~e and Mis the bending moment a~ ;i_ 
particular section of beaµi : · 



DEFLECflON OF BEAMS AND CANTILEVERS 

Then 
dF - = - w (rate of loading) 
dx 

Let us consider a case of variable load
ing as shown in the Fig. 11 · 19. )( 

• rote of loodlng 

dF= -wdx ... ( l) 
Integrating both the sides between X 

and A [A is the simply supported end c,f the 
beam and Xis the section under consideration] 
we get 

X 

02 . 

Re 
f----

or 

or 

X X 

j dF= J - wdx 
A 0 

X 

Fx - F14=-I wdx 

0 

Fx=F.,,-Area of load diagram 
between A and X 

Fx=RA-Area of the diagram 
AXXA' 

= RA -G1 .. . (2) 
(as shear force FA =- R A) 

dM 
Similarly we know that - = F 

dx 
X X 

J dM= J Fdx 
A 0 

···~sJ-. 
.FDia ram 

1 

I A .......,'"*"...,;:.:......,~i:::;...-----f· 40 
i.'\ 

Slope diagram 

~ I Yx 

d e fl ection 
d 1o q rom 

Fig. 11· 19 

Mx-MA =area of SF diagram between A to X 

Bending moment, 

Therefore, 

MA= O as the beam is simply supported 

M x=a2 (area of SF diagram between A to X) 

Moreover we know that 

d2y 
EI dx2 = M (bending moment) 

Integrating both the sides of this equation 

X X 

J d2y I EI dx2 .dx= Mdx 
A 0 

X 

EI/ ;~ l= area of the BM diagram between A and }( 

~ 

529 

.. . (3) 
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or 

or 

Slope at X 

Now 

EI [ix -iA]=q3 [area of BM diagram (A XX)] 

. . + as IX=ZA --
£/ 

STRENGTH OF MA TERlkLS 

... (4) 

• 1 
= slope at A+ EI [area of BM diagram between A and X] 

't = i (slope) 

dy= i dx 

Inttgrating both the sides 

But ~t~fiection, 
So 

X X 

I dy= f i ax 
A 0 

yx-yA=area of slope diagram between A and X (A4'XX) 

yA=O, as the end is simply supported 
yx=a4 (area of the slope diagram between A and X) 

Like this any problem can be solved. 

Ex~unple 11'12-1. A beam of length I, simply supported at ends carries a concentrated 
lo::td Wat its centre. Determine the slope at the ends and deflection at the csmtre. EI is the 
flexural rigidity of tq~ beam. Use graphical method for solution. 

wt2 

16E I 

w 
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Solution. Fig. 11·20 (a) shows the load diagram of a simp1y supp-orted b"eam cartyfo'g 
a concentrated load W at its centre. 

I WI BM at centre =RAXz =4 

( Since 

We know that slope at the centre of the beam is zero, be0ause the beam is symmetfka:liy 
loaded about its centre 

EI (ic-iA)=slope at C-slope at A 
=area of BM diagram between A and C 

Wl I 1 W/2 

- -x-x----- 4 2 2 - 16 
But ie=O 

So 
. w12 
lA=- 16 EI 

Starting from , W/2 

AA=- 16 El 

further slope diagram can be made by integrating the area of BM diagram. 

or 

Ta deiermine ix 

Area of BM diagram upto X 

AtC, 

w = yxx x Wx2 

2 =-4-

. . + wx2 ( b 1· . ) 
1x= 1a 4 EI a para o 1c equation 

We know that deflection at the freely supported errd A is zero 

ye_:_ YA= deflection at C-deflection at A 
= area of slope diagram between C and A 

W/2 I 2 W/3 
=-16 El X 2 X 3 =- 48 EI 

Wis 
ye= 48 El , deflection at the centre. 

Deflection at any section X-X, i.e., yx is equal to the area of the slope diagram between 
X to A, as shown by shaded area a2 in the diagram for slopes. 

Exercise 11'12-1. A cantilever of length l carries a load Wat the free end. If EI is 
the flexural rigidity of the ·cantilever determine slope and deflec;tion at Hte- free end by using the 
graphical method. 

[Ans. + w12 ' WJs J 
2 EI - 3 El 
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ll '13.- SLOPE AND DEFLECTION OF BEAMS BY CONJUGATE BEAM METHOD 

If a beam is supported at its ends and carries any type of transverse loads, its SF 
and BM diagrams can be plotted. Now if the same beam supported at its ends is shown 
to carry the variable transverse loads as (a 
variable load diagram) shown by the BM 
diagram then 1t is said to be the conjugate 
beam. Fig. 11 ·21 shows a beam AB of length, 
simply supported at ends A and B and 
carrying a concentrated load Wat the point 
C at a distance of a from the end A. Then 
reaction 

BM at C 

. Wb 
R.11.=-z-• 

Wab =-z-· 

Wa RB= - -
/ 

w 

Fig. 11·21 
Fig. 11 ·21 (b) shows the BM diagram 

with maximum bending moment Wab/1 at the 
point C. A beam supporting this BM diagram 
as a variable load is called a conjugate beam, reactions RA' and RB' can be obtained for this 
conjugate beam. Then R.-1'/EI and Rn'/EI give the slopes at the ends A and B. 

In the example given above, taking moments about the point A' of the conjugate beam, 
we get 

W ab a 2a W ab b ( b ) , - - x-x - +--x - a+- = Rn xi l 2 3 l 2 3 

Wab [~+~ + !:_]=Rn' X l 
I 3 2 6 

~;b [2a2+ 3ab+ b2]= Rs' X l 

or · Rs'= ~~b (2a+ b)(a+ b)= Wab ~;a+b) as l=a+b 

Similarly RA'= ~;zb ~ + 2b)(a+k) =:= Wab ~;+2b) 

. R .11. ' Wab (a+ 2b) 
LA= - EI =- 61 EI Slope at the end A, 

. + Rn' + Wab (2a+b) 
LB= EI = ------gz El 

To determine slope at any section X-X, at a distance of x from the end A, we have to 
take into account the area of the loading diagram of the conjugate beam as shown by the 
s_haded portion. 

EI-(ix - i11.)= area of the loading diagram of conjugate beam from A to X. 

Again let us consider the conju~ate beam a nd determine BM at any section say Mx'. 
Then Mx'/EI gives the deflection at the pomt X. 
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Conjugate beam 

BM at C, 

Deflection at C, 

M , + R , Wab a a .. = A .a-~x 2 x 3 
Wab (a+2b) X Wa 3b 

61 a-6/ 

Wab Wa 2b2 

= ~ [a2+ 2ab-- a2 ] = -
3
-
1

-

Example 11'13-1. A beam 6 m long, 
simply supported at its ends carries a load of 
6 tonnes at a distance of. 2 metres from one 
end and another load of 3 tonnes at a distance 
of 2 metres from the other end. Determine 
slope at ends and deflection under the loads 
using conjugate beam method. 

Given E/= 3600 tonne-metre2 

6 T 3 T 

Solution. The load-diagram for the 
beam of 6 m length is shown in the Fig. 11 ·22 
(a). For support reactions, let us take 
moments about the point A RA: A' IC 

6X2+3X4= 6 RB 113 667 2m -t- 2m + 2m 

Rn=4 tonnes 

RA=6+3-4= 5 tonnes 

Bending moments 

At A, 

At C, 

AtD, 

At B, 

MA= O 

Mc= + 5 x 2 = 10 tonne metres 

MD= + 4 x 2= 8 tonne metres 

Mo = O 

The conjugate beam is shown in the Fig. 11'!2 (b). 

ConJugote beam 

( b) 

Fig. 11·22 

~33 

Let us determine support reactions, RA' and Ro' taking moments of the forces (in this 
case moment area) about the point A' 

10 x 2x { x ( j )+ 8x2 x 3+(10_:_ 8)x; ( 2+ }) 

+ 8x 2x--} ( 4+ ; ) = Rn' X l 

~+48+ l~ +.JJ.l_ = Ro'X 6 
3 3 3 
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I04= RB1 X i 

RB'= 
1
~

4 
= ;

2 
=17'333 Tm2 

Similarly taking moments ab0ut the point B' 

8X2X }(: )+8X2 X3+(10-8) ( 2X ~ )( 2+ j) 

Slope at A 

Slope at B 

+ l O X 2 X ~ ( 4 ~ - ~ ) = R.4' X 6 

_E_ + 48+ 20 + l 40 = Rl X6 
3 3 3 

112 . , 
RA'=-=18'667 T-m2 

6 

18'667 
3600 

=-S·l8SxIO-a radian 

RB' ]7'333 
=+~ =+ 3600 =+4'8 15 x 10-3 radian 

Considering the conjugate beam again, let us find moments under the loads. 

M c ' = +.18'667x2 -
10

;
2

( ~ ) = 37'334- 6.606 

=30'668 Tm8 

MD' = + 11·333 x 2- 8 x 2 x +( --f ) =34'666- 5'333 

= 29'333 Tm3 

Deflection under the loads 

M c' 30"668 S _2 10_ 8 S 
ye= ~ = 3600 = ·:,· x a m = . 2 mm 

MD' 29'333 
yv= EI =; 3600 = 8'15x l0- 3 m =8' 15 mm 

Exercise 11'13-1. A beam 8 m long simply supported at its ends carries a load of 
40 kN at a distance of 2 m from one end and another load of 40 kN at a distance of 2 ri1 from 
the other end. Determine slope at ends and deflection at the centre of the beam using conju-
gate beam method. 

El for the beam= S0,000 kNm2 [Ans. ±4'8 X 10- s radian, n 17 cm] 

11'14. SLOPE AND DEFLECTION OF CANTILEVER WITH STEPPED SECTIONS 

Uptil now we have consider~d cantilever ~nd bea~s of uniform sect.ions throughout their 
length, or cantilevers beams of contmuously vatymg section. Now we will determine the slope 
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and deflection of cantilever with stepped 
sections as shown in the Fig. 11 '23. In such 
cases conjugate beam method is very useful 
for finding out the slope and deflection at an)' 
section. In the conjugate beam method, B.M. 
diagram is plotted for the beam or the canti
lever with B.M. diagram as the load, reactions 
at the ends are obtained. Then the ratio of 
Reaction/ EI gives the slope at the end. Then 
bending moment at any section obtained from 
the conjugate beam divided by El gives de
flection at apy section. In the case of canti
lever, maximum slope and deflection occur at 
the free end, while the slope and deflection are 
zero at the fixed end. Therefore in the conju
gate cantilever, free end becomes the fixed 
end and fixed end becomes the free end, so 
that the reaction and bending moment obtain
ed at this end of conjugate cantilever give 
slope and deflection at the free end of the 
original cantilever. 

=i xed 
end 

S35 

1--~-1_2......., .~: 

1 
Free end + -+- + -+- -t ---i 

Conjugat" cantilever 

Fig.11·23 

In the figure, there is a cantilever of length /, fixed at end D and free at end A. At the 
free end a concentrated load Wis applied. The section is in steps and the moment of iner,tia .c,f 
portion DC is / 3, of portion CB is I2 and of portion BA is / 1• Such that /3 = 3/1 and / 2 P /}.f,_. 

ADD' is the bending moment diagram of the cantilever. Let us draw ! diagram for the 

cantilever, or the co:1jugate cantilever. Since I is variable, so in place of M we have taken 

M for the conjugate cantilever. 
El 

BB' WI 
=- "'El. ' 

Reaction, R,/ at the fixed end of conjugate cantilever 

_ BB' .!._ (BB"+CC') _I (CC"+DD' )..!... 
- 2X3 + 2 X3+ 2 3 

Wl
2 

( Wl WI ) I ( 2WI WI ) I 
=- 18£/1+ - 6EI1 - 3E11 6+ - 9El

1 
-3EI~ 6 

Wl 1 Wl 2 5 W/2 25 W/2 
= -l8EI1 - I2EI1 - 54£/

1 
= - 108£/

1 

. 25 W/2 

Slope at the free eqd of the cantilever = - 108 EI 
. . l 
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Bending moment at the fixed end of the conjugate cantilever 

M.4'=+[ BB' X ..!_ X 2:!_ + BB"X _!__( j_) 
2 3 9 3 2 

( CC' - BB" ) I ( I 21 , 
+\-2-- X3 3+9) 

+cc" x+x( ~ )+(DD';CC") x ; (2; +ti)] 

[ 
Wl 12 Wl 12 WI l 51 

=- 3El
1 

x 21+6ET
1 
x 6 + 2x6El1 x 3 X9 

2W/ l 512 l Wl I 81 J 
+-9- x El

1 
x 18+ 2x9EI~ x T x 9 

W/3 r l l 2- 1 8 '] 
= - EI1 L 8L+36+3:L'1+81 + 486 

65 W/& 
=- 486 El1 

Example 11'14-1. A cantilever 4 m long, has moment of inertia 1200 cm 4 for 2 m 
starting from free end and a moment of inertia 1600 cm4 for the rest of the length. What load 
applied at the free end would cause a maximum deflection of 2 mm What will' be the slope 
at the 1 ree end ? 

£ = 2000 tonnes/cm2 

Solution. Fig. 11 '24 shows a canti
lever of length l carrying a load W at its free 
end. The moment of inertia for half of its 
length is / 1 and for another half of its length 
is / 1• A bending moment diagram is shown 
below the loading diagram. In the problem 

. f / ,, 1600 4 4 I 
rat10 o 1: = 1200 = 3 or 12= 3 1 

Let us first draw the conjugate canti
M 

lever diagram with ordinates EI as / is 

variable. 

BB'=- WI 
2EI1 

BB"=- WI _ _ 3WI 
2EI2 - 8EI1 

CC'=- WI _ _ _3WI 
EI1 - 4Ef1 

w 
B J----.,.:. ___ _J A 
. -- . ____, __ 

/ 

,_,,r---;-;-;;;--r---+---~ 
_ W/ 

I . 8 M Orag r1m 

__j_ 

le B ~ M.4 ~,-·, 
(' RA 

Con Juga t e con til eve, 

Fig. 11·24 

Reiiction, RA' at the fixed end of the conjugate cantilever 

BB' L ( BB"+ CC' ) I 
;=:-\- J· X 7. + . J i 
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R , WI l ( 3Wi 3 EW
1

t.
1

. ) _

4
1_ 

A = - 2EI1 X 4 + - 8£/1 - -4-

WJ2 9 WJ2 13 W/2 

= - 8£/
1 

- 8 x 4E/1 = - 32 Er;-
. 13 W/2 

or the slope at the end A of the cantilever=- 32 Eli 

Bending moment MA' at the fixed end of the conjugate cantilever 

WI I I 3 WI I 31. 
=- 2E~ X4X3-g ~X2X4 

( 
3Wl 3 Wl ) l I 5 

- 4£/
1 

- 8 E/1 X 2 X 2 X 6 l 

W/3 9W/3 3 x WI 512 

= --24£/1 - 64£/1 - 8£/1 X 24 

Wi3 r 1 9 5 J 
= - Eli L 24 +64+ -64 

W/3 25 
=- E/1 X 96 

Deflection at the free end of the cantilever 

W/3 25 . 
= - Eli X 96 = - 0 002 in 

1= 4 m 

E= 2000 X J04 T/m2 

11= 1200 cm4= 1200 X 10-s m4 

E/1= 2000 x 104 x 1200 :-< 10- 8 = 240 Tm2 

Therefore 
Wx4s 25 

0'002= ~ X 96 

Load at free end, 

Slope at the free end 

W=·oo2 x 240 x 96 0 '0288 Tonne 
64 x25 

= 28'8 kg 

13 W/ 2 

= - 32 E/
1 

13 '0288 X 42 O 
=-32 x 240 = - ·o0078 radian 

537 

Exe~cise 11'14-1. A cantilever 3 metres long, has moment of inertia 800 cm4 for l m 
length from the free end, 1600 cm4 for next 1 m length and 2400 cm• for the last l m length. 
N !>he fry~ ~~4 a lo~d of 1 kN acts OI} the .cantilever. Determine the slope and deflecti<m at the 
free end of the cantilever. £ = 210 GN/m-. [Ans. - 1'24X lQ · 3 ;radian, - 2·1s m1J1l 
• o • ~ • ' ' H • • • ' > 
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11'15. SLOPE AND DEFLECTION OF BEAMS OF STEPPED SECTIONS 

. In the article I l' 13 we have studied about the conjugate beam method for the deter
mination of slope and deflection in beams and we considered B.M. diagram as the load 
diagram over the span as the conjugate. 
beam. Now as the section is varying in steps 

we will make ;; diagram which will be the 

conjugate beam diagram. Reactions at the 
ends of the conjugate beam give the values of 
slope at the ends and the bending moment at 
any section of the conjugate beam gives the 
deflection at the section of original beam. 
Fig. 12'25 shows a beam AB of length/, having 
moment of inertia 11 for quarter length from 
the ends and / 2 for the middle half length 
The beam carries a central load W. Diagram 

AC1B shows the B.M. diagram with CC1 = i:1
. 

Lt h M . b e us construct t e EI conJugate earn 

diagram. 

EE'= WI x-1-
8 EI1 

• WI 1 WI 
EE= 8 X EI

2 
=16E!i 

I WJ I WI 
CC = 4 X E/

2 
=8E/

1 

The beam is symmetrically loaded therefore reactions, 

R,l=RB1 

w 

C 

Fig. 11.2S 

or RA'= area of conjugate beam diagram upto the centre 

= EE' X ..!_ X ..!_+EE"+CC' X ..!_ 
2 4 2 4 

WI I ( WI WI ) I 
=8E/1 X 8 + l6E/1+ 8EI

1 
8 

W/2 3Wl I 
= 64Eli. + 16E/1 X 8 

8 

R' 
8 

Since the beaqi is s~mmetricall~ Ioa~eg about * centre! slope at the 9entre of the beati 
is zero. 
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or 

ic-iA=area of conjugate beafb diagram froni A to C 
5 W/2 

0-iA 
128 E/1 

. 5 Wl2 

-iA= 128 EI1 ... (1) 

To determine deflection at the centre, let us calculate the bending moment at the centre 
of conjugate beam 

R , I EE' I ( I I ) ,, I i 
= A xy--2-x 4 4 + 1z + EE X 4-xr 

( CC'-EE" )(-1 )-1 + 2 4 12 

5 W/2 l WI I I WI / 2 

= 128 E/1 XT - 8 EI1 X gX T - 16 Eli X 32 

5 W/3 

256 EI1 

5 Wl3 

= 256 EI1 

W/3 
192 EI1 

Wfa 
192 EI1 

( 
W/3 WI ) l l 

- 8 E/1 - 16E/1 8 x12 
wts wts 

512E/1 128Xl2 

w12 
512 EI1 

Wfa 
1536 EI1 

W/
3 

[30-8-3-1] 
. = 1536 EI1 

18 W/3 3 W/3 
= 1536 E/1 = 256 EI 

Deflection at the centre of the beam 
3 W!3 

= 256 EI1 

Example 11'15-1. A beam 5 m long 
is simply supported at the encis. The moment 
)f inertia for half the length from one end 
:o the. centre is 1256 cm• and that for the 
:est of the beam is 1884 cm•. The beam 
:arries a load of 10 kN at the centre. Deter
nine the slope at the ends and deflection at 
he centre of the beam. 

E= 210 kN/mm2• 

Solution. Fig. 11 '26 shows a beam 
,f length /, simply supported at the ends 
arrying a load Wat the centre. The moment 
if inertia for half the length is 11 and for 
.nother half length is / 2• Below the loading 
.iagram is the BM diagram drawn for the 
1eam. 

Let us first draw the M/EI conjugate 
eam because / is variable in steps 

,, '2 l A-~i=-~ ij-B· 

.~. 
B "1 .0 ,agram C 

R' 
A 

C 

./. e 
2 

Conjugate bea m 

Fig, 11'26 

R' 
B 
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C, c·,_ WI I - - x -
4 E/1 

CC"= WI x -1-. 
4 E/2 

Reactions of conjugate beam. Taking moments about A 

I CC' I I CC" l l I 
RB X/=-2-x 2 x3+-2-X2x ( 2 +6) 

WI 12 WI I 21 
= 4 E/

1 
X 12 + 4 E/

2 
X 4 X 3 

W/3 WJs 
= 48 E/1 + 24 E/2 

I W/2 W/2 
RB = 48 Eli + 24 E/2 

Taking moments about B 

CC" I I CC' l 21 
RA'Xl= - 2- x 2 X 3 +2 X 2-x 3 

/ 2 CC' X 12 

= CC"x12+ 6 

WI 12 WI 12 W/3 W/3 
= 4 E/2 X 12+ 4 E/1 X 6 = 48 E/2 + 24 E/1 

w12 w12 
R A'= 48 E/2 + 24 E /1 

Slope at the end A =- RA'= -...!f!.:_( _l +-1 ) 
24 E I1 212 

Slope at the end B 

Obviously the slope at A is negative and slope a t B is positive. 

Bedding moment at the centre 

= R A'X_!_- CC' x-1 x _!_ 
2 2 2 6 

Wl3 Wl3 WI 12 

= 96 EI2 + 48 E / 1 - 4 E/1 X 24 

w1a W/3 
or deflection at the centre, ye 96 E/

2 
+ 96 Ef

1 

where W= 10 kN, l = 5 m 
E= 210 X 106 kN/m2 

!1= 1256 cm\ / 2= 1884 cm1 

E/1 =2JOx 106 x 1256 X I0- 8 = 2637·6 kNm2 
EI2= 2 l0 X 106 X 1884 X 10-s=3956'4 kNin2 

1,.I .• • j ( I 
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Slope at the end A, 

Slope at the end B, 

. W/2 
ZA=- 48 EI2 

1ox52 

JV/2 
24 EI1 

10x52 

=- 48x3956·4 24X·2637'6 

=-O·OOI 3164- 0'0039492 

=-0'0052656 radian. 

. w12 w12 
is=+ 48 EJ1 + 24 EI2 

lO X 52 lOX 5.2 

= 48 X 2637"6 + 24 X 39.56·4 

= O·OOl 9746+ 0·0026328 

=0.0046074 radian. 

w1s [ l l J Deflection at the centre = 96 Eli + Elz 

lO X 5
3 

[ 1 1 ·] 
= 96 2637'6 + 3956·4 

= 0·00:82276 m = 8'2 mm. 

.'. ,.,i.r.:-

' . ~ 

Exercise 11·1s-t. A beam 6 m long, simply supported at the ends carries a con
centrated load of 1 · 5 tonnes at its centre. The moment ·0f inertia for the middle half length is 
2400 cm4 and that for the outer quarter lengths is 12·00 cm4• Determine (i) slopl: at the ends, 
(ii) deflection at the centre. 

E= 2000 tonnes/cm2
• 

Problem 11·1. A beam ABCD, 10 m 
long carries concentrated loads of 2 tonnes 
and 4 tonnes at points Band C. The beam is 
simply supported at ends A and D. Point B 
is at a distance of 3 metres from end A and 
point C is at a distance of 3 meters from the 
end D. Determine (i) deflection under the 
loads of 2 tonnes and 4 tonnes, W) ma:it-imum 
deflection and the section of beam where it 
occurs. 

[Ans. .±0'008.8 ra9iat;,. l._5'82 mm] . : , ... 

Fig. lh7 

Solution. For ·support reactions take moments of the forces about the point A. 

3 x2+ 7x4= RD 

Ro= fi = 3·4 tonnes 

RA+RD= 2+ 4 =±'6 1tonnes , 

RA=6- 3·4=2'6 tonne,s 
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Consider a section k-X in the portion Cb of the beam, at a distance of x from the 
end A. 

or 

then at 

; .·, . . . 

BM at the section K-X, 

M=2'6x-2(x-3)-4 (x-7) 

EI :~ = 2'6x-2 (x- 3)-4 (x-7) ... (!) 

Integrating equation (I) we get 

dy x 2 2 (x- 3)2 4 (x- 7)2 
EI dx = 2'6 2 - 2 - 2 + c 1 (c0nstant of integration) 

= 1·3x2-(x- 3)2-2 (x-7)11+c1 ... (2) 

Integrating equation (2) also we get 

1 ·3 xa (x- 3)3 
EI y=-3-- 3 

2 (x-7)3 

3 
+C1 x+C2 (constant of integration) ... (3) 

at x=O, y = O 

Substituting in equation (3) and omitting the negative terms in bracket 

0=C2 

x= 10 m, y=O, i.e., at the other end of the beam 

So O 1·3~ J03 (10~3)3 2 tl~-7)3 +C
1 

X IO 

-IO C1=433'33-114'33-18=+301 

constant, C1 = - 30' l 

Equation for deflection becomes 

1 3 x3 (x- 3)8 
EI y= -3-- 3 

Deftection under the loads 

2 (x- 1)3 -30'1 X 

3 

at x=3 m, y=yn 

1 '3 X 33 

Elyn= 
3 

0- 0-30' I X 3 

(omitting the negative terms in the bracket) 

Ely n= 11 ·7- 90'3= - 78'6 

whel'e £ = 2000 tonnes/cm2=2000 x 104 tonnes/m2 

1= 9800 x 104 mm'= 9800 x 104 x 10-12 m4 

= 9800 X 10-s m' 
EI= 2000 X IO' X9800 X 10-8 = 1960 Tm2 

ya=-
1
7
9
8~i =-0'040 m=-4'0 cm 

at x=1 m, y=yc 
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Elyc 
1 ·3 X 73 

3 
(7- 3)3 

3 
0- 30"1 X 7 

= 148"633- 21 "333- 210"7= - 83"4 

ye=- ft~~ = -0"0425=-4'25 cm. 

Maximum deflection. Let us as~ume that maximum deflection occurs in the portion 
BC. At the position dy/dx= O, deflection will be maximum. Considering the equation (2) and 
omitting the term (x-7)2 

or 

or 

or 

EI _dy_ = l'3 x2-(x-3)2-30'l = O 
dx 

1 ·3 x2 - x 2 - 9+ 6x-30' 1= 0 

0'3x2+ 6x-39' I = 0 

x2 + 20x- J 30'33=0 

X 
- 20+ ./ 400+4x 130·33 

2 

= -20-+;30'35 = 5'175 

At a distance of 5' 175 m from A, slope is zero. 

1'3X5'1753 (5'175 3)3 
Elymax= 3 · 

3
- ~omitted term- 30'1 X5 '175 

= 60'05-3'43- 155'77= - 99'15 

99·15 
Ymax= - 1960=-0'0506 m=-5"06 cm Ans. · 

Problem 11 ·2. A cantilever of symmetrical cross section 3 metre long and 40 cm 
deep carries a uniformly distributed load of 2·4 tonnes/metre run throughout its length. "If 
/ = 50,000 cm4 and £ = 2100 tonnes/cm2

, calculate the deflection at the free end. 

What is the maximum concentrated load which the cantilever can carry at a distan~e 
of 2 m from the fixed end (in addition to the distributed load) .if 

and/ 

(a) stress due to bending is not to exceed 800 kg/cmi anywhere in the cantilever 

(b) deflection at the free end of the cantilever is not to exceed 4 mm. 
• I • \ 

Solution. Taking length in metres and load in tonnes, let us convert the units of E 

£=2100 tonnes/cm~= 2100 x 10' tonnes/mi 

I- 50,000 cm4= 50,000X 10-a m4 -

El= 2100 X JO• x 50000 x 10-8= 10500 T-mt 
Uniformly distributed load, 

w= 2'4 tonnes/metr~ 

l-,eni th of the cantilever! r-3 ~ 

- ., 



Deflection at the free end, 
wJ4 

S= 8 EI 

2"4X 34 -2'314 10-s 
= 8xl0500 - x m 

= 2'314 mm 

Maxi•rtium bending moment occurs at the fixed end 

wl2 2'4X 32 

Mma·x=-
2
-= -

2
-=10·8 tonne-metres 

Depth of the section, d=40 cm= 0'4 m 

Maximum stress due to bending 

\1 d 10'8 X 0'2 
- I 2 = 50000x 10-a 

10'8 X 0'2 
= 

5 
X 104=0'432 X 104 tonnes/m2 

~ 0·432 tonnes/cm2= 432 kg/cm2 

(a) Due to additional concentrated loaq W 

f ', stress due to bending 
===800-432=368 kg/cm2 

= 0'368 x 104 tonnes/Q12. 

w 

Maximum be11ding moment occurs at 
the fixed end du~ .U> the ·C~ncentrated loacl 
W, at a distance of 2 m from the fixed end. 
S~yl ,load is W tonnes 

•• J J J ; • 

;·! . ! J ' ....... . Mm~x = W x 2= 2 W tonne-metre 

Fig. 11·28 

, Mmo., d 2 w x o·2 
f = -'/- . 2 = 50,000 X w··s O·O& X 1Q+4 W 

. I' . . 

0'368 x 104= 0'08 x 104 w 
W;,,4'6 tonnes. 

f ~ I 

(b) Due ·10 concentrated load W, additional deflection AA' at the free end (See Fig. 
lH:7.~ti'-· 

AA'=4 mm-2'314 mm= l'786 mm 
( ; . . - • ,.· : r , • 

= t ·786x 10- s m 

Deflection 
WJ's 

'11: ) ,r.D!l' = P3"EJ . 

where 1'= 2 m 
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iB, slope at B 
W/'2 w x 22 • _ 

= 2 El = 2 X i0,500- = 0 J90 x lO 
3 

W 

Slope at A will be the same as slope at B, because portion AB is not subjected to 
bending due to the additional load W. 

Deflection at A = AA'= BB'+iB XAB =(0'254 W+O'L90x 1 W) X 10-3 

= 0·444 W X 10-3= t ·786 X 10-a 

or W=3·98 tonnes. 

So the allowable load Wis 3'98 tonnes. 

Problem t1 ·3. A uniform beam of length L is supported symmetrically over a span 
I ; L<L. Determine the ratio of L/L if the upward deflection at the ends is equal to the down
ward deflection at the centre due to a concentrated load at the mid span. 

Solution. Fig. 11 '29 shows a beam 
of length L supported symmetrically over a 
span/. 

Overhang AE=L-l 
2 

Say the central load= W 
Deflection at the centre 

W/3 ' 
= 48EI = CC 

where El is the flexural rigidity of the beam. 

Slope at the ends 
W/2 . 

= -- = t• 
16£/ 

w 
e' 

~L ~ - · 

Fig . 11·29 

Portion EA' remains straight since this portion is not r subjected to bending. Portion 
EA' follows the slope of the point E. 

or 

So the upward deflection, 

But 

AA'= i• X AE 

{ L - L W/2 
( L - 1) 

= t. x \-2-)=r6EI -2-

CC'= AA' 

w1s W/2 
( L-l) 

48 EI =1 6EI -2--

/3= 3/2 ( f - ~· ) 
3L 3/ 

/= 2 ---i: 
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or 

or 

_?_ l = _l_ L 
2 2 

i.=1-=0'6 
L 5 

STRENGTH OF MATERIALS 

Problem 11"4. A girder 6 m long is supported at one end and at 1 ·5 m from the 
other end. It carries a uniformly distributed load of 10 tonnes/metre over the supported 
length of 4·5 m and a concentrated load of 6 tonnes at the overhang end. Calculate the 
maximum downward deflection and state where it occurs. Given EJ= 20 x 1010 kg cm2 

or 

Fig. 11·30 

Solution. Ta_~ing moments about A for reactions, 

Rn X 4'5 = 4'5 x 10 x 
4/ + 6x 6 

Reaction, 

Reaction, 

4·5 x 1ox4·5 36 
Rn= 2 x 4·5 +4T 

= 30'5 Tonnes 

R~ = 4·5 X 10+6-30'5 

= 20·5 Tonnes 

Consider a section X-X at a distance of x from the end C 

Bending moment at the section, 

Af3 = 6x+ ~ (x - 1 · 5)2 - Rn(x-1 ·5) 
2 

EI d
2
y = 6x-l- __!_Q_ (x-1'5)2-30'5 (x- 1·5) 

dx2 2 

EI d
2
Y = 6x+ 5(x-t·5)2-30'5(x- 1·5) 

dX2 

Integrating equation (1) 

El dy - 6x2 + ? _ (x-1 ·s)s-30·5 (x-1 ·5)2+c 
b-2 3 2 1 

where C1 is the constant of integration . 

lntegrating further the equation (2), 

6x3 5 30·5 
$It = -6 ·· +12 (x- 1'5)4 - -

6
- (x-l 5)3+ C1x + C2 

... (1) 

... (2) 
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v,here C2 is another constant of integration. 

Now deflection y=O at x= 1 ·5 m and x = 6 m 

Substituting in equation (3) above 

0=1·53+0-o+c1 x 1·5+c2 ••• (4J 

0=63+-5-(6- 1'5)4-
30

6
~(6--1'5)-!+6C1 + C2 ... (5) 

12 

or 

or 

1·5 C1 + C2=-3·375 

6C1 + C2 = -216-170'859+ 463'218 

1 '5C1 + C2 = -3·375 

6C1+C2 = +76'359 

From equations (4) and (5) 

C1 = 17'718 

C2= - 29·953 

Deflection at the overhang end C i.e., at x = O 

So 

El yo=O+O- O+O+ C2 

= -29'953 

29'953 
yo= - EI 
E/= 20 x 101° kg-cm2 

= 20 X 106 kg-m2 

= 20 X 103 tonne-m2 

29'953 
Ye = - 20 x 103 m 

= -0'00149 m 

=-0'149 cm 

... (4) 

... (5) 

... (4) 

... (5) 

Deflection can be more than Yo in the span AB i.e. x> l '5. For this, let us find out 

where slope ;~ =0. Putting equation (2) equal to zero . 

5 30'5 
0 = 3x2+ 3 (x- 1'513 - 2 (x - 1'5)2+ 17'718 ... (6) 

or 18x2 + lO(x- 1'5)3 - 30'5 x 3(x- l ·5)2 + 6 x I 7'718= 0 

or l8x2+ lO(x2 - 3x+2'25)(x - 1 '5) - 9 l '5(x 2- 3x+2·25)+ 106'308 = 0 

or 10x3 - 118'5 x2 + 342 x- 136'317= 0 

x=3'87 metres (By trial aod error) 
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Now deflection at X=3·87 ril 

Ely3•87 =3·873+ ~
2 

(387-1·5)4 -
3
~~ (3.87-1·5)3 

Maximum deflection 

+ l 7·718 X 3·81- 29·953 
=57.960+ 13.146-67.669 +68·568-29.953=42"052 

42'052 . 
Ys·s7=2ox 103 = 0 0021 m 

= 0·21 cm 

This shows that deflection y3.87 is downward and deflection y 0 is upwards and y8 •87 is 
maximum deflection. 

Problem 11 ·s. A beam of length / is hinged at one end and supported at a distance 

of ~ from the hinged end. It carries a load W at the free end and a load W distributed 

over a length ~ , starting from a distance of ; from the hinged end. If El is flexural 

rigidity show that the deflection under the concentrated load W at the free end is 
13 W/3 - --

432 El 

Solution. The loads on the beam 
are as shown in the Fig. I l '31 . For support 
reactions let us take moments of the forces 
about the point D . 

where 

So 

or 

WI+ wl ( _l + 1- ) = 2:!_ Ro 
3 3 6 3 

Wl + l;l X ; = ~ RB 

wl = W 3W 
3 

or w= - 1-

9 
RB=- w 

4 

9 I RA = W+W- - W=-- W 
4 4 

X 
~ 

3 

Fig. 11'31 

--~ .... 
Hinged end 

0 j 

•· f 

- -•: ,..~ ·Y-X at a distance of x from the end A and extend the unit 
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B.M. at the section, M=-Wx +2-w ( x--
1

) 
4 • 3 

- ~ ( x- i-r+ ; ( x- ~ r 
or El- =-Wx+-W x--d2y 9 . ( [ ) 

dx2 4 3 

- ; ( x-f r + ; ( x-- ~ y ... (1) 

Integrating equation (1) we get 

El t =- w;2 + : W ( x--f r 
... (2) 

and 
wxa 9 ( I )a Ely=--- + - W x--

6 24 3 

- ;4 ( \x-f-r + ;4 ( x- ;l r +C1x+C2 . ... (3) 

0 l d . . r 21 ) Now y= at x = 3 , an om1ttmg ( x- 3 term we get 

o= - w ( _J_)s +o- o+c x .!__ +c 6 3 1 3 2 

or 
l W/3 

C1 3 +C2 =+ 
162 

where C1 and C2 are constants of integration ... ~4) 

Moreover y=O at x = l 

0=- W/3 +..2_ W ( l- _!_ )a 
6 24 3 

- ~ ( z- } f + ;4 ( 1- ;z )'+c11+c2 

wta W/3 w 16 /4 w za 
O= - 6 - + 9 - 24 X 81 + 24 X 81 +Cil+Cz 

or 
W/3 Sw/4 

O= - 18- 648 +C1l+C2 

W/3 5 3W 
C1J+C2 = ~+648 x w/4 but w=, or 

W/3 5 3W W/a 5 . 
= 18 +648 X -/- X !"' = w-+ 216WJS 

17 w1s 
= 216 ... (5) 
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From equations (5) and (4). 

So 

2/ Ci= W/3 [ 17 1 J W/3 [ 17 1 J 
3 216 -162 = ·w 12- 9 

=j WlB [fl.] 
18 36 

47 W/2 

Ci= l!X36 

C - 17 W/s 47 W/3- 13 /3 
2 - 216 -12X36 X -- 432 W 

Ely=- ~x~+ i4 W ( x-: r- ;4 ( x-j-r 
w ( 2/ )• 47 W/2 13 + 24 x-3 + 4n x- 432 WI3 

At the free end x=O. and omitting ( x- ; ) and ( x- ;1 ) terms we get 

13 
EI yA=---W/3 

432 

l3 W/
3 

• h d fl . h f YA= 432 X El 1s t e e ect10n at t e ree end. 

Problem 11·6. A beam AB of length/ is hinged at both the ends. An anticlockwise 
turning moment Mis applied at the point C. Point C is at a distance of //4 from end A . 
Determine slope and deflection at the point C. Given that EI is the flexural rigidity of the 
beam. Indicate the slope of the deflected beam. 

Solution. The beam AB with a 
turning moment Mis shown in Fig. 11 ·32 (a). 

For support reactions, taking moments 
of the forces abol!t the point A, 

M=Ra x / 
M 

or Rs=-
1
- -1-

then for equilibrium 
M 

RA = -,- t 

If a bending moment diagram is 
drawn for the beam, it will be of the shape 
given in Fig. 11 ·32 (b). 

Consider a section X-X at a distance 
of x from the end A. 

BM at the section, 
M M,,= -
1
- .x-M 

A 

~~B 
c' .l_: cal I 

A~B -~ -
.l -

c~ ( b > 

Fig. 11·32 
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T o take into aecount the distribution o f bending moment, the term M can be written 
as M (x-1/4)0

, because any quantity raised to the power zero is equal to one 

or 

and 

or 

So Mx ( I )
0 

Mr=-1--M x-4 
d2y Mx ( / )

0 

EI - - =---M x- -
dx2 I 4 

... (1) 

Integrating the equation ( I) 

At 

So 

At 

So 

EI ~? = M;/ -M ( x-1 )+c1 (a constant of integration) .. . (2) 

Ely= ~t - 1,;, ( x- ; r + C1x+C2 

(another constant of integration) ... (3) 

x=O, y=O, term (x-J/4) will become negative and so it will be 
omitted 

o=o+o+c2 
C2=0 

x=l, y=O ; another boundary condition 

M/a M ( 1 )2 0=6i- - z 1-4 + C1 / 

- M/2 - 9 M/2 +c l 
- 6 32 1 

C1=( f2 -f )Ml= ~! Ml 

Expression (2) and (3) will now be 

EI dy = Mxz - M ( x- ..!_)+ __!.! Ml 
dx 21 4 96 

Mx3 M ( I )2 11 El y= 7;, - 2 x-4 + 96 Mix 

At the point C, I, dy . d 
x=4 ·ax = 1c an y=yc 

M(/)a 11 / Elyc= 61 4 _ +96 x Ml .4 
_ Ml~ 1..!_ 2 _ 12 
- 384 + 384 Ml - 384 M/2 

... (2) 

... (3) 
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. 14 Ml 
ic= 96 EI . 

12 M/2 Ml2 

ye= 384 EI= 32 ET 

Shape of the deflected beam 

Slope at the end B, at x = l 

EI . = Ml _ 3 Ml +l.!. Ml=-~ Ml 
lB 2 4 16 96 

At a position where deflection is maximum, slope is zero. Substituting in expression (2) 
dy/dx= O we get 

or 

x2 ' ( I ) . 11 
2l- x-4 + 96 1= 0 

x2 I 11 
U-x+4+96 l= O 

x=0·48 l 

ET Jmaa,= i (0"48 /)3- ~ (0"48 /-0'25 /)2+ ~~ M/. (0'48 /) 
I 

= 0·018432 M12-0·02645 M12+o·oss M1 2 

= 0"047 M,/2 

The deflected shape of the beam is shown in diagram 11 ·32 (a) showing thereby that 
the beam is entirely lifted up from its original axis. 

Problem 11·1. A propped cantilever of length l is fixed at one end and freely 
supported at the other end. The cantilever is subjected to a couple M in the vertical plane 
about an axis 31/4 from the fixed end. Determine the reaction at the prop and fixing moment 
at the fixed end. 

Solution. Fig. 1 l ) ,3 shows the 
cantilever of length / fixed at end B and simply 
supported at end A. A moment M in the 
anticlockwise direction is applied at C, at a 
distance of 31/4 from the fixed end. 

Say the reaction at the prop= P 

Consider a section X-X at a distance 
of x from the end A. 

Of 

BM at the section, 
I o 

M = Px- M = Px- M ( x-4 ) 

EI ;~ = Px-M ( x- ~ )° 

Fig. 11'33 

, .. (1) 
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Integrating equation I, 

dy Px 2 
( I ) EI dx = - 2- - M x - 4 +c1 

where C1 is the constant of integration 

or 

or 

or 

So 

at x = I; fixed end dy = 0 
dx 

3M! P/2 

C1 = -4- - -2-

So 
dy _ Px 2 - M ( x - I )+ 3 Ml_ p/2 

EI dx - 2 4 4 2 .. . (2) 

Integrating further 
Px3 M ( / ) 2 3 Mix p/2 

Ely = -
6
- - -

2
- x- 4 +- 4- - 2 x+ C2 

(another constant of integration) 

But at x = l, fixed end, y = O 

So 

Therefore Ely = Px3 
_ M

2 
( x - ..!__ ) 2 + 3 Mix _ Pl

2
x + !.!!_ _ _ 12 M/2 

6 4 4 2 3 32 

But at x = O, y = O, neglecting ( x - ~ ) a negative term 

O=O+o- o+ ~ /3 - 15 ~12 

45 M/ 2 45 M ( . h ) P= = -
321 

react10n at t e prop 
32/3 

BM at fixed end, 
45 M !3M 

Ms--- x l - M = - -
- 321 32 

Problem u·s. A vertical pole 6 m high carries a concentrated load of 500 kg inclined 
at an a n~le of 30° to its vertical axis. The pole is of uniform round section throughout. A 
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pull P is applied at an angle of 45° to the 
axis of the pole, at a distance of 3 m from its 
base. Determine the magnitude of P such that 
the deflection at the top of the pole is zero. 
Neglect the effect of axial forces. 

Solution. Fig. 11 ·34 shows a vertical 
pole, 6 m high subjected to an inclined load 
500 kg as shown. 

Horizontal component of load applied 

= 500 x sin 30° 
= 250 kg 

500 kg 

433kg 

3m 
Say the pull applied at the point C is 

P kg, inclined at an angle of 45° to the axis 
of the pole. 

_L..-,1-+4-~ r,-,

or 

Fixed ~ncl 

Horizontal component of pull, Fig. 11·34 

Pn=P sin 45°= 0"707 P 

Consider a section X-X of the pole, at a distance of x from the end A 

BM at the section =-250 x+PH (x-3) 

d2y 
El - - = -250 x + Pn (x-3) 

dx2 

Integrating equation (1) 

dy x2 PH 
EI - = - 250 - + - (x- 3)2+ C1 dx 2 2 

where C1 is the constant of integration 

At 

i.e. , 

So 

Therefore 

x= 6 m, fixed end of the pole, slope is zero 

dy = 0 
dx 

0= - 125 (6)2,+ ~H (3)2+c1 

C1=4500-4'5 PH 

El 1x = - 125 x2 +0·5 PH (x- 3)2+ 4500- 4"5 Pn 

Integrating equation t2) 

125 xs PH 
Ely = - ~ + - 9- (x-.3)3+ 4500 ~- 4·5 /'H. x+ C:> 

. .. (1) 

... (2) 
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where C2 is another constant of integration 

At x=6 m, fixed end, deflection, y=O 

J25x6a Pn . 
0=- 3 + 6 (3)3+4500x6-4·5 Pn. 6+c2 

=-9000+4·5 Pn+27000-27 Pn+C2 

or C2=22'5 PH-18000 

555 

Therefore 

At 

125 x3 Pn 
3 +6(x-3)3+4500x- 4'5 PH.x+22·5 PH-18000 

So 

x = O free end, deflection is zero as per the condition given in 
the problem, 

O=O+o-0+22·5 PH-1800 omitting the term (x-3) 
PH=800 kg 

Pull, P= O~~g7 = 1131 '54 kg 

Problem n ·9. A beam_ of ~engtk I simply suppo~ted a~ the ei:ids carries a uniformly 
varying distributed load throughout its lengt~. The load mtc:is!tY vanes from zero at one end 
to w per unit length at the other end. lf El 1s the flexural ng1d1ty of the beam, determine the 
maximum deflection in the beam. 

Solution. The load on the beam 
is as shown in the Fig. 11 ·35_ For support 
reactions, take moments of the forces about 
the point A. 

wl 
Total load on beam = 2 

C.G. of the loads acts at a distance of 

~/ from the end A. Therefore, 

or 

and 

wl 21 
- x-=RBXI 
2 3 

wl Rn= 3 

RA = wl - RB = wl 
2 6 

Consider a section X-X at a distance of x from the end A. 

f X 
I w.x 

Rate o loading at , w = -
1
-

Total load upto X, 

Fig. 11·35 
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or 

and 

or 

C.G. of the load AXX, acts a·t a distance of ~ from the section X-X 

Bend(n&--t;noment at. th~-.sec;tion, 

M -;+RA.x- ;;2 X (; ) 

wl wx3 

=T· x-v 
d 2y wlx wx3 

El Jx2 = 6 - 6/ 

Integrating the equation (I) 

dy wlx2 wx4 

EI dx = T2 - 24 l + Ci 

At x=O, y=O 

er 

Moreover, at x=l, y = O 

wl4 wl4 

0= 36- 120 + C1 l 

The expressions will now be 

dy _ wlx2 wx4 _J_ 3 
EI dx - 12 - 24 l 360 wl 

w/x3 wx5 1 
Ely=~- 120 l -360 wlax 

... (1) 

... (2) 

... (3) 

... (2) 

. . . (3) 

Now the maximum deflection occurs in the beam at the section where slope is zero. 
Therefore to determine thl! position of maximum bending .moment let us put equation (2) equal 
to zero. 

or 

or 

or 
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212± J414- 28 r 
2- 15 , 

x - 2 

= /2 xo·21 

x=0.5196 I 

212±J 32_ I' 
15 

- - ---,2---

Therefore Elymaa= ;~ ('5J96 l)3- l;O/ ("5196)5
- 3; 0 iv/2 x ·5t96/ 

= w/4[0'003897- 0·0003I 5- ·oIOl03] 

. . wl 4 0'00652 
Maximum deflect10n, Ym"x= - E( X 

0'00652 w/4 

EI 

occurs at a distance of 0'5196 / from the end where load intensity is zere. 

551~ 

Problem 11·10 A horizontal steel beam 25 cm dia and 5 m long carries a 
uniformly distributed load of J tonne/metre run throughout its length . The beam is supported 
by 3 vertical steel tie rods each 2·4 m long , one at each end and one in the middle. The 
diameter of the outer rods is 15 mm and that of the middle rod is 20 mm. Calculate the 
deflection at the centre of the beam below its end points. £ = 2000 tonnes/cm 2. 

Solution. Fig. J 1 ·36 shows a hori
zontal beam 5 m long supported by 3 rods. 
Say the reaction at the middle I rod is P, then 
reaction at the outer rods will be 

( 1 X ;-P )=( 5~P) 
as the total load on the beam is 5 tonnes. 

Area of cross section of outer rods 

= : (l '5)2= 1 '767 cm2 

Area of cross section of middle rod 

Length of each rod=2'4 m = 240 cm 

Extension in length of outer rods, 

15mm 
dia. 

A 

20mm 
dia 

p 

( 5- p ) 

2 15mm 
dia. 

(
w • 1 T/m 2·4m 

s c __ t 
2·5m~- 2· 5m 

B .. ----- ---

Fig, 11:36 .. 

( 
5 - P ) 340 ~ ( 5- P ) 240 

Bll = - 2- x 1"767,x E = -2- x 1"767xE 

= 67£'912 (5-P) . ) ... (1 
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where 
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Extension in the length of middle rod, 

ol _ !_ 240 _ _ P_ 240 _ 76'394 p 
a-,, X E -3.1416 X E - E .. . (2) 

Deflection at the centre of the beam, 

_ 76'394 P _ 67'912 (5- P) 
E E ... (3) 

Moreover, deflection at the centre of the beam, o (as per the formulae already derived) 

5 w/4 P/3 
= 384 EI - 48 EI 

/= length of the beam= 500 cm 

w= rate of loading= I T/m='Ol T/cm 

0
_ 2_ ·01 x 5004 Px 5003 
- 384 X EI - 48 EI 

= ~r [32'552-10'416 P] 

I of the bea~ = ~ - (25)4= 19174'8 cm4 where diameter of the beam is 25 cm 

5002 

o=Ex 19174 .8 [32'552 - 10·416 P] 

13.038 [32'552-10'416 P] - E .•. (4) 

From equations (3) and (4) 

13'038(32.552_ 10.416 P)= 76'394 P _ 67'912 (S-P~ 
E E E 

or 13'038 x 32'552-10'416 x 13'038=76'394 P-67'912 X 5+67'912 P 

or 

424'413-135·804=76'394 P-339'56+67·912 P 

(67'912+76'394) P = 424'413 - l35'804+ 339·56 

= 628'169 

628'169 . 
P= 144.306 =4 353 Tonnes 

S~P = 0'3235 Tonne 
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Deflection, 

Stress in outer rods 

Stress in middle rod 

Sli = 67'912 
E 

812= 76'394 p 
E 

(5 - 4'353) ·
647 

~~~
912 

= 0·022 cm 

76'394x4·353 =
0

.
166 2000 cm 

~=S/2 -8/1 = 0'166-0'022=0·144 cm 

= 1·44 mm 

( 
5- P ) I ·3235 

= -2- 1·167 = 1'767 

= 0·183 tonne/cm2 

_ _ P __ _ 4·353 _ . 
2 - 3.1416 - 3.1416 - 1 386 tonnes/cm 

S59 

Problem 11·11. A cantilever of length/ carries a total load P distributed over its 
length/ It is supported over a prop at a distance of kl from the fixed end. Determine the 
ratio of the deflection of the cantilever at the free end with the deflection of the cantilever 
if it is unpropped. 

Solution. Say EI is the flexural 
rigidity of the cantilever. Fig .. 11 ·37 ~hows a 
cantilever of length / carrymg uniformly 

distributed load, w= -f- per unit length. A 

prop is at a distance of kl from the end 

Reaction at the prop= P 

Consider a section X-X at a distance 
of x from the end A 

B.M. at the section is M=- wt + P(x - J+kl) 

Fig. 11·37 

~y p p 
El - -=--Xx 2+ P(x-l+kl) as w= -

1 dx2 - 21 

Integrating equation (1) 

dy _ Px3 P ( _ )2 EI dx - - 61 + 2 x l + kl +C1 

where C1 is a constant of integration 

at x = l, dy = O 
dx . 

pza p 
Therefore 0=-61 +2 (l - l+kl)2 +C1 

p/2 Pk2J2 p/2 
C1=~0 ---4- = 6 (l -~k2) or 

fixed 
end 

... (]) 
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or 

or 
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So 
dy Pxa P pz2 

EI -=- - + - (x- J+k/)2+- (1-3k2) h ~ 2 6 
... (2) 

Integrating equation (2), 

Px4 p p/2 
Ely= --+- (x-l+k/)8+- ( l -3k2)x+C2 24 I 6 6 

Again at x=I, y= O 

Therefore, 
P/3 p pza 

0= - -+- (k3/ 3)+- (l -3k2)+C 
24 6 6 2 

p/a p pJa p/ak2 
C2= - - - k3/ 3 - - + -- constant of integration 

24 6 6 2 ' 

Therefore 

p/3 p p 
= - - --k3/3+ - k2/3 

8 6 2 

= Pis - ---- - --(12k2-4k3 - 3) [ 
k2 ka I J p/s 
2 6 8 - 2i 

pJs 
=- - (4k3-} 2k2+3) 

24 

Px4 P p/2 
Ely= ---+ - (x-l+kl)3+-- (l - 3k2)x 

24 l 6 6 

p/3 
- -- (4k3- 12k2+ 3) 

24 

Deflection at the free end at x=O, neglecting the term (x - l+kl) 

pJs 
ElyA= -24° (4k3- 12k2 + 3) 

When the cantilever is unpropped deflection at the free end, 

yA'=-::/ 
So y~ = 43 kB- 4k2 + 1 

YA 

Problem 11·12. A circular steel pipe 400 mm bore and 10 mm wall thickness is 
supported at its ends and at the centre. When the pipe is full of water the central support sinks 
by 2 mm below the ends. Find the ,load on eat:h support. Draw also the BM diagram. 

Given Psteel = 7'8 g/cc, Pwater= 1 g/c<' 

E,rft;er= 205 kN/mm2, 
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or 

Solution. 

Inside diameter of pipe = 40 cm 

Outsip.e diameter of pipe=42 cm 

Pstee1= 9·8 g/cc, Pwater= 1 g/cc. 

Let us first determine the weight of water and pipe per unit length. 

Area of cross section of water pipe 

1t 
= - (40)2 = 400 1t cm2 4 . 

Area of cross section of steel pipe 
Tt 

= 4 (422-402)=41 1t cm2 

Weight per cm of pipe = 400 i. x 1 +41 x rt x T8 
= 226 J ·3 g=2.261 kg/cm 

Weight of the pipe per metre length 

Length of the span 

Moment of inertia, 

=2'26 1 x 1oo x 9·g N/m 

w=2·216 kN/m 

= 10 m 

£ •= 205 kN/mm2 = 205 x JOG kN/m2 

f=-n (424-404)= _1t (3364) (164) 
64 64 

= 27081 cm4 = 2708l x 10-s m4 

If the beam (pipe) is not supported at the centre, the central deflection would have been 

5 w/4 5 2'216 X 104 

yc=3-84 X El = 384 X 205X 106 X27081 X 10-s m 

5 2·216x 104 
=-384 X 205X2 ,0'81 s·J97 X 10- 3 m = S'197 mm 

But the central support sinks by 2 mm only. This means that the upward reaction 
provided by the central support produces a deflection of 5· 197-2=3' l 97 mm upward. 

then 

Say the support reaction at central support 

= PkN 
pj3 

3·197 mm = 3·J97 X 10-s m = 48 El 

p X l oa - 3 · 197 IO a 
48 X 205 X 106 X 2708 l X IO 8 - X 

4·1fx2·of x 21o·s1 = 3·197 x io-
3 

f = 3· 197x 10-a x 4·8 x2·os xpo·s1 = 8·s2 kN 



Reaction at outer supports 

_ Total load on supports- P 
2 

_ : ·216 x ~0-8'52 = 6.82 kN 

BM diagram 

w= 2"216 kN/ 111 
Reactions at the ends 

RA=Rn= 6"82 kN 

Reaction at centre= 8"52 kN 

Consider a section at a distance of x 
from the end A. 

BM at section, M=6"82xx-~ 
2 

= 6"82 Xx- 2·2 16 
X x2 

2 
= 6"82x- 1 ·J0 8 x2 

A 

MA = O 
M2= 6·s2x2- 1·108 x4= 9·208 kNm 

(This shows BM at a section 2 m away from cn<l A) 

M2-5=6·82x 2·5-1 · 1os x 2·52 = 10· 125 kNm 

M4 = 6"82 X 4- l "108 X l 6= 9"552 kNm 

M5= 6·s2 x 5- 1"108x 25=+6·4 kNm 

F ig. ! 1·38 (b) shows the bending moment d iagram. 

STRENGTH OF MA TERJALS 

B M Diagram 

( b) 

Fig. 11·38 

B 

I 

Problem 11"13. A long steel strip of uniform width and thickness 2·5 mm is lying 
on a level fl oor. Its one end is passing over a roller of 4 cm d iameter lying on the fl oor at 
one p oint. For what distance on either side of the roller will the strip be clear of the ground. 
What is the maximu m stress induced in steel strip ? 

Psteet= 7·8 g/cm3 

E=2 x 100 kg/cm2. 

w: wt o1 strip p er unit length 

B 

t 
4cm d ia. 
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Solution. Say the strip is clear of the ground for a distance/ from the point where the 
roller is lying. 

Reaction R at the roller is the upward force at the end Band w is the weight of the 
strip per unit length acting downwards on the strip. 

Slope of the strip at A where the strip just leaves the ground is zero and slope of the 
strip at the point B where the strip smoothly passes over the roller, is also zero. 

Consider a section X-X at a distance of x from the end B. 

BM at the section, wx2 

M = Rx- --
2 

EI d2y = Rx- wx2 
dx2 2 

Integrating equation (I) 

EI dy = Rx2 
_ wxa + C 

dx 2 6 1 

where C1 is the constant of integration 

or 

or 

or 

or 

At the point B, 

So 

dy 
x=O - = 0 'dx 

O= O-O+C1 or C1= 0 

EI dy = Rx2 
_ wx3 

dx 2 6 

Integrating the equation (2) we get 

Now 

Therefore 

But 

But at 

So 

Rx3 wx4 

Ely= - 6- -
24 

+C2 (another constant of integration) 

y=O at x =l 

O= ~
3 

- -;{ +c2 

w/4 ms 
C2=24·--6-

Rx3 wx4 w/·1 R/3 
Ely = -6- - 24 + 24 - --6-· 

y= 4 cm (roller dia) at x = O 

-El x4= wl
4 

- RJ3 
24 6 

x=l dy =O 
' dx 

R/2 w/3 
0= -z- --6-

R =.!:!l 
3 

... (l) 

... (3) 

... (4) 
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or 

Substituting in equation (4) 

w/4 wl /3 w/4 

- 4 EI= 24 - 3 x7; = - 72 

/4= ~~~Jg_ 
w 

w=weight of.the strip per unit length 

7'8 X b X 0"25 
1000 kg/cm 

StRtlNGTH OF MAtERIALS 

where b is breadth of the strip 

bt3 b X 0·253 b 
1=12 = 12 - 768 

E= 2 X 106 kg/cm2 

4 _ 288 x2x I06 Xb _ . 8 I - 768 x 7·8 x 0.25 b x 1000-3 846x 10 

Length, /= 140 cm 

Maximum bending moment occurs at the point A, 
w/2 w/2 wl2 w/2 

Mmax= R/- 2 = - 3 - 2 = - - 6-

7·8 X 0·25 b 140 X 140 
1000 X 6 

Section modulus, 
bt2 b X 0·252 b 

Z=T= 6 = 96 

Maximum stress induced in str ip 
Mmax 7·8 x 0 '25 b x 140 X 140X96 

= -:z-= 6000Xb 

= 611'52 kg/cm2 • 

Problem 11'14. A long flat str ip 4 cm wide and 2·5 mm thick is lying on a flat 
horizontal plane. One end of the strip is lifted by 20 mm from the plane by a vertical force 
applied at the end. The strip is so long that the other ends remains undisturbed. Calculate 
(a) the force required to lift the end (b) the maximum stress in the strip. Weight density of steel 
= 7"8 g/cm3• 

E=2 x 106 kg/cm 2. 

w = weight of the str ,p per 

( uni t leng:h 
6 

.l._j,.....J<----i --.-

p 2cm A 

A 

- ------ e - - -----
Fig. 11·40 
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Solution The strip is lifted from the ground by 2 cm by a force as shown in the 
Fig. 11 '40. The slope at the point A where the strip just leaves the ground is zero. 

or 

or 

or 

or 

Say the reaction at A = R 

Taking mome,1ts of the forces about the point A 

I 
w/x 2 = P X / 

P= !'!l_ 
2 

Consider a section X-X at a distance of x from the end B. 

BM at the section, -
wx2 

M=-Px+-
2 

d2y wx2 
EI -dx2 = - Px+ -2-

Integrating equation (2) 

But 

So 

EI dy __ Px2 + wx3 +c 
dx - 2 6 1 

dy = 0 at x = l 
dx 

0= - pt+ w~3 +c1 

wzs p/2 
Ci=-6 -+2 (constant of integration) 

dy Px2 wx3 w/s p/2 
EI ax=---y+- 6- + 6-T 

Integrating the equation (2) further 
Px 3 wx3 w/3 p/2 

Ely=--6-+M - 6 x+ 2 x+ C2 

But y= O at x = I 

... (1) 

... (2) 

... (3) 

P/3 w/4 w/4 p/a 
0= - 6 + 

24 
- 6 +2 +c2 (constant of integration) 

Therefore 
Px3 wx 4 w/3 P/2 pJa w/4 

Ely=---+----x+ - x- - + -
6 24 6 2 3 8 

at x = O, deflection, y = 2 cm 

P/3 w/4 wl 
-EJ X2=- 3 + 8 but P= --

2
-So 



or 

w/4 wI4 wI4 

- 2EJ= -6+ s = -·24 

I'= 48EJ 

Strip. b=4 cm, t='25 cm 

E= 2 x 106 kg/cm2 

w 

bt3 0'0625 
l=rr=~ cm4 

STRENGTH OF MAi:ERIAts 

w=wt. of strip per cm length = 
4

x ·~t~
0
1 

x
7

·
8 

kg 

7'8 = 
1000 

kg/cm run 

I'= 48X2X 10s 0'0625 X 10a= 0'641 X 10s 
7·8 X 12 

Length, /=90 cm 

Force required to lift the load, 

P = ~ 
2 

O'OCYZ8,X 90 = 0.35 kg 
2 

Maximum bending moment, 

w/2 
Mmax=y since the beam is simply supported at the ends 

Mmax=0'0018 X 
9t = 7'8975 kg-cm 

Section modulus, 
bt2 4 x o·252 0·25 

Z = 6 = 6 = - 6- cma 

Maximum stress in 
. Mma• 7'8975 

6 stnp= ~ = 0.25 x 

= 189'54 kg/cm2 

Problem 11·1s. A cantilever 3 m long carries a uniformly distributed of 20 kN/m 
for l '5 m length starting from the free end. Its free end is attached to a vertical tie rod 
2·4 m long and 16 mm in diameter. This tie rod is initially straight. Determine the load 
taken by the rod and the deflection of the cantilever . 

£ = 208 kN/mm\ / = 800 cm4 

Solution. The F ig. 11 '41 shows a 
cantilever 3 m long, carrying udl of 20 kN/m 
over 1 ·5 m length. The free end of the canti
lever is attached to a tie rod. 

Say reactioru 0ffered by tie rod= P kN 
A, Area of tie rod 

= : (16)2 = 201 '06 mm2 

p P . 
Stress in tie rod = A 201 .06 

Tie rod 
w : 20k N/m 

24 m 

Fig. 11.41 
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Length of the rod 

Extension in tie rod, 

£ = 208 kN/mm2 

=2·4m 

P 2·4 0·051 P 
'M= 201 ·06 X 208 = 1000 metre 

567 

Consider a section X-X at a distance of x from end A and continue the uniformly 
distributed load upto the section XX as shown and compensate this extra load by applyi ng the 
load in the opposite direction as shown in the Fig . 

or 

or 

or 

B.M. at the section, M = Px- wx
2 

+ ~ (x- 1·5)2 
2 2 

where w= 20 kN/m 

d2 
EI d: = Px - I0x2+ IO (x-1·5)2 

x- ... (1) 

Integrating equation ( L) we get 

EI dy = Px2 - IOxs + _!Q_ (x- 1·5):s+c 
dx 2 3 3 1 

(constant of integration) 

But dyl = 0 at x= 3 m, at fixed end 
~x 

O= P X3 2 
_ I0 X27 ..!Q_ (J.5)s+c 

2 3 + 3 1 

0 = 4·5P- 9o+ 11 ·25+c1 

c1=1s·15-4·5 P 

dy Px 2 10x3 JO 
El dx =-

2
- - -

3
- + 3 (x - 1·5)s+1s·75 _ 4·5 P .. . (2~ 

Integrating equation (2) 

. Px 3 10x4 10 
Ely= 6 - - ~ + 12 (x- 1'5)4 + 78'75x-4'5 Px+C2 

where C~ is a nother constant of integration 

At x = 3 m, y=O, at the fixed 

or 

Therefore 

O= P x 3a _ lO XSl +..!Q_ (l ·5)4 + 78'75 X 3- 4'5 P x 3+ C 
6 12 J2 I 

=4·5 P-67'5 + 4'2188+236'25-13·5 P+ C2 

=-9P+I72'97+C2 

C2=9P-172'97 

Px3 10x4 l O 2·97 Ely--- - - + - (x-t·5)4 +18'15x-4·5Px+9P-I1 - 6 12 12 

at the free end X= O, neglecting (x- 1 ·s) term we get 
ElyA = 9P- 172'97 
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0·057 P 
But deflection at free end=-

1000 
(indicating downward moment) 

Therefore 
o·os7P 9P-112·91 

- 1000 = EI 

E/= 208 X 106 X 800 X 10- s kNm2 = 1664 kNm2 

o·os7P 9P-112·97 
- 1000 = 1664 -

(-0"09485-9) P=-172"97 

112·97 . 
Load taken by the rod, P= 

9
.09485=19 0 kN 

Deflection of the cantilever 

0'057X 19"0 
1000 

m (indicating downward deflection) 

=-1'083 mm. 

Problem 11·16. A cantilever of circular section of length/, carries a . load w at its 
free end. The diameter of the cantilever for 2/3 rd of its _length starting the free end is D 
while the diameter for the rest of the length 1s 2D: Determmc the slope and deflection at the 
free end. E is the Young's ir.odulus of the matenal. 

Solution. A cantilever of length l 
and diameter D for 21/3 and 2D for l/3 is 
shown in the Fig. l.l "42. Load applied at the 
free end is W. 

Let us consider the cantilever in two 
parts AB and BC. 

B. M . at any section in the portion AB 

= -Wx 

( x varies from O to ~ ) 
B.M. at any section in the portion BC 

=-Wx 

( x varies from ~ to l ) 

w 

A C 

-- 21 r, I . i.12 
3 --j- 3 

Fig. 11·42 

Now E ~~ = J (since / changes from one portion to another portion) 

MolJlent of inertia? 

Wx - - -[- ... (1) 
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or 

or 

or 

or 

I _ 1t (2D)4 nD4 

2 - 64 = -4-

l2=l6 I1 

From equation (1), 

I 21/3 l 

I
E dy I = J- JY~- dx+ r - Wx dx 

dx I1 J /2 
0 0 2ll3 

2//3 I 

E[ic-iA] ~:: _l [- Wx2] + _I I- wx21 
/ 1 2 /2 2 

0 21/3 

= _ W X ~{: _ W ( /2 _ 4/2 ) 
211 9 212 9 

2Wl2 5 w12 -=- ----- x--
9/1 3211 9 

69 W/2 

=- 288 /
1 

But i.=O ; slope at the fixed end C is zero. 

. 69 W/2 

So -£1,4=- 288 '1 

Deflection. 

. 23 W/ 2 

IA = + · · - -
96 E/1 

E d
2
Y = _ Wx but / is different in two portions 

dx2 I 

Multiplying both the sides by x dx and integrating, 

I 21/ I 
f d2y _ f Wx2dx f Wx2dx 
J E dx2 . x dx - J- I1 + j - /2 

O O 2ll3 

I 21/3 I 

E[ x dy -y J-1_ Wx3 I+'- Wx3 I 
dx -1 3/1 , 3I2 

0 0 21/3 

SW/3 3W ( 8/s) 
E[(/ X ic - Y•)-(OXiA - )'A)]= - 81 /

1 
- 3/

2 
/3- 27 

but ; • ....:..yc=O at fixed end, 
8W/3 3W/3 19 

So + Ey,4 =-· 8iii-~x 27 

W/3 [ 19 J =- ~ s+ 16- because /2 = 16 /~ 
' . . ~ 

569 

... (2) 

... (3) 
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or 
147 W/3 

EyA = - 81 X 16 11 

. 147 W/3 

Deflection at free end, YA= - 1296 X Eli 

Problem 11'17. A round tapered bar acts as a beam over a span L. The diameter 
at each end is D which uniformly increases to 2D at the centre. A load W is applied at the 
centre of the beam while the ends are simply supported. If Eis the Young's modulus of the 
material, derive expression for the deflection at the centre of the beam. Compare this deflection 
with the deflection of a simply supported beam over span L, carrying central load W but of 
uniform diameter D throughout the length. 

Solution. Fig. 11 '43 show a beam 
of length L simply supported at the ends and 
carrying a central load . The diameter at the 
ends is D and at the centre it is 2D. 

Central load= W 

Reactions, RA=Rn= ~ 

(since the beam is symmetrically loaded) 

L 
T 

Fig. 11'43 

Consider a section X-X at a distance of x from the end A 

or 

B.M . at the section, w 
M= +- x 

2 

Diameter at the section, 

So 

Integrating 

D 2D 
Dx= D+ L/l . x=D+~. x 

= D+ k x where k = 2D 
L 

E d2y = _!±'._ £ ~ _ _E Wx 
dx 2 2 X n: X Dx4 - n: X (D+ kx)4 

E _dy __ 32 W J x dx 
dx - 1r (D + kx)4 

L 
T 

32 W [ X 1 J =-,..- -3k(D + kx)3 - (-3 '.·)(- 2k)(D+kx)?, +c~ 
-

where C1 is the constant of integrat ien. 

l at X = --, 
7 

dy 
dx; = 0, because of symmetry 

(1) 
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At the centre, diameter =2 D 

S7 1 

where 

32 W[ L/2 
So O= -it- - 3k (2D)3 6k2 ~2D)2 J+c1 

Therefore 

Therefore 

32 W[ L 1 J 
Ci=-lt- 2x8D3X 3k + 6k2 X4D~ 

4 wr L 1 J 
= -lt-L 6k D3 + 3k2 D2 

4 [ L I l = -3;- X W 2k DS + 1c2 D2 .., 

k
_ 2D 
- L 

4 W[ L L I £ 2 J 
Ci=~ 2D3 X 2D + D2 X 4D2 

4W 2L2 2 WL2 

= ~x 4D4 =~ JJ4 

E dy __ 32 Wx 
dx - 3rck (D+kx)a 

32 W 2 WL2 
rt6k2 (D+kx) 2 + 3~ ~ ... (2) 

Integrating equation (2) · 

32 [ I xdx J 32 W J 1 2 WL2 
Ey=- 3nk (D+ kx)3 - 6nk2 (D + kx)2 + 3n 754 x 

32 W [ X I J-
Ey= - 3nk - 2k (D+kx)2 - (-2k) (- k) (D+ kx) 

32 W 2 WL2x 
- 6rck2 X (- Ik)(D+kx) +~ x-.D4 ·-+C2 

where C2 is another constant of integration 

Moreover at 

So 

So 

16 Wx 16 W 16 
Ey=+ 3nk2 (D+b)2 + 3nk3 (D+kx) + 31;k3 (D+ kx) 

2 WL2x 
+ 3-; D.- +c2 

16 Wx 32 W 2 WL2x 
= 3nk2 (D+kx)2 + 3rck3 (D+kx) +~ ~ + C2 

x = O, deflection y = O 

32 W 
0= 0 + 3rrk3 D +C2 

32 W 
C2=- 31;k3 D 

16 Wx 32 W 2 WL2x 32 W 
Ey= 3rck2 (D+kx)2 + 3rr.k3 (D + kx) + 3; ~ 31rka 
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Deflection at the centre 

y=ye at 

L 
D+k - = 2D 

2 

sttn:NGTH OF MA TERtAi..s 

L 
x = -

2 

16 W L L 2 32 W 
Eye=~ X 2 X 4D2 (2D)2 + 3n (2D/L)3 (2D) 

- -- -+2+ 1- 4 WL3[ l J 
- 3nD4 2 

WL3 
= - 6nD4 

ye = 
WL3 

6n ED4 

Problem 11'18. A round tapered 
cantilever of length 2 metres supports a load 
W at its free end. The diameter of the 
cantilever at the free end is 8 cm and at the 
fixed end diameter is 16 cm. What is the 
maximum value of W if the maximum stress 
developed in the section is not to exceed 800 
kg/cm2• Under this load what is the deflection 
at the free end. 

E= 2 x 106 kg/cm2 

Solution. Fig. 11 '44 shows the canti
lever with load W at the free end. 

Maximum bending moment occurs at 
the fixed end and 

Mmax= WI= W X 200 kg-cm 

Section modulus, Z at the fixed end 

w 

nD3 n x 163 

=32- = 
32 

402' 125 cms 

where 

Mma== fZ 

/=800 kg/cm2 allowable stress 

200 W= 800 x 402'125 cma 

W= 4 X402'125=1608'5 kg 

2 WL2 L 32 W 
+ 1;x J54 X y- 3nk3 D 

16c m ~ 

Fig. 11'44 

l. 
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or 

or 

Consider a section X-X at a distance of x from the end A. 

Diameter at the section, 

16-8 
D.,,=8+ 200 · X 

= (8+0·04 x) cm 

Moment of inertia at the section, 

Ix= ~ (8+o·o4x)' 

BM at the section, M = - Wx 

So El d
2
y = -Wx 

X dx2 

E _d_2Y_ = - Wx 
dx2 -_-ff ___ (_8_+_o_-o_4_x_)" 

64 ·, 

Integrating equation (1), 

64 Wx 
n(8+o·_o4x)' 

I, : 

· dy 64 W J xdx · ' . . . 
E dx =- -it- (8+0·o4 x)4 +C1 (constant of mtegrat1on) 

Let us determine 

r xdx J xdx 
j (S + o·o4x)4= (8+kx)4 where. k = 0'04 

... (1) 

... (1) 

f dx JJ dx 
=x (8 + kx)4 - (S + kx)4 

X f dx 
-3k(8+kx}3 + J 3k(8+ kx)8 

So 

Now at 

Therefore 

X 

3k(8 + kx)3 

X 
=- --=--=-= 3k(S+ kx)3 

3k X 2k (S+ kx)2 

1 
6/c2(8+kx)2 

I 

dy 64 W X 64 W 
E dx = -ff - X 3k(8+kx)3 + .,,. (6k2)(8+kx)2 +Ci 

x = 200 cm, y = O 

k = 0'04, kX200 = 8 

64 W X 200 64 W 
O= 1; X 3k (16}3 + rt X 6k2 X 162 + C1 

= 8'2893 w+s·2s93 w+c1 

C1= - 16'57860 W _ 

.• I 

E
dy _j_~W x x . 64W 1 
dx - TC X3k (8+kx)3 + ,; X6k2' X (S+kx)2 .16:57860 w 



: / 

(!I, 

Let us put 
64 W - K a constant 3ttk - 1 

64 W 
6rck'J. = K2 another constant 

stltENcn'H OP MNi'ERIAE.S 

E dy = K x 1 
dx 1 ( 8+kx)3 +K2 (8+kx)2 16'5786 W I ii 

... (2) 

Integrating equation (2) 

Ey=K1 J (:+d:x)s +K2 f (8~~x)2 - 16'5786 Wx+c2 

Now at 

At 

be:tlection, 

(a constant of integration) 

K.1 X r dx , 1 . 
=- 2k(8+kx)2 K1 j -·2k(8+kx)2 + K2 -k(8 + kx)-16 5786 Wx+C2 

K1 X ~1 .. 1 .K2 . 
=- 2k(8+kx)2 + 2k(-k) x (8+kx) - k(8+kx) - 16 5786 Wx+C2 

I 

K2 . . . 
k(8+kx) - _16 5786 Wx+C2 2k(8+kx)2 2k2 (8+kx) 

I 
x .:_200 cm, y=0, 

8+kx= l6 cm at x=200 cm Putting this condition 

O K1X 200 K 1 K2 
= - 2k 06)2 2k2 (l6) k (l 6) - l6'Sl86x200 w + c 2 

C2 = 9'7656 K1+ 19'5312 K1-t l'5625 K2 + 3315'72 W 

=(29'2968)x 64 W + 1'5625 x 64 W +3315'22 w 
3nk 6nk2 , 

=4973 '5676 W+ 3315'7202 W+3315'22 W 

= li604'508 W 

x = O, y = yma. 

· , Ki, x 0 
E Ymax=- 2k(8)2 

K K.. 
2 (8) - k (;) - 16'5786Wx o+ 11604'508 w 

Ki K2 · 11604' = - 16 k2 - 8k + 508 w 

64 W 64 W 
-- 31tkX l6 k2 6,rk2X8k-+ ll604'S08 W 

= -6631'44 W-663L'44 W+ 11604'508 W 
=- 1658'37 W 

1658'37 X 1608'5 
yma~=- 2 x ·106 = - 1·333 c1b at the free end 
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Problem 11·19. A cantilever 2 metres long is of I section of depth 100 mm and 
/ = 168 cm4 • A load of 20 kg is dropped at the free end of the cantilever from a height of 
20 cm. What is the instantaneous deflection at the free end of the cantilever. What is the 
maximum stress developed in the cantilever ? 

then 

or 

or 

E = 2 x 106 kg/cm 2. 

Solution. Say the instantaneous deflection at the free end of the cantilever 

= Si 

Say P is the equivalent gradually applied load 

P/3 
St= 3EI 

Falling load, 

p St X 3£/ 
/3 

3 X 2 X 106 X 168 
P = S, x 2oo x 2oox200 

=126 s, 

W=20 kg 

Height through which load falls, 

h= 20 cm 

Now 
1 1 

W (h+S,)= 2 P S,= 2 X 126 S,2 

20 (20+S,) = 63 s,2 
63 8;2-20 8,-400=0 

S _ 20+,/ 400+63X4X400- _ 20+318' 12 
,- 126 - 126 

=2'6835 cm 

Equivalent load, P = l26X2'6835=338'12 kg 

M mnx, Maximum bending moment 

Pl=200x 338'12 kg-cm 

/=168 cm4 

Depth of the section, d= 10 cm 

Maximum stress 
Mma:. d 200X 338'12 XS 

= -1- X2= 168 

= 2012'6 kg/cm2 

... (1) 

,o 

Problem 11·20. A cantilever 6 m long is supported at the free end by a prop at the 
same level as the fixed end. A uniformly distributed load of 1 tonne/metre run is carried on 
the cantilever for 3 m length starting from the free end. Determine the reaction P at the prop 
and deflection at the centre of the cantilever. El is the flexural ri~idity of the cantilever. 
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Solution. Consider a section X-X at 
a distance of x from the end A. Extend 
the uniformly distributed load upto the 
section XX and apply load in the opposite 
direction also from the centre of the cantilever 
upto the section XX, so as to maintain 
equilibrium, and in reality the total load and 
its distribution is not changed. 

,.._ __ X ----.1 

w: I T/m 

Fig. 11·45 

B.M. at any section X-X, 
wx2 w(x-3)2 

M = Px--
2
- +-

2
- --

or EJ _d
2
Y. =Px-0·5 x2 + 0·5 (x-3)2 - (I) as w=l T/m. 

dx2 

Integrating the equation (1) 

dy Px2 x3 (x-3)3 

EI dx = - 2- - 6 + 6 +Ci (constant of integration) 

at x=6 m, fixed end, !!l.. = 0 
dx 

or 

or 

Of 

Therefore O= P x 62 63 (6-3)3 

2 -6+ 6 +ci 

C1 = 36-4·S-18 P = 3I·S-18 P 

EI dy - Px2 ~+ (x-3)s +<3t·S-I8P) 
dx - 2 - 6 6 ... (2) 

Integrating the equation (2), 

Therefore 

So 

· ~ Px3 x4 (x-3)4 • 
E/y - 6 - 24 +~ +(31 5- 18 P)x+C2 

(constant of integration) 

at x= 6 m, y= O · 

O= p~ 
63 

- ;; + (6-;})
4 

+(31 '5-18P)6+C2 

0= 36P-54+3·375+ 189-108 P+C2 

C2 = 72 P - 138·375 P 

EI;=· ~t ~ ~~ + (x-:;_;)' +(31 '5- 18 P)x+(72 P-138'375) 

... (3) 

Now at x = O, y=O, substituting in equation (3) we get 

, · O= o-o+ o+ o+ nP- 138'375 

13g·375 
P= --rr- = l '921875 Tonne~ ' :, '. " l(t 
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Equation for the deflection becomes 

Pxa x4 (x- 3)4 

Ely= -·-6-- 24 + 24 +(31"5-34"59375) x 

- Pxa - x4 + (x-3)4 -3"09375 x 
- 6 24 21 

Deflection at the centre of the canti lever i.C'., at x=3 m 

3a 34 

Ely. = l '921875 X 6 .- 24 +0-3'09375 X 3 

= 8'6484375 - 3'375- 9'28 !25 

--= 4'007813 

4"007813 
y,.= El 
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Problem 11·21. A beam of length 3a simply supported over a span of a, with equal 
overhang on both the sides. It carries a uniformly distributed load w per uni t length over the 
overhang porti on of both the sides. Determine, 

(i) slope and deflection at the overhang end 

(ii) deflection at the centre of the beam 

Use moment area method. El is the flexural rigidity of the beam. 

Solution. The loading diagram of 
the beam is shown in the Fig. 11 "46. 

Total load on beam = 2wa 
Beam is symmetrically loaded so the 

reactions, RB= Ro=wa 
B.M. diagram 

wa2 

MB = Mn = --2-

Since there is no load on the portion 
B to D. The B.M. will remain constant 
between B and D. The B.M. diagram upto 
C can be considered into two parts A1 and A2 
as shown. 

Now a rea 

5a 
T 

Fig. J J ·46 

Now El(ic - iB) = area of the B.M. diagram between B and C 

wa3 
-El iB= - 4 as slope;, = 0 due to symmetrical loading 

or 
wa:i 

io= + --. 4 r::, 
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or 

or 

where 
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Similarly El(in - iA)= area of B.M. diagram between Band A 

But 

wa2 a wa3 

= - - x -=- -
2 3 6 

EI . EI. waa zs- IA = --6 -

. wa3 
E!zs=+-

4 

So 
. wa3 wa3 5 

-E/1.4= --- --- - --wa1 
6 4 - 12 

Deflection at A 

ET[(xn . in -yn)- (xA . iA - yA)= first moment of the area A1 about the end A 

was 3a wa' 
= - 6- - x -4-= --8-

xn= a, yn= O 

. wa3 

ID = + 4EI , XA = O 

[( 
waa ) J wa' EI a. 4EI - 0- 0 X iA + YA =--

8
-

wa4 wa4 
4 +YA,El= - -8-

Deflection at A, yA= J1 [ - wt - w:4 ]=- ~;.;' 
Deflection at C 

E![(xc X ic-yc)-(xo x is- y n)]= moment of the area A2 about the end A 

[ ( 
3 ) ( wa

3 
) J waa ( Sa ) El 2 a x 0 -yc - a x 4E1 -0 = - 4 x 4 

wa4 5 
- Elyc - -

4
- = - 16 wa4 

-ye= Ell [ w4a' - 156 wa' J wa' = -16EI 

wa4 
Deflect jon at C, ye= 165{ 
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Problem 11'22. ,A beam 4 m long is simply supported at its ends. lt carries a uni
formly distributed load of 2 tonnes/metre over 2 m length starting from one end. Determine 
slope at ends and deflection at the centre of the beam, using conjugate beam method. 

E=2000 tonnes/cm2, 1=4000 crn4 

Solution. Fig. 11 ·47 (a) shows the 
loading diagram of the beam of 4 m length 
with udl of 2T/m over AC, 2 metres length. 
For support reactions, let us take moments of 
the forces about the point A . 

end A 

2X2 X 1=4R» 
ReaGtion, R»=l Tonnes 
Total vertical load=2 X 2 Tonnes 
Reaction, RA=4-1=3 T 

B.M. diagram 
MA=O 

Mi, B.M at a distance of 1 m from 

wx2 2 
=3Xl-2 =3-2 X 12 =2 Tm 

Mc=3X2 _1_ X4=6-4=2 Tm 
2 

M,nax occurs between A and C, 

Wc2T/m run 

A Fr:J::O::a:ii=q,=----~ B 
~=3T C R

8
.11 

2m 2m 

a 

A' r-----i~i-,---~ 9 ' 

.._ __ 4m---""I 

00::2 ·25Tm 
Do": 2 ·O Tm 
Conjugct r. beam 

( b) 

Fig. 11·47 

'R~c 2•133-4 Trrf 

wx2 

M .. = RA . x - - 2 - (a parabolic curve) 

= 3x-x2 

Putting d1:/x'° = 3-2x= O for maximum B.M. 

x=t·s m 

2 
So M1 .5= 3x1·5 - 2 X I'52 = 2'25Tm (sayoccursatpointD) 

Fig. 11 '47(b) shows the conjugate beam 
with a loading diagram A'D'C'B'. Before we 
determine R.11 1 and Rn' for the conjugate beam, 
let us note the properties of a parabolic 
curve. 

Fig. 11 '48 shows a parabolic curve 
ef, covering an area efg, breadth B and 
Height H. 

2 
area under the parabola, a1= 3 BH 

area a2, above the parabolic curve 
1 = 3 BH 

Fig. 11·48 
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or 
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5 3 
C.G. of a1 iies at a d1stance of 8 B from C or 8 B from g , 

Similarly C.G. of area a2 lies at a distance of ! from C or ~B from f 

Taking moments about the point A. 

1·5x2·25x }( ~ x 1·5 )+<2·25-2)(0'5) ( 1·5+ ~ x o·5)x; 

+2xo·5x(1·5+
0
/)+2x2x ~ ( 2+~ )=R11'x4 

2· 109375+ l '6875 x ·0833+ 1 ·15+5·3333=4RB' 
I 

2· 110+0· 1406+ l '75+5'333=4RB' 

RB'= 9·3336 = 2·3334 Tm2 
4 

R,i'=2·25x i·5x; +0·25xo·5 x ·; +1+2-2·334 

=2'250+"0833+3-2'334 = 3'000 Tm·2 

Slope at the end A, 
. R11 1 

111 = - EI 

So 

E=2000 T/cm2 = 2000 X 104 T/m2 

1=4000 cm"'= 4000 x 10-s m4 

E/= 800 Tm2 

it..= - 8~
0

= -~·~0375 radian = - 0'215° 

Slope at end B, 
. _ + Rs' 2·3334 
IB- EI = 800 

= + 0·0029 radian = + .o· t 67° 

Moment Mc' from conjugate beam diagram 

= RB'X2 - 2
X~ X 2._ 
2 3 

= 2'3334 X 2 - l '3333 = 3'3335 Tms 

Deflection at the point C, 

M ·' 3·3335 
ye = E{ = -

800 
= 0'00417 m = 0'417 cm 

SUMMARY 

1. For a beam or a cantilever subjected to bending moment M, 

d2y 
EI ax£=M 

I 
• 
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where EI is the flexural rigidity and section is uniform 

E d2y M ( . h . bl . ) and ·axz-= T Wit vana e sect10n . 

2. For a beam of length /, simply supported at ends and carrying a load Wat its 
middle 

Slope at ends 
WJ2 

= ± - -16 El 

M . d fl . WJa ax1mum e ect1on at centre= 48 El . 

3. For a beam of length J, simply supported at its cuds and carrying a uniformly 
distributed load w per unit length throughout its length 

WJa 
Slope at the ends = ± ---24 EI 

M . d fl . 5 w/4 
ax1mum e ection at centre= 384 X El · 

4. For 1a cantilever of length L, carrying! a concentrated load Wat free end, 

w12 wza 
Slope at free end= 2El, deflection at free end = ·fET. 

5. For a cantilever of length/, carrying a uniform ly distributed load w per unit length 
throughout its length 

Slope at free end 

Deflection at free end 
w/4 

= 8El . 

'I 

•l ••• ,, 

6. For a beam of length l= a+b, simply supported at ends carrying a load Wat a 
distance of a from one end, 

Slope at one end 

Slope at the other end 

Wah (a+2b) 
= --6-~ 

Wah (2a+ b) 
=+ 6 EI I 

Wa2b2 

Deflection under the load= - 3 El 1 · 

, r i 

7. lf a load W is allowed to fall through a height h on a beam or cantilever at a 
particular point and a, is the maximum instantaneous deflect ion produced then 

w (h+a,)=t P a1 
where Pis the equivalent static load which when applied gradually produces deflection a,. 

8. If a cantilever of length l, carrying uniformly distributed load w per unit length 
is propped at the free end such that the free e nd is brought to the level of the fixed end, then 
reaction at the prop is 3w//8. 
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9. If a beam of length i simply supported at its ends carrying uniformly distributed 
load w per unit length is propped at the centre, so that centre of the beam is brought to the 
level of the ends, then reaction at the prop is Sw//8 . 

10. If a bending moment diagram is plotted for a beam carrying transverse loads and 
two sections•are considered at distances of x1 and X2 from one end 

where 

EI (i~-i1)=area (a) of the BM diagram between X2 and X1 

El [(X2 i2- Y2)-(x1 i1-Y1)]= Ax 

x=distance of CG of area R, from one end. 

• 
B .M. Oio'<;irom 

Fig. 11'49 

11. If a bending moment diagram is plotted for a beam carrying transverse loads, 
then bending diagram shown over the length of the beam as a variable distributed load, is 
called a conjugate ·beam. The react!ions·at the ends o~tained for the conjugate beam, divided 
by EI give slope at the ends. The bending moments at any section obtained for the conjugate 
beam divided by EI gives deflection at that section. 

MULTIPLE CHOICE QUESTIONS 

1. A simply supported beam of length 2 metres carries a concentrated load 3 tonnes at 
its centre. If EI=5000 tonne-metre2 for the beam, the maximum deflection in the 
beam is 

(a) I X 10-a m 

(c) 2 X 10-, m 

(b) Sx 10- 4 m 

(d) 1 X 10-4 m. 

2. A beam is simply supported at its ends over, a span / . If the load applied at the middle 
of the beam is W, the minimum slope in the beam is 

w12 W/2 
(a) 16 EI (b) 3 EI 

w,~ 
(c) 2 El (d) None of the above. 

3. A_ beam simply supported at its ends over a span of 4 metres carries a uniformly dis
tributed.load of 1 ·5 tonnes/met'i'e run throughout its length. If EI= 2500 tonne-metre2 
the maximum deflection in the beam is ' 
(a) 0·2 mm (b) 0'8 mm 
(c) 1.6 mm (d) 2·00 mm. 
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4. A beam of length /, simply supported at its ends carries a uniformly distributed load w 
throughout its length. The centre of the beam is propped so that centre is brought to 
the level of ends. The reaction at the prop is 
(a) wl (b) 0'5 wl 

(c) 0'625 wl (d) 0·75 wl. 

5. A cantilever of length L, carries a load Wat the middle of its length. If EI is the flexural 
rigidity of the cantilever, the deflection under the load is 

W/3 w1s 
(a) 24 EI (b) 16 El 

Wl3 W/3 

(c) 3 EI° (d) 2 El . 

6. A cantilever of length L, carries a load Wat its middle. The slope at the middle of the 
cantilever is 0. The slope at the free end is 
(a) 2 8 (b) 1 ·5 0 
(c) e (d) o·s 8. 

7. A beam of length (a + b) simply supported at its ends carries a concentrated load Wat a 
distance of a from one end. If El is the flexural rigidity of the beam, the deflection under 
the load is 

Wa2b2 

(a) 4 (a+ b) El 

Wa2 

(c) 6(a+ b) El 

Wa2b2 

(b) 3 (a+b) EI 

Wb-~ 
(dJ 6 (a+ h 

8. A beam of length 6 m, carries a concentrated load Wat its centre, such that BM·at the 
centre of the be.am is 6 tonne metre. If El is the flexural rigidity of the beam, then 
deflection at the centre is 

36 
(a) El 

9 
(c) EI 

18 
(b) EI 

(d) None of the above. 

9. A cantilever of length 4 metres carries uniformly distributed load w throughout its length. 
If the maximum bending moment in the cantilever is 8 tonne-metres, and EI is its flexural 
rigidity, the slope at the free end of the cantilever is 

64 32 
(a) T Ei (b) 3 EI 

16 
(c) 

6 
ET (d) None of the above. 

10. A cantilever of length 4 metres carries a uniformly distributed load of 2 kN per metr,e 
run throughout its length. The free end of the cantilever is propped such that the level 
of the free end is the same as that of fixed end. The reaction offered by the prop is 
(a) 8 kN (b) 6 kN 
(c) 3 kN (d) 2 kN 

l. (d) 
{). (c) 

2. (d) 
7. (b) 

ANSWERS 

3. (d) 

8. (b) 
4. (c) 

9. (b) 
5. (a) 

io. (c)! 
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EXERCISES 

11·1. A beam ABCD, 6 metres long, simply supported at ends A and D carries con
centrated loads of 2 kN and 5 _kN at points B and C. Points B and Care 2 metres away .from 
ends A and D respectively. Determine 

(i) deflection under the loads of 4 kN and 5 kN 

(ii) maximum deflection and its position. £ = 2 x 105 N/mm2, !=3600 cm4 

[Ans. -0'315 cm, - 0·333 cm, Ymu = 0'313 cm, 
at a distance of 3'0945 m from end A] 

11 ·2. A cantilever of symmetrical cross section of length 4 metres carries a load of 
30 kN at its free end. If /=32000 cm4 and depth of the section is 36 cm, determine the 
defl ect ion at the free end. £=200 kN/mm2• 

What is the maximum rate of uniformly distributed load which the beam can carry 
(in addition to the concentrated load) over 2 m length starting from the fixed end if 

(a) stress due to bending is not to exceed 100 N/mm2 

I I 
1 f' 
, (b) if the deflection at the free end is not to exceed 14 mm. 

[Ans. 10 mm, (a) 28'88 kN/m (b) 54'857 kN/m] 

11 '3. A beam 6 m long, is supported at one end and at a distance of t ·5 m from the 
o~hc1: end. ft carries a concentrated load of 80 kN at over hanging end and a uniform ly 
distributed load of 80 kN/m over a length of 4·5 m commencing from the overhanging end. 
Deter:mine deflection and slope at the overhanging end of the beam. 

EI= 15 x 1012 N mm2 [Ans. 16'8 mm, 0·014 radian] 

11'4. A beam 6 m long, hinged at one end and is supported over a span of 4 m, with 
an overhang of 2 m. It carries a load 4 tonnes at the free end and a uniformly distr ibuted 
load of 2 T/m run over a distance of 2 m starting from a point 2 m from the h inged end. 
Determine the deflection under the concentrated load. 

£ = 2000 T/cm2, !=3600 cm4 [Ans. 0"9028 cm] 

n·s. A beam AB, 6 metres long is hinged at both the ends. A clockwise turning 
moment of 6 Tonne-metres is applied at a point C of the beam. Point C 1s at a distance of 4 
metres from the end A. Determine the slope and deflection at the point C. 

£=2000 tonnes/cm2, /=8000 cm4 [Ans. -0· 143°, +3·33 mm] 

11 ·6. A propped cantilever of length l is fixed at one end and freely supported a_t t he 
otp.er end. The cantilever is subjected to a couple M in the vertical plane about an axis //2 
from one end. Determine the reaction at the prop and moment at the fixed end. 

[Ans. : ~ , f J 
11·1. A vertical pole 4 m high carries a concentrated load of 80 kN inclined at a n 

~ngle ~5° to the axis of the pole. The pole is of uniform. round section throughout. A pull P 
1s _applied at an angle of 45° to the axis of the pole at a d istance of 2 m from the base. Deter
mme the magnitude of p so that the deflection at the top of the pole is zero. Neglect the 
~ffect of ~xia.J fon;:es in the role, · lAn~. 3g5'72 kNJ 
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11 ·s. A beam 6 m long si mply supported at its ends carries a uniformly increasing 
distributed load throughout its length. The loading rate is zero at one end and increases to 
30 kN per metre at the other end. Determine (i) slope at the ends, (ii) deflection at the 
centre of the beam. 

E=200 kN/mm2, !=5131 '6 cm~ [Ans. - 0'7°, + 1 ·2°, 2'46 cm] 

11 '9. A horizontal steel beam 4 metres long carries a uniformly distributed load of 
2 kN per metre run throughout its length. The beam is supported by 3 vertical steel rods, 
each 2 metres long, one at each end and one in the middle. The diameter of the end rods is 
5 mm and that of the central rod is 8 mm. Calculate the deflection at the centre of the beam 
below its end points and the stress in each tie rod. 

E=200 kN/mm2 , I for the beam= 750 cm4 

\Ans. 0'605 mm, 77·04 N/mm2 (outer rods), 99'07 N/mm2 (middle rod)] 

11 '10. A cantilever 4 m long, carries a uniformly distributed load of 1 tonne/metre 
run throughout its length. It is propped at a distance of 2'4 m from the fixed end. The 
reaction offered by the prop is 4 tonnes. Determine the ratio of the deflections at the free 
end of the propped cantilever and that ofunpropped cantilever. [Ans. -0'152] 

11·11. A circular steel pipe 50 cm bore and 52 cm outside diameter is supported at 
each end and at the middle on a span of 10 metres. When the pipe is full of water the middle 
support sinks by 3 mm below the ends. Find the load on each support and draw the B.M. 
diagram. 

p,1,e1=7'8 g/cc, pwato , = 1 g/cc, E=2000 tonnes/cm2 
[Ans. 0·253 Tonnes (central), 1 ·4795 Tonnes (outside supports)] 

11·12. A long steel strip of uniform width and thickness 3'6 mm is lying on a level 
ground. Its one end is passing over a roller of 4'5 cm lying on the ground at one point. 
For what distance on either side of the roller will the strip be clear of the ground. What is 
the maximum stress induced in steel. p.,, .,= 7'8 g/cc, E = 210 kN/mm2 

[Ans. 176 cm, 67'22 N/ mm2] 

11'13. A long flat strip 50 mm wide and 3'2 mm thick is lying on a flat horizontal 
plane. One end of the strip is now lifted 30 mm from the plane by a vertical force applied 
at the end. The strip is so long that the other end remains undisturbed. Calculate (a) the 
force required to lift the end (b) the maximum stress in the steel. 

p,tee1= 1'8 g/cc, E = 21,000 N/mm2 [Ans. 6'97 N, 23'24 N/mm2] 

11 ·14. A cantilever 2 m long carries a uniformly distributed load of 1 tonne/metre run 
throughout its length. Its free end is attached to a vertical rod 2 m long and 2 cm diameter. 
The bar is initially straight. Determine the load taken by the rod and the deflection of the 
cantilever. E= 2000 tonnes/cm2, != 600 cm4

• [Ans. 0·739 tonne, 0'235 mm] 

11 ·1s. A cantilever of circular section of length 200 cm carries a load 1 kN at its 
free end. The diameter of the cantilever for half of its length starting from the free end is 4 
cm and the diameter for the remaining length is 8 cm. Determine the deflection at free end. 
E=200 kN/mm2

• [Ans. l '90 cm] 

11'16. A beam of rectangular section has a uniform breadth 4 cm and depth which 
varies from 6 cm at each end to 18 cm at the middle of the length. A second beam is of the 
same material, of the same length and breadth but of uniform depth 18 cm throughout. Find 
the ratio of the maximum deflection of the first beam and that of the second beam when each 
i~ subjected t o a central load W and simply supported at their ends. [Ans. 2·123 W] 
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11 '17. A cantilever of length J ·6 m is of tapered square cross section throughout. 
The side of the square section at the free end is 8 cm and that at the fixed end is 12 cro . A 
load of 4 kN is applied at the free end. What are the slope and deflection at the free end. 
E=200 kN/rom2• [Ans. +o· 148°, -2·3 mm] 

11·1s. A cantilever of length 2·4 m is of section with depth 25 cm and I= 37 I 7·8 cm4
• 

How much load can be dropped onto the free end of the cantilever from a height of 15 cm, 
so that the maximum stress developed in the section is 80 N/mm2• What is the instantaneous 
deflection at the free end. E = 2X 105 N/mm2• [Ans. 195'05 N, 6'144 mm] 

11'19. A cantilever of length / is supported at the free end by a prop at the same 
level as that of the fixed end. A unifor mly distributed load of w per unit length is applied 
on the cantilever starting from its centre and upto the fixed end. Determine the reaction of 
the prop and deflection at the centre of the cantilever. EI is the flexural rigidity of the 
cantilever. 

[ 
7 -13 w/4 

~] 

Ans. 128 wl, 6144 EI 

11·20. A beam of lenth 4 metre is simply supported over a span of 2 m, with equal 
over hang on both the sides. It carries a uniformly distributed load of 2 tonnes/metre run on 
the overhang portion on both the sides. Determine (a) slope and deflection at the overhang end 
(b) deflection at the centre of the beam. Use moment area method. E=2000 T/cm2

, !=2000 cm4
• 

[Ans. +0·19°, -3'125 mm, +1·25 mm] 

11·21. A beam ABCD, 6 metres long, simply supported at ends A and D carries con
centrated loads of 2 kN and 5 kN at points Band C. Points B and Care 2 metres away from 
the ends A and D respectively. Determine (i) deflect ion under the loads of 2 kN and 5 kN 
(ii) maximum deflect ion and its position. E= 200 kN/mm2

, I= 3600x 104 mm4 

[Ans. -0'3!5 cm, -0·333 cm, Ymax=-0'313 cm, 
at a distance of 3'0945 m from end A] 



12 
Fixed and Continuous Beams 

In the previous chapters on SF and BM diagrams and deflection, we have studied about 
the beams and cantilevers. Cantilever is fixed at one end and its other end is free or propped. 
Beams considered were either simply supported at the ends or hinged at one or both the 
ends. The beam at the simply supported ends or hinged ends has some slope while its 
deflectio n is zero. The cantilever at its free end has same slope and same deflection too, and at 
its fixed end there is fixing couple exerted by the support keeping slope and deflection zero. 
Now we will study about the bult in, encastre or fixed beams which are constrained at the 
support so that slope and deflection both remain zero at the support. The support exerts 
restraining couple, the direction of which is opposite to the direction of the bending moment 
produced by the transverse loads on the beams. There is unique value of the fixing couple 
required at the end, if the restraining couple exerted by the support is less than this, there 
will be some slope at the end and if the restraining couple is more than the required unique 
value, then slope at the end will be on the other side of the zero position. The fixing couples 
exerted by the supports can be easily worked out. 

Further we will study about the continuous beams. A beam is said to be continuous 
when it is supported over more than two supports. Curvature of the beam at the intermediate 
supports will be convex upwards, therefore, support moments will be opposite in sign to the 
bending moments produced by transverse loads on the beam. Moreover in the case of 
continuous beams, the slopes at the supports are not necessarily zero. 

12·1. FIXED BEAMS-B.M. DIAGRAMS 

A fixed be.-im can be considered as equivalent to a simply supported beam plus a beam 
of the same length having fixing couples at the ends. Fig. 12· 1 (a) shows a beam ABCD of 
length l fixed at both the ends, carrying uniformly distributed load w per unit length over AB 
and a point load W at C. This fixed beam is equivalent to the sum of a simply supported 

(-v,) 
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beam ABCD of same length and carry{ng same loads and a beam AD of length / with couples 
MA and MD applied at the ends, as shown by Fig. 12·1 (b) and (c). Fig. (d) shows the bending 
moment diagram of the simply supported beam. We have taken the convention that bending 
moments producing concavity upwards in the beam are the positive bending moments, there
fore BM diagram shown in Fig. (d) is a positive bending moment diagram. Fixing couples at 
the ends try to bend the beam producing convexity upwards, therefore the BM diagram of 
fixing couples shown by (e) is negative. Fig. ( /) shows the combined bending moment 
diagram for simply supported beam and the fixing couples or the bending moment diagram 
for the fixed beam. The bending moments above the line A'D' are positive moments and 
those below the line A'D' are negative moments. Points P1 and P2 are the points of contra
flexure. 

Consider a section X-X at a distance of x from the end A. 

BM at the section as S.S. beam =Mz 

BM at the section due to fixing couples=Mx' 

=MA+ (MD-MA) X 
I 

M, Resultant bending moment at the section 

=Mz+ Mx' 

12·2. SUPPORT MOMENTS-FIXED BEAMS 

or 

where 

or .. 

Bending moment at any section, 

M = Mz+Mx' 

d2y 
EI-- = M,, + M,,' 

dx2 

d2y 
or EI dx2 • dx= M ~dx+M~'dx 

Integrating over the length of the beam 
I I I 

I EI 2 \= J Mx dx+ I Mx' dx 
0 0 0 

EI (iD-iA)= a+ a' 

fo =slope at end D= O, as end D is fixed 

it1 = slope at cnri A= O, as end A is also fixed 

... (I) 

... (2) 

a = arca of BM diagram considering the beam to be simply 
supported 

a' = area of BM diagram due to fixing couples 

=-( Mt11Mo) l ... (3) 

a+a' = O 

a=( _¥A1MD ) / . .. (4) 
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This shows that area of the Mx diagram is numerically equal to the area of the Mx' 
diagram. 

Consider equation (1) again and multiply both the si<,ies by x and then int~~ate over 
the length of the beam 

or 

l l I 

I d2y I I , El X dx2 , dx= M ,, . X dx+ M,, , X dx 

0 0 0 
I 

El J x 1x-y j=ax+ a'x' 
0 

El [(I x in.;....yD)-(o x iA-yA)]=ax+ax' 
But at th_e fixed ends, both the slope and. deflection are zero. 
Therefore ax+a'x'=O ... (S) 

where 

Since 
So 

x=distance of the CG of Mx diagram from end A 
x'=distance of the CG of the Mx' diagram from end A. 
a=-a' 
x=x' 

i.e., the centres of gravity of a and a' lie on the same vertical line. 
Now about the origin A, 

a'x'=+ [ MA, ; c; )+MD. ; ( ~ )] 

[ 
12 z2 -,J 12 = + MA. ~+MD. 'T =+6 (MA+2Mo) 

or - ax= +a'x'= -(MA+2MD) ~
2 

... (6) 

With the help of the equations (4) and (6) fixing couples at the ends are worked out. 

12'3. FIXED BEAM WITH A CONCENTRATED LOAD AT THE CENTRE 

Fig. 12·2 (a) shows a beam ABC of 
length /, fixed at both the ends A an~ ·C .and 
carrying a concentrated load Wat its centre 
B. Fig. 12'2 (b) shows the SF diagram for 
the same as for the simply supported beam 
with a concentrated load W at the centre. 
Due to symmetrical loading about the centre 
of the beam fixing couples, 

MA = Mc 

When the beam is simply supported 
at ends, maximum bending moment occurs 
at the centre, 

WI 
MB= 4 

ABC is the Mx diagram and AA'C'C 
is the Mx' diagram Fig. 12'2 



or 

Area 
WI l W/2 

a= 4 Xz =-g-

Area of Mx' diagram . a'=+M.4. l 
But a+a'=O 

So 

a=-a' 
WP 

MA . l=- -
8

-

w1 .MA= Mc= - -
8 

STRENGTH OF MATERIALS 

These fixing couples are equal aud opposite at ends and balance each other a nd impose 
no additional reactions at the supports. Therefore the SF diagram for the fixed beam is the 
same as the SF diagram for a simply supported beam in this particular case. The p oints of 
cqntraflexure P 1 and P 2 lie at //4 from each end as is obvious from the diagram le). 

Let us determine slope and deflection at any point 
d2y I 

El dx2 = M = Mx+ Mx 

=-WI + Wx 
8 2 

Integrating equation (1), 

dy WI Wx2 

EI dx =-- 8- x+ - 4-+Ci (constant of integration) 

at x=O, fixed end A, slope is zero . 

Therefore O=-o+o+c1 or C1=0 

El dy _ _ Wix + -Wx2 

dx - 4 4 

Integrating the equation (2), 

Wlx2 Wx3 
Ely=- ---ri> +12+c2 (constant of integration) 

at x=O, fixed end A ; y ~ O 

So O=-O+ O+ C1 or C2=0 
EI - Wlx2 + wxs 

y-- 16 12 

Maximum deflection will occur at the centre, x= 1 
WI ( / )~ W ( I )s 

El yma•=-16 2 +12 ,2 
w1s W/s 

El yma•= - 64+ 96 
W/a 

yma•= - 192 El 

... (1 ) 

.. . (2) 

... (3) 
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This shows that the maximum deflection for a fixed beam of length / and a load Wat 
the middle is only one fourth of the maximum deflection of a simply supported beam of length 
/, with a concentrated load W at the middle. 

The obvious effect of fixing couples at the ends is to (1) to reduce the magnitude of 
bending moment throughout the length of tho beam (2) to reduce the slopes and deflections 
considerably (3) to make the beam stronger and stiffer. 

Example 12·3-l. A beam of length 6 m is fixed a t both the ends carries a concentrated 
load 40 kN at its middle. Determine (i) fixing couples at the ends (ii) maximum deflection. 

£ = 200 kN/mm2, / = 3600 cm4. 

Solution. 

Length of the beam, 1= 6 m 

Concentrated load at the centre, 

W=40 kN 
E= 200x 106 kN/m2 

1=3600 cm~ = 3600 Y 10-s m4 
El= 200X 106 X 3600 X 10-8 = 7200 kNm2 

(i) Fixing couple at the ends 
WI 4x6 

=--
8
- =- -

8
- =-30 kNm 

. d fl . W/3 (iiJ Maximum e ect1011 = - 192 EI 
40x63 

192xnoo = -0'00625 m=-6'25 mm. 

Exercise 12'3-l. A beam of length 8 m, fixed at both the ends carries a concentrated 
load 2'4 tonnes at its centre. Determine (i) fixing couples at the ends (ii) maximum deflection. 

E=2000 tonnes/cm2, ! = 5112 cm' 

[Ans. -2 tonne-metres, 5'6 mm] 

12·4. FIXED BEAM WITH UNIFORMLY DISTRIBUTED LOAD 

Fig. 12'3 shows a fixed beam of length 
I carrying uniformly distributed load iv per 
unit length throughout its length. 

If the beam is simply supported 
maximum bending moment occurs at the 
centre and Mmam=w/2/8. ACB is the Mx 
diagram with a parabolic curve. AA' B' B is 
is the bending diagram due to fixing couples. 

As the beam is symmetrically loaded 
about its centre, 

Reactions 

and fixing couples 

wl 
RA=Rn=-

2 

2 w/2 

a
1 

Area of Mx diagram = -X/X -
~ ~ 

A 
X 

X lw 

X 
e 

(a) 

wt2-*-
~ f4 /,.. 

-~~1 
A 



= w/3 
12 

a' , Area of Mx' diagram = M AX /= M nx / 

But a'= -a 

So 

w/3 
MA l=-12 

w/2 
M A=-12 

STl{ENGTH OF MA TER!IALS 

Then AA' P1 C P 2 B 'B is the resultant bending moment diagram for the fixed beam 
with points of contraflexure at the point P 1 and P 2 • To determine the points of contraflexure 
consider a section X-X at a distance of x from end A. 

or 

or 

wx2 

Bending moment, M =-MA+RA. x- 2 = 0 

w/2 wlx wx2 

- 12+2-2 = 0 

6x~-6lx+ l2=0 

61±-.f 36/2-24/2 
x= 12 

6l±2if3 l 
12 

l I 
2±2v3 

Points of contraflexure lie at a distance of //2'1'3 on both the sides of the centre. 

Bending moment at the centre 
w/2 w/2 w/2 

=-g- - 12=+ 24 

BM at the ends=fixing moments 

w/2 
=-12 

For slope and deflection let us consider a section X-X at a distance of x from the end A. 

BM at the section, 

d2y w/2 wlx wx2 
El- = --+--- .-dxz 12 2 2 ... (I) 

Integrating equ:ation (1), we get 

dy wl2x wlx2 wx3 . • • 
El dx =-12 +-4- --·-6 -+c1 (consta,nt of mtegrat1on) 

at x=O, : =0, (at the fixed end) 

E/XO= - O+ O-O+C1 or C1 =0 

So 
dy wl2x wlx2 ,wxs 

El-=---+-- - -
fl~ I ~ 4 9 •.. (2) 
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Integrating the equation (2), 

wJ2x2 wlx3 wx4 . . EI y= - - 24 + 12 - 24- +c2 (constant of mtegrat10n) 

at x = O, y=O, (fixed end) 

EJX0=-0+0-0+ C2 or C2 =0 

Maximum deflection take places at the center x = l/2, y= ymam (because the beam is 
symmetrically loaded about the centre) 

yma.,= - 3;/EI (indicating downward deflection). 

This shows that maximum deflection of a fixed beam carrying uniformly di~tributed 
load is only 1/5 the maximum deflection of a simply supported beam of same fength and section 
and carrying uniformly distributed load throughout its length. 

Example 12'4-1. A beam 6 m span has its ends built in and carries a uniformly 
distributed lo~d of 500 kg per metre run. Find the maximum bending moment and the 
maximum 'deflection. 

E=2000 tonnes/cm2, !=4800 cm4. 

Solution. Span length /= 6 m 

Rate of loading, w=500 kg/m run= 0'5 tonne/metre run 

£ = 2000 toime/cm2= 2000X 104 tonne/metre2 

! = 4800 cm4 = 4800X 10-s rn4 

El = 2000 x 10- 4 x 4800 X 10-8 = 960 tonnc-metre2 

Maximum bending moment, 

w/2 o·s x 6x 6 
= - 12= 

12 
=-4·5 tonne-metre 

Maximum deflection, 

wl4 0'5X64 

Ym a.,= - 384 El =- 384x960 - = -0·00176 m = -1·76 mm. 

Exercise 12·4-1 . A fixed beam of length 8 m carries a uniformly distributed load of 
w kN/m run. Determine w if 

(i) maximum bending moment is not to exceed 36 kNm 

(ii) maximum deflection is not to exceed 1 /2000 of the length. 

EI= 7200' kNm2 [Ans. (i) 6·75 kN/mrun, (ii) 2·7 kN/m run] . . . ' ~ 
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12·s. FIXED BEAM CARRYING AN ECCENTRIC LOAD 

Fig. 12·4 (a) shows a fixed beam of 
length/ currying a concentrated load W at a 
point B, at a distance a from end A. In this 
case, the load on the beam is not symmetri
cally applied about its centre, therefore MA 
will not be equal to Mc. 

The bending moment diagram for Mx 
is shown by ABC with maximum bending 
moment at Band equal to Wab/1. 

The bending moment diagram for 
Mx' (due to fixing couples is shown by 
AA'C'C) 

Area, Wah I JiVab 
a=-l-X2=-2- ... (i) 

Area, a'=( MAiMc) z ... (ii) 

or ( MA!Mc) I= - ~ab 

a 

)I 

w 
X 

8 X .. /. b e 
(a) 

To determine ax, let us divide the area a into two triangles i.e., ABB' and BB'C. 

Moment of a about the end A 

and 

__ Wab a ( 2a , Wab b ( + b) 
ax - -l- x2 3/+-/-x2 a 3 

_ 2Wa3b + Wab2 (3a+b) 
- 61 61 

Wab (2a+b) . +b 1 = 61 smce a = 

a'x'= (MA+ 2Mc) 
1
; 

But a'x'= -ax 

(MA + 2Mc) !:.._ __ Wab (2a + b) 
6 - 6 

From equations (iii) and (iv), we get 

fixin~ couple, 

JiVab 
MA+Mc = --z-

Wab 
MA+2Mc=- - 1-2 - (2a+b) 

Mc= - Wab (2a+b)+ w.
1
ab = - Wab ( 2a+b _ 1 ) . . 12 . ! I 

MC 

... (iii) 

... (iv) 



iiIXEb AND CONTINUOUS. BEAMS 

Wa2b =--z-2-

Fixing couple, MA=- Wab (2a+b)+ 2Wa
2
b 

/2 /2 

=- Wab (2a+b-2a)= - Wab2 
/2 /2 
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In this case b>a, therefore MA> Mc (numerically) the unbalanced couple (M..t-Mc) 
will be balanced by a reaction R, upwards at A and downwards at C 

Wab RXl=MA-Mc=--12-(b-a) 

Wab 
R=-~ (b-a) 

R..t'= Wb , and Re'= Wa 
I I 

(for the beam simply supported at the ends). The SF diagram is shown by Fig. 12·4 (c) by the 
diagram AA'B'BB"C'C. 

The bending moment diagram for the fixed beam is shown by Fig. (b), marked by 
AA' P1 B P2 C'C, with P1 and P2 as points of contrafiexure. 

Reactions at the ends 

, Wb Wab 
RA=RA + R=-

1
-+ 13 (b - a) 

Wb/2 + Wab (b-a) 
/3 

= 
Wb2 (b+3a) 

/3 

Rc=Rc'- R= Wa - Wab (b-a) 
/ /3 

Wa Wa2 =-,- [12-b (b-a)]=Ja (a+3b) 

For slope and deflection consider a section X-X in the portion BC at a distance of x 
from the end A. 

Wab 2 

BM at the section = RA x- - 12- -W (x-a) 

EI d2y _ Wb2 (b+3a)x Wab2 _ W ( _ ) 
dx2 - /3 12 x a 

Integrating the equation (l) 

EI dy 
dx 

Wb2 (b+ 3a)x2 Wab2 W(x-a)2 
213 --12-. x-

2 
+c1 

... (l) 



t =0 at x=O, :. C1=0 (constant of integration) 

El dy _ Wb2 (b+3a)x2 Wab2x 
dx - 213 - z2 

Integrating the equation (2) 

W(x-a)2 

2 

Wb2 (b + 3a)x3 Wab2x 2 W(x-a)s 
Ely= 6/3 - 21-2 - - 6 +C2 

... (2) 

( const.~nt. o.f in,t~gnitj9.:q) 
y=O at x=O, So, C2=0 

Then 
Wb2 (h+ 3a)x3 Wab2x2 

Ely= 6l3 -- - 212 
W(x-a) 3 

6 
... (3) 

For the deflection to be maximum, slope has to be zero at that particular section in a 
beam. Let us determine the section where deflection is m_aximum. 

Putting 

or 

or 

. ~ubstitu.ting 

d Wb 2 Wab2 
EI _L=O=-- (b+ 3a)x2

--- (x) 
dx 2/3 z2 

W(x-a) 2 

2 

(b3+3ab2)x2 -2alb2x-l3 (x2-2ax+ a2)=0 

x 2(bs+ 3ab2- /3} + x( 2al3 - 2alb2
)-a2

/
3 = 0 

x2(-a3-3a 2b'l+2al {/2-b2)x- a2/3=0 

-xZ(a+3b)+2l (a + 2b)x -/3= 0 

x2 (a+3b)-2l (a + 2b)x+I3 = 0 

X 
21 (a+ 2b)-..f [21 (a+2b)]2-4l3 (a+3b) 

2(a+ 3b) ·- - ·- -

as l= a.J.-b 

l (a+ 2b)-/ 4 a2+4ab+4b2 - a2- ab- 3ab- 3b2 

- (a+3b) 

l (a +2b)- lb 
- (a+3t,) 

J2 

al+2lb-lb 
a+3b 

(a+b) I 
a_+3b a+3b 

/2 
x a+3b , we get 

Wb2(b+ 3a) /6 Wab2 /4 
EI y1n ... = 613 X (a+3b)3 - ~x (q.+3b)2 

- : ( a~
2

3b -a r 
_ _ '!"b2(b+3a) /3 _ Wabi/2 

_ W ( b2-ab )a 
- 6 (a +3b)3 2 (a+ 3b)2 6 · a+3b , 

WbHb+ 3q)(q,+ b)3- 3Wab2 (q + b)2 (a+ 3b)- W(b2-ab)B 
- 6 (a+3b)S 
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or 

_-1!'.:_[ - 4b3a3-12a2b4 J 
- 6 (a+3b)S . 

--~ W (a+3b)(b3a2
) 2 WbSa2 

- 3 (a+3b)3 =-3 (a+3b)2 

2 Wa2b3 

Ymaz=-3 (a+3b)2 EI 

Deflection under the load W can be obtained by taking x=a in equation (3) 

, Wb2(b+3a)a3 Wab2a2 

Ely.= 6/a . - 212 

Wa3b2(b+3a)-3U Wa3b 2) 

- 6/B 

Wa3b2 Wa3b3 

= -6/S [-2b] = - ~ 

waaba (' d' . d d d fl . ) ye= - 313 EI Ill 1cating ownwar e ect1on 

Points of Inflexion 

portion AB. B.M. at any section in p ortion AB 

Wb2(b+ 3a)x Wab2 
M= ts - --,2- = 0 

x=b~
3
a' distance of the point of contraflexure from end A. 

Portion BC. B.M. at any section, 

M=Wb2(~s+3a)x - ~~b2 - W(x-a)= O 

Wb2(b+3a)x- W!ab2 - W.(x - a)/3= 0 

(bs+3ab2)x- (a + b) ab2-(x-a)/3 = 0 

(bs+ 3ab2-/3j-x= ab2(a+b )-a/3 

(-as-3a2b)x=a[b2/-/3] since l=a+b 

l[b2-l2] l[l2-b2] _ l(a+2{!) 
x= -a2.- 3ab= a(a+3b) - a+3b 

distance of point of cootraflexure from end A. 

Example 12·S-l. A built in beam of 6 m span carries a concentrated load of 60 kN 
at a distance of 2 metres from the left ha~d end Find the position and amount of maximum 
deflection. E=200 kN/mm2, I= 13600 cm4

• 

Solu:tion. 

Length of the beam, 1=6 ill 
Distances a= 2 ill 

b=4m 



598 STRENGTH OF MATEltl.\LS 

Central loaci W=60 kN 

For y,nall>, 

E=200 X 108 kN/m2 I-13600X 10-s m' 

E/=200X L3600x 10-a kNm11=27200 kNm2 

p 
x= a+3b from left hand end 

- 6B = 3]64 =2'57 ffi 
2+3x4 

2 W a2b3 2 • 60 X 22 X 43 

Yma~=-3 (a+3b)2El=-3X (2+3 X4)2 x27200 

2 60X4X64 . 
=- 3X 14Xl4X27200 =- OOI92 m 

=-1'92 mm 

Exercise 12'5-l A fixed beam of length 7 metres carries a concentrated load of 3 tonnes 
at a distance of 3 metres from left hand end. Determine (i) support moments (ii) position of 
the points of contraflexure from left hand end (iii) deflection under the load. Given 
E/=1600 T-m2. 

[Ans. (i) - 2'938 Tm, -2'122 Tm (ii) 1'615 m, 5'133 m 
from left hand end (iii) -3'15 mm] 

12'6, ALTERNATE METHOD FOR DETERMINING SUPPORT-MOMENTS, SLOPE 
AND DEFLECTIONS FOR FIXED BEAMS 

To determine support moments and deflecti@ns etc., for fixed beams carrying any type 
of loading it is not necessary to draw M~ and M,,' diagrams as shown in articles 12·1. One 
can assume the support moments and support reactions and determine their values using the 
end conditions. Further the slope and deflection at any section of the beam can be determined. 
Consider the case of a fixed beam of length I carrying an eccentric load W, at a distance of a 
from the left hand end A as shown in the Fig. 12'5. Say the support moments at A and C 
are Mc and MA and reaction are R.,.,, and Re respectively. 

or 

' . 
I 

:! I 

:. :.l' 

Consider a section X-X at a distance of x from the end A. 

B.M. at the section, M= MA+RA.X-W(x-a) 

EI day = MA+RAx-W(x-a) 
dx3 

Integrating the equation (1), 
dy x2 

EI dx = MAx+ RA 2 
W(x-a)2 

---
2
- - +Ci 

where C1 is the constant of integration. 

Now at x = O, fixed end A, ~~ = 0 

0= 0+0-(omitted term)+C1 
C1=0 

.• ,(1) 

Fig. 12'5 



FIXED AND CONTINUOUS BEAMS 

So 

Integrating the equation (2), 
x2 x3 W 

Ely=MA. 2+RA. 6-6 (x - a)3+C2 

where C2 is the constant of integration 

at x=O, fixed end A, y=O 

O=O+O-(omitted term)+C2 or C2= 0 

So 
x2 xs W . 

Ely= MA 2 +RA 6 - 6 (x - a)3 

Now at x = l, fixed end B, ~~ = 0 and y = O 

Substituting in equations (2) and (3), we get 

J2 w 
O=M,1./+RA. 2 -2b2 

as (l-a) = b 
12 1s Wbs 

O=MA. 2+RA 6 - -6-

Solving the equation (4) and (5), we get 
Wab2 Wb2(b-j-3a) 

M11 = - -12-, R A= /3 

This is what we have obtained in article 12'5. Equation (1) now becomes 

EI d2y = _Wab2 +Wb2(b+3a) -W( _ ) 
dx2 /2 zs x x a 
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... (2) 

. .. (3) 

... (4) 

... (5) 

Successive integration of this equation will yield the equation for slope and then for 
deflection and we can derive expressions for yma• and yn etc. 

Example 12·6-t. A fixed beam 8 m long carries a uniformly distributed load of 
2 tonnes/metre run over 4 m length starting from left hand end and a concentrated load of 
4 tonnes at a distance of 6 m from the left hand end. Determine (i) support moments, 
(ii) deflection at the centre of the beam. El = 1500 Tm2 • 

Solution. Fig. 12'6 shows a fixed 
beam ABCD carrying uniformly distributed 
load of 2T /m from A to B, 4 m length and 4 T 
load at C, 6 m from end A. Let us assume 
that RA and Rn are the support reactions and 
M A and Mn are the support moments. 
Taking the origtn at D and x positive towards 
left, consider a section X-X at a distance of 
x from the end D, in the portion BA . 

B.M. at the section, 
M=Mn+Rn xx-4(x-2) 

w 
- - (x-4)2 where w= 2T/m 

6 

' w: 2T/m 

X 

X 
B 

ioT 

x--~ 

Fig. 12·~ 
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oi: 

di: 
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d2y 
EI dx£ =MD+Rv.x-4(x-2)-(x-4)2 

Integrating the equation (1), we get 

So 

dy x2 (x-4)3 

EI dx = Mv .x+ RD.2 -2(x-2)2 
- 3 +C1 

x=O, 1x = 0 at fixed end D 

O= O+ O+omitted terms+c1 

C1=0 

EI dy M + R ~ - 2(x-2)2- (x-4)3 
dx= D. X D. 2 3 

Integrating the equation (2), we get 
x2 . xs 2 (x-4)' 

Ely=MD - - +RD - ·---(x-2)3---+C2 2 6 3 12 

But at x=O, y=O, at fixed end D 
0 = 0+0-omitted terms+c2 (constant of inegration) 

C2=0 

Ely=MiJ xz +Rv _x:__l.._(x-2)3_(x-4)
4 

. 2 6 3 12 

Now at .t=8 fn, a t ·end A, -~~ = 0, y=O 

Substituting in equations (2) and (3), we get 
, 64 

0 = 8 Mv+32 RD-72-3 

0 = 32 Mv + 
512 

RD-144-
64 

6 3 

FMm equations (4) and (5), 

Equation for 13.M. 

S6 

Rv = 4'875 Tonnes 
Mv=-7'833 Tonne-metres 
RA = 4x2+4- 4'875 = 7'125 Tonnes · 

M= MD+RD.x-4(x-2)-(x-4)2 

= -7'833+4'875 x-4(x-2)-(x-4)2 

at x = 8 m, M = MA 

Af,4 = - 7'833 + 4'875X 8-4(6)-(8-4)2 
= - 7'833+ 39-24-16 
= - 8'833 T-m 

So the support moments are MA=-r833 T-m and M.p = -7'83~ Tm 

... (1) 

... (2) 

... (3) 

... (4) 

... (5) 
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To determine the deflection at the centre, x = 4 m from equation (3J 

42 43 2 
Eiyc=MD.2 +RD. 6 - 3 (2)3-0 

Elyc =-7'833 X 8+4'875 X ~
4 

-
1
3
6 

= -62"664+52-5"333 =- J 5·997 

15'997 
Ye= - 1500 =-0'0106 m=-10'6 mm 

601 

Exercise 12'6-l. A fixed beom 6 m long carries point loads of 40 kN each at a dis
tance of 2 m from each end. Determine support reactions, support moments and deflection at 
the centre of the beam E=205 kN/mm2, / = 3200 cm4

• 

· [Ans. 40 kN each; -53'333 kNm at both the end; 11'!8 mm] 

12'7, EFFECT OF SINKING OF SUPPORT IN A FIXED BEAM 

If one of the supports of a fixed beam 
sinks, its effect on support reactions and 
support moments can be calculated. 

Let us consider a fixed beam of length 
/ and flexural rigidity El as shown in 
Fig. 12·7 (a). Say the support B sinks by 8 
below the level of support A. 

We know that 
d4y 

EI dx""i =rate of loading 

=0 (in this case) 

EI ~;a =C1 (constant of integration) 

at x=O, say reaction is RA 
dSy 

EI dx3 = RA ... (1) 

Integrating further 

d2y 
EI dx2 =RA.x+C2 

Say at!x=O, end A, support moment is MA 

C2 = MA 

d2y - . . 
El dx2 - RA.x+MA 

Integrating again 

____ e __ __ 

A B ~-.i:::..:::-:..=-:..::-:.:-:.:-:..:-~ & 
(a) 

J_ 
12EI 6 ,....~ ..,...,, , ..... ,-.-, ...... , ..-, .,...,, ,....,.,~, .....,..;? 

~ t,,,,,,,,,,,_d 
T

1 

S.F.Oiagram I_J_ 
(b)~ · GEio 

j ~+T 
6t.i6 Vu f -e;- B.M.Oiogram 

( C) 

Fig. 12'7 

... (2) 

... (3) 
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or 
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at x= O, :7x = 0, slope is zero at fixed encl 

or 

So 
dy x 2 

EI dx = RA. z+MA.X 

Integrating · again 

x3 x2 
Ely= RA y+MA 2+C4 

at x= O y= O, 

O= o+o+c1 

Therefore 

But at the end B, y= - 8 (sinking of the support downwards) 

/3 /2 
-EH=R A. y +MA . 2 

Moreover at x = l, :~ =0, at the fixed end B 

/2 
O= R A. -i + MA.I 

From equation (5) 

For equilibrium, 

2MA 
RA= - -,-

2MA /3 /2 MA.[2 
- EIS=--1- x 6 -t-MA. i=+ - 6-

MA = _6 EI 8 
/2 

RA=- 2MA - + I2EJ 8 
l - /3 

Rs= - R A= - 12EI8 
/3 

Using equation (3) we can find the support moment at end B i.e., at x=I 

M = 12EI8 XI - 6EI8 - +6E/8 
B /3 /2 -- /2 

... (4) 

... (5) 

... (6) 

Fig. 12·7 (b) shows the SF. diagram and 12'7(c) shows the B.M. diagram for the beam 
with one support sinked. 

If a fixed beam carrying a central load W has one support lower than the other by 8, 
WI 6Ef8 . . 

then the support moment at the hi~hcr ~oc;I. will be - T - -
12
- and at the; low~r end 1t will 

\>e _ _ WI + 6EI8 
~ ,~ . 
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Example 12·1-1. A beam of 7 m span is built in at 60th the ends. A uniformly 
distributed load of 20 kN per metre run is placed on the beam, the level of right hand support 
sinks by 1 cm below that of the left hand end. Find the support reactions, support moments 
and deflection at the centre. £ = 208 kN/mm2, / = 4520 cm4• 

Solution. Fig. 12"8 shows a fixed beam of length 7 m, with uniformly distributed 
load of 20 kN/m throughout its length. 

w : 20 kN/m B 
A X \ Ms _L 

& = l e m 
MA x-jX ~ 

RA 
I· 

RB 
7 m 

Fig. 12·8 

The support B sinks by 8, 

8=1 cm= ·Ot m 

£ = 208 kN/mm2 = 208 x 106 kN/ m2 

/ = 4520 cm4=4520 x io- s m4 

E/=208 X4520 x 10- 2= 208 X45"2 kNm2 

If the beam support does not sink, then 

w/2 20 X72 

MA'= MB'=- u = - - 12- = -8 1"666 kNm 

R A'= R o'= ~I = 
20

;
1 

= 70 kN 

After the sinking of the support B 

Support moment, 

Reactioni;:, 

M _ _ w/2 6EI 8 
A - 12 - 12 

=-81.666 _ 6 X 208 X 45"2_X ·ot 
49 

= - 81"666- 11"512= - 93'178 kNm 

w/2 6EI 8 
Mo = - 12 +~= -8 1"666-1-11'512 

=-70·154 kNm 

R 
_ !.1!.!_ 12 El 8 

A - 2 -\- /3 

= 70+ l2 X208X 45'2 X'0l 
7 x 7 x 7 

= 70+ 3·29 kN = 73'29 kN 
RB = 70-:3"29 = 66'71 kN 



or 

Consider a section X-X at a distance of x from the end A 
wx2 

B.M. at the section, M=M,1+R,1.x--2-

20x2 

EI d
2
Y =-93 '178+73'29 

dx2 
x--

2 

Integrating equation (1) 

EI t =-93'178 x+73'29 
x2 10x3 

--- - +o 2 3 

STRENGTH OF MA TERIA-LS 

... (1) 

Integrating further 

( constant or' integration is zero because 

Ely=-93'118 E-+73'29 £.__ lOx4 + o 
2 6 12 

dy = Oat x=o) 
dx 

(constant of integration is zero because y=O at x=O) 

At y= 3"5 m 

Elye=-93'178 X \
52 

+ 73·2;x 3·
53 

=-570'715+523'718-125'052 

=-172'049 

Deflection at the centre, 
172'049 

Ye= ·-208 X 45.2 =-0'0183 m 

=-1"83 cm 

10 X 3'54 

12 

Exercise 12 7-1. A fixed beam 4 m span is built in at both the ends. A concentrated 
load 6 Tonnes is placed on the middle of the beam, the level of the right hand support is 6 mm 
below the level of left hand support. Find support reactions, support moments and deflection 
at the centre of the beam . . Given E=2 x 107 Tonnes/m2

, 1= '6 x 10-4 m4 

[Ans. 4'35 Tonnes, 1'65 Tonnes; -5·7 T-m, - 0·3 Tm; - 4'67 mm] 

12'8. CONTINUOUS BEAMS 

The analysis of continuous beams is similar to that of fixed beams. Each span of a 
continuous beam is considered separately and M. diagram is plotted i.e., B.M. diagram con
sidering the ends of each span as simply supported. Upon these M.: diagrams of all the 
spans (though considered separately), Mx' diagram for support moments is superimposed. 
Mx' diagram for each span is of opposite sign to Mx diagram. As soon as the support 
moments are evaluated, the resultant bending moment diagram Mx+ Mx' is completed for 
whole of the beam. Considering the bending moment at any section i.e., M~+ Mx', is deter
mined. Then successive integrations of bending moment equation give slope and deflection at 
any section. 

In the case of fixed beams we considered slope at the fixed ends to be zero but in the 
case of continuous beams, slopes at the supports are not necessarily zero. 

To obtain support moment we will use the Clapeyron's theorem of 3 moments, which 
gives a relationship between the support moments at 3 consecutive supports of a continuous 
beam. 



FIXED AND CONTINUOUS BEAMS 60§ 

Let us consider first :the continuous beams carrying oniy the uniformly distributed 
loads . Consider two consecutive spans AB and BC of a continuous beam, of lengths /1 and l2 
and carrying uniformly distributed load w1 and w2 per unit length respectively as shown in 
Fig. 12'9. 

Fig. 12·9 

Say the support moments at A , B and C are MA, Ms and Mc respectively, these 
support moments are of negative sign. 

Span BA. When this span is considered independently, there will be reaction at 

h d W1/1 d h t e supports A an B, equal to 2 an maximum bending moment will occur at t e centre, 

equal to wt12 
• The B.M. diagram .Ma:. will be a parabola as shown. Taking the origin at 

B and x positive towards left 

M h , M W1lX W1X
2 

) B. . at t e section, ., = -
2
- - ·-

2 
- (positive bending moment 

M~ is shown by the line ab on the diagram 12·9 

B.M. at the section due to fixing couples, 

M ' - M +(MA-MB) 
.. - B I X 

1 

(negati\•e bending mom001t shown by cb on the Fig.) 

Resultant bending moment at the section= M,. - M..' 

or EI d2
y =w1l1x _ w1x2 

- MB -(MA-MB ) x 
dx2 2 2 11 

... (1) 

Integrating the equation (1) 

EI 1x =~1~x2 _w;(- Mo.x -( MAfiMn ) ·;2 +C1 ... (2) 

(C1 is constant of integrati9n) 

At x=O i.e., at the end B, ~~ = +iB 

So C1= EI iB 

EI t = W1~X2 - w~t +M».x +( MA4MB) ~2 +EI iB ... (2) 



or 
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Integrating equation (2) 

So 

EI = w1l1xs - w1x4 + M x2 
y )2 24 B 2 

+ (MA4Ms) x ~
3 

+Elin . x+C2 (constant of integration) 

at x=O, y=O at the end B 
O=O-o-o+o+c2 

C2=0 

Ely= w1Zixs - W1X4 + Mnx2 + (MA-MB) . x6s +EI is. x 
12 24 2 11 

at x=/1 y=O i.e., at the end A 

O=W1/i4_ W1f14 +M l12 +(MA-MB) /13 +EI. I (3) 
12 24 8 2 /

1 
· X 6 zn . 1 . .. 

O= + W1/14 +M _!l_ +M .!1._ __ Ms.le_ +EI. I 24 B • 2 A • 6 6 lB . 1 

... (4) 

Span BC. When this span is also considered independently, there will be reactions at 

Band C equal to wt" and B.M. diagram will be parabolic with maximum bending moment 

at the centre and equal to wf22 
. Taking the origin at B and x positive towards right, 

consider a section X-X at a distance of x from the end B. 

or 

h . +W2l2 W2X2
2 

( , • B M ) B.M. M,. at t e section= 2 x- - 2- pos1t1ve . . 

M/ at the section, i.e., bending moment due to support moments Ms and M c, 

M '= M + (Me-Mn) 
X s 12 • X (negative B.M.) 

Bending moment Mx is sbown by de and Mx' is shown by f e in the diagram 
Resultant bending moment= Mx - Mx' 

EI !!2 _ W2l2X _ W2X22 +M + (Mc-Mn) x 
dx2 - 2 2 B /2 

Integrating equation (5) 

El dy =w~l2x 2 
_ w2x2

3 +M + (Mc-Ms) ~+C 
dx 2 x 2 2x3 s.x /

2 
2 3 

... (5) 

where C3 is the constant of integration 
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at the end B, x = O, t = iB' (say) 

So El. is'=C3 

El dy _ w2l2x2 
_ w2xl_ +Mn.x 

dx - 4 6 

+ 
(Mc-Mn) ~+EI., 

/2 X 2 .ln ... (6) 

Integrating the equation (6) also 

Ely= w2l2~~- W2X
4 

+Mn x2 

12 24 . 2 

(Mc - Mn) x 3 +El. I +c + 12 x 6 lB X 4 ... (7) 

C4 = 0 as at x=O y=O 

Moreover at x=/2, i.e., end C, y=O 

O= W2l2
4 

_ w2'24 +M f,} 
]2 24 B. 2 + (Mc-Mn) 123 +EI . , I z

2 
X 6 • IB z 

O= ~212_:+ Mn 12 + Mc 12 

24 2 6 
Ms. /2 +EI ., 

6 , l B 

O= w2l2
3 + Ms 12 + Mc 12 +EI in' 

24 3 6 

or ) 
W2 /2

3 

+6Elin'+(2Mn+Mc 12= - 4 - ... (8) 

Adding the equations (4) and (8) 

+ 6EI(ia+ is')-2Ms (l1+l2)+MA l1+ Mc 12 
W1 /i3 W2 /28 

=--4---4- - ... (9) 

But is'= - in as the direction of x has been reversed. In the portion BA we took x 
positive towards left and in the position BC we took x positive towards right. 

Therefore MA. l1+2Mn (!1+l2)+Mc 12 

=-( W
1
/

3 

+ W~/
2
3

) .. . (10) 

This is the well known Clapeyron's theorem for three moments for support moments 
for 3 consecutive supports for a continuous beam carrying uniformly distributed loads. If 
there are n supports for a continuous beam, the two ends being simply supported. Then three 
will be (n- 2) intermediate supports and (n-2) equations will be formed so as to determine the 
support moments at (n- 2) supports. 

Example 12'8-l. A c_ont_inuo us beam of leng!h 2/ is supported over 3 supports with 
span / each. A uniformly d1stnbuted load w per umt length acts throughout the length of the 
continuous beam. Determine support moments, support reactions and maximum deflection 
in the beam. Ef is t4e flexural ri~idit?' of the be~m. 
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X X w 
Solution. Fig. 12· 10 shows a con

tinuous beam ABC of length 2/, span lengths 
AB and BC of I each, carrying a uniformly 
distributed load w per unit length. 

~:rcp:l'.:::o::i::l:O:;n::ca:~ai:.c::n C 
B 

The beam is supported only on two 
spans AB and BC, the support moments at 
A, and B will be zero. 

MA = Mc=O 
Moreover /1 =/2= /, w1= w2= w as given . 
Using the equation N o. (10) 

l ( W1/1
3 W2/l 

MA 1+ 2MB Zi+Z2)+ Mcl2= --4-- -4-

w/3 
In this case 2Mn U+l)=- 2 

w/3 w/2 
Mn= - p;r = --8-

Ra RC e ______ e __ 
X 

Fig, 12·10 

while plotting the Mx diagram for each span, maximum bending moment+w/2/8 occurs at 
the centre of.the spans AB and BC and BM diagram is parabolic as shown. AB'C is the Mx' 
diagram for bending moment due to support moments. The resultant bending moment 
diagram is shown with two points of contraflexure. 

Support reactions. We know the magnitude of support moment MB, therefore 
taking moments of the forces about the point B 

I w/2 • + RA. l-wl . 2 =- 2 i.e., Mn 

R A2= ..!_( wz2 - wz2 )- 3wl 
l 2 8 - 8 

Due to symmetry about the central support B 

3wl 
Rc=RA=-s-

Tot~l load = wl+wl= 2wl 

.· . Reaction, 

Fig. 12· 11 (a) shows the BM diagram for the continuous beam having support moment 
wz2 

MB= --
8
-· 

Conside~ a section X-X at a .distance of x from the end A in the span AB. 

·, .·.·. -SF ~t the section F=+RA- WX (note that upward forces on the left side of the section 
ate positive) 

3w/ 
F=+ -

8
- - wx 

F= + 3wl at x = O 
~ 
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F=- 5wl I g at X = 

F'= -_J_ wJ+-2 wl= +-2.. wl 
8 4 8 

Similarly SF can be calculated in the portion BC. 

A 

0 C 

b 

---- ~ ----<-+!1--w e2 
ab= cd = 8 

/ w£ 2 
BB= - 8 

S.F. Diagram 

(a) 

B .M.Oiagrom 

(b) 

Fig. 12 · 1 l 

Fig. 12·11 (b) shows the SF diagram for the continuous beam. To determine slope and 
deflection Jet us consider only the portion AB, since the beam is symme1rica lly loaded about 
its centre Band deflection curve for BC will be the same as for AB. 

or 

and 

BM at the section wx2 

= RA.X---2-

d2y 3wl wx 2 

El dx2 =-g- x - 2 

Integrating equation (1) two times 

! ! 

dy 3wlx2 wx3 

El dx = -16- - -6- +Ci 

31-dx3 wx4 

EI y= ~-¥+C1 x+ C2 

at x=O, y= O, so C2 = 0 

at x = l, y = O, end B 

wJ4 wJ4 
O= if- i4 +c1 I 

.. ( I ) 

.. . (2) 

... (3) 



6W 

or 

or 

w/s 
Ci=-48 

dy 3wlx2 wx3 w/a 
El -d = - 16 _ __ 6 _ _ 48 

X . 

For the deflection to be maximum, dy/dx = O at the particular section. 

So 

So 

3wlx2 wx3 wl3 

------ - = 0 
16 6 48 

9/.i:2- 8x3 - i 3 = 0 
(x-1) (/2 + /x-8x2)= 0 

x=l 
8xL /x-J2=0 

1+ ,f f2+3'tl2 

x= . lo 
= 0'4215 I 

/+/X 5'744 
16 

Substituting this value iij ~s;iµ,ation (3) 
wl . w w/a 

El ymux= l6 (0 4215 H~- 24 (.0'42151)4
- 48 (0'4215 l) 

= wl' [0'.00468-0'0013-0'008"78] 
= -0"0054 wz• 

0"()054 wl~ c· d" . d d d . ) y,,,a~= - E l m 1catmg own war cflect10n . 

Example 12·8-2. A continuous beam ABCD, 13 metres long simply supported with 
spans AB= 4 ro, BC= 5 m, CD= 4 m carries uniformly di stributed load of 1 ·2 tonnes/metre 
run over AB and CD and J ·6 tonnes/metre run over BC. Determine (I) support reactions, (2) 
support moments. 

petermine the deflection at the centre of the portion BC. 

Given £ = 2100 tonnes/cmi, l = 4.00D cm4.. 

Solution. In this problem 
/
1
= 4 m, /2= 5 m, /3= 4 m 

Rate of load ing 
w1 = 1'2 T/m, w2= 1'6 T/m 

w3= t·2 T/m. 
A /h1a:;l~~c,.'tjp:n::ra.1~it:cd)lD 

Since the continuous beam is sym
metrically loaded about its mid point, the 
support m oments Mn= Mc and at ends of 
~he beam, moments, M A=MD= O. 

Moreover reactions 

RA=RD and Rn= R c 

ab c e f • 2·4 Tm 

e d = 5 Tm 
8.M.Diagram 

Fig. 12·12 

\]sing the theorem of 3 moments for the .spans AB and BC 
M,i = O 

Ro 



) W1/i3 W2/l M..t . !1+ 2Mn (!1+/2 + Mc. 12=- - 4---4-

1·2x 4s 1·ox 53 
Ox 4+ 2MB (4+5)+5 Mc=-

4 4 
18 Mn+ 5 Mc=- 19·2-50=-69·2 

But Ms=Mc (due to symmetrica:l loading about the centre of the continuous beam) 

23 Ms=-69·2 
MB=3·009 T-m = Mc 

To draw the BM diagram, let us find out. 

Maximum BM, Mz for sp-an AC 

= wt12 = 1·2;42 = + 2"4 T-m 

Maximum BM, Mx for span BC 

IV2f22 
=-g- = 

Max-imum BM, M., for sp'an CD 

l '6 X 52 

8 
= + 5 T-m 

1V3/a"· 1 ·2 X 52 --+2·4 T-m =-s-= s 
Fig. 12·12 shows the BM diagram where AB'C'D is the Mx' diagram due to support 

moments and Ab B, B d C, Cf D a-re the Mx diagrams for spans AB, BC and CD respectively. 
The resultant bending mom ent diagra m is shown by positive and negative areas. 

Support reactions. Taking moments of the forces about the point B 

RA X4- 1Vi X '1
2 

=Mn 
2 

1·2x 42 = -3·009 
2 

4 RA- 9'6= 3'009 

RA= l -65 Tonnes = RD 

Tota1 vertical load on beam 
=4X 1·2+5 x t·6 + 4 x 1·2= 17·6 Tonnes 

Reaction, 
. 17'6 - i'65 - I .65 

RB = Rcact1011, Re= - - -
2 

= 7· 15 Tonnes 

To determine the deflection at the centre of the span BC, let us :consider a 
distance of x from the end B, in span BC. 

w.x2 . t ·6A,a 
B.M . at the section = Mn + Rn.x - 2 = -3'009+1· 15 x -

2 
or EI d

2

y-=-3'009 + 7' 15x - o·g x~ 
d >.i2 

Integrating equation ( 1) we get 
dy x2 x3 

EI -=-3·0o9 x+ 7 15 -· - - o·g .: +c 
dx ' 2 J 1 

seetron at, a, 

.. . (i)' 
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dy . 
At the centre of the span BC, dx = 0, because the continuous beam is symmetrically 

loaded about this point. So taking x=2'5 m 
2·52 0'8 x2·5a 

0= - 3'009 x2·5 + 1·i5 x 
2

- -
3 

+c1 
c1=4· 161+1·5225-22·343= -10·653 

Therefore, EI 31:'.-=-3'009 x+1·15 x.:__ o·8 xa -10'653 
dx 2 3 

... (2) 

Integrating equation (2), 
x2 1· 15 x 3 

Ely=-3·009 -
2 
+-6--

0'8 Xx4 

12 
- 10'653x+C2 

C2 = 9 because at x = O, y = O 

So Ely= - 3'009 x 2_ + 7· 15 x
3 

- o·8 x x
4
-10'653 x 

2 6 12 

Maximum deflection occurs at the centre i.e. , at x = 2·5 m 
2·52 7·15x2·53 0'8X2'54 

Elyma,,=- 3·009 x -
2
- + 

6 12 -10'653x25 

= - 9'403 -!- J 9'401 - 2'604-26'632= -19'238 
.E/ = 2100X 104 x40,000X 10-s Tm2 = 8400 Tm2 

19 '238 0'0023 2·3 Y»•u"' - 8400 mm 

Exercise 12'8-l. A continuous beam ABC, 10 m long simply supported over A, Band 
C with AB= 4 m, BC= 6 m carries uniformly distributed load of 12 kN/m over span AB and 
10 kN/m over span BC. Determine the support reactions and support moments. 

[Ans . RA = l4'85 kN, Rn = 69'25 kN, Rc = 23'9 kN, MB=-36'6 kNm) 

Exercise 12·8-2. A continuous beam ABCD of length 3/ supported over 3 equal 
spans, carries uniformly distributed load w per unit length. Determine support reactions and 
support moments. 

[ Ans. 0'4 wl, 1 · 1 wl, 1 · 1 wl, 0·4 wl ; 0, - 7~2 

, - ~~, 0 J 
12"9. THEOREM OF THREE MOMENTS-ANY LOADING 

Let us consider two spans of a conti
nuous beam. Spans AB and BC of lengths 11 

a:iJ.d 12 respectively carrying uniformly distri
buted load and concentrated loads as shown. 
To determine support mom~nts, first of all 
let us construct the Mx diagrams of both the 
spans i.e. the B.M. diagrams considering the 
spans AB and BC independently and ends are 
simply supported. Diagram A a B is the M x 
diagram for span AB and diagram B cd C is 
the Mx diagram for span BC. Say MA, Mn 
and Mc are the moments at the supports A, B 
and C respectively. Diagram AA'B'C'C is the 
Ml ·diagram due to the support moments. 

Fig. 12'13 

Diagram 

L , 
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Consider the span AB, and a sectton at a distf!,nce of x from.end A (i.e., origin at A and x 
positive towards right) · 

or 

or 

or 
where 

or 

or 

B.M. at the section = M x+ M .' 

d2y / 1 , 

EI dxz = M x + M x , multiplying both the sides· by x and integrating 

/1 11 11 

EI I ~~ x dx= j M x x dx+ J M ,i'.xdx 
0 0 0 

/1 /1 11 

E ll X Efx - y \= l M x.X dx+ J M x'.x dx 
0 0 0 

El[(/1 iB - 0)- (0 X iA - 0)]= a1x1+ai'x' 

So 

EI 11 iB=a1 ~'i+ai'x' 
a1 =area of the Mx diagram for span :AB (A a B) 
x1 = distance of C.G . of a1 from the end A 

a / = area of Mgi' diagram (AA'B'B) 

x i'= distance of C.G . of the diagram a1 ' from the end A 

ai'x i'= (MA + 2Mn) r 
/ 12 

E I 11 in= a1 x1+ (MA + 2MB) 6 

El in=~1x1 + (MA + 2Mo) !.l_ 
l1 6 

.. . (1) 

... (2) 

... (3) 

Now consider the span CB, or igin at C and x positive towards left, a section at a dis
tance of x from end C. 

or 

or 
where 

d2 
B.M. at the section, El d~ = M, + Mx' 

Multiplying both the sides by xdx a nd integrating over the length of the span B.C 

/ 1 /t /1 

EI I ~~ X dx = ! M , xdx+ r M x' X dx 
0 0 0 

I: 

E I Ix ~~ - y j= a2x 2+az'x/ 
0 

El[(/2 • iB' - 0) - (0 x in- O)] = a2x 2 + a'x2 ' 

El 12 iB1 = a2x2+ a2'x 2' 

a2 = area of the M x diagram for the span CB (C de B) 
x2 = dista nce of C .G. of a2 from end C 

a2 ' = area of M x' diagram (CC'B'B) 
x~' = distance of C.G. of a2' from the end C 

.. . (4) 
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. - I- I -

Elis'= a2x~ + a2 X2 = a2x2 +(MA+2Ms) 6/2 
12 12 12 

or ... (5) 

Adding the equations ( 4) and (5), 

': f 

El in+ EI in'= a1x'1 + G2X2 + MAl1 + 2MB(l1+ 12) + Msl2 

11 12 6 6 6 . .. (6) 

But slope is= -iri ' because we have taken x positive towards right in span AB and x 
positive towards left in span CB. 

6ari 1 6a2i t So MA/i+2MB(l1+ 12)+ Msl2+--1 - + -
1

- = 0 
1 2 

.. . (1) 

The areas a1 and a2 are positive as per the conventi(;)ns. we have taken, so the support 
moments MA, Ms and Mc will be negative. 

If the span AB carries only the uniformly distributed load w1 per unit length and span 
CB carries only the uniformly distributed load w2 per unit length then 

6a1i 1 -6 X 2_ X / X W1/12 X _!1 X I - W1f18 - /j 
11 - 3 i 8 2 7; - -4- as xi= 2 

6a2i2 6 x 2 x I x w2l22 12 1 w2!2
3 _ 12 -/2- = 3 2 - 8- X 8 X 7; = -4- as X2= 2-

and we obtain 
wJp3 w2 /,i.,3 

MAl1+2Ms(l1+l2)+ Mc l2 =--4 - - 4 
as already derived in article 12·8. 

Example 12·9-1. A continuous beam ABCD, 12 m long supported over spans AB -=BC 
=CD= 4 m, carries a uniformly distributed l'oa'Cl of 3. tonnes/metre run over span AB, a concen
trated load of 4 tonnes at a distance of l m from pomt /3 on support BC and a load of 3 tonnes 
at the centre of the span CD. Determine support moments and draw the B.M. diagram for the 
cantinuous beam. · 

Solution. Fig. 12· 14 shows the conti
nuous beam A'BCD, witli equat spans, span 
AB with a uniformly distributed load of 3T/m, 
span BC with a concentrated load 4T_at a 
distance · of I m from B and span CD with a 
central load of 3 tonnes. 

Let us construct M x diagram for each 
span. 

Span AB. ab, Maximum 0ending 
w/2 3 X42 

moment= -8 =-
8
- =6 Tm 

2 
area a1=6 X4 X 3 = 16 Tm2 

a1i 1=16X2= 32 Tma 

(origin at A and x positive towards right) 
4 X l X3 

SpaaCB.. Mma•, cd= 
4
_ = 3 Tm 

Taking again at C and· x p@sitiNe t0wards left. 

b 

Fig. 12·14 

_ ~)x J, 3 Xlf 1 ) 3 10 
a2x2= 2 -(-2)+ 2 \ 3+ 3 ·=9+ 2 x 3 =14Tms 
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Problem 13·3. A hollow circular shaft is required to transmit 300 metric horse 
power at 200 r.p.m. The maximum torque developed is 1·5 times the mean torque. Deter
mine the external diameter of the shaft if it is double the internal diameter if the maximum 
shear stress is not to exceed 800 kg/cm2

• Given G=820 tonnes/cm2• 

or 

S 1 • M T 300x 4500 = 1074·3 k - t o ut1on. ean torque, moan 
2

n: X
200 

g me re 

Maxmimum torque, 

Say external diameter 

Thus internal diameter 

Polar moment of inertia. 

Now 

Tma:11 = 1·5 Tmea1i= 1611'45 kg-metres=l61145 kg cm 

=Dem 

=O"SD 

J= ..!!.._[ D4- (0·S D)4]= n: X 1SD4 
32 16 x 32 

~ = D~ 2 (q is maximum shear stress) 

100 X l611"45 X l6 X 32 2q 2 X 800 

Shaft diameter, 

15n:D4 =·D= D 

D3= 100 x 1611 '4SX512 = I094.27 
1600x lS x n 

D = 10·3 cm. 

Problem 13·4. A solid bar of a metal of diameter 50 mm and length 200 mm is 
tested under tension. A loa d of 10,000 N produces an extension of 0·0051 mm. When the 
same bar is tested as a shaft, a torque of 4000 Nm produces an angular twist of 1 degree. 
Determine the Young's modulus, shear modulus and Poisson's ratio of the shaft. 

Solution. Diameter of the shaft=SO mm 

Direct stress, 

Change in length, 

Strain, 

Young's modulus, 

Torque, 

f = 4 x IOOOO = 5·093 N/mm2 

n:X50 X50 

Sl= o·co51 mm 

€ - O·OOSl = 2"55 X 10- 5 N/mm2 
- 200 

E 5 ·o93 - 1 ·997 105 N/ 2 
2·55 X 10- 5 - X mm 

T = 4000 Nm= 4 x 106 Nmm 

Polar moment of inertia, 

.. d4 n: X 504 

l = ~= 
32 

=61 '359 X l04 mm4 

Shear modulus, G= Jt where 8= 1; 0 radian 

4 X 106 X200 X 180 
= - 6i:-3s9 x 104 x re o·747 x 10s N/mm2 

:Pojs~c;m'~ ratio 
E 1 ·997 

= ig- I= ;ixo-747 - 1= 1·~37- t = o·337 



tT©RSl0N -~89 

or 

Efficiency = 60% 

Input supplied by shaft= 
500

~.~ 3oo =25 x 105 kg-m 

R.P.M.=200 

Torque on the shaft, 

Say the diameter 

'25 X 105 

T=2 XTCX 200=I989'43 kg-m=l98943 kg-cm 

= dcm 

Maximum shear stress, q=500 kg/cm2 

TC 
T=I6d3 Xq 

Shaft diameter, 

d3= 16 x 198943 =2026'4141 cm3 

TC X 500 

d=12'65 cm. 

-/\.' Problem 13·2. A solid circular steel shaft is transmitting 200 Horse power at 
300 rpm. Determine the diameter of the shaft if the maximum shear stress is not to exceed 
80 N/mm2 and angular twist per metre length of the shaft is not to exceed 1 °. 

G=80,000 'N/mm2 

Solution. H.P. =200 

· Power transmitted =200 x 746 Watts per second 
=200 x 746 Nm per second 

Angular speed, 2X TCX 300 , 
w = 60 = 31 416 rad/second 

Torque, T=200x 746 4749·2 Nm 
31 '416 

=474'92 X 104 Nmm 

(a) Considering the maximum sh~aring stress as the criterion for design 

dB= 16 X474'92 X 104 = 302'34 X }03 
·rrx80 

d = 67'15 mm 
(b) Considering the -maximum angular twist as the criterion for design 

T G0 
rcd4 X 32= - 1-

8 = l O = -2:_ radian 
180 

1= 1 m = lOOO mm 

d4= 32 Tl 
rcGO 

= 32X474'92X l04 X lOOO x 180 = 3464'58 x 104 
-TC X 80000 X TC 

d= 7'672 X 10=76'72 mm 
The diameter of the shaft should not be less than 76'72 mm so as 'to keep the maximum 

~tress and an~ular twist within the limit~. · 
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rt,•, I• ~. ~ .. ) 

Now 

So 

But 

So 

T = 2'r1 X,Ai + 2-r2 X A2 
4 X 106 Nmm=2X 15 X 103 X-r1+ 2.x 7'5 X lQ3 X T2 , 

2000 = 15 T1 +7'5 T2 
0 in cell I =0 in cell 2 

1 
(a1 r1-a19Ti)= 2A

2
G (a2T2- a12"1) 

130 Tl - 60 T2= ~: (160 T2-60 T1) 

A1 = 2 
A2 

I 30 "1 - 60 't'2=320 't'2- l 20 T1 

250,-r1= 3'80 -r2 or, -r1=1'52! -r~ 

Substituting in equation (1), 

15 X 1 '52 T2+7•5' -t2=2000' 

2000 -. = -- ::;:6·&00 N1mm· 2 30'3 r · Shear flow, 

Shear flow, 

100·33 
Shear stress in rectangular part ;= --5-- = 20·06 N/mm2 

' · · .. · I 661' 26 4 N/ S1tear stress 1:tJ. tnangu ar · part= • 2.5 = ·· · mm2 · 

Ex,ercise 13'15-1. A steel &irder is of 
the sectiouts·h.Qwo..in.,F;-iru 13:36. It~ has uni
form thickp.ess of l '2 c,m throughoµt. What 
is the'.a,itowable~torqu~. if=the- ma-x-inwm shear 
stress is not to exceed 300 kg/cD;l.2. What 
will be, tht;:angular twist per metre length of 
the girder.;, What is the stress in the middle 
web<:of1th,ts~,ct;ion G=820 ton~esj.cm2 

1·2.cm ,, 

' 1-2cm 

[Ans. 2073'6 kg-metre, 0 26°, 
sties:dn midµle web is 
zero] 

12cm 12cm 

FigU 3·36 

/ 12 
.cm 

... (1) 

... (2) 

Problepi 13'1. A cirqular shaft· running at 200 rpm transm:it.s1 pCi>;We!r to a crane 
lifting a, load oft5: tonn~s.ah a1speed of 5 metres/second1 If tb.~ effi~i.~ncy of, the gearing system 
of the crane is 60' 0 

/ ~ , determine the diameter of the shN't: if· th~- ma·xiJ;BuDJ· sh.earing stress is 
not to excee<J. 500 kg/cm11

: 
"" ~ a 

Solution. · 
Load lifted, 
Speed of lifting 

Qutput per( tl}jJl~ 

W = 5 tonnes = 5000 kg 

= 5 metres/second 

= ~QOQ X 5 X 60 kg-metp~ 
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where 2-r2 Ai' is the moment due to the shear flow T2 in the middle web 

Total twisting moment, T =T1 +T2 
= 2-r1A 1 +2T2A 2 

687-

... (4) 

For continuity the angular twist per unit length in each cell will be the same. For 
closed thin sections. 

hut in this case shear flo w is changing, so 

0= -1-J -rds 
2AG t 

Say 

For cell I, 

a1 = f ~s for cell l including the web 

a2= f ~s for cell 2 including the web 

rf. ds a12= y-
1
- for the web 

1 
0= 2A1G g(a1 't"1-012't"2) ... (5) 

1 
For cell 2, 0=

2
A

2
G (a2T2-a12T1 ) ... (6) 

From equations (4), (5) and (6) shear flow T1 , T2 and angular twist O can be worked 
out. 

Example 13'15-1. The Fig. 13·35 shows the dimensions of a double-celled cross section 
in the form of a rectangle and a triangle . A torque of 4 kNm is applied ; calculate the shear 
stress in each part and the angle of twist per metre length. G= 82000 N/mm2. 

Say shear flow in rectangular cell = T1 

Shear flow in triangular cell = -r 2 

Area A1 = 1:-0x J00 = 15 x 103 mm2 

Area A2 = ..!22 x 4" 1252-75 2 

2 

= 150 x 100 = 7'5 X 10s mm2 
2 

Line integrals 

150 100 100 150_ 130 
. ai= -5- + -5- + s+T-5-

= 150 + 125 + 125 = 160 
a2 2·5 2·5 2·5 

150 
al2= - = 60 2·5 

---150mm---

r!;:::::===j;::==:::::::;~-. ' .' 
5m r,1 

1oo!l.'m 
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8X 188 
radian/cm length 

=0'1 x 10-2 radian/cm length 
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=0' l radian/metre length= 5·7° per metre length. 

Exercise 13'14-1. A T section with flange 10 cm X l cm and web 19 cm x 0'8 cm is 
subjected to a torque 2000 kg-cm. Find the maximum shear stress and angle of twist per metre 
length. G = 82,0000 kg/cm2 • 

[Ans. 270'78 kg/cm2, 1 '275° per metre length] 

13'15. TORSION OF THIN WALLED MULTI-CELL SECTIONS 

The analysis of thin wailed closed sections can be extended to multi-cell sections. 
Consider a two cell section as shown in the Fig. 13'34. Say the shear flow in cell I is -.1, in 
cell 2 is 't'2 and in the web shear flow is -r3. Now consider the equilibrium of _shear forces at 

Fig. 13·34 

w e b·. 
- ~ 
. '-

1.,-........ ;. 

·.,, 

• I' .. 'j I • ,\-. ;if 

t 
•~ L • o. 

. •' . ' .... . .. ~11- ""' 

the junction of the two cells, ta~i_ng _a small Iength 'M. The comple91entary shear stresses qi, 
q2 and q3 are shown on th~ ~o~g1tu~mal se~t10n~ of length ?i/ ~ach but thicknesses ti, t2 and t

3 
respectively. For the eqmhbrmm m the d1rect10n of the axis of the tube. 

q1t1'M- q2t28l-q9t 8 81= 0 

or ... (1) 

Shear flow -r1 = shear flow 't'2+shear flow -r8• This is equivalent to fluid 'flow dividing 
itself into two streams. 

Moreover shear flow in web, 't'8= 't'1--r2 

Now twisting moment T1 about O due to -r1 flowing in cell I 
- T1= 2 -r1 A1 

where .... · A1 = area of th~ -~ll I 

Twisting moment T2 about 0, due to 't'2 in cell 2 
T~=2't'i(A2+A1')-2-r2A1' 

... (2) 

... (3) 
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In the case of channei section and i sectiofi, 

Torque, T=t GS (b1t13 +b2t:i3+b8ta3) 

Angle of twist per unit lell'gth, 
3([' 

0= 3 

Gf rb; t,a 

i= l 

q= maximum shear stress 
3T 3T 

- , ...,. (b.,...1-t
1
-~-..P-b-

2
t-~2-+-,-b-

3
r-~2.,.....) - -..,,.,3---

G ~bt ft 2 

i=l 

In the case of Angle Section and ·r Section, 

3T 
O= -...,2--- , and 

·GI b, t,a 

i=1 

3T 
q= 3 

I b, 1,2 

i= l 

Example 13'14-l. An I section with flanges 10 c:m X 2 cm and web 28 cm X l cm is 
subjected to a torque T=5 kNm. Find the maximum shear stress and angle of twist per unit 
length. G=80,000 N/mm2• 

Solution. 
Torque 
2 Flanges, 
l Web 

3 

G = 8 X 104 N/mm2 = 8 X 106 N /cm2 
T= 5 .kNm= 5 X 105 N cm 
b= lO .cm, t = 2 cm 

b'=28 cm, t'= 1 cm 

~b,t,2= l0 x 4+I0x 4+28 x 1= 108 cm3 

i=l 

4 

'I,1>11,3 = ,W ,<,8·+:IO X•8 +2£ ·xfl·= i.S8·(;m4 

'i=·l 

3T 3 X 5 X ·to;; 
Maximum shear stres6,~=~3~-~ =- · tdS 

I ·b, t,~ 
i=l 

= 1 ·39 x 104 N/cm2= 139·0 N/mm2 

Angular twist per unit length, 0= JT .. 3 >; 5 x 10
5 

8Xl06 X l 88 G !b, t? 
-i=i 



Exercise i3"13-i. A thin rectangular 
steel section is shown in the Fig. 13·31. Deter
mine the torque if maximum shear stresc; is 
35000 kPa. If the length of the shaft is 2 
metres, find the angular twist. 

G=82000 N/mm2• 

Ans. ·[2 .94 kNm, 1·2°] 
Exercise 13"13-2. A tubular circular 

section of mean radius 50 mm and wall ,thick
;DtlSS 5 mm is subjected .to twisting moment 
·such that maximum ,shear stress developed is 
80 N/mm2• Another tubular square section 
of same wall thickness 5 mm and same cir
cumference as that of circular section is also 
subjected to the same twisting moment. Find 

' 

the maximum shear stress developed in square section. 

STRENGtH OF MNfBRJrKh.; 

:' .. r-·- t 6:;--n r 
:I 10mm I j70mm 

6mm 
~-- ___ :!J 

·1--,oomm --I 
Fig. 13·31 

[Ans. · 101 "86 N/mm8] 

13'14. TORSION OF THIN RECTANGULAR:SEC!I'IONS 

Figure 13·32 shows a thin rectangular 
.section subjected to the torque T. Thickness 
t of the section is small i-n .comparison to its 
wiath ·b. This section ·consists only one 

'boundary. ln this case maximum shear stress 
t occurs at y= ± 2 . 

If ·.0=ar1:gular twist per unit length 
Ji=Torque on the section 

T=! btS GfJ 

Angle of twist per unit len,gth, 

1 3T 
0= G · bt3 

T.hin rect,an,gulor section 

Fig. ·13·32 

?,(I' 
q= maximum shear stress= :I: bt2 

.. . (1) 

... (2) 

These resu1ts ,can be applied ,to sections ·built up of.rectangular strips and having only 
one boundary such as Angle Section, ,/ ,section, T and ..channel section:; as shown in Fig 13'33. 

Fig. 13·~3 
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Angular twist tor the thin box section; 

where 

But 

So 

T J, ds 
e= 4A2 G j-t-

area A = 3aX2a= 6a2 

J:. ds _ 3a + 2a + 2a + 3a _ 10a 
jt t t t t t 

8= T X lOa = 10 Ta = l O T 
4 x (6a2

)
2 

• G t I44a4 Gt 144 Gaat 

0'=8 

32 JOT = Gr. >< 8 l -a4 144 Ga3t 

32 x 144a3 t = 10,; x 81 a4 

= 10n X 81 a= O'SS 
t 32 x 144 a 

... (2) 

Example t3·13-2. A shaft of hollow square section of outer side 48 mm and inner 
side 40 mm is subjected to a twisting moment such that the maximum shear stress developed 
is 200 N/ mm2

• What is the torque acting on the shaft and what is the angular twist if the shaft 
is 1·6 m long. G= 80,000 N/mm2• 

\ . 

Solution. Outer side = 48 mm 

Inner side= 40 mm 
Mean side=44 mm 

Thickness, t= 4 mm 
I I -

Area, A= 44 x44 mm2 

rr -----~-r 
I I 
I I L.4m_m 

Maximum shear stress, 
q = 200 N/mm2 

Shear fl.ow, -r = qX t 
= 200 x 4 = 800 N/mm length 

Torque on the shaft T = 2A-r 

r /j 
L'.: - - _ !JJ 
/-44mm--J 

.. =2x44 x 44 x 800 N mm 
= 1548°8 Nm= J·5488 kNm 

Fig .. 13·30 

8, per unit length 
q ,,:, ds _ 200 .I, ds 

= -2AG :r-t - 2 x 44 X44 x 8 x 104 j T · 

Fig. 13·30 shows a hollow square section; 

3!_= 44 X4= 44 
t 4 

h 
200 x 44 - 0·2s4 10-4 d. 0 per mm lengt = 2 x 44 x 44 x 8 x 104 - x ra 1an 

Length of the shaft 
Angular twist in shaft 

= 1·6 m= l600 mm 
= 0·28 1 x w-4 x 1600 

= 0·04545 radian= 2·6o degree. 

. .r .1 



STRENGTH OF MATERIALS 

Example 13"13-1. A thin walled box section 3a X 2a X t is subjected to a twisting 
moment T. A solid circular section of diameter d is also subjected to the same twisting 
moment. Determine the thicknees of the box section (a) if the maximum shear stress developed 
in box section is the same as that in solid circular section, and d= 3a, and (b) if the stiffness 
for both is the same under the same torque. 

Solution. Fig. 13 ·29 shows the thin walled section 3a x 2a X t and a solid circular 
section of diameter d. 

or 

or 

but 

' 
t ./ 

t 
.. 

t '\ -+- 2a 

' 
3a 

Fig. 13·29 

Torque= T 

Maximum shear stress in circular section, 
16T 

q= - -
1r.d3 

. b . . T 
Shear flow m ox section, -r = 

2
A 

2A = 2 x 3a >-: 2a= l2a2 

taking a>>t. 

Maximum shear stress in box section, 

' T T T T 
q =, = 2At = tXl2a2 = 12a2t 

But q' - q 

16T T 
rrd3 12a2t 

192 a2t = 1r.d3= 1r.(3a)3 

27 1r.a . 
t = 192 = 044a 

Angul ar twist for solid circular shaft ( T) 
T n:d4 

0'= - where J= - -
GJ 32 

d= 3a 

{)' =I...._ X 32 
G n X~l {4

4 ... (1) 
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llT=q. t . lz lls 
=, . (h lls) where lls is the base and· his· the altitude of the · 

triangle shown shaded in the Fig: 13"28. 

llT=, . 28A where llA is the area of the triangle. 
Total torque, T=~T. 21lA = 2,. ~8A= 2.". A. 

A=area enclosed by the centre line of the tube. This is an equation generallyj ·know.01 
as Bredt-Batho formula. 

To determine the angular twist, consider the twist in the small element of peripheral 
length lls and axial length Ill and thickness t as ·.shown -in Fig. 13"28. 

Shear force on the. small element, 
llQ:-T . lls=q . t . lls 

displacement at the edge be or ad=ll (say) 

h . a s ear stram, y=Tt 
llu, strain energy fol"'the small element 

=illQ. ll= (i q.t. lls. ll)= } q.t. lls r 81=$ q . y. t lls. Ill 
q2 = 

20 
X (t ; lls Ill) 

because shear strain, y=-J -

Now 

Substituting for q, 

Shear strain energy, 

Moreover 

Let us take 

T shear flow 
q= 

t thickness 
or 1: = q. t 

llu= ~ xa/ ~ 2G . t 

T Torque -.--- 2A 2 x area enclosed by the centre line of the tube 
ra lls 

llu= 8A2G X ll/. t 

ll/=l, 
T2 lls au for the small element of unit axial length= SA2G x -

1
-

. . 1 h f b y 2 f ds Total stram energy per umt engt o tu e, u= SA 2G 
. t 

Using the Castiglianos' theorem 

Again 

. () au 
angular twist, = ar 

0= Angular.twist per unit.length=_r__ rf. ds 
4A2G 'f t 

T 2A = T ( shear flow) (' 
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13'13. TORSION OF THIN WALLED SECTIONS 

Consider a thin walle.d tube subjected to twisting momeQt. Th_e ,th_ickness of the tube 
need not be uniform along its periphery. Let q is the sl}.ear stress and t is the thickness at any 
point in the boundry . Consider a small element abca 6f1ength ~s··~tfon·g -the -periphery. Say 
the thicknes~ at cd is t1 and_ shear stress at cd is qJ., ~q.e thic!cn,~~~ ~t ~.Q ,i~ t2 p.;d the shear 
stress at ab 1s q2 • There will be complementary shear stresses m the direction· parallel to the 
axis 00'. Say the thickness along the axis remains the samf . Consider a sm~ll length lil 
along the axis. (See Fig. 13'27) 

or 

Fig. 13·27 

Complementary shear stress on surface, a'b'ba = q2 
~ . ..,, . 

Complementary shear stress as surface, c' cdd' = q1 

For equilibrium, qz.t2.'8!-q1t1ol= O 

q2t2 = q1f1 = 't', a constant= seear force per unit lengtl 

The qu~n.tity q.t, a constant is called shear fl.ow 't'. Now con~idey the ~orque ~ue tc 
the shear force oq ·a ·sma!l element of length, 8s. Say the shear stress 1s q and thickness 1st. 

Shear for?~ acting R~ the ~mall element, 

8a =::.8s= q.t;§s (as shown in the Fig. 13·~8) 

Moment of the forc,e 8a at the centre 0 = 8r= h8a 
where his the moment arm of force, 8a about 0. 
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' Initially stretched 
/mem bra.ne 

IZZJ .L · w-ti x ture 

Membr a ne before dtflection 

Re c tangu l or hole 1n 
fixture 

( a ) 

Fig. 13 ·25 

E 

C 

~ 
Stction at 

Deflection contour 
I 1nes 

Membrane ofter deflection 
( b) 

679 

Fig. 13'26 (a) shows fa membrane o any shape stretched initially with tension T, 
subjected to internal pressure p and the membrane is blown up as shown. Initial tension T 
on the element abed is shown in Figs. (a) and (b). Say fslope at the end a is CJ1 and at'b its 
slope is 'I+ ,6oc. Shear stress q is shown perpendicular to)he slope at different points. · 

t ~ 

·.~ 
y ~~xr- B 

'" X 

T 

T T 
b ..__ ____ ..._ ____ ,_ __ X 

(a) 

Fig.13·26 

T 

a 

:r~-o1.;v,--.-~: 
- I I 

o(+D.« 

T 
T 
T 

• I 

The thickness of the rubber membrane, the pressure used and the pretension affect the 
leflections. With the help of travelling microscope, deflection at grid points on the membrane 
.re noted down and deflection contours are plotted. From deflection contours, slope at any 
,oint can be determined. Knowing the results of a circular cross section, the membrane is 
alibrated for a circular ·cross section under given pretension T, internal pressure p and metnp
ane thickQess t. 
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~xa~p~e 13'11-1. A shaft of equilateral tria!1gular section of side 40 mm, is subjected 
to an axial twisting moment T. Determme the magmtude of T if the maximum shear stress 
is not to exceed 100 N/mm2• What will be angular twist in 2 metres length of the shaft? 
G=80,000 N/mm2• 

Solution. 

Side, 

q= IOO N/mm2 

a= 40 mm 

15v3T 
q= 

2a3 
or T= 2asxq 

15¢'3 

2
x ;~~I00 _ 

1
~~~1~

05 
= 4'927 x J05 Nmm 

Angular twist per metre length, 

15 X v3 X4'927 X 105 

80,000 X (40)4 

= 0'0625 x 10- 3 radian/mm length 

= 0'0625 radian/m length 

Angular twist in 2 metres length 

= 0'0625 X2 = 0' 125 radian= 7'162 degrees. 

Exercise 13·11-1. A shaft of equilateral triangular section of the side 6 cm is sub
jected to the torque of 4 X 106 Nmm. Determine (i) maximum shear stress developed 
(ii) angular twist over 1 metre length of the shaft. G= 84,000 N/mm 2 

[Ans. (i) 240'55 N/mm2 (ii) 5'73°] 

13'12. MEMBRANE ANALOGY 

The analysis for the determinatio n of shear stress and angular twist in non-circular 
shafts is quite complicated and involved. In such cases . simple experimental techniques can 
be used for the analysis. Prandtl has introduced membrane analogy for non-circular sections, 
in which a thin rubber sheet initially stretched to a uniform tension is fixed at its edges. The 
area bound by edges is of the shape of the non-circular section. This stretched rubber shee1 
or membrane is subjected to an internal pressure and the membrane is deflected. If the slope~ 
deflections of the membrane are taken at different points, then following observa tions are 
made. ,. 

( 1) Slope of the membrane at any point is proportional to the magnitude of shea1 
stress at that point. 

(2) The direction of shear stress at any point is obtained by drawing a tangent to th< 
deflection contour lines of the membrane at that point or in other words the direction of th< 
shear stress i's ,Perpendicular to that of the slope. 

(3) The twisting moment is numerically equivalent to twice the volume under th, 
memberane i.e., volume under the bulge ACB shown in the Fig. 13·25 (b). Figures abov, 
show a thin rubber stretched under initial tension in a fixture with a rectangular cut out 
Initial tension T on the membrane is large enough to ignore its change when the membran, 
is blown up by a small internal pressure p. ' 
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Example 13'10-1. A shaft of elliptical section with minor axis 2a and major axis 2b 
is subjected to a torque of 2 kNm. If the maximum shear' stress in the· shaft is not to exceed 
80 N/rom2, determine the major and minor axis, if b= I ·5 a. What will be the angular twist 
in a metre length in this shaft under· the given torque? G= 80,000 N/mm2• 

or 

Solution. b= 1 · 5 a 

M . h 2T 2 X 2 X 106 

ax1mum s ear stress, q= na2b = TC X a2 X 1. 5 a 

•-
4 x 106 

= 10'61 x 103, a=22 mm a - TC X 120 

Minor axis = 44 mm 
Major axis = 66 mm 
Angular twist per mm length 

T a2+b2 2 X 106(222+ 332) 

= 6 X -n;a3/J3 = 80,000 X 228 X 333 

0 per metre lenglh = 0' 102 radian=5'89 degrees 

o· L02 x 10-s radian 

Exercise 13'10-1. A shaft of elliptical section ; major axis 6 cm, minor axis 4 cm, 
is subje~ted to an axial tw!stirig ~oment of 200· ~g-metre. What is the maximum stress de
vt!loped· in the section and what 1s the angular twist per metre length G= 400 toi:mesfcm2

. 

[Ans. 1061 1cg/cm2, 17'24°] 

13·i·l. TORSION OF A SHAFT WITH EQUILATERAL TRIANGULAR SECTION' 

Fig. 13 ·24 shows an equilateral triangle 
section of a shaft subjected to the twisting 
moinent T. Say a is tne side of the equilateral 
triangle. Maximum shear stress occurs at 
the centre of the sides i.e., at point D, E and 
Fas shown in the Fig. 

Angular twist per unit length 
15,v3T - Ga• 

Max'imum shear stress, 
l 5./3T 

q= 2a3 

At the corners of the tria'.n'gle i.e., at 
4, B and C shear stress is zero. 

F'ig. 13'24 
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Exampie 13·9-2. A rectanguiar shaft 6 cm X 4 cm made of steel is subjected to a 
!orque of 300 kg-.metre. What is the maximum shear stress developed in the shaft and what 
ts the angular twist per metre length. G= 0·8 x 106 kg/cm2 • Use approximate relationship. 

where 

Solution. 

Torque, 

Longer side, 

Shorter side, 

T=300 kg-m= 3 x 104 kg-cm 

2b=6 cm, 

2a=4 cm, 

b=3cm 

a=2cm 

G=0·8 X 106 kg/cm2 

. T(3b+ 1'8a) 3 X 104(3 X 3+ 1 ·8 X 2) 
Maximum shear stress, q 

8
a2b2 = 8 x 9 x 4 

= 1312'5 kg/cm 2 

Angular twist per cm length 

0 per cm length 

0 per metre length 

= k . a2+b2 T 
16a3b3 x G 

k = 3·645-0'06 X ~ = 3·555 

- 3·555 X (4+ 9) X 3 X 104 - o·A50 10- 2 d" - 16 x 27x8x·8x 106 - v x ra ian 

= 0'050 X 10-2 x 100 radian 

= 0·050 radian= 2'865 degrees'. 

Exercise 13'9-l. A rectangular shaft of sides 60 nirli'x 24J mm made of stee1r is 
subjected to a torque such that the maximum stress . developed is 800 kg/cm 2. What is the 
magnitude of the torque and what will be the angula'.r twi~t in a length of· l( metre of the 
shaft. G= 800 tonnes/cm2. Take values of constants· ffbm' the table. 

[Ans. 71 40 kg-metre, 3'3 degree] 

Exercise 13'9-2. A rectangular shaft of steel 9'6 cm X 6 cm is subjectecl to ' a torque 
such that the angular twist in a length of I metre is 1··5 degree. What is the magnitude of the 
torque and what will be the maximum shear stress developed in tlie ··shaft: 61 == 80,mJOr N/mm2 
use approximate analysis. [Ans. 8' 8 kNm, 291 '76 N/mm2] 

13· to. TORSION OF ELLIPTICAL SECTION SHAFT 

For the elliptical section shaft , the expression·s for maximum shear stress and angular 
twist per unit length are 

2T T T a2+ b2 
q= n·a2b and 6= GJ = 7; X ~ 

Maximum shear stress occurs at the ends of the minor axis as shown in Fig. 13'22. 
i.e., at the points Band D. Fig. 13·23 shows tlie contour lin'es of constant displacement. The 
convex portions of the cross section where displacements in the direction of axis of the shaft 
are positive. Where the surface is depressed, depressions are shown by dotted lines. 
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T a2+ ( 1 ·5)2a 2 T 
- G 16a3 (l .5)3 a3 k G x 16.615 a4 k 

k=3"645-0'06x 1 '5=3'645-0·09=3'555 

T X 3·555 = 1 T 
O=-G-x_1_6_·615 a4 4·674 x Ga' 

If we compare the results of maximum shear stress and angular twist, from two analy
sis, we can find some negligible difference between the two cases . 

The maximum intensity of shear stress q, occurs at the centre of the longer side as 
shown in the Fig. 13'20. Fig. 13'21 shows the distortion of the ends of a shaft of square 
section. 

~ 
2b 

convex 
b 
X ridge'.; concave 

q 

~ 
valleys 

w O r PI n g of ·o square 
section 

Fig. 13·20 Fig. 13· -1 

Exatnple 13"9-1. A 50 mm X 25 mm rectangular steel shaft is subjected to a torque 
of 1 '8 kNm. What is the maximum shear stress developed in the shaft and what is the angular 
twist per unit length. G= 80 GN/m2. 

Solution. 
Longer side, 
Shorter side, 
Torque, 

G=80 GN/m2= 80 X 109 N/m2 = 80 x 10a N/mm2 
2b= 50 mm, b= 25 mm 
2a=25 mm, a= 12'5 mm 
T=1'8 kNm= l'8X 106 Nmm 

T 
Maximum shear stress, q= K2 a2b 

From tables for : = 2, K2= 0'508, K=3 '664 

0'508 X 1 '8 X 106 

q= 12.52 X 25 = 234"08 N/mm2 

Angular twist per unit length, 

T l '8 X 106 

e GKa3b 80 X I03 X3 '664 X12'53 X25 
= 0' 1257 x 10-3 radian per mm length 
= 0'1258 radian/metre length 
= 7·2 degrees per metre length 
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TABLE 13'1 

b/a K K1 K2 

1 2'250 l ' 350 0'600 

1 ·2 2'656 I '518 0'571 

l '5 3'136 )'696 0'541 

2·0 3'664 1'860 0'508 

2·5 3'984 1 '936 0'484 

3·0 4'208 I '970 0'468 

4'0 4'496 1'994 0·443 

s·o 4'656 1'998 0'430 

10·0 4'992 2·000 0'401 

oc 5'328 2·000 0·375 

Expressions for (} and q can be approximately given as follows and one does not need to 
refer to table of constants 

where 

_ T(3b+ 1 '8a) 
q- 8a2b2 

a2+b2 T 
O= k · 16a3b3 X G 

k = ( 3'645-0'06 : ) approximately. 

F or the sake of comparison let us take !l.. = 1 ·5 
a 

From tables K= 3'136, K1 = 1'696, K2 = 0'541. 

T T . T 
Maximum shear stress, q= K2 

02
b = 0'541 X a2 x 1.5 a =0 360 x as 

Angular twist per unit length 
T T T 

e= GKa3b = GX 3'136 X a3 Xl '59- 4'704Ga" 

From approximate analysis 

. _ T(3b + 1 '8a) _ T(3 x 1 ·sa+ I 'Sa) T 
Maximum shear stress, q- 8 2b2 - 8 2 ( ) =0'35 X -a X a X 1 · Sa 2 as 

Angular twist per unit length 
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All non circular sections are distorted under torsion to a greater or lesser degree. For 
sections nearer to circle, these effects of distortion are less marked as in the case of elliptical 
section. 

~he detailed analysis of the torsion of non-circular shafts which includes the warping 
of the sections is beyond the scope of this text book. However the results of the theory deve
loped by St. Venant and Prandtl for the calculation of maximum shear stress and angular twist 
are summarised in this chapter. 

Rectangular Sect~ons 

Torque I=(ll6 
where GJ=Torsional rigidity of the 

· shaft 
0=angular twist per unit 

l~ngth 
J=Ka3 b 

Angular twist, 
T 

O= GKa3 b 

The value of constant K depends upon 

the ratio of !l.__, where 2b is the longer side of 
a 

the rectangular section and 2a is the shorter 
side of the section as shown in Fig. 13'19. 

The values of K for various ratios of _!!._ 
a 

shown in the Table 13'1. 

Ta Maximum shear stress, q= K1-
J 

are 

Fig. 13·19 

where Kl is another constant again depending upon the ratio of !!_. 
a 

or 

where 

q=K1 :a~b = :L . a~ = K2 a~ 

K = K1_ 
z K 

The constants K, K1 , and K2 are shown in Table 13·1 , • . • T 
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Bearing stress in key, J-~ - 2148
'5 - 429·7 kg/cmt -t/2xz - o·sx10 -

Exercise 13'7-J. A shaft of diameter 6 cm is transmitting 20 horse power at 300 
r.p.m. The shaft is connected to a pulley of axial width 12 cm with the help of a key 
14 mm X 1-2 mm (deep). Determine the shear and compressive stresses developed in the key . 
Take I1 H.P.=746 watts per second. [Ans. 9·423 N/mm2, 21'98 N/mm2

] 

13'9. TQR.~lON QF NON-CIRCULAR SHAFTS 

I~ the case of circular shafts, we assumed that sections transverse to the axis of the 
shaft are plane before the application of a twisting moment and remain plane after tlj.e shaft is 
twisted by a twisting moment. Moreover we have proved that volumetric strain in a shaft is 
zero and a circular section remains a circular section of the same original diameter when the 
shaft is subjected to torsion. But when shafts of non-circular seytions are subjected to torsion, 
plane sections before torsion do not remain plane after a twisting moment is applied on them. 
The plane sid~s also do not remain plane and high and low areas exist giving a series of valleys 
and ridges. Fig. 13'18 (a) shows a rectangular shaft with grid lines drawn it. Fig. 13' 18 (b) 
shows the same rectangular shaft after torsion and warping. The distortion of l:l. phine 
surface by the formation of high and low regions is termed as warpin~. 

, , I 

A 8 

0 
C 

13·18 (a) Rectangular shaft be fore torsion 
an.d warpin g 

·~~· ... ~··'· 

13 18 ( b) Rectangul ar shaf t after torsion and 
warping . 

Change of shape 
ot cross sec tion 

( C ) 

warp 1,ng 
( d) 

r1 dge 
( c0 nvex1tY,) 
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13·s. STRESSES DEVELOPED IN KEY 

Shafts transmit power through gears, 
flywheels, pulleys etc. which are keyed to the 
shaft with the help of various types of keys. 
Here we will discuss only rectangular type 
\cey as sh own in the Fig. 13 · 17. The 
breadth and depth of the key are b and t 
respectively and half the key is embedded 
in a keyway provided in the shaft and half 
the key is embedded in the key way provided 
in the hub of the pulley, flywheel, gear etc. 

Say the shaft is transmitting torque T . 
Shaft diameter= D 
Then tangential force or the shear 

force acting on the periphery of the shaft, 
T 2T 

Q= D/2=D ... (1) 

Say the length of the key=/ 
Section of the key subjected to shear force = b X / 

Fig.13 ·17 

Rectangular 
key 

(shown by section GH) 

671 

Shear stress developed in the key= E = 1r1 ... (2) 

Section of the key subjected to compressive force= ~ x / (shown by section GB) 

Bearing stress or compressive stress in key 
Q 2Q 4T 

= tl/2 = y = Dtl 

Same shear force Q acts as a compressive force on faces BG and DH. 

... (3) 

Example 13·1-t. A shaft 5 cm diameter, 1 ·5 metres long is transmitting 15 horse 
power at 200 r.p.m. The shaft is connected to the pulley of axial width JO cm by a key of 
breadth 1 · 2 cm and depth 1 ·o cm. Determine the shear and compressive stresses developed in 
the section of the key. 

Solution. H.P.= 15 
R.P.M. = 200 

Torque on the shaft, T = 15 X 4500 kgm 
2,; X200 

Shaft diameter, 
= 53.714 kg-m=5371'4 kg-cm 

D= 5 cm 
Tangential force on shaft, 

Q= 5371 ·4 214s·5 kg 
2·5 

Width of the key, b = 1 ·2 cm 
Length of the key, I= 10 cm 
Thickness of the key, t = 1 cm 

h k Q 2148.5 -119·05 k ; 2 S ear stress in ey, q= /x.b = lO X 1.4 - ~ cm 
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Then q, at any_ radius r= -i~ X r 

where q=maximum shear stress at R2 

Strain energy for the elementary cylinder 

4r.q2/r3dr 
= GD22 where D2 = 2R2, outer diameter 

Strain ~nergy for the whole shaft, 

Ra 

U= 4nq2/ r 3 d 
GDz2 J r r 

R, 

R: 
= r.q2/ I .3 d·-= rr.q2/ [ R24 - R14 J 

GR22 I I GR22 4 4 
R1 . 

r.q2/ 
= 4GR? CR?- R12)(R22+ R12) 

= :~ (-R
22tf!~ ) [1t/(R22 -R12)] 

q2 R22+R12 = 
40 

X R 2 X Volume of the shaft 
2 

I 

Example 13"7-1 . A solid circular steel shaft of diameter 50 mm and length 1 metre 
is subjected to a twisting moment of 5000 Nm. Determine the strain energy absorbed by the 
shaft. 

G for steel=78400 N/mm2 

Solution. Maximum shear stress developed in the shaft 

Volume of the shaft 

16 T 16 X 5000 X 1000 
q= -,,.ds = r. X (50)S = 293"718 N/m.m2 

=: (50)2 X 1000 = 1963500 mms 

·=1963'5 X 10s mms 
q2 

Strain energy absorbed, U= 20 XVolume of the shaft 

I ' (203'718)3 

. = 
2
x 78400 X I963'5X 103 Nmm = 267'554 Nm 

., 
• ~ • I 

Exercise 13'7-1. A hollow circular steel shaft of outside diameter 40 mm and inside 
diameter 20 mm, length 1200 mm is subjected to ~ twisting moment so that the maximum 
stress developed in the shaft is 150 N/mm2

• Determme the shear strain energy developed in the 
shaft. q = 78400 N/mm2 

~' 1 ' . [Ans. 1'01'43 Nm] 
! , I 
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Equivalent twisting rilomen't, 

T e= .f M2-t--T2·= ,/ 102 +33"422= 34'88 kNm 

(ii) Maximum principal stress, 

32 M. = 32 X 22·44 X 1000 X 1000 = 39.
19 

N/ 2 
Pi= Ttd3 • n X 180 x 180 x 180 ,_ mm 

(iii) Maximum most shear stress, 

16 Te 16x34'88 X lOOO x 1000 
q,,,.x= nd3 = nX180XI80 X 180 = 3o·46 N/mm2 

Exercise 13'6-l. A solid shaft of diameter d is subjected to a bending moment 
M = 15 kNm and a twisting moment T = 25 kNm. What is the minimum diameter of the 
shaft if the shear stress is not to exceed 160 N/mm2 and direct stress is not to exceed 
200 N/mm2

• [Ans. 97'6 mm] 

13·7. TORSIONAL RESILIENCE OF SHAFTS 

Consider a circular shaft of diameter 
D and length. l subjected to twisting moment. 

where 

. q'2 
Strain energy per unit volume= -

2G 

q' = shear stress 

G= modulus of rigidity 

Now consider an elementary cylinder 
at radius r and radial thickness dr and length 
/, as shown in Fig. 13' l 6. 

Shear stress at any radius, 

where q is th~ maximum shear stress. 

q,.2 2q2,.2 
Strain energy per unit volume= 

20 
= GD

2 

Volume of the elementary cylindet = 2rcr/ dr 

Strain energy for the elementary cylinder 

2q2r2 . 4,;q2/ 
= GD2 X 2i;r I dr= G/)

2 
,.a dr 

Strain energy for the solid shaft, 
R 

= 4nq2/ r .3 - 4•q2/ R' 
U GD2 j , dr- GD2 X 4 

0 

Fig. 13·16 

_ _g:.__ x ( _!:_ D2J ) -· .!t.__ X Volume of the shaft - 4G 4 - 4G 

For a hollow shaft, maximum shear stress occurs at the outer radius. Say R
1 18 the 

inner radius a.nd R2 is the outer radius. 



Maximum principal stress at the section 

nd3 

Pi X I6 = M+ v M2+T2 or 

or n:d3 M + 4M2+T2 

P1X 32 = 2 

The bending moment corresponding to the maximum principal stress is termed as 
Equivalent Bending Moment, Me. 

or M,-M+4XF+T2 

2 

Similarly maximum most shear stress developed at the section 

or 

The twisting momc!nt corresponding to the maximum most shear stress on the surface 
of the shaft is termed as Equivalent Twisting moment, Te 

So 

Example 13'6-1. A solid shaft of diameter 180 mm is transmitting 700 kW at 200 
rpm. It is subjected to a bending moment of 10 kNm. Determine 

(i) Equivalent bending moment and twisting moment 
(ii) Maximum principal stress on the surface of the shaft 
(iii) Maximum most shear stress. 

Solution. 
Power transmitted 
Speed 

Torque on the shaft, 

= 700 kW=700 kNm per second 
= 200 RPM 

200 X2n: 
-

60 
rad/second= 20'914 rad/sec 

700 
T= 20.944 = 33'42 kNm 

Bending moment, M= lO kNm 
(i) Equivalent bending moment, 

M+VM2+T2 
Me = 2 

10+ ,/102+ 33·422 = 22'44 kNm 
- 2 
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Fn, Normal force on inclined piane 

= Q1 sin 0+Q2 cos O (compressive for equilibrium) 
Fn= -qXBCxsin 0-qXAC cos 8. 

Normal stress on the plane AB 

f, 
BC . AC 

,.=-q AB xsm 8-q AB cos 0 

= - q cos 0 sin 0-q sin 0 cos 0= - q sin 20 
NormaLstress is maximum when 0= 45°, 135° 

f 11m ax =-q, +q 

Tangential force on the inclined plane, Ft=Q1 cos f:l-Q2 sin 0. 
If Ji is the tangential stress, then 

BC AC · 
ft=qx AB Xcos 6- q AB sin O= q cos2 0-q sin20 = q cos 28 

Shear stress is maximum when 0=0, 90° ftma-,, = +q-q 
Moreover shear stress is zero when 0=45°, 135°. 
This means that fnm aa;= +q, -q are the principal stresses acting 011 the surface of 

the shaft as shown in Fig. 13·14. 
Principal stresses are+q, -q, 0 at a point on the surface of the shaft 

Principal strains are €1 = -Eq + qE €2= -q _ _g___ E3 ==9._ + !L_=O 
m E mE mE mE 

Volumetric strain, €o=E1+E2+€3 =0. 
This shows that in a shaft subjected to pure torque, there is no change in volume. 

q 

r 
p = + q 

I 

p = - q 
2 

p
1 

, p
2 

are the pri nc, pol 
»tresses 

Fig. 13"14 

(ii) Shafts subjected to twisting mom.ent and bending moment 
taneously. Shafts transmitting power are subjected to bending moments due to belt 
on pulleys, normal force on the gears etc. in 
addition to the twisting moment . Fig. 13 · 15 
shows a portion of a shaft transmitting po"".er, 
subjected to twisting moment T and a bendmg 
moment M. Say the diameter of the shaft is 
d. Maxm. direct stress, f is developed on the 
surface of the shaft and a maximum shelir 
stress q is also developed on the surface of the 
shaft due to T. 

32M 16T 
f = -r;d3 aud q= ---;aa 

M M 

\ 
\' _11 ___ _ 

.,, I ~--
Fig. 13.15 

- f 

I 

shnul
tensions 

1 
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(a) The magnitude of T if the maximum stress in steel is not to exceed 90 N/mm2• 

(b) The maximum shear stress in the aluminium shaft. 

Show that the shear strain at a point is linearly proportional to its distance from the 
centre of the shaft. 

Given Gstee1=3"1 Galuminium 

[Ans. (a) 12"087 kNm (b) 4g·3 N/mm2l 

t3·6. STRESSES IN SHAFTS SUBJECTED TO TORQUE 

(i) Shaft Subjected to Twisting Moment only. When a shaft is subjected to pure 
torsion i.e., only to the twisting moment, maximum shear stress is developed on the surface on 

q 
----A 

q l[Z]t,pl,m,nta,y 
B --- C s hear st ress· q . 
complementary 
:;hear stres s 

~0 

a, sio 0 

Fig. 13·!3 

the shaft as shown in Figure 13 · 13, where q is the maxi mum shear stress. The longitudinal 
shear stress q shown is the complementary shear stress. 

Consider a small element of unit thickness on the surface of the shaft. The stresses on 
the planes AC and BC are the shear stresses q each. 

Shear force on plane BC, 
Q1=q X BC X 1 

Shear force on plane AC, 

Q2=q X A~ 1, 

Re1?olvin$ these forcel, par~Hel and perpendicular to the inclined plane A.8, 
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(b) Angular twist per unit 
0s Ts 

length= Ts = J._s_G_s 

3'5 X 105 
- - ---- -128 ,r X 80 X I 05 where Gs=80 X 105 N/cm2 

= 1 '09 x 10-4 radian=0'00623 degree. 

(<;). Wh~n the torque is applied at a centre of the shaft, the torque will be equally 
divided but the nature of the torque in one half portion of the shaft will be opposite to the 
nature of the torque in the other half because the net angular twist between the fixed ends is 
0A+0n=O, or 0A= - 0c,as shown in figure 13·11. 

So, now the torque on steel shaft 

Ts' =l'75 x 10s N cm 

Torque on copper shaft 

Tc'=2'25 X 105 N cm 

Maxm. stress in steel shaft, 
34'815 

qs'= --,--
2 

= 17'407 N/mm2 

Maximum stress in copper shaft, 

~'1%,coppec shaft 
~ __ Ll A _ - . - . - __ B 

TA(n >:' i~ 
< l ' < ( < C > ; '] T 

. L , < I • 

Fig. 13'11 

23'90 
qc'=-

2
- = 11'95 N/mm2 

Exercise 13'5-l. A horizontal shaft 200 cm long, rigidly fixed at both the ends is 
subjected to an axial twisting moment T1 = 30 tonne-cm and T2 = 30 tonne-cm at distance of 80 
and 150 cm from one end. Both the twisting couples are acting in the same direction. 
Determine the end fixing couples in magnitude and direction and find the diameter of the shaft 
if the maximum shearing stress is not to exceed 1000 kg/cm2 • 

Determine also the section where the shaft suffers no angular twist. 
[Ans. 10·5 tonne-cm, 10'5 tonne-cm; 4'63 cm-shaft diameter, 123'07 cm 

from the end from which the distances for moments are given] 

Exercise 13'5-2. A shaft o( 2m length is of different sections as shown in the 
figure 13 · 12. Determine the ratio of the torques in the portions I and II, if the diameter of the 
portion II is 1 ·5 times the diameter of the _. 
portion I. Determine the value of the torque T 
T if the maximum shear stress in the shaft is ,------~ 
ij.~t to ex;ceed 80 N/mm2 and diameter of the 
portion I is 40 mm. 

[ Ans. L!_=!_i 4'063 k Nm 
Tu 81 ' 

Fig. 13'12 

Exercise 13'5-3. A solid circular steel shaft is enclosed in an aluminium hollow shaft 
so as to make a compound shaft. 

The diameter of the steel shaft is 60 mm and the outside diameter of the aluminium 
~haft is 100 mm. This compound shaft is subJected to an axial torque T. Deierrµirw, 
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qs, Maximum shear stress in steel shaft 

16 Ts -n X43 

19"364x 16 
n- x 64 = 1 ·5409 tonnes/cm2 

Maximum shear stress in copper 

Tc 5 20·636 5 . 
= Jc x 2 = 17 n- x 2 =0 966 tonne/cm2 

Example~13· S-3. A solid circular steel shaft is encased in a copper hollow shaft so 
as to make a compound shaft. The diameter of the steel shaft is 8 cm and the outside dia
meter of the copper shaft is 11 cm. The compound shaft of length 200 cm is subjected to an 
axlnl torque of 8 kNm. Determine 

(a) Maximum shear stress in steel and copper 

(b) Angular twist per unit length 

{c) .What will be the maximum stresses developed in the steel and copper if the torque 
acts in the centre of the shaft and both the ends are securely fixed. 

or 

Given G steel= 2 G copper, G steel=80 kN/mm2 

Solution. 

Say 

Torque on the composite shaft. 

=80 kNm=8 x 105 N cm2 

Ts=Torque shared by steel shaft 
Tc=Torque shared by copper shaft 

Ts ls = Tc le 
Gs Js Ge Jc 

but ls=lc in this case and Gs=2Gc 

.I!_= ..!E__ X Js = 2 _I! 
Tc Ge Jc Jc 

Polar moment of inertia, Js = 
3
; (84)= 128 n- cm4 

• • I'\" 

Moment of inertia, Jc=32 (114 -84)=329"53 n- cm4 

So Ts = 2 X 128 n- . = 0- 77? 
Tc 329·53 n-

Ts=o·777 Tc 
T = Ts+Tc 

0·777 T c+ Tc=8 x 105 N cm 

Tc=4;50x 105 N cm and Ts = 3·so x 105 N cm 

(a) Maximum Shear Stress 

In steel shaft, 

ln copper shaft, 

Ts 3·5 X 106 

q,= Js x 4= 128 R X 

=3481·5 N/cm2 or 34.815 N/mm2 

_ Jc 
5
.
5

_ 4·5 x 105 x 5·5 
q.- Jc X - 329"531t 

=7390'72 N/ctn2 or 23·90 N/mQla 
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Angular twist at D, TBX/8 = 1'5615X0'6 
GJ GJ 

Say ee1 represents 9c ex '0625 

and DD1 represents 0v at l '5625 

The position of the section where angular twist is zero can be determined from end A 

( 
'0625 ) 

x=O 6+0·4 
1

.
5625

+ .
0625 

=0·6+0·0t 54 

=0'6 154 m=61'54 cm from end A. 

Fig. 13·9 shows the torque distribution diagram and angular twist variation diagram. 

Example 13'5-2. A composite shaft is made by joining an 80 cm long solid steel shaft 
with 80 cm long hollow copper shaft as shown in the Fig. 13'10. The diameter of the solid shaft 
is 4 cm, while the external and internal diameters of hollow shaft are 5 cm and 3 cm respectively. 
Determine the maximum shear stress developed in steel and copper shaft if the torque T applied 
at the junction is 40 tonne-ems. · 

Given G steel=2 G copper 

Solution. Polar moment of inertia of 
solid shaft, 

Solid steel shaft 

length, 

shaft, 

but 

TC X44 

Js= -- =8rc cm4 

32 
ls=80 cm 

Polar moment of inertia of copper 

Jc= _!!_ (54-34) 
32 

= 17,; cm' 

Angular twist in steel shaft 
8s= 0c, angular twist in copper shaft Fig. 13'10 

Say Ts=Torque shared by steel shaft 
Tc=Torque shared by copper shaft 

Now 

So 

B 

Ts x.J!.. = Tc X I!:_ 
Js Gs Jc Ge 

ls= lc and Gs= 2 Ge 

Ts = Js X Gs =~XZ=~ 
Tc Jc Ge 17 re 17 

16 
Ts = 11 Tc 

Ts+Tc=40 tonne-cm' 

..!§_Tc+Tc= 40 or Tc = 20'636 tonne-ems 
17 

'.{'$=40- 20'63(>= 19'364 tonn~-vtn~ 

:~. ·~ 

copper 
shaft 
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and 100 cm from the end A and are in the anticlockwise direction looking from the end A . 
Determine the end fixing couples in magnitude and direction and calculate the diameter of the 
shaft if the maximum shearing stress is not to exceed 80 N/mm2

• 

where 

, I 

Determine also the section where the shaft suffers no angular twist. 

Solution. 

Say the end fixing couple at A= TA 

end fixing couple at B=Ts 

Torque on the portion CD 

= TA-2'5 kNm 

Torque on the portion DB 

=TA-2·5+4·0 

r,r~;y1 _L 
1& A A ·1. 5625 L: ::1 _ !i~4375· 

Torque distribution r-1-
= 1'5+TA kNm ~ED 

Total angular twist between A and B 

= 01 +02+08 

So 

=0 (as both the ends are fixed) Fig. 13·9 

0= TA. fi + (TA- 2'5)12 + (TA+ l'5) /3 
GJ GJ GJ 

/ 1 = 0'6 m, 12= 0'4 m, 13= 0'6 m 
TA x 0·6+(TA-2·5) x o·4+(T A+ 1 ·5) x 0·6= 0 

1'6 TA-1+0'9= 0 

0·1 
TA=~=+·0625 kNm 

TB= 1'5+ TA = 1'5625 kNm 

Twisting moment in the middle portion CD 

.. ··.:. 

1, ., · . = 0'0625- 2'5=-2'4375 kNm 

.... .::3 i ; 

Therefo~e' maximum twisting moment 
= 2'4375 kNm = 2'4375 x 106 Nmm 

Say the shaft diameter =D mm 

Maximum shear stress; q= 80 N/mm 2 

DS= 16 T 16 X 2'4375 X 106 
rc X q re X80 

= 155'1757 X 10a mms 
D= S'372 X 10 mm 

Shaft diameter, D= 53'72 mm 

Angul~r _t lvist at C, .. 8c= T AG/1 0'06~
1

x o·6 

. .: \.. . . • • J ~. ~ 

:~ .... :' :· . .u. ~: 
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Angular twist in both the shafts at the junction is the same i.e., 
0,1 = 0n 

Fig. 13·7 

T . 
8 

661:, 

... (1) 

Say GA and Go are the modulii of rigidity of the materials of the shafts A and B ; 1A 
and J n are their polar moments of inertia. Then, 

or 

BA= TA 11_ 80= Tnln 
GA 1A' Gnln 

TAlA Tnls 
GA 1A = GnJn 

TA lA GA .· ,/in 
or --=-.- -

Tn Jo Go · IA 

If the two portions are of solid circular sections as shown then, 
rcDA4 rcDn4 

J,1=-w and ls= ~ 

Now consider a shaft consisting of a 
solid round bar encased in · a tube or hollow 
shaft which may be of different material as 
shown in Fig. 13'8, subjected t9 the torque T . 

External torque T 

= TA +Tn 

= resisting torque of shaft A 
+ resisting torque of hollow 

shaft B 

A 

Again the angular twist in both the solid and hollow shafts is the same because both 
are rigidly fixed together and there is no relative displacement between them when the torque 
is applied, 

So 8,1=80 

Where 

TA IA Tnln 
J,1G,1 = JnGn but IA = is in this case 

TA GA lA 
Tn = G;;x ·JB 

rcD 4 ~ 
lA= T and Jn = 32 (D/•-D1') 

Example 13'5-1. A horizontal shaft 160 cm long, r igidly fixeq at both the ends is 
subjected to axial twisting moments of T1 = 2'5 kNm and T2= 4'0 kNm at distances of 60 cm 



Determine the total angular twist in the shaft if G=8 X 10' kg/cm' 
Solution. The dimensioned sketch of the shaft is shown in the Fig. 13 ·6. 
Taking lengths 11 =50 cm, 1,=40 cm, !3=60 cm 
Diameters D1=3 cm, D,=5 cm, D,=4 cm, D4=6 cm·, 

Polar moment of Inertia . i) 
1,, 111811 .• 

-..~·- _..~ . l J 11X34 81" m• 
1=31=~C 

11X 54 

32 
. 625 " 

32 
I T 

J,= ;
2 

(64-44)= lOi~ " cm• 

T, torque, 

Angular, twist, 

Fig.13'6 

= 100 kg-metre= 10,000 kg-cm 

0= T[JL+Ja..+.I! J 
G J, J, J, 

iOOOO [ 50X32 40x32 60x32 J 
= 8xl05 11X8l +-;,x625 + 11Xl040 

= io [6'288+0'652+0·588J 

7'528 0'0941 d' 5· 9° =go""-= ra ian= 3 .. ' I . 
Ex~.:W..e 13·4l A tapered circuli:r shaf~ 2 m long, having 80 mm diameter at one 

end and 50 mm \liameter at the other end 1s subiected to a torque 5 kNm. Determine the 
~gular twist in~ s~aft if G=84 kN/mm'. [Ans. 4'66 degrees] 

Exercise('',4-2. A circular shaft ABC subjected to a twisting moment T has the 
following dtmensLJs, 

Length AB:'.50 cm, a hollow portion with external diameter 8 cm "and internal' 
diameter 4 cm 

Length BCc,;so cm, a tapered portion, 8 cm diameter at one end B and. 4 cm dia-
\ meter at the other end C. 

DeterminP. ·J.e torque T to produce an angular twist of 3° in the shaft if G= 84 kN/n . , / 

[Ans. 6'8~ ~~ 

13 5. COM~OUND SHAFTS . 

. Consi.Aer a compound shaft consisting of two portions A and. B, which may 
different mater\ials and different dimensions. The external torque T acts at the junct 
the two portio11s. 

, Exte~ria I torque, T=TA+Tn 
= Resisting torque at fixed end A+ Resisting torque a 

... _,.:a D I 



I 

A I twist B= EI!_ X (D,2+ D,D, + D,2
) 

ngu ar},' 3,, G D,' D,• 
Now let s consider another case of a 

shaft of varying. iameters in steps as shown 
in Fig. 13·5 sub~ected to a twisting moment T. ,TT-,-~11,-
There are thre'\e portions of the shafts with 6 
di\!,.!l]J\ters 1). i, V~ and D3 and axial lengths 1,, D3 D2 

. h 2 ant., ,, . .i;spectJVely. 

are 
Polar moment of inertia of the sections T 

"D,• 
J,=32 

nD.' 
J,=~ 

The total angular twist between the ends A and B is 

0 0 +e Tl, Tl, Tl, 
= 1 ,+e,= GJ, + GJ, + GJ, 

=I....[J,_ +..IL+~ J 
G J, J, J, 

Fig. 13·5 

Exatnple 13'4-1.• A tapered circular shaft, 100 cm long having 6 c 
end and 4 cm dia.neter at the other end is subjected to a torque so as to r, 
twist of l '5°. Determine the required torque if G=80,000 N/mm• 

Solution. 
Length of the shaft = 100 cm 
Diameter, D1=4 cm 

Modulus of rigidity, 

Angular twist, 

D,=6 cm 
G=8 X 106 N/mm' 

6=1'5°=\'5 X 1; 0= 1;
0 

radia11 

= 32 Tl ( D,'+D,D,+D,') 
3,, G D1

3D,3 _ 

Substituting the values we get 

f \ ! " 32 TX 100 ( 36+24+ 16 ·) 
120 = 31'X8Xl06 216X64 

1 
i 

L, ... 

\ 

\ Torque, . 
l· . 

3,,2 xsx 10• 216x64 
T 120X3200 X -76=112202'32 Ncn 

= l 122·02 Nm 

1 Example 13'4-2. A circular shaft ABCD, subjected to a twisting 
etihas the following dimensions. . . 

I jJ . • 

Length AB=60 cm, a hollow portion with ~xter; 
meters 6 cm and 4 cm 

'J 

BC=40 cm, a solid portion with diameter 

c.D=50 cm, a solid portion with ~eter 3 
, . 
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124_D 4= 143000X 192 =l4566 1 
,; X 600 

D14=20736-14566=til 70 

Internal diameter 

Exercise 13·3-1. A solid circular shaft of diameter 6 cm is transmitting 80 horse 
power at 200 revolutions per mmute. Determine the maximum shear stress developed in 
the shaft. [Ans. 1350·95 kg/cm2) 

Exercise 13.3-2. A hollow shaft of internal diameter 50 mm and external diameter 
100 mm is transmitting horse power at 250 revolutions per minute. What maximum horse 
power can be transmitted if the maximum shear stress in the shaft is not to exceed 70 N/mm2. 

[Ans. 45"22] 
13·4. SHAFTS OF VARYING DIAMETERS 

Let us consider a circular shaft of 
length /, tapered from a diameter D2 to D1 
over the length/, as shown in the Fig. 13"4. 
The shaft is subjected to an axial torque T. 

Consider a small strip of length dx at 
a distance of x from the end of diameter D2. 

where 

Diameter of the shaft at the section, 

D.=D2-( D2~D1 ) x 

=Dz-kX 

k - D2-D1 
- l 

Polar moment of inertia of strip section, 
J = rr.D,,4 

_ ,;(D2 - kx)4 

" 32 - 32 

Angular twist over the l_ength dx , 

Fig. 13·4 

dO = Tdx _ 32 Tdx 
G lx - G X 7(D2 - kx)4 

Total angular twist, 

, Puttin~ the value of k 

I e-J 32 T dx 
- Gn(D2-kx)4 

0 

32 T [ 1 1 J 
3 Gnk (D2-k[)S - D,l 
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E:1eercise 13'2-2. A torsion test specimen of gauge length ,20 cm and diameter 2 cm, 
when tested under torsion failed at a torque of 4250 kg-metre. Determine the modulus of 
rupture of the material. [Ans. 2705'6 kg/cmZ] 

13·3. HORSE POWER TRANSMITTED BY SHAFT 

If a shaft subjected to torque T is rotating at N revolutions per minute, then 
power transmitted by the shaft in one minute = 2n'NT 

HP, Horse power transmitted by the shaft= 7!~:~o if Tis in Nm as 1 watt= 1 Nm 

. . 2nNT 'f T . . k metnc HP = 
4500 

1 1s m g-metre. 

There is slight difference between metric horse power and horse power. 

The maximum shear stress developed on the surface of the shaft will be 

q= ~~ in case of solid shaft of diameter D 

q= T't'(i>!~~
14

) in case of hollow shaft of diameters D1 and D2 • 

Example 13'3-l. The maximum shearing stress developed in 80 mm steel shaft is 
60 N/mm2

• If the shaft rotates at 300 revolutions per minute, find the horse power transmitted 
by the shaft. 

Solution. D, shaft diameter =80 mm 

Maximum shearing stress, q= 60 N/mm2 

Torque on the shaft, T't'D3q rt X 803 

T = 16 = 
16 

x 60 

= 6031'8 X 103 Nmm = 6031'8 Nm 

Number of revolutions/ per minute, N = 300 

HP transmitted _ 2rcNT_ 2'71'X300X6031'8=
254 - 746 X 60 746 X60 . 

Example 13'3-2. A hollow shaft of external diameter 12 cm is transmitting 400 
metric horse power at 200 revolutions per minute. Determine the internal diameter if the 
maximum stress in the shaft is not to exceed 600 kg/cm2 • 

Solution. Metric horse power = 400 

Revolutions per minute = 200 

T 
m HP X 4500 400 X 4500 

Torque, 2rcN = 2rc x 200 

= 1430 kg-metres=I43,000 kg-cm. 

Now X q 

X600 
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13"2. MODULUS OF RUPTURE 

. T G0 q 
The torsion formula J = -

1 
= R has been derived taking the assumption that shear 

stress is proportional to shear strain, i.e., the proportional limit of the material is not exceeded. 
Many a times it is desired to . determine the maximum torque at which the shaft fails by 
fracture. 

It has been observed experimentally that even after crossing the proportional limit, a 
circular section remains a circular section of the same diameter upto the angular twist at the 
ultimate stage. This shows that the strain at a point is still proportional to its distance from 
the centre while the stress at a point is no longer proportional to its distance from the centre of 
the shaft. 

Torque 

Fig. 13'3 

I 

Stress 0 
A 
l Strai r, 
I 
I 

Fig. 13·3 shows a torsion test specimen of diameter D and gage length l 0and shear 
stress and shear strain distribution along the radius of the shaft at the stage of fracture. · 

Say Tma~= maximum torque at which the test piece is broken 

Max. shear stress, q' = 16 [;;t" (for a solid shaft) 

i6Tn1 a~ D2 f 
= n(D

24
_Di4) ( or a hollow shaft) 

· Toi'§ rt\ajEifrlum sliear stress calculated by using the origihal Torsion formula ls ternit!d 
'. as iliBchlili~ of hif>tUi'e. It cart be observed that it is hot the actual shear stress at the si.itface 
but it is a hyphothetical stress which would exist if the shear stress-shear strain curve is a 
sb'aigl\t litte or tlit sliear stress distribution is linear along the radius of tfie shaft. Howev~r 
if the modulus of ru~iure i<i known for a itiatetial, the torque teq uited to produce fracture in 
the shaft can be determined. 

Example 13'2-l. A torsion test specimen of __ gage length 250 mm and diameter 
i .s .. mm,1 when test~d ijnder torsion failed at a torque of 828 Nm. Determine the modulus of 
rilfjtlife fa··tM hiaffirial. . 

SSlufioia. TdrEj_ue at failute, T=828 Nrh=828bOO Nmin 

Shaft dlameter, 

Mochilus of tupturc1 

D= 25 mm 
16T 

q= TTP~ = 
16 x 828000 

n X ~25)3 = 269'9 N/ m~2 
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J = ; (64 -44) = 163.5"63 cm4 

Angular twist • 0 1·sxi. Tt d" 
8 = I 5 = 

180 
= 120 ra w n 

Modulus of rigidity, G= 8 X 105 kg/cm2 

Torque, T = !}~,!_ -· 8 X I0
5

X tt X 1633"63 
1 -- 200 X 120 

= 1"7i x 10:; kg-cm 

Shear stress at outer surface, 

T J ·71 X 105 

q= J X Rj = 1633"63 X6 = 628"05 kg/cm2 

Shea r stress at inner surface, 

655 

Example 13"1-3. A circular shaft of 25 mm diameter is tested under torsion. The 
gauge length of the test specimen is 250 mm. The torque of 2120,000 Nmm produces an 
angular twist of 1°. Determine the modulus of rigidity of the shaft. 

Solution. Diameter of the shaft= 25 mm=D 

Polar moment of inertia, 
'7TD4 nX254 

J = 32 = 
32 

38349"6 mm4 

Angular twist, 

Torque, 

length 

0 .,, d" 8= 1 = 
180 

ra 1an. 

T = 2120,000 Nmm 

= 250 mm 

Modulus of rigidity, G= Tl __ 212oooo x 2so x 1so 79.18 x lMN/mm2 • 

0] - 7t X 38349"6 

Exercise 13·1-1 A steel shaft for which the modulus of r igidity is s·2 x 105 kg/cm2 is 
twisted by 2° in a length of 2SO cm. The diameter of the shaft is 8 cm. Determine the torque 
required and the maximum shear stress developed. [Ans. 449 kg-metre,- 132 kg/cm2] 

Exercise 13"1-2. A hollow circular steel shaft having 100 mm external diameter and 
60 mm internal diameter is subjected to a twisting moment of 6 kNm. Determine 

(a) Shear stress at the inner and outer surfaces of the shaft. 

(b) Angular twist over 2 metres length of the shaft. 

G for steel=80 kN/mm2• [Ans. 21"06 N/mm2, 35·1 N/mm2, 1·01 degree] 

Exercise 13·1-3. A hollow shaft having 4 cm external diameter and 2 cm internal 
diameter is tested under torsion. The gage length of the test specimen is 40 cm. A torque of 
6200 k~-cm produces an an~ular twist of 1 ·s0

• l)etermine the modulus of rigidity of the shaft. 

(Ans. 4"0?, X 105 k~/cm2] 
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= Polar moment of inertia of 
a hollow circular section 

T GO q q, 
1 =-,- = R

2 
= r ... (3) 

Fig. 13'2 shows the shear stress distri
bution along the radius of the hollow shaft. 
Maximum shear stress occurs at the outer 
radius R2 and minimum shear stress occurs at 
the inner radius R1 . 

F ig . 13·2 

Exam.pie 13·1-1. A circular steel shaft of 30 mm diameter is subjected to a torque of 
0"56 kNm. Determine, 

(a) The maximum shear stress developed in the shaft 
(b) Angular twist over I metre length ?f the shaft 
(c) The shear stress at a point which is at a distance of 1 cm from the centre of the 

shaft. G for steel -:-82 x 103 N/mm2. 

Solotion. 
Diameter, 
Radius, 
Torque, 

D = 30 mm 
R=l5 mm 
T = 0·56 kNm = 0"56 x 106 Nmm 

Polar moment of inertia = 1t x;
54 

= 79521"75 mm~ 

(a) Maximum shear stress, 
T 0"56 X J06 

q= T X R = 7952L •75 X 15= 105"63 N/mm2 

(b) Length of the shaft = 1 m = 1000 mm 

Angular twist , 

(c) Shear stress at 

e=IL 
GJ 

=4"92° 

0"56X 10°x 1000 
82 x 10a x 7952 L ·75 = 0"0858 radian 

t = l cm = IO mm 

qr= L X r= IOS-63 
X 10= 70"42 N/mm2 

R 15 
I 

Exam.pie 13'1-2. A steel shaft for which the m.)dulus of rigid ity is 8x 105 kg/c~2 i·s· 
twisted by 1 °30' in a length of 2 metres. The shaft is hollow with inside diameter 8 cm and 
outside diameter 12 cm. Determine the torque required. 

Calculate the stresses at the inner and outer surfaces of the shaft. 

Solution. Polar moment of inertia, 
i. 

J= 2 (R/·- R/•) 
I ' 

R2=6 cm, R1 = 4 cm, length l=2 m= 200 cm 



where 

Shear stress developed at radius r 
,. q. r 

= q=q-- -
r D/2- R 

Shear force on the elementary ring, 
q.r q21er2 

oF= 21er dr -R -- =-r dr 

Moment of the shear force on ring a bout the centre of the shaft, 

2nr2 2rrr3 

oT= ~ q.dr.r = ·y q dr 

T--otal twisting moment of resistance, 

But 

Therefore 

Hollow Shaft 

Say 

R R 

T= J 2;·3 q . dr= 2;q l ,.a_dr 

0 0 

_ J- q x R_4 
_ _:f_ ( rcR~) 

- R 4 - R \ 2 

1e:
4 

=l, polar moment of inertia of the solid circular section 

q = maximum shear stress at radius R 

q, = shear stress at radius r 
R~ Radius of the shaft 

rcR4 1eD4 

J=-2- =32 

R1 =inner radius or D1= inner diameter 
R2 =outer radius D2 = outer diameter 

Twisting moment of resistance, 

Rs 

i 21er8 

T= -- qdr 
R2 

R1 

... (2) 

because maximum shear q occurs at the mnimum radius which is R2 i.e., the outer radius in a 
hollow shaft 

= ]2 x J 

Where J = 1- (R24-R~')= ;2 (/)2•-D-i•) 
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(b) The shaft is not distorted initially. 

(c) The displacement at a p oint in the shaft is proportional to its distance from the 
ceiatre of the shaft or consequently the shear strain at a point is proportional to its distance 
froin the centre of the shaft. 

(d) Cross sections perpendicular to the axis of the shaft which are plane before the 
shaft isJ wisted remain plane after the shaft is subjected to the twisting moment. 

(e) The twist is uniform along the length of the shaft. 

13"1 SHEAR STRESS AND ANGULAR TWIST IN SHAFT 

If a shaft, is acted upon by a pure torque T (meaning thereby that there is no bending 
moment Mon the shaft) about its polar axis 001 , shear stress will be set up on all transvetsp 
sections as shown, in Fig. 13 · 1. · • 

To investigate the shear strain, shear stress and angular twist produced in the shaft 
under torque T, consider ~ circular shaft of diameter D, length / fixed at one end and subjected 
to the torque T on the other enq. At the fixed end there will be equal and o pposite reaction 
to torque T. A line Ct, initially drawn on the shaft parallel to the shaft axis has taken the 
new position CA' after the shaft is twisted. The angle !:.AC A' is called the shear angle ,f, or 
shear strain and the an¥le L AOA' is called the angular twist, 0. 

At any radius r at a d istance of / from the fixed end, the peripheral displacement 
BB'= r(J 

Shear angle, or shear strain 
BB' 8 

,f,, = -
1
- = r -

1
- or ¢,r G( r 

Say the shear stress at radius r is q, 

Then ~ = r T where G= Modulus of rigidity of the material 

(J 
q,= r -

1
-. G or q, C( r 

i e., shelf strain q)r and shear stress q, at any radius are proportional to r~ . The maxi
mum value of shear stress will correspond to the maximum value of r i.e., at the surface of the 
shaft. 

or 

D 
Say shear stress at the surface= q at r= -

2 

So 
D 0 

q = -
2
· x 1 . G 

q 6 
D/2 = - 1 x G or 

q GB 
7f = -,- where 

D 
R= -

2 
. .. (1) 

Moreover it has been shown in Fig. 13' I (c) that t he angular twist at any section is 
proportional to its distance from the fixed end and 0/ I is a unique value for a particular shaft 
subjected to a certain amount of torque. Therefore, the shear stress at a particular radius on 
a ll transverse sections of the shaft is the same. 

Let us determine the torque which is transmitted from section to section. Consider 
an elementary ring of thickness a, at the radius r [Fi~. 13·1 (d)] . 



13 
Torsion 

The shafts carrying the pulleys, gears etc., and transmitting power are subjected to the 
twisting moments. '!he shaft is distorted when it is transmitting power. To determine the 
angular twist and the shear strain developed in the shaft under the twisting moment or the 
torque, following assumptions are taken : 

(a) The material is homogeneous and isotropic i.e., its elastic properties arc the same at 
all the points of the body and in all the directions. 

'· •f1!'• 
I 

/ 

t-----

Cb) Variation of sh ear a nole along the raciius at o 
parti~ular secti on. · 

t/. 

'\::~ ~o l t'-1 I 
et·-a-,-e-= -a.-f.i .. 

(c) Variation of angular twist along 
the length . 

Fig. 13·1 

(651) 

Variation of she or stress 
along the radius 

(d) 
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mid span. On CD, there is another concentrated load of 8 tonnes at a distance of 1 m from 
end D. Determine support moments and support reactions. Draw a dimensioned B.M. 
diagram for the beam. [Ans. - 4 Tm, - 4'625 Tm, 0; 8'843 T, 8'314 T, 4'843 T] 

12·11. A continuous beam ABC, having equal spans AB= BC= l carries a uniformly 
distributed load of w per unit length on whole of its length. The beam is simply supported at 
the ends. If the support B sinks by 8 below the level of the supports A and C, show that 
reaction at B is 

R B= ~ - 6E/8 
4 /8 

12·12. A continuous beam ABC of length 8 m is supported over two spans AB and 
BC of equal lengths. A concentrated load 20 kN is applied at the mid point of AB and a 
concentrated load of 60 kN is applied at the mid point of BC. Determine the slope at the 
supports A, Band C. E= 200 kN/mm2, / = 20,000 cm4 

[Ans. 0, - 0·5 x 10-s radian, +1·ox 10-s radian] 

12'13. A continuous beam ABCD, 10 m long, fixed at end A, supported over spans 
AB and BC, both -i m long has an overhang CD= 2 m. There is a concentrated load of 
5 tonnes at the centre of AB and a uniformly distributed load of 1 '5 tonnes/metre run from B 
to D. While the supports A and C remain at one level, support B sinks by 2 mm. The 
moment of inertia of the beam from A to S-is 2000 cm4 and from B to D it is 1500 cm4• If 
£ = 2000 tonnes/cm\ determine the support moments and support reactions. 

[Ans, - 3-38 Tm, - 1'04 Tm, - 3 Tm ; 3'085 T. 4'425 f , 6·490 T] 
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12·2. A steel girder 20 cm deep has a spau of 4 metres and is rigidly built in at both 
the ends. The , loads on the girder consists of a uniformly distributed load of 30 kN/metre 
run on the whole span and a point loan Wat the centre of the span. Find the required point 
load if the maximum stress due to bending is not to exceed 80 N/mm2• 

The section of the girder is symmetrical about XX and YY axis. I.:11=8000 cm4. 
Determine also the maximum deflect ion. E= 200 kN/mm2• 

[Ans. 48 kN ; -2·25 mm] 

12·3. A beam of span l is fixed at both the ends. A couple Mis applied to the beam 
at its. centre, about a rule horizontal axis at right angles to the beam. Determine the fixing 
cou]5les at e_ach support and slope at the centre of the beam. EI is the flexural rigidity of the 
beam. 

[ Ans. AJ (in the same direction at both the ends), Mt ] 
16 EI 

12·4. A rung of a vertical ladder is in the horizontal plane. Rung is perpendicular to 
the vertical sides of the ladder. Length of the rung is 4B and distance between the rungs i& B. 
Ladd';!r is made of a circular steel section. If a vertical load W is carried in the middle of a 
pattici.Ilat rung, find the twisting moment at the ends of the rung. E,1eci=208 icN/mn\2, 
G,teei=80 kN/mm2 [Ans. 0'303 WB] 

12·s. A fixed beam of length / carries a linearly increasing distributed load of intensity 
zero at the left hand end to w per unit length at the right hand end. Determine (i) support 
reactions and (ii) support moments. Given EI is the flexural rigidity of the beam. 

[ Ans. 0·15 wl, 0·35 wl; _:_ ~~
2

, -1~ J 
12·6. A conti@ous beam ABC, 12 m long is supported on two spans AB=BC= 6 m. 

Span AB carries a uniformly distributed load of I '5 T/m run and span BC carries a uniformly 
distributed load of 2·4 T/m run. The moment of inertia e,f the beam for the span AB is / 1 and 
that for the span BC is 12• If I 1= ! /2, determine support reactions and support moments. 

[Ans. 3· 15 T, 14·4 T, 5'85 T; Ms=8' 1 Tm] 

12'7. A continuous beam ABC of length 12 m, with span AB and BC each 6 m long, 
carries a uniformly distributed load of 1 ·5 T/m run from the end A upto the centre of AB and 
from the end C upto the centre of CB. D etermine the reactions and moments at the supports. 

[Ans. 2'885 T, 3"230 T, 2'885 T; Ms=-2·954 Tm] 

12·s. A continuous beam ABCD, 18 metres long, rests on supports A, Band C at the 
same level; AB= 6 m, BC= IO m. The loading is 2 tonnes/metre run throughout and in 
addition a concentrated load of 4 tonnes acts in the centre of the span BC and a load of 
2 tonnes acts at D. Determine the reactions and moments at the supports. Draw the B.M. 
diagram. [Ans. 2"75, 22·4, 16"85 T; 0, -19·5 Tm, -8 Tm] 

12·9, A continuous beam ABCD, 15 m long supported over 3 equal spans AB, BC and 
CD. Span AB carries a point load of 8 Tonne_s a t its centre. Span BC carries a uniformly 
distributed load of 2 tonnes/metre run throughout its length and span CD carries a point load 
of 6 Tonnes at its centre. The level of the f;Upport C is 5 mm below the levels of A, Band D. 
Determine support moments and support reactions. E= 2000 tonnes/cm2, /=12000 cm4 

[Ans. M s=-5'366 Tm, Mc = - 3"156 Tm; 2·927, 10'515, 8'189 T and 2"369 T] 

12·10. A continuous beam ABCD, IO m long supported over two spans BC and CD, 
each 4 m long, has an overhang AB of 2 m. The ov~rhang portion is loaded with a uniformly 
gistributed load of 2 tonnes/metre run . On BC: there 1s a concentrated load of lQ Tonnes a~ th9 
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5. · A'beam fixed at both the ends carries a uniformly distributed load of 10 k N/m over its 
,i entire 'span 'of 6 m. The berrd'ing moment at 'the' centre· of the beam, is 

(a) 1S kNm 

(c) 45 kNm 

(b) 30 kNm 

(d) ,60 kNm 

,,6) .,A: beani\@f length 4 ,m, fixed at both·the ends .carries a concentrated load at its centre . 
. ;4f 1W,=6' t.@nnes and,E/forthe beam is 2000 tonne-metre2

, deflection at the centre of the 
beam is 

,, ·• (<ll}"o·1. mm 

(c) 10 mm 

(b) l'Omm 

(d) None of the above 
)-/ 

A continuous beam 8 m long, supported over two spans 4 m long each, carries .a Ulili
formly distributed load of I tonne/metre run over its entire length. The support moment 
at the central s,upporris 

(a) 2 Tm (b) 3 Tm 

I 
1(t) 4lfm 

. .,, ,J,.) 1, 

(d) ·4·5 Tm (Tonne-metres) 
' . 

1 8. 'J\'cort\.inuous' beam 12 m long, supported over two spans 6 m each, carries ·a concentrated 
load 40 kN each at the centre of each span. The bending moment · at ' the central 
support is 

(a) 90 kNm 

(c) 45 kNm 

(b) 60 kNm 

(d) 30 kNm 

9. A fixed beam of length /, sinks at one end by an amount ll, If EI is the flexural rigidity 
of the beam, the fixing couple at the ends is 

(a) El 8/12 

(c) 6 El 8/12 

I 

·' .~ · ~b) ·3·El ·8/l2 

(d) 6 El 8//3 

10. A continuous beam 8 m long, supported over two spans 4 m each, carries a uniformly 
distributed load of 1 tonne/metre run\ over its entire length. If the reaction·at one end 
supports is 2·5 Tonne, the react.ion at the central support will be 

(a) 1 ·5 Tonnes (b) 3 Tonnes 

(c) 4 Tonnes (d) 5·Tonnes 

> 1. . (a) 

6. (b) 
\ . ! 

2. (c) 

7. (a) 

ANSWERS 

3. (a) 

8. (c) 

EXERCISE 

4. (b) 

9. (c) 

5. (a) 

10. (b) 

I 

•· • • 112'1;'" A girde'r of 9 m span is fixed horizontally at the ends. A downward vertical 
load of 4 Tonnes acts on the girder at a distance of 3 metres from the left hand end and 
an upward vertical force of 4 Tonnes acts on the girder at a distance of 3 metres from the 
right hand end. Determine the reactions and fixing couples. Draw the SF and BM diagrams 
for t4e (?eam, · ~A,ns. :;l:1'92q Tonnes i =f2'667 Tonne-µietersJ 
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8. For the two consecutive spans AB= Ii and BC= /2 of a continuous beam carrying 
any type of loading, theorem of 3 moments is as follows (when A, B and C supports are at the 
same level) · 

where 

(i) M A l1 +2MB (li+l1)+Mcl2+ 
6~:il + 6~:i2 = 0 

a1 :t\ = first moment of Mx bending moment diagram for span AB, considering 
the origin at A. (In M, diagram span AB is considered independently as 
simply supported) 

a2x2= .first moment of M,, bending moment diagram for span BC, considering 
C to be the origin. 

(ii) if support B is below the level of A by o1 and below the level of C by o2, theorem 
of 3 moments will be 

MA . li+2Mn(fi + L
2
)+ Mcl

2
+ 6a1x'1 + 6a2x'2 _ 6EI!1 _ 6E/o2 =O. 

/1 /2 /1 /2 

9. For the two consecutive spans AB= /1 and BC= /2 of a continuous beam, if the end 
A is fixed and spans carry any type of loading, a n imaginary span AA' of length zero can be 
considered by the side of BA and theorem of 3 moments is modified as follows (for span A' A 
(zero length) and AB) : -

where 

2MAl1 +Mnl1+ 6a1(~:-xi) 0 

a1 = area of Mx bending moment diagram for span AB 

x 1 = distance of CG of area a1 from end A. 

MULTIPLE CHOICE Q.UESTIONS 

I. A beam of length 6 metres carries a concentrated load 60 kN at its centre. The beam is 
fixed at the both the ends. The fixing couple at the ends is 
(a) 90 kNm (b) 60 kNm 

(c) 45 kNm (d) 30 kNm 

2. A beam of length I fixed at both the ends carries a uniformly distributed load w per unit 
length, throughout the span. The bending moment at the ends is 

(a) w/2/4 (b) wf2/8 
(c) w/2/ 12 (d) w/2/16 

3. A beam of length /, fixed at both the ends carries a concentrated load W at its centre. 
If El is the flexural rigidity of the beam, the maximum deflection in the beam is 

(a) W/3/192 EI (b) W/3/96 EI 

(c) W/3/48 El (d) None of the above 

4. A .beam of length/, fixed at both the ends carries a uniformly distributed load of w per 
Uillt length. If EI is the flexural rigidity of the beam, then maximum deflection in the 
beam is 

(a) 5 w/4/384 EI 

(c) w/4/48 EI 
(b) w/4/384 EI 
(d) 111/4/ 192 El 
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SUMMARY 

, , , 1. If a beam is fixed at both the ends, then slope and deflection at both the ends 
are zero. 

2. For a fixed beam. AB, of length I ax+a'x'= O 
~hete · ' ax= first moment of the area a of the B.M. diagram about the point A (con-

sidering the beam to be simply supported at the ends) 
a'x' = first moment of area a' of the B.M. diagram due to support moments, 

about the point A 

~ I 
= (MA+2Ms) 6 and a'= (MA+Ms) 2 . 

3. For a beam AB of length /, fixed at both the ends carrying a concentrated load W 
at its eentre, 
,·. ,. -Wl 

Fixing couples, MA = Mn= 8 
WI 

B.M. at the centre of the beam=+ 8 
. -w1a 

Deflect10n, y.,.a.,= 
192 

EI (at the centre). 

4. For a beam AB of length /, fixed at both the ends carrying a uniformly distributed 
load w throughout its length 

I' / , 

/2 
Fixing couples, M A= Ms=- w12 

w/2 
B.M. at the centre of the beam=+ 24 

. w/4 
Deflect10n, ym0 .,=-

384 
EI (at the centre). 

,. •. 1 5. For a beam AB of length/, fixed at both the ends, carrying a load Wat a distance 

of a from end A, ( a< ~ ) 

. . 1 M Wab2 F1xmg coup es, A= - -
1
-
2 

- , 

. Wb2(b+3a 
Reactions, R11= 13 

Wa2b 
Ms= -~ 

d R 
_ Wa 2(a + 3b) 

an s - za 
· 2 Wa 2b3 

Deflection, yma~ = - 3 (a+3b)2 El' 

6. In a fixed beam, if one support sinks by o, then fixing couple at the ends due to 

sinking of support is §J;§ where/ is the length between the supports. 

7. For the two consecutive spans AB and BC of a continuous beam, carrying 
uniformly distributed load w1 over AB of length /1 and w2 over BC of length /2 , Clapeyron's 
the0rem of 3 moments gives the express ion for support moments MA, Ms, Mc as 

'M..t/i-+ 2/lfs(l1 + l2) + Mcl2 + Wit+ wtz8 = 0. 
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So 10 MA+ 5MB=- 260'416X6 _ 6 X210X 106 X 18000X 10-8 X '001 
5 5 

·10 MA+5MB=-312"5-45'36=-351"86 ... (2) 

Again using the theorem of 3 moments for the spans AB. and BC and-noting , that B is 
below A and C by 1 mm and rpoment of inertia for AB is 18000 cm4 and for BC it is 12000-cm4, 

5MA + 2MBX5 + 2MBX4 + 4Mc 
I1 11 /2 12 

= _ -~a1x1 _ 6a2x"2 + 6£/101 + 6£/202 h 'OO 
Iifi 1212 1111 -r;_r;- w ere 1>1 =ll2= l m 

Multiplying throughout by /1 we get 

5MA+ IOM B+8MB x iL + 4Mc x !i =- .6a1x1 -
6a2 x2 x .!L + 6Ef1 I> + (yE/1 ° · ... (3) 

12 / 2 11 12 12 11 / 2 

or 

Substituting the values in equation (3) 

( 
18000 \ ( 18000 

5MA+ IOMB+ 8MBX 12000 )+4McX 12000 ) 

6x260"416 
5 

6 X 160 X ( 18000 ) 
4 12000 

+6x210Xl06 Xl8000xl0-sx·oo1 ( ~ + ! ) 
5MA+22MB+6Mc= -3 l 2'5- 360+ 102'06 

5MA + 22M B+6(-20)= - 570· 44 

5MA+22MB= -510'44+ 120= -450'44 

From equation (2) 
5MA+ 2'5MB = - 118"93 

or From equations (4) and (5) 

19·5 MB= -271'51 or MB=- 13'92 kNm 

MA=-28'83 kNm and Mc= -20 kNm. 

Support reactions. Taking moments about the point B, 

- 20x5+4Rc -40 X2= MB, or 4Rc= -13'92+180 

Reaction, Rc=41'52 kN 

Taking moments about the point A 

- 20X I0 +9Rc+5RB- 40 x.1- 5 X lO X 2'5=MA 

- 200+ 9 x 41 ·s2+5RB- 2so- 12s= -:- 28'83 

SRn=-28'83 + 605 - 373'68 or 5RB= 202'49 

Reaction, Rn= 40'5 kN 

So Reaction, RA= 5 x 10+ 40 + 20- 41 '52-40'50= l lOL.. 82 02= 27""98 kN 

... (4) 

... (5) 

.. 
1 · 11 i 
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w12 w12 
EI in= 0 - 0 - -

8
-, or in= - 8E I 

But the slope will be positive at B, i.e., in=+ :; because we have reversed the 

direction of x . 

Problem 12·1s. A continuous beam ABCD, 10 m long, fixed at end A, supported 
over spans AB and BC ; AB= 5 m and BC= 4 m with overhang CD = 1 m. There is a uni
formly distributed load of 10 kN/ m over AB, a concentrated load 40 kN at the centre of BC 
and a concentrated load 20 kN at the free end D. While the supports A and C rema_in at are 
level and the support B. sinks ,by 1 mm. The moment of inertia of the beam, f·r0m A to B 
is 180,00 cm4 and from B to D is 12000 cm4

• If E = 210 GN/m2, determine the support 
moments and support reactions. 

Solution. Fig. 12·34_ shows a con-
tinuous beam ABCD, fixed at A supported d 
over AB and BC with overhang CD. The 
span A B= 5 m, BC=4 m an d overhang 
CD = 1 m. On span AB, a ud_l of 10 kN/m 
and on span BC, a point load 40 kN acts. At 20 kN 
the free end there is , a concentrated load of 
20 kN. t: - - -P.:i::n::¢:Y;X::a::J¥ ---l-...:...._:...:t-J 

First of all let us construct the M" 
diagrams for AB and BC. 

B.M. at the centre of AB 

w/2 1oxs2 

= - = . = 31'25 kNm = a b 8 I 8 . '• . 

as shown in the Figure . The curve AbB is a 
parabola. 

B.M. under the central load, span BC 

= WI = 40 x 4 =40 kNm= cd 
4 8 

as shown in the Fig. 12'34. 

OriginatB, a1~\ = 31'25 X 5 X ~ X2"5 = 260'416kNm3 

Origin at A, a1x1 = 2~0'416 kNm_3 

I 4 
Origin at B, a 2x2 = 40 X 2 ~ 2= 160 kNm3 

Origin at C, a2x2= 40 X ~ X 2= 160 kNms 

5m - -1-4--4 m 

AA" :-28-83 kNm 
se: =-13·92 kNm 
CC :: - 20 kNm 

w : 10kN/m 

Fig. 12·34 

Support Moments. Support moment at C , Mc= - 20 x 1 = - 20 kNm 

Consider an imaginary span A ' A of length O using the theorem of 3 moments (with 
sinking suport) for spans A' AB. 

MA'X O +2M A (O +~) + 5M
1 

n = - 6a1x1 + 6EI11s ... (l ) 
/1 /1 1 11/i /1 1 

because moment of inertia is different in two portions, the theorem of 3 moments has been 
modified as above. Moreover level of B is 1 mm below the level of A or in ·other words leve 
of A is I mm higher them the level of B so o= -1 mm. E = 210 X 109 N/m2= 210 x 106 kN/ m2 
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3 3 
- W(l + n)==-- W 
32 8 

l+n= 4 or n=3 

So 3 3W/ 
Mc= -- Wl(l+n)= - -32 8 

w 
R,4 = -

8 
Reaction, 

To determine reaction RB let us take moments about the point C 

I 
Rc x l-nW x 2 = Mc 

Rc X l-1'5 Wl= -·375 WI, or Rc= t·125 W 

Slope at C. Substituting x=l in equation (4) 

. • / 2 w 12 w 12 w /2 

Elzc=RA. 2 - 2 x 4 + 48 - 48 
W 12 W/2 w12 

=8X2--8- =-)6 

W/2 
ic = - 16 El 

643 

Slope at B. To determine slope at B, let us consider a section in the portion CB, 
taking origin at B 

EI -2... = Re . x - (3WJ x -- as d2 ( /) 
dx2 2 

11 = 3 

= 1'125 Wx - 3w( x- ~) 

Integrating two times the equation (6) 

dy x2 3W ( l )2 
El dx =Re . T - -2- x- 2 +ca .. . (7) 

x 3 3W ( I )a · Ely= l'l25 W6 - -6- x- T +cax+C4 ... (8) 

C4= 0 because y = O at x = O at end B. 

Moreover y = O at x = lat point C 
w1a W ( 1a ) So O= l'l25-
6
-- 2 x 8 +C3/ 

W/2 1 · 125 W/ 2 

Ca = J(5 - 6 
12Wl2 w12 
-~= --8-

d x2 3 W ( I ) 2 w12 
El cl; = Re . 2 - 2 x- 2 --8-

0 dy . . . ( ' ) t But at x = , dx =rn, om11tmg x - 2 . erm. 
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where 

Mc= - -3} WI ll +n) 

MA=Mn= O 

STRENGTH OF MATERIALS 
I 

.. .. (1) 

as the beam is simply supported at the ends 

Taking moments about C 

or 

or 

Wl 3 
RA. 1- 2 = Mc=- 32 Wl(l + n) 

RAI= ~I - ;
2 

WI (l + n) 

W 3W 
RA = 2 - 32 (t +n) 

Now consider a section X-X a t a distance of x from end A 

B.M. on the section as shown = RA. x- ~( x- ~ ) 

EI d
2
y = R,ix- _w { x- .!....) 

dx2 2 \ 2 

Integrating equation (3) 

EI dy = RA .E,__ ~ ( x-_}__ )
2 
+ c 

~ 2 2 2 1 

Integrating equation (4) also 

Ely= RA . ~
3 

- ~ ( x- -~ r +C1x+C2 

Constant of integration, C2 = 0 because at x = O, y=O 

Moreover at x = I, y = O 

So Ja W { I a 
O= RA. 6-6 \ 2) +C1l 

w12 12 
Constant of integration, C1 = ~ - RA. 6 

.. . (2) 

... (3) 

... (4) 

... (5) 

E!y = RA ~
3 

- r ( x- ~ r +( :~2 

-RA. ~) X ••• (5) 

Moreover dy x2 W ( / )2 ( w12 
6
12 ) El dx-= RA. 2- -2 x- 2- + 48 - RA. 

But at x=O, t} = 0 as given in the problem. 

Omitting the term ( x- ~ ) 

EI X 0 = 0- 0+-W/
2 

- RA 
12 

48 6 

W 3W W 
R,1= 7: - n (l + •z) = S 

or 

. .. (4) 
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Reaction, 

Reaction, 

but 

Re = Mn + !:!_212_ 

/2 2 

R I + I R R 
w111 _i iv2/ 2 Mn" Mn 

n= w1 1 W 2 2 - ,1- c=--,- ------- -
2 2 /1 .. - 12 

= W1l1 + ::Y2l 2 + w1/ 1
2 

.• + w)? 6EI:8 
2 2 8U1 + l2) 8l1U1 + l2) 2112/ 2 

+ . W1l1
3 + W2l1

2 6EI 8 
8(/1 + /2)/2 8(/1 + /2) 2/1/22 

W1= W2= 1V 

641 

Rn= w(l1+l2) + wl12 + wl22 
-1- wl? +- iv/13 3EH( I I) 

2 8(11+ )/2 ' 8U1+f2)/1 8(/1 + !2)/i - ~ Y; T /2 

Rn= wU1+ l2) + w(fi3 + l28
) . - 3£8 (/1+ 7t) 

2 8/112 // /22 

Problem 12·14'. A beam AB of length 2/, simply supported at its ends is propped at 
the mid point C to the same level as the ends. A concentrateq. load W is applied at the mid 
point of AC and a concentrated load nW at the mid point of CB. For what value of n, slope at 
the end A will be zero. Determine the slopes at B and C. Given EI is the flexural rigidity of 
the beam. 

Solution . Figure 12·33 shows a 
continuous beam of length 2/, with span 
AC= l and CB=/. 

. Load at the mid point of AC is W and 
load at the mid point of CB is nW. 

Let us construct M,, diagram 

Wl 
Mm a., on span AC, ab= 4 -:-

- WI l I W/3 
a1x1= 4 X 2 X 2 = ~ 

(about the origin A) 

Span CB 

. nWl 
MmJz= Cd= - .-

·· 4 
_ nWI l l nW/3 

a2,t'2=-4- X 2 X 2 = 16 
<about the origin C) 
Using the theorem of 3 moments 

Ar-~~~ -¥--:+-L~~s 

AA .)( 

As -~--e 
o b= w~ 

4 
c d:nwt 

4 

M,1l+ 2Mc(2l) + Mnl= - 6a1x 1 - 6a2x2 = --· 6W/3 - 6nW/3 
· I 1 l2 I 6/ 16/ 

6Wl2 

4Mcl= - ---rr (. 1 + n) 



Problem 12'13. A conti~uous /lBC havin1g two spans AfJ= /1 and BC=/2 carries a 
uniformly distributed load of w per uni't length on its whole length. The beam sfirip1y rests 
on the end supports. If the ~upport B sinks by an amount 8 below the level of tile supports A 
and C, show that the reacti'on at B is 

R wU:+ 12) w(/13 t/23
) 3E/8(11+l2) 

B= 2 + 8/2/2 /i2 /l 

Solution. Let us first of all cb"rtstru'ct the Mx diagra·m for, bo·th the ~p~µs AB and BC, 
i.e., drawing B.M. diagrams considering the spans AB and BC independently. Maximum 

Mx Diagram 

C 

Fig. 12·32 

bending moment wfi occurs at the centre of AB arid AbB is tTie B.M. curve wltlcli ls para-

b 1. . h b W1/12 
0 IC Wit a =-8- · 

w f 2 . 
Similarly maximum B. M, 2

8
2 occurs at the centre of BC and BdC is the parabolic 

Cd-- W2
8
l2

2 
• B.M. curve with 

Now 
.2, ~;/i.? X / X /i W1l1

4 

G1X1= "f X 8 1 2 = ~ 

. , ...2 . J.. W2l22 XI ' 12 - W2l! 4 
G2X2= 3 X 8 2X 1 - 24 . 

Support moments MA '."' Mc"."O since the beam is simply supported at the ends. U~ing 
the equation of 3 moments with a smked support 

2Mn(/i +!
2
)+ 6a1x1 + 6a2 x2 __ 6E/8 _ EIS = O 

11 12 11 12 
. J 

2MnU1 + l2)+ 6 X,t1:1l1~ + 6f2l2" -6E/8 ('1+!2 )=o 
.2411 2412 11/2 

M 
8

_ _ .w.1li8. _ w~/23 • + 6EI8 
- 8(/1+12) 8Cl1+l2) 2/i/2 

Taking moments of the forces about the point i3 

I W1l12 Af R / W2lii • RA 1 - - 2 = B, c 2-~ = Mn 

Of 
R'A== Mn + w1 l1 

/l ' 
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where 

or 

or 
or 

20X4 
Span DE, B.M. under the load= -

4
- = +20 kNm 

30x4 
Taking origin at B, a2x2 for span BC= -

2
- x 2= 120 kNm3 

2 
origin at D, a3x8 for span CL? = 3 X 30 X4 X2= 160 kNm 8 

origin at C, a3x3 for span CD= I60 kNms 
4 

origin at D, a41\ for span DE= 20 X 2 X 2 = 80 kNm3 

Using the Clapeyron's theorem of 3 moments for spans BC and DC, 

M o.4+2Mc(4+4) + MDX 4+ 6 X/2x2 + 
6a(s =0 

2 3 

12=4 m, /8= 4 m 

4X (-30)+ 16 Mc+4MD+ ~ X 120+ : X 160= 0 

- 120+16 Mc+4 MD+180+240= 0 
16 Mc+4 MD = -300 

Again using the theorem of 3 moments for spans CD and ED, 

4Mc +2Mv(4+4)+ 6asxs + 6a4x4 =0 
ls I,,, 

Since ME = O, as the beam is simply supported at the end E. 

4Mc+ l 6 MD + 6 x l60+ 6 x 80 = O 
4 4 

4Mc+ 16 Mv+240+ 120 = 0 
4Mc+ 16 MD = -360 

Mc +4 Mv = -90 
From equations (1) and (2), 

15 Mc=-210, Mc= -14 kNm, MD = -19 kNm 

639 

... (I) 

... (2) 

... (3) 

Diagram AB' C' D' E is the M x' diagram for support moments. 
moment diagram is shown by positive and negative area. 

Resultant bending 

Support reactions. Taking moments about the point C 

-lO X 7- 30 x 2+RnX 4= Mc 

Reaction, 
Also 

Reaction, 

Reaction, 
Reaction1 

- 70 - 60+4Rn=-14 
Rn= 29 kN 

-10 x ll - 30 x 6- 15 x 4 x 2+ 8 Rn+4 Rc=Mn 
- l 10- 180- 120+8 X 29 + 4Rc = - 19 

4 Rc=-f-- 178 - 19= -159 
Rc= 39'15 kN 

4 RE-20 x 2= MD 
4R£ = 40- 19= 21 

, RE= 5'25 kN 
flp = 10-\-30+ 15 X 4-\- 20 - 29- 39'75- 5'25= 46 k-N 
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Since MD= O as D is the simply supported end 

i4Mc+4Mn+48+ ~4 
+1·5x3000 x ·006= 0 

14Mc+4Mn+ 69'333+27= 0 
14Mc+4Mn=-96'333 

From equations (1) and (2), 
Mn=+ 1·233. Tm 
Mc=-7'2333 Tm 

... (2) 

In the Fig. AB'C' D is the Mx' diagram or the diagram of support · moments. The 
resultant bending moment diagram is shown with positive and negative areas. 

Support reactions. Taking moments of the forces about the point B on both the 
sides. 

RAX 3- 10 X 2= 1'233 

RA = 2r 233 7·077 T 
3 

RDX1+Rc x4- 6 x 8- 3 X4 X2= 1'233 
7Ro+4Rc= 73'233 

Moments about the point C, 
3Ro-8 X 2= M 0 = -7'2333 

Ro = 16- 7'2333 2·922 T 
3 

4Rc=73'233-7 Ro = 73'233-7 X 2'922 
= 73'233-20'454= 13' 194 T 

Rn= 10+8 + 12- 7'077- 2.922 - 13'194= 6·807 T 

Problem 12·12. A continuous beam ABCDE is 15 metres long. It has an overhang 
of 3 m length AB and supported on 3 spans 4 m each. A concentrated lo::id of 30 kN acts at 
the middle of span BC; a uniformly distributed load of 15 kN/m run acts over the span CD 
and a load of 20 kN acts at the middle of span DE. A concentra ted load of IO kN acts the 
free end of the beam. Determine the support moments and support reactions. 

Solution. Fig. 12·31 shows the conti
nuous beam ABCDE, 15 m long carrying 
loads as given in the problem. 

B.M. at A= O 

B.M. at B=- 10 X 3 

Mn = - 30 kNm 

10 kN 

A 

~3mRs 
Re 

4 m 4m 

w = 15kN/m 
Let us construct M x diagrams for 

,spans BC, CD and DE. 
\ ! ' . 

Fig. 12'31 

30 x 4 
Span BC, B.M. under the load= -

4
- = + 30 kNm 

! ! . I\ 

WX 42 15 X 42 

Span CD, B.M. at the centre= -
8

- = - -
8
- = +30 kNm 

(a parabolic curve) 

E 
RE 

4m 



/ 

FIXBD AND CONTINUOUS BEAMS 

or 

Mx Diagrams. Span AB 

B.M. under the load 
lOX 1 X2 20 

3 
= 3 Tm (shown by ab) 

= 20 
X _!_ X ( ~) + ZO X l__ X ( 1 + ~ ) 

3 2 3 3 2 3 

_ 20 
11 

100 _ ~Tm3 
- 9 9 - J 

Span BC 

3X42 

Max. B.M. at the centre = -
8
- = 6 Tm (shown by cd) 

a2x2 about the point C = 6 x 4 x ; x 2=32 Tm3 

Moreover a2x2 about the point B= ~2 Tm3 

Span CD 

B.M. under the load 
8xlx2 16 

= 
3 

=-3- Tm (shown by ej) . 

a3x 3 about the point 16 1 2 16 2 I 2 ) 
D=T x 2x3+3 x 2x, 1+3 

16 80 96 32 
=9+ 9 = 9 =T urns 

Now EI= ?,OOO x 104 x J5000x 10- s Tm2 =3000 Tm2 

Using the equation of 3 moments with a sinking support, for the sp_ans AB ar:~ CB. 

(3+ 4)+M 4+ 6 ,40 ~- 6 El 1,1 _ 6 EI 32 _ 2MB c X 3 X 3 + 4 3 4 
- 0 

Since M A= O as A is simply supported end 

80 
14MB+ 4Mc+ 3 + 48 - 2 x 3000 o1 - 1'5 X:3000.o2 = 0 

where 1>1 = 02 = 6 .mm ==;-0'006 .m 

,B.is b.t::low the level of A by 6 mm = i\ = 0'006 m 

B.is below the level of C by 6 mm ='2= 0·006' m 

.$0 14 Ms+ 4Mc+ ~O + 48- 2 X3000X0'006-l'5 x 3000 x ·oo6= 0 

I4M n+ 4Mc+ 7,4'667- 36--27= 0 

I4Ms+4Mc = - 1I'661 ... (1) 

Again using the equation of 3 moments with a sinking support for the spaqs BC and 
DC. (Support C is 6 mm higher than the support B or o2= - 6 mm, support C and D are at 
the same level so o3= 0) 

2Mc(4+3)+ Ms x 4+6:32 +~;~2 _ 6E/(;·Oo6)_0= 0 



Support reactions. Taking moments .about ,the point B 
12RA-4'5 X 16 x 8 = Mn = -123 

12R-t=576- 123=453 
.Refl.qion RA= 37'75 T 
~g~!ll, 16Rc- 6X20 x lO=Ms=- 123 

l6Rc= 1200- 123= 1077 
Rc=67·31 T 

S'FR<ENGTH ,OF ,MA11BRIALS 

Reaction, 
Reaction, Rn= 16 x 4·5 + 20x 6- 37·75 - 67·3 t = 86'94 T. 
SF diagram 
Portion EA 

Portion AB 

Pottion CE 

F=-w1X 

-=O at x=O 
=-4·5 x4=- 18T atx= 4m 

F= -w1x+ RA= -4'5x+ RA 
=- 18+37'75=+1 9·75 T at x = 4 
= - 4·5 x8+37·75 =+1 ·75 T x=8 m 

= -4·5x12+ 37'75=- I6·2sT atx= l2m 
= -4'5X 16+37 '75 =-34'25 T at X=·16 m. 

F= -4'5 X 16-·wix-16)+RA+ Rn 
= - 72- w2(x- l 6) +37·7s+86'94= ~2'69-:w2(x-,lq). 
= 52'59T at x= 16 m 
= 52'69 -6(20-1 6) 
= +28'69 T at X= 20 111 

= 52'69-6(24 - 16)= + 4·69 T at x=24 m 
= 52'69-6(28- 16) = - 19'3 1 ,T at x = 28 m 
= 52'69- 6(32-16)= - 43'31 T at x= 32 m. 

F= - 16 x4·5+RA -l-R B+ Rc-w2(x- 16).=+ J20-,6(x- 16) 
= 120-6(32-16)= - 24 T at x=32 m 
= 0 at x=36 m 

The shear force diagram is shown in the Fig. 12·29 (b). 

Problem,12:11. •A beam ABCD, 10 m long is supported over 3 .spans, AB=3 m, 
BC=4 m and CD= 3 m. On AB there is a point load of 10 tonnes at a distance of 1 m from 
A. On BC, there is a uniformly distributed load of 3 tonnes/metre run throughout and on CD 
there is a point load of 8 tonnes at a distance of 1 m ·from,D. The·level of .support;B·is 6 mm 
below the levels of A, C and D supports. Determine support moments and support reactions. 
E = 2000 tonnes/cm2, l = 15000 cm 4. 

Solution. Fig. 12·30 shows a conti
nuous beam ABCD, over three spans AB, BC 
and CD as given in the problem. Load on 
AB is 10 T at a distance of 1 m from A, on 
BC, there is a uniformly distributed load of 
3T/m and on CD, a point' load of 8 tonnes at 
a distance of I m from end .D. Let us first 
draw Mx diagrams for each span indepen
dently. 

•F.ig.,12;30 
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Again, 
Reaction, 
Reaction, 

Re X 7-4x 5= - 2·045, 7Rc= 20-2'045=I7·955 
Rc= 2'565 T 
RB_= 2x 1+2x2+4-J·988-2·565=S"447 T. 

635 

Problem 12·10. A continuous beam of length 36 metres is supported at A, Band C. 
The span AB is 12 m long and the span BC is 16 metres long. The overhang is equal on both 
the sides. The beam carries a uniformly distributed load of 4'5 tonnes/metre run from one 
end (near the point A) upto the point Band a uniformly distributed load of 6 tonnes/metre 
run from the other end upto the point B. Determine the reactions and moments at the supports. 
Draw the B.M. and SF diagrams. 

Solution. Figure 12·29 (a) shows a 
continuous beam 36 m long, supported at A, 
Band C as given in the problem. Say the end 
points of the beam are E and F. 

Uniformly distributed load from E to 
B=4'5 T/m. Uniformly distributed load from 
Fto B=6 T/m. 

Bending moment at A, 

MA = - ·w1x42 =-4'5 X 42 
2 2 

=-36 Tm 
Bending moment at C, 

w X42 42 

Mc=- 2 =-6x -2 2 
=-48 Tm. 

To determine support moment at B, 
let us first draw the Mx diagram for AB and 
BC. 

Bending moment at the centre of AB 

- 4·5~ 122 +8 1 Tm 

Bending moment at the centre of BC 

( -) 

A 

4m 

d 

( - ) 

a B C C 

12m 16m t.m 

(a) 
B 

, B.M.Oiagram 

c" 
S.F. Diagram 

= 6
\

162 
=+ 192 Tm 

Fig. 12·29 

Taking origin at A, a1~'i= 81 x 12 X; x6= 3888 Tm3 

Taking origin at C1, a2x2= 192X 16 X.; x8 = 16384 Tm3 

Using the Clapeyron's theorem of 3 moments 

12MA+ 2MB(I2+ 16) + 16Mc+ 6 x3888 + 6 x 16~84 = 0 
12 16 

- 36x I2+56MB- 48 x 16+ 1944+ 6144= 0 
56M B= -8088 + 432 + 768 = - 6888 

Afy= - 123 Tm 
EA'B'C'Fshows the Mx' diagram due to support moments. Diagram with positive and 

negative areas shown is the resultant bending moment diagram. 
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4 

-1- J{ R11' x--w1 X2(x- l) - ~;2 (x-2)2
} xdx 

2 

2 4 

= 1( 2·5 x2- ~
3

) dx+J{ 2'5x2- 2x(x- 1) - x(x-2)2 
} dx 

0 2 

as w1 = 1 T/ m and w2= 2 T/m 

2 4 

a1x1 = j ( 2'5x2 - ~
3 

) dx--1- J ( 4_'5x2- x 3- 2x ) dx 
0 2 . 

2 4 

I x3 x4 I I xa x4 \ - 2·5 -- - + 4'5----x2 

- 3 8 3 4 
0 2 

-+~ - 2-t-( 4·5 X ~-256 _ 16 ) - (4'5 X8 _ _!~-4 J 
- 3 3 4 3 4 / 

14 . 50 = 3 +96-64- 16-12-1-4+ 4= + ' 3 Tm3 

4 x 2 x 5 40 
Span BC, B.M. under the Joad - - 7-= 7 Tm 

_ 40 2 /4) 40 5 ( 5) 
Taking or igin at C, a2:c2=7 - x ·i x ( 3 +7 x 2 x 2 + 3 

Using the Clapeyron's theorem of 3 moment 

2MD(4 -t?)= - 6 X a1x1. _ 6a2x2 

11 l 2 

22Mn= - 6 X ;Q x { - 6x ~0-x ·f 

= -25- 20=-45 

Mo = - 2'045 Tm. 

Now if the Mr diagrams for spans AB and BC are plotted then resultant B.M. diagram 
is shown by the positive and negative areas. . 

Support reactions. Taking moments about the point B 

RA X 4 - 2X 1 X3-2X2Xl = - -2'045 

4RA = 10 - 2'045= 7'955 

J?.4 = 1'98S T 



PIXED A:ND CONTINUOl:IS BEAMS 633-

4 
Taking origin at C, a2x2= 20 x 

2 
x 2 =--= 80 kNm3 (for span BC). 

The moment of inertia of the beam is difLrent in two spans, the theorem of 3 moments 
can be modified as follows : 

but 
and 

or 

11 = 212 

Equation ( I ), can be written as 

2Me X 6 + 2MnXj+ 6 x 648 x 6 x 80 = 0 
212 I2 2/2 X6 I2 X4 

6Mn+8Mn+324+ 120=0 
14Mn=-444, or Ms= -31"71 kNm 

AB'C shows the Mx' diagram for support moments. The bend ing moment diagram 
with positive and negative areas shows the resultant bending moments. 

Support reactions. Taking moments at the point B 

R AX 6- 12 x 6 x 3=-31 "71, 6RA=2l6-31 "71 

Reaction, 
Again, 
Reaction, 
Reaction, 

RA=30'71 kN. 
Rcx4- 20 X2= -31"71, or RcX4=40-31"71 

Rc:= 2"07 kN 
Re= l2 X6--{-20-30"7J-2"07=59"22 kN. 

Problem 12"9. A continuous beam ABC of length l l m is loadcJ as show;1 in 
the Fig. 12"28. Determine the reactions at the supports A, B and C and the supp.lrt m i.n ~nt 
at B. 

Solution. Figure 12"28 (a) shows a 
continuous beam 11 m long supported at A, 
Band C and carrying loads. I T/m from A 
for 2 m length and 2 T/ m from B for 2 m 
length on span AB. On span BC, there is a 
concentrated load 4T at a distance of 2 m 
from end C. 

Support moments MA= Mc=O as the 
beam is :::imply supported at the ends. 

M_. diagrams. Considering the beam 
AB independently, taking moments about the 
point B, 

Reaction 
R./= l X2X3t2 X2X 1 = 2.5 T 

Rn'=2+4- 2"5 = 3"5 T 
2 

T k. . . A - J( R I W1X2 ) d a mg on gm at , a1 x1= Ax-
2
-- x x 

Q 

w 1 : IT/m run 
w2 : 2T/m run 

( b) 

4T 

BB:- 2·045Tm 

Fig. 12·28 

C 
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a 

-wJ = - (/x3- x4) dx a/2 . 
0 

- - a% [ 
1
:

4 

- ~

5 

]- - 2;al2 [ 5/a4-4a5
] - -;;1: (51-4a). 

Support r-eactions. Total load on beam= wa 
2 

Taking moments about the point A , 

M A=+MB+ R BI- ;a ( / - a+ ; ) 

-wa3 . wa ( 2a ) wa 2 

2012 (51-4a)+ Rn x /- 2 I - 3 =- 3012 (IOJ2+6a2-5a/)' 

wal wu2 wa3 wa4 wa2 wa4 waa 
RBI-+ 2 - 3 + 4/ - 5/2 - 3 - 5/2 + 6/ 

_ wal _ 2wa2 _ 2wa4 + 5waa 
- 2 3 5/2 12/ 

Re·action, R _ wa ·- 2wa~ _ 2wa4 +--2_ wa3 
B- 2 3/ 5/3 12 / 2 

= ~~~3 (30/3 -40a/2-24a+25a2/) 

Similarly taking moments of the forces about the point B 
wa a 

Mn=MA + RA. I- -2- X 3 

or - ;;,32 (5/-4a)= -;;
1
~

2 
(tOl2+ 6a2- 5al)+ R Al- wt 

wa3 wa4 -wa2 wa4 wa3 wa2 5wa3 2wa4 wa2 
-"4f + 5/2 =-3- - 5/2 + T + RAl- 6 - - 12b + -512 +2= R.t. I 

- 5wa3 2wa4 wa2 wa2 
Reaction, RA= 1212 + 5]a"" + -:y = 6013 ( - 25al + 24a2 + 30/2). 

Problem 12·s. A continuous. beams, ABC, 10 m long is supported on two spans 
AB=6 m and BC= 4 m. Span AB cames a umformly distributed load of 12 kN per metre 
run and span BC carries a concentrated load of ~O kN as its centre. The moment of inertia 
of the sectioDI of the beam for the span A!3 1s 11 and that for the span BC is l z. If 11 = 212, 

determine support moments and support react10ns. 
Solution. Let us construct the M,,, 

diagram for both the spans AB and BC as 
shown in the Fig. 12·21. 

Span AB, maxm. bending moment 
w/2 12 x 62 

occurs at the centre= 8 = - 8- = 54 kNm 

Span BC, B.M. under the load 

_ WI _ 20 x 4= 20 kNm 
- 4 - 4 

Taking origin at A, a1 ~\=i x 54 X 6 X 3 

= ~4~ kNm3 (for span AB) 

b 

w:12kN/m 
I1 

6 m-.._..._4m 



FIXED AND CONTINUOUS BEAMS 

or 

From equations (I) and (2), 

Tb 9Wb2 3Tb 
GJ =16EI - 2EI 

9 G I b2 3 b G J 
T= 16 xwExf·T- 2 x T. b'ExT 

9 840 3 840 
= 16- Wb . 2100 x 2 - 2 x TX 2100 x 2 

=0'45 Wb-1·2 T 

2'2T=0"45 Wb, T=0'2045 Wb. 

6'.H 

Problem 12·1. A fixed beam of length / carries a linearly increasing distributed load 
of intensity zero at the left hand end to w upto a distance a from the same end. Dete1mine, 
(I) support reactions, (2) support moments. Given EI is the flexural rigidity of the beam. 

Solution. Figure 12'26 shows a fixed 
beam of length I carrying a linearly increasing 
distributed load of intensity zero at end A and 
w at a distance of a form end A. 

Consider a section X-X at a distance 
of x from the end A. 

Rate of loading at the section=~ . w 
a 

w 
Elementary load for small length dx= - . x dx 

a 

Fig. 12·26 

Refer to article 12·s, and considering wx dx as eccentric load 
a 

- ( : x dx ) x (l- x)2 
Support Moments, dMA = ------,----12 

( - : . x dx )cx2)(1-x) 
dMB= /2 

a a 

I 
R9 

Support moment, MA= - - r~ x 2(/-x)2 dx=-~ f(x 2l2+x'- 2/x3)dx J a/2 a/2 J 
0 0 

-w [ a3 a6 
21 . a4 J 

= a/2 T 12+ 5--4-
r a2 a' aa ] 

=-w L 3 +w - u 
-wa2 

= 30/2 (1Q/2+6a2-15a/] 

MB
-_ _ r(: • Xd X ) (x2}(/-x) 

Similarly the support moment, J 
0 /2 
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Problem 12"6. A rung of a vertical ladder is in the horizontal plane. Rung is 
perpendicular to the vertical sides of the ladder. Length of the rung is 3b and distance between 
the rungs is b. Ladder is made of steel of circular section. If a vertical load W is carried in 
the middle of a particular rung find the twisting moment at the ends of the rung. 

E= 2100 tonnes/cm2 (for steel), G=840 tonnes/cm2 (for steel). 

Solution. Figure 12·25 (a) shows a ladder in which length of rung is 3b and distance 
between rungs is b. When a load Wis applied at the middle of the rung, it will bend' and the 

.I 

1------<_j_ 
b 

(a) 

Fig. 12·25 

T 

ACB - Mx Diagra m 

AA BB'-:M;o,agrom 

T 

• ' 1 . 

slope at the ends will not necessarily be zero, but say the slope at A is -i and at B slope is 
+i, as shown in Fig. 12·25 (b). There are fixing couples Teach at the ends, which do not 
completely fix the beam AB but a. small amount of slope remains at both the ends. Fig. 12'25 (c) 
shows the BM diagram Mx and Mx'. i.e., ABC is Mx diagram, i.e., considering the beam 
to be simply supported a nd diagram A' ABB' is the M x:' diagram, i.e., BM diagram due to 
nxing couples. 

Now EI (in- iA) = area of Mx diagram - area of Mx' diagram 

. . 3Wb 3b 
El( + i+i)= 4 X 2 - 3b X T 

2Eli= 
9

~b
2 

-3Tb .. . (1) 

Considering the twisting of shorter side of ladder i.e., AD or BC. 

T Gi y = ,;- where G= Modulus of rigidity 

i = angular twist 
b= length of the circular bar AD under twisting 

moment T 

Now J= 2l 
for a circular section. J = Polar moment of inertia 

(Detailed study of twisting of members will be m ade in Chapter 13 on Torsion) 

i ' .· So i = ~f ... (2) 
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or 

Integrating equation (1), we get 

At 

Therefore 

So 

Moreover a t 

Eldy =-Mi x+ Wx
2

- W ( x- ..!_ )
2 
+ c 

dx 4 2 2 1 

0 l 
dy . 

x= , s ope dx =-z. 

- E/i= O+ D- omitted term+ c 1 

C1=-Eli 

Elic = -Mix+ w;2 _ ~( x - ~ r-Eli ... (2) 

l dy 
X= - - = 0 because the beam is symmetrically loaded 2 ' dx 

about the centre. 

Putting X= ; in equation (2) 

0 = - Mi .!_ + W/
2 

-·0 - Eli 
2 16 

or ( 
Ml ) Wl2 

• ( Ml+ 2EI) W/2 . w12 
i -2-+El = 16' 1 2 = 16 ' z= 8(Ml+ 2EI) 

h . . I h d M' MWJ2 

or t e restrammg coupe at t e en = z= S(Ml+2 Elf 

Rewriting the equation (2), 

dy ( W/2 
) Wxz W ( l )2 

El dx= - M 8( M----=-l+_2_E_l,-) ·x+-4- - 2-\ x--i . - Eli ... (2) 

Integrating the equation (2) again 

Ely=-M( 8(~;EI)) ~
2 +~;3-~( x-,& r-Elix+O. d(3) 

(Constant of integration is zero because at x = O, y = O and the term ( x - ~ ) is to be 

omitted). 

l 
Deflection at the centre y = yn a t x = 2 . Substituting in equation (3) , we get 

( 
w12 ) 12 W/3 1 ( w12 ) 

Elyn= -M 8(Ml+ 2EI) g + 96 - O- EI 2 ~(Ml+2EI) 

MW/
4 

W/3 
( W/3 ) 

= - 64(Ml+2EI) + 96 -EI 16(Ml+2EI) 
W/a W/s 

= - 64(Ml+ 2EI) (Mt+ 4EI)+96 

= W/
3 

[ 2_ 3(Ml+ 4EI) J 
192 Ml+ 2EI 

= w1s c x ~!!-J-_1E1- 3Ml- 12§_LJ- w 1s r - M/- 8EIJ 
192 Ml+ 2EI - 192 c. Ml+ 2El 

Yn= _ W/3 [ Ml+SEI J 
I92EI Ml+ 2EI 

negative sign indicates downward deflection, 
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• 122 - M ( 23/ ) O=MA. L+ R ,, 

/2 l3 2Af/2 
O=MA. 2 +RA. 6--9-

From .~quat.ions (4) ~nd (5), 

RA=+ 11, MA=O 

For equilibrium Rn=-~ 11_ 
3 I 

Take equation (I) and put x=l, B.M. a t C= Mc 

Mc=O+t(i_ M )-M=j_M-M= M 
3 I 3 3 

Fixing couples at support A, 

at support C, 

MA=O 

M 
Mc=+-3 

To determine slope at the point B, Jet us use equat ion (2J and put x = l/3 

Elin= OX ..!_ + ±_ M X _!:__ - 0= 2Ml 
3 3 / 18 27 

. 2Ml 
IB = 27EI · ~lope at B, 

... (4) 

.. . (5) 

Pr,9bJ~pi 12·s. A beam of span / carries a load W at its middle. It is so constrained 
at the end!'i that when the end slope is i, the restraining couple couple is Mi. Prove that 

MW/
2

/ magnitude of restraining couple at each end is - 8- (ML +2EI) and that the magnitude .of 

. . W/3 
( ML+ 8EI) 

central deflection 1s 192£/ Ml+2El · 

Solution. Figure I 2·24 shows a beam 
of length / with a central concentrated load 
W. The beam has end slopes - i at A and 
+i at C. As per the condit ion given 

Restraining couple at A= MA = - iM. 

Since the bea.m is loade~ symmetrically 
about the centre, reactions 

w 
RA= Rc=2 

w 
X 

IB X C 
•• l.-f w R 

X ~ 2 
2= C 

Fig. 12·24 I '• 

Consider a section X-X at a distance of x from the end A in the portion BC, 

B.M. at the section =-Mi+ -} (x)-W ( x - ; ) 

or 
c[2y W I / ) EI -=-Mi+ - (x)-W1 x- --dx2 2 , 2 ' r 

... (I) 
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Maximum deflection will occur at the centre of beam. 

Substituting x=4 min equation (5 ), we get 

42 43 w X 44 3 · 59 
E. / . Ym'•x= MA. l +RA. 6 - ~ - 6 (21~ 

=8 ( - ;
2 

-2·5w ) + ~
4 

( 8+nx 3·59 ) 
2X256 

24 

= 8(- ]0·667- 2·5 X 3"59)+ 
6
6
4 

(J 3· 385)-2["333-4.787 

= - 157· J 36 + 142"773- 21.333- 4"787=-40·485 T-ma 

El= 2000 X I0+4 x 60,000 x 10-a= l2000 Tm2 

40"485 
ym".,= -

12000 
- 0·00337 m 

= - 3'37 mm (showing downward deflection"\. 

8 X 3·59 
6 

627 

Problem 12'4. A beam of span / is fixed at both ends. A couple M is applied to 
the beam at a distance of 1/3 from left hand end, about a horizontal axis at right angles to the 
beam. Determine the fixing couples at each support and slope at the point where couple is 
applied. 

Solution. Figure 12'23 shows a fixed 
beam of length l. At the point B an anti
clockwise moment Mis applied. Point B is 
at a distance of //3 from end A. Let us say 
R 11 and R e are the reactions at supports A 
and C and MA and M c are the support 
moments at A and C respectively. 

Consider a section X-X at a distance 
of x from the end A 

B.M. at the section = MA+ RA . x- M ( x- } r 
El 2 = MA + RAx-M x- -d2 ( I )

0 

dx2 3 

Integrating equation (1 ), 

Fig. 12·23 

EI ~~ = MAx+ RA { - - M ( x-+ )+o 

(Constant of integration is zero because ddy = 0 at x= O, at end A) 
.x 

Integrating further equation (2), 

x2 x3 M ( / )2 
Ely=M,4 . T+RA 6 - 2 . x- 3 +o 

(Constant of integration is zero, because y = O at x = O, fixed end A). 

dy 
At the end C, x = I, -;Ix = 0, y = O 

Substituting in equations (2) and (3), we get 

... (1) 

... (2) 

... (3) 
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or 

or 

or 

0T 
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... (4) 

... (5) 

. " ( 5) 

[Dividing equation (5) by 4 throughout] 

Equating the equations (4) and (5), we get 

32RA_512 -28 W- 64 RA- 256 _36W 
3 3 3 3 

96RA - 512 - 84W= 64RA-256- 36W 
32RA=+256+48W 

RA=8+ I'5W 
This is what we have considered. 
Again taking equation (4) and dividing throughout by 8, we get 

MA + 4RA - ~ - 3'5W= O 
3 

MA = ~
4 

+3·sw-4(8 + 1·sw) 

64 . = 3 +3 5W-32- 6W 

= - ;
2 

- 2·sw=-( 
3
; + 2·sw) 

To determine the maximum let us determine the B.M. at the centre of the beam 
w 42 

Mc= MA+RAX4- ~ -W(4·2) 

... (6) 

... (7) 

=-
32 

-2·sw+4(8+1·sw)- 16- 2W since w= 2 tonnes/m 
3 

32 . 16 . 
= - 3 - 2 5W+ 32+ 6W- 16-2W=-

3
-+1 SW. 

This shows that support moment is maximum. 
32+ 7'5W 

So Mm.,.,= 
3 

tonne-metres 

= (32 + 7·: W)JOO T-cm =/XZ 

. 60 000 
Z = sect1on modulus= is I 

= d/2 =4000 ems 

/ =0'5 tonne/cm2 

(32+? SW) X 100= 0'5 X 4000=2000 
3 

32+1·sw= 60 
60-32 28 . 

W= - H = 7T= 3 59 tonnes1 each. 
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Problem 12'3. A steel girder 30 cm deep has a span of 8 metres and is rigidly built 
in at both the ends. The loading on the girder consists of a un·iformly distributed load of 
2 tonnes/metre run on the whole span and 3 equal point loads at the centre and the quarter 
Slp'aln points. Find the magnitudes of the point loads if th~ maximum stress due to bending is 
o·s tonnes/cm2• 

The section of the girder is symmetrical about X-X and YY axis and Ixx=60,000 cm4• 

Determine also the maximum deflection E= 2000 tonnes/cm2• 

Solution. Figure 12·22 shows a fixed 
beam 8 m long carrying uniformly distributed 
load of 2 tonnes/metre run throughout its 
length. Then it carries 3 point loads say W 
each, at distances of 2 m, 4m and 6m from 
the end A. 

Since the beam is symmetrically 
loaded. 

Reactions RA = RE, RA= 2 xs+ 3w 
2 

=8+1'5W 

Fixing couples, MA = ME 

Consider a section at a distance of x from the end A. 

Fig. 12·22 

BM at the section is 
wx2 

M = MA + RAX- - - W(x - 2) - W(x-4) - W(x-6) 
2 

d2y wx2 
EI dx 2 = MA + RA. x -- 2 - W(x-2) -- W(x-4)-W(x -6) ... (I) 

Integrating equation (I), 

dy RA x 2 wx 3 W(x - 2)2 W(x- 4)2 W(x - 6)2 
EI dx =:= MA . x + - 2-- -6- - 2 - . 2 - 2 +o ... (2) 

(Constant of integration is zero because at x = O, ; ~ = 0 at fixed end and terms (x-2), 

(x - 4), (x - 6) are omitted). 

Again integrating equation (2), 

x2 X3 wx' 
Eiy= MAT + R A 6- 24 

w w w 
6 

(x-2)3 - -
6 

(x-4)3- 6 (x - 6)3 + 0 ... (3) 

[Constant of integration is again zero because at x = O, y=O at the fixed end and terms 
(x-2), (x- 4), (x - 6) are omitted]. 

At x = S m, ;fx = 0, y = O at fixed end. Substituting these values in equations (2) 

and (3) we get 

2x 83 w W W 
0= 8MA+ 32RA- -r- - T (6)2

- 2- (4)2 - --y (2) 2 ... (4) 

0= 32MA+ ga:A - 2
; 4S

4 

- ~ X 63 - ~ X 43 - : X23 ... (5) 
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(Constant of integra tion is zero, because y=O at x = O and terms (x -4) and (x-6) are 
to be ommitted at x=O) 

At the end D, x= 12 m, ddy = 0 and y = O. 
X 

Substituting these conditions in equations (2) and (3) we get 

0= 12M A+ 72RA- 256+ 72 

0= 72MA + 288RA-
2048 

+ 144 
3 

Dividing equation (4) throughout by 12 and equation (5) throughout by 72 we get 

... (4) 

.,. (5) 

MA + 6RA- 15'3333= 0 ... (6) 
MA + 4RA- 7'4815 = 0 .. . (7) 

From these equations 
or 2RA = 7"8518 or RA= 3'9259 Tonnes 

Rel\c~ions 

MA = 1S'3333-- 6RA = + 15'3333- 6 X 3'9259 
=15'3333- 23"5554= -8'2221 Tm 

RA + RD= 8 -4=;= 4T 

RD = 4- 3'9259= 0·0741 Tonnes. 

~If.~ ~~c~ D~~m 
FAB= +3·9259 Tonnes 
FBc= 3'9259- 8= - 4'0741 Tonnes 
Fc J? =-4'0741 + 4= - 0'0741 Tonnes. 

Bending Moment · Diagram 
MA = -8'2221 Tonne-metres 
Mn=-8'2221 + RA X4= -8'221 -J= 4 X 3·9i59 

=-8'2221 + 15'7036= 7'48 I 5 Tonne-metres 
Mc=-8'2221 + ~A X 6 - 8(6- 4) 

= - 8'2221 + 3 '9259 X 6-16= - 24'2221 + 23'5554 
=-0'6667 tonne-metres 

MD=-8'222l+RA X 12-8(12-4)+ 4(12- 6) 
= - 8'2221 +47'1108-64+ 24= -1' ll 13 tonne-metres. 

Fig. 12·21 (a) shows thy S.F diagtam, 12 ·21 (b) shows the B.M. diagi;am w,.b.ere P1 and 
p~ are the points of contraflexure. 

I, 

I 
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Further integrating the equation (2) 

Wa(]- a)x2 wxs W(x-a)2 
Ely=- 2/ +-6-- 6 + o 

(Constant of integration is zero because y=O at x=O) 

At 

So 

At 

x = a, deflection y=ys under is the load W 
Wa(l- a)a2 Wa3 Wa3l Wa4 was 

Ely 8 = - 2/ + 6 - - 2/ + 21 + 6 

Wa3 Wa4 Wa3 

=- - 3- +21=- ~(2l-3aJ 

Wa3(2l- 3a) 
y n= - 6EI 1 (indicating downward deflection) 

I d fl . h . x= T, e ect1on at t e centre 1s y,nu:z: 

Wa(l-a) 12 W /3 W ( / )a 
Elymax=- 2l x4+6x8-6 T-a 

.. · ., ! •. , 

'.J / 

Wa(l- a)l + W/3 _ W (I~_ 3 3 
1
·2 . 3 ) 

= - 8 48 6 . 8 a - 4 a + 2 a•t 
W(3l- 4a)a2 c· d. . d 

Yma" = - 24 EI ID 1catmg own ward deflection)~'. 

Problem 12·2. A girder 12 m span is fixed horizontally at the ends. A downward 
vertical load of 8 tonnes acts on the girder at a distance of 4 m from the lefl hand end and an 
upward vertical force of 4 tonnes acts at a distance _of 6 m from the right hand end. Determine 
end reactions and fixing couples and draw the bendmg moment and shearing ·fan;~_ diagrams 
for the girder. 

Solution. Figure 12·20 shows a beam 
ABCD, 12 m long, carrying a downward load 
4T at a distance of 4 m from end A and an 
upward load 4T at a distance of 6 m from end 
D as given in the problem. Let us assume 
R~ and Rv are the support reactions and MA, 
MD are the support moments. 

Consider a section X-X at a distance 
of x from end A. 

B.M: at the section = MA + RAx -8(x- 4)+ 4(x- _6) · -

or 
d2y 

EI dx 2 = MA + RA. x-8(x-4)+4(x-6) 

Integrating equation ( 1) 

.. . (1) 

dy x2 8 4 
El dx. = MA . x + RA 2 - 2- (x- 4)2 + 2 (x - 6)2 + 0 ... (2) 

(Constant of integration is zero because CZ = 0 at x =O and the terms (x- 4) and 

(x-6) arc to be omitted) 

Integrating equation (2) also 

x2 x3 8 4 
Elt = M A . 2 + RA_. 6 - 6 (x- 4)3+ - (x - 6)a+ o 

- - . . Q ••• (3) 



STRENGTH OF MATJ;llUAI,S~ 

Probiem 1:2'1. A beam of span / is fixed at both the ends. Two loads Wea:ch are 
placed at distance a from both the ends. Show that (i) the bending ,moment at the centre is 

wa.i (··) d fl · d . h l d. Wa3
( 2/-3a) c···) d fl . h "ddl f h I' ,· u e ect10n un er e1t er oa 1s 6EI 1 , w e ect10n at t e m1 e o t e 

b 
. Wa2(3I-4a) 

earn 1s 24El 

Solution:. Fig._ q· 19 (a) shows a fixed 
beam of length '/ carrying concentrated loads 
W each at a distance of a from each end. 
Sin\;e the beam is symmetrically loaded about 
i{scentre 

w w 

X I~ X (aJC 
a..L_ce-20) a -le C ' Reactions, RA= Rv = W each 

E;. 
Fixing couples MA=Mv. 

,: ~·:: :t~v~>;::: '\...--0,-~i-
C-vc>-tr~ ~ ra ' . 

Figure ABCD shows the Af,, diagram 
i.e., when the beam is considered to be simply 
supported, witli' BM at Band C equal to Wa. 

A -
( b) 0 

Fig. 12' 19 

a a 
A=;= ~ax 2 +Wax 2 +Wa(l-2a) 

= Wa2+ Wal-2Wa2= Wa(l-a) 
' ... , 

.. ... (1) 

Then diagram AA'D'D is the Mx' diagram i.e., BM diagram due to fixing couples A 
andD. 

or 

Area A'=MAX l=Mv xi 

= -A (area of the B.M. diagram considering the beam to be 
simply supported) 

= -Wa(l-a) 

. _ Wa(]- a) 
·~1' ·. lv/A - .- 1 = MD. 

Wa(I-a) Wal-Wal+ waa 
Therefore, B.M. at the centre= Wa - 1 = 1 

Wa 2 . =-,-
Since the beam is symmetrically loaded about its centre, the slope at the centre of the 

beam will be zero. Let us consider a section X-X at a distance of x from the end A in the 
portion BC of the beam. (We need not consider a section in the portion CD). 

B.M. at the section, 

d2y 
El- =dx2 

M=MA+RA x-W(x-a) 

Wa(l-a) + Wx-W(x-a) 
I 

Integrating the equation (1), we get 
. ' ~.,. J· ' . ' 

EI. dy = - Wa(l-a)x + Wx2_ W(x-a)2 +o 
; .:1), -- · , . . dx I 2 · :· 2 

... (1) 

.. . (2) 

imb")/ '.< ,, • " · 

1-r•··n' ' (Cdnstant··of integration is zero because ~ = 0 at x = O and the term (x-a) is 
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or 

Substituting in equation (2) 
-40- 3MB+ 20Ms + 4Mc= - 88 

17MB+4Mc= -48 

Again applying the theorem of 3 moments for spans BC and CD 

6 X 16 6X24 
4MB+2Mc(4- 14)+ 4MD=- -

4
- - -

4
- =-60 Tm2 

But 

So 

Mo = 0 since the end D is simply supported 

4MB+ 16Mc=-60' 
MB+4Mc=-15 

From equations (3) and (4}, 16Mn=-48+ 15= -33 

From equation (1), 

Mn=-2'0625 Tm 

4Mc=- 15-Afp=- 15+2·0625=-12'9375 
Mc= - 3'234 Tm 

12M A= - 80 - 6M B = - 80+ 2'0625 X 6= -'67'625 
MA=- 5'635 Tm 

621 

.,.(3) 

... tli) 

... (5) 

Figure AA' B'C'D is the Mx' diagram due to support moments. Figure wilh positive 
and negative areas shows the resultant bending moment diagram. 

Support reactions. Taking moments about the point C 
4RD - 6X2= Mc=-3'234 

4Ro = 12-3.234= 8'766 

Reaction, Rv= 2' 19 T 

Now taking moments about tb e point B 
8RD+4Rc-6X6-6x2= M n= - 2 '0625 

Reaction, 

8 X2'19+ 4Rc-48 = - 2'0625 
4Rc=48 - 2'0625-17·52= 28'4175 

Rc = 7'10 Tonnes 

Taking moments about tbe point A. 

14Rv+ 10Rc+6RB- 12 X 6-6 X 8-6 X 2= M A= - 5'635 

14X2'19+ lO X 7' I0 + 6Rn-72-48 - 12= -5'635 

30'66+ 71 ·0+6Rn-132=-5'635 

Reaction, 

Reaction, 

6Rn= 132- 5'635-71-30'66 
6Rn= 24'105 

Rn= 4·11 T 

RA = 6+6+0- 2·19- 1·10- 4·11 = 4'6 t. 
Exercise 12·11-1. A continuous beam ABCD, fixed at end A is supported over points 

B, C and end D. The lengths of the spans are AB= BC=CD = 6 m each. The beam carries 
a uniformly distributed load of 20 kN/m run throughout its length. Determine ,support 
moments and reactions. 

[Ans. - 62'31, - 55'38, -76'154, 0 kNm; 61'16, 115'37, 1-35·11, 47·:3 11i?N] 



M .. 4'x0+ 2MAO+l1)+Mn. /
1
=0- 6(a1)(7-x;) 

·1 

or 2M"A . l1+M». l1+ 601Ur-:i\) 0 ... (1) 

If the other end of the continuous beam is also fixed, a similar equation cab be 
obtained by imagining a zero span to the right of the fixed end and then applying the theorem 
of·three moments. 

Example 12·11-1. A continuous beam ABCD, 14 m long rests on supports A, B, C 
and Dall at the same level. AB=6 m, BC= 4 m and CD=4 m. It carries two concentrated 
loads of 6 Tonnes each at a distance of 2 m from end A and end D. There is a uniformly 
distributed load of 1.5 Tonnes/metre over the span BC. Support A is fixed but support D is 
free. Find the moments and reactions at the supports. 

Solution. Fig. 12 18 shows a con
tinuous beam ABCD fixed at the end A and 
simply supported at the end D, with three 
spans AB, BC, CD of 6 m, 4 m and 4 m res
pectively. Let us firs t draw the M " diagrams 
for the 3 spans. 

Span AB 

(-ve) 

~--1---.:.iJSl~:ds:.::xxi!l".-....Ll~ 0 
·8 WC 

4m 4m 
w :1·5T/m 

ab :8Tm cd:3Tm et ::6Tm 
6x2x4 

B.M. under the load = 6 =8 Tm Fig. 12.18 

TakingoriginatA, a1x1 =
8f 2(j ) +

8
·~

4
( 2+ ~ )=~2 +1!0

- 64Trb.a 

Taking origin at B, a x = 8 x 4( -?__ ) + 
8 x 2 

( :4+ 2. )= 128 + 112
-

240 
= 80 Tma 11 2 3 2 3 3 3-3 . 

Span BC 

Taking origin at B, 

Taking origin at C, 

Span CD 

T k . . . - 6X 4 2 24 T a a mg ongm at D, a2x 3=-
2
-x = m . 

Consider the imaginary span A" A = 0 length . Applying the theorem of 3 moments 

M ./' x 0+2MA(0+ 6)+MBX6= 0-
6at1 (about the origin B) 

6x80 
12MA+ 6MB = - - 6-. = - 80 Tm2 

I2MA + 6MH= - 80 Tm 2 ... (I) 

Applying the theorem of 3 moments for the spans AB and BC 
. 6X 64 6X 16 

6MA + 2Mn(6+ 4J+ 4Mc= - -6- - -4-

6M .. + 20Mn+4kfc=- 88 Tm2 ., ... (2) 

From equation(!), 6MA =-40- 3Mn 
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12'11. CONTINUOUS BEAM WITH FIXED ENDS 

If a continuous beam has fixed ends, then equations for support moments can be derived 
considering that slope and deflection at the fixed end are zero. Fig. 12·17 shows a continuous 
beam supported at A (a fixed end) and · other suppcrts B, C, D etc. In the analysis let us 
consider only two spans AB and BC. Mx diagrams for AB and BC are constructed, i.e., BM 
diagrams are plotted considering the spans AB and BC independently. Say for the span 
AB and BC carrying any type of transverse loads, M x diagrams are A e B and B f C 
respectively. 

Fixed 
, end 

A 
A 

Imaginary 
end 

I 

Mx Oiagrarn 

B 

c' 

C -x2 
e1 - ----e2_ 

AA
1

:MA 88
1

= MA 

cc' = Mc 
Fig. 12·17 

Considering the origin at B, x positive towards left, BM at any section-at a distance of 
x from B 

= Mo:+M.,' 

or El ~; = M .,+ M..' ... (I) 

Multiplying both the sides by xdx and integrating over the length /1 

/1 /1 l1 
r d2

y r J , EI J dx2 • xdx = J Mx . xdx + M"' . xdx 
0 0 0 

f 1 

I dy I 12 
El x dx -y 1= a1 U1-x'i)+ T (Ms+2MA) 

. . 0 

But at the fixed end, at x= 11, 

t = 0, y= O 

at B, x = O, y= O, 
thus making the left hand side of the equation equal to zero. 

Therefore, 2/vfA li + M.s 11+ 6 a1 (~i-xi) o 
1 

•.. (1) 

This relationship can also be obtained by considering Clapeyron's an imaginary span 
A'A of length zero and bending moment at A', M 4'= 0 and using the Clapeyron's theorem of 
3m~~b. · 
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where 

or 
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Curve A b B is parabolic. 
Taking origin at A and x positive towards right 

a1x1 = first moment of Mx diagram for span AB (considering the 
beam AB independently) 

=f~ X 12'5X 10 X5=416'67 Tm8 , 

Span BC. Maximum bending moment occurs at the centre 
WI I2x5 

Mm nx= 4 =-
4
- =15 Tm 

M* diagram is a triangle A d C. 

Taking origin at C and x positive towards left 

a2i 2= I5 x 5 x 2·5= 93'75 Tm3 
2 

Using the equation (5) of article 12·10, 

So 

6 x 4J6·67 + 6 x 93'75 +2M 
IO 5 

8 

1>1 =1>2=0·o1 m 
11 =10 m, 12=5 m 

El = 2000 X J04 X 30,000X 10-s Tm2=6000 Tm2 
El 1> = 6000x O·Ol = 60 Tm3 

250+ 11 2'5 + 30 Mn- 6 X60 - 6 X60 =0 
10 5 

30 Mn=-362'5+ 108 

Mn=-8'483 Tm 

AB'C shows the Mx diagram for the continuous beam. The resultant BM diagram is 
shown by the Fig. 12' I 6 with positive and negative areas. 

Support JnoJnents. Taking moments of the forces about the support B 
RAX10- IOX5 = - 8'483 (Mn) 

Reaction, R A= 4'151 T 

Also Rex 5-12 X2'5=-8'483 
Rex 5= -8'483+ 30 

Re=4·303 T Reaction, 

Reaction, Rs= JO+ 12-4'151- 4'303= 13'546 T. 

Exercis~ 12·10-1. A girder IO m long is supported at the ends and has an intermediate 
support at 6 m from one end. It carries a concentrated load of 12 tonnes at the middle of 
each span. The intermediate support is I ·2 cm lower than the end supports, calculate the 
re~ctions at th~ supports. 

/ = 25000 cm4
1 £ = 2100 tonnes/cm2 

(Ans. 5'36251 13'59381 S-04J7 TJ 
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or 

or 

where 

01 

or 

EI 11 iB+EI 81=a1 x1+ a1' xi' 
El iB= a1X1 + a1'x_{__ El 81 

/1 /1 11 
a1 :i1 =first moment of the area of Mx diagram 
ai'x1=first moment of the area of Mx' diagram 

/ 2 

=(MA+2Mo) T 
EI . a1x1 + (M + 2M ) 11 El 81 1B=-- A B ----

~ 6 ~ 

6 Elio= 6 
a1x1 +(MA + 2MB) 11 - ?!},I _ 81 
/1 /1 

617 

... (2) 

... (3) 

Similarly considering the span CB, with origin at C and x positive towards left we 
can write 

... (4) 

where ii/ is the slope at B, taking x positive towards left, t herefore, in'= - in, i.e., slope at B 
taking x positive towards right. 

Adding equations (3) and (4) 

6 a1x1 6 a2x2 
0= -

11
-+ 

12 
+ M11. '1+2Mn (11+!2)+ Mc . /2 

6 El 81 6 EI ~2 
11 ~~,2~ ... (5) 

From this equation. support moments are determined. 

Example 12·10-1. A girder 15 m long is supported at the ends and has an inter
med iate suppor t at 10 m from one end. It carries a concentrated load of 12 tonnes at the 
middle of 5 m span and a uniformly distributed load of 1 tonne/metre run over a ~pan of 10 m. 
The central support .is l cm lower than the end supports. Calculate support moments and 
support reactions. 

E=2000 T/cm2, 1= 30,000 cm4 • 

Solution. Fig. 12·16 shows a con
tinuous beam ABC, 15 m long, span AB= IO m 
carrying uniformly distributed load of I 
tonne/metre and span BC= 5 m carries a con
centrated load of 12 tonnes at its centre. The 
level of support B is I cm below tne levels 

d 

of A and C. ~~~~a~~~_,,,t~~c=!, 6 

Since the beam is simply supported at 
the ends, moments 

Let us construct the Mx diagrams 

Span AB. Maximum bending moment 

10m--->-5m Ral 
ab= 12· 5 Tm , 

Cd= 15 Tm , 

oc9urs at the centre Fig. 12· 16 

w/2 l x l02 

/vf,,.ax= - ~- = 8 12'5 T-11) 

Re 
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Moreover Ms = RD x 8-3X (8-2)+Rc x4-4(8-7) 

- 4"05 = 1·2~75x 8- 18+4Rc-4 
Rc=2'0125 T 

STRENGTH OF MATBRIAJ,S 

Total vertical load on continuous beam=3x4+4+3=19 Tonnes 
Reaction RB= 19 - RA-RD-RD= 19-4"9875-l '2375-2"0125 

= 10·7625 Tonnes 
Exercise 12·9-l. A continuous beam ABCD, 16 m long, supported over spans 

AB= 6 m, BC= 4 m and CD= 6 m, carries a concentrated load of 6 tonnes at a distance of 
2 m from end· A, a uniformly distributed load of 1 ·5 tonne/metre run over the span BC and 
a concentrated load of 6 tonnes at a distance of 4 m from the point C. Determine support 
reactions and support moments. Draw the resultant BM diagram. 

[Ans. 2·278, 6'722, 6'722, 2·278 T; 0, - 10·33, - 10'33, 0 Tm] 

12'10. SUPPORTS NOT AT THE SAME LEVEL IN A CONTINUOUS BEAM 

Consider two spans AB and BC of a continuous beam of lengths /1 and /2 respectively. 
Say the support B is below the support A by 81 and below the support C by 1>2• These 

I· 

Fig. 12'15 

level differences are very small as compared to span lengths and are,not so large as shown 
in the diagram. For span AB. Mx diagram Ab Band for span BC, Mx diagram B c C are 
constructed. Say MA, Mn and Mc are the support moments and AA' B'B is Mx' diagram 
for span AB and BB' C'C is the Mx' diagram for the span BC. 

Span AB. Consider a section at a distance of x from the end A (i.e., taking origin 
at A and x positive towards right), 

BM at the section = M .. + Mx' 
d2y I 

or El -d. = M .. + Mx ... (1) x-
Multiplying both the sides by xdx and integrating, 

/1 /1 11 

J El~~ · xdx,..,;J Mxx. dx+JMx' xdx 
0 0 0 

/1 

El I dy \ - + I - I x dx -y = a1 x 1 a1 xi 

0 

or El (!i x iB+ l>1)- EI (O x iA- 0)=01 x1+ai'x1' 
<becau~e qow~ward 9e~e(?tio11 is ta~en as ne~ativ~) · 



FIXf!D AND CONTINU0US BEAMS 

Using the equation for 3 moments 

MA X4+2MB(4+4)+McX4=-6 x 32 - 6 x 14 
4 4 

But MA=O because the beam is simply supported at end A 

So 16 MB+4 Mc=-69 Tm3 

Span BC. Taking origin at B and x positive towards right 

_ 1 2 3X3 
a 2x2= 3 x 2- x -f +-

2
- x (I + 1) = 1+9= 10 Tms 

Span DC. Maximum bending moment occurs at the c.entre, 
WI 3 x 4 

Mmax= - 4 =-
4

- = 3 Tm 

3 x 4 · 
a3x3 = - 2- X2=12 Tm3 

Using the equation of 3 moments 

MBX 4+ 2Mc(4+4)+MD X4= -
6a2x2 

-
6aaxa =-6( !Q_ +E )=-33 

4 4 4 4 

But MD = O because the beam is simply supported at end D 

So 4MB+16 Mc =-33 

From equations (1) and (2) 

16 Ms+4Mc = -69 
16 Ms+64 Mc=-132 

Substracting equation (1) from equation <2) 
60 Mc= - 63 

Mc=-1·05 Tm 
Substituting the value of Mc in equation (1) 

16 MB - 4 X l '05=-69 
16 Ms = -69+ 4'2= - 64'8 

MB= - 4'05 Tm 

Mx' diagram AB'C'D is drawn with BB'= -4'05 Tm, CC' = -1'05 Tm. 

... (1) 

... (2) 

.. . (1) 
. .. (2) 

Resultant bending moment diagram is shown in the Figure with +ve and -ve areas. 

Support reactions. Taking moments of the forces about the point B 

MB= RA X4-w x 4 x 4 
2 

- 4"05= RA X4-3 X8_ 

24- 4·os 4'9875 T RA 
4 

= onnes 

Similarly taking moments of the forces about the point C 
Mc=Rv X 4- 3 X 2 

- 1'05= 4Rv-6 
]?..p= l '2375 Tonne:j 
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Problem. 13'5. A solid marine propeller shat't is transmitting power at 1000 r.p.m. 
The vessel is being p ropelled at a sp::ed of 20 kiloinet<!rs per hour for the expenditure of 5000 
horse pow.!r. If the effbency of the propeller is 70°/o and the greatest thrust is not to 
exceed 600 kg/cm2, calculate the shaft diameter and the maximum shearing stress developed 
in the shaft. ' 

Solution. Say the direct thrust = P kg 

Useful work done per second as the output 
Px2ox 1000 = - 3600 5·5555 P kg-metre=5Ss·55 Pkg-cm 

Efficiency 

Input work 

=10 °/o 
555·55 p = 793·643 P kg-cm - 0·1 

H .P.=5000 

Work done per second 5000 X 4500 = 375000 kg-m 
60 

= 375 x 103 kg-m=375 x 106 kg-cm 

So 793·643P=375 X 106 

P=0"472 X 10s kg 

Allowable direct stress in shaft=600 kg/cm2 

Shaft diameter, d= I ~ -J 4,_x--.,,.-o·-,,4=720--x- 10:---5 
_ 10.0 

\/ ff X 600- '11: x 600 - cm 

Torque on the shaft, T -
5

000 x
45

00 =3·58 x 103 kg-m= 3·58 x 105 kg-cm 
- 2i; X 1000 

Maximum shearing stress, 

_ 16 T _ 16 X 3'58 X l05 = l 823.27 k / 2 q - i;ds - i; x 10s g cm . 

Problem 13'6 A circular copper shaft is required to transmit 60 horse power at 
200 rpm. Determine the diameter of the shaft if the maximum shear stress is not to exceed 
60 N/mm2

• 

The solid shaft is now replaced by a hollow copper shaft with the internal diameter 
equal to 75 °/

0 
of the external diameter. Determine the external diameter of the shaft if it is 

required to transmit the sam~ horse p~wer at the same rpm and the maximum shear stress 
produced is also the same. Fmd the weight of the matenal saved per metre length of the 
shaft, if copper weighs g·9 gm/c.c. 

Solution. H.P.=60 

Work done 

· Torque, 

=746 X 60 x 60 Nm per minute 
RPM=200 

T 746 x 60 x 60 = 2207.4 N 
2n x 200 m 

= 2207·4 x 10s Nmm 

. h 16 T Maximum s ear stress, q= ~ where d=shaft diameter 



Shaft diameter, 

Hollow Shaft 

Say external diameter 

Internal diameter 

d3= 16X2207.4X103 187'369Xl0;i 
TCX60 

d=51'2 mm 

Polar moment of inertia, 

J= !! [ D4-_!!_ X D4 J 32 256 _ 

- re X 175 D4 = 0'067 D4 
- 32X256 ' 

Torque, T=2207"4 X lOll Nmm 

Maximum shear stress, q= 60 N/mm2 

T q 
y= D/2 

2207"4 X 103 _ i2_ 
0'067 D4 O'SD 

External diameter, 

DS= 2207'4 X 10s =274'55 X 10a 
0'067X 120 

D=6'5 X 10=65 mm 

Internal diameter, d=48'75 mm 
Area of cross section of solid shaft 

=~ (5'72)2 =25'697 cm2 
4 

Area of cross section of hollow shaft 

= : (6'52·-4"8752)= 14'517 cm.a 

stRENGTH op MATERtA..br 

Weight per metre length of solid shaft = p X 100 x 25'697 gm 
Weight per metre length of hollow shaft = p x 100 x 14 ·.s 1 7 gm 
Saving in weight per metre length 

= p X 100 (25.697 - 14·517)= p X 100 X 11' 18= 9"5 kg 
(taking p= 0'0089 kg/cms) 

A hollow shaft is better than a solid shaft because the material near the axis of the 
solid shaft is not stressed upto the economical limit (i.e. th'e maximum allowable stress}.' 

Problem 13·7. A solid alloy shaft of diameter 6 cm is coupled to a hollow steel shaft 
of same external diameter. If the angular. twist, per unit •length of hollow shaft is 80 ~er cent 
of the angular twist of all~y shaft, _determine the• intemal diameter of the steel ' shaft. At 
what speed the shafts will transmit power of 200 kW. The maximum shearing stress in steel 
shaft is not to exceed 1000 kg/cm2, while in all'oy shaft it is not to exceed 600 kg/cmz 

G. for steel= 2'0 G for alloy 



Solution. The torque transmitted by the hollow steel shaft and the soiid alloy shaft 
is the same, since they are coupled together. 

where 

or 

But 

So 

But again 

So 

Ts Gs0s TA GABA 
- - and - ---Ts = ls JA - IA 

Ts=TA 

JsGs8s JAG.-.6,1 
ls /,1 

~ =!i_ X 0'8 (as given) 
ls IA 

0'8 Js Gs=JA GA 

JA GA JA 
Js= 0-8 X Gs = T6 as Gs=2 GA 

rcx 64 re 
=:fax1 ·6 =32 (64-d

4
) 

d= internal diameter of hollow shaft 

64 =64 Xl '6-1'6 d4 

777'6 
d4=-- = 486 or d=4'695 cm 1 '6 

Maximum allowable stress in steel= lOOO kg/cm2 

Maximum torque which can be transmitted by steel shaft 

1000 re . 1000 
= Js x -

3
- = n (64-4 6954) X -

3
- =26507'25 kg-cm 

Similarly the maximum torque which can be transmitted.by the alloy shaft 

w 600 =n <64)= - 3- = 25446'96 kg-cm = 254"47 kg-meter 

So the maximum'allowable torque= 25446'96 kg-cm 

Power transmitted = 200 kW 

1 kW = 102 kg-m 

200x 102= 254'47 X 
2

rt:ON 

Revolution'S per minute, 

N= 200 X 102 x 60 = 765'48 RPM 
2rc X 254'47 . 

Problem. 13·s. A solid circular steel shaft is rigidly connected to a copper tube to 
make a torsional spring as shown in the Fig . 13'37. The useful length of the shaft and the 
tube is 40 cm. The diameter of the shaft is 2 cm and the internal diameter of the tube is 
2·4 cm and external diameter is 2'8 cm. Determine the maximum stresses in steel and copper 
if torque T = 1000 kg-cm is applied at the end A and find the total angular twist. 

Given G,1ce1=800 tonnes/cm2, G,o9 p•r=400 tonnes/cm2 
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Solution. 
Diameter of the steei shaft=2 cm Shel shaft 

External diameter of copper tube 
=2'8 cm 

Internal diameter of the copper tube 
=2'4 cm 

Polar moment of inertia of copper 
tube, 

n 
J •= 

32 
(2'81L2'42) 

=2'7744 cm" 

~ A , 

' -' 

' 

Polar moment of inertia of steel shaft, 
,; 

J,= 32 x24 =1'5708 cm4 

Torque, T= 1000 kg-cm 

Maximnm stress in steel shaft 
T 2 4000 

=7, X2 = 1'5708 
q,=636'62 kg/cm2 

Maximum stress in copper tube, 
T 2'8 qa=y;x y 

\ 

1000 . . = 
2

.7744 x 1 4=504 61 kg/cm2 

Total angular twist, 
Tl Tl 

ll = 0.+9•= G,J, + G. la 

copper t ube 

I 
B 

Fig. 13·37 

= 1ooo x 4o [ 8oox 1o~ox 1·57o8+4oo x 1006x2·7744]_ 

= [0'0318 + o·0360] radian = 0'0678 radian= 3'885 degree. 

Problem 13'9, A solid circular steel shaft is surrounded by a thick copper tube so as 
to form a compound shaft. If the copper tube shares double the torque shared by the steel 
shaft, determine the ratio of the external diameter to the internal diameter of the compound 
shaft. G,te•1= 2 G0opper. 

Solution. The angular twist per unit length in the compound shaft is the same in 
steel shaft and in copper shaft. 

Say diameter of steel shaft =d 
External diameter of copper shaft=D 
Polar moment of inertia of steel shaft, 

nd1 
J.=--

32 
Polar moment of inertia of copper shaft, 

,; 
lo= 32 (D"-d") 
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Torque on copper shaf, T. = 2 x Torque on steel shaft, T, 

0c {}, 
or J • . G, . 7; = 2J, . G. 7; 

or 

but + is the same for both 

So 

So 

J.Gc=2J, G, 

J. = 4 J. 

but G,=2 G. 

__!__ (D4-d4) =4 X ~ (d4) 
32 32 

D4= 5 d4 

Ratio of diameters, { =1'495. 

Problem 13·10. A steel shaft of diameter 200 mm runs at 300 r.p.m. This steel 
shaft has a 30 mm thick bronze bushing shrunk over its entire length of 8 metres. If the 
maximum shearing stress in the steel shaft is not to exceed 12 N/mm2, find (a) power of the 
engine, {b) torsional rigidity of the shaft. 

Gata.1=84,000 N/mm2 
Go,on•, =42,000 N/mma 

Solution. Steel shaft is encased in bronze shaft, therefore, angular twist due to the 
twisting moment will be same in both the shafts. 

where 

0,, angular twist in steel shaft 
T. l, --x-- J. G, 

T,= torque shared by the steel shaft 
J, = polar moment of inertia of steel shaft 

G,= shear modulus of steel 
/, = length of steel shaft= 8000 mm 

Similarly, Oo angular twist in bronze shaft 

But 

So 

To lo 
=-y; X Go 

0,=eo 

T, l, To I& -x - = -x 
] 8 G, Jo Go 

T, J, Gs b / / -- x- ecause ,= o To - Jo Go 

J,= ; 2 (200) = ~ x 16 x 108 

Jo = _!!_ (2604- 2004) 
32 

•.. (l) 

... (2) 

where 260 mm-Outvr di~. of \>ron~e shaft 
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•TC = 
32 

X29'698 X 108 

Therefore, 
T , TC 16 X !Os 32 84,000 = 

1
.
0775 . Tb = "}i X TC X 29'698 X 108 X 42,000 

q, Maximum shear stress in steel shaft = 12 N/mm2 

16 T . h d d " f q= rtd3 w ere = iameter o the steel shaft 

16 X T, 
TC X(2Q0)3 

12 

T,= TC XI 2 x<200)
3 

=1 8'85Xl06 Nmm 
16 

ffotal Torque 

Tb= 1.'(;
75 

= 17·494 x 106 Nmm 

= T . +Tb=(l8"850-t- 17'494) X 10" Nmm 
I' 

Angular twist, 

Torsional Rigid ity 

Power of the Engine 

T = 36'344x 106 Nmm 

0= T. z. = 18'85 x 106 x 8000 
J, G, 

; X I 08 X 84000 

= 0 '01 143 radian= 6508 degree 

T 36'344 x 106 

~= e = O·O 1143 = 3179·7 x I 06 Nmm/radian 

= 2i. NT Nmm 
= 2Xn X 300 x 36'344 x 106 Nmm where N = 300 rpm 
= 600· TC X'36"344 X 103 ·Nm / minute 
= lOTC x 36'344 x 103 Nm/second 

= 1141"78 kNm/second = l141'78 k Watt. 

Problem 13·11. A solid circular uniformly tapered shaft of length l, with a small 
angle of taper is subjected to a torque T. The diameter at the small end is D and that at the big 
end is 1 · 1 D. Determine the error introduced if the angular twist for a given length is deter

. mined on the basis of the mean diameter af the shaft. 

Solution. 

Small end diameter 

Big end diameter 

Torque 

= D 
= 1"1 D 

= T 

Length = l 

Say modulus of rigidity = G 

Angular twist in tapered shaft, 

0= 32 Tl ( D2
2 + D2D1 + Di2 ) 

37i G D1
3D~a-



(li1 

_ 32 Tl[ (1'1 D)2+1·1 D2+D2 
] - 32Tl 3'3J 

- 3nG (1 · 1)3 D6 - 3iG X i ·33:1 D' 

=( 32 Tl ) 3·31 . =( 32 Tl ) (0.8290) 
nG 3·993 D4 nGD4 

Mean diameter, Dm= 1 ·05 D 

Angular twist in uniform shaft of diameter D,,, 

0
, 32 Tl 

'ffG X (1'05 D)4 

32 Tl 1 32 Tl 
= ~ X 1 ·2155 D' nGD4 (0·8227) 

Percentage error = 0'8290-0'8227 100=0'76 0/ 
0'8290 X 0 

Pfobi~itt i3·12. A vessel having a single propeller shaft 250 mm in diameter running 
at 200. rpin is re-engined to two propeller shafts of eq~al cross . sections and producing 50 ° / 

0 

more horse power at 500 r.p.m. If the workmg shearing stress m these shafts is 20 per cent 
more than the single shaft, determine the diameter of the shafts. 

Solution. 

Torque, 

Say the metric horse power developed by the single shaft 
2rt X 200 x T1 

4500 

T 4500 XH1 = 3.58 H 
1 400 1l 

1 

Metric horse power developed by two shafts = 1 ·5 H1 

m HP developed by each shaft= 0·75 H 1 

Tornue, T 0·75 H1 X 4500 - 1 ·0743 H 
-i 2 21t X 500 - 1 

Now 

So 

Diameter of shafts, 

I.!.= 3'58 = 3·33 
T2 1'0743 

1l 
T1 = l6 d1

3 X q 

T - ~ d3 ' 
i - 16 2 Xq where q' = 1 ·2 q (as given) 

it T1 d1
3 1 

=16 d}X 1·2 q or T2 = dl Xf2 
3'33= (?~0)ax I 

di X I ·2 

3 - (250)3 

d2 - 1.
2

X
3

.
33 

= 3910'16XJ03 

d2=15'75 x 10= 157'5 mm. 

Probleiµ 13'13. A st6el shaft 10 cm diameter is solid for a certain part of its length 
ahtl hbllow fot Hie remainder part of its length, with an inside diameter of 4 cni. If :a. pure 
ttitq~~ is ~\:>plied of such a magui~ud_e t~at )'.ielding just occurs ou the surface of the s6HP part 
of the shaf't, <letermme the depth of y1eldmg m the hollow part of the shaft. De~ermine .,, ' · 
*e an~les of twist per unit len~h for the two parts of the shaft. 
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Solution. Solid shaft is of radius 
5 cm, . but hollow portion is of outer radius 
5 cm and inner radius 2 cm. Therefore, polar 
moment of inertia of hollow portion is less 
than the polar, moment of inertia of the solid 
portion. So when yield stress has just reached 
the surface of the solid shaft yielding has 
occured at radius r in hollow shaft or between 
r and 5 cm, material of the shaft has yielded 
and say the stress in this region is uniform q , . 

Torque on the solid part, 

T= ; X sax q,=62'5n; q., .. . (1) 

I 
Solid shaft 

0 5c m 9 2cm 
Radius- Radius--'> 

Fig. 13·38 

Torque on the hollow part, T=T1+T2 

5cm 

T1 =torque on the section upto radius r (elastic region) 
T2=torque on the section between rand 5 cm (yielded region) .. 

So 

n; (r4-24) ,i 
T1= 2 r . ,q,=y(r4-l6)q, 

5 5 

T 2= f 211:r2qv . dr. =q; f 211:r2 dr 
I' r 

-
2
: (r4-16)q.,+ 

2
; q., (125-r3]= 62'5rr q., 

,.
4

-
16 +1- (125-rs)= 62'5 

2r 3 
3r4-48+ 500r-4r4= 315r 

r 4-125r+48= 0 
r= 4'865 cm by trial and error 

Depth of yielding = 5-4'865= 0 '135 cm= l'35 mm. 

... (2) 

Ratio of angular twist (say based on the elastic part of both the solid and hollow 
parts) 

0
1
91 = !!..L in hollow shaft 
i r 

0J
2

2 = t in solid shaft 

81//1 5 5 . 
or 82//2 = -r- = 4'865= 1 028 

Ratio of angular twist per unit length = l '028. 

Problem 13·14. A flanged coupling has n bolts of 25 mm diameter arranged 
symmetrically along a bolt circle of diame~er 300 mm. If the diameter of the shaft is 100 mm 
and it is stressed upto 100 N/mm2

, determme tlw vatu~ of 11 if the sqear ~tress in the bolt§ i§ 
pot to ex~ed 50 N/mm2

, · · 



Solution. Diameter of the) haft 
= 100 mm 

Maximum stress in shaft 
q=lOO N/mm2 

Torque on shaft 
ff = l6 X (100)3 X 100 

=19.635Xl06 Nmm 
Radius of the bolts circle 

=150 mm 
Shear force on all the bolts 

Q= 
19

·
6
:;; l0

6 

= 13'09 X 10' N 

Say the number of bolts =n 

Area of each bolt = : (25)2= 490·88 mm2 

Maximum stress in bolt =50 N/mm2 

Therefore Q 50 
nx490·88 

t,olt circle 

Fig. 13·39 

Number of bolts 13'09 X 104 
= SOX 490.88 . 5·33 say 6 bolts. 

Problem 13'15. Fig. 13'40 shows a vertical shaft with pulleys keyed on"it. The-shaft 
is rotating with a uniform velocity at 2000 r.p.m. The belt pulls are indicated and the 3 pulleys 
are rigidly keyed to the shaft. If the m:iximum shear stress in the shaft is not to exceed 50 
N/mm2

, determine the necessary diameter of a solid circular shaft. The shaft is supported in 
bearings near the pulleys and the bending of the shaftjmay be neglected. 

Solution. Torque on pulley A 
= (3000 -900) X 10 N cm 
= 21000 N cm 

Torque on pulley B 
=(1800-1000) x 12·5 N cm 
= 10000 N cm 

Torque on pulley 0 
= (2000-lOOO) x 11 N!cm 
= 11000 N cm 

This shows that shaft is rece1vmg 
power at pulley A and is transmitting power 
to machines through pulleys B and C. 

So the maximum torque on the shaft 
=21000 Nern 
= 21 x 10a N cm= 21 x 104 Nmm 

Shear stress permissible, 
q= 50 N/rnm2 

So the shaft diameter, 
as 16 Tmae 16 X21 X 104 

rr.q = 'IT X50 
=2'139 x 104 

Shaft diameter, 
d= 2'776x 10= 2776 mm. Fig. 13'40 
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Problem 13'16. A solid shaft of diameter l l cm is transmitting 700 kW at 200 r.p.m. 
It is also subjected to a bending moment 15 k Nm and an end thrust. If the maximum 
principal stress developed in the shaft is 200 N/mm2, determine the magnitude of end thrust. 

or 

or 

or 

Solution. 
Speed 

Torque, 

Power transmitted=700 kW = 700 k Nm/second. 
= 200 r.p.m. 

2oo x21r 
60 

20·944 rad/~ec 

700 x 1000 . . 
T= 20.94 Nm=33422 459 Nm=33 4 X 100 Nn.im 

Shaft diameter, d=ll cm = llO mm·. 

Shear stress developed in the shaft, 

16T 16 X 33"4X ] 06 

TC X (11 0)3 127'8 N/mm~ q=--= 
nd3 

Bending moment on shaft, M=l5 kNm = 15 x 106 Nmm 

Say / 1 =d irect stress due to bending developed in the s~aft 

Then 
_ 1td3 

6
_ TC X (1,10)3 

M - 32 X/1 or 15Xl0 - 32 X/1 

f
_ l 5X32Xl06 N/ 2 

1 - TC X(l-10)3 mm 

/ 1 = 114'792 N/mm2• 

Say t µe direct stress due to end thru-st is /2 then •resultant direct stress 
/ = / 1-/2 (when/1 is tensile) 

= / 1 + /2 (when f~ js com.pi:~sive) 

Now maximum principal stress, 

pma~= { + J ( { r + q2; or 200= { +.J( { f + 021;·:-; 

(200-{ r =( { r+(l27'8)2 

4 X 104 +{ { r -200/= (-f )2+ (127'8)2 

200 / = 4 X 104-.l '2782 X 104= 2)67 X 104 
f = 118'39 N/rnm2. 

Takingf 1 and / 2 ,both compressive 
/ 2= 118'390- 11 4'792 = 3'598 Nfrm.µ12 

Area of cross sec~ion of shaft = ~ ( 11 0)2 = 0'950 x 104 mrn2 

End th:rust, P= 0'950 X 104 x 3·59~ 
= 3'418 X 104 N = 34'18 .kN. 

Now consideriug /2=! +/1, the maximum principal stress develope.El ·in ithe shaft would 
be more than 200 N/mm2 ~o not permissible. 



Pr~,b.lem J3'f7. -~ ~b..af.t is subjected to b::rtding a1,1d twisting monients. ·The greater 
prjnpip{!;l §t i~~1l 4eyeloped iI;l ,t.he 1lh;:tft is numerically 6 times the minor principal stress. 
:O"i.(~1@.ine :fue r.s1JiP .9f l?eq.ding moment and twisting moment and the angle Mlhich the plane 
Qf gr,e_a,~~, Pr~~cjpaj. (>tr.es~ l)li;i.;l.<es with the plane of b~nding stress. · · 

Solution. Say M = Bending moment 

T=Twisting moment on the section of the shaft 
d=diameter of the shaft 
/-stress due to bending moment 
q=shear stress due to twisting moment 

Pi, greater principal stress= f + J ( { r +q2 

p 2, minor principal stress= { -J ( { r +qz 

In Fig. 13"41, AC is the plane of bend-
ing stress of the shaft. BC is the plane 
parallel (o t)le axii; of the shaft. 

or 

or 

or 

or 

or 

From (l), {: =-6 

since p 2 will be negative if P1 
is positive, ~s ,i.s obvious 
from the expressions (,1) 

M+,/M2+r2 

M-,/Afa+T2 = - 6 

M + v M 2+T2 =-6M+6{M2+r2 

-5{ f,12 +T2= - 7 M 

25 T2= 24 M 2 

Now bending !it:i:ess, 

M = _{ 25 =1"020 
T \J 24 · 

M=l:020 T 

f = 32M 
nd2 

16 T 
q= nd3 

Fig. 13·41 

... (1) 

... (2) 

... (3) 

Shear stress, 

Say 6= angle which the plane of greater 
with the plane of bending stress 

principal stress makes 

2q 32 T nds 
tan 20= 1-= nds X32 M 

= _ir = 1·~20 = 0"980 

28= 44° 24' or 6=22° 12'. 
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Problem 13'18. A soiid shaft transmits 2000 kW at 200 revolutions per minute. The 
maximum torque developed in the shaft is l '8 times the mean torque. The distance between 
the bearings is l '8 metres with a flywheel weighing 5000 kg midway between the bearings, 
Fig. 13·42. Determine the shaft diameter if (a) the maximum permissible tensile stress is 
60 N/mm2 (b) the maximum permissible shearing stress is 40 N /mms. 

where 

' 
Solution. 
Power developed =2000 kW 

Speed 
=2000 kNm/second 
=200 r.p.m. 

200 
= 60 X21t rad/sec 

=20'944 rad/second 
Therefore mean torque, 

beoring 
fly wheel 
JI bearing 

T _ 2000 X 1000 
m- 20'944 

Fig. 13'42 

=95492'7 Nm 

The maximum bending moment due to flywheel occurs at the centre of the shaft 

Wxl 
Mmo,=-

4
-

. W= weight of the flywheel 
/ = distance between the bearings 

M _ 5000X 1·8 _
2250 

k 
max - 4 - g-m 

= 2250X9'8 Nm = 22050 Nm 
Mm ax=22'050 x 10s N m 

Maximum torque, Tmaz= l'8 Tm= l'8X95492'7 Nm 
~ 171886'86 Nm = l71'866 x l03 Nm 

Now equivalent bending moment 

M _ Mmax+ 4"Mmaa,2+ Tmax2 
o- 2 

22'050 X 103+ ,./ (22'050 X lQ3)2 + ( 171 '886 X 103)2 
- 2 

= 
22·osox 10s+ 1034" 486'20+29544"79 

2 
22'050 X 103+ 103 X 173'294 

2 
= 97·672 x 103 Nm = 97'672x {06 Nmm 

Equivalent twisting ru.oment, 

Te = { M ma•z+ T '"""z 

= 4" (22·osox I03) 2+ (111·886 x 1os)2 
. = 173.294 x 103 Nm = l73·294 x 10s Nmm 



TORSION 
' 

(a) Say 

Then 

(b) Say 

d=diameter of the solid shaft 
f = allowable tensile stress 

rcd3 rcd3 

Me=nXf, or 97'672 X L06 = ~ X60 

ds=97'672 X 32 x 106 =I6.58l2x 106 

60ir 

d=249·7 mm 

q =allowable shearing stress 
Td3 

Te=--- Xq 
16 
'lld3 

10° x 173°294=~ x40 

d3=I73'294x I6x 10° = 22.064 x 106 
40rc 

d=280.5 mm 

Therefore the shaft diameter to withstand the allowable stresses is 280'5 mm. 

703 

Problem. 13'19. A shaft of rectangular section is transmitting power at 200 r.p.m. 
lifting a load of 6 tonnes at a_ speed of ~O . metres per mit?ute. TJie efficiency of the crane 
gearing is 60 °lo and the maximum perm1ss1ble shear stress Ill shaft 1s 40 N/mm2• If the ratio 
of breadth to depth is 1 ·5, determine the size of the shaft and the angle of twist in a length of 
4 metres. 

or 

If G= 78400 N/mm2• 

Solution. Work done per minute = 6000 X9'8 X !O x 1000= 58'8 x 107 Nmm 

Efficiency of gearing =60 °/0 

Input work per minute = 58'8 X 107 

o·6 98 X 107 Nmm 

Therefore torque 

N= 200 r.p.m. 

T 
98 X }07 

2rc X200 
779857 Nmm 

For the rectangular section, longer side 

= 1'5Xshorterside, or a= l'5b 

Moment of resistance 

0·5 b)2 x b2 
= 3 X 1'5 b+I·8 b Xq 

2·25 b4 

6·3 b X 40 

779857= 0· 357 bSx 40 

Shorter s ide, 
J.,on9er side, 

b3 -
779857 

= 54590 mma - 40xo·357 

b = 37'93 mm 

a = 37'93x 1'5= 5(>'895 mm 
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Angle of twist, 
d2+b2 Tl 

0=k . asbs x -G -

where k = 3'645 - 0'06 x !!:.. =3'645-0'06 X ~=3'555 
b b 

r._
3
.
555 

56'89?2+37'9~2 X 779857X4000 
(I- X 56'8953X37·93s 78400 

= 0'0658 radian =3"77 degree. 

Problem 13·20. A shaft of elliptical section with major axis 40 mm and n1inor axis 
25 mm is subjected to a twisting moment of 250 Nm. Determine the maximum shear stress 
developed in the shaft and the angle of twist in a length of I metre. 0 = 78400 N/mm2 

Solution. Torque, T=250 Nm=250X 1000 Nmm 
Minor axis, 
Major axis, 

a=25 mm 
b=40 mm 

lt 
T= 16 ba2 q 

where q= maximum shear stress at the edges of minor axis 

= 16X 250,000 = 50.93 N/mm2 

q 1tX40 X252 

A:n~ulat twist, 
i_ij (l'l2+b2) T_l 

0=-;- asbs X 0· 

= ___!£ X (252 +402
) X 250,000X lOdO 

lt '253 X 403 78400 
= 0;036 radian= 2·d7 degree. 

Pro'tiem ilit. A closed tubular section of mean radius ~ and radial tll.idHiess t and 
a tube of the same radius and thickness but with a longitudinal slit are subjected , tp the same 
twisting moment T. Compare the maximum shear stress developed in both and also compare 
the angular twist in these tubes. 

Solution. 
Mean radius 
Thickness, 

= R 
=t 

Closed Tubular Section 

Maximum shear stress q1 = (2r;!t)R 
t 

qi= 2tr.R2t ... (1) 

slit 
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Angular twist per unit length 

0 - T 
1 - GX21rR3t ... (2) 

Tubular section with a small s lit . 
section of width 2n:R and thickness t . 

This can be tr~ated. as a thin rectangular 

M . h 3T 3T 
ax1mum s ear stress, q2 = btz = 2nRt2 

3T 
Angular per unit length, 02= 

2
n: 

2rcRt2 

3T 
t 

3R 

01 T 2nRt3 t 2 

a;-= Gx 2reR3t x 3T = 3R2 

t<<R 

So the closed tubular section is much more stronger and stiffer than ~he open tubular 
section with a slit. 

Problem 13'22. An extruded section in light alloy is in the form of a semi-circle of 
mean diameter 8 cm and thickness 4 mm. If a torque is applied to the section and the angle 
of twist is to be limited to 2° in a length of 1 metre, estimate the torque and the maximum 
shear stress. 0 = 26000 N/mm2 • 

Solution. The semi circular section having only one boundary can be treated as thin 
rectangular section of width rcR and thickness t. 

Width, 

Thickness, 

b = rrR= n: X40 mm 

t= 4 mm 

4° 'fT 4tt 
Angular twist per mm, 8= 

1000 
x 

180 
= 

180000 
radian 

0= _]I_ or T = G0 bta 
Gbt3 3 

T = 4'11' 26000 X(rc x 40)(4);l 
180000 X 3 

= 4866'1 Nmm = 4'866 Nm 

_ 3T 3 x 4866'1 _ . 
2 Maximum shear stress, q- bt2 = n: x 40 x (4)2 - 7 26 N/mm 

Problem 13'23. An I section with flanges 50 mm X 5 mm and web 140 mmx 3 mm 
is subjected to a twisting moment of 0·2 kNm. Find the maximum shear stress and twist per 
unit length neglecting stress concentration. G= 80,000 N/mm2

• 

In order to reduce the stress an.d the angle 0f twist per unit length, the I section is 
reinforced by welding steel plates 140 mm x 5 mm as shown in the Fig. 13'44. Find the 
maximum stress due to the same twisting moment. What is then the value of twist per un.it 
~en~th:, · · · 
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Solution. 
I section 
Flanges 50 x 5 mm 
Web 140X3 mm 
I:bt2=2 X 50 X 52+ 140 X 32 

=2500+ 1260=3760 mms 
l:b1S=2X50'X 125+140 X27 

= J 2500+ 3780 mm4 

= 16280 mm4 

Maximum shear stress 
3T 3X0'2 X 106 

q= Ibt2 = 3760 

,, 
~ 

51nm 

-
45 1 

rn m 

,Jmm 

_j_ 

1
5mm 

5mm 

~ :4- ~ I+ -e ' + 

I 

I 
I 

140mfT! 

I 
I 

= 159'57 N/mm2 
1 

Angular twist per unit length 

L 
-..j 25mm 25mm' 

l 
~5mm 

i.-«5mm-j · 
3T 3X0'2Xl06 

= G!.bt3 =80,ooox16280 
=0'463 x 10-s rad/mm 

Fig. 13'44 

Reinforced I section. As shown in the Fig. 13'44, there are two cells of area 

A1= A2= 22'5 X 145 mm2= 3262'5 

Line integrals 
22'5 22'5 145 145 

a1 = a2= - 5- + 5 + 3 + -5 - = 86.33 

145 
a12= 3 = 48'33 

Say the shear flow in cell l is T1 and shear flow in cell 2 is T2 Then 

T, Torque = 2 -r1 A1+ 2 T2 A2 
= (T1 + -r2)(2 X3262'5) = 6525 (T1 + T2) 

1 1 
2A1G (a1T1 - a12T2) =2A2G (a2T2-a12 T1) 

But A1= A2 

So 86'33 -r1 -48'33 T2= 86'33 T2 - 48'33 Ti or T1 = -r2 

T 0·2 x toG 
Ti=T2= 2x 6s25= 2 X6525 15·~2 N/mm 

Maximum shear stress = ~ 1 = ~ = 3'065 N/mm2 
t 5 · 

Angular twist per unit length 

1 
6= 2A

1 
G (a1-r1-a12 T2) 

15'32(86'33-48'33) _ . - 3 

= 2x 3262·5 x 80,000 - O OOll x 10 rad/mm 

;=0'0638 X 10-a de~ree/ mm= 0'0638°/metre lenst4 
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Problem 13'24. A thin waiied section is of two cells one dosed but other having a 

small longitudinal slit as shown in Fig. 13·45, The section is of uniform thickness t through 
out and it has dimensions 2a X a as shown It is subjected to a twisting moment T. Determine 
(i) Torque shared by each cell (ii) maximum shear stress in both the cells (iii) angular twist per 
unit length, if G is the shear modulus of the section. 

Solution. 
dell I 
Area, A=a2 

~ ds = 4a :r t t 
Say shear flow in the cell is -. 
Say the torque shared by cell 1 is T1 

Angular twist per unit length, 
e T 1 rf. ds 

1 = 4A2G 'f-t-

T1 4a Ti ) 
=4xa'xGxt = Gast ... (l 

Cell II. Open section, 
a a 

Breadth, b=a+a+2 + 2 =3a 

Thickness, =t 
'f.bts= 3ats 

~bt2 =3at2 

Say the torque shared by cell 2=T2 

Q 

3T:i 3T2 T2 
Angular twist, ell G"i.bt3 = G3ats = Gats 

But both cells I and II are integral, for continuity 81= 82 
Ti Ts 

Ga3t = Gat3 

Tiat3=T:ia8t or T1t2=T2a:i 
T1 _ a:i a2 

T:i _ ,2 or T1 = T2XF 

Fig. 13·45 

But 
a:i ( a2+12 ) 

T = ~+~=~x~+~=~ - 1-2 -

Tt:i Ta2 

T2 = ca2+1:i)' and T1= (a2,t-t2) 

Maxim.um shear stress in cell 1 
T1= 2-.A=2x-.xa2 

T1 
"• shear flow = 2a2 

qi, maximum shear stress, 
-t T1 Ta2 T =,= 2a2t = 2a2t(a2+t2) = 2t(a2+ta) 

... (2) 

•.. (3) 
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where 

where 

'Max1muin shear stress in cell 2 
3T2 3 X Tt2 

q2= I bt2 = (a2+t2)(3at2) 

Angular twist per unit length 
3T2 

01 = 02 = G~bts 

SUMMARY 

T q G0 q, 
1. Torsion formula y =Jf= , =-;:-

3 XTt2 

q=maximum shear stte·ss 
T=Twisting moment 

T 

f 
. . nR4 

J =Polar moment o mertia = 2 
R = Radius of solid shaft 
G=Shear modulus 
0= Angular twist 
/= Length of the shaft 

qr= Shear stress ·at any radius r 
For a hollow shaft with inner dia D 1 and outer dia D 2 

J = ·.!:_ (D 24 - D/) 
32 

Torsion formula will now be 
32 T 2q 

TC(D/- D14) D2 

2. Torsional rigidity of the shaft = GJ 

3. Modulus of rupture q' = 
16 :;"x (in a solid ·shaft) 

16 Tmax D2 . , , 
= n(D24_ D/•) ~m a hdllow ·shaft) 

T 

Tmax = max'.Mnum torque uptil faHure ·ofthe shaft 

4. Horse power ~r,ansmitted by a shaft 
, '2:r~NT 
HP= 746x 60 

-Wliete N = Revolutions ·per tninute 
T = Torque in Nm 

. 2rr.NT 
Metnc HP = 4500 where T= irorque ·in kg-metre 

5. If there are several shafts in series, same torque Twill act on each of them 

T l I 8 ___ I_( !_1 -1-- j_~ +-.b \ ota angu ar twist ~ 
G 11 12 J 3 I 

where /1, l2 and /8 ar~ the lengths of the . shafts 

' 



6. For a compound shaft, where two shafts are co-axial or where torque acts at the 
junction of the two shafts. 

Angular twist, 

Total torque, 

01=82 

T 1 J1 G1 / 2 -=-x-x
T2 J2 G2 11 

T=T1 +T2 

7. A shaft subjected to twisting moment T, such that the maximum shear stress is, 
q, then principal stresses on the surface of the shaft are +q, -q, O 

8. A shaft subjected to bending moment Mand twisting moment T simultaneously. 

· M+'\IM2+r2 Equivalent bending moment, M, = 
2 

Equivalent twisting moment, T.= 4 M 2 +T2 

9. Strain energy in a solid shaft subjected to twisting moment 

U = !~ x volume of the shaft 

where q=maximum shear stress 

10. Strain energy in a hollow shaft of diameters Di, D2 subjected to twisting moment 
q2 ( D 2+n 2) , 

U = 40 
2 D

22 

1 X volume of the shaft 

11. Stresses in a key connecting shaft to the pulley are 

Shear stress 

Bearing stress 

2T 
= Dbl 

4T 
= Dtl 

where T= Torque, 
t = thickness of the key, 

D = Diameter of ·the shaft 

h= breadth of the key, 
/=-0 length of the key 

12. Rectangular section shaft longer side b, shorter side a subjected to twisting 
moment T. 

. T(3b + 1'8 a) 
Maximum shear stress, q= ga2b2 

Angular twist per unit length, 

0= k where k = 3'64S - ·065 x 1-
a 

Maximum shear stress occurs at the centre of the longer side. 

13. Elliptical section shaft, major axis 2b, minor axis 2a. 
. 2T 

Maximum shear stre-ss, q= 1;a2b 

T a2+b2 
Angular twist per unit length, is= 0 X r;asba 
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14. An equiiaterai triangular section shaft 

Maximum shear stress, q= 
15 v 3 x T 2a3 

Angular twist per unit length, 0=
15 v' 3

T 
Ga' 

where a=side of triangle 

15. Membrane Analogy for shafts of non circular sections 

(i) Slope of the:membraoe at any point is proportional to the magnitude of the shear 
stress at that point. 

(ii) The direction of shear stress at any point is perpendicular to that of slope at 
that point. 

(iii) The twisting moment is numerically equivalent to twice the volume under the 
membrane. 

where 

16. For a thin walled section subjected to twisting moment T 
T 

Shear flow, 't'= 2A 

where A=area enclosed by the centre line of the tube 

Shear flow, -r=shear stress q x thicknes~ t 

l . . 1 h 0 T J:.ds Angu ar twist per unit engt , = 4A2G'f t 

:} ~s is the line integral or the ratio of length divided by thickness 

17. For a section built up of thin rectangular sections such as I, T, channel etc., subjected 
to twisting moment T 

where 

Maximum shear stress, 
3T 

q= ~bt2 

Angular twist per unit length, 
3T 

O= G~bt3 

18. Torsion of thin walled two-cell section 

Shear flow 

Twisting moment 
T1= 2't'1A1 T2= 2't'2A2 

Ai, A2 are the areas enclosed by the centre line of the cells I and II respectively 
't'1 = shear flow in cell I 
't'2= shear flow in cell II 

-r3= shear flow in middle web 

1 1 
0= 2A1G (a1T1 - a12 -r2) = 2A2G (a2-r2-a12-r1) 

a1 = f> ~s for cell I including web 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

a2= § ~s for cell II including web 

a12= 1 ~s for the middle web. 

MULTIPLE CHOICE QUESTIONS 

A solid shaft of diameter d and length l is subjected to a twisting moment T. Another 
shaft of the same material and diameter d and length o·s l is also subjected to the same 
twisting moment T. If the angular twist in shaft A is 8, the angular twist in shaft B is 
(a) 28 (b) 0 

(c) 0·5 8 (d) 0·25 0 

A solid circular shaft A, of diameter d, length l is subjected to a twisting moment T. 
Another shaft B of the same material, of diameter d but of length 2/ is subjected to the 
same t wisting moment T. If the shear angle developed on shaft A is </: , the shear angle 
developed on shaft B is 

(a) 2</> (b) ¢, 
(c) 0·5 ,f, (d) 0·25 ,f, 

A hollow circular shaft of inner radius 3 cm and outer radius 5 cm and -length 
subjected to a twisting moment so that the angular twist is 0'01 radian. The 
shear a ngle in the shaft is 
(a) o·ooos radian 
(c) 0'003 radian 

Torsional rigidity of a shaft is given 
(a) T/G 
(c) GJ 

by 

(b) 0'005 radian 
Id) 0'0006 radian 

100 cm is 
m aximum 

(b) T/J 
(d) TJ 

wher e 
and 

T = Torque, ! = polar moment of inertia 
G~ Shear modulus 

A hollow shaft of outer radius IO cm, inner radius 4 cm is subjected to a twisting 
moment. The maximum shear stress developed in the shaft is 50 N/mm2• The shear 
stress at the inner radius of the shaft is 
(a) 125 N/mm2 

(c) 30 N/mm2 

(b) 50 N/mm2 

(d) 20 N/mm2 

A steel shaft A, of diameter d, length / is subjected to a bending moment T. Anot~er 
shaft B of brass of the same diameter d, length l is a lso subjected to the sa me twisting 
moment T. If the shear modulus of steel is twice the shear modulus of brass, and the 
maximum shear stress developed in steel shaft is 50 N/mm2, then the maximum shear 

· stress developed in brass shaft is 

(a) 200 N/mm2 

(c) 50 N/mm 2 

(b)~lOO N/mm2 
(d) 25 N/mm2 

A sohd shaft diameter 100 mm, length 1000 mm is subjected to a twisting moment T, the 
maximum shear stress developed in the shaft is 60 N/mm2• A hole of diameter 50 mm is 
drilled throughout the length of the shaft. By h ow much the torque T must be reduced 
so that the maximum shear stress developed in the hollow shaft remains the same . 

(a) T/2 (b) T/8 

\c) T/15 (d) T/16 
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8. A stepped shaft of steel 150 cm long is 
subjected to a twisting moment T. For 
100 cm length, the shaft diameter is 4 cm 
and for 50 cm length, tbe shaft is of 
diameter 2 cm. The shaft is shown in 
figure 13'46. If the angular twist at A 
is e, then total angular twist at B is Fig. 13'46 

(a) 17 8 
(c) 9 0 

(b) 16 0 
(d) 8 0 

9. A solid circular shaft is subjected to the twisting moment such that the maximum shear 
stress developed on this shaft is 40 N/mm2• The maximum principal stress developed on 
the surface of the shaft is 

(a) 80 N/mm2 

(c) 20 N/mm~ 
(b) 40 N/mm2 

(d) None of the above. 

10. A solid circular shaft A of diameter dis transmitting 100 HP at 200 r.p.m. Another shaft 
B of the same material but hollow with outer diameter d and inner diam(;:ter o·s d is 
transmitting 200 HP at 400 RPM. If the maximum shear siress developed on shaft A is 
150 N/mm2 , the maximum shear stress developed on shaft B will be 

(a) 320 N/mm2 (b) 240 N/mm2 

(c) 160 N/mm2 (if) 150 N/mm2 

11. A steel shaft A of diameter d, length/ is subjected to a I wisting moment T. Another 
shaft B of brass, diameter d, leo.~h 0·5 / is also subjected to the same twisting moment T. 
Shear modulus of steel is 2 ti m~s the -shear modulus of brass. If the angular twist in 
shaft A is 6; then the angular twist in shaft B is 

(a)20 (b)0 

(c) o· 5 0 (d) 0·25 0 

12. A shaft of lOO mm diameter 1s keyed to a pulley transmitting power. The breadth of the 
key is 20 mm and its thickness is 20 mm. If the shaft is subjected to a twisting moment 
of: 1000 Nm, and its keyed length is 10 cm, the shear stress developed in the key is. 
(a) 100 N/mm2 (b) 50 N/mm2 

(c) 10 N/mm2 (d) None of the above 

13. A shaft of rectangular section b X a is subjected to a twisting moment T. The ma,ximum 
shear stress occurs at 

14. 

15., 

(a), \h,e ends of diagona,ls 
(c). at the centre of the shorter side 

(b) the centre of the longer side 
(d) none of the above 

A shaft of elliptical section is subjected to a twisting moment. The ma.ximum sh~ar stress 
occurs at the -
(a) at the centre of the ellipse (b) at the ends of minor axis 
(c) at the ends of major axis (d) none of the above. 

I',,. stretchedi men:ibranf;: u_nder pi:es.sur~ i~ used to find the shear stres.ses in asp.aft of 
rectangu.l~i; section subJected to tw1stmg moment. The maximum stress occurs at the 
poj.nt where 
(a) deflection is maximum 

(c) slope is maximum 
(b) deflection is minimum 
(d) slope is zero 
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16. A shaft of thin square section with mean perimeter 16 cm and wall thickness 0·25 cm is 
subjected to a twisting moment of 16 Nm. The maximum shearing stress developed in the 
section 

(a) 2 N/mm2 

(c) 8 N/mm2 

(b) 4 N/mm2 

(d) 16 N/mm2 

17. A Tee section flange 10 cm x 1 cm and web 10 cm X 1 cm 'is subjected to a torque of 
500 kg-cm. The maximum shear stress in the section is 

(a) 25 kg/cm2 

(c) 75 kg/cm2 

1. I c) 

6. (c) 
11. (b) 
16. (a) 

2. 
7. 

12. 
17 . . 

(b) 
(d) 

(c) 
(c). 

(b) 50 kg/cm! 
(d) 100 kg/cm2 

ANSWERS 

3. (a) 4. 
8. (c) 9. 

13. (b) 14. 

EXERCISES 

(c) 5. (d) 
(b) 10. (c) 
(b) J s. (c) 

13'1. A hollow circular steel shaft revolving at 150 rpm transmits power to a crane 
lifting a load of 80 kN, at a speed of 2 metres/second. If the efficiency of the gearing system 
is 70%, determine the size of the shaft. The external diameter is l '5 times the internal dia
meter and the maximum shear stress in the shaft is 80 N/mm2• Calculate also the angular 
twist in the shaft over a length of 2 metres. Given G for steel= 82 kN/mm2 

[Ans. 90'3 mm, 60'2 mm ; 3'88 degree] 

· 13'2. A solid circular shaft is required to transm it 250 metric horse power at 600 r.p.m. 
The maximum torque developed in the shaft is 1 ·3 times the mean torque. Determine the 
diameter of the shaft if the maximum shear stress is not to exceed 1200 . kg/cm2. Calculate 
also the angular twist per 100 cm length of the shaft. Gst eet= 800 tonnes/cm 2. 

[Ans. 5·475 cm ; 2'99°] 

13 3. A hollow circular steel shaft is transmitting 150 metric horse power at 200 r.p.m. 
The maximum torque developed in the shaft is 40% more than the mean torque. Determine 
the external and internal diameters of the shaft if the maximum shearing stress is not to exceed 
JOO N/mm2 and the maximum angular twist per metre length of the shaft is not to exceed 3°. 
The external diameter is double the internal diameter of the shaft . Gsteel= 82 x 10s N/mm2. 

[Ans. 74'2 mm, 37·1 mm] 

13'4. A solid bar of a metal of diameter 2 cm and length 20 cm is tested under 
tension. A load of 500 kg produces an extension of 0'032 mm. At the same time the change 
in diameter is observed to be 0·00112 mm. Determine E, G and 1/m for the material. 

Ans. [0'9947 x 106 kg/cm2, 0'368 x 106 kg/cm 2, 0'35] 

13'5. A hollow marine propeller shaft with diameters ratio 0'6, is running at 
150 r.p.m. It is propelling a ve_ssel at a speed of _30 knots, at the expenditure of 8000 H.P. 
If the efficiency of the propeller 1s 85%, and the d11 ect stress due to thrust is not to exceed 
80 kg/cm2, calculate (a) sh aft diameters (b) maximum shear stress due to torque. 

· ! ~1w t = 9'515 metre/second ~Ans. 28'65 c~1 17'19 cm ; 950'4 k?/cm2J 
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13·6. Co)llpare the t9rques which can be transmitted by solid and hollow shafts for a 
given maximum shear stress, if the weight per unit length of the shafts is the same and both 
are made of same material. The internal diameter of the hollow shaft is 0·6 times the external 
diameter. [Ans. 0'5885] 

Tub~ 

C 

Fig. 13·47 

13'7. A solid circular steel shaft is 
rigidly connected to a steel tube to make a 
&pring as shown in the Fig. 13·47_ The shaft 
1s prevented from rotation at the end C and 
a torque T is applied to the tube at the end 
A. The useful length of the shaft and tube 
is 50 cm. The diameter of the shaft is 3 cm, 
the internal diameter of the tube is 3·5 cm and 
the external diameter is 4 cm. Determine the 
torque at the tube if the maximum shear 
stress is 11ot to exceed 200 N/mm2• Given Gsteet= 80,000 N/mm2

• Moreover_ calculate (a) the 
ratio of the maximum shear stresses in shaft and tube. (b) the total angular twist. 

[Ans. 0·353 kNm, (a) 3·59, (b) 5'76 degree] 

13·s. A solid circular shaft of diameter 30 mm is surrounded by a thick c?pper. tube 
of 50 mm external diameter so as to form a compound shaft. The compound shaft ts subJected 
to a torque of o·8 x 106 Nmm. Determine 

(a) torque in steel shaft and copper tube 

(b) maximum shear stresses in steel and copper 

(c) angular twist per 100 cm length of the compound shaft. 
Given Gsteel=2 Gcopf/er= 80,000 N/rnrn2 

[Ans. (a) 1'84Xl05,6'16X101 Nmm 
(b) 34'7, 28·8 N/mm2 (c) 1 '656 degree] 

13·9. A steel shaft of diameter 6 cm runs at 250 r.p.m. This steel shaft has a I cm 
thic~ brqnze bushing shrunk over its entire length of 5 metres. If the maximum shearing stress 
irr steel shaft is not to exceed 700 kg/cm2, find (a) Power of the engine (b) Torsional rigidity 
of the shaft. Gsteel= 840 tonnes/cm2

, Goronu= 420 tonnes/cm2 , 

[Ans. (a) 215'6 horse power, (b) 4450 kg-m/radian] 

13·10. A solid circular shaft uniformly tapered along its length is subjected to a twist
ing moment T. Radius at the big end is 1 ·2 times the radius at the small end. Determine 
the percent error introduced if angle of twist for a given length is calculated on the basis of the 
~ea:n radius. [Ans. 2·72 °/

0
] 

J£ql. A vessel hl;lving a single propeller shaft 30 cm diameter running at 150 r.p.m. 
is re-engined to two propeller shafts of 20 cm diameter each running at 250 r.p.m. If the 
workin'g shear stress in these shafts is 10 per cent more than the single shaft, determine the 
r~tio Qf the horse powers transmitted by these two shafts with that <>.f single shaft. 

[Ans. 1 ·087] 

13'12. A steel shaft of lO mm diameter is solid for a certain part of its length and 
hollow fo:r th~ remainder part of its length with inside diameter 30 mm. If a pure torque is 
applied of such a magnitude that yielding just occurs on the surface of the solid part, determine 
~he q.~pth of yieiding in the hollow part of the shaft. Determine a,Jso the ratio of angle of twist 
per UJlit length for the two parts of the shafts. [Ans. 0'84 mm, l '02] 

13'13. A flanged coupling has 8 bolts of 2 cm 9iameter each, arranged symmetricaJLy 
along the bolt circle diameter of 24 cm. 1f the diameter of the shaft is 8 cm and stressed upto 
J ~onne/cm2~ calculate tp,e -;hear str~ss in the bolt~. [Ans. 333·33 k~/cm2~ 



13'14. Fig. 13'48 shows a vertic~l 
shaft with pulleys keyed to it. The shaft 1s 
rotating with a uniform angular speed of 
1500 r.p.m. The belt pulls are indicated and 
the 3 pulleys are rigidly keyed to the shaft. 
If the the maximum shear stress in the shaft 
is not to exceed 60 N/mm2, determine the 
necessary diameter of the shaft, which is 
solid. The shaft is supported in bearings 
near the pulleys, so that the bending of the 
shaft may be neglected. 

[Ans. 17'205 mm] 

13'15. A solid shaft of diameter 8 cm 
is transmitting 500 HP at 500 r.p.m. It is 
subjected to a bending moment 25000 kg-cm 
and an end thrust. If the maximum principal 

stress developed in the shaft is 1400 kg/cm2, 
determine the magnitude· of end thrust. 

[Ans. 27'15 Tonnes] 

13'16. A solid alloy shaft of diameter 
500 mm is coupled to a hollow steel shaft of 
same external diameter. If the angular twist 
per unit length in steel shaft is limited to 
75 % of the angular twist per unit length of 
solid shaft, determine the internal diameter 
of hollow shaft. At what speed, the shafts 
will transmit 150 horse power. The maximum 
shearing stress in steel shaft is not to exceed 
100 N/mm2 and that in alloy shaft it is not to 
exceed 50 N/mm2. 

[Ans. 41 '32 mm, 858 revolutions 
per minute] 
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Fig. 13'48 

13'17. A shaft subjected to bending and twisting moments simultaneously. The 
greater principal stress developed in the shaft is numerically 4 times the minor principal stress. 
Determine the ratio of bending moment and twisting moment and the angle which the plane of 
greater principal stress makes with the plane of bending stress. [Ans. 0'75, 24°18'] 

13'18. A solid shaft transmits 1200 horse power at 300 revolutions per minute. The 
maximum torque developed in the shaft is 1 ·4 times the mean torque. The distance between 
the bearings is 1 ·2 metre with a flywheel weighing 2000 kg midway between the bearings, 
Determine the shaft diameter if (a) maximum permissible tensile stress is 800 kg/cm2, (b) the 
maximum permissible shearing stress is 500 kg/cm2• [Ans. (a) 14'36 cm (b) 16 cm] 

13'19. A shaft of square section is subjected to twisting moment 400 Nm. If the 
maximum shear stress developed in the shaft is not to exceed 40 N/mm2, determine the size of 
the shaft and angle of twist in a 2 metre length of the shaft. G=78400 N/mm2. 

[Ans. 36'36 mm, 2·377 degree] 

13'20. A tubular section of mean radius 10 cm and thickness 1 cm having a small 
longitudinal slit cut into it, is subjected to a torque such that the maximum shear stress is 
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50 N/mm2 Datermine the torque 011 the section, and the angular twist for 1 metre length of 
the shaft. Compare its strength and stiffness with that of a closed tubular section of the same 
dimensions. G=80,000 N/mm2

• [Ans. 10472 Nm. 1 ·04 rad/metre length ; 1 : 30, 1 : 300] 

13·21. An extruded section of brass i.s in the form of a semicircle of mean diameter 
90 mm and thickness 4 mm. If a torque of 5 Nm is applied to the section, determine the 
maximum shear stress developed in the section. What is the angular twist per metre length. 

[Ans. 6"63 N/mm2, 2'435°] 

13·22. An I section with flanges 50 mm x 5 mm and web 65 mm x 4 mm is subjected 
to a twisting moment of tO kg-metre. Find the maximum shear stress and the angle of twist 
per metre length. G=820,COO kg/cm2

• Neglect stress concentrations. 

In order to reduce the stress and the angle of twist per unit length, the I section is 
strengthened by welding steel plates 65 mm X 5 mm at the ends of the flanges so as to make a 
section of two cells. Find the maximum stress due to the same twisting moment. What is the 
angular twist per unit length. ' 

[Ans. 847'4 kg/cm2, 0·22 radian/metre ; 31 ·74 kg/cm2, 0'0014 radian/metre] 

13"23. A thin walled box section has 
two compartments as shown in Fig. 13'49. 
The thickness of the section is constant. What 
is the shear stress in both the cells . Take 
a= 10 cm, t=0"8 cm. What will be the 
angular twist per unit length. G= 80,000 
N/mm2 • [Ans. 2"484 N/mm2, 0·397 N/mm2• 

0"036° per metre] 

a 

-c--a-~-- a 

Fig. 13°49 



Springs 
The springs are commonly used to absorb the energy provided through an external 

force in the form of strain energy and to release the same energy as per the requirements. In 
the case of clockwork, the strain energy in the spiral spring is stored through winding the spring 
and the resumption of the spring's original shape takes place very slowly. In various 
mechanisms, springs are provided as a means of restoring the original configuration against the 
action of the external force. Springs are also used to absorb shocks such as the springs of 
buffers of railway rolling stock and the springs on the wheels of the vehicles and the effects of 
the blow on the rolling stock or the vehicles are reduced. 
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14'1, HELICAL SPRINGS 

When the axis of the wire of the spring forms an helix on the surface of a right circular 
cylinder or a right circular cone, a helical spring is obtained. But here we will deal only with 
the helical sprin--gs, when the coils of the springs form a cylindrical surface. The conical springs 
are not within the scope of this book. 

I 
Figure 14'1 sho.ws coils of a helical spring subjected to axial load or axial moment. 

ABCD is the helix described by the spring wire. The axis of the spring wire forms a right 
circular cylinder of radius R, O'K= R, the axis of the cylinder being O'O, which coincides with 
the axis of the spring. The line KBL is the generator of the cylinder. MB is the tangent to 
htilix at the point B. M N is perpendicular to the axis of the spring. If the axis of the spring 
is vertical then MN is horizontal. The angle LN MB is called the angle of helix of the spring. 
Let,us take 

R = radius"of the cylinder as shown 
= mean radius of the coils of the spring 

rl= helix angle 
n=number of coils in 'the spring 

f h 
. . . .

1 
2nR 

Length o t e spring wire m one co, s= -- . cos Cl 

Therefore length of the spring wire in n coils= 2nnR ~21enR 
cos oc 

If ot is very small angle as in the case of close coiled helical springs. 

Let us consider first the effect of axial load W only. 

Close coiled helical spring. When the coils of the springs are so close to each other 
that they can be regarded as lying in planes at right angles to the axis of the helix, the angle at is 
very small and cos oc :::: I. 

Say the diameter of the wire= d 

P 1 f . . J ~d' o ar moment o mertia, = 32 
Since cos Qt = 1 

' 
Direct shear force on any section= W(axial load) 

t----- R 
0 

Fig. 14·2 

T:WR cos'-

Wcos ~ 

Twisting mom~nt on each cross section= T'=T cos ,,.::::T 

=WR 



Direct shear stress, 

q0= ~:::, which is uniform throughout the section 

Maximum shear stress due to twisting mom~nt 

q= WR x .!!._ = 16WR 
m/•/32 2 nd3 

As is obvious from the figure 14'2, the direct shear stress q0 is added at the inner side of 
the spring and substracted at the outer side i.e. the resultant shear stress at the inner radius of 
the coil will be more than the resultant shear stress at the outer radius of the coil. 

. t 

wire diamete r 

Fig. 14·3 

Moreover consider a small element mm'n'n of the spring wire subjected to twisting 
moment. The cross section mm' rotate~ with respect to the cross section nn'. Due to thy 
twisting moment, the angular displacement of the point m with re&pect n is the same· as tWe 
angular displacement of the point m' with respect ton'. But the distance mn is smaller than 
the distance m'n'. Therefore the shearipg. strain at the inner surface mn will be more than the 
shearing strain at the outer surface m'n'. 

Taking into account, the above observation, the maximum shearing stress in the sprifitg 
wire is given by the following equation by some researchers-

where 

16WR( 4k'-1 0'615 ) 
qma(I)= nd3 4k' -4 + -k-,-

···. ' k'= 2R ·. . d 

=spring index and ~erm in the bracket determines the 
correction factor 

Example t4·t-1. A close coiled helical spring of mean coil radius 4 cm is made of 
a steel wire of diameter 8 mm. If the a~ial load on the spring i.s 10 kg, determine t:he maximum 
shearing stress developed in the spring wire. 

Solution. 

Spring index, 

when: 

k'= 2R 
d 

R= mean coil radius= 4 cm 

«= wire diap:ieter = 9'8 ¥~ 



Axial load, 

So 

k'= 2X4 =10 
o·8 

W=lO kg 

_ 16X 10X4f( 40-1 0"6)5 ) 
qf'llax- 11X0"83 40-4 + 10 

=397"88 (1 "0833+"0615) 

Maximum shear stress =455'49 kg/cm3 
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Exercise 14·1-1. A.close coiled helical spring of mean coil diameter 50 mm is made 
of a steel wire of 6 mm diameter. If the maximum shear stress developed is 90 N/mm2

, what 
is the axial load applied on the spring. Ans. [129' 8N] 

14'2. CLOSE COILED HELICAL SPRING SUBJECTED TO AXIAL LOAD 

Again consider a small element mnn'm' 
of the spring wire subtending an angle dt at 
the centre of the spring. Say under the action 
of the twisting moment T= WR, the angular 
twist is se. 

Axis of spring 

. - .~?.f :-

The vertical deflection along the axis 
of the spring 

=d8=R86 

because 

Angular twist, 

SS=TRdt 
GJ 

Rd~= dl= length of the shaft 
considered 

d8 = R80= TR2d~ _ WRSd~ 
GJ - GJ 

W Axial load 

because T on any section is WR Fig. 14·4 

where 

21m 

f 
WR3 WR3 

Total axial deflection, 8= ! GJ d~=w-. 21tn 

Axial deflection, 

0 

n=number of turns and total angle subtended by the coils 
at the axis of the spring 

~= 2,rn 

J 1 f . . f . . . nd' = po ar moment o mertia o sprmg wire sect10n = - 2 3 
S= WR3 X 21tn X 32 64nWRS 

G X 1td.t Gd' 

Stiffness of the spring = Load per unit axial deflection = : 

. Gd" Stiffness, k = 
64

nRs . i.e., the axial force required to yX~end or compress the sprin9 by 

~ 9nit axial defl.ectiQJ:\: 
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Example 14 2-1. A close coiled helical spring made of round steel wire is required to 
carry a load of 800 N for a maximum stress not to exceed 200 N/mm2• Determine the wire 
diameter if the stiffness of the spring is 10 N/mm and the diameter of the helix is 80 mm. 
Calculate also the number of turns required in the spring. Neglect the correction due to the 
spring index. Given G for steel= 81 kN/mm2

• 

Solution. 

Mean coil radius, 80 
R= - = 40mm 

2 
Maximum shear stress, q= 200 N/mm2 

Axial load, W= 800 N 
Stiffness, 

Now 

k=IO N/mm 
16WR 16X800X40 

q= nd3 rcd3 

200=12800X40 or d3= 814'87 mms 
rcd8 

Wire diameter, 

Moreover stiffness, 

So 

Number of coils, 

d=9'34 mm 
Gd' 

k 64 nR8 

IO 80 X 1000 X 9'34' 
64 nx4oa 

n=l4'86 

Exercise 14'2-l. A close coiled helical spring made of o·6 cm diameter steel wire 
carries an axial load of 40 kg. Determine the maximum shear stress in the spring wire if the 
mean coil radius is 3 cm and the number of turns are 8'5. 

Given Gstee/=820 tonnes/cma 
Calculate also the following : 
(a) the maximum shear stress at the inner coil radius 
(b) axial deflection. [Ans. 2835 kg/cm2 ; (a) 3245 kg/cm2 (b) 5'52 cm] 

14'3. CL()SE C.ILED HELICAL SPRING SUBJECTED TO AXIAL MOMENT 

Again consider that the spring is 
subjected, to an axial moment M, then moment 
in the plane of the coil or ab?u.t the axis of 
the coil is M cos 01 and the tw1stmg moment 
is M sin cx as shown in Fig. 14 ·s. But since 
ex is small M cos a. :,:,,.Af and M sin a ~o. 

Let us consider again that the wire is 
acted upon everywhere, by a bending couple 
which is approximately equal to M. 

Say ¢ = the total angle through which 
one end of the spring is turn
ed relative to the other end, 
when the bending couple M 

i~ applie9 

I
. Axis of coit 

Axis of sprin~ 

Fi~.14·~ 
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Ml 
but l=-

. EI Work: done 

where E=modulus of elasticity of the material 

/=moment of inertia of the section 

Ml 'fo prove that ,p= EI . Let us con-

sider a bar of length I, initially straight, sub
jected to a bending moment M. After bend
ing the bar subtends an angle ef> at the centre 
of 'curvature and say R is the radius of 
curvature. 

or 

Taking ef, to be very small 
I 

Ref,=l or rp=-
R 

But from flexure formula 
M E I M 
y=]f; and R= EI 

. .. ,1._ Ml 
.,,- EI 

So the work done 

t/,= Ml _ 21mRMx 64 _ 128nRM 
EI - Exred' - Ed' 

The maximum stress in the wire due to the axial couple is 

f = Md_ 32 M 
21 - rt:d8 

C = Ce-n tre ot 
curvature 

a) 
curvature 

Fig. 14·6 

Example 14"3-1. A close coiled helical spring made of round steer wire 5 mm dia
meter, having 10 complete turns is sxbjected to an axial moment M. Determine the magnitude 
of the axial couple M if the maximum bending stress in spring wire is not to exceed 2400 kg/ 
cm 2. Calculate also the angle through which one end of the spring is turned relative to the 
other end, if the mean coil radius is 3·5 cm. Estee/= 2000 tonnes/cm2 

Solution. 

Wire diameter, 

Number of turns, 

d=O'Scm 

n=lO 

Mean coil radius, PR= 3·5 cm 

Maximum bending stress, 

A~ial momeµt 

32M f- - = 2400 kg/cm2 
r,:d8 

nd3 2400 X n X 0·5s 
M-f ·n = 3~ =29°45 k9·Cm 



The angle through which one end of the spring is turned relative to the other end, 
rf,- 128 nR•M _ 128 X 10 X 3'5 X 29'45 

- Ed4 - 2000X 1000X(0'5)' 
=1'056 radian=60'4° 
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.Exercise 14'3-2. A close coiled helical spring made of round steel wire, with mean 
coil radius of 4 cm and number of turns equal to 10 is subjected to an unwinding axial couple 
of 4 Nm. Determine, 

(a) wire diameter if the maximum bending stress is not to exceed 240 N/mm' 
(b) the angle through which one end of the spring is turned relative to the other end. . 

Estee/= 208 kN/mm2 [Ans. 5·54 mm, 59'86°] 

14'4, OPEN COILED HELICAL SPRINGS 

In the case of open coiled helical springs, the effect of bending moment WR 
sin r:,., when the spring of mean coil radius R is subjected to axial load W cannot be neglected. 
Similarly when the spring is subjected to axial couple M, the effect of M sin ll cannot be 
neglected. Let us first consider that the open coiled hc:lical spring is subjected to an axial load 
W only and due to this there are WR cos a = twisting moment and WR sin ot=bending 
moment acting on the spring wire . 

. s oi A . 
~ll' ·\ xrs of spring 

c.0\{ y 

X 

a 

w 
WR 

WR COSOCmT 

b C 

~~-- WRsinol•M' 

e ~ofsinot: t't 
$ ;'cos " f 

~ r , 
&e'cosoe oG 

m n 

8e~sin al. 

A1t is ot 

·~-I . T 
M . 

d'l.. t,.( 

r' 

Fig. 14·7 Fig. 14·8 

Total moment about X-X axis (perpendicular to YY-axis of spring)= WR 
Twisting moment about the centre of the section of the spring wire= T'= WR cos ot 
Bending moment in the plane of the coil X' X' = M' = WR sin « 
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. · .011 each element of the spring, the twisting and bending moments will act as ,shown in 
the Fig. 14'8. , 

Due to the twisting moment, there will be angular twist about the axis of the helix 
X'X' and due to the bending moment one end of the spring will rotate with respect to the other 
end about the axis Y' Y'. 

, 
! .. .. ( -

Considering a small element of the spring of length o/ 
Angular twist about axis X'X', 

80,= T'ol 
GJ 

WR cos (1. ol 
GJ 

!.. • .... ~. • ,, 
( shown by In in displacement diagram min) 

: .. -

where 

Angular rotation about axis Y'Y'. 

8.1., _ Mo/ _ WR sin (1. 81 
'fl - El - El 

(Shown by de in the·displacement,diagram dff/) 
··. Taking the component~ of angular twist and angular rotatfon about XX and ·;yy axis.: 
·86,, angular twist about XX axis - -lm+df=o6' cos (1.+04>' sin t1.. 

WR cos2 (1. ol WR sin2 a1 8/ 
= GJ +. El 

8,f;, angular rotation about YY axis 
-+ +-

=mn-fe=o8' sin O. - ocp' COS IX 

WR sin a cos r1. ol WR sin r1. cos C1. SI 
GJ EI 

Total angular twist about X-X axis, 

So 

A.ngular twist, 

I 

6= l 08 where/ is the length of the spring wire 

0 

I 

6_ f( WR cos2 °' + 'WR sin2 ex 1 o/ 
- J GJ El I 

0 

( 
WR cos2 c. WR .sin2 «) 

0= GJ + EI I 

/=length of the spring wire= 2rmR' 

R' = ..Ji_, radius of the coil in its plane cos QI 

/=2rtnR sec C1. 

0 fWRcos2 r1. + WR -sin2 r'/. ) 2 R = \ GJ EI x .,, n sec °' 

Axial deflection in the spring, 

[ c_oGsJ
2

~ + siEn/a(XJ· .q= R8= 2~nR3W sec r,. 



wher.e 

done 

Total angular i:'otat'ion about YY axis, 

So 

I I 

cp= J 'Sef,=J( WR sin IX cos rJ. _ WR sin oc cos IX) di 
. GJ EI 

0 0 

=WR sin 11. cos a [ G~ - ii J /. 
l=211;n R sec a 

</,=WR sin ex. cos 11. • 211;nR sec IX [ 0
1
1 -·lI J 

=2rm WR2 sin <1. [-
1
-

1 J , GI - EI 

The axial extension in the spring can also be obtained by using the principle of work 

Say o=axial extension in spring under the axial load ,W, 
.p' =angular rotation of the spring about Y'Y' axis 
6' =angular twist of the spring about X' X' axis 

Work done=! T'6'+·!M'ef,' 
}W8=!T'6'+1M't,6' 

8 - _1 [ T' O'+M'.1.' ]=[ T'2 / M'2 / J-1-
- W 'I' . GJ + EI W 

but T' = WR cos ~ and M' = WR sin ex. 

1 [ W2R2 cos2 
Cl. W2R2 sin2 

Ill J o=w GJ + EI I 

= W R 2l [ cos2
.i sin2 

Ill 1 
GJ + El J 

but l= 2rmR sec oc 

So axial deflection, 

Example 14'4-l. An open coiled helical spring ma.de from wire qf1pircul11,r.,cr,(l)~s 
section is required to carry a load of 10 kg. The wire diameter is 8 mm and the mean coil 
radius i.s 4 cm. Calculate (a) the axial deflection (b) angular rotation of free end with respect 
to the fixed end of the spring if the helix angle of the spring is 30° and the number of turns 
is 12. Gsteet= 800 tonnes/cm2

, Esteet=r:2000 tonnes/cmll 

Solution. 
Wire diameter, 
Mean coil radius, 
Helix angle, 
Number of turns, 
Axial load, 

d= 0·8 cm 
R=4 cm 
«=30°, sin oc = O·S, cos a=0·866 
n=12 

W=lO kg 
Length of the spring wire = 2nn R sec ex. 

211; X4X 12 = 348 0·866 cm 

E=2 X 106 kg/cm2, G=0'8 X 106 kg/cm2 
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Axial deflection, a= W R2J [ cosz« + sin
2

ot J 
GJ EI 

=10X42X348 [ 0"8662 + o·s
2 J 

GJ EI 

Now J=2I= ;~
4 

= R~~-
8
' =0'040 cm' 

I=O·o20 cm4 

[ 
0·75 0·25 J 

S=l6 XlOX 348 0·8 x lOe x o·o4 + 2 X l06 X0"02 = l "64Scm 

Angular rotation, 4, =WR sin ot cos ot { G~ - E~I J 
= 10 x 4 x o·866 x O'S x 348 [o·s x 10~ x o·o4 - 2 x 10/x o·o2] 
=O·OJ74 radian=2"14 degree. 

Exercise 14 4-1. An open coiled helical spring made of l cm diameter steel rod, 
4·5 cm mean coil radius and 20° angle of helix is subjected to an axial load W. Determine the 
magnitude of W if the maximum shear stress in wire due to torque is limited to 1350 kg/cm 2. 

Calculate the number of turns in the spring if axial extension in the spring under the load is 
4cm. 

Gs,eel =800 tonoes/cm2
, Estee/ =2000 tonnes/cm2 

[Ans. 62'7 kg, 8'3 turns] 
14'5. OPEN COILED HELICAL SPRING SUBJECTED TO AXIAL MOMENT 

Consider that on open coiled helical 
spring of mean coil radius R, angle of helix «, 
number of turns n is subjected to an axial 
couple M. Figure 14·9 shows a winding 
couple applied about the axis YY of the spring 
which tries to wind up the spring or which 
tends to increase the number of coils in the 
spring. There are two components of M i.e., 
M cos oi (in the plane of the coil acting as 
bending moment) and M sin oc, as twisting 
moment producing angular twist about the 
axis K'X'. Considering a small element of 
the spring of length 81 as shown. 

Angular twist about the axis X'X', 

t-O' = T'8/ = M sin o: 81 
- l

1 0 GJ GJ 

(shown by In, in diagram lmn) 
Angular rotation about the axis Y'Y', 

8r/>'=M'81 = M cos ix di 
EI EI 

(shown by de in the diagram def) 
Taking the components of the angular 

twist and angular rotation about XX and YY 
axis 

88, angular twist about X-X axis 
=df-mn 

I 

'f,. 

r'= M s in oe 
~( = M COSc{ 

"\ IV axis of spring 

\~r-R o\ , \\ 
~ \ol'I" ___ .,.., 

Fig. 14·9 



SPRINGS 

= '8</>' sin cx-'88' cos oc 
M sin oc cos oc '8/ 

El 

11 ·1~11 

M sin " cos ex '81 
GJ 

'84,, angular rotatian about YY axis, - -=ef+lm = '8</,' cos «+'88' sin ex 

M cos2tJ '8/ M sin2 ex '81 
= EI + GJ 

I 

0 = J M sin oc cos oc [ E~ - j
1 

] '8/ 
0 

Total angular twist, 

= M sin ex cos a1 ( }I - jJ J / where 1= 2.,,nR sec oc 

= 21rnMR sin oc ( 11 - ~J) 
I . J( Mcos2 

rt M sin2 0() Total angular rotation, ,f, = EI + GJ di 

0 

- ( M cos2 
ex + M sin2 oc ) 1 - EI GJ 

[ 
cos2 ex sin2 oc J = 2 nnR sec ex ... M ~ +GJ 

Axial deflection, '8= R0=-2nnMRi sin a ( ~ I - G~ ) 
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as we have taken winding couple 

Example J4"5-1. An open coiled helical spring made of steel wire 6 mm diameter 
and 3"6 cm mean coil radius with ~5° inclination _of the coils :,vith the spring axis is subjected 
to an axial moment M. Determine the1 magmtude of M 1f the number of turns in the spring 
increase by 1 /8. Calculate the change in the axial length of the spring, if the original number 
of turns are 10. Gstee/= 84 kN/mm2 , Estee/= 210 kN/mm2• 

Solution. 

Axial moment, 

Wire diameter, 

M = ? 

d= 0·6 cm= 6 mm 

Polar moment of inertia, 

Moment of inertia, 

Angle of helix, 

J= ;~" = " ~r = 127"235 mm4 

I = ; =63"617 mm" 

a.= 90-65= 25° 
sin a. = 0"423 
~o~ a.= 0·901 

sin2 oc = O·I78 
co~2 «= O·~zi 



Number of turns 

Mean coil radius, 

= 10 

R= 36 mm 

STRENGTH OF MATERJM'.18, 

Length of the spring wire, 

Angular rotation 

l= 21rnR sec e<=2,r X lO X 36 X .
9
1

7 
=2493·9 mm 

rf,=} turn= -~- x 360°=45°=0.7854 radian 

= Ml[ cos
2

e< + sin
2 

e< J 
EI GJ 

( 

. . [ 0·822 0·118 J 
0 7854 =M x 2493 9 210 x 1000 x 63.687+84 x 1000 x 121·215 

' 
= 1~0[ 0·1534+·0415 J 

M = tooo x ·7854 =4029·7 N =4·029 N ·1949 mm m 

Change in axial length, 8=MRI sin r1. cos 0( ( G~ - E~ ) 

= 4029"7 X 36 X ·423 X ·907 ( 84 X JOO~ X 127.235 

-21o x 10o~ x 63·617) 1 

. Change in axi~l length, 3= 4·0297 x 3·6 x ·423 x ·301(8.4 x [27.35 21 x~
3
.
617

) / 

= s-56~;ot
49

3'·
9 

(0.9348-0·7538)=2·512 mm 

E-xerci'se 14rs-l. An open coiled helical spring made of 5 mm diameter steel wit.e· 
2·5 cm mean coil radius and 23° angle of helix is. subjected to an axial moment of O 2 kg~me1Jn/ 
Determine (a) the angular rotation of one end with respect to the other end (b) axial deflection 
if number of coils in the spring is 15. 

Estee/=2100 tonnes/cm2, Poisson's ratio for steel= 0·27 
[Ans. (a) 47·4-0 (b)· o· Ii928 cm] 

t4·6. STRESSES DEVELOPED IN SPRING WIRE OF CIRCULAR SECTION 

Let us first consider an open coiled helical spring, of mean coil radius R, angle of 
helix e& and wire diameter d, subjected to an axial load W. 

On any section of the spring wire. 

Twisting moment, T' = WR cos ct 

1jendin~ moment~ M' = WR ~in r: 
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d =wire diameter 

w 

Fig. 14·10 

Max. torsional shear stress on any section, , 16T' I6WR cos Ill 

q = rcd3 = rcd3 

Direct shear stress due to axial load, " 4W q =-;;p 

Max. shear stress at inner coil radius _1_6_i¥_R_co_s_cc +-4-·W_ 
TCd3 TCd2 

Minimum shear stress at outer coil radius , u 16WR cos « AW 
= q -q · = nds - -.n-d2-

Maximum stress due to bending, f= 32M' = 32 WR sin ex 
-r;d3 · · · · · reds · · 

Maximum pr.incipal stress occurs at the inner coil radius, 

·Priqcjp~l stresses 

. . , · L~t us fut!her· consider the stresses due to axial couple Mon any section of · rhe ··sprihg wire; . a ' . . • ~ • • .. • ~ • 

Twisting moment, T'=M sin oc 

Bendi~g ~oment, M'= M cos~ 

Maximum to1sional :shear1 stress due to twisting moment, 

... . . 

Maximum stress due to bending, 

16T' 16M sin« 
q=--;Js = rcd3 - · 

32M' 32M cos a 
f= -;as-= nds 

·pifocipal stresses ·at the extreme radii (inner and outer coil radii) 

_ I J( f )a pi, P2- 2 ± T +q2 

Example 14'6-l. An open coiled helical spring of wire diameter 10 mm, mean coil 
radius 70 mm, helix angle 20° carries a_n axial load ?f 400 N. Determine thy ~he~r stress an<;l 
girect stres~ developed at ~~e inn~r radius of the co1!, 
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Solution. R=mean coil radius=70 mm 

Wire diameter, d=lO mm 

Axial load, W=400 N 

Helix angle, G1=20° 

Twisting moment, 

' sin ot=0"342 
cos ot=0"9397 

T'=WR cos()( 

STRENGTH OF MATEltl!At'S 

= 400X 70X 0"9397=26"31 X 103 N-mm 

Bending moment, M'= WR sin (I. 

= 400x70 x ·o·342=9"576x 103 Nmm. 

Direct shear stress, '= 4W = 4 x 400 = 5.093 N/mm2 

q 1td2 RX 102 

'f-0rsional shear stress, 
,, 16T' _ 16 X26"31 X 103 

q = Yd3 - TC X 103 

..:... 134·0 N/mm2 

"Total -shear st:rnss .at the i,nner coil radius 

= 134+5"093 = 139"093 N/mm2 

Direct '$tres:; due to bending moment 

= 32M' = 32 X 9_'576 X 103 = 97,54 iN/ 2 . 
,;dS TC X lt)'S . mm . 

Exercise 14"6-l. An open coilecl lhe1ical spring made of'steel iWit:e of 1.5 mm diameter 
mean coil radius 9 cm with helix angle 30° is subjected to an axial moment of 40 Nm: 
Determine the shear and direct stresses developed in the section of the wire of the s.pring. 

[Ans. 30"'1'8 N/mm'.2, 104·545 'N/mm2] 

14·7, PLANE SPIRAL SPRING 

The plane spiral spring consists of a uniform tb}n _strip \Vo11nd in the 'fbtnl of spirals 
as shown in the Fig. 14"1 l (a). Q,n~ end of the stnp .1s connected to the winding.·spindle A 
and the other end is hinged at the point B. 

Say R=distance of the ·ceph'e ·of the -spindle from the outer end B. 

The spring is wound by applying a winding couple M to the winding spindle A. The 
reaction at the point B can .be .te'so1ved into tw-0 components i.e. 

Reaction, RH = along the line joining the point Band the centre of the spindle A 

Reaction, Rv=perpendicular .to RH. 

Consider a small elemenl PQ of len·gth 8s, whc::1se co-ordinates are x and y considering 
the origin at the point B and the abscissae along the line BA and ordinate perpendicular 
ro BA. 

:Sa, !before ~he applicatioµ of the wiudin~ couple, :radt'l:l~ of cµrva~ur~ of e}e'µlent 
P(J~ri, 



Angle between the tangents PP' and QQ'=t/,. 

Now after applying the winding couple, radius of curvc!,tµre of the element=t2 , 

y 

.. * 

e 

{a) 

(b) 

Fig. 14·11 

I > 

A 

and the angle between the tangents at P and Q= t/> + 84> 

where 

or 

The bending moment at the element, M ' =xRv-yRu 

=ElXchange of curvature 

[ = moment of inertia of the strip 

[ 
1 1 J 8</, . 8s 8s M' = El ·- - -:- =El - Sl!lC~ 8,f,=-- -. . r2 r 1 8s r; r 1 

t,..l.= xRr-yRH 8 a'I' El . s 

Integrating both the sides 

J 
f xRv fyAn 

dcp = fEi- ds- j EI ds 

73'1 



or 

Assuming that 

and 

But 

Energy stored, 
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the centroid of the spring is at the centre of the winding spindle A, then 

f yds=O 

if>- Rv J x dJ ~ ~ X ZR - EI - J!,[ 

where / is the length of the strip forming the spring. 

Rv . R=M, moment applied at the spindle 

,J,=Ml 
EI 

1 M2/ 
U= y Mef, = 2EI 

Now bending moment at any element, M'=xRv- yRH. 

This will be maximum when y=O, showing that maximum bending stress in one spiral 
occurs when the element lies along the line joining the outer point and the centre of the spindle. 
Moreover the maximum value of xis 2R i.e., at the point C as shown in the Fig. 14·11. 

Mmari=2R . Rv=2 M 

Maximum bending stress, /maz= 
2f 

where Z = section modulus of the strip section. 

Z 
bt2 h b= breadth of the strip 

= - were · . 6 != thickness of the strip 

Energy stored, U= M 2J - ( /magJ.bt2 
)

2 _J_ 
2El - 12 2El 

/2ma• . f . 
= 24 E X Volume o the stnp. 

Ex.ample 14'7-1. A flat spiral spring is made of a strip 5 mm wide and 0·25 min 
thick, 10 m long. The torque is applied at the winding spindle and 8 complete turns are 
given. Calculate the torque, -the energy stored and the maximum stress developed at the point 
of greatest bending moment. E = 210 kN/mm2

• 

Solution. 

Number of turns, 

Angle of rotation, 

n=S 

if, = 21tn=2X i; X8= I6 1t radians 
Ml = EI where 1= 10000 mm 



E=210X 1000 N/mm2 

bt3 5(0'25)3 5 
1=12= ~=768 mm' 

So, 5 16 ,; . 
M=210 x 1000 x768 x 10000 =6 872 Nmm 

Maximum stress, 
_ 12M _ 12X6'872 _ . 

2 fma• - bt2 -sx(o·2s)2 -263 9 N/mm 

Work/Energy stored =! M</>=}X6'872X 16 ,;=172'7 Nmm. 

Exercise 14'7-l. A plane spiral spring is made of 6 mm wide and 0·3 mm thick steel 
strip. The torque applied at the winding spindle is 0·1 kg-cm. Determine (a) the number of 
winding turos if the length of the strip is 250 cm. (b) the maximum stress developed at the 
point of greatest bending moment. E=2' 1 X 106 kg/cm 2. 

[Ans. (a) 1·4 turns, (b) 1111·1 kg/cm2) 

14'8. LEAF SPRINGS 

These springs are commonly used in vehicles as cars, trucks, railway wagons etc. and 
are termed as carriage springs also. There are two types of leaf springs (a) semi-elliptic and 
(b) quarter elliptic. A number of fl.at rectangular leaves of the same thickness and width but 
of different lengths are clamped together and loaded as simply supported beams nnd as canti
levers respectively. To arrive at a simplified theory following assumptions are made. 

(i) The centre line of all the plates tor leaves) are initially circular arcs of the same 
radius R, so that the contact between the plates is only at the ends. 

(ii) Each plate is ofuniform thickness and overlaps the plate below it by an amount 

p= ~n, where I is the length of the longest leaf and n is the number of leaves. 

(iii) The overlaps are tapered in width to the triangular shape as shown in Fig. 14' 12. 

Since each plate is initially .of the same curvature, each plate will touch the one above 
it only at its ends, when unloaded. After applying the central load W, if the change in cur
vature is uniform and is the same in all the plates, the contact will continue at the ends only. 

Considering two plates only, the load at the two ends will be W/2 each as shown in 
Fig. L4' l 3. The bending moment varies from A to C and from B to D, but it .is uniform and 
equal to Wp/2 in the portion CD. 

Similarly considering next two plates, bending moment varies linearly in portions CE 
and DF while it is uniform in the portion EF and equal to Wp/2. This shows that each 
triangular overhanging end is loaded as a cantilever while the portion of uniform width carry 

uniform bending moment 'W_J- (as shown in Fig. 14'13). Over the tapered portion, M 

the bending moment and /, the moment of inertia are varying linearly and proprortional to the 
distance from the end, so M/1 remains constant, while over the central portion b9th M a~d 
/ are constant and therefore M/I is constant throughout the length of the spring. 



) 

... : 

Semi - elliptical spring 

Fig. 14'12 

8 .M.Oiogrom • · 
. - · -·· .., 

Fig. 14'13 

t t 

' 
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Moreover ~ = R~ - i , showing that the radius of curvature R', m the strained 

._ state is also the same for each leaf and contact between the plates (leaves) continues to be at 
•the ends only. .Since the friction between the plates is negligible and each plate is of the same 
radius of curvature. they can be considered to be arranged side by side forming a beam ~f 
same thjckness throughout but of variable width, which is maxjmum in the centre, equal to nb. 
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Maximum bending moment occurs at the centre of the spring, 

Maximum width, 

Moment of inertia, 

Bending stress, 

WI 
Mm a,= 4 

B=nb 

t8 
l=(nb)u 

f= WI X t/2 = 3Wl 
4 I 2nbt2 

Initial central deflection, 

Yo= ~~ (using the properties of a circle) 

Final radius of curvature, 

1 1 M l WIX 12 
R' = R + EI = R - 4 Enbt3 (curvature is reduced) 

1 3W/ 
= R - Enbt~ , a constant 

So R' is constant, showing that all the plates are bent into the circular arcs of radius R' 
and contact continues at ends only. 

Let us determine the load W0 which straightens all the plates i.e. 
R'= oc (infinity) 

1 
- = 0 
R' or 

_l _ _ 3 W0 l =O 
R Enbt3 

or W. - Enbt
3 

(Pr-oof load" 
o- ~ ' 

Example 14'8-1. A carriage spring centrally loaded has 6 steel ,6 -mm thick and 6 cm 
wide. If the largest plate is 96 cm long and the load required to straighten the spring is 3 kN. 
Determine the following. 

(a) initial radius ,of curvature 
(b) initial central deflection provided 
(c) ·the bending stress under under the proof load. 

Solution. 

Number of plates, 
Thickness, 
Wiidth, 
Proof load, 
Length 

E=210 kN/mm2 

n=6 
t=0'6 cm= 6 mm 
b=6 cm=60mm 

W0 =3000 N 
1=96 cm= 960 mm 

(a) Radius of curvatue, 
Enbt 3 210 X 1000 X 6 X 60 X 68 

R = 3! W0 3X960X3000 
= 1890 mm = l '89 m 
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(b) Central deflection 
/2 960 X 960 = 60.95 = SR = 8 X 1890 mm 

(e) Bending stress, f ;!;! =~~!o:~::~~ =333 '33 N/mm
2 

Exercise 14'8-l. A carriage spring centrally loaded has 8 steel plates 5 mm thick 
and 5 cm wide. If the longest plate is 80 cm long, find the initial radius of curvature if the 
maximum stress is 1·5 tonnes/cm2, when the plates become straight under the central load. 

E=2' l X 106 kg/ems [Ans. 350 cm] 

14'9. QUARTER ELLIPTIC SPRING (CANTILEVER LEAF SPRING) 

Proceeding along the same steps as in 
the case of semi-elliptic spring. 

Bending moment=-W/ 

M f
. . nbt3 

.. o~ent o _ !nert}a.---:- 12 

d
. f 6Wl Ben mg stress, = -b 2 n L 

M 1 1 
:i ~ ,:·,... . El= R' -: R ; 

where 

where 

R' =final radius of curvature 
R=initial radius of curvature 

of each leaf 
WI I 1 2 

- El = R'-R= p:(Y-Yo) 

y0= initial deflection 
y=final de:l;lectiQn under the 

load W 

w12 6Wt3 

i) . _: ; '. Yo -=--Y ,= 2 El = ~ b. sE 
. , : .. ;--- ,. ~ : , n t 

The load W0 required to straighten all 
the plates can be found by putting 

R' = oc (infinity) 
EI Enbta 

Wo= IR = 12 IR 

w 

nb 

J_ 

~u a rter ~ II iptic- spring 

Fig. 14·14 

The load required to straighten all the plates of the spring is called Proof load. 

., 

Example 14'9-1. A cantilever leaf spring of length 50 cm has 5 leaves of thickness 
1 cm. If an end load of 200 kg produces a deflection of 3 cm, find the width of the leaves. 

1 E= 2 X 106 kg/cm2 

Solution. 
Length of the spring, 
Number of leaves, 
Thickness, 

l3readthf 

1=50 cm 
n=c:=5 . 
t= l cm 

fl=? 
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Deflection under the load, 

~=3 cm= 6W/3 
nbt3E 

Load, W=200 kg 

r·. 

Width of the leaves, 

6X200X503 
3 

= 5 X b X l3 X 2 X 106 

b=5 cm 

737 

Exercise 14'9-l. A cantilever leaf spring of length 60 cm, has 6 leaves of thickness 
8 mm. T}:ie width of each plate is 48 mm. If an end load of 1 ·5 kN is applied at its end 
determine the following : 

(i) end deflection under the load 
(ii) initial radius of curvature if the initial deflection provided is 100 mm 

(iii) bending stress developed under the load 

Given, E=210,000 N/mm2 

[Ans. U) 62'78 mm, (ii) 1 '8 m (iii) 292'97 N/mm2] 

Problem 14'1. Determine the stiffness of a close coiled helical spring consisting of 
10 turns of 4 mm diameter steel wire coiled on a mandrel 6 cm in diameter. 

Given : G for steel=840 tonnes/cm2 

Solution. 
Number of turns, 

Wire diameter, 
Inner coil diameter 
Outer coil diameter 
Mean diameter 
Mean coil radius, 

We know that 

n= lO 
d=0'4 cm 
=6cm 
= 6+2xo·4=6'8 cm 
=6'4 cm 

R = 3'2 cm 

W Gd4 840 X 1000 X 0·41 
T = 64 nR3 = 64 X 10x3·2s 

Stiffness of the spring, k= 1 ·025 kg/cm deflection. 

Problem 14'2. Determine the length of 5 mm diameter wire necessary to form a 
close coiled helical spring with a mean coil radius of 40 mm, whose stiffness under axial load 
is to be 4 kg/cm. Given G for stee1= 820 tonnes/cm2 

Solution. 

Stiffness, 

Wire diameter, 
Mean coil radius, 

We know that 

w k=T=4 kg/cm 

d=0'5 cm 
R = 4 cm 

32 WR GS 
nd4 -= Rl 

l=( -·~) 
nd4 G I n X0 '54 x 820XlOOO 
32 R2 = 4 X 32 X 42 
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Problem 14'3. A close coiled helical spring is made of a round' wire having n turns 
and the mean coil radius R is 5 times the wire diame.ter, show that the stiffness of such a spring 

is ( ~ ) X constant. 

Determine the constant when modulus,of rigidity, G of the spring wire is 82 X 1000 
N/mm2• 

Such a spring is required to support a load of 1 kN with 100 mm compression and the 
maximum shear stress 245 N /mm2• Calculate 

or 

or 

(~) mean.eoil radius 
(ii) number of turns 

(iii) weight of the spring. 
The material weighs 0'0078 kg/cm3 

Solution. 
Mean coil radius, R=5d 

d=wire diameter, d= 0'2 R 
Number of turns = n 

Stiffness of the-spring, 

Constant 

W Gd4 

k = T = 64n R3 

= 82 X 1(100 X ~<l:_2 R)4 =
2

.
05 

64 n X R3 

= 2'05 

R x- N/ mm 
n 

W, Axial load on such a spring 

Axial compression, 

Stiffness, 

= I kN= lOOO N 

o=I OO mm 

.!£. = 10 N/mm = 2·05 R 
0. 11 

R 10 
n = 2·05 

Moreover shear stress in wire, 

Wire diameter, 

Number of turns, 

Volume of the wire 

Weight of the wire . . 

16 WR 245= HilOO,x l6:X 5d 
q= 1tds ' or 1tds 

d 2 = 
80

•
000 

= 103 '9376 
1t X 245 

d= l0'2 mm 
R= 5d= 51 mm 

2·05R 2·05 x s1 
n= -

10
- -

10 
= 10'455 

= ~ d 2 X miR 
4 

=: (1'02)2 X21t X J0.'455 X5"1 = 273'76 ems 

= 77~·7~ XQ'007? = 2'I35 k9 

... ()) 



Problem 14·4'. A close coiled helical spring is made ot a round .steel wire. It carries an · 
axial load of 150 N and is to just get over a rod of 36 mm. The deflection in the spring is 
not to exceed 25 mm. The maximum allowable shearing stress developed in spring wire is 
200 N/mm2 and G for steel=80000 N/mm2• Find the mean coil diameter; wire diameter and 
number of turns. 

or 

or 

or 

or 

or 

or 

or 

or 

Solution. Say wire diameter = d 
The spring is to just get over a rod of 36 mm i.e., inner diameter of spring=36 mm 
Therefore, mean coil diameter, D=36 + d mm 
Axial load, W= l50 N 
Axial deflection, 3= 25 mm 
Shear modulus, C=80 x 103 N/mm2 

Now 
8WD3n 

Gd4 

25 
= 8 X 150 X D3 X n 

80X l0 3 Xd4 

D3n - 25 X 80 X 103 = 1666'6666 
d4 - 8X 1'50 

Shear stress developed in spring, q= 
8-:a~ 

(The effect of direct shear stress and spring index has been neglected) 

200= 8X 150 XD 
nd3 

D 200 X n: = 0'5236 
d3 8 X 150 

~9

3 

= 0·1435 

From equat1011s (I) and (2), 

1666·6666 d' =0' 1435 d9 
n 

nd5= 11614·40 

11614.40 
n= d5 

Substituting this value of n in equation ( l) 

DS 11614.40 1666.6666 
d4 X as 

Da 1666'6666 
d°= 11614'40 0·1435 

!l._ -~0-:1435 = 0·525 d3 -

D= d3 (0'525) 

(36+d) = O 525 d3 

... (1) 

... (1) 

... (2) 

... (2) 

... (2) 

... (3) 



740 

or 0·525 d3-d-36= 0 
d=4"248 mm 
D=ds xo·525= 40·245 
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(4) 

but D = d+36= 40"248 (There is slight error in calculation of d) 

Moreover 
n= 11614"4 11614"4 8.396 turns 

d 5 = (4"248)5 

Therefore, Wire diameter= 4·248 mm 
Mean coil diameter = 40"248 mm 
Number of turns =8·396. 

Problem 14'5. A close coiled helical spr ings is to have a stiffness of 800 N/m in 
compression with a maximum load of 40 N anda maximum shearing stress of 105 N/mm2

• 

The solid length of the spring (i .e., coils touching) is 50 mm. Find the wire diameterJ mean 
coil radius and number of coils. G= 40,000 N/mm2

• 

or 

or 

or 

Solution. Stiffness, k = 
800 

N = 0·8 N/mm 
m 

Gd4 
0

.
8

_ ~o.oooxd4 

64nRs ' or - 64 n R!! 

but nd= 50 mm (solid length) 

50 
n=y 

Therefore, 0·8 40000 X d
4 

X d or 0"064=~ 
64Rs x 50 ' Rs 

Shear stress, 
_ 16WR _ I6 X40 XR= l05 q - reds - rcd3 

_.B. 105 X n: = 0.5154 as - 640 

:: = (0"5154)3 

From equations (1) and (2) 

(0"064)(0"5154)3= ~ 4 

Wire diameter, 

Number of coils, 

Mean coil diameter 

d4= 114"126 mm4 
d= 3"268 mm 

50 . 
n= a = I5 3 

D = 2d3 x o·5154 (froru equation (2)) 
= 35 '98 mm 

.. . (1) 

... (2) 

Problem 14"6. A close coiled helical steel spring has 25 turns, the mean radius of the 
coils is 6 cm while the diameter of the wire is 12 mm. Find the work done in rotating one end 
of the spring by 90° relative to the other end (fixed end), by a couple whose axis coincides with 
the axis of the spring. E for steel= 210 x 103 N/mn12

• 
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Solution. 
Mean coil radius, 
Wire diameter, 
Number of turns, 

Moment of Inertia, 

Length of the wire, 

Angular rotation, 

R=60 mm 
d=12 mm 
n=25 

rr:d4 rr: X 124 
• 4 

1= 64- = ~ =1017 88 mm 

1=2rr:nR=2 x TC x 25 x 60= 9424"8 mm 

cf,=90"= l radians 

"' - Ml .,, - EI 

M 
Elr/> 'It 210xl03 xl017·88 

=-/- =2 X 9424·8 

=35"626x 103 Nmm=3S"626 Nm 

Work done on the spring, 

741 

Problem 14'7. A weight of 250 N is dropped on to a close coiled helical spring 
through a height of 800 mm which produces a maximum instantaneous stress of 200 N/mm2 
in the spring. If the mean radius of the coil is 5 times the wire diameter determine (a) the 
instantaneous compression in the spring, (b) number of coils in the spring. Given wire diameter 
20 mm. G for stee1= 84 x 1000 N/mm2• 

or 

Solution. 

The falling weight W= 250 N 
Heightj h=800 mm 
Maxm. instantaneous stress, q = 200 N/mm2 

Wire diameter, d= 20 mm 
Mean coil radius, 
Say 

R=5X20=I00 mm. 
w. = equivalent static load on the spring 

TCd3q 
W,XR=~ 

w _n:x2osx200 = 1000 TC N 
,- 16X 100 

Say the instantaneous compression in the spring= 8 mm. 

Then potential energy lost by falling weight = Energy stored in the spring 
W(h+il)= !We. a 

250(800+1!)=} X I 000v X 8 
800+il= 2rc:il 

Instantaneous compression in spring, 
a= 151'4 mm 
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Moreover 

Number of coils, 

STRENGTH OF MA TBRIALS1, 

~-- 64nWeR3 

o-- Gd' 

151·4_64 xnxlOOOr;Xl0@
3 

where n= number of coils. 
- 84000X204 

=14·96 n 

n= 10·12. 

Problem 14'8. A close coiled cylindrical helical spring is of 80 mm mean coil 
diameter. The spring extends by 40 mm when axially loaded by a weight of 530 N. And 
when it is subjected to an axial couple, M = 2·so·x101 Nmm, there is an angular rotation of 
60°. Determine the Poisson's ratio for the material of the spri~g. 

or 

and 

or 

Solution. Mean coil radius, R = 40 mm 
Axial load, W=530 N 
Axial deflection, 
Axial moment, 

Angular rotation, 

Now 

So 

8=40 mm 
M=2'8X 104 Nmm 

,f>=60°= ~ radians. 

32.-WR G 3 
~=Ri 

G= 32 W'.R2 1 = 32.x530 X402 X/ 
1rd4 a: 40 X TC d4 

= 6·784 X 105.X re~' 

Ml red' 
E= Irf, .where I= 64 

2·8x10•x /x64 0 3 = 17.112 x lo5 x _l_ 
1ed4 X TC ~d4 

_§_= l7'1l2= 2'5224= 2(1 + .!_) 
G 6·784 m 

1 Poisson's m' ratio =0·2'612 

Problem 14'9. Design a close helical spring to a have a mean coil diameter 120 mm 
and an axial deflection of 150 mm under an axial l0ad of 4050 N, so that the maximum shear 
stress developed in the spring is not to e'i(ceed 320 ·N/mm2

• Steel wires are available in tlie' 
following diameters : 

10, 12, 14, 16 mm 

Determine the most suitable diameter of the wire and the number of coils required. 
Calculate also the maximum shear stress developed in the spring. 

G for steel = 84000 N/mm2 

Solution. Axial load, W= 4050 N 
Mean coil radius, R= 60 mm 
q, max. allowable stress= 320 N/mma 
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Say wire diameters 

Axial deflection, 

Number of coils, 

=d mm 

d3= 16 WR = 16 X4050_X60= 3867.456 mms 
rcq 'RX 320 

d=l5'7 mm say 16 mm 

8=150 mm 

GSd4 

n 64WR3 

84000 X 150 X 164 = 14'?5 64 X 4050 X 603 

Maximum shear stress de\•eloped, 

16WR 
q= r.d3 

(neglecting the effect of spring index and direct hear) 

16 
xr.

4i~~;60 
= 302'145 N/mm2 

Problem 14·10. In designing a valve spring it is estimated that the mass of the 
valve is l kgm and it requires an acceleration of 150 m/sec2 when lifting through a height of 
0·5 cm. The free length of the spring is 20 cm and the axial length of tht; l?Pring is 16 CD) 

when the valve is shut. If the total va lve lift is 1 cm, determine the maximum force on,the 
spring. 

The diameter of the spring wire is 3 mm and the maximum shear stre,ss is not to 
exceed 3 tonnes/cm 2, determine the mean coil diameter and the I).Umber of c:oils, 

Given, G for steel=840 tonnes/cm2 

Solution. 

Mass of the valve, m= l kg 

,Acceleration, a= 150 m/sec.2 

Acceleration due to gravity, 
g = 9'8 m/sec2 

Force on the valve. = .!.{~
50

= 15'30 k~ 

Total valve lift = 1 cm 

Valve lift during opening and closing the valve=:;0;5 cm 
Free length of the spring= 20 cm 
Axial length when valve is shlit= 16 cm 
Initial compression in the length of the sprini=4 cm 
Further compression when the valve is shut= Q·s cm 
8, Total change in the Iength= 4'5 cm for a force of 15·3 kg 

. F 15·3 
Stiffness of the sprmg, k= T = 4T = 3 · 4 kg/cm 

Maximum valve lift = 1 cm 
Maximum change in the length of-the spring 

=4tl= 5 ym 
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or 

W ma•, Maximum force on the spring, 

= ~; X5=17"0 kg 

Wire diameter, d=3 mm=0'3 cm 

q, Maximum shear stress=3T/cm2 =3000 kg/cm2 

' 16 Wmax,R 
=~s-

R, mean coil radius 

Mean coil diameter, 

Number of coils, 

3000 X 7t X ·3s 
16x 17 = 0'935 cm 

D=2R= I '870_'cm 

Gd4 8 
n=64R3 XW 

8'4 X 105 X (0'3)"' X 4'5 
= 64 X (0'935)3 X 15'3 = 38'2 

STRENGTH OF MATERIALS 

Problem 14'11, A close coiled helical spring of 17 mm mean coil diameter and IO 
turns is arranged within and concentric with an outer spring. Tbe free length of the inner spring 
is 5 mm more than that of the outer. The outer spring has 12 coils of mean diameter 25 mm 
and wire diameter 3 mm. The spring load against which a value is opened is provided by 
the inner spring. The initial compression in outer spring is 5 mm when the valve is closed. 
Find the stiffness of the inner spring if the greatest force required to open the valve by 8 mm 
is 130 N. F ind also the wire diam~ter of the inner spring. G=80,000 N/mm2 

Solution. 

Initial compression in outer spring= 5 mm 
Initial compression in inner spring = 5+5= IO mm 

(Since the free length of the inner spring is 5 mm more than the free length of the outer 
spring.) 

Say k1 = stiffness of inner spring in N/mm 
k2=stiffness of outer spring in N/mm 

F1, Initial load on valve 

Stiffness of outer spring, 

=;= 10k1 + 5k2 , 

where 

D 2=25 mm, n2= 12 

80000X 34 

k2 = 8 X 253 X 12 4·32 N/mm 

The valve is to be opened by 8 mm, additional force required to open the valve 

... ()) 

F2=8k~ +8k2 ... (2) 

Total load to lift the valve by 8 mm 

F = F1+F2= l8 k1+13 k2=130 N 
18 k;+l3 x 4'3~= 13Q 

, .. q) 
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or 

Stiffness of inner spring, 

Now 

k
1
=130-13X4'32= 4.10 N/mm 

18 
Gd/• 80000 X d/ 

8D1
8n1 = 8 x J 73 X 10 

Wire diameter of inner spring, 
d1 =2·t t8 mm 

745 

Problem 14'12. In a compC'und helical spring, the inner spring is arranged within 
and concentric with the outer one, but is 8 mm shorter in length. The outer spring has ten 
coils of mean diameter 25 mm and the wire diameter 3 mm. Find the stiffness of the inner 
spring if an axial load of 120 N causes the outer spring to compress by 18 mm. 

If the radial clearance .between the springs is 1 ·5 mm, find the wire diameter of the 
inner spring, if it has 9 coils. G=77x 10a N/mm2 

Solution. 
Outer spring 

Compression, 

Load required, 

Inner spring 

D=25 mm, R = 12·5 mm 
d=3 mm, n=IO 

G= 77 X I 03 N/mm2 

8=18 mm 

W = Gd4'S = 77 X 1Q3 X 34 X 18 
64 nR3 64 X 10 X 12 · 5a 

Load shared by the inner spring, 

Compression, 
Number of coils 
Say the wire diameter 

W' = l20 -89 '8, 
'S=l8-8= 10 mm 

=9 
= dmm 

Now mean coil radius of outer spring 
Wire diameter 

Inner coil radius of outer spring 

W'= 30·2 N 

= 12'5 mm 

= 3mm 
= 9'5 mm 

89'8 N 

Radial clearance between the two springs 
Therefore, outer radius of inner spring 

= 1'5 mm 
= 9'5-1'5= 8 mm 

Mean coil radius, R'= ( 8-i) mm 

W'- 77x 103 xd4 X 10 
30

. 770000 d4 
- or 2= - - ----

64 x 9 x ( 8- ~ r 576 ( 8- : r 
( 8- ~ / =44'265 d4 

(16-d)3= 8 x 44'265 d4
, 

(I= l '696 mm. 
or (16 - d)3 = 354'12 t/1 
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Probletn 14'13. A composite spring has two close coiled helical springs iti series. 
The mean coil radius of each spring.is 10 cm. The wire diameter of one spring is 2'5 cm 
and it has 20 coils, while the number of turns in the other spring is 15. Determine the wire 
diameter of the other spring if the stiffness of the composite spring is 1 ·2 kg/cm. 

Calculate the greatest axial laod which can be applied on the composite spring if the 
maximum shearing stress is not to exceed 3 tonnes/cm2

. G=840 tonnes/cm2 

Solution. Stiffness of first spring, 

ki = ~ = Grcd14 

I:\ 32R2
/ 

840 X 1000 X 1t X 2'54 

32xrn2 x211: x 2o x 10 
=il5'635 kg/cm 

Stiffness of -second sprirng, 
W Gr;d2

4 

k2= ~ = 32 R212 

_ 840 X l 000 X r;d/ 
- 32 X 102 X 2,; X 15 X 10 

=0'875 d24 

Since the springs are connected in 
series as shown in the Fig. 14' I 5. 

Stiffness of the composite spring, 

Fig. 14'15 

k =~~2 .. . 25'635 X '875 d\ 
k 1+ k 2 or 1 2= 25.-635+ 0'875 d24 

or 1 ·2 x 25'635 + 1 ·2 x o·875 d}= 25'635 x o·875 d/ 

I '2 X 25'615= d2lll22 ·43- I '05) 

Diameter of the spring wire, 

d2=1'095 cm 

The shearing stress will be maximum in the spring of thin wire i.e., in the spring with 
wire diameter l '095 cm. · 

Axial load, 

,r 
WR = 16 dz3 X q (neglecting the effect of spring index) 

WX 10= l1t
6 

X{l "095)3 X 3000 

W=77'34 kg 

Probletn 14.'14, A rigid ~ar A!3 weighing 1~0 N and carry1ng a load W equal to 
300 N rests on 3 sprmgs as _shown m Fig. 14'16 hav~ng the spring constants k1 = 20 N/mm, 
k2= 8 N/mm and _k3= 10 NJmm. If the unloaded. sprm~ were of the same length, detennine 
n1.e Y!llue of the distance x such that the bar remains honzont~l, · 



Solution. Since the bar is to remain 
horizontal, there will be equal deflection 
(compression) in each spring. 

Say the deflection in each spring=o 
Then reactions at the springs will be 

k1o, k 28 and kl, respectively. 

Taking moments of the forces about 
the point A 

300(350-x)+ 100 X 350= k 28 X350+k38 X 700 
or 3(350-x)+ 350= 3"5 k2'8+ 7k3'8 

./ 

or 

Substituting the values of k2 and k8 

1050-3x+ 350 = 3"5 X 88+7 X 10. '8 
1400-3x= 98 o ... (i) 

Taking moments about B, 
300(350+x)+ 100 X 350=k1o X 100+ k20 X 350 

3(350+n) + 350=7k10+ 3: 5 k 2o 
I400+3x=7 x 20 o+3·5 x8 o=I68 a 

Adding the equations (i) and (ii), give 
266 0= 2800 

o= 10"5263 mm 
Substituting the value of o in equation (2) 

3x= 168 X 10"5263-1400=368'42 
x=122"80 mm 

W = 300 N 

x-.j 1100 N . 

Fig. 14·16 

•• . (U) 

Problem 14"15. Two close coiled helical spriogs of equal axial lengths are assembled 
qo-~a\l;y. Th.I} w.ii;e diameter of outer springs is l cm and the mean co.it radius is 4 cm, 
while th~ wire diameter of the inner inner spring is 0:8 cm and the m.ean coit Iiadius i& 3 cm. 
The assembly of tl\t:; springR is compressed by an axial thrust of 5.0. kg. Calc.ulate tl;lt max,imtJ-m 
shear stress induced in each spring if both the springs are made of steel anq the Ji!,Umber, of 
coils in each spring is the same. · · · · · 

Solution. The two S~l:ings. are assembled co-axially or in other. words they ave parallel 
to each other and load will be shared by, them. 

Total thrust, W=50 kg. · 

Outer Spring 
Say the axial thrust shared by outer spring= W1 
Mean coil radius-, R1= 4 cm 
Wire diameter, d1 = 1 ·o cm 
Axial compression, =01 (say) 

"'_ 64n1 W1R1
3 

o1- G-d14 

where n1 = number of coils in the outer spring 

Inner Spring 
Similarly for the inner spring axial compression, 

.., _ 64n2 W2R2• 
o2 - Gda' 



or 

• i 

where l'i2 = number of coils in inner spring 

W2 = load shared by inner spring 
R2= 3 cm, mean coil radius 
d2 = 0·8 cm, wire diameter. 

B.-~t since the springs are in paralle1 o1 =o2 

64n1 W1R1
3 64n2 W2R 2

3 

Gd
1

4 - Gd
2

4 -

W1 Rl d1
4 

W2 = Ria x dl as n1= n 2 

3a 14 ·27 
= 43 X 0.8,i = ~ 4= 1"03 

W1 + W2= 50 kg 
1 ·03 W2 + W2= 50 kg 

W2= 24"63 kg 
W1 = 50-24"63 = 25"37 kg 

Stresses in the springs (neglecting the effect of spring index) 

J6W1R1 l6x2S"37x4 
Outer spring, q1 = ---;d

1
a = i. x I 

Shear stress, q1 = 516"83 kg/cm2 

STRENGTH OF MA TEl.UA!LS 

Inner Spring Shear stress, 
l6W2R 2 

q2= nd23 
16X24"63X3 = 734.99 k / 2 

nxo·ss g cm . 

· ProbleJn 14"16. The mean coil diameter of an open coiled helical spring is D, the 
wire diameter being d and the coils are inclined at an angle a. Calculate the percentage error 
while determining the stiffness of the spring if the inclination of the coils is neglected. Given 

. ot=20°, E = 2'5 G. 

'.:, ,- , . . . Solution. Axial deflection of an open coiled helical spring, 

or 

where 

But 

[ 
cos2o. sin2cx J 

o= 2rcnRsw sec ot [GJ +~ 

n:d4 1td4 

1= 7;4, J= J2 

0 = 64n W R~ec ot [ cos2cx + 2 sin2 ot J 
d4 G E 

n= number of coils 

R = mean coil radius = ~ 

d=wire diameter 
ot= 20°, sin oc = 0"342, sin2 oc = 0"117 

cos cx = o·94 cos2 ot= 0"883 

2·5 G=E 



i 8D3n 1 [ 0'883 2xo·111 J w=~ X 0'94 ~+ 2'5 G 

8D3n 
= Gd4 X 1 '0389 

or 
W Gd4 0'962 . . 
a= wan X - 1- = k, stiffness of the sprmg 

· f h . h . l d k' G D4 
Stiffness o t e spnng w en c;,: 1s neg ecte , = snan 

Percentage error = k-k' 100 = 1- 0 962 X 100=3'80/ 
k X l o· 

Problem 14'17. An open coiled helical spring made of a round steel · bar 1 cm 
diameter has 10 coils of 8 cm mean diameter and the pitch is 6 cm. If the axial moment is 
40 x 10a Nmm, find the deflection and t he maximum bending and shear stresses developed. 

then 

or 

E for steel = 210 x 1000 N/mm2 

1 . 
Poisson's rate, - = 0 28. 

m 

Solution. p, Axial pitch ofhelix = 6 cm 

Mean coil diameter, D =8 cm 

Say ()(=helix angle 

tan CX = J; = ! = 0'75 

c;,::=36° 51' 

sin c;,:: = 0'6 

cos et. = 0'8 

sin2 a = 0'36 

cos2c;,:: = 0'64 

Number of coils, n= 10 

Mean coil radius, 

Axial moment, 

Wire diameter, 

R = 4 cm= 40 mm 

M = 40 X 103 Nmm 

d= IO mm 

E=210 X 103 N/mm2 

E 210 
G= 2 ( 1+ ~ ) = 2 x 1'28 x 1000 

= 82'0 x 103 N/mm2 

Deflection in the spring, 8= 2nnMR2 sin c;,:: [ ~/ - ~J J 
rcd4 nd"' 

but 1= 64 , J = 
32 

64MR2n [ 2 1 J . 
l3=--~ E-G sm oc 



. ' ·-.., 
.. :. j .... 

Substituling the values 8- 6-4:X 4o X 
103 

X 
402 

X 10 [ 2 I. J x 0'6 
"' - . (H)).,4 2'10,000 82,000 

Bending Mom,~nt, 

0'6 X64X40,3[ i. 1 l . 
= 105 rr- 0'82 ..., = 6 56 mm. 

M'=M cos !X=40 X 0'8 x l(i)8=32x 103 Nmm 

rcd3 

= . ·3,2 xf 

J, maximum stress due to bending 

3'lM' 32 X 32 X !Q3 
= -;;Ia= rcx 103 325'95 N/mm2 

: Tw.i~ting_ moQ'leut, T'=M sin ~= 4Q x 0'6 x I,Q.3= 24x 10jl Nmm 

. :. 1. 

nd3 

=16 Xq. 

. 16 X 24 X 103 • 
Maximum shear stress, q= re x 1~ = 122 23 N/mm2. 

!• •. _ 

Problem. 14'18. In an open coiled helical spring made of steel, the stresses due to 
bending and twisting are 980 kg/cm2 and 1050 kg/cm2 respectively when the spring carries an 
axial load. There are 10 coils in the spring and the m~an coil r&dius i.; 5 ti~e& t)\e, diameter 
of the wire. Determine the permissible axial load and the wire diameter if tlie extension in 
the i,pring is 1'6 cm. 

or 

and 

Solution. 

Number of coils, 

Mean coil radius, 

Axial deflection, 

Say 

Torque, 

Bending moment, 

Now 

E for steel=2100 tqnnes/qm2 

G for steel=840 tonnes/cm2 

n= IO 

R= 5d 

8= 1'6cm 

where d = wire, diameter 

W= axial (oad 

T' = WR cos (1. 

M'=WR sin ex. 

• _I ' 

rcd3 

T' = WR. QOS ot = °TG X q where q= 1050 kg/ems 

,z;dS • . 
M' = WR sin ot = 3-Z Xf where /=980 kg/cm2 

· L=tan « 
2q ·. . 

tan cc = 2 ;~~so = ·0'462 Or «= 45° 

sin (1. = 0i423 

co~ GC = 0(90J 

sin2 ot=0' 178 

cos2 cx.=0'822 
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or 

Moreover, 

W2R 2 cos2~+ W2R2 sin2a. = ( ~~
3 

/ (4q2+/2] 

Wire diameter, 

Axial load, 

nd3 ---
WR= - x ./ 4q2 + p 

32 I 

w X 5d= ~~
3 

V 4 X 10502 +9802 

W= T:~ X 1000 ./ 4'41+'9604 

= rcd2 X IO~~Ox 2'3174 = 45.50 d 2 

1l = WX2n X 10XR3[0'822 32+ 0'178 M·J 
0'907 Gnd4 X Ex rcd4 X 

_ 20 'f'C W ( )3(~)[ 0'822 0'356 ] 
- ·907 x 5a .,,d4 840 x 1000+21oo x 1000 

_ 2500 X 32 X 45 · 5 d 2 
[ 0'822 0'356 J '''{) 6 

- 0'907 d 0'84 + 2'1 · X 1.. • 

=4'013 d [0'978+0·169]= 4'60 d= l'6 cm 

l '6 
d=--=0'347 cm 

4'6 

W=45'5 d2= 4S-5 X 0'3472= 5'48 .kg 

tsl 

Problem 14'19. An open coiled helical spring fits loosely on two shafts and its ends 
are connected to the shafts which are prevented from any axial movement and are co-axial 
with the spring. Show that if the coils of the spring ate inclined at 45° to the axis, the coup1e 
per unit angle of twist is giveo by 

where 

d
4 

[ E J 641'2nD y+G 
d= wire diameter 

n= number of coils 

D= mean coil diameter 

E= Modulus of elasticity 

G= Modulus of rigidity 

Solution. Helix angle «= 45° 

sin a= cos and sin2a. = cos2 «= _!_ 
2 

Since the axial movement of the connecting shafts is prevented which means when an 
axial couple acts on !he spring, its axial movement is prevehted i.e., its axial extension or con,.
tractioh is zero i e . . an axial reaction ~cts on the spring to ma~e its deflection zero, 
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01'. . . 

Say the axial reaction = W 

Axial couple applied = M 

Angular rotation cf, 1 , due to M 

_ 32 M Dn sec <X r 2 cos2 ex sin2 oc J 
- d4 L £ +-G-

Angular rotation r/,2, due to W 

= 16WnD2 sin ex [ -I_. _ 2-J 
d' G E 

But cf, =<J>1+ </J2 
Axial deflection 81, due to M 

= 16 M D2n sin ex 1_1 _ _ 2-.J 
d4 L G E 

Axial deflection· 82, due to W 

8 WD3n sec ex [ cos2 a. 2 sin2 a. ] 
d4 G + E 

But ' 81 + 82 = 0 (as given in the problem) 

So 

Substituting the values of sin r1., cos ex etc. 

2M (-1 _ _!:__) + wnv2 (-1 +-1 )=o 
v2 G E 2G E 

M ( E-2G )+ WD ( E+ 2G )=o 
. GE 2GE 

WD=- M (E- 2G) X 2 
E+2G 

L 2G-E J 
= 2M 2G+E 

Now total angular rotation cf, is given by 

,1. = 32 MDn-12 L- ...!._ +J... J 16WnD
2 _1 [ - 1 _ ~] 

.,, d4 E 2G + d4 X y ' 2 G E 

Substituting the value of WD, 

_ 32 MDnv2 [J_ _1 1 l6WnD2 

4> - d4 E +za ., + v2d' 

X 2M [;~~i][~ - i J 
_ 16 M nDv2 [2-+_l +( J_ _ 2-)( l-~ )] 
- d4 E G G E 2G+ E 

__ 16MnD v' 2[ _2 + 1 + I _ _ 2 _, 1 _ _ 2 ) ( 2E )] 
- (./

4 
.- E G G $ , G E 2G-1i- £ .. 
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,I 1' 

.. 
I 

,1, ' 

or 

, ,·r · r · ' ;, M - , . 
T = couple per unit angle of twrst J . 

d4 (2G+E) d
4 

( G+ f) 
- 2 X 64 \/2Dn = 64f 2Dn--

Problem 14'20. Determine the length of the 'steel strip. 20 mm wide by o·s mm thick 
of a flat spiral spring to store I 0,000 Nmm of energy for a maximum bending stress of 300 
N/mms. Calculate also the torque required at the winding spindle and the number of turns to 
to wind up the spring. E for steel= 210 GN/m2

• 

where 

Solution. 

Maximum bending stress, 

J,.a~ = 300 N/mm2 = !!!;:x 
. bt2 2o x(0'512 5 

Z =scct1011 modulus= 6 ~ 6 = 6 mm3 

Therefore 
5 

Mmax = 300 X 6 = 250 NmnJ 

Twis~ing moment at the winding spindle, 

M = ¥ma-!.= J25 Nmin 
2 

Angular rotation of strip= cp = 2,tn , 
n =number of winding turns 

Energy stored 
10,000=f Mx2nn = nnM= i. X n X 125 

f . d 10000 25'46 Number o wm ing turns, n = n x J 25 = 

Length of the strip, 
rf,EI · 

l = M' where ,f, = 2n:n 

l = bt3 = ~ x·(J_ )·s = ~ mm'l 
12 12 2 96 

E = 210X 109 N/m2 = 210 x 103 N/mm2 
... r· . . 

2rc X 25"46 X21Qx IOOO X 20 . 
I l 25 x 96 -So, 

:.= ?5989 mµi =_SS-989 metre~. : 
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Problem 14·21. A semi elliptical car.riage spring made of steel leaves, 100 cm long is 
to support a central load of 800 kg with a maximum deflection of 6 cm and a maximum bend-
ing stress of 32QO kg/cm1. , .. r 

Calculate the thickness of the leaves and decide their number and breadth. 
E=2000 tonnes/cm2 

Solution. 
Length of the spring, / = 100 cm 
Central load, W=800 kg 
Central deflection, o= 6 cm 
Maximum bending stress=3200 kg/cm2 

'"3W/3 

Now o= 8Enbt3 

b 3 _ 3 WI~ _ 3 X 800 X I oos r 

n 
1 

- 8Eo -s x 2ooox 1ooo x 6 

So 

;, 

=25 0 and 
3W/ 

f= 2nbt2 

bt2 _ 3Wl 3X800 x 100 
37

.
5 n - -v- = 2x3200 

Thickness of the leaves, t= -3~\:.... =0'666 cm 

I 37.'5 ' 37•5 
Moreover nb = ~=(0.666)2 =84·54 

Say the number of leaves= 10 
Breadth b=s·454 cm. 

I ,•' 

Problem 14·22. A semi elliptical laminated--steel ·st,rint,' Ien'gth 80 cm is• .. tti · carry a 
central load of 5000 N. Determine the number, breadth. and . thickness of the leaves, if the 
central deflection is 60 mm. Assume that breadth is 10 times'"the thickness. The leaves are 
available of breadths in multiples of 5 mm and thickness in multiples of mm. The maximum 
bending stress is limited to 360 N/mm2• Esteel= 210 kN/mm2• 

or 

Solution. 
Central load, 
Length 

Central deflection, 

Bending stress, 

W = 5000 N 
-/= 800 mm 
E= 210 x 1000 N/mm2 

3W/8 

o= 60 m_m=8E11Pt3 

3 _ 3 X 5000 X SQQ:__ . ' 4 
nbt - 8 X 210 X 1000 X 60 - 7 619 X l O 

' 3Wl 
f -- 2nbt2 

360= 3 X sooo x 800 or nbt2= 16.666 X 103 
2nbt2 

nbt8 1; 169 X 104 

!7qt2 = t = lf666 x 10s 4 ·30 mm 

J" ·,. 'I 

• l 



SPi,NO~ 
, ... -.; -. ....... . 

Let the thickness, 

Breadth, 
· LIJIJ,; \i 

t=S mm 

b=lO t=50 mm 

~ · ll666 X 103 __ 1
3

.
33 Number of leaves, n 

r) .--. ?oxs;a 
Say number of leaves, n= 14 · · 

155 

Problem. 14'23. A laminated carriage spring made of 12 steel plates is 1 m long. The 
maximum central load is 6 kN. If the maximum allowable stress in steel is 200 MN/ms and 
the maximum deflection is~O.. mm, dete.)lmine the thickness and width of the plates. 

• d . 

or 

or 

or 

or 

-. Est~r::. .. 200 GN/m2=200>< 1000-N/mni2: :: :·~ : ~-·: . i. -i 

Solution. 
Say, width of the plates=b 
l'hfokness ·bf the plates =t 

Number of plates, n= 12 
Allowable stress, f =200 MN/m2=200 N/mm2 
Length of the spring, ·,=·i ·ni-·1000 mm 

,-i:Mninn1m' centta1•1oad, ' ·, - ·' · 

W0 =6 kN=6000 N 

Maximum bending moment, 

Mmaz=-~I= 6ooo: .I000 =l·sx 106 Nmm 

nbt2 

M,,.a•-f x-
6

-

1·s x ~06 
200

;
12 

xbt2 

bt2=3150 

Maximum central deflection, 

3 Wo/3 

8=40 mm= 8Enbts 

40 = 3X6000X(1000)3 
8·X 200-·X 1000 X 12 X btS 

· 18 'x 107 

, 4°= 192. bt3 

bt3= lS X l0
7 

= 2·34l75 X 10' 
192x40 ._~ . 

From _equations (1) and (2) 
-.. ', . !: H.;';..x. 1· W !;, t; ._. I : • ; Lil l , ,, ,. 2·34375 X 104 

t, thickness of the plates = 
3750 

= 6·25 mm 

b, width of the plates 
3750 

= (6'25)2 = 96 mm 

... (l) 

... (2) 
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SUMMARY 

1. For a close coiled helical spring, mean coil radius R wire diameter d subjected to 
axial load W ' 

16WR / 4k'- l 0'615) Maximum shear stress, qma• = nd'- \ 4k'-
4 
+~ 

where k·, 2R . . .:1 
= ~d- , spttng muex. 

\ !. 

. . ' · ' · 'W . Gd4 
2. Stiffness of a close coiled helical spring --

8
- =k=-:------

64 
R 

where 

. , , n 3 

G= Modulus of rigidity, n= number of coils, 
8= axial deflection along the load W. 

.. l 

3. For a close coiled helical spring subjected to axial couple M, · the angular rotation 
of free end with respect to the fixed end 

c/, = I2SnRM where £ = Modulus of elasticity. ·,· 
Ed4 

4. For an open coiled helical spring, with helix angle ex, subjected to an axial 'load W, 
Twisting moment= WR cos ot 

Bending moment= WR sin ex 

[ 
cos2 .x sin2 " · 

Axial deflection, 8=2rmR3 W sec 0t --W-+~ J 
f

. . nd4 

J=2/=Polar moment o mert1a= 32 

Angular rotation, if,=2RnR2 W sin ct [ ~J - J1 ] 

5. For an open coiled helical spring, subjected to axial moment M 
Twisting moment= M sin ot 

Bending moment= M cos 0t 

R M [ ~+ sin2 
r1. J Angular rotation, </,=2rm sec a. EI GJ 

Axial deflection, 8=2rw MR2 sin_ 0t [ ~ 1 - ~J J 
6. Stresses developed in an open coiled helical spring, subjected to axial load W 

16WR cos ot 4W . . . 
Maximum shear stress q= tid3 + ndi" (neglecting effect of sprmg mdex) 

· . ' 32 WR sin ex 
Maximum bending stress f = rcd3 

7. Stresses developed in an open coiled helical spring, subjected to axial moment M 
16M.sin ot 

Maximum shear stress = - -ti-d=-3- -

32M cos 0t 
Maximum bending stress= --.,.- d3--

· ·: 



8. A plane spiral spring made of a strip of breadth b and thicknes~ t, attd length /, 
subjected to a winding couple M 

12M 
f•a•, maximum stress=bt2 

Energy stored 
M2/ J. 2 . . 

= 2EI = 2n;_i X Volume of the strip 

Number of winding turns, n= i1e = 
2
7:i

1 
where 

bt3 

/ = -
12 

9. Carriage spring of n leaves, breadth b, thickness t with the length of the longest 
leaf equal to /, of semi-ellipt ic shape. 

Initial central deflection, y 0= ;~ , R = initial radius of curvature of ~ach leaf 

Proof load, 

Maximum stress, 

W'. _ Enbt8 

o- ~ 

3W/ 
f,n"• = 2nbt2 

10. Cantilever leaf spring, with n leaves, breadth b, thickness t, with the length of the 
longest leaf equal to /, of quarter elliptic shape. 

1 ··1dt1. /2 mt1a e ect1on, y 0= 
2

R 

Proof load, 
Enbt3 

Wo = 12/R 

M . f, 6W/ 
axunum stress, ma~= nbt2-

where R = initial radius of curvature 

MULTIPLE CHOICE QUESTIONS 

1. Stiffuess of a close coiled helical spring in terms of wire diameter d, modulus of rigidity 
G, number of turns n and mean coil radius R is given by 

2. 

3. 

Gd' Gd' 
(a) 16nR3 (b) 32nR3 

Gd' 
(c) 64nR3 

(d) Gd' 
128nR3 

A close coiled helical spring absorbs 40 Nmm of energy while extending by 4 mm, the 
stiffness of the spring is 
(a) 10 N/mm 
(c) 6 N/mm 

(b) 8 N/mm 
(d) 5 N/mm 

A close coiled helical spring of wire diameter d, coil radius R and number of turns n is 
subjected to an axial moment of 400 Nmm a nd its free end is r otated by .90° wi~h respect 
to the fixed end. The energy absorbed by the spring is 
(a) 100n Nmm (b) 2001t Nmm 
(c) 300n Nmm (d) 400n Nmm 



STRENGTH OF MATERiAi.s 
~· : 

An . open coiled helical spring of wire diameter 8 mm, mean coil radius 40 mm, helix 
ahgle'"'45°, -'tfumber of turns n, is subjected to an axial couple M. If the stress. due to 
bending in wire seclion is 1200 kg/cm•, then shear stress developed in the section is · ~ · 

(a) 2400 kg/cm' (b) 1200 kg/cm2 

(c) 600 kg/cm3 (d) 300 kg/cm2
• 

5. A close coiled helical spring qf stiffness 30 N/mm is in series with another close coiled 
helical spring of stiffness 60 N/inm, the stiffness of the composite spring is 

., ~. 

(a) 90 N/mm (b) 45 N/mm 
(c) 25 N/mm (d) 20 N/mm. 

AJlat ~P~!al spri.ng is. made fr<?m a strip of 6 mm - width and 1 mm thickness, 2 metres 
long. A winding couple M produces the maximum stress (?f 160 N/mm2

• The magnitude 
of winding couple is · 
(a).,3~0_N_111.m (b) 160 Nmm 
(c) 80 Nmm (d) 40 Nmm. 

7. A fiat spiral spring is made of strip of width b, thickness t and length l. If the maximum 
stress developed in strip is f. the energy stored in the spring is 

/2 /2 (a) 
24

E X lbt (b) 12E X lbt 

12 12 (c) 
6

E X lbt (d) 4E X /bt 

8. A carriage spring is made of 6 leaves, breadth 6 cm and thickness l cm. Each leaf is 
initially bent to a radius of 2 m. If the length of the longest leaf is 80 cm, then initial 
central deflection provided in the spring is 

~8~ W6~ 
(c) 4 cm (d) 2·5 cm. 

9. A load applied at the centre of a carriage spring to straighten all its leaves is termed as 
(a) Safe load (b) Ultimate load 
(c) Proof load (d) Yield load. 

10, A . close coiled . helical spring is_ made of wire of diameter d and length l. The mean coil 
1-ti, ··diameter of the spring is D and· number of turns are n. The spring index is the 'ratio of 

~~ w~ . 
(c) D/d (d) d/D. 

ANSWERS ., -... 
1. (c) _ 2. (d) 3. (a) 4. (c) 5. (d) 

6. (c) 7. (a) 8. (c) 9. (c) 10. (c) 

.. EXERCISES 

' · · 14;1. A length of 1 ·~ m of? mm ~iameter steel .wire is coiled to a mean coil diameter 
of 90 mm to make a close coiled .~~}1cal _sp~mg. Determme the stiffness of the spring,. G for 
steel= 820,00 N/mm2• [Ans. 4'29 N/mm] 

\ .1 .. , , - ,· ,,. . . ) , 
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SPRINGS 

14'2. Show that for a give·n r~silieace and the m~'ximum shea~ing stress, .the ra~io of 
the weight of a close coiled helical spring made of tube to that one made of solid round wire 

is 
1tA2

, where 1' is the ratio of the outside diameter of the tube to the inside diameter. 

14·3. A close coiled helical spring having n turns is made of round wire such that the 
mea,nJdiameter of. the coils Dis ten times the wire diameter. This spring is required to support 
a loaq of 800 N with an extension of 100 mm and a maximum shear stress of 300 N/mm1

• 

C~lculate '(i) mean coil diameter (ii) number of coils (iii) weight of the spring,· if the material 
weighs 7700 kg/ m3 • 

G=80,000 N/ mm2 [ Ans. (i) 82'4 mm (ii) 10·3 (iii) 1 ·09 kg]1 

14 4. A safety valve of 8 cm diameter is to bl9w off at a pressure of 12 kg/cm2 by. 
gauge. It is held in position by a close coiled helical spring of 15 cm mean coil diameter and: 
3 cm initial compression. Determine the diameter of the steel wire and the number of coils 
in the spring-if the maximum shear stress in the spring is not to exceed,1200 kg/cm2

• 

G for stee1=840 tonnes/cm2 . Ans. [2'68 cm, 23·9 turns] 
. - :·• 

14:s. A close coiled helical spring is to have a stiffne$S of 0'9 kg/cm in cqmpression 
and-with a-maximum load of 4·5 kg and a maximum shearing stress of 1200 kg/cm3• The. 
solid length of the spring (i.e. coils touching) is 4·5 cm. Find the wire diameter, mean coil 
diameter and number of coils. 

I .I' ' "I.: • .- ' ' 

G=400 tonnes/cm2 . Ans. (3'22 mm, 3'°52 cm, 14 coils]. 

:..1 • 14'6. A close coiled helical steel spring having 20 turns ts subjected to a p.~uple of 
2 kg,imetre. The mean coil radius is 2·5 cm and the wire diameter is 0·8 cm. The axis of the 
couple coincides with the axis of the spring. petermine. . . 

(a) Augular rotation of free end with respect to the fixed end of the spring·. 

(b) The maximum bending stress developed in spring wire. 
(c) Work done on the spring . 
£ = 2100 tonnes/cm2 [Ans. (a) 85° 18' (b) 3980 kg/cm2. (c) 1·49 kg-m] 

I • - • 
14 7. A weight of 20 kg is dropped onto a close coiled helical spring through a height 

of 50 cm, which instantaneously compresses the spring by 10 cm. If the mean radius of the 
coil is 10 cm and the diameter of the wire is 1 ·5 cm, determine the instantaneous stress Pro
duced and the number of coils in the spring. 

G for stee1= 840 tonnes/cm2. [~~. (a) 1810 kg1cm2 (b) 22·1 furnsj 
14·~,1 A close coiled cylindrical helical spring is .of 10 c~ mean coil di~riieier.. The 

sp~ing extends·by 5 cm :when axially loaded by a weight of ·60 kg. , When it is subjected .to ,an 
axial couple M= 6 kg-m, there is an angular rotation of 90°. Determine the Poislion?s rafio ,for 
the material of the spring. Ans. [0'273] 

14'9. Desi.gn a close coiled helical spring to have the following dimensions : 

¥e~n. coil diameter = 10 cm 

Number of coils = 20 
, rr: 

Stiffness of the spring ==:25 kg/cm 

St~el wires are av~ilable of the following diameters : 
12 mm, 14 mm, 16 mm, 18 mm 

. b.etcrmine the most suitable · di11meter of the wire and the maximum slie'a~ sti:'es~ 
produced, iA the spring when axial deflection is 10 cm. 

Q for ~teel= 820 tonnes/cm2
• [A,~s. 1~ mmf 1550 ·k~i~~2) 



STRENGTH OP MATERIALS 

14'10. While designing a valve spring, it is estimated that the valve weighing 15 N 
requires an acceleration of 120 m/sec3 when lifting through a height of 10 mm. The free 
length .of the spring is 250 mm and·ax ial length is 200 mm when the valve is shut. Determine 
the force on the spring. 

Determine the mean coil diameter if it is 8 times the wire diameter if the maximum 
shear stress is not to exceed 250 N/mm2 • Calculate also the number of coils. 

G=800 kN/mm2 [Ans. 18'367 kg, 1·44 cm, 12·4 turns] 

.. 14'.11. · A close .. coiJed helica.1 spring of 1 ·8 cm mean coil diameter and 12 · tu~n; .. 
1 

is 
arranged within and concentric ,vith an outer spring. The free length of the inner-spring is 
6' ~m more than the free length of the outer spring. The outer spring has 14 coils of. mean 
diameter 24 mm and wire diameter 3·2 mm. The spring load against which the valve is open
ed i~ provided by the inner spring. · The initial compression in the outer spring is 6 mm, when 
the valve is closed. Find the stiffness of the inner spring if the greatest force required to open 
the valve by 10 mm is 15 kg. Find .also the wire diameter of the inner spr ing. 

· G= 80,000 N/mm2 . [Ans. 5'15 kg/ cm, .4·35 mm] 

14'12. In a compound helical spring, the inner spring is arranged within and con
centric with the outer one, but is 9 mm shorter than outer spring. The outer spring has 10 coils 
of mean ,coil diameter 24 mm and wire diameter 3 mm. Determine the stiffness of the inner 
spring ·if an axial load of 150 N causes the outer spri ng to compress by 18 mm. 

If the radial clearance between the springs is 1 ·5 mm, find the wire diameter of the 
inner spring if it has 8 coils. G= 77000 N/mm2 • [Ans. 5·33 N/mm, 2·06 mm] 

· · 14'13. A composite spring has two close coiled helical springs in series. The mean 
coil radius of each spring is 80 mm. fhe wire diameter of one spring is 2 cm and it has 
16 coils, while the number of turns in the other spring is 12. Determine the wire diameter of 
the other spring if the stiffness of the composite spring is 4'2 N/mm. 

Calculate the greatest axial load which can be applied on the composite spring if the 
maximum shearing stress is not to exceed 320 N/mm2

• 

G=84 kN/ mm2 

14"14. A rigid bar AB weighing 
15 kg and carrying a load W equal to 40 kg 
rests on 3 springs as shown in the figure 14"17 
having spring constants k1= 20 kg/cm, 
k2= 10 kg/cm and k3= 12 kg/cm. If the un
loaded springs · were of the same length, 
determine the distance x such that the bar AB 
remains horizontal. 

[Ans. 10·5 cm] 

[Ans. 12'38 mm, 1490 N] 

14'15. Two close coiled helical springs Fig 14.17 
of equal axial length are assembled co-axially . · 
The wire diameter of the outer spring is 8 mm a nd the mean coil radius is 3'6 cm, while the 
wire diameter of the inner spring is 6 mm and the mean coil radius is 2 ·5 cm. The assembly 
of the springs is compressed by an axial thrust of 300 N . Calculate the maximum shear stress 
induced in.each spring if both the springs are made of steel and the number of coils in each 
spring is same. [Ans. 47'46 N/mm2, 65·60 N/mm2] 

. . 14"16. The mean coil diameter ?f an open c.oiled J:ielical spring is D and the coils are 
mclmed at an angle of helix Oli. The section of the w1te bemg a square of side a. Calculate 
~he percentage error while determining the ,stiffness of the spring if the inclination of the coils 
!S ne~lecte~. Q ivetl IX = 30°. £ = 2"50 G lAns. 8"7%) 
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14 ·11. An open coiled helical spring made of round steel bar 1'2 cm diameter has 
15 coils of 10 cm mean coil diameter and the pitch is 6 cm. if the axial load is 70 kg, find the 
axial deflection and the rotation of free end relative to the fixed end of the spring. 

G for stee1=830 tonnes/cm2 

1/mfor steel=O 286 [Ans. 5'38 cm; 6°21'] 

14'18. In an open coiled helical spring made of steel, the stresses due to bending and 
twisting are 50 N/mm2 and 60 N /mm2 respectively, when the spring carries an axial load. 
There are 8 coils in the spring and mean coil radius is 6 times the wire diameter. Determine 
(1) angle of helix (2) permissible axial load (3) wire diameter, if the extension in the spring is 
20mm. 

E for s.tee1 = 210 kN/mm2 

G for stee1=84 kN/mm2 

[A~s. (I) 22°36', (2) 54'84N (3) 5'078mm] 

14'19-. An open coiled helical spri_ng i_s su~jected to an axial load and an axial couple 
simultaneously such that the angular rotat10n 1s completely prevented. Show that if the coils 
of the spring are inclined at 45° to its axis, the stiffness of the spring is given by 

' d' (.!L+a ) where d=wire diameter, 
2 n=nurober of coils and 

64v'2nD8 D=mean coil diameter 

14·20. A steel strip of length 15 metr,es, breadth 2'5. cm a,µd thii::kness O'O(? cm is u~ed 
to make a flat spiral spring. Determin<; tJ1e IJ.lJJTlb~r of winding turns anq1 the twistjng moment 
at the spindle if the maximum bending str,ess is not to exceed 3020 kg/cm2• Also calculate the 
amount of strain energy stored in the spring. E=:= 210!) tonnes/cm2 • • 

[A:11s. 5'72 turns, 2 '265 kg-cm ; 40·37 cm-kg] 
14·21. A semi elliptic~l lamiµatecf.. stt:el: spr,ipg l,'2! m long is m~de qf IO leaves of 

JOO mm breadth and 10 mm thickness. Whpt c;en.tral load would. produce a maximum stress 
of 300 N/mm2 and what will be the corresi;Q

1
ndini. ' c~nt,:aJ defle;;~~i,qn. · ' · 

E=210x 1.000 N/.mm 2, [Ai,s. 16.66 ~N, 51·4 mm] 

14·22. A semi elliptical lam inat~d. sprin.g of steel, 160 cm long carries a central load 
of 300 kg. The breadth ~f the leave·s i~ ·5 ~m .. ~ ~t.~rmii:e, tp.~ tl-)ji::kn~ss in multiples °c;>f°'o·5 mrrt 
and the number of leaves 1f the centr~l d~fl~chRn 1~ ~ cm anc).. the bending stress is 240b kg/cm2. 

Esteel= 2100 t~n;ri.~s/<;ip2
• [Ans. 9·5 mm, 7 leaves] 

14:23. A laminated carriage spring made of IO steel plates is 1 ·2 m long. The maxi
mum central load is 400 kg. If the maximum allowable stress in steel is 2400 kg/cm2 and the 
maximum deflection is 5 cm, determine the thickness and width of .the plates. 

£ = 2000 tonnes/cm2 [Ans. 8·64 mm, 4·02 cm] 



15 
Struts and Columns 

A short column when subjected to an axial compressive force fails by crushing. But 
when the same column becomes long, and an axial compressive force is npplied, it fails by 
buckling before the limiting crushing stress is reached. This axial compressive force is called 
the buckling load and depends upon the end conditions and the ratio between length and 
lateral dimension. Buckling is · caused by the inherent eccentricity of loading under com
pression and crookedness of the column. The bending moment produced due to these defects 
and the axial load is overcome by the resisting moment offered by the elasticity of the material. 
If the axial load is gradually increased, a stage comes when the bending moment due to the 
defects and axial load overweighs the resisting moment offered by the column and the column 
buckles all of a sudden. The axial load at this stage is called the Buckling load. 

Any structural member in compression is called 
strut and when the strut takes the vertical position it is called 
a column or a stanchion. However the term strut i~enerally 
used for-1ollg comp£ession members having large_values of 
slenderness ratiu_(i.e. the ratio between the length of the 
column and the minimum radius of gyration of the 
section). Fig. 15' 1 shows a strut of length 1, hinged at both 
the ends, buckled under the axial compressive lead P. 
Before the application of the load, the strut was straight 
and as the load gradually increased, the strut buckled at 
the load P. The bending moment at any section at 
a distance of x from the end A is - Py. This bending 
moment is negative in the sense that when we see from the 
side of the original centre line of strut, we :find strut is 
bent showing convexity and as per the sign conventions 
already adopted, this B.M. is a negative bending moment. 

< 

The maximum bending moment occurs at the 
central section cc' of the strut and is equal to - Pe. The 
maximum and minimum stress intensities can be given by 

P Pe . /ma .. =!o+fb= A+·z (at the point C) 

P Pe /mcn=/o- /b= A - -2 - (at the point C') 

,. ·
( 

A p 

I 
C 

Fig, 15·1 

,. 

where Jo= direct stress due to axial load and /b is stress due to bending · e is the eccentricity of 
the load, A is the area of cross section and Z is the section modulus. ' 

Failure of strut will occur either by fma11 reaching the ultimate crushing strength of the 
tDaterial or by /mtn reaching the ultimate tensile strength of the material. 

761, 
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For very long columns, Euler has developed a theory for the determination of buckling 
loads. 

15'1, EULER'S THEORY FOR LONG COLUMNS 

Following assumptions are taken while d0veloping theory for the buckling load of very 
long columns-

1. The m.tterial of the column/strut is homogenous and isotropic. 
2. The compressive load on the column/strut is fully axial. 
3. The column/strut fails only by buckling. 
4. The weight of the strut/column is neglected. 
5. The column/strut is initially straight and buckles suddenly at a particular load. 
6. Pin joints are frictionless and fixed ends are rigid. 

Struts/columns with the following end conditions are considered. 

y=O. 
(i) Pin joint or hinged end. The end is position fixed but direction free i.e. deflection 

(ii) Fixed end. The end is position fixed as well as direction fixed i.e. deflection, 

y=O, slope ! =0 at the fixed end. 

(iii) Free end. The end is free to take any deflection and any slope. 

Euler's buckling load is determined for the four cases i.e. I. Both the ends are hinged 
2. One end is fixed, other end is free, 3. Both the ends are fixed and 4. One end is fixed, other 
end is hinged. Let us take the 1st case. 

1. Both the ends are Hinged/Pin Jointed. 
Fii. 15'2 shows a strut A.B of length /, pin jointed 
or hinged at both ends. At the load P, the £trut 
has buckled. Say EI is the flexural rigidity of the 
strut. 

Considering a section at a distance of x 
from the end .A., say the deflection is y. 

or 

or 

B.M. at the seetion=-Py 

El d
2
y = -Py 

dx2 

Eld
3
y + Py= O 

dx2 ... (1) 

The solution of this differential equation is 
y=.A. co:. k'x+B sin k'x . .. (2) 

w):iere A and Bare constants and k'=J ii 

p 

0 

Fig. 15·2 

[The validity of the solution can be verified by differentiating two times the 
equation (2)] 



So dy =-Ak' sin k'x+Bk' cos k'x 
dx 

:~=-Ak'2 cos k'x-Bk'2 sin k 'x=-k'a (A cos k 'x + B sin k ,.x) 

=-k'2y=-_!_ y 
EI 

or EI Z +y=O. This shows that solution assumed is correct. 

Let us determine the constants in the equat ion (2) 
At x=O, at the end A ; y= O. 

Therefore, O=A cos (k'x O) + Bsin(k'X O) 
= A+O or A= O 

Then y=B sin k'x ... (3) 

At x = l, i.e. at end B, deflection y= O 

Therefore, O=B sin k'l 

B=/=O because if we take B also equal to zero, ·it wilnead to a 
condition that strut has not buckled 

So sink' /=O=sin (0, rt, 2rc, 31e .. . rz,;) 

The minimum significant value of angle is rt 

So k'l= rt or k '2/ 2= 1e2 

p 
-- /2= rt2 
E I 

rc 2EI 
Euler's Buckling load, P=-

1
-
2 

-

2. Strut/colurnn with one end 
fixed and other end free. Fig. 15·3 shows 
a strut AB of length /, fixed at end A and 
free at the end B, buckled at the load P. Say 
the deflection at the free end is a. At the 
end A, there will be a reaction P and a fixing 
couple MA. Consider a section at a distance 
of x from the end A. 

B.M. at the section=+P(a-y) 

The bending moment is a positive 
bending moment because if we see from the 
initial centre line AB' of the strut, we observe 
concavity . 

Therefore, 
d2y 

EI - = P(a-y) 
dx2 

p 

MA: Fiit i'rig 
c dvp le 

Fig. 15·3 

... (4) 

.. :'(I ) 

[Note that we could
1
have taken bending moment at the section equ·al ·to (_JMA + P, ) 

but in this case MA is unknown] , 



stRtJts, AND cor.UMNs 

The solution of the differential equation ( 1J is 

y=A cos k'x+ B. sin k'x+a 

where A and B are constants and k' = J f 1 

At the fixed end X=O, y=O 
O=A+a or A= -'a 

So y=-a cos k'x+B sin k'x+a 
Differentiating the equation (2) we get 

at 

i~ =+ak sin k 'x+ Bk cos k'x 

x=O ; fixed end A ; slope, c~v = 0 
dx 

So O=Bk' cos (k' xO)= Bk' 
or constant, B=O 
and the equation of deflection becomes. 

y=-a cos k'x+a 
Moreover at the end B, at x=l, y=a 

a= -a cos lc'l+a 
or a cos k' l= O 

cos k'l =cos [; , ;n , 52ft ....... ( 
2n;J_) re J 

The minimum significant value of angle is rr./2 

cos k' !=cos ; or k' I= ; 

and k'2/2= ~ or p 12= n2 
4 El' 4 

rt2El 
Euler' s Buckling load, P= 412 

3. Strut/column wiih lioth the 
ends fixed. Fig. 15· 4 shows a column/strut 
AB of length 1, fixed at both the ends, buckled 
under the axial load P. Since the ends arc 
fixed, there will be fixing couples MA and Mn 
at the ends A and B. Consid-:ring a section 
at a distance of x from the end A. 

or 

B.M. at t he section=MA-P.y 

E I d
2
y = MA -Py 

dx2 
... (I) 

The solution of this differential 
equation is 

MA +A . y = p cos k'x+'B 'sih k'x 

where A and B arc cohstarits and k' =J :1 

MA 
Fig. 15'4 

... (2) 

... (2) 

...(3') 

... (4) 

. .. (2) 
', 



Now at the end A, x=O, y = O 

er 

0= JA +.A cos!(1'' xo)+B sin Vt'XO) 

MA 
A=-~ 

MA MA . 
y=p- Pcosk'x+Bsmk'x 

Let us differentiate equation (3) 
dy MAk' . 
dx =+ - p- sm k'x+Bk' cos k'x 

at x = O; fixed end ; ddy =0 
x · 

MAk' 
0= - P- sin (k'XO)+Bk' cos(k'XO) 

01' B=O 

:Equation for deftection becomes 

MA MA I y=p-p coskx 

Moreover at the fixed end B; y=O at x=l 

M"" MA I O=p -ycos k I or cos k'l=l 

or cos k'/= cos (O, 2n, 4re .. . 2nR) 

The minimum significant value of angle is 2re 
cos k'/=cos 2re or k'/= 2,: 

or 

fallers' buckling load, 

4. Strut/column with one end 
fixed and other end hinged. Fig. 15'5 
shows a strut/column AB of length /, fixed at 
end A and hinged at end B, buckled under the 
axial load P. There will be a fixing couple 
MA at the end A. Since end B is position 
fixed but direction free , it cannot retain its 
position unless the hinge offers a horizontal 
reaction say R. Consider a section at a dis
tance of x from end A. 

p 

STllENGTH OIi MATERIALS 

... (3) 

. .. (4) 

. .• (5) 

p 

B.M. at the section is = -Py+R(l-x) 

[Note that if we take the B.M. as 
MA - Py we will end up with a solution for the 
column with both the ends fixed) 

Fig. 15'5 
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Therefore, 
d2y 

EI - =-Py+R(l-x) 
dx2 

The solution of this differential equation is 
R(l-x) 

y=A cos lt'x+B sin k'x+ --'---"p 

where A and Bare constants and k'=J i 

or 

or 

or 

or 

At the end A, x = O, y=O 

O= A cos (k' XO)+B sin (k'X O)+ 1;:; 
Rl A= p 

y= _ _Bi. cos k 'x+B sin k'x+ R(l-x) p p 

Differentiating the equation (2) we get 

dy Rik' . k' +Bk' k' R dx =+ ~ sm x cos x--y 

At the end A !!J__ = 0 at x = O 
' dx 

Rik' . R 
O=p sm (k'XO)+Bk' cos (k' X O)-p 

O=Bk' - ; or B= P~' 

The equation for deflection becomes 

RI k' + R . k'x+ R(l-x) y=-p cos x Pk' sm p 

Now at the end B, y = O at x = l 

0= - ; cos k'J+ -fk, · sin k'J+O 

tan k'I= RI X Pk' =k'l 
p R . 

tan 0=8. This is possible, when 0::::4'5 radians. 

Therefore, tan k'l=4'5 or k'll/ll=(4'5) .. ~2n2 

p 
EI. /2=2n2 

. 2w2EI 
Eulers' bucklmg load, P= - 1i-

767 

... (I) 

... (2) 

. .. (2) 

... (3) 

... (4) 

In all the expressions for buckling load for cases 1 to 4, the moment of inertia is lmln 

if there are l max and lmtn for certain sections such as rectangular section1 T section, 
J section, 
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Example 15'1-l. A 200 mm x 100 mm RSJ is used as a stanchion (strut), length 
5 metres, with one end fixed other end free. Determine the Euler's buckling load. For the 
section. 

lxx= 1696'6 cm4 and Iv ,= 115'4 cm4 

£=210 kN/mm2 

Solution. 

End conditions are one end fixed other end free 

Eulers buckling load, 

Since 

Therefore, buckling load= rr.
2:i~·, Now, 1= 5 m 

Euler's buckling load 

£ = 210 kN/mm2 = 210 X 1or. kN/m2 

TJ'Y= l I 5·4 X 10-s m4 

P:c= rr.2 X2 10 X 106 X 115'4 X 10-s _ 
4x5x5 -

=23'92 kN 

Example 15'1-2. A mild steel tube 3 cm internal diameter and 4 cm external dia
meter, length 3 metres, is used as a strut with one end fixed and the other end hinged. Calculate 
the Eulers buckling load. £ = 2000 tonnes/cm2• 

Solution. 

End conditions : one end fixed, other end hinged 
2rc,.2E/ 

Euler's buckling load = - 1-2 -

Length, /= 3 m = 300 cm 
£ = 2000 tonnes/cm2 

The tube is hollow circular section, where 

rt. ) rr. [...,, = In =:,64 (44 -34 = 
64 

X (256-8 1)=8'59 cm4 

Buckling load , 
2xrt2 x2ooox8·59 . 

P= 300 X 300 = 3 768 tonnes 

Exercise 15'1-1. A rolled steel T section with flange IO X 2 cm and web 18 X 1 cm 
is used as a strut with both the ends fixed. Determine the Euler's buckling load, -if 
E=2000 tonnes/cm2• Length ofrthe strut is 5 metres. [Ans, 53'll,~ Tonnes] 

Exercise 1s·1-2. A round steel bar of diameter 5 cm and, length 4 metres is used as 
a strut with both the ends hinged. Determine the Euler's buckling load if £ = 210 kN/mm2• 

[Ans. 39·74 kN] 

15'2. EQUIVALENT LENGTH 

An equivalent length of a column or of a strut of a given length, given section and given 
end conditions is defined as the length of a column or strut of the same material, same section 
and havin~ the same bucklin9 load but havin~ both of its ends hin~ed. Fi~. 15'6 shoY<.S aH 
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the four cases discussed in article 15' 1. The equivalent length of any strut is obtained by 
completing the bending curve of the column with different end conditions similar to the bend
ing curve of a column with both the ends hinged as shown in the Fig. 15'6. I.e. , showing 
equivalent length, le. 

T~",•:' 
p 

-T 
~ I 1, = t 

L ,nged 'l filHld 
~nd end 

Fig . 15'6 

For both the ends hinged, /,=/ 

Foi:, one end fixed, other end free, /, = 2/ 
I 

For both the ends fixed, le= 2 

p 

I 
For one end fixed, other end hined, le= V

2 

p . 
Hinged end -r 

I l, .1 
;~-ri 

fixed fixed end 
end 

The fo1mulae for the Euler's buckling load can be modified as follows : 
n2£/ 

P.=Euler's Buckling load = -
1
-2 -

• 
where I is the minimum moment of inertia 
and !.=equivalent length depending·upon the end conditions 

Example is·2-t. An allowable axial load for a 3 m long pin ended column of a 
certain elastic material is 30 kN. Three different columns made of the same material having 
the same cross section and length have the following end conditions. 

(i) one end is fixed, other end is free 
(ii) both the ends are fixed 

Ciii) one end is fixed but other end is hinged 
What are the allowable loads for the three columns given above 

Solution. 
When the column has pin ends 
Equivalent length le=/ 

Allowable load 
Pe 

- ------=--=---
Factor of safety (FS) 

, 2 EI 112£/ 
=102CfS) or /2(FS) = 30 kN .. . ( l ) 
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(i) When one end fixed and other end is free, I.= 21 

TC2EJ 30 . 
Allowable load 412(FS) = 4 =7 5 kN 

I 
(ii) When both the ends are fixed, 1,=2 

Allowable load 
4n2EJ 

- /2(FS) =30X4=120 kN 

I (iii) When both one end is fixed, other end is hinged !.= v'
2 

Allowable load 
2rr:.2£J 

= /2(FS)=30X2=60 kN 

STRENGTH OF MATERIALS 

Exercise 15·2-1. An allowable axial load for a column of length/ with both the ends 
fixed is 3 tonnes. Three different columns made of the same material, same length and same 
section have the following end conditions. 

(i) both the ends are hinged 
(ii) one end is fixed and other end is free 

(iii) one end is fixed and other end is hinged 
What are the allowable loads for the three columns give above, 

[Ans. 0·75 tonnes, 0'1875 tonnes, 1 '5 tonnes] 

15·3, LIMITATIONS OF EULER THEORY OF BUCKLING 

While deriving the expression of the buckling load for a strut or a column, we have 
considered that (i) strut has already buckled under the load P and then P is determined (ii) the 
strut is very long and the strut fails only by buckling. In other words, formula is not valid 
for short or medium sized struts or columns. 

or 

We know that Eulers' buckling load, 

n 2e/ 
Pe=-- where ! = minimum moment of inertia 1.2 

T 2EAk2 

Pe= 1.2 

=Ak2
, k being the minimum radius of 

gyration 

P, n2E 
or A=(le/k)2 

where ~ is called the slenderness ratio. 

This shows that Eulers buckling load is inversely proportional to the square of slender
ness ratio or in other words as _the ~ength of str~t decreases, buckling load goes on increasing. 
But when the column is short 1t fails by cr~shmg. Therefore the Eulers' buckling theory is 
valid for a column or a strut beyond a certam value of slen derness ratio. Say/. is the ultimate 
compressive strength of the material of the strut/column. 

~ • <f. (for the column to fail by buckling) 

n:.2£ ( ,. )2 n:,2£ 
({,f k)2 </. or T > 1~ 



StilUTS ANi> COLUMN!; 

Slenderness ratio, 

Say the strut is of mild steel with £ = 2100 tonneslcm2 

Ultimate strength in compression, /•= 3·3 tonnes/cm2 

I, J 2100 le . T J:>,; x 3'3 or k >19 25 

771 

or 80 

This shows that for a mild steel strut, Eulers theory is applicable only when the slender
ness ratio is greater than 80 i.e. when the ends of the strut are pin ended the slenderness ratio 
should be more than 80 for the Euler's theory to be valid for the determination of buckling 
load. 

Example 15·3-l. For what length of a mild steel bar 5 cm diameter used as a strut 
the Euler's theory is applicable if the ultimate compressive strength is 0'35 kN/mm2 and 
E=210 kN/mm2 for mild steel. 

(a) when both the ends are hinged 
(b) when one end is hinged and the other end is fixed . 

Solution. For the Euler's theory to be applicable 

z" /E k ;>,; \} f• where E=210 kN/mm2 

/c=0'35 kN/mm2 

>TC X f 210 > 76'95 say 77 \J ·35 

Radius of gyration, fT f "d' 4 
k = \I -:x =v 64 x TCd2 

d 5 . =4 = 4 = 125 cm 

(a) When both the ends are hinged le= / 
So I> 77 X l '25 where 
Length should be greater than 96'25 cm 

(b) When one end is hinged and other end is fixed 
Equivalent length, /e=y2 I 

k= 1·2s cm 

/>v2 X77X l "25> 136'1 cm 
Length of the strut should be greater than 136' l cm 

Exercise 15'3-1. For what length of a hollow steel bar 4 cm external diameter and 
3 cm internal diameter used as a strut, the Eulers theory is applicable for buckling if 

/.= 3·3 tonnes/cm2 and £ = 2100 tonnes/cmi 
(a) when both the ends are fixed 
(b) one end is fixed, other end is free. . . 

[Ans. (a) Length greater than 200 cm (b) Length greater than 50 cm] 

tS·4. RANKINE GORDON FORMULA 

Very short columns when subjecte1 to axi~I compressive load fail by crushing and 
crushing load is given by P. f • . A where f• 1s the ultimate compressive strength and A is the 
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area of cross section. Very long columns or struts fail by buckling and Euler gave the buckling 
load, P6 as rt2EI//e2• But there are general purpose struts and columns which can neither 
be classified as short nor very long struts. Such struts or columns fail by the combined effect 
of direct stress due to the axial load and bending stress due to the bending moment caused due 
to buckling. For such columns Rankine suggested an empirical relationship as follows : 

1 1 1 
PR =~+Pe ... (1) 

where PR is the Rankine's buckling load 

Curve produced by equation (l) is tangential to Po when 1/k r3:tio is very small and is 
tangential to P, when 1/k ratio is very large. The Rankine's load takes into account the direct·· 
as well as the bending stresses. 

From equation (1) Pc 

1+ P,_ 
Pc 

Substituting the values for P 0 and Pe 

P 
f, . A 

R = /e2 

l+Jo . AX rc 2El 

where I = lmintmum=Ak2 

where k is the minimum radius of gyration of the section of the column. 

So PR= fo. A 
1 +-l!.__(.!!.. )2 

rr.2E k 

h /. 
w ere rc2E =a, 

a constant depending upon the elastic constant E and compressive strength, Jc 

Rankine's load, PR J. · A 

l+a ( ~ r 
where le is the equivalent length of the strut or column. 

In this formulae f• and a are called as Rankine's constants ~nd have beeE experi
mentally determined for various common materials, as given in Table 15· 1. 

TABLE tS·t 

Material fo in N/mm2 f, in kg/cm Constant . a ( for both 
the ends hinged) 

Cast Iron 550 5600 1/1{;00 

Wrought Iron 250 2550 1/9000 

Mild -Steel 320 3262 1/7500 

Medium Carbon Steel 500 5097 1/5000 

Timber 35 357 1/3000 
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Exam.pie 15'4-1. A hollow cast iron column 200 mm outside diameteF and 150 mm 
inside diameter, 8 metres long has both the ends fixed. It.is subjected to an axial c0mpressiv.e '. 
load. Taking a factor of safety as 6, determine the safe Rankine's bu~kling load. · 

or 

Given /.=550 N/mm2• 

Constant, 
1 

a= 1600 for~both the ends hinged. 

Solution. 

Outside diameter, D= 200 mm ; Inside diameter, d= 150 mm 

Area of cross section of the column 
... 

A= 4 (2002 -1502)=1'374X IO' mm2. 

Length of the column, /=8 m=8000 mm 

End Conditions : Both the ends are fixed 
l 

Equivalent length, le= 2 =4000 mm 

- 4 i52+"as - 4 2002+ 1502 
Radius of gyration, k- 4 - 4 

k2 _ 6'25 X 104 
2 - 4X4 mm 

/es 1 4000x4000x4x4 
a ' k2 = 1600 X 6'25 X 104 = 2'56 

d f•. A 550X 1'374x 104 

Rankine's buckling loa = /e2 = 3'56 
1+ a ·Tz 

= 212'28 x 104 N=2122'8 kN 

Factor of safety = 6 

Safe Rankine's load = 212~·
28 

= 353'8 kN. 

. . 

Exercise 15'4-1. A cost iron column of hollow circular section, external diameter 
25 cm and thickness of metal 3·5 cm has to transmit an axial compressive load P. The 
column is 7 m long with both the ends hinged. Take factor of safety as 8. Determine the 
value of P. Rankine's constants are /c=5·6 tonne/cm2

• 

I 
a= 1 600. [Ans. 26'85 Tonnes] 

1s·s. SPACING OF BRACES FOR BUILT UP SECTIONS 

The lattice bars used for bracing are generally 50 to 80 nim wide and 8 to 10 mm 
thick. In order to decide about the spacing between the braces following procedure may 
be adopted. 

Figure 15·7 shows a built up section consisting for four equal angle sections, joined 
by lattice bars. Say L is the length of the column of the built up s~ctio~ and / is the 
spacing between the lattice bars or braces. If the section is prop~rly ._ brace_d} , tIJ.~ 
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total load on the coiumn will be equatiy shared by each angle. Braces are generally 
riveted to the 

I 
angle sections therefore the end condition for each · angle section between the . 

braces, i.e., for length / can be taken as hinged. · 

The maximum unsupported length / of the angle section so that the angle section 
does not buckle under the load is determined as follows 

or 
. . , 

IJH' f, 

or 

~---
/ 

/ 
/ 

Hin9cd 

Fig. 15'7 

h l . p . h' P' = Load shared by eac ang e section= 4 10 t 1s case 

p J,. A 
4 = /2 

l+a . k' 

For the built ttp section 

So /e . A 
£1 I+a . 7 

f • . A. 
/3 

1+a .F 

or 

where k is the minimum radius of gyration 
of one angle section. 
A=area of section of one angle 

if the ends are considered hinged 

where k is the minimum radius of gyration 
for built up section . 

k 
l= K.L 

if ·the end conditions for a built up section are different then L can be replaced by 
equivalent length·£,. 
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i.e., -

where 

k l=y. Le 

L 
Le=2 when both the ends are fixed 

Le=2L when one end is fixed and other Cree 

L 
Le= 4 2 when one end is fixed and other hinged. 

Example 15'5-l. A braced jib of crane is built up of 4-80X 80 mm angles forming 
a square of 40 cm overall. If the length of the jib is 12 metres and ends are fixed, calculate 
the safe axial load. Take factor of safety as 4. For the angle section. 

Area= 9'29 cm2, lxx=ln=56 cm4, x=y=2'18 cm (distance of CG from the edge) 

Rankine's constants, /0=3·3 tonnes/cm2, a=
75

~
0 

Determine the minimum distance between the lattice bars. 

Solution. Let us first calculate the moment of inertia of the built up section. 
Fig. 1s·8 shows 4 angle sections 80 mm x 80 mm joined by lattice bars. The angles are 
symmetrically placed so the centroid of the 
section will be at G as shown. 

fixed 

Area of the section 
=4XA=4X9'29 
=37'16 cm2 

lxx=I,,=4 X 56+4 X 9'29(20-x)2 
=224+ 37'16(20-2· 18)2 

= 224+ 11800'25= 12024'25 C'ID4 

Radius of gyration of built up sections, 
K 2 - lxx _ 12024·25 = 323.58 2 

- 4A - 37·16 cm 

End conditions : both the ends are 

Rankine's buckling load, 

P 
_ f, . x 4A 

R- L.2 
I+a. -k.2 

F-~v ___ 1Jl 
1 

\ I 20cm 

X-+ -+- -~X+ I I G I 

4
1 I I 20cm 8T_~-x---~ ! 8 I- · y -+jx =i-'-i-~Ocm 20cm:r 

Fig. 15'8 

Equivalent leng!h L 12 
Le= 2 = 2 - =6 m= 600 cm 

Le2 1 600 X 600 
a K2 = 7500X 323·58 = O·l48 

P R-
3·3 x4x 9•29 106"82 Tonnes 

- I +0·148 

Factor of safety = 4 

Safe axia~ lo~d 
106·82 

4 = 26'70~ Tonnef!, 
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Distance between lattices bars 

tP a~n:/i 
•;.,. :. !. ..... ;/, I 

,·:·. 

. ' ( . 

f; .. ) 

+= I; when Le = equivalent length= 600 cm 

/ = distance between lattice bars 

k= min~n;i;um radi,us of gyratioa for one angle section 

= f 56 2·455 cm *,/ 9·29 

K= minimum radius of gyration of built up sections 

= 'V323'58= 17'99 cm 

·. k 2 455 
l=K. l ,= 17.99 x600 = 81"I8 cm. 

Exercise 15'5-1. A braced, . g~rder is built up of 4- 100 X l 00 mm angle sections 
forming a square of 45 cm overall. ' If the length of the girder is 16 metres and its one end is 
fixed and other end free, calc-u\ate' t-h¢ safe axial lo~d. Take factor of safety as 5. For the 
angle section 

,1;,,;;-::,,,~ ~te.J.l.,'. ... '2'2·s!> ·cdi2 l ·~ i ~ 20·1·0 cm4 x=y=2"92 . 
<; ',;c [, f ,· , , , ' I ; '. ~ . XJi :· ',/ I . ' , > ' . • 

· (i.e . distance of CG from outer edges) and Ra:nk,ine's constan.ts· are 
1 

f .=320 N/mm2 and a= 7500 . 

Determine also the minimum distance between the bracings. 
[Ans. 129-'2 kN, 4'89 m] 

1S"6. OTHER EMPIRICAL FORMULAE FQR STRUTS AND COLUMNS 

or 

or 

We know that Rankine's buckling load is given 

p - f ~. A 
R - /e2 

I+a. F 

•; •# 
PR k' f f• A =wor mg stress, w= le2 

I+a .1'2 

Jw<fe' (allowable stress) 

where reduction factor is 1 + a . ~: ;, The wor·king stress is less than the ultimate compressive 

strength/,, obtained for a short column with no buckling. The working stress is less than /. 
due to the bucking effect in a column. or a sti:uct and the reduction factor is dependent on the 

l d 
. le 

s en erness ratio k · 

In other words fw -Jo'- ,j, ( t ) a function of ~ 

J.,et ~stake ef, ( } )=b. t2

2

' 
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r~=f.' [1 --b ~: J 
This is known as the Johnson's parabolic formula, because if fw is plotted against 1,/k, a 
parabolic curve is obtained. 

If the function ¢,( ; ) is taken as c ( t ), where c is a constant, then 

J ... , working stress-/.' [ 1-c ( t ) J 
a straight line relation. Now in the Johnson's parabolic formula, following values are 
generally taken. 

f.' = 110 N/mm2, allowable stress in compression for mild steel 

constant b=0·00003 for pinned ends 
=0'00002 for fixed ends 

In the straight line formula 

constant c= 
2
~

0 
for pinned ends for mild steel 

=
2
!
0 

for :fixed for ends for mild steel 

F0r structural steel, f•' = 140 N/mm2 allowable stress in compression 
c=0·0054 for pinned ends and 

= 0·0038 for riveted ends 

The straight line formula is applicable for slenderness ratios greater than 90. 

Gordon's formula for buckling load 

P 
_ Jr.A 

G- /2 
1+a1·F 

where b is the lesser dimension of the section of the strut or column and a1 is a constant. The 
value of a1 depends upon the material and shape of the section. 

Example 15'6-l. A stanchion is built up of 3-200x 100 mm RSJ as shown in the 
Fig. 15"9. If the height of the stanchion is 6 metres, calculate the working load. The working 
stress being given by 

110 [ 1- 2~o( f )] N/mm2 

Properties of one 200 x 100 mm, RSJ are 
Area=2S-27 cm 2, JIIJO:= 1696'6 cm4, In= 1 J 5·4 cm4 

Web thickness = 5·4 mm 

What factor of safety is to be used with the Rankine formula to give the ~ame result 
of buckling load ? 

T&ke J. = 320 N/mm2, 
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Solution. Fig. 15'9 shows the combi
nation of 3 RS Joists of given dimensions. 
The sections are symmetrically arranged 
about G i.e. centroid of the whole section. 

Moment of inertia, 
l:r:x= 2 X 1696'6+ 115'4 cm4 

= 3508'6 cm4 

In = 1696'6+2 X 115'4 
+ 2 X 25'27(10'27)2 

= 1696'6+230"8 + 5330'6 
=7258'0 cm 4 

Now lxx<lyy 
Arca of the section 

= 3X25'27=7S'8l cm2 

J 3508·6 
Radius of gyration, k=\J 7S'8 I = 6'80 cm 

Length of the column, L = 6 m=600 cm 

.£. = 
600 

=88'235 
k 6'8 

Working stress, J .. = 110-...!..!.2 ( !::_) 
200 k 

Fig. 15 ·9 

= llo- 81 ·235 x l!O = 110 - 48'4 = 61 '6 N/mm2 

200 

Working load, P ... =JwX area = 61 '6 X 7S'8l X JOO 

= 466989'6 N = 466'98 kN 

Rankine's buckling load 

Factor of safety 

l 
a=1500 ' 

L 2 l 600 x 600 
a k 2 =7500 X 6'8X6-:8- = l'OJ8 

P 
Jc.A 320 X 75'81 X l00 

• = L2 - 1+1 ·098-
1 +a k2 

= 1190343 N = 1190·343 kN 

_ Rankine' s load _ 1190·343 _
2

.
55 - Working load - 466·98 -

100mm 

Exercise JS·6-l. A strut is built up of two 100 X 45 mm channels placed back to back 
at a distance of 100 mm apart and riveted to two flange plates each 200 mm x 10 mm symmetri
cally. Properties of one 100 x 45 mm channel section are 

Area•= T41 cm2, lxx= 123·8 cm4, 111,,= 14·9 cm4 

x= 1 ·4 cm (distance of CG from outer edg~ of web) 

If the effective length is 5 metres: calculate the working load for the strut using 
Jolmson's parabolic formula. 

/,u-fc' [ 1-b ( t rJ where b=0'00003 for pinned ends 

and /.'=110 N/mm2 
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What factor of safety is to be used with the Rankine 's formula to give the same result ? 
Take Rankine's constants as 

J, = 3'3 tonnes/cm2, a=
75

~
0 

Hint, Convert Jr' into kg/cm2• [/:u = 1490'93 cm4 < 1970'15 cm' = /1111] 
(Ans. 43 '21 tonnes, 1'88] 

15'7, ECCENTRIC LOADING OF LONG COLUMNS 

In Chapter 9 we have studied the effect of the eccentr icity of the load on short col umns 
without buckling, and we found that the stresses produced by the bending moment due to the 
eccentricity of the load are added to the direct compressive stress and the working load for a 
column is reduced. 

Now we will study the effect of eccen
tricity of the lead on the buckling effect of 
long columns wh ich fail by the combined 
effect of direct compressive stress and stress 
introduced by the buckling or the bending of 
the column. Let us consider a long column 
AB, of length /, fixed at end A and free at the 
end B. Lo:i.d is applied at an eccentricity e 
from the axis of the column and the column 
buckled at the load P as shown in the Eig. 
1 s· 10. Say the maximum deflection at the 
free end B is a. Again consider a section of 
the column at a distance of x from the fixed 
end A and say the deflectioni in the column at 
this section is y. 

Bending moment at the section 
= P(a+e-y) 

Fig. 15· IO 

(when we see from the side of the original axis of the column we see concavity i.e. a positive 
bending moment) 

EI d
2
y = P(a+e-y) 

dx2 

The solution of the differential equation ( l ) is 
y=A cos k'x+B sin k'x+(a+e) 

where A and B are constants and k'=J f
1 

At the end A, x=O, y=o 
O= A cos o+ B sin O+(a+e) 

m A= - ~+~ 
y=-(a+e) cos k 'x+ B sin k'x+(a+e) 

Differentiating equation (3) we get 

t =(a+e)k' sin k'x+Bk' cos k'x 

at x=O ; fixed end, dy = 0 
dx 

... ti) 

... (2) 

.. . (3) 



780 STRENGTH ·OF MAl'ERIALS 

O= (a+ e) sin o+ Bk' cos O 

k':f:-0 (because P will become zero) 

or 

or 

or 

Therefore, B=O 

Initially the equation for deflection is 

y= -(a+e) cos k'x+ (a+e) 

Now at the end B, free end, x=l, y=a 

a=-(a+e) cos k'I+(a+e) 

e=(a+e) cos k'l 

(a+e)=e sec k'l 

Maximum bending moment occurs at the fixed end, 

Mma.,=P(a+e) 

Mma.,=Pe sec k'l=Pe sec. J J
1 

. I 

Maximum stress at the fixed end 

p Pe sec I J J1 
fmax=fo+fb =A+ Z 

where A= area of cross section and Z=section modulus 

If both the ends are hinged the formula (6) can be modified as 

. zJT 
p Pe sec 2 EI 

fm ax=fo+fb = 7+ z 
because for a column with one end fixed and the other end free, equivaleut length lc=21 

The formula in general for any end conditions can be written as 

z.Jp 
p Pe sec 2 EI 

f-max=-A + - - -. z 

where le =equivalent length depending upon the end conditions. 

.. . (4) 

... (5) 

... (6) 

Here we observe that in the case of short columns (with no buckling) maximum bending 

1. JP moment is Pe which is increased to Pe sec -2- El in the case of long columns 

• ' I 
Exam.pie 15'7-1. A stanch10n 6 m long, ends free is built up of two 40 X 10 cm 

standard channels placed 15 cm back to ba?k ~ith one 35 cm x 1 cm plate riveted to each 
flange. It carries a load of 1:50 tonnes, which 1s off the axis YY in the vertical plane through 
the axis XX. Calculate the permissible eccentricity if the maximum permissible compressive 
stress is 1 ·2 tonnes/cm2• For each channel, area of the I section= 63'04 cm2

, distance of CG 
from the base=2'43 cm, lxK= 15I23'4 cm4, lr11= 506'3 cm4

• E = 2080 tonnes/cmz. 
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Solution. Fig. 15'11 shows this built 
up section with two channels and two plates. 
The over all dimensions are 35 cm and 42 cm. 
Since the section is symmetric and about the 
centroid G, we can easily determine lyv for 
the section. 

JY>.=2 X 506 '3+2x 63'04(7'5+2'43)2 

2X 1 X 353 
+ 12 

= 1012·6+ 12432' 10+7145'83 
=20590'53 cm4• 

There is no necessity of calculating 
l xx because eccentricity is to be determined 
along XX axis and YY becomes the plane of 
bending. 

181 

Fig. 15·11 

End conditions : Both the ends are free, when both the ends are free and column 
buckles the equivalent length !.=! because the column takes the same shape and curvature 
as when the ends are pinned or hinged. 

Length, 1=600 cm, P = 150 tonnes 
E=2080 tonnes/cm2 

P P 150 
EI = 20sox20590·53 = 2osox2os90·53 

So 

3·5024 JT 
= - -

10
-0 - and EI = I ·871 X 10-a;cm 

I JP 600 1·871 
sec 2 EI = sec. T X 1000 

= sec ('5613 radian) = sec 32°10'= 1'181 

Area of the section, A= 2 x 63'04+2x 35 x 1=196'08 cm2 

Direct stress, _ .f__~ - . 2 f 0 - A - 196.08 - 0 765 tonnes/cm 

Maximum permissible stress, 

Jma.,= 1 ·2 tonnes/cm2 

Therefore, permissible stress in bending, 

Say the eccentricity 

Section modulus, 

Jo= l '2-0'765= 0'435 ,TJcm2. 

=e cm 

Z = !yy = 20590'53_= 1176.6 3 
17·5 17·5 cm 

From the secant formula 

IJY 
Pe sec 2 EI 150xexl'l81 

lb= Z - 1176'6 

0'435=l50 xex t·~ or e=2·9 cm 
1176'6 ' 
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Exercise 15·7-1. A cast iron column of hollow circular section 200 mm external 
diameter and 160 mm internal diameter, length 7 metres has to take a load of 200 kN at an 
eccentricity of 30 mm from the geometrical axis. If the ends are fixed, calculate the ma~i
mum and minimum stress intensi1ies induced in the section, taking E=210 kN/mm2• More
over calculate the maximum permissible eccentricity so that no tension is induced an¥wher.e 
in the section. 

[Note that for finding out maximum permissible eccentricity takefo - /o=O] 
[Ans. 31 "03 N/mm2 (compressive) 4·33 N/mm2 (compressive) 

3·97 (maximum eccentricity)] 

15'8. PROF. PERRY'S FORMULA 

In the last article we have learnt that/,,,a.,, the maximum stress developed in a long 
column with hinged ends is 

l J p p Pc sec 2 El 
/ .... ax = /o+/o= A + --z:=--..:..__-

Eulers formula for bucking load, 

So the term 

n:2EJ 
p.=-/2 or EI= Pe 12 

n;2 

1 ~ IP 
P.e sec2 'I El = Pe sec _!_ X { !__ X n:

2 

2 \J Pc 12 

= Pe 1 n: JP sec - X- -=Pe 
2 I · Pe 

'It J p sec - -
2 ·. P, 

Prof. Perry fouij.d that the expression 

1'2 P. 
Pe-P 

If we take stress /e= P,;_ and Jo= ~ then 

sec n: J P _ 1·21. 
2 Pe f• - fo 

P Pe 1"2/. 
fma.,= -x +z . f•-lo 

Moreover Z = _!_ where y.=distance from the neutral axis 
y. extreme layer in compression. 

Ak2 

= - - where k = minimum radius of gyration. 
Y• 

P Pe 1'2/e P [ ey 0 1'2/e J fma,,= -+-- xy. --- =- l +-X---
A Ak2 f •-fo A k 2 f• - f o 

I 

_ , [ I+ eyo X 1"2/e J 
JO k2 f c-fo . 

... (1) 

. .. (2) 

of the 
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Say f .,,,.,z= f, allowable stress then 

! =• [ I+-eyc 1'2/e J 
JO k2 X f •- fo 

or _i_ _ I = 1 ·2 eye X ( f • ) 
fo k2 f •-fo 

or ( _L_ - t) ( 1_ [ 0 )= 1'2 ey. 
fo f r k2 ...(3) 

This is professor Perry's approximate formula . One can work out / 0, if f (allowable 
stress) and e (eccentricity) are given. 

Example 15'8-l. A stanchion is built up of an 25 cm X 12'5 cm RSJ section with a 
15 cm x 1 ·2 cm plate riveted to each flange. Estimate the safe load for this stanchion, length 
5 metre, ends hinged, from the Perry' formula, if the maximum compressive stress is limited to 
800 kg/cm2. 

For the joist area of cross section=35'53 cm2, 
lxx=3717'8 cm4

; /11w = 193'4 cm4, and E = 2 Xl06 kg/cm2, 
The eccentricity from the axis yy is 3 cm. 

Solution. The Fig. 15'12 shows 
the built up section with an / section 25 X 12·5 
cm and two plates on the flanges, each of the 
size 15 X 1·2 cm. 

Moment of Inertia, 
153 

I11,= 193'4+2 x 1·2 x 
12 

= 193 '4+675 '0 

=868'4 cm4 • 

There is no necessity of calculating 
the moment of inertia lxx because eccentri
city is given along X-X axis as shown. The 
centroid of the section is at G but load is 
applied at a point P at a distance of 3 cm 
from the YY axis along the X-X axis. 

Euler's buckling load, 

rr,1£/ 
P, =-1-2- (as the ends are hinged) 

1= 5 metres=500 cm 

y 

Fig. 15·12 

So, r.2X2X 106 X868'4 ' 
P, = 500 X 500 =68566'435 kj!. 

Arca of cross section of the built up section 
A=35'53+2 x 1·2 x 15= 71 '53 cm2. 

68566'435 
Stress, Jc= 

71
.
53 

= 958 '57 kg/cm2 

Permissible compressive stress, f = 800 ki /cm 2 
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Now k2- lvu - 868"4 - 12'14 2 ------ cm 
A 71'53 

y .=1·5 cm (distance of extreme layer m compression from 
neutral axis YY) 

We know that 

( _1__ 1 )( l- /o )= 1·2 eye 
lo f , k2 

where /=permissible stress=800 kg/cm2 

(
8')0 -i)( 1 _ _ / 0 )= 1·2 x 3 x 7·5 

/ 0 958'57 12· 14 

(800-/0)(958'57 - .fo)= 958'57 / 0 X 2"224 

IJ 800X 958"57- 800 / 0-958"57 / 0 + / 02= 958'57 X 2'224 / 0 

/a2-3890"43 /0+766856= 0 

3890'93- 4 (3890"93)2-4 X 766856 
fo 2 

=208"75 kg/cm2 

Therefore, safe load on column 
=/0 X A=208"75 x ?J ·53 
= 1493 J ·8 kg = 14·93 Tonnes 

Exercise 15'8-l. A 40 cm X 14 cm RSJ is used as strut with hinged ends, having 
6 mc~es length. Using the Perry's formula, determine the safe load if 

(a) eccentricity along X-X axis is 2·4 cm. 
(b) maximum allowable compressive stress= 75 N/mm2• 

(c) For the joist, area of cross section= 78'46 cm2 • 

J.._.=20458"4 cm4, 1~~= 622·1 cm4• 

(d) E= 210 kN/mm2• [Ans. 121 ·5 kN] 

15"9. LONG COLUMNS WITH INITIAL CURVATURE 

A column AB of length / with both the ends hinged has the initial curvature such 
that the deflection at the centre of the column is e', as shown in the Fig. I S-13. When this 
column is subjected to a gradually increasing 
axial load, it buckles at the load P as shown 
in the figure. Column with ir.iitial curvature is 
AC'B and the column in the buckled state is 
ACq B. Consider a section of the column at a 
distance of x from the end A. 

Initial deflection at the section 

' ' • '7TX ( ) =y =e sm -
1
- ... l 

where e' = maximum initial central deflec-
tion. 

Final deflection ot the section=y 
Change in deflection at the section 

=r-r' 

A I I 

CC : e p 
, , 

,c X: y 
)( x': y 

Fi(!, l5· JJ 
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. . 1, 

, 1 

or 

B.M. at the section=-Py 

So 
d2 

EI dx2 (y - y')=- Py 

d2y d2y' 
EI dx2 -El dx2 =-Py 

From equation (I), 

dy' , ,, · ,x d2y' , T2 • nx 
dx =e T cos -1- and dx2 =-e 12 sm -

1
-

)1Su6stituting in equation (2) 

d2y ' -n;2 • 71X 
El dx2 +EI e 12 . sm -

1
- =-Py 

d2y p ' 7t2 . 'ltX 
dx2 + EI . y =-e 12 sm T 

Let us say that the solution of this differential equation is 

A 
, . nx 

y= e Sill -
1
-

where A is a constant. 

I.· I \. ) -~ 

di, • . 

or 

or 

Differentiating equation (4) two times, we get 
d2y '1?2 ' • 'ltX 
dx2 =-A 12 e sm -1-

Substituting this value in equation (3), · 

.A n 2 
, • nx + P , n 2 • nx - /2 e m ·-r °EI y=-e 12. sm -,-

: • f 

"rc2 
. i.x P , ·- rcx , rc2 ;/. ' nx 

- A-e' m- + -xAe sm - = ·-e -· ·sin -/2 l EI l ta · I 

Ae' ( J1 - ~:')= -e' ;: 

A ( -;;- - ·:1 )= ;2 
Dividing throughout b~ n2//2, we get 

A ( 1-~ )=I 
'"2EI 

A ( 1-:c )=1 where 

I' :. ,· 'f[.}i> 

• • I ' J; 

"rr.2E/ 
P,=--12 

~ I. • I ~ '• 

,: 

A = ~ 
... ,! /. 

P,-P 

The equation of the curve for the ·deflection y will be 
Pe , . 'TCX 

y= P,-P e sm - 1-

J Maximum deflection occurs at the centre i.e., at x = -
~ 

P. 
)'max= Pc-f. e' 

p, . . , 

785 

... (2) 

... (3) 

... (4) 

" 

... (5) 
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where 

or 

where 
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Maximum bending moment at the centre 
P. Pe 1 

Mmu = P. y ... a .. = Pe-P . e 

The maximum compressive stress at the central section of the column 
Mnaax P + P, P, , Ye 

f .. a.=J,+ ~ =A (Pe-P) ' e A.k2 

k=minimum radius of gyration 
A=area of cross section of the column 

y, = distance of the extreme layer in compression from the neutral 
axis. 

/mo., = ~ [ l+Pe1:.:_P x e' ~;]=!o[ l +J .J_:_fo X e~;·J 
r _ Pe 

J • - A 

Equation (6) can be simplified as 

and 

) ( 
f •-fo ) - e'yo 

(Jmax-fo fcfo , - -V 

J; (fmaz - I ' ( f e-/o )= 2 
0 fo I f •fo · k2 

( 
/m az - l )( l - /o }' _ e'y, 
fo f • k 2 

p 
Jo= A 

... (6) 

• I • 

... (7) 

Example 15'9-l. A hollow circular steel stiut 4 m long, outside diameter 12 cm and 
inside diameter 8 cm, with both the ends hinged is initially bent. Assuming the centre line 
of strut as sinusoi_dal with maximum deviation of 6 mm, determine the maximum stress 
developed due to an axial load of IO tonnes. £ = 2080 tonnes/cm2. 

Solutio,n. Length of the strut= 4m= 400 cm 
' Maximum deviation at the centre= e' = 0'6 cm 

n: 
Area of cross section, A= -;r (122 - 82)=62'832 cm2 

Moment of inertia, 

Radius of gyration, 

Euler's load. 

Stress 

Axial load, 

I = ~ (124- 84)= 816'816 cm4 

k2 = !_ = 816'816 = 13 2 
A 62'832 cm 

n:2 EI 
Pe= --12 

n:2 E Ak2 
/2 

r - _Pe = n2 Ek2 = n:2 X2080 Xl3 
1 • - A / 2 400 X 400 

= 1 '668 tonnes/cm2 

P= H> tonnes 

/o=·(jl·~n = 0'159 tonne/cm2 
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Distance of the extreme layer in cotnpression from the neuti:al axis, 
· 12 · 

L • ye= 2 =6 cm. 

We know that 

( fmox -1 )( 1-/o )=~~ Jo f e k . 

·· (··/ma" )( 0'159) _ 0'6 X6 
.... ·. 0'1$9-_1 l - 1'668 - 13 

:-jmaz ·-1 = 0'306 . 
0·159 · . 

/ma11=1 '306x_o· 159=0·207 tonne/cm2• 

787 

Exercise 15·9-l. A 150 mm X 80 mm RS joist is used as a strut with both the ends 
hinged. The length of the stnit is 6 metres. The· strut is initially with its centre line rilaldng a 
sinusoidal curve with maximum deviation of 20 mm. Determine the maximum stress developed 
due to an axial load of 10 kN. E .208 X 103 N/mm2• For the joist, area of the sectjon l9'00 
cm2

, lxx=726'4 cm4, I,,=52'6 cm'. [Ans. 27'64 N/mm~] 

15'10, PERRY-ROBERTSON FORMULA 

For a long column with initial curvature, the relationship between /ma~, /
0 

and fa has. 
been worked out as 

{ fh•11 

-1 )( 1-_ J. )= e[z• ... (I) 

where e' is the maximum deviation. 

Then Prof. Perry gave the relationship between/e,/0 andf,11uz for a long column with 
eccentric loading as follows : 

( fm•• -l )( 1_/o )= 1'2eye 
fo f• ki .. . (2) 

Both the formulae given by equations (1) and (2) are alike and if we take 
e1= 1'2e+ e' 

where e= eccentricity of loading 
e' = maximum deviation for a column with initial curvature 

We can write down a relationship for a column initially bent and eccentrically loaded 
as follows : 

( 
f max -l ) ( l- fo )= e1;• 
fo ._ f• k ••. (3) 

Let us say / = allowable stress=/ma,. 

and 

(£ - 1 )( 1-} )=x 
or fa2 - fo[f+J.( l + A)] + /. f e= O . "(_4) 
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The solution of this· quadratic equat ion .(4) gives 

lo - f + f• ~1 +A) -J-=--{ 1-=-+:-:[:-,-.~-:--1 +--=-AL r -Jo f , •. . (5) 

where • eiYr · - r.
2
E f b h h d h. d 

A= k2 , J• - (/2/k2) or ot t e en s mge 

In Rankine's and other empirical for mulae, the column is assumed to be perfectly 
straight and the loads to be truly axial but in actual practice neither of these conditions is 
satisfied. The formula for / 0 given by eql\ation (5) is Prof Perry's fonpu\~ for the permissible 
load per unit area allowing for defects such as initial crookedness of die column and initial 
eccentricity of loading. In the above formula" or e1 is a~!;u~known fa~tpr. 

Prof. Andrew Robertson after investigating the experimental 'observations came to the 

conclusion that )...=0'003 ( ~ ) is valid for large number of experimental observations. But he 

' , 2£ 
h~_s !als:.~p.,j ; the. all@.wable ~~ss,.in tons/in2 and f •= uik)2 in tons/in2

• 

. ' ' 

Allowable stre~s, , 
"' ,. -... . r' 

f 18 tons/in2 for steel columns 
= 2835 kg/cm2 =277'9 N/mm2

• 

E:x:~mple 15'10-1. Two 200 mm X 70 mm mild steel channels are welded together,, at,, 
their toes to form a box section 200 mm X 140 mm X 6 metres long. The box sect ion is used as a. 
strut wjt~ ? oth,the eqds _hin~~.~-, Estimate _the safe load for this strut fr om the Perry-R.opertson 
formul a usmg allowable stress=250 N/mm2 and .\= 0·003 (lfk) for each channel sect10n, area 
of section = I7·77 cm2, l xx= 1161'9 cm4,Jyv = 84·2 cm4, x= 1·97 ' ·'· · ·, " ..... ·· 

E=210X 103 N/mrn~. 

Solution. Fig. 15' 14 shows the box section 200 mm' x 140 mm made from two 
channels. ,. ' 

shown 

\ 
\ 

\ 
\ 
l 
•, 

'Area of the section 

A=2X 17·77=35' 54 cm2 

CG of the section will be at G as 

Moment of inert ia 
lxx = 2X 116L·9 = 2323·8 cm4 

. / 1 y= 2 X84'2+2X 17'77(7 - 1'97)2 

= 168·4+899·2 

= 1067'6 cm4 

So I1Y<l xx 

X 

y 

I 
-- ~ -G 

200mm 

X-

I 

~ 70 mm 
k' - In _ 1067 '6 = 30.04 cm2 

-35·54 - 35'54 Fig. 15· !4 
k = 5'48 cm 

Length of the strut = 6 metres = 600 cm 

.\ = 0·003 ( ~ ) for both the ends hinged 

600 
= 0.003 X 

5
.
48 

=0'328 

l•,I 
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/,
Allowable stress, /=250 N/mm2 

Stress due to Euler's load, 

Stress. 

Safe load 

1t2£k2 ( 5'48) 2 

f c= - 1-2 -=rc2 X 210x lOOOX -
600 

= 172'89 N/mm3 

J c(l +,-)= 172.89(1 + o·328)=229'6 N/mm2 

J+ (e(I +,\) 
2 

250+ 229'6 =239'8 N;mm2 
2 

r _ f +f,( 1 +A) _ J l fff.(l+A) }2 -f r 
Jo- .! \ l 2 · J• 

=239'8-./ (239'8)2-250 X l72'89=239'8 - l 19 '5 
/ 0= 120'3 N/mm2 

=2X 17'77X lOOX 120'3 N 
=427'546 kN. 

Exercise 15'10-1. A stanchion is built up of an 500 mm X 180 mm RS section with 
200 mm-20 mm plate riveted to each flange. Estimate the safe load for this stanchion, 
length 5 metres, ends hinged from Perry Robertson formula taking allowable stress / = 2800 
kg/cm2, .\=0'003 (l/k). For the joist area of cross section=95'50 cm2, lxx=38519 cm', 
Jyy=l063'9 cm4, E=2X 106 kg/cm2

• [Ans. 218 Tonnes] 

15·11. LATERAL LOADING ON STRUTS 

If a strut or a long column carries lateral loading, perpendicular to its axis in addition 
to the axial thrust, the section of the strut will have to resist the effect of axial thrust and 
bending moment due to lateral loading. Lateral loading produces deflection in the strut and 
axial thrust produces additional bending moment due to the deflection. The bendin~ stress at 
any section will be the algebraic sum of the stress produced by the lateral loads and the stress 
produced by the eccentricity (due to the deflection) of the longitudinal strut. 

Consider a column AB of length /, with 
hinged ends A, B carrying a transverse load, W 
at its centre and a longitudinal thrust P. The 
reactions due to Wat C, at the ends A and B 

are f each. Taking a section X-X at a 

distance of x from the end A . B M. at the 
section is 

or 

or 

w 
M= -Py - 2 "I:: 

d2y W 
El dx2= - Py-2 x 

d 2y W E.~ dx2f Py=- 2 x ... (I) 

The solution of this differential equation is 

w 
T 8 -f I 

~ lw 
C "' I --,.--

1 x - y r-rx i 
_L I x 

2 

• ,. ., • t .Jn, .. 
A 

p ' ,f• 

I 

Fig. 15 15 

y.=A .cos k'x+B . sin k'x- ~; 
. · I, 

... (2) 
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where k'=J :1· 
At the t?nd :· :A ; y=O ; x=O 

Putting tlie vaiues in equation (2), 

O=A+B x 0-0 

Therefore, B . k ' Wx y= Sill X---
2P 

Differentiatio·o, equation (3) ·. 
dy . w 
dx = Bk' cos k'x - 2P 
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...... l • • 

. . . . .. ......... .. .. 

or A = O 

... (3) 

dy I 
Now at the centre C; dx = 0, x= 2 because the strut is symmetrically loaded about 

its centre C. 

or 

So 0 Bk, k' I · W = cos 2 - fp 

B = 2~, sec k' } 

Equation of the deflection becomes 

W k'l . k' Wx 
y = 2Pk' x sec T . s_m x- f p 

Deflection is maximum at the centre ;.e. at x=l/2, we get 

w 
y ... . ,x = -2Pk' sec 

w 
:~ -2Pk' ~an 

k'I . k'l- WI 
2 - SIil -2- - 4P 

k'I WI - --
2 4P 

Maximum bending moment occurs at the centre 
W I 

Mmaoo = Pymuz+ 2 X 2 

W k'I WI WI W k'.I 
= 2k' tan 2-4+4 = 2k' tan T 

Mma•= ~ J f, tan ~'/ 

Ak11 

Section modulus, Z= - -
Ye 

where A=area of cross section of the section 
k= minimum radius of gyration 

., , 

y
0
=distance of the extreme layer in layer in compression from the 

neutral axis. 

·MmafJ - Wye I El r p I 
Stress due to bending, Jo= r::z- - 2Ak2 ~ p tan V El · T 
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Direct stress, 

Maximum stress, 

p 
Jo=A 

__ -~+ Wyo {Jfj' JP J 
fmax-fo+fo- A 2Ak2 \I p tan El · 2 
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E:s:a1nple 15'11-1. A circu:lar steel strut of 25 mm diameter 1 metre long is subjected 
to an axial thrust of 12 kN. In addition, a lateral load W acts at the centre of the strut. If 
the strut is to fail at/.,ax = 320 N/mm2, determine the magnitude of W. Given, 

and 

OT 

E=210 kN/mm2. 

Solution. Diameter, d=25 cm 

Area of cross section, A-==~ x d2 

4 

Now 

Moreover 

= '.:... x 252= 490'875 mm2 
4 

Moment of Inertia, I = ~!4 

= 19'175x 10s mm4
• 

Length, l= 1000 mm 
Axial load, P= 12 kN 

. _ .!_ = 12 X 1000 _ . · 2 Direct stress, /o- A 490.875 - 24 45 N/mm 

f.na~=320 N/mm2 

!~=320- 24'45=295'55 N/mm2 

_!__ = - 12000 -- . - 6 

El 210 X lOOOx 19'175 x 103 -
2 9sx 10 

J P = t·726x 10-a 
EI 

J 1J; = 0'579 x 10s 

- l J ;I x 2 = 1·726 x l0- 3 x 500= 0'8 63 radian 

= 49'45° 

tan J ;; . ~ = 1'17 

. k2 d2 252 39'06 0 Radius of gyration, = 16 = -16- = mm~ 

y 0 = 12'5 mm. 

Substituting the values in the expression for/,, 

Wyo f EI { P I 
fo = 2Ak2 \IP tan \J El 2 

wx 12·5xo·579 x lOJ x 1·11 
295·55= 2X490'875x39'06 Xl'l? 

= 0'22 W 

W= l~43·4 N = 1'34~ kN, 
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E:xercise 1s·1t-l. A horizontal pin ended strut 4 m long is formed from a standard 
T section 15 cm X 10 cm X 1 ·25 cm. The axial compressive load is 6 tonnes. A lateral concen
trated loa d of 0"6 tonne acts at the ,ct;ntre of the strut. Find the maximum stress if the 
X-X axis is horizontal ,and the table of the Tee forms the compressive face. The centroid is 
2·4 cm below the top. fu=250 cm4, A= 31 cm2, £ = 2000 tonnes/cm2 . 
. ,,i: , : •. ,. [Ans. 0·8835 tonnes/cm 2] 

.. ,/ , ... ) 
15·12. STRUT1'1WITffl lONIFORMI:.Y DISTRIBUTED LAT-BRAL 'LOAD 

Fig. 15' 16 shows a strut AB of length 
/ subjected to longitudinal thrust P and carry
ing a uniformly distributed load w per unit 
length throughout its length. Its ends A and 
B are hinged. Consider a section at a dis-
tance of x from the end A. :u, \ , ·{• 

B.M. at the section 

=-Py- !-i'/11 ,Q+ w~z-
2 2 

EI d2y =-Py- wx (l-x) 
dx2 2 

d2y p wx . :11 

or dx2 + Ely= .!...J '2EI (l-x) 7,, ,, •.. (I) 

The solution of the differential eqtiation is 
' 

1 '' Fig . 15'16 

• .! 
2 

i 
2 

y=Complementary function+ Particular integral 

Co'n:ip1em'ehfary fu11ction =:= A cos k'x+B sin k'x -t· 
' 1 -

h Ad d /I ,P \.\ ere an are constants an ,, = \j EI 

Particular integral 

So 

_ wx2 wlx i,pEJ 
- + 2P -- 2P-P2 

At x = O, y = O at end A. Therefore, 

O= A cos 0°+B sin 0°- ;1;1. or, 

So 

Differentiating 

But 

wEJ 
~ 

A= wE/ 
pz 

... (2) 

I .• 
... (3) 

at th!! ce1~tre of the strut because strut is symmetrically 
loaded about its centre C 

S / dy O b . . . · 
t. o at x = T , (I;,:; = , su st1tut1 n~ Ill equation (3) 
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O- - wEI k' . k' I +Bk' k' .!_+ wl _ wl 
- p~ . st n T cos 2 2P 2P 

B wEI k' I wEl { P I 
=~ tan y=~ t an \J EI · 2 

The equation for deflection will now· be 

wEI , wEI I y=l'2. cos k x+ - pa - tan. k' 2 X sin k'x 

wx~ wlx wEI 
+ 2P - 2P - fn 

'Maximum deflection occurs at the centre i e. at x = //2 

wEI k' I wEI k ' I . k' I 
Ym .. ,= -pT cos 2 + p2 tan -2 Stn T 

w/2 w/2 wE! 
+ 8P- - 4P - pz 

= wEI [cos k' _}_ +tan k' _!_ X sin k' _!_ ] - w/
2 

- wEI 
P 2 2 2 2 8P p2 

wET k' _!_ _ w/2 wEI 
= p2 sec 2 8 p - p2 

wEI f P - I w/2 wE! 
=p 2 - sec \i ·ET· 2 ·- 8P --y;-

Maximum bending moment occurs at the centre i.e. at x=//2 

wl I 11·/! 
M,.. .=- P,ym .. - ·:r . T + 8 

= _ wEI sec J .~ _!_ + w/
1 + wE! _ wl~ t- I:!_!~ 

P El · 2 8 P 4 8 

= - wPEI[ sec JP I 1 ] · . · El x2-

Now maximum stress,[max=fo+fo 

P wE! y , [ {P I 
[max= y+-y- X Ak2 sec \J El X 2 - I 

P wEy. [ JP I J --+-- sec -x--1 since/-Ak2 
- A P El 2 -

E11:ample 15'12-1. A rod of rectangular section 80 mm x 40 mm is supported hori
zontally through pin joints at its ends and carries a vertical load of 3300 N/m length and an 
axial thrust of 100 kN. If its length is 2·0 m, estimate the maximum stress indm,ed, 

E=208 X 1000 N/ m1112 
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Solution. 
Axial thrust, 
Lateral, load, 

Minimum 

Area 

Length, 

P = lOO kN = IOO x 103 N 
w= 3000 N/m=3 N/mm 
E=208 X 1000 N/mm2 

J= 80 x 4o
3
= 42'66 x 10' mm4 

12 
A= 80 X40= 3200 mm2 

/p=J lOO XlQS--_0.106 10-2 
, EI 208Xl03 X42'66Xl0' - x 

/= 2·0 m = 2000 mm 

' ~ .:[ X ~ = 0'106 X 10- 2 X JOOO = 1 ·06 radian = 60·1° 

sec 60'7°=2'043 y.= 20 mm 

f, 
= 100,000 +3X208XI000X20(2.043 _ 1) 

max 3200 100,000 ' 

= 3 I '25+ 130' 16 = 161 '41 N/mm2 

J. 

. ·. 1 ··' · 

Exercise 15'12-1. A circular rod of diameter 50 mm is supported horizontally 
through pin joints at its ends and carries a uniformly distributed lateral load of 200 kg/m run 
throughout its length and an axial thrust of 5 tonnes. 1f its length is 2·4 m, estimate the 
maximum stress induced. E = 2 X 106 kg/cm2. [Ans. 2521'65 kg/cmz] 

Problem 15'1. A str~ight bar of steel 2'4 m long, of rectangular section 3 cm x 1 '6 cm 
is used as a strut with both the ends hinged. Assuming that-the:Euler's cifor-mula•-- is applicable 
and the material attains its yield strength at the time of buckling, determine the central 
deflection. E= 2IO kNtmm2, yield strength=l90 N/mm2 

, Solution. 
Length of strut, /=2'4 mr"2'4 X 10s mm 
Breadth of the section, b=3 cm=30 mm 
Thickness of the. section, t = 1 '6 cm= 16 cm 
Arca of cross section = 30 x l 6=480 mm2 
Minimum moment of inertia,, 

I = ~ = 30 x 
163 

= 10240 mn14 
mm · ]2 · 12 

£ =2 10 x 10s N/mm2 

End conditions : both the ends hinged 

, . n2EJ n2X 210 X 10s x 10240 f., Eulers buckling load = 12-= 
2400

x
240

-
0
-- = 3684'67 N 

Maximum stress developed=290 N/mm2 

Section modulus, Z= b~
2 

= 
3
0 ; 

162
: :.: 12·8.0 mm~· I' 

'j 
.·. ,• 

~ay the central deflection=e 



(Refer to article .15·1 ) 

f, 
P, Pe . e 

max:-c-7 + - Z--

290
= 3684·67 3684·67 x e 

480 + 1280 

290-7"676= 2·878 e 

.- __ Centr8:3- deflection, e=98.09 mm = 9'809 cm 

'. , i •,Pri>blem·,15·2:·· A 2·5_ m length of tube has a crippling load of 110 k~ when used _as ~ , 
strlft1with .pinljoihted' ends:, Calculate the crippling load for a 3 m length 6f the same-tube wh~n . · 
used as a strut if 

or 

(i) both the ends are fixed 
(ii) one end is fixed and the other end is hinged . 

Solution. 
Length 6f the strut, /= 2'5 m = 250 cm 

Crippling load, P= 110 kg 
End conditions· : pin jointed ends 

Eulers' Buckling load, 

P 
_ n2 XEl 

· - /2 
t.2 X EI 

l lO 250 X 250 

El = 110 x 250 x 250 ~ 6875 x 103 kg cm 2. 
,i2 - TC2 . 

. (i) a 3 ro length of the same tube is used as a strut with both ends fixed, i.e~ El remains 
the same. 

kl . l d p ' 4n2EJ 
Eulers buc ing oa , • = 300 x-300 

4t.2 X 6875 X 103 

n2 X'300 X 300 = 3os-5s kg. 

. ,: (ii) a 3 m length of the s_ame tube is used as a strut with one end fixed and other end 
hinged. · 

2n2 XET 2n2 X 6875 X I03 

Eulers' buckling load , Pe"= 300 x 300 = n2 X 300 X300 ,= 152'77 kg. 

Problem. 15'3. A round vertical bar is cla mped at the lower end and is free at the 
other. The effective length is 2 metres. If a horizontal force of 40 kg at the ·top ·produces a 
horizontal deflection of 1 ·5 cm, what is the ' buckling load for the bar under the given 
conditions ? 

Solution. 
Horizontal force, 

Length 

W=40kg 
/ = 2 m = 200 cm 

Horizontal deflection, 18= 1 '5 cm 

For a cantilever loaded\at the free end 
W/3 

Deflection, 1> = 3£ / 
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or El= WJS = 40 x 200S = 71'11 10s k 2 
38 3 x 1 ·5 x g cm 

End conditions for buckling : one end fixed, other end free 

Tt 2EJ • 2 X71'11Xl06 

Buckling load, p • = V = 4 x 200 x 200 

= 4'38 x 103 kg= 4'38 Tonnes 

Problem 15'4. A thin vertical strut of uniform sl!ction and length/ is rigidly fixed at 
its bottom end and its top end is free. At the top there is a horizontal force H and a vertical 
load p acting through the centroid of the section. Prove that the horizontal deflection at the 
top is 

H ( tan µI 1 ) h - - were p µ 

Solution. Fig. Is· 17 shows a vertical 
strut AB, of length /, fixed at A and free at. B, 
carrying a horizontal force H at B and vertical 
load P at B. Assuming deflection at B to 
be a. 

Let us consider a section at a distance 
of x from the end A. 

or 

Bending moment at section 

= P(a-y)-HU-x 

d2y 
El ·· - = P(a-y)-H(l-x) 

dx2 

d2y 
El dx2 +P. y = P. a-H(l-x) 

p 
µi = -

EJ 

T he solution of the differential equation (I) is 

or 

where 

H(l-x) 
y = A cos µx+ B sin µx + a--v-

at the fixed end x = O, y= O 

HI 
So O= A+O+a--p-

A= ( ~
1-a) 

Differentiating the equation (2) 
dy H · 
dx = -A µ sin f'X+Bµ cos µx+p 

Again at x = O, fixed end, :fx = 0 

Fig. 1S·17 

, .. (1) 

... (2) 
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or 

or 

Therefore 0=-Aµ sin O+Bµ cos o+: 

H 
B=- p.P 

Equation for deflection becomes 

Y=( HI - a ) cos p.x-_!!.._ sin ,,.x+ a H(l-x) 
p µP r - p 

But deflection at the end B, y=a 

a=( ~I - a ) cos p./- P.~ sin p.l+a-0 

( 
HI · ) 7-a cos µ/= :!i, sin µ/ 

( HI-a)= H tan µI 
p p.P 

or a= ~ - :!i, tan µI= ~ ( 1- ta: p.l ) 

Deflection at top, a= - ~ ( ta:µ/ J ) 

Problem 15'5. A strut of length / is fixed at its lower end, its upper end is elastically 
supported against a lateral deflection so that the resisting force is k times the end deflection. 
Show that the crippling load P is given b y 

1-L= t anµ/ where µ=J Epl 
kl µl 

Solution. Fig. 15' 18 shows a strut 
AB of length /, fixed at end A and free at end 
B. At the end B there is a crippling load P 
and a horizontal reaction . H. Say the 
deflection at the free end is a, then horizontal 
reaction H=ka, as given in the problem. 
Consider a section X-X at a distance of x 
fr-om t1le end .A . 

where 

or 

where 

B.M. at the section 
= P(a-y)- ka(l-x) 

y=deflection at the section 

d2y 
El dx2 = P(a-y)-ka (1- x) 

The solution of tke differential equation ( l) is 
. ka(l- x) 

y= A cos p.x+ B sm µx+a-, p 

µ= J %1 

p 

A 

Fig. 1s·1s 

ko:H 

.. ,., . .... 

•.. '(1) 

. .. (2) 
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At the fixed end y= O, x= O: 
. kal 

So O=A cos O+B sm O+a-""p 

or A= ";
1 

-a= a ( ~ - 1) 
Differenti~ting _equation (2) 

dy . ka d.~ =-Al' sm µ.x + B µ. cos µ.x+ y 

at the fixed end A, 1x = 0 at x = O. 

So 0=-Aµ sin O+Bµ cos o+ "; 

or B= - ka 
µ.P 

The equation for the deflection becomes 

( 
kl . ) ka . ka (I- x) 

y = a· -y - 1 cos µ.x - µ.P sm µ.x+ a- p 

But at the end B, y = a, x = l 

i ' t,,,i So a=a ( ~ - 1 ) cos 1"/- :; sin t,4/+a-O 

' 0/1.,ii::.L:I.,), ~~ Sin µ./= Q ( ~ -1 ) COS t,4/ 

_.!5_ tan 1pl = ( .!£!. - 1 ) µ.P p 

k p - p 
µ.P X kl tanµ/ = 1-k i or 

tan µl = 1 _ .!: 
µ.l kl 
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Problem 15'6. A 325 X 165 mm RS Joist is used as a strut, 6 m long, one end ,fixed .. ~ 
· and other hinged. Calculate the crippling load by Rankine's formula. Compare this' w'iih ' 
the load obtained by Euler's formula. For what length of this strut will the two formulae 
give t:h.e same crippling load -? 

,{!]I .. . 

For the joist area of the section, A= 54'90 cm2 

· •. · fxx=9874·6 cm' 

For the steel 

I,,= 510'8 cm4 

£ = 2100 tonnes/cm2 
/ .= 3·3 tonnes/cmz 

- 1 . 
«·'...J.a-(for both the ends hinged) = 7500. · 

Solution. End conditions : one end fixed, other hinged 

Length of the strut, l= 6m= 600 cm 

I 

. ' 
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Equivalent length, 
I 600 

I.= ..;2 = ..;2 cm 

lm,it= l ,.,. =510"8 cm4 

Area of cross section, A=54'90 cm2 

k2 __ I,,,, _ 510'80 =
9

.
3 2 Radius of gyration, - A - 54.9 cm 

Rankine's load, 

1,2 I l i 600 )2 - 2· 580 
a· 1c2 = 75oox 9·30\v2 -

PR = f•. A 1.2 = 
I + a. f<Z 

3·3 X 54'90 . 
1 
+2.

58 
= 50 60 Tonnes . 

21t2 E l f h . d d' . ) Euler's buckling load , Pe= 12 l or t e g_1ven en con 1t10ns 

2 X 1t2 X 2100 X 510'8 
600 x 600 58'8 tonnes 

:: .. : 

Say length is I for which Rankine's and Euler's buckling load are the same. 

or 

.. or 

f• . A - 21t2Ef s·nce / - / 
/2 I e- ..j2 

I +a. 2k2 

/ 2[f • . A - a1t2EA]= ?.n2El 

Substituting the values 

as l = Ak2 

where l = I,,,.= lmin 

/2[ 3'3X54'9-
7
J0 1t2X2100 X54'9 ] = 21t2X2100 X510'8 

/ 2[181'170-151·716 ,21 ·39x 104 

2117 q 
12= 29'454 X I0

4 

/= 847 cm. 

. i 1 
,· i} . , ~I_,;. ! 

\ I ,'._' I IJ 'f).(. 

; :, , ·.,,. ,-rr.Ji 
i1 , ~ .d, 

! ~ . . ~. 

!-. 
Problem t5·7. A hollow cast iron column of external diameter 200 mm, length 4 m 

with both the ends fixed, supports an axial load 800 kN. Find the thickness ofth~ metal required. 

Use Rankine's constants, a= 
64

~
0 

and a working stress= 80 N/ mm2. 

Solution. 
Working stress, 

External diameter 
Say internal diameter 

Area of cross section, 

fw = 80x 106 N/m2 

= 0'2m 
= d metre 

1t 
A= 4 (0·22 - d2)= 0'7854 (0'04 - d2) m2 

. . r ,., 

" f. 

·:.-.··· r 
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Radius of gration, k2 0·04+a2 

16 

Length =4m 

Axial load =0·8 x 106 N 

P 
J~. A 

R= /2 
l+a. k 2 

Rankine's load 

0'8 X I 06- 80 X 106 X 0·7854(0·04 -d2) 
1 4X4X1_6 _ _ 

1 + 6400 x (0·04 + a2) 

0·032 8 6 832 • o·8+ (o·o4+dz) = 2·5132 - 2· 

STRENGTH OF MATERILAS 

0·032+0·8a2+0·032=0· 1-2·51328d2+ 2· 5 t 328d2-62'832d' 

62·832d'+0'8d1 - o·o36=0 

2 
-0·8+ ./ o·64+4x 0·036 x 62·s32 

2 x 62'832 

= -o·s+3·112 =0·0184 
2X62·832 

d=0'1356 m=I3·56 cm=l3S-6 mm 

. 200-135·6 . 
Thickness of the metal = 

2 
=32 2 mm. 

Proble:m 1s·s. A short length of tube 3 cm internal and 4 cm external diameter 
failed under a compressive load of 18 tonnes. When a 2 m length of the same tube is tested as a 
strut with both the ends hinged, the buckling load was 4·os tonnes. Assuming that /. for the 
Rankine's formula is given by first test, determine the constant take a for the Rankine's 
formula. 

Estimate the crippling load for a piece of the tube 3 m long when used as a strut with 
fixed ends. 

.... ' • . . 

Solution. Inner dia = 3 cm 
Outer dia = 4 cm 

A, Area of cross-section =: (42- 32)=5·50 cm2 

42+32 25 
Radius of gyration, k 2= - 16- = -16- cm2 

Ultimate compressive load = 18 tonnes= / • . A 

End conditions : both the ends hinged. 

Length of the strut = 2 m = 200 cm 

Rankine's buckling load = 4'08 tonnes= -=--f._c -· 
1
-A-1-2 -) 

1+ a,F 
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or ( 
/2 ) 18 1 +a · k 2 = 4·08 

a( 
12 

·)=3·411 or a (~Qx 2oo~ 6 )=3·411 k 2 • 25 

3'41] X 25 l 
a =1 6x2oox200 = 7505 · 

Crippling load for another strut 
Length = 3 m = 300 cm 

') -
/,·2-~) ,-16 

End conditions 

Equivalent length 

Rankines' cripplin g load 

= Both the ends nre fixed 

=·L=l50 crn 
2 

_ J.. . A _ __ -c---_1_8~-
, / 1502 · - l JSOX 150x 16 
; +a·\ F) · 1 + 7505 x 25 ---

18 6" '67 = 1+1•91g7= I 
Tonnes. 

80.I 
• f •• 

Problem 15·9. A strut is built up of the T-scctions 8 cm X 16 cm X I cm riveted 
back to back so as to form :t scctio;1 of a cross. Using Gordon's formula, determine the safe 
load fr,r the strut, length 4 metres with h0th the ends fixed. Co11sta111s in the Gordnn's for mula 
may he taken ~s · 

f. = J·2 to11nes /cm 2 

1 
a 1 = 

250 
. U sc a factor of safety of 4 

Solution, 

Gordon's buckling l0ad, PG= f ,_A /• 

I + a1. b2 

where bis the lesser over all di mension. 
Fig. 15'i9 shows the built up sectio n with ovcrn ll dimensions 16 cmx 16 cm. 

Sob= l 6cm. 
Area of cross section, A 

= 2 x l6 x 1+2 x 7 x i 

= 32+ 14 = 46 cm2 
1 

Constant, a1 = 
250 

Length of the column = 4 m 

End conditions : Both the e,1ds fixc .l 
Equiv alent length. 

l.=2 m =200 cm 
Gordon's buckling load, 

Pa - _ _ ___3_·2 X 16 __ 
- I ( 200 ,2 

I + 2~0 l(j- .i 
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Factor of safety 

Safe load 

STRENGTH OP MATERIALS 

3·2 x 46 . 
= 1 +0.625 = 90 58 Tonnes 

= 4 

90·58 . 
= -

4
- = 22 645 Tonnes. 

Problem 1s·10. A hollow circular steel pipe 6 cm outside diameter, 5 cm inside 
diameter, 120 cm long is fixed at both the, ends, so as to prevent any expansion in its length. 
The pi pe is unstressed at the normal temperature. Calcu late the temperature stress in the pipe 
if its temperature rises by 40°C and the factor of safety against fa ilure as a strut. Use Rankine's 
formula for buckling. 

f, = 3· 3 tonnes/cm 2, a= 
75

~
0 

(for both the ends hinged) 

E= 2.080 tonnes/cm2, O'. = 11 · 1 x 10-6/°C. 

Solution. Outside diameter= 6 cm 
Inside diameter = 5 cm 

Area of cross section, A = ~ (36-- 25)-8'639 cm2 

Radius of gyration, k2= 
62,!52 

3·s1 cm2 

Coefficient of thermal expansion, 11 = 11 · 1 X 10- 0/°C 
Temperature rise, T = 40°C 

E= 2080 tonnes/cm2 

Expansion in the pipe is prevented by the fixed ends 
f, Temperature stress in pipe= cxTE 

= 11 · J X 10-o X 40 X 2080 
= 0'9235 tonne/cm2 (a compressive stress) 

Compressive Axial load, P=fx A=0'9235 x 8"639= 7·978 tonnes. 
End conditions : Both the ends are fixed 
Length of the pipe as strut = 120 cm 
Equivalent length, /. = 60 cm 

Rankine's buckling load PR - I•. A 
1.2 

l+a7c2 

3'3 X S-639 
l 60 x 60 

l + 7500 X 3"81 
3'3 X8'639 
1 +o· 126 25· 32 Tonnes. 

Factor of safety as a strut _ 25'32 _ ~-
- 7'978- . 17· 

Problem 15'11. A long strut AB of length L is of uniform section throughout. A 
thrust P is applied at the ends eccentrically on the same side of the centre line, with eccentricity 
at the end B twice that at the end A. Show that the maximum bending moment occurs at a 
~listance x from the end A, where 

( 
2- cos kL ) ~ p -tan kx = . J.L and k = __ 

sm ~ El 
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p 
B 

Solution. Fig. J 5·20 shows a strut 
of length /, having eccentricity iu loading e at 
end A an<l 2e at end B The strut is buckled 
under the thrust P. Since the eccentricities 
at the two ends are different there will be 
equal and opposite lateral reaction at the 
ends, say the reaction is Fas shown. 

F-i"ri-
1 t 

of F. 
Let us first calculate the magnitude 

Taking moments about the point A 
2Pe-Pe-Fl= 0 

F= Pe 
I 

... (i) 

x~--.y~X l 
_f.._ --.' -F . 

p 

Now consider a section X-X at a dis
tance of x from the end A. Fig. 15·2J 

or 

or 

or 

or 

B.M. at the section= - P(2e+y)+ FU-x) 

d2y Pe 
EI dx2 =-2Pe-Py+ T (l- x) 

d2y P 2Pe Pe 
dx2 +Ely= ··- EI + !El (1-x) 

_ _ 2Pe _Pex + Pe __ Pe _ Pex 
EI IE/ El El IE! 

The solution of the differential equation (I) is 

ex 
y = A cos kx+B sin kx-e- -

1
-

where A and Bare constants of integration. 
Ip 

k = ~ EI 

At the end A, x = O, y= O 

So . O= A cos o+B sin 0-- e-O 
A= e 

At the eod B, x = l, y= O. 

So 

So 

O= A cos kl+B sin kl - 2e 
= e cos kl+ Bsin kl-2e 

B= 2e-e cos kl 
sin k l 

( 
2e-e cos kl ) . k ex y = e cos kx+ . , 1 . sm x - e- - 1-sm ,, 

B.M. at the section. 
1 2e-e cos kl ·) . k + P + Pex + Pel Pex 

Mx =-2Pe- Pe cos kx- P\ sin kl I Sill x e - 1- - 1- - - 1-

803 

... (i) 

. . . (ii) 

... (i) 

... (2) 



or 

or 

(2 - cos kl) 
M = -Pe cos kx- Pe - . sin k x 

" Sill k/ 

For the bending moment to be maximum kt us put 
dM. . (2-cos kl) 
--· = O=+Pe k sm kx - Pck - -. - - cos kx 

dx sin kl 

. k - ( 2- cos-'5..!._) ,. ,. 1 . ., 
sm x - sin kl c ·• ''·' 

2- cos kl 
tan kx= sin kl where ·P 

k= Y El 

S,.fRENGTII OF MAlERIALS 

Problem 1s·12. A steel tube 80 mm outer dia meter and 60 mm inner diameter, 2·8 m 
long is us•;d as a. strut with both the ends hinged. The load is parallel to the axis of the 
strut but is eccentric. Find the maximum value of the eccentricity so that crippling load on 
strut is equal to 60% of the Euler's crippling load. Given yield strength= 320 N/mm2 • 

S0Iuifo1~ . 

Length, 
Outside diameter, 

Inside di ameter, 

Area of cn,ss section 

Moment of Inertia, 

Radius of gyration, 

£ = 210 kN/mm2• 

/= 2"8 m=2800 mm 
D = 80 mm 

d= 60 mm 
.,, 

A - - (802 - 602) = 21·99Xl02 mm~ 
4 

fC 
/ = 

64 
(804- 60·1)=0 l 37'445 X 1Q4 rnm4 

2 _ ( =l37"44S x 104 
_ • 

2 
., 

k- A 21·99xio2 -- 625x!O mm-

End conditions : Both ends hinged 

rc2£/ 
Euler's buckling load, P,= -p:--

n2 X 2 IO x I03 X J37.445x J04 
= --2 800 ><2800 __ ___ = 363'35x J03 N 

Stress due to Euler 's crippling load, 
363"35X 103 

J.= 21 ·99 x 102= 165"23 N/mm2 

Crippling load, P=-0'6 P.= 0·6 x 363'35 X 103 N = 218'01 X 103 N 

Stress, 
P 218 "0 1 X 103 

lo = A = 2F9"fx 102 =99"14 N/mm2 

Stress, f,n , s= f o+fb = 320 

/b = '.120 -99·14= 220·86 N/mm2 

I , ·-·w- n: r - p - n: - -
sec -I \ -£1 = sec 2 \! p-;:- =sec 2 , /o·6 

sec (l "216 radian) = sec (69"7°)=·2'883 
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. P ey, I f P 
Stress due to bend mg fb = A- k2 sec 2 ·'I EY 

290'86= / 0 • e 'Ye X 2'883 
625 

f0 =99' l4 N/mm2 Yr= 40 mm 

220'86 X 625 
e= 99· C,f x 40 x 2'883 

Maximum eccentricity, e= 12·073 mm. 

Pimhlem 15'13. A double angle strut is made up of two 100 mm X 65 mm X 6 mm 
angles riveted together alor,g the longer legs with a 1 ·5 cm scp:irator in between. Calculate the 
safe axial load for the strut, 3 metres long, ends fixed. The safe load in kg/cm 2 being 

1080- j5 ( { r for fixed ends. For each angle, area of section=9'55 cm2, x= 1 ·47 cm, 

Ji = 3' l9 cm, lx" =-= 96'7 cm4 In=32'4 cm4
. 

Solution. Fig. 15'2 l shows the built 
up section used for the strut. 

Area of cross section 

= 2X9'55+10X 1'5 

=34'1 cm2• 

Length of the strut, I= 300 cm 

The section is svmmetrical about 
YY-axis. Let us determine the p osition of 
the X-X axis . Choose the lower edge AB as 
the reference line 

y Separa(or 

1-c 0 

Fig. 15·21 

= 2x9·55x3·19+1·sx 10x5 =
3

.
986 ' ~l ~ 

Mo ment of inertia, 

So 

103 
f:,..,=2 X 96·7 + 2 X 9'55(3 '986-3' 19)2+ l '5 X 12+ 15(5-3'986)2 

= 193'4+ 12· 10+ 125+ 15'423= 345'923 cm4 

fy v= l0~/53 
+2x32·4+2X9'55(0'75 + 1'47)2 

= 2'8125+64'8+94' !324= 161'75 cm4 

k2-_ fyy = 161 '75 Minimum radius of gyration, A 
3
4.

1 
4·743 cm2 

Safe stress= l080-4~ ( ~ r 
End conditions. Both the ends are fixed and above formula is given for these end 

conditions. 
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t 300x 300 
Safe stress = 1080-

45 
x 

4
.
743 

1080-42L"67 

= 658"33 kg/cm2 

Safe load = 658"33x34"1 kg= 22449 kg 
=22"449 tonnes. 

Problem 15 14. A strut has initial curvature in the form of a parabolic arc and is 
hinged at both the ends. Show that the maximum compressive stress produced by a load P is 

where 

~[ l+ei· · ~~(sec; V};-1 )J 
A= cross sectional area 
e' = initial central deflection 

P .=Eulerian buckling load 
k=least radius of gyration 

y. =distance of the extreme fibre in compression from the neutral axis . 

Solution. Fig. 15"22 shows a strut 
ACB with initial curvature which is parabolic 
subjected to thrust P. 

S , 4e' x(l-x) 
ay Y = 12 ... ()) 

Consider a section X-X at a distance 
of x from the end A . 

B.M. at the section= -Py 

Change in deflection (as shown) 
=y-y' 

So 
d2 

EI - (y-y')=-Py 
dx2 

dy' 4e' 
From equation (1) dx =12 (l-2x) 

d2y' =-~ 
dxi 12 

A 

p 

Fig. 15·22 

EI d2y +El Se' =- PJ1 
So dxi 12 (putting values in equation (2)J 

or I d2y +P =- 8e'EI 
E dxi y 12 

The 'Solution of the differential equation (3) is 

Y=A cos k'x+B sin k 'x- ~e'EI p/2 where k'= /T 
IE 

... ( 2) 

.• • ( 3 ) 
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or 

at x = O, y = O at end A 

0 A O + B . O 8e' EI = cos sin -~ 

8e'E! 
A = -pp:- = K (a constant, 

y = K cos k'x+B sin k'x- K ... (4) 

At the centre of the strut, ddy = slope=O because the strut carries the load symmctri
x 

cally about its centre 

or 

From equation (4) 
d . fx = - Kk' sin k'x+ Bk' cos k'x 

= 0 a t x=l/2 

k 'l k ' / 
- Kk' sin 2 + Bk' cos 2 = 0 

k 'l 
B=K tan -

2
---

k'l 
y= K cos k 'x + K tan 2 sin k'x-K 

Maximum deflection takes place at the centre i.e. at x = 1/2 

Now 

Jlm >x=K COS 
k 'l k 'l . k 'I " - + K tan - - sm - -K 
2 2 2 

I k'l sin -2-r . 2 k'I] 
= K I cos 2+-- k'[ -K 

cos 2 
- ~k'l 

y.,.z= K sec ~2 - K 

I P 1
2 

7t JY 
= '\J4 X 1t2£/Xn2= 2 Pe 

n r p 
y.,,x=K sec 2 \J Pe -K 

Maximum bending moment 

Direct stress, 
p 

fo= A 
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but 

STRENGTH OF MATERIALS 

. d b d• M ma.r /b, maximum stress ue to en mg= Ak2 xy. 

- Pyo K [ sec ..!!.....J p - 1 J 
- Ak2 ' 2 P, 

Maximum compressive stress=/o+ / b 

P P y e 
= A+-Ak2 

8e'EI 1- n; J P J. x - - sec- - - 1 
p/2 L 2 Pr 

_ _!_ rL 1+ e'yc x -8-~{ ( sec _!C_,J~P - 1 )~.,l 
- A k 2 Pf2 2 \i Pe 

,i2£J 
Pe= 12~ Euler ' s load 

EI Pe b . . b T =~ su st1tutmg a ove 

M aximum compressive stress 

_ !_[ l + e'yc SP. ':.... ( - A k2 . nP sec 

SUMMARY 

l. Max imum strer.s developed in the sect ion of a long column or strut 

P Pe 
fma .. = - - - wh ere ? = Buckling load, 

A Z 

2. Eulers Buckling load 

e= maximum deflect ion in column, 

Z = section modu lus 

A= area of cross section 

1r.2EI 
Pe= -

1
~2 - where £ = Young's modulus 

l = minimum moment of iner t ia of the 
section 

/, = equivalent length 

le= ! (for b oth the ends hinged or both the ends free) 

= 21 (for one end fixed, other end free ) 

l = 2 (for both~the ends fixed) 

= J
2 

(fo r one end flxed and other end hinged) 

3. E uler 's buckling load is applicabl e for long columns or st ruts 

if !:._ ; 80 (for mild steel struts) where k = min imurn radius of ~yrati0n 
k. 
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where 

where 

where 

4. Rankine's buckling/crippling load, 

PR=--f• . A _ 
/e2 

1+ a. -k2 

/.=Rankine's constant for ultimate compressive strength 
a=Rankine's constant (connecting/. and£) 
/e=equivalent length (as explained above) 
k=minimum radius of gyration of the section 
A=area of cross section 

5. For braced girders, minimum distance between the lattice bars, 

k 
!= Le. K.--

Le=equival ent length of column or strut 
k=minimum radius of gyration of a member (a girder) used 

for built up section 

K= minimum radius of gyration of the built up section of the 
column/stanchion 

6. Straight line formula for working stress, 

/10 =/c' [ 1-c ~- ] 

// = allowable stress in compression, 
= 110 N/ mm2 (for mild steel) 

c= 
2

~
0 

for pinned ends (mil? steel) 

=
2

~
0 

for fixed ends (mild steel) 

7. Johnson's parnbolic formula 

Working stress , fw =J,' [1 -b ( ~e )2] 
b= 3 x 10- 5 for pinned ends , mild steel strut 

= 2 x !0-5 for fixed ends, mild steel strut 

8. Gordon's formula for buckling load 

PG= _ _,f.:.._,_._A_ 
/2 

l + a1 . b 2 

where a 1 = constant, 

b = lesser overall dimension of 
the section 

!= length of the column 

9. If the axial thrust Pon a long column acts with an eccentricity e, maximum stress 
developed is 

le JP _ p Pe sec 2 El 
fin a~- - + Z 

4 
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where 

where 

STRENGTH OF MATERIALS 

/e=equivalent length of the column 

Z=sectiC'n modulus 
A = area of cross section 

10. Prof. Perry's formula for long columns with eccentric load P 

f L-1 )( 1-k.)=~Yc \ lo / ~ k~ 

fe = Eulers' load per unit area 
e= eccentricity 

Yc=distance of extreme layer in compression from the neutral 
axis 

k = minimum radius of gyration 

f 0= ~ = Axial thrust per unit area 

/ = allowable stress in compression 

11. For long columns having initial curvature (of sinusoidal shape) 

( 
fmnrr. -- l ~( l - lo ) = e'ye 

fo f• k2 

/,nox= maximum allowable stress 
e' = initial central deflecti on in strut/column 

12. Perry-Robertson formula taking into account the inherrent crookedness of the 
column and eccentricity in loading 

where 

where 

~ ~lo = J+f.~I +,_) - J {-f+f ii + Al r -f .f• 

/ = al lowable stress in compression 

f e= Eulers' buckling load per unit area 

).~ e,/:-- =0·003 ( ~ ) 

v,tlid for large number of experimental observations 
/ = 2835 kg/cm 2, 278 N/ mm2 for steel columns 
e1 = 1'2 e+e' 

= 1 ·2 x eccentricity in loading +central deflection due to initial 
crookedness in the column 

13. For a Jong column/strut carrying axial thrust P and a central lateral load w, 
P Wye {"E( f P / 

fma .= 11+2Ak2 '1 p tan \ El . ·
2
-

/= length of the strut 
A= area of cross section 
k = minimum radius of gyration 

Yr=distance of the extreme layer in compression from the 
p.cutral axi~ 
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14. For a long strut/column carrying axial thrust P and a lateral uniformly distributed 
load w per unit length 

MULTIPLE CHOICE QUESTIONS 

I. A column of length 240 cm, area of cross section 20 cm2
, moment of inertia lxx= 120 cm' 

and I,,=80 cm' is subjected to a buckling load. The slenderness ratio of the column is 

(a) 40 (b) 80 

(c) 120 (c) 160. 

2. A strut of length / is fixed at one end and free at the other end. The Euler's buckling load 
for this struc is 10 kN. If both the ends of the strut are now fixed, its Euler's buckling 
loud will be 
(a) 160 kN 
(c) 80 kN 

(b) 120 kN 
(d) 40 kN. 

3. A long column of length / is fixed at one end and hinged at the other end. If El is the 
flexural rigidity of the column then Euler's buckling load for the column is 
(a) 1;2EI/l2 (b) .,,2£1/412 
(c) 2n2E///2 (d) 4n2El//2. 

4. Rankine's constant 
taken as 
(a) 200 N/mm2 

(c) 320 N/mm2 

for the compressive strength of a cast iron column is generally 

(b) 250 N/mm2 
(d) 550 N/mm2. 

5. A braced girder 4 m long both ends hinged is made up of 4 angle sections braced by 
lattice. The minimum radius of gyration of the built up section is 17·5 cm while the 
minimum radius of gyration of one angle sccti.)n is 3·5 cm. The minimum distance 

between the bracings is 
(a) 1·6 m 
(c) 0 '8 m 

(b) 1 m 

(d) 0·4 m. 

6. Euler's buckling load formula is applicable for 
(a) Short columns (b) Columns of medium length 
(c) Long columns (d) None of the above. 

7. The ratio of equivalent length of a column with both its ends fixed to its own length is 
(a) 2·0 (b) 1'414 

(c) 1 ·00 (d) o·5o. 
8. A hollow circular section with outer diameter 8 cm and inner diameter 6 cm is subjected 

to buckling. The radius of gyration of the section is 
(a) 2·5 cm (b) 2'0 cm 
(c) 1 ·s cm (d) 1 ·00 cm 
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9. A long column_ of length 1 is subjected to a buckling lorrd Pat an eccentr icity e. One end 
of the column 1s fixed and other end is free. The flexural rigidity of the column is El and 
its area of cross section is A and Z is the section mod ulus. The maximum stress 
developed in column section due t o bending is 

Pe I./ P Pe JP 
(a) Z. sec -·2 V EI (b) z. sec I EI 

(c) _P_e_ sec ..!_ J p (d) Pe sec 2/ J-~. 
Z 4 EI Z El 

IO The cross section of a strut is rectangular with drcadth 6 cm and thickness 1 cm. If 
length or the column is 1 metre with both the ends fixed, and E=lOOO tonnes/cm 2, 

Euler's buckling load for the strut is 
(a) 0·25 n2 Tonnes 
(c) o· 10 n2 Tonnes 

I. (c) 
6. (c) 

2. (a) 
7. (d) 

(b) 0·20 rc2 Tonnes 
(d) 0·05 n2 Tonnes. 

ANSWERS 

3. (c) 
8. (a) 

EXERCISES 

4. (d) 
9. (b) 

5. (c) 
10. (b) 

the 
the 

15·1. A straight bar o f an aluminium a lloy l m long of circular section, d i,ameter 
1 cm is used as a strut with both the ends hinged. Assuming the Euler's formula ·to apply and 
that t he materi al attains its yields strer1gth at the time of buckling, estimate the central deflec
tion. £=0"75 x 106 kg/cm2, yield strength =3090 kg/cm 2 [Ans: 12"J459 cm] 

1s·2. A tube 1 ·8 m long has a crippling load of 8 kN when used as a strut with fixed 
ends. Calculate the crippling load for a 3 m length of the same tube when used·as a strut if 

(a) Both the ends are pin jointed. 
(b) O ne end is fixed and the other end is free. [Ans. (i) 0·72 kN (ii) 0"18 kN] 

t5·3. An a lloy tube 5 m long extends by 3 mm under a tensile load o-f 60 kN. 
Calculate the buckli·ng load for the tube when used as a strut with p in jointed ends. Th~ t1:1be 
diameters ,are 40 mm and 3 , mm. [Ans. 6"3 11 kN] 

15"4. A ·thin vert ical strut of circular section 6 cm diameter and length 2 m is rig idly 
fixed at the bottom and its t op end is free. At t he top there is a horizontal load 200 kg and a 
vertical load 1000 kg acting through the · centroid of the section. Determine the maximum 
stress developed in the section of the strut. £ = 2080 tonnes/cm2 • [Ans. l "706 tonnes/cm2] 

ts·s. A 200 x I 00 mm Rolled steel jo ist is used as a strut, 5 metres long, both the 
ends fixed. Calculate the buckling load by Rankine's forrriula. Compare this with the load 
obtained by Euler's formula. F or what length of the strut will the two formulae give the same 
buckling load? For the joist area of the section = 25 27 cm2

, I u = 1696"6 cm' In= 115"4 cm4 • 

£=210 kN/mm2 

Rankine' s constants are/•= no N /mm2
, 

a= 
75

~
0 

(if both the ends are hinged) 

r Ans, 286"04 kN, 382"69 kN, 9'31 m] 

15"6. A h ollow cast iron column with hinged ends supports a n axial load of 100 tonnes. 
If the column is 6 m long and has an external diameter of 30 cm, find the thickness of the 
metal required. 
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Use the Rankine's formula, taking constant 

a= 16~0 (for both the ends hinged) and a 

800 kg/cm 2 

working stress of 

[Ans. 23'05 mm] 

15'7. A short length of tube 36 mm outside diameter and 24 mm inside diameter is 
tested under compression. It failed at a load of 181 kN. When a 2·5 m length of the same 
tube is tested as a strut with fixed ends, the failing load is 65' 11 kN. Determine Rankine's 
constants. 

Estimate the crippling load for a piece of tube 2 m long, when used as a strut with one 

end fixed and the other end hinged. [ Ans. 320 N/mm2• 
75

~
3 

, 56'07 kN J 
15'8. A double angle strut is made up of two 90 mm X 60 mm X 8 mm angles riveted 

back to back along the longer side. Using Gordon's formula, determine the safe h)ad for the 
strut, 5 metres long with both the ends hinged. Constants in Gordon's formula may be taken as 

1 
/ c= 320 N/mm2, a1=

250 
Use factor of safety as 3. For an angle, area of the section = 11 · 37 cm 2. 

[Ans. 18 '18 kN] 
15'9. A hollow circular steel p ipe 45 mm inside diameter and 60 mm outside diameter, 

2 metres long is fixed at both the ends so as to prevent any expansion in its length. The pipe 
is unstresed at the normal temperature conditions. Calculate the thermal stress in the pipe if 
its temperature rises by 60-C, and the factor of safety against failure as a strut. Use Rankine'·s 
formula 

£=210 kN/mm2, 

J.=320 N/mm2, 

a=] J · J X 10-sj°C 

a= 1;
00 

(for both the ends hinged) 

[Ans . 139'86 N/min:i, 1 ·66] 

15 10. A long strut, initially straight, 1 metre long and 30 mm · diameter is subjected 
to a thrust P = 40 kN . L0ad P is applied eccentrically with an ·eccentr icity e at o;;c end and 2e 
at the other end . Calculate the eccentricity e, if the maximum stress developed in the strut is 
250 N /rnm 2

• (Refer to Problem I 5' 11) E= 210x 103 N/mm2. [Ans. e= 3'9 mm] 

15· 11 . A steel tube 66 111 m outer diameter and 50 mm inner di_ameter, 4 m long is 
used as a strut with both the ends fixed. The load is parallel to · the. axis of the strut but is 
eccentric. Find the maximum value of eccentricity so thM the -cri ppling 'load on the strut is 
equal to 70 °/0 of the Euler's crippling load. Given yield sfrength=320 N/mm2 

£ = 208000 N/mm2. [Ans. e=3'55 mm] 
15'12. A strut is having a built up sect ion made by riveting a 150 mm x 80 mm RSJ to 

a 100 X 45 mm channel section so as t o make a T-shape. Calculate the safe axial load for the 
strut, 2 metres long both the ends hinged. The safe load, in N/mm2 is l 10-(//k)2/l lO for 
both the ends hinged. For each RSJ, area of the section = 18'08 cm2, l.u=688'2 cm4, In=55"2 
cro4. For the channel section. Area = T41 cm2, lxx= l23'8 cm4, ly

1
=14'9 cm4, x= 1'4 cm, 

web thickness= 3'0 mm. [Ans. 148'4 kN] 

15'13. A circular strut 1 ·2 m long, diameter 3'6 cm has initial curvature a nd its centre 
line forms a parabolic curve with a central deflection of 5 mm. The strut is hinged at both the 
ends. It is subjected t o a thrust of 2 tonnes . Determine tlle maximum conipressi11,1e str~is 
produced in the section. £ = 2100 tonnes/cm2. . [An~: 0'41S tonne/cmll] 
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16 
Strain Energy Methods 

In various chapters we have studied about the strain energy stored in a body or a 
structure subjected to external forces and couples . Then in chapter 11, we have studied about 
the deflection of beams and cantilevers subjected to various types of transverse loads. In this 
chapter we will study ab'.)ut the use of strain energy for the determination of displacement or 
deflection at a particular point, and in a particular direction. The entire body or the structure 
and the forces acting on it are considered. There are displacements due to externally applied 
forces and the work done by these forces is stored as strain energy in the members. It is 
assumed that external forces are gradually applied. The strain energy stored in a body is 
utilised to determine the displacement along a certain applied force or to determine the angular 
rotation due to a certain applied bending moment or to determine the angular twist due to a 
certain applied torque. 

1,·1. CASTIGLIANO'S FIRST THEOREM 

If a body is acted upon by forces Fi, F2, F3 ••• Fn and U is the strain energy stored in 
the body, then partial derivative of the strain energy with respect to a force Ft gives 

the displacement of the body in the direction of Ft, or the displacement 81 = ;~ . This theorem 

is extremely useful in determining the displacements of complicated structures. To prove this 

w, w2 W3 wn 

A 
b B 
b;-

C 

t," c<-
( e) 

Fii . 16'1 

Theorem, let us consider a beam AB of length/, simply supported at the ends and this beam 
. is initially straight. Say a number of transverse loads W1, W2, W3 ... n are gradually applied 

814 
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on the beam and under these loads say the deflections are y 11 y 2, y
3 

••• yn respectively. Then 
strain energy stored in the beam is 

1 
U= 2 [W1Y1+W2Y11+W3y3 ... JVnyn] ... (I) 

i.e. area covered under triangles shown in the figure 16'1 (b). 

Let us say that load W1 is increased by oW1 and due to this additional load SW1, the 
deflections increase i.e. y1 increases to )'1 +Sy. ; Y2 increases to y2+ 8yi; y 1 increases to J13-l-Sy

8 
and so on, Yn increases to )'n +Syn . 

Additional energy, 

SU=t8W1SJ1i + W1SY1+ W2llY2-l- W 38y3 ••. ••. Wn8yn 
(i.e., shaded areas shown in the figure) 

Differenti ating partially the equation (U with respect to load W1 

2V oYi 0W2 OY2 2 0W1 =Ji+ Wi 0W1 +y2 oW1 + W2 i3W
1 

a~ ~ a~ a~ 
-I-Ya oW~+ Wa 0W1 ...... yn oW

1 
+ Wn 0W1 

but loads W1 , W2 , W3 •••••• Wn are constants 

So 2 W _ + oYi oy2 oy8 oy .. 
0W1 -y, Wi 0W

1 
+ W 2 0W1 + Wa 0W

1 
...... Wn 8W

1 

From equation (2) neglecting product of small quantities 

SU= W 1SY1 + W 2Sy2+ W/>y3 ... ... WnSy,, 

Dividing thrcughout by SW1 we get 

oU -w OY!_ + w ~ -l-- W Sy~ w Sy .. 
0W1 -

1 llW1 2 SW1 
3 Sw1·"··· n SW

1 

or in the limit~ 

;i
1 
= Wi c~i + W2 : ;

1 
+ Wa ii~ ...... Wn -1;~ 

Substracting cquati0n (4) from equation (3) we get 
au 

i:i·w1 = .vi 

Similarly it can be proved that 

au 2u au 
aw; = y 2, oW

3 
= ya ... .. oWn =yn. 

... (2) 

. . . (3) 

.. . (4) 

If a system of forces Fi, F2 ••• Fn, bending moments M1, M2, M8 ... Mn and twisting 
moments T 1 T, T 3 ••• Tn are simultaneously acting on a body, then Castigliano's theorem can 
be extended to find angular rotation due to bending moments and angular twist due to twisting 
moments also. 

i.e., }t
1 

=<Ji, angular rotation 

oU 0 I . --= t,, angu ar t wist. 
oTt 
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16.2. ELASTIC STRAIN ENERGY DUE TO AXIAL FORCE 
Consider a bar of length /, cross 

sectional area A and young's modulus £, sub
jected to an axial tensile force P as shown in 
the figure 16 ·2. 

Stress ·in the bar, /= ~ 

-_ ____ s ect I or F
A :are a 01 _crosc: 

~)--- ==c&-~ 
Strain energy per unit volume, u= {i; 

1----· e - --1 
Fig. 16·2 

f2 f2 p2 p21 
Total strain energy, U= -2E XVolume = ZE XA l= ZA2E X AI= ZAE 

Displacement along the force P= !~ = ~~= axial extension. 

Example 16·2-l. A structure is shown 
in Fig. 16·3 (a). The area of cross section of 
each member is A and Young's modulus of 
elasticity is E. Load P is applied at the joint 
C of the structure. Determine the deflection 
under the load P. 

G 

(a ) 

p 

p 

Solution. Let us first determine the 
forces in each member so that strain energy 
can be calculated. Give Bow's notations to 
spaces in and around the structure say E, F, 
G, H, 1, as shown. Draw a line ef parallel to 
force P (represented by Bow's notations EF) 
and to some suitable scale. From e, draw a 
line ei parallel to EI and a line / i parallel to 
Fl. Similarly consider the forces at the joint 
B and complete the force diagram for the 
structure as shown by Fig. 16"3 (b). 

Ji ( b) 

Force diagram 

Fig. 16 3 

Members Bow' s rotations Force, F L ength I, F2l 

AB EH + ~~ (tensile) 
a 2P2a - - 3 -2 

BC EI + 2P a 
4P2a 

.../3 3 

CD Fl 
p 

-./3 
a 

P 2a 
3 

DB HI 
2P 

- v3 (compressive) a 4P2a 
3 

---
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"i,p2f= I Ira 
Strain energy, U = 11 P2a = I I P2a 

2X3AE 6AE 

Deflection under the load, 0 
_ oU _ _ llPa 

P - oP - 6AE · 

Exercise 16'2-l. A structure is sh0wn 
in the Fig. 16'4 . The cross section of the 
members AB, BC and CA is each 5 cm2 • 

Determine the deflection under the load P if 

P= 5 tonnes 

E= 2000 tonnes/cm2• 

[Ans. 1'91 mm] 

( b) 

Fig. 16'4 

t6·3. ELASTIC STRAIN ENERGY DUE TO SHEAR STRESS 

817 

Consider a r-:ctangular block of dimensions Jxb xh as shown in the Fig. 16·5, fixed at 
lower end subjected to a tangential force Q at the top face. The block is distorted under 
this shear force. Say the displacement of the top face along the direction of Q is os. 

where 

where 

Work done on the block 

= i Q . ds 

= Energy stored 

Energy stored, 

= i Q. os 
1 Q 

= z /bh X os /bh 

= ~ ( ~ ) X ( ~~f ) /biz 

~ = q, shear stress 

Fig. 16·5 

!s = rf,, shear strain as the angle is very small , tan cf, -= c/> 

Therefore, 

shear strain, rf, = i , G= shear modulus 

I q2 
V = y G X /bh 



= i~ X (Volume of the body) 

q2 
Shear strain energy per unit volume, u, = ZG 

STRENGTH O:P MATE&IALS 

We have seen in chapter on distribution of shear stresses in beams, that the distribution 
of shear stress across a section is complicated, therefore shear strain energy must be integrated 
over the whole section of a body and may not be taken as a constant. The shear strain energy 
due to shear deformation is very small and many a times ignored. Therefore the error caused 
by assuming uniform distribution of the shear force across the section will be very small. 

Example t6·3-1. A beam of rectangular cross sl:!ction breadth b, depth d and o · 
length l is simply supported at its ends. It carries a concentrated load W at its centre. 
Determine the shear strain energy in the beam and find the deflection due to shear. 

G=Modulus of rigidity for the beam. 

Solution. Fig. 16'6 (a) shows a beam AB of Jeµgth /, simply s~ported at the ends; 
and carrying a concentrated load Wat its centre C. Shear force betweea .A to C is + W/2' 
and between C to B, shear force is - W/2. 

w dx 

A 1-x X ~ B 

(a) 

Sh ear f o rc e diagram 

Fig. 16·6 

Consider a section X-X at a 'distance of x from the end A. 

Shear force 
w F,,= +2 

N A d 

2 
~---__j_ 

L-b -1 
( b) 

Now consider a small len~th dx. Let us determine shear strain energy for the portio 
A~. Fig. 16'6 (b) shows the sect~on of the beam. Consider a layer of thickness dy at : 
distance of y from the neutral axis. 

where 

FaJ Shear stress q at the layer= n 

~pear stres~. 

F=shear force at the section= W/2 

aJ = first moment of the area above the layer about neutral 
axis 

/ f . . bd3 = moment o mertia= 12 
b= breadth 

W 12 b ( d )( d'/2 - ) 
q= T X bd3 X T i - y . Y+ f y 
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, r 

8'i9 

_ 3W ( d
2 
-y2) 

- bd3 4 

9w2 ( d4 d2y2 ) 
qZ = b2d 8 16-+y4--2-

Volume of the layer = b.dx dy 

Shear strain energy in the layer 

q2 
= 

20 
b.dx.dy 

l 9W2 d4 d 2y 2 
) 

= 2G bx b2d6 ~ 16 +y4 - -2- dy.dx 

Total shear strain energy for the portion AC 

//2 +d/2 

U,' = ;G r J {~i ( f; + y4 - di2 ) dy dx 

0 -d/2 

{f l d/2 
l r 9 W2 

[ d4y y 5 d 2y3 J 
= 2G J bd6 1.6 +5 - 6 - dx 

0 -d/2 

// 2 

I J 9 W
2 
[( d

5 
d

5 
) ( ds ds ) 

= 2G bd6 32 +32 + 160 + 160 
0 

( 
d5 d5 )] - 48+ 48 dx 

//2 
l r 9 W2 ( J5 + d 5 J S ) 

= 2G J bd6 \ I6 80 - 24 dx 
0 

//2 //2 
1 J ( 9 w2 d

5 
) 1 J 3 w2 = 2G bd6 X 30 dx=2G 30 bd dx 

0 0 
I 9W2 l 2W2l 

= 2G X 30bd X 2 = 40Gbd 

Since the beam is symmetrically loaded, shear force in the portion CB is the same i .e. 
- W/2. Shear strain energy for the beam 

I 3W2l 
U,= 2U• = 20Gbd 

Deflection at the centre due to shear 
au. 3Wt 

= aw = 10Gbd 
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Exer~ise 16'3-l. A beam 8 metres long carries loads of 40 kN each at a distance of 
2 metres and 6 metres from one end. The beam is simply supported at the ends. The beam 
is of rectangular section with breadth b and depth d. If d= 2b, and the shear stress is .ncifto 
exceed 75 N/mm2 • Determine (i) size of the beam, (ii) shear strain energy in the ·bea!in, 
(iii) deflection due to shear under the load of 40 kN. 

Given, G=80,000 N/mm2• 

[Ans. (i) 20 mm, 40 mm, (ii) 30 Nm, (iiO 0·75 mm] 
I. 

16'4. STRAIN ENERGY DUE TO BENDING 

Consider a bar of length /, initially 
straight subjected to a gradually increasing 
bending moment. As the bending moment 
increases, curvature in the bar increases or the 
angular rotation cp goes on increasing. Say 
at a particular instant. 

Bending moment= M 
Angular. rotation = cp 
Radius of curvature=R 

Work done on the bar =!Mcp 
But </,=//R since cp is very small and 

the stress in bar remains within the elastic 
limit. 

Work done=Energy stored in the bar, 
Ml 

U= iMcp= -2R 

But from the flexure formula, 

M E 
7 = R' or 

Therefore, strain energy, 

M 21 
U= 2EI 

1 M 
R =ET 

· Fig, 16·7 

If we consider a beam subjected to transverse loads Wi, W2, •• • , w etc. where the radius 
of curvature goes on changing from one section to the othet. ' 

Strain energy due to bending, 

U= f Mx
2 

dx 
J 2EI 

... (1) 

Where M x is the bending moment at any section X-X and dx is the small length along the 
axis of the beam. 

Say 81 is the deflection under the load W1• Then 

au f Mx aMx d 
81 = awl = J EI . dW1- X X . .. (ii) 
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Example t6·4-J. A circular cantilever of length/, free at one, fixed at the other end, 
'with diameter d for half of its length and diameter 2d for the rest of its lengt4 carries a con
centrated load W at the free end. If Eis the Young's modulus of the material determine the 
deflection and slope at the free end. 

Solution Fig. 16·8 shows a canti
lever ABC, fixed at end C and free at end A 
with diameter d for half of its length AB and 
diameter 2d for next half of its length BC. Since 
we have to find out the slope at free end A, 
let us apply a fictitious moment M =O at the 
free end. 

w 
~ 

/ ' 
( 

Portion AB M :Fictitious couple 

Fig. 16·8 

I 
M ,.=M + Wx where x = O to taking origin at A . 

.: 

Portion BC 

M ..-= M + W ( x+ f ). where x = O to 
2 

, origin at B 

Strain energy, 

where 

l/2 
U= r(M+ Wx)2 

J 2E/1 
0 

//2 

dx+ f [M+ ii;2+!/2)]2 dx 

0 

rt(2d )4 rtd4 

12= 64 = -4-

1/2 l/2 

Deflection at A , S= oU = f (M + Wx)(x) 
oW J E/1 

0 

r ( M + W(x+l/2) .) ( . ·· ·· ·1) 
dx+ J EI

2 
X x+2 dx 

0 

1/2 //2 
_ I i Mx

2 +~/+ l l Mx2 + Mix + Wlx2 + wxa + W/2xl 
EI1 • 2 3 . . E/2 2 2 2 3 .. · 4 

0 0 

But M = O. 

"= _I_ X W/s +- 1-( Wis+ W/3 + W/3) 
ci E/1 24 EI2 8 24 8 . .. · . 
= -1-X W/3 + _l_ x 7 W/a 

E/1 24 E /2 24 

Substituting the values of / 1 and / 2, 

a- W/3 [ 64 -+ 7 x 4 l- W/3 X 92 
24E rr:d4 rr:d4 _ 24E rr:d4 

23WI3 

= --
6Err:d4 
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l/2 l/2 . 
Slope at end A, ,p= ;~ = J Mt

1
~x x (l)ux+ J (M+ W(xiJ,:;z)(l)dx 

0 0 

l/2 l/2 
1 I wx2 1 1 / Wx2 WI I </> = E/1 Mx + -2-1+ E/2 Mx+ -2- + 2 . x 

0 0 

But M = O 

Substituting the values of /1 and / 2 • 

<p = wti[~ + 3x4 ]= w12
x 16 

8£ 1;d4 1td4 8E1;d4 

I9Wl2 

= 21tEd4 

Example t6·4-2. A circular ring of 
mean radius R and second moment of area 
of its cross section I, with a slit at one 
section is shown in Fig. 16.9. Points A and 
Bare subjected to forces P as shown. 

Determine the relative displacemets 
between the points A and B. Only the 
strain energy due to bending is to be taken 
into account . 

Solution. 
Fig. 16·9 

Consider an element of length dS = R d8 at an angle 0 from the vertical axis. 

Bending moment of the force P on the element, 

M x= P(R- R cos 0) = PR(l -cos 8) 

ff 

Strah1 energy, U=2J [PR(l;;/os 8))2. R de 

0 

ff 

P3Rs J = ~ (1 +cos20+2 cos 0) d8 

0 

ff 

- p2Rs r[ 1+ ( 1+ cos 20 ) - 2 cos 0 J d0 
- EI j 2 

0 
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It 

= p2Ra I l_ e+ sin 20 -2 sin 0 j 
EI 2 4 

0 

Relative displacement between the points A and B 

o= oU = l!!._ X 2PR
3 = 3rc PR}'._ 

oP 2 EI EI 

Example 16·4-3. A beam ABC of length /, hinged at both the ends A and C is sub• 
jected to a couple M applied at B, at a distance of //3 from one end. If EI is the flexural 
rigidity of the beam, determine the rotation of the point C. 

Solution. Fig. 16' 10 shows the beam 
of length I subjected to couple M as given in 
the problem. 

M 

Reactions at A and C= ± f 
Strain energy due to bending 

Portion AB. origin at A Fig. 16·10 

M 
M1: = --[- X 

Strain energy, 

//3 f( M2x2 u.= J - ·12 
0 

//3 

) 
dx M2 I x3 I 
2EI = 2EI /2 3 

0 

Af2 /3 _ M2/a Af2/ 
= 2El /2 Xgf 162 El 12= 162 El 

Portion CB, origin at C 

~train energy, 

Mx 
Mz= + ---( -

2~3 2ij3 

I Afi x2 dx M2 I x3 \ 
U2= -,-2 - X 2EI = -2EI /2 1-3-

o 0 

M2 g/s 8M2/s 8 M2/ 
= 2El /2 X 81 = 162 EI 12 = 162 -~ 

Total strain energy of the beam, 

9 
U=U1+U2= 162 

Rotation at the point C, 

au 2M1 Ml 
o# =if, = l8Ef = 9£/ 
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Exercise 16'4-l. A circular beam of 
nength l simply supported at its ends carries 
a concentrated load at its centre. The dia

imeter of the beam is 2d for half of its length 
.and d for another half. If E is the young's 
;modulus of elasticity of the beam, determine 
, deflection at the centre. 

ST/lENGTH OF MATERIALS 

[ 
17 W/3 J 

Ans. 24 Ert d4 

Fig 16·11 

Exercise 16'4-2, A steel ring 2 cm diameter is bent into a quadrant of 1 ·5 m radius. 
One end is rigidly fixed in the ground and at the other end a vertical load P is applied. 
Determim; the Vqlue of P so that the vertical deflection at the point of loading is 1 ·6 cm. 

E=208000 N/mm2 [Ans. 9'86 kg] 

J4xa,mple 16'4-3. A beam of length/, hinged at both the ends is subjected to a couple 
Jvf applied in a vertical plane at its centre. If El is the flexural rigidity of the beam, determine 
the} angular rotati9:q of the ce:qtre of the beam due to M. 

[ Ans. 1fi1j 
t6·5. STRAIN ENERGY DUE TO TWISTING MOMENT 

Fig. 16'12 shows a shaft of diameter d and length I subjected to a gradually increasing 
twisting moment. As the twisting moment increases gradually, the angular twist also increasef 
gradually. 

T 

u 
£ _ _ 

e ,. -
Angular twist 

Fig. J6 · J2 

At a particular stage say, the torque applied is T and angular twist in the shaft is r 
Work done on the shaft= ! T 0 

= U, strain energy stored in the shaft 

From tension formula, 

T GO Tl , =-r or 0= GJ 

Strain ener~y due to twisting moment, 

l T 2l 
U=- x-. i (j/ 
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where J = Polar moment of inertia of the shaft 
rrd·1 

= 32 (for a sdid slu,ft) 

r21 U= -- --
2GJ 

If the torque varies or the section varies along the length the sl)aft 
l 

U = -1_ f T2d/ 
2G j J 

0 

Angular twist due to the twisting moment, 

au 
O= aT. 

Example 16'5-l. A circular bar of diameter dis bent at right angle. It- is fixed at 
one end and a load Wis applied at the other end as shown in the Fig. 16' ! 3. Determine the 
deflection under the load W if E= Young's modulus and G= Shear modulus of the material. 

energy. 

where 

Solution. Let us calculate the strain 

Portion BC 
b . -I (Wx)2 - w2bs 

U1- 2El dx- 6E! 
" 0 

Portion AB 

u2·""'Strai.n energy due to bending 
a 

J 
(Wx)2 _ W2 :i 

= -2El dx- 6El -
0 

ig. }.6·l3 . 

Straight portion AB is also subjected to a twisting moment T = Wb 

U3==·Strain energy due to twisti.ng m omen t 

(Wb) 2 a W2a!J 2 
= 2GJ- = 2GJ 

1td4 
l = -

61. 

Total s.train energy 

Deflection under the load, 

1td' and J= -- - -
32 

au Wb3 . Wa 3 Wab2 
8= aw = 3EI + 3Ef +cJT 
= WX 64 (a3 +b3)+ _wx 31 (ab2) 

3£ X 'f(d4 · G-X rcd4 

_ 32 W [ 2(c,3+ b3) .!!._'?:__ j-, 
- -:.d4 3E + G · 

I• • • • ' .,. 

,· ... ·. 
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Exercise 16 5-1. A circular bar 2 cm diameter, 20 cm long is bent at right angle at 
the centre. It is fixed at one end and at the other end a load 200 N is applied. If ,Vt' 

~ 

E=2,08,000 N/mm2 and G= 82,000 N/mm2
• 

Determine the deflection under the load. [Ans. 6"845 mm] 

Problem 16"1. A structure of horizontal length 2a and vertical height a carries a 
load P"at its end as shown in the Fig. 16'14. The area of cross section of each member is A, 
and Eis the Young's modulus. Determine the deflection of the structure at the point I. 

p 

0 p f p d,c 

a p 
C 

Fore£ 
2 b p e diogrom 

Fig. 16·14 

Solution. Let us give Bow's notations to the spaces in and around the structure as 
shown. Taking ab=P, the vertical load, and then drawing li nes af parallel to member AF and 
fb parallel to member FB. Force in member AF is P (tensile) and in FB it is v2 p (com
pressive) since the angle Lafb=-15°. 

Similarly the complete force diagram for the structure is drawn. Following table gives 
the forces in members : 

Members Length Force, F F21 

AD a +2P 4P2a 

AF a +P P2a 

FB \ 1 2a -y2P 2P2 x '12a 

EF a + P P2a 

BE a - P P2a 

DE v2a ·- v2P 2'12P2a 

"I:.F21= 7 P~a+4-v'2P2a 

Strain energy, 
}:.F2/ 7 P2a+4 ./2P2a U= - -
2AE 2AE 

when: ~ 1 area of HO~~ seetioµ of efi~h m~mber is t4e samtt 
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Deflection at the point i, 

s27 

au =a= 2P·a (?+4v'2) 
oP 2AE 

Pa = AE (7 +4\12). 

Problem 16'2. For a centilever made of steel, length /, breadth band depth d, show 
that it y1> and y, a·re the deflections due to bending and shear at the free end due to the con
centrated load load W at the free end 

;b = K . ( f r where K is a constant. 

Determine the value of K for steel and the least value of ~ if the deflection due to 

shear is not to exceed 1 ·5~ of the total deflection. 

Take 
E . -=26 
G 

Solution. Length of the cantilever=/ 
Section is b X d 

Moment of inertia about neutral axis 
bd3 

f:-z=l2 

Say the concentrated load at the free 
end=W 
Deflection due to bending, 

Wl3 

ye= 3EI 

W/8 4Wl3 

- 3Exbd3 x 12= Ebds ... (I) Fig. 16· 15 

Deflection due to shear. Shear stress in any layer at a distance y from neutral axis, 
Fa.Y 

q=Ib 

In this case, Shear Force is constant throughout the length of the cantilever F= W 

a.Y =b( ~ --y )( Y+ d/22- y ) (See Fig. 16 '15) 

b ( d 2 
' = 2 4 - Y2
) 

_ Wb (.!!!_- 2 )x ..!2_ = 6W ( d! 2 ) 
q-bx2 4 Y bda bda 4-Y 

~--36 w2 (!!:!.._ - a2y2 4 ) 
q - bid6 16 2 + y 

Shear strain energy per unit volume = }~-



·-,st 

Shear strain energy for the cantilever 

d/2 

I 
d_4_ y - d2y3 + y ff I 
16 6 5 · 

0 

36 W 2l [ d5 d
5 

d
5 

] 
= Gbd6 • Ii - 48 + I 60 

36 w2 1 d5 6 w21 
U.= Gbdn X '60 = lO Gbd 

Deflection due t~1 shear at the free end 

Now 

So constant 

y , _ 12 X W l X Ebd3 
_ 12 X d 2 X E 

y ~ 90 Gbd W/3 IO /2 G 

= 2'6 X 1'2X ( di )2 

K= 2'6X 1·2= 3'12. 

- · ~ = 3' 12 ( .!{__)2 

Yb . I 

. Jn this case, y, is negligible, therefore, Ys+yb e yb 
'i.;;:xr 1',. ··' :_; : '; .. ·1 1 

• • •• • r , • • 

y,= y0 X3'12 (-f )2 
·y, = 1'5% Yb = 0'015 

So . 'Dl5= 3'12X ( ~:) 

J2 3· ]2 I 

d2 = 0 01 5='208 or 

-~ = 14'42. 

... (1): ·. 

Problern 16·3. A simpl); supported beam of / section is loaded as shown in the figure 
16'16. Determine the shear strain energy in the beam., Given G= 80,000.N/mms. Find the 
deflection due to shear under one load. - · 
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Solution. Fig. 16'!6 shows a beam 
ABCD, 10 metres long carrying 12 kN at C 
and D, 2 meters from each end. 

A C D B 
,----+------~---i 

4mt~m R9:12kN The shear force diagram is shown 
below. Reactions RA=Rs=12 kN. SF is 
constant in portions AC and DB and equal to 
± 12 kN. The beam is of I section. 
15 cm X 20 cm with flanges l cm thick and 
web I cm thick. 

Moment of inertia, 

I = _15 X 203 
xx 12 

14x 183 

12 

+12£[.J 
A C b±· 

where 

= 3196 cm4 

Say shear force is Fin portion AC 

, Shear stress in flange, 

S F. Diagram 

Fx15(10-y) ( y+ 10;-Y) 
qi= Ix 15 ·---

F 
=: 

21 
X (100-y2) 

p 2 
q1

2= 4//10,000-200 y2+y4) 
1cm 

Shear strain energy in portion AC 

300 10 

(a) Shear energy m ifanges= 2 j j -~~ X B dy dx 

0 9 

Fig. 16·16 

300 IO 

- { 1~; J [ 10000 y-
20

~ Y
3 

+ ~
5 J dx 

0 9 

B= l5cm 

. 300 

Sect ion 

/ ' " .. .. .. , ... " 

. .... '· -,t' 

J 5 x p2 J [ 200 I l = 212G 10000(10-9) - 3 (1000-729)+ 5 (100000 ·-:--5~?4;) ~ dx 
0 ' . . ... .. . . 1, . ;_: ! . f; lt, ; ;..t(...-

= ;;;~ x{ 10000-
2

~0 X271+ 
40

; 5! } X300 

= 15X300F~ X 123 .54 -2 12 G 

Shear stress in the web, 

277965 F2 2'78 X JOS F2 = ---:-:::--
/ 20 120 

, . ·. l 

q2 = -~- [15x9'5+ I(9-y) (. y+ 9
1Y )] . . .... ,, ,.,. ; • .. , ..; .. . . . ,. 

b= l cm 

... (1) 
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q = .!.._ x[ 15Xl9+8 1-y2 ] =£ [366_y2] 
2 / 2 2/ 

F2 
q,}= 4lz X [ 133596- 732 y2+y'] 

Shear strain energy in the web 

300 

= 2J 
0 

9 

f q 2 

2
2

0
- x b dy dx 

0 

300 

STRENGn-1 OF.MATERIALS" 

= 4~~ j [133596- 732 y2 +y4] dy dx 

0 

_ F2 [ 732 y3 y5 1 - 4120 X 300 133596 y- -
3
-+ 5· j 

= 75 F2 [133596X9- 732_X9s + ~] 
PG 3 5 

= -7~2~

2 
[ 1205604-177876+ 11809'8] 

75 X 1039537'8 F2 779'65 X 105 F 2 

120 120 

Total shear strain energy in portion AC 

= (2'78+779'65) X 105 F2 
/ SG 

(782'43) X 105 F2 
/'/.G 

Total shear strain energy of the beam (as the beam is symmetrically loaded) 

2 X 782'43 X 105 X F 2 

U= /'/.G 

Deilection under the load F, 

au 4 x·782'43 x 10° F 
oF = PG. x (as F= 12 kN) 

S-1:1llstituting the values F= 12000 N 

G=80,000 N/mm~= 8 x 106 N/cm2 

/ = 3196 cm« 

U- 2 x782'43 x l05 x l2000x12000 Nern 
- 3I96 X3l96 X8X l08 

= 275"76 N cm= 2'75 N m 

. au 4 x 182·43 x 12000 
Deflection due to shear ~= aF = 3196 x 3196 x 8 x 10a 

= 0'046 cm= 0'46 mm. 
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Problem 16·4. A 24 cm x 16 cm, I section beam with web l cm thick and flanges 
2 cm thick is simply supported over a span of 5 metres. A concentrated load of 2 tonnes acts 
at a distance of 2 metres from one end of the beam. Assuming that the shearing force is 
carried by the web only and the shearing stress is uniformly distributed over the web, determi nc 
1he total deflection produced under the concentrated load , · 

where 

Given E=2080 tonnes/cm2 

G=800 tonnes/cm2. 

Solution. I x. of the section 

16 X 243 15 X 203 
12 - - I2-

=32x24X24-25x400=8432 cm4 

-----. _j_ ·- 2cm 

1cm T 
20cm 

2 Tonnes 

A ..-----1.._C ____ 
0

B 

2---,---3 metres 

xl 
.---- '-----. 2 Cm 

X 

~i6crn4T 
S.F Diagram 

Fig. 16·17 

Deflection due to bending at the point of load, 

Therefore, 

wa2b2 
n = 3£11 

W = 2000 kg, a=200 cm 
b=300 cm, E= 2080x 1000 kg/cm2 

1= 500 cm, / = 8432 cm4 

2000 X (200)2 X (300)2 

Yb = 3 x 2080 x 1000 x 8432 x 500 °·2735 cm· 

Deflection due to shear 

Area of cross section of the web = 20 cm2 

Shear force in the portion AC, F1 = + 1200 kg 

. . C 1200 60 k / 2 Shear stress in the port10n A , q1 = -20 = g cm 

Shear force in the portion CB, F2=800 kg 

800 
~hefl! stress in the portion CB, q2= 7.0 = 40 kg/cm2 



Shear straiu energy in the portion AC, 
200 +10 -f r ql 2 . 

- l 2G 
0 -10 

200 

. b dy dx, = J 
0 

200 + 10 
r 1 1 soo J 

= J I -a. y dx 
0 -10 

1800 
= ~ x2ox200 cm kg 

72x 105 k 
- G cm- g 

Shear strain energy in the portion CB, 
300 + 10 300 

STRENGTH OF MATERIALS 

+ 10 

J 
3600 I 

~ X l dy. (1.X: 

-10 

=J J 
q.2 

-2a bay ax, = J ( 1 
;~

0 
x 20 ) dx 

0 -10 0 

- SOO X20X 300 
- G 

48 X 105 

G cm-kg 

Total shear strain energy, 

U 
_ (72+48)X 105 

_ 120 XJ05 =l 5 -k 
•- G - 800 X 1000 cm g. 

If y, is the deflection due to shear, then 
l 15 X 2 . 
2 Wy.= 15, ory, 

2000 
= 00 15 cm. 

Total deflection under the concentrated load, y 

= O 2735+ 0'015 = 0'2885 cm. 

Problem 16'5. A bar ABCD of rectangular section having uniform width b throughout 
but thickness varying as 3t for 3a length, 2t for length 2a and t for the length a is of the shape 
shown in the Fig. 16'18. A load Wis applied at the end D. Determine the deflection under 
the load. Given E= Young'·s· modulus of the material. ( Consider only the strain energy due 
to bending). 

Solution. Let us determine the strain 
energy due to bending •· · 

Portion AB 

2a a 
f (Wx)2 r (Wx12 

U1 = J 2EI1 dx + J 2EI1 . dx 
0 0 

Taking the origin for x at B' as shown 
8W2a3 W2a 3 

Ui=. 6Efi + 6£/1 

9 W2a3 _ 3 W2a3 

= 6 El i --1 E T1 • 

B f,--- a --1>-M---- 2 a 

T
~~A 

s'. 1 1 t 
3t 

w 
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Pertioa :BC 

Bending moment is constant Wa 

2a -J _( w2a2) dx - w2as 
Us- '1.E.lz - Elz · 

• 
Portioa CD 

Bending moment = Wx (taking origin for x at D) 

a 

J 
W 2x2 dx 

Ua= 2EI 
0 I 

w2aa [ 3 I l J 
Total strain energy, U=U1+U2+Ua=---r 

211 
+ 1; + 01; 

au . . 2W a3
[ 3 I 1 J aw = vertical deflect10n at D= E 211 + 7; + 613 

Whel·e I = }!_ (3 )3= 27 b a. I.-..!!_ (2 ·a- . 8_ b a./ - bta 
1 12 t 12 t ' 2 - 12 t) - 12 I ' s- 12 

~ 2Wa3L- 3 12 12 12 J 
00 =E- T x27b13 +8bt3 + 6bt 3 

· 24Wa3[ 3 I I l 24Wa3 25 
- Ebt3 54 + 8 + -6 J- Ebt3 X 72 

25Wa3 

= 3Ebt3 • 

833 
-· ' 

• ' 

' ' 

Problem 16"6. A cantilever of length /, fixed at one end and propped -'~t · fhe other 
end carries a concentrated load W at its centre and a uniformly_ distributed l<;>ad , ".:. ·:,per unit 
lenjth from the centre upto the fixed end. If EI is the flexural rigidity of the qmtii~\'er 9~ter-
Miftt the reaction at the prop. ·· · · · · 

Solution. Fig. 16' l 9 shows a canti
lever ABC of length /, fixed at end C and 
propped at end A, carrying loads as given in 

:. the problem. Let us first determine the strain 
energy due to bending. Say the reaction at 
the prop= R . 

Portion AB. (Origin at A) 

//2 //2 . -J (Rx)2dx _ I R2x3 j- R2
/
3 

Ui - 2E/ -i 6EJ - 48E/ · 
0 0 

fc;,rtion BC. (Takin~ origin at Q) 

' . 

Fig. 16·19 
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M,,, bending moment = R ( x+ J )- Wx- w;= 

T@tal strain euergy 

So 

//2 
U -J (M,.

2
) dx 

s- 2El 
0 

=U1+U! 
off oR = 0 at the propped end 

//2 

au 2R/ 3 J( M,, dMx ) 
oR = 48EJ + .EI . dR · dx 

0 

l/2 

=~i1+J[R ( x+ f )- wx-w;2j( x+f )dx 
0 

1/2 

= ;::;1 + 17 J [ R ( x2+ 
1
; + Ix ) - w( x2+ ~l )-w;2 ( x+ ; ) Jdx 

0 
1/2 

R/3 1 rRx3 R/2 Rlx2 Wx3 Wx2
/ wx4 wxsf J. 

O - 2',Ef + El . ·3 + 4 x+ 2 - 3 - 4 - 8 - 12 
0 

R/3 R /3 R/3 R /3 w1s W/3 w/4 w/4 
24 + 24 + 8 + 8 - 24 - 16 - I 28 - 24 - O or 

R/3 R/3 5 W/3 l 9w/4 

,2-+ 4 - 48 - 334= 0 

R SW _ _ l9wl = O 
3 - 48 384 

5W 19wl 
Reaction at the prop, R = 16 + 128 · 
Proble:ap t6·7. A bar is bent in the shape shown in Fig. 16·20 with radius of the bend 

R and length of the straight por t ion /. Determine the horizontal deflection due to the force' 
P applied at the end A, if El is the flexural rigid ity of the bar. Consider only the strain energy 
due to bend_ing. 

Solution. 

Portion AC 

Consider an element of length 

Rd0=ds 

The bending moment on ds 

=f ft ~in Q 

C 

-r-
~ 

B 

p 
A ., 

Fi~. !ViO 

; .1 
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Strain energy, 

n ff 

_ __!2Rs J( 1-cos 28) dO= P 2R3 I~- sin 28 j 
- 2El 2 2El 2 4 

0 0 

P2R3 n 1eP~R3 

= 2El X 2= 4£/ 

Portion CB. ( origin at C) 

Mx, bending moment = Px 
l 

U2, strain energy = J ~;;2 
Total strain energy, 

Horizontal deflection at A, 

0 

p21s 
dx =--

6£/ 

au ,,. P Ra P 1a P , - 7t Ra 1s J 
SA - 'iJP - 2£1 + 3£1 - El L 2 + 3 

83S 

... (I) 

Problem 16'8. Fig. 16'21 shows a steel rod bent into the form of three quarters of a 
circle of radius r. End A is fixed while end B of the rod is constrained to move vertically. If 
a load Wis applied at the end B, determine the vertical deflection at the end B. Given El is 
the flexural rigidity of the rod. 

Solution. Fig. 16'2 l shows a rod 
bent into the form of three quarters of a circle. 
Since the end B is constrained to move only 
vertically, a horizontal reaction R will be 
offered by the constraint. 

Consider an element of length 

ds=rd6 

at an angle 8 to the vertical 

Bending moment, 

M,= Wxr sin 8- Rx (r - r cos 8) 

3n/2 3rt/2 

A 

w 

Fig. 16·21 

Strain energy, U= J Ma
2 

rdO= r [Wr sin 8-Rr(I - cos 8))2 
2El · j 2£/ - . rd0 

0 0 

Since there is no horizontal deflection, !~ = 0 



or 

or 

'1-•. •.. 
' .''./ 

·--,. 

Vertical deflection, 

I.· 
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3rr/2 

O= -
2

~
1 
j 2[(Wr sin 8-Rr(l-cos 8)1(1-cos 8) ,2. d8 

0 

3n:/2 

= - ;~ f [W sin 0-R+R cos 0)(1-cos 9) d8 
0 

3rr/2 

=- ;/ f [W sin 0-W sin 8 cos 0-R+R cos 0 
0 

+ R cos 8-R cos28] d6 

31t/2 ---~J [wsin 0- Wsin 211 -R+2Rcos 8-R(l+cos 28>ldo 
- EI 2 2 J 

0 

3rr/2 Jrr/l 
= -_!!_ f [ W sin 6_ Wsin 20 _ 3R + ZR cos 0_R cos 21] 

El j 2 2 ! 
0 0 

3rr/2 

O= [-w cos e+ W cos 28 _ 3R o+zR sin 9 R sin 20] 
4 2 4 

0 

( 3,; o) W 3R 3R -W \ cos -
2
--cos O + 4 (cos 3n-cos O )-2 x 2 

+2R( sin 
3
; -sin 0° )- f (sin 3n-sin 0)=0 

W+ : (-2)- '!" +2R (-1)=0 

~ - 9
" R-lJt-i 

2 4 

W= 9n R+4R 
2 

w 

3rr/2 
_ oU -J [Wr sin 9-Rr(l-cos 8)] r sin 0 . r d8 

8n- aw - EI . 
0 

3rr/2 

= -,;
1 
f [W sin3 8-R sin 8+R sin B cos S] d8 
0 

3rr/2 

- ; 1 j [ ~ (1-eos 20)-R sin 0+ R sf 
29

] d8 
0 

. .. (1) 
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= -- 0- - sin 20+R cos I -,.s IW W R 
El 2 4 4 

- - - x--- (sin 3,r-sin 0) ,a [ W 3rc W · 
- EI 2 2 4 

3rr/2 

cos 20 I 
0 

+ R ( cos ~Tt - cos O) - : (cos 3n- eos 0) J 
_ ~~ [ 3~ W _ R + ~ ] - ;/ l 3~ W __ ~ J 

r 3 r 3,rW W J = EI I_ - 4-- 9it + S putting the value of reaction, R 

Wr3 r 3n: I J 
=~L4-9n:+8 

ProbleJn 16·9. A circular bar of diameter dis bent in the shape of U of radius R and 
straight portion of length 1 as shown in the Fig. 16"22.. Equal loads ·Pare applied at the ends 
A and E. Determine the relative shift between the pomts A and E. 

E=Young's modulus of the matertial 

Solution. Let us first determine the 
strain energy due to bending. 

Portion AB 
Bending moment Mx=Px 

Strain energy, 
I I 

= I M,,2dx _ r P2x 2dx 
ff i 2Et -1 2EI 

0 0 

B 

X 

D E 

A 

. I ,/d' ( f . . ) w11Gr1 = '8
4 

moment o mertia 

p2/1 J--e-
"""6EI 

Pertiea BC. Taking oriiin at B, 

x=R sin O where 9 varies from O-to'·,ff/2 

Length of the element considered, ds=Rd0 

Bendin& moment, Mx = P(l+R sin 8) 

Strain energy, 

rr/2 

U2=J [~(l+R sin 8) ]J RdO 
2EI 

0 

n/2 

p2 J = 2EI (/2R+ R3 sin2 D+21R2 sin 8) d8 
0 

p 
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j'·· 

rr/2 rr/2 rr /2 
p 2 [ RS J pzRs, sin 20 f p2/R2 / I 

- 2 EI 12R + 2 - 4EI I 2 + 2£/ - 2 cos e 
0 0 0 

- pa _::_(12R+ Rs '-0+2p 2JR2 
- 2El X 2 · 2 / 2£/ 

Total strain energy, U= 2V1+2V2 

p2/S p 2n; ( RS ) 2P2/R2 
= 3El + 2EI taR+y +-gr-

4P213+6P2rr:l2R+3P2rr:R3+ 24 P 2/R2 
12 El 

Relative shift between the points A and E 

But 

So 

o= au - 8Pl3 + 12Prr;/2R+6Pn:R3+48 PlR2 
oP - I2EI 

2P/3+3Prr:/2P + l'5 P1tR3 + 12 PIR2 

3 El 

rr;d4 
!=64 

o= 64 (2P/3 +3Pn;/2R + 1 ·5 Pn;Rs+ 12PIR2) 
3 E rtd4 

=// :;4 (4JS+6rr: /2R+3rr:R3 +24 /R2) 

SUMMARY 

1. If U i~; the strain energy in a system due to the applied forces, couples and twisting 
DUUllelltS~· then 

JWCL = '01, dispiacement along a particular load W, 
0 ' 

oMU = ip,, angular rotation at a point where a particular couple M, is 
0 ' applied 

au e 1 · · • h · 1 · · r · -T = ,, angu_ ar twist at a pomt w ere a part1cu ar tw1stmg m?ment 1 1s 
o ' applied 

2. Strain energy due to direct force P on a bar of length /, area of cross section A, 
and Young's modulus E 

. P2l 12 
U= 

2
AE , u= 2E (strain energy per unit volume) 
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where 

where 

3. Strain energy per unit volume due to shear stress, q 

1 
U= 

20 
X q2 where G= shear modulus 

I 

. d b d' U J (Mx)2dx 4. Stram energy ue to en mg, = 2E/ 
0 

l=length of the beam or cantilever 
Mx= bending moment at a~y section 
E/=Flexural rigidity of the beam or the cantilever 

5. Strain energy due to twisting moment on a shaft 

U= _r21 
GJ 

T = twisting moment 
/=length of the shaft 

G=shear modulus 
J = Polar moment of inertia of shaft section 

MULTIPLE CHOICE Q.UESTIONS 

839 

I. A beam of length/, si mply supported at the ends carries a concentrated load W at its 
centre. If EI is the flexural rigidity of the beam, strain energy due to bending is 

W2/S W2/3 
(a) 96EI (b) 48EI 

(c) 
w21s 

24E/ (d) 
w212 
12E/ 

2. A shaft of length /, p olar moment of inertia J is subjected to a twisting moment T. If 
G is the shear modulus, the strain energy stored in the shaft is 

TP T~ 
(a) 2Gf (b) 2GJ 

(c) 
TJ2 
GJ 

(d) 

3. A body is subjected to a direct force F, a twisting moment T and a bending moment M. 
The energy stored in the body is 11. Displacement in the direction of Fis given by 

(a) au + au + au <b) ~+ au 
oM oT aF oM oF 

(c) _ o!!.._+ au (d) au 
BT BF ~ 

4. A shaft of diameter 20 mm is subjected to a torque of 10 k Nm. The length of the $haf.t 
is 1000 mm and angular twist produced by the torque is 1/100 radian. The strain energy 
stored in the shaft is 

(a) 200 Nm (b) 100 Nm 

(c) 50 Nm (d) None of the above. 
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5. A cantilever of length / is fixed at one end and at the other end a couple M is applied so 
as to bend the cantilever. If El is the flexural rigidity of the cantilever, then slope at tl.le 
free end of the cantilever is 

Ml 
(a) '!El 

(c) 
2Ml 
El 

I. (a) 2. (b) 

(b) 

(d) 

ANSWERS 

3. (d) 

Ml 
EI 
4Ml 
El 

EXERCISES 

16"1. A structure ABCDE shown in 
the Fig. 16"23 carries a concentrated load 
W at C. The area of cross section of 
each member is A and the modulus of elasti
city is /!. Determine deflection under the 
load. 

43 Wa J 
6 AE 

4. (c) 5. (b) 

w 

Fiit. 16·23 

1,·2. An aluminium strip loaded as cantilever 30 cm long cross section 2 cm x 5 cm 
c!eep carries a concentrated load at the free end. Show that the deflection wiil be under esti
mated by 0·3g7 per cent if the deflection due to shear is neglected . 

Hi"3. A beam of length 2 metres is 
of I section shown in the Fig. I 6"24. It is 
supported at both the ends . The beam 
carries a concentrated load of I tonne at the 
micl span. Determine the central deflection 
_due. to she;tr and bending. 

G=840 tonnes/cm2 

£=2100 tonnes/cm2 · 

[Ans. 0·012 cm (due to shear) 

0·019 cm (due to bending)] 

16"4. Fig. 16"25 shows a frame. At 
the ends · A and B, two equal and opposite 

forces P are applied. Considering only the 
the strain energy due to bending, determine 
the relative displacement between the points 
A and B. El is the flexural rigidity of the 

,frame. 
' __ ,: ' , . 

JO 

Fig. 16·24 

p 

~---b---... 
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t6·s. A cantilever of length /, fixed at one end and propped at the other end 

carries a concentrated load Wat a distance of -f from the propped end. If EI is the flexural 

rigidity of the cantilever, determine the reaction at the prop. [ Ans. 

t6·6. A bar is bent in the shape 
shown in the figure 16·26. With radius of 
the bend R and length of the straight portion 
/. Determine the vertical deflection due to 
the load W at the end A, if EI is the flexural 
rigidity of the bar. Consider only the strain 
energy due to bending. 

[ Ans. ~:
2 

( + nR+ 4l ) J 
16'7. Fig. J 6·27 shows a steel rod of 

diameter 20 mm bent into the form of three 
quarters of a circle of radius 200 mm. End 
A is fixed while end B of the rod is constrained 
to move vertically only. If a load 50 N is 
appliedfat the end B, determine (I) reaction 
offered by the constra int (2) vertical deflec
tion at the end B. 

E= 208,oqo N/mm2 
[Ans. 2·156 N, 0·57 mm] 

t 

.T 

Fig. 16·26 

Constrai nt 

Fig. 16·27 

_!j ,v J 1..7 

t6·8. A circular bar of diameter 2 cm is bent in the shape of U with radius of the 
curved part equal to 3 cm and lengt.h of the straight part equal to l O cm. How much load can 
be safely applied at the ends so that the relative shift between the ends is not to exceed I cm. 

E= 2 X 106 kg/cm 2, [Ans. 240kg] 



17 
Theories of Failure 

We have learnt about principal stresses in Chapter 3 and have observed that there 
always exists a set of 3 principal stresses at a point. Out of these 3 principal strei;ses acting 
on principal planes, one is the maximum stress, other is the minimum stress and third one is 
of some intermediate value. If we know the magnitude and direction of applied forces on a 
body, we can find out the stresses / 1, / 2 and q acting on the body and from this stress system, 
principal stresses can be determined using the formulae derived in chapter 3, [as shown in 
Fig. 17'1 (a) and (b)]. 

'2 

q 

1 

t, 

q 
f 1 

q 

t2 

) tress sys tun ot o po ir, t 
.vi t h the known forc es. 

{ a) 

~ i:i, 

Equivalent system with principal 
stressts p

1
and p

2
. 

( b) 

Fig. 17'1 

Various theories of failure bai.ed on the physical behav iour of the materials have been 
developed. In each theory a relationship is developed between principal stresses and the failure 
stress (or the yield point stress) in a simple tensile test on a specimen of the material. 

When a tensile test is performed on a standard specimen of a material and a graph is 
plotted between tensile load and extension, a yield point is observed on the graph. At the 
yield point, there is considerable extension, Hooke's law is not obeyed and the stress no longer 
remains proportional to the strain after the yield point. Fig. 11·2 (a) show a tensile test 
specimen and 17'2 (b) shows the load-extension graph of a most common structural material 
i.e., mild steel. Jf the test piece is unloaded after the stage of yield point, there remains 
permanent deformation in the material, rendering the material useless for further application, 

~42 
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-i~f ! G-a=uge_--......;,..,. 

le ngth 

(a) 

Fig. 17·2 

Extension 
{ b) 

843 

Jn a simple tensile test we can easily determine the stress at which yielding ha!S occured 
in a material but in the case of machine members subjected to various combinations of loads, 
practically it is impossible to know where and at what stage yielding has started, rendering 
the material useless, but certainly the principal stresses at a critical point can be known. In 
various theories of failure, the principal stresses have been expressed in terms of the yield 
stress in the simple tension or compression test and assuming that the stresses developed in the 
material arc prop(,r tional to the applied loads, a limit is worked out such that if this limit, is 
exceeded, yielding is assumed to begin in the material. 

The materials generally fail by fracture or by excessi, e deformation at yielding. In 
ductile materials. failure by yielding is the usual basis while in brittle materials like cast irun, 
concrete etc. fa ilure by fracture or by ultimate stress is the criteria because yield point does 
not exist for a brittle materials. 

17'1. THE MAXIMUM PRINCIPAL STRESS THEORYi (Rankine's TJieory) . 

This theory is based on the assumption that failure of the material' -or the yielding of 
the material is governed by the maximum principal stress and is not influenced by other 
stresses present at right angles. According to this theory, yielding in -the material occurs when 
the applied loads are such that the maximum principal stress reaches the value of fu , i.e., yield 
point stress in simple tensile test. 

Say p 1 > P2> p3 are the principal stresses 

then P1<.±J11,,. 
Consider the case or'a thin cylindri_cal shell subjected to an internal pressure p. The 

principal stresses at any point are (see chapter 5) Pi , ~~ and - p where D is the internal 

diameter of the cylinder and t is the radial wall thickness. 

pD 
Principal stress, Pi= 2t . 

According t o the maximum principal stress theory P.f: should be less than /wP or at 

the most it can be equal to J.,,, so that failure of the material can be avoided. 

P1<[111> 

pD ~f, or p~ 2J." . t 2t""' .,, ~ ~ 
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In a two dimensional case when p3= 0 this theory can be explained graphically as shown 
in Fig. 17'3. 

Taking x=-f..!.. and y= :z and plot-
Jll'P Jl/ fJ 

ting the graph. Boundary of the figure ABCD 
defines the beginning of yielding. Experimental 
results show that this theory is acceptabl~ 
when the principal stresses are of the same 
sign. It is unsafe to design a machine member 
on the basis of this theory if the principal 
stresses p 1 and p2 are of the opposite sign. 
The theory is commonly used for brittle 

materials. 

B 

-X 

•. , 0 

l --
C 

+y 

P2 
Y=-t-

yp 

+1·0 A 

~" 

HO 

-lO D 
,,1 -, 

Fig. 17·3 

. Example 17'1-l. A: solid circular shaft of diameter dis subjected to a pure torque 
of 20 Nm. Determme the diameter of the shaft according to the maximum principal stress 
theory, taking the factor of safety as 2; if the yield strength of the material is 310 N/mm2. 

Solution. iup, yield strength of material = 3 l0 N/mm2 

Factor of safety = 2 

Allowable maximum principal stress 

= J;v = 
3 

~O = 155 N/mm2 

Torque on the shaft = 20 Nm=20 x 108 N mm 

Say the diameter of the shaft = d mm 

16T 
Max,imum shear ·stress developed iri shaft, q= . ~da . 

T :: Torqu ~ 

T : Torq ue '-/2 ,":...---./ 

J[Jt 
/ 

Fig. 17·4 

·T 
d 

i 
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The state of stress in a shaft subjected to pure torsion is shown in the Fig. 17'4. If q 
is the maximum shear stress on the surface of the shaft, then principal stresses at a point on 
the surface are Pi, P2 and Pa where Pi= +q, P2=-q P3=0. 

So the maximum principal stress or the maximum shear stress in the shaft is not to 
exceed 155 N/mm2 

or 

Shaft diameter, 

_1 6T. ~155 
nd3 

as> 16 X 20 X 103 
TeX 155 

d>,8'7 mm. 

Exercise 17'1-l. A thin cylindrical shell of diameter 0·5 m and thickness t is 
subjected to an internal pressure of 2 N/mm 2• Determine the thickness of the cylinder 
according to the maximum principal stress theory taking the factor of safety as 3, if the yield 

· strength of the material is 285 N/mm2 • (Ans. 5'26 mm] 

17'2. MAXIMUM SHEAR STRESS THEORY (Coulomb's theory) 

This theory assumes that the yielding 
of the material subjected to combined stresses 
is governed by the maximum she·ar stress 
developed in the material and in order to 
avoid yielding the maximum shear stress 
developed should not exceed the maximum 
shear stress at yield point in a simple tensile 
or compression test on the material. Fig. 
17·5 shows three dimensional Mohr's stress 
circle at a point having principal stresses Pi, 
P2,Pa· 

Say Pi>P2>Ps 
In the figure , 

OA= Pi ; OB= p2; OC=p3 

Maximum &hear stress, 

_ Pt-Ps qmog;--
2

-

(represented by DE in the figure) 

Maximum shear stress in a simple tension case 

A 

OA = p
1 

OB =P
2 

OC = p
3

·. 

Three dimensional Mohr~ 
s tre ss circ l e ·. 

Fig. 17·5 

at stress fvv is J;p (as the principal stresses are fup, 0, 0) 

As per this theory Pi - Ps ~ fvp 
2 2 

(p1- p3) ~ f P• 

; . 

- • • f 

Considering the example of thin cylindrical shell subjected to internal fluid pressure, 
pD pD . I (' pD ) having principal stresses -21 , · 4t, -p. As per this theory 

2 
-
21 

+ p <,f,p : j I•: ~,, 
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where 

-Intetmal fluid pressure, p ~f~P. D!21 
D=diameter of thin cylindrical shell 
t=wall thickness of shell 

2t 
i.e., if the internal pressure in the cylinder exceeds .the value of fl/p . D+ 

2
t , yielding 

will take plat:e in the material. 

In a two dimensional case where p 3= 0 and Pi>Pz then as per the maximum shear 
stress theory 

·and . 

or 

Pi~P"<.f~ if p 1 and p 2 are of opposite sign 

h. ~ f"v if p 1 and p 2 are of the same sign 
2 2 
p1 ~ f~v is the governing equation to determine the onset of 

yielding. Under these conditions 

The maximum shear stress theory coincides with the maximum principal stress theory. 

Graphically this theory can be illus
trated by Fig. I 7·6. 

In the quadrants I and III, when P1 
and p2 are of the same sign, the maximum 
shear stress theory coincides with the maxi
mum principal $tress theory, i.e., lines AB, 
BC ; DE and EF. In the quadrants I[ and IV 
when the principal stresses are of the opposite 
sign · 

Line CD shows 

P1'-P2=-J11v 
Line AF shows 

Pi~P2-:-+f11p • 

E 

P2 
Y=-

1yp 
+t-0 B 

-1-0 F 

-Y . 

F ig. 17·6 

The designers very _often use this theory to design the machine components made of 
ductile materials such as mild steel. 

........ 

Example 17'2-l. A thick cylinder of internal diameter 10 cm is subjected to an 
inter_nal pressure of 500 kgfcm2

• petermine the thickness. of the cylinder according to the 
ma~1mum shear stress theory 1f the yield strength of the maten al of the cylinder is 2800 kg/cm 2, 

takmg a factor of safety of 2. 

Solution. In the case of thick cylinders -subjected to internal pressure, max,j.mum 
radial and circumferential stresses occur at the inner radius and axial stress is uniform. 

Inner radius of the cylinder, R1= 5-cm 
Say outer radius of the cylinder = R2 

At Inner Radius. Circumferential stress, 

r•,· ._. ,. - R22+R12 . . 
fc-P. R

22
_Ri2 tensile 

where p·= radial pressure 
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or 

or 

or 

Axial stress, 

Principal stresses are / 0 , f a, -p. 

Maximum shear stress = f•+P =p_ R 22 +R1
2 

+ !!_ = J!_ 2R2
2 

2 2 · R2
2 -R1

2 2 2 · R2
2-R1

2 

p 2Rl /11p 
2- X R2

2- .R/'' 2 X FS 

Factor of safety, FS= 2 

500 2R2
2 2800 

2 X R2
2 -R1

2~2 X 2 

RJ o 
- t·4, or R2

2 = 1'4 R2
2-1·4 R1" 

R22-R/ 
R2

2= 3'5 R1
2 = 3'5 X 52 

R2= 9·354 cm 
Thickness of the cylinder = 9"354-5=4'354 cm. 

8:417 

Exercise 11·2-1. A thick steel cylinder of internal radius 40 mm and external radius 
60 mm is subjected to an internal fluid pressure of intensity p. Determine the limiting value 
of p according to the following theories 

(i) Maximum principal stress theory. 
(ii) Maximum shear stress theory. 

Given yield stress of steel= 280 N/mm2 • [Ans. (i) 107·7 N/mm2 (ii) 77·77 N/mms] 

17•3. MAXIMUM PRINCIPAL STRAIN THEORY (St. Venant's Theory) 

In this theory, it is assumed that failure by yielding takes place in a material, when the 
maximum principal strain in the material subjected to combined stresses is equal to the strain 
at the yield point in a simple tensile or compression test on the material. 

If Pi> p2>p3 are the principal stresses, the maximum principal strain is 

"1= _l_(P1- P.3..... _ Ps) 
E m m 

Strain at the yield point in a simple tensile or compression test is / p/E, then as per 
this theory 

or J_ ( _ P2+Pa )~ /11p 
E Pi m '°"" E 

or 

Considering the case of thin cylinder subjected to internal pressure p again, where the 

Principal stresses arc pl!_ , pD_ , - p at the inner radius of the cylinder, we can write that 
2t 4t 

( 
pD _ pD +_E_ )~f~t> 
'l,t 4trn m 
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or 

or 

or 
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4tm 
P~f, to avoid yielding in cylinder 
~ vp · 2Dm - D+4t 

Now in a biaxial stress system, where p 3 = 0 

Principle strains, Pi P2 
E = ---· 1 E mE 

P2 P1 
E2= y- mE 

Strain at the yield point in a simple tensile or compression test , 

ft;p 
Ewp=y 

So 

Similarly 

( P1 - p2 
) <;;Jvp 

m I 

Pi - -1!:L <;; I 
fvp mf~p 

x-L ~I 
m 

if J!1- = x and l!:L =y 
fup ' fw p 

X 
or y- -- <;;I 

m 

The above relationships between pi, P2 andfvp can be shown through a graph as ·in 
Fig. 17'7. 

. P1 
X:-·-

fyp 
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To plot a graph showing the relationship between Pi and p 2 and f,p so that yielding just 
begins, the equation will be 

x=t+L 
m 

X 
and y= l+

m 

where 1/m is the Poisson's ratio. This theory assumes that the material obeys Hook's law. 
Experimental results have shown that this theory is not q1,1ite acceptable. 

Taking the case of biaxial tension i.e. Pi and P2 both are positive, then as per this 
theory, 

showing thereby that principal stress Pi can be greater than /vp, which is not acceptable to 
designers. 

Example 17'3-l. A certain type of steel has yield strength of 270 N/mm2, At a 
point in the strained region the principal stresses are + 120 N/mm2, +80 N/mm2 and -30 
N/mm2 • Determine the factor of safety according to the maximum principal strain theory, 
Given : 1/m for steel=0'285. 

or 

Solution. 

Principal stresses are p1= + 120 N/mm2, 

P2=80 N/mm2 and p3= - 30 N/mm2 

Maximum principal strain, 

E - b_ h 12__ 
1- E -mE- mE 

=-
1 c1;0-0·2s5 x so + o·2s5x30J =!05·~5 
E . E 

According to the maximum principal strain theory 

/ /vp 
E]~EXF.S 

105·75 ~ 270 1 
- E- """'EX (Factor of safety) 

f C F,'S 
270 2'55 Factor o sa1ety, = 105•75 

Example 17'3·2, A shaft is simultaneously subjected to a bending moment of 20 kg
metre and a twisting moment of 15 kg-metre. Design the diameter of the shaft according to 
the maximum principal strain theory . 

Given yield strength of the material = 2100 kg/cm2 

1/m, Poisson's ratio = 0'3 
Factor of safety =2 

Solution. 
Bending moment, 
Twisting moment, 
Sa!' diameter of the shaft 

M = 20 kg-metre=2000 kg-cm 
T = 15 kg-metre= 1500 kg-cm 

= d . 



Stress due to bending, 

Shear stress due to twisting, 

Principal stresses 

f = E_M· 
nd3 

16 T 
q= r;d3 

P1= { +J( { y +q2 

_ 16 M { ( 16 M_ ·)2 (-~ )z 
- r;d3 + \J nd8 +\ icd3 

=~[ M+VM2+T2 
] ' ""nd3 

p2= { -J(-{-r +q2 

=~[ M-yM2+r2 J 
r;d3 

Substituting the values of Mand T we get, 

16X4500 16X 500 
rcdS P2=-

Now according to the maximum prin,ci_pal sJ,Jiain tµ.,eory 

P1 P2 ~ fop 
E - mE E x factqi; of Safet.1. 

1 or n!s (72000+0·3 X 8000) ~ !1
~~ 

Shaft diameter 

74400- ?.!OO X nd3 
- 2 

d3= 22'554476 

d = 2'825 cm 

STRENGllH ,OB MAil'ER:l~<Ul 

Exercise t 7·3-1. Determine the thickness of a. \\);in steel cylin~e1 Qf diameter 600 mm 
subjected to an internal pressure of 3 N/mm2 according to 

~a) -m~im.um sheat ~tress ~heqFy 
(bJ maximum principal stt'ess theory 
(c) maximum principal strain theory 

Take factor of safety of 2. Yield strength of steel=280 Nfmma, 1·/m fur steel=0'28 
[Ans. (a) 6'56 !1111\, (b.}. 6:~~ p:iµi, (c) 5'56 mm] 

Exercise 17'3-2. A hollow circular shaft of internal diameter 3 cm and external 
diameter 5 cm is subjected to a torque of 12000 kg-cm. Determine the factor Af· taj't~ accord-
ing to the maximum princ.lP.<\1 ~tr;:.in theory. · 

Given, yield stre~s, Qf steel= 2700 f<g/cm2 

1/m for stee1 = 0'29 [AJJs, 3'72] 



. ,17: 4. ,s!fR.-\IN 1ENER&Y -THEORY (Beltrami, ·Haigh) 

This theory is based ·on the• assumption ·th-at failure or -yielding of the 1,l(ateF.i~l :~urs 
when the strain energy stored in a unit volume due to the principal stresses developed in the 
machine compo,_-i:ent is~equal to the strain enengy ·st0_red in a unit voluP.J-e at the.yield point stress 
in a simpfo fensHer,tesq,erforined on· a specimen df the same material. The :·13rincipal stresses 
at a point in a ~trained· machine member are pi, P2 and p 3 as shown in the Fig. 17'8. The 
principal strain_s will be 

' 2 

Fig. 17'8 

e _ .J!i __. Pi+ Pa 
i- E mE 

Pi P1+Pa 
e 2=E - mE 

Pa P1+P2 
ea= -E mE 

strain energy per!unit volume, 

· 1 1 l 
u= zPi E1+ I P2 E~+ 2 Ps E3 

= '2~ [ Pi(Pi- P2!Pa )+P2(P2 _ _p::s )+p3(p3- A;!;f2 
)] 

= 2~ [ ( Pl + p}+ p/ ) - ~ ( P1P2+P2Ps+PaPi )] 

:.Strain .energy at yield point in a simple tensile test 

u' = fyp2 

2E 

According to this theory u<;.u' 

[(P12+ p} + p/) - ! (P1P2+P2Pa+Papi) J <:.f1v2 
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Again taking the example of' a thin cylindrical shell subjected to internal pressure p; 
. . pD pD . 

where thepr10c1pal stresses are 2t, 4t' -p, we can wnte that 

( pD )2 + (pD )2 +(-p)2_.l_ [pD X pD _ pD Xp- pD Xp J~J,p2 
2t 4t m 2t 4t 4t 2t 

P
2

[ ~

2

( I~ - ~m)+l+ ;t~ l ~/,p2 

~ /,p 
p J n2 ( , 1 ) 3D 

t2 16- 4m +l+ 2tm 

Showing that yielding in the cylinder will begin if the magnitude of internal fluid 
pressure exceeds the value given by the expression above. 

In a two dimensional case, when p 3 = 0 , according to this theory 

or 

or 

where 

Let us take _!_ = 0"25 
m 

( P12 +P22
- ; P1P2 )~hP2 

_!!L + P22 _ 1_ P1Pi ~ l 
f, p2 f, p2 m f,p2 

2 x2+ y2- - xy= 1 
m 

x= Y.i... and y= l!:L. 
f,v ' f,P 

The above equation will be 

x2+y2-0"5xy= \ 

which is shown in the Fig. ! 7·9, plotted on 
the rectangular co-ordinate system as an 
ellipse. 

+1 

+1 
I 
I 

Experimental evidence available so 
far does not permit the use of this theory for 
design purposes. 

---=:.;,,.,.... - - ~ 
-1 

Fig. 17·9 

Example 17'4-l . A thick cylinder of internal diameters 200 mm and external diameter 
300 mm is subjected to an internal pressure p. Determine the maximum value of p according 
to the strain energy th_eory if the yield point' stress of the material is 180 N/mm2, taking a 
factor of safety of 2. Given l /m = 0"32. 

Solution. Inner radius, R1 = 100 mm 
Outer radius R2 = 150 mm 

Internal pressure = p in N/mm 2• 
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Maximum circumferential stress, 
R2

2 - Ri2 1503 + 1002 

f.=p. R,?-R/:=pX 1502-1002 =26 P 

Axial stress, 

R 2 1002 

f a=p. R22~R12 =pX 1502=1002 =0·8p 

The principal stresses at the inner radius- are 
' 2·6 p, o·8 p, - p N/mm2 

Yield point stress 

Factor of safety 

Allowable stress, 

=180 N/mm2 

= 2 

180 
fyv'= 2 =90 N/mm2 

Applying the strain energy theory 
') 

(2 6 p)2-t-(0"8 p)2+(-p)2- -- (2·6 xo·s p2-2·6 p2 -0·8 p2)~902 m , 

Internal pressure, 

p2[6.76+0"64 + 1-2 X 0"32 (2"08- 2·6-0.8)]~902 
p2[8 ·4+0·8448]~902 

- _JHOO_ _ . 
2 J

- -
p - 9"2448 --29 6 ~/mm 

853 

Exercise 17·4-l. A pipe 15 cm in diameter is subjected to a pressure of 50 kg/cma 
and an axial compressive force of 800 kg. Determine the wall thickness using the strain energy 
theory. The design stress is 1200 kg/cmt and the pipe is to be considered closed at the ends. 

[Ans. 3'1 mm] 

t7·S. SHEAR STRAIN ENERGY (DISTORTION ENERGY) THEORY (Von Mises) 

In this theory, it is assumed that failure by yielding occurs when the energy which is 
used in changing the shape of a unit volume of a component is equal to the distortion energy 
(or the shear strain energy) per unit volume at the yield stress of a specimen subjected to a 
simple tensile or compression test. Total strain energy at a point consists of two components 
i.e., 

(i) Volumetric strain energy causing the change in volume. 
(ii) Shear strain energy causing the change in shape of the body. 

In the previous article we have determined the total strain energy 

U= 2~ [ P12 +P22 +Pa2
- ; (PiP2+P2P3+PsP1) J 

=u,+u, 
= Volumetric strain energy+shear strain energy 

Volumetric strain energy can be determined by the volumetric 

Stress component pm Pi +p;+Pa which is equal in all the directions. Principal 

stresses (not accompanied by any shear stress) can be represented by a tensor as follows 



-c 

'!'8~4 

Pi 0 0 I Pm 

0 P2 0 =Io 
I 

0 0 Pa l o 

0 0 

Pm 0 + 0 

0 Pm 0 

0 ·O 

0 

(p;,:_Jp;;j" 

Strain energy det;rmined by 3 principal stresses at a point, i.e. Pm, Pm, Pm gives the 
volumetric strain energ'y, where Pm is the mean sttess. 

Volumetric strain energy, u.,= 3 x t ·p,;, Em 
where strain, Em= PE - P'"mifm-= PE ( 1- ~ ) 

Uv=l_ Pm X Pm( 1-2-)= 3Pm
2 

( 1 :__ -1_) 
2 E m 2E m 

= 21 ( Pi+f2+Ps )\ 1- ~) 

=-6~( 1- ~) (p12+pl+Ps2 +2P1P2+2P2Pa+2PaP1) 

Strain ene.rgy g~yen QY (pi-Pm), (p2-Pm) and (p3-Pm) is the shear strain energy required 
for changing the ~hape of a unit volume of a member 

=·" 

r,,,, , 

or 

u,=U-Uv 

J [ 2 J = ZE Pi2+ P22+Pa2- ,; (P1P2+P2Pa+PaP1) 

- 61 ( 1- ~ ) (P11+ P22+Ps2+ 2P1P2+2P2Pa+2PaPi) 

= Pi
2
+~i+ Ps

2 
( 1+ ~) P1P2 + ~2%:a+ PaP1 ( 1+ ~.) 

( 1+,,~ -)=.fa 

where E =0 Modulus of eia·sticity 
G= 'Modulus of rigidity 

. 1 
u, = 12G [ (p1 - P2)2 + (p2-Pa)2 + (Ps - Pi)2] 

. ' 

In a ' ~rople ·,tensile 'test, at the yield ·point of the material, the principal stresses are 
fyp, o. 0 

Shear strain energy per unit volume, 

I • 1 (f 2+1 2)- fyp2 
u, = 12G YP yp - 6G 

According to this theory failure by yielding occurs if 

.l~~G· (p~ ~ p;)2+(p2-p~)2+lPa-P1)2]~ 1t 
· 'C<p1~ P2)~+tp:i_:'Ji;)i+<Ps-Pi)'i<.21;v2 or 



Let us again consider the example of a thin cylindrical sh~H s_upj~pt~ct to. internal 

pressure p, where the principal stresses are 1;_~. P:: and - p, and apply this t.heory, we can 

write 

( pt - ~~ Y+C Pj/ +p y +(-p- -f: /=21yp2 

[ 
D2 D2 D Da DJ 

P
2 

16t2 + 16t2 + 21+ 1+ 1+ 4t2 +t <.2Jyp2 

p2 [ 2+ !~2 

+ 3:; ]~2/yi 

~ fyp 
p""' J 3 D2 3 D 

1+16 ,2+4 t 
i.e. , yielding in the cylinder begins if the internal pressure is of the value given above 

In a two dimensional stress system when p 3 =0, according to this theory 

[P12+ P22-2PiP2+P22+P12]= 2/,v2 

Pi2+ P22 - PiP2= f, v2 

fP12+ _P.i _ P1P2 =l 
fy p2 fyp2 f,p2 

where x= h.... and y= P2 

hp ' f,p 

This is the equation of ellipse, shown 
plotted in Fig. 11· 10. In this theory, it is 

assumed that the material obeys Hooke's law. 
For ductile materials, this theory is in good 

agreement with experimental results and is 
~eing used for design purposes. 

P2 
Y=

fy p 

Fig. 17· JO 

' 

Example 11·s.1. A thin spherical shell h,as a diameter of 400 mm and a thickness 
of t mm. It is subjected to an in~emal fluid pressure of 5 1'Y~n;i.~. T~e .01~tei:~~l has a yield 
strength of 265 N/mm2

• Determme the thickness of the shell accordnig to the distortion 
energy theory, taking a factor of safely of 3. 

Solution. Circumferential stress, 

f. - pD _ 5X400 
e- 4t - 4 X t 500 N/ mm2 

t 

Principal stresses a t the inner radius of thin spherical shell are 

/,, f" - p or 
5

~. 
0
, 

5oo , - 5 N/m m 2 in this ca~~. 
t . 
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where 

or 

Applying the distortion energy theory 

Thickness, 

[( 5~0 _ 5~0 )2+( 5~0 + 5 f+(-5- 5~0 rJ= 2/yp' 

fyp' = f,v = 265 =88'33 N/mm2 
factor of safety 3 

2 ( 25~~00 +25+ 50~0 )=2(/yp')2 

250000 + 2s+ sooo =(88'33)2=7802·8 
t 2 t 

2soooo+2s12 +50001=7802·812 

7777'8t2 - SOOOt -250000 =0 
t2-0'6428t-32' 143 =0 

t= 0'6428+40·~132+123·572 - 0'6428111'3572 

t=6 mm. 

Exercise 17-5-1. A thick cylindrical shell 15 cm internal radius and 20 cm external 
radius is subjected to an internal pressure of 300 kg/cm2• Determine the factor of safety 
according to the distortion energy theory of fatlure if the yield stress of the material is 2800 
kg/cm3• Consider also the influence of axial stress. [Ans. 2'38] 

Problem 171. What combination of principal stresses will give the same factor of 
safety for failure by yielding according to the maximum shear stress theory and the distortion 
energy theory ? Consider only a two dimensional stress system. 

Solution. Say Pi and p 2 are the principal stresses at a point. 

(a) when p1 and p2 are of the same sign and 

P1>P2 and p 3 = 0 

Then according to maximum shear stress theory 

Pi _ hv 
2-2.F.S 

Factor of safety, FS = fvp 
Pi 

According to the distortion energy theory 
~ )• t ~ • ~ I 

I ,· . , {(p1·-~2)2+p/+p~2}=2 ( 1~ r 

or 

or 

Factor of safety, 

As per the condition given 

fup - f11p_ 
Pt - ,.f P12+ P22-P1P2 

Pi2+p?- P1P2= Pi2 or p/p2- p1)= 0 

p1=,p2 

... (I) 

.. . (2) 

Since p~::f=O 
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or 

6r 
or 

(b) whenp1 andp2 are of opposite sign and P1>P~ 

According to maximum shear stress theory 

Factor 0f safety 

Pi+P, - fvp ' 
- 2-- 2(FS) 

_ f.1P 
- P1 + P2 

According to the distortion energy theory 

{(Pi+P2)2 + p i2+P22}=2 ( 1s r 
Factor of safety 

As per the condition given 

i.e., 

fyp fyp 

P1 + P2 = 'V P12 +P22 +P1P2 

(Pi +p2)2=Pi2 +P22 +P1P2 
P1P2= 0 

either p1 = 0 or p 2 =0. 

857 

..• (3) 

..... _,, .. 

Problem 17'2. A shaft is subjected to a bending moment and a twisting moment 
simultaneously and at a particular section the b:mding moment is Mand twisting moment is 
T . Show that the strain energy per unit volume is 

u= 2~ { p+2q2( ~n: I ) } 

where/is the maximum bending stress and q is the ma'<imum shear stress and 1/m is the 
Poisson's ratio. 

Solution. 
Bending moment = M 

Twisting moment = T 

Maxm. bending stress, f = 32 Iv!_ 
rtd3 

M h 
. 16 T 

axm. s eanng stress, q= nds 't t . ·~ \ 

Principal stresses on the surface of the shaft 

Strain energy per unit volume 

u= ik { Pi2+P2
2
- ,~ P1P2} 



= _I { /2+2q2( I +-1 
)} 

2E m 

Problem 17·3. The internal pressure in a steel drum is 10 N/mm2 • The maximum 
circumferential stress is 85 N/mm3 and longitudinal stress is 22 N/mm2 • Find the equivalellt 
te1tsile streas in a simple tensile test according to each of the theories. Take Poisson's ratio 
= 0"3. 

Solution. The principal stresses at the critical point are 
+85, +22, -10 N/mm2 

Say the equivalent tensile stress in a simple tensile test is f 
(a) Maximum principal stress theory / = p1 = 85 N/mm2 

(b) Maximum shear stress theory 

f Pi- Pa 85+10 
2- = 2 = 2 

/ = 95 N/mm2 

(c) Maximum principal strain theory 

I_ = .l ( 85- 22 + ~ ) 
E E m m 

/ = 85 - 0'3 x 22+ 0·3 x 10=81 '4 N/mm2 

(d) Strain energy theory 

/
2 

-- J_ { 852+222 +(-10)2-1- {85x.22- n x 10 - aoxg5)} 2E -- 2E m 

/2= {7225+484+ 100- 0·6(1870-220- 850)} 
=(7225+584- 480)= 7329 

/=85'6 N/ mm2 

(e) Distortion energy theory 
2/'=(85-22)2 +(22+ !0)2+(- !0-85)Z 

= 3969+ 1024 + 9025 
/ = 83"72 N/mm2

• 



Problem 17·4. The load on a bolt consists of an axial thrust of 800,kg together with 
a transverse shear force of 400 kg. Calculate the diameter of the, bolt according to 

(a) maximum principal stress theory 
(b) maximum shear stress theory 
(c) strain energy theory. Take 3 as factor of safety. 
Yield strength of the material of the bolt=2850 kg/cm2 

Poisson's ratio=o·3 

Solution. 
Say the diameter of the bolt = d 

Area of cross section, A=_!:_ di 
4 

Axial compressive stress on bolt, f = S~O 

Shear stress on bolt, 
400 

q = 
A 

Maximum principal stress 

P1=-f +J (-{: r+q2 

= 4Jo +J( 420 Y+( 4~~ t 
965·6 

_ A kg/cm2 

Minimum principal stress 

Yield strength 

Factor of safety 

Allowable 

p 2= 4~0 -J ( 4~0- / +( ~~.9__:_ l 
165·6 

=-~ kg/cm2 

=2850 k:g/em2 

= 3 

28-50 
fyp'= -

3
-. - = 950 kg/cm2 

(a) Maximum principal stress theory 

965°6 ~950 
A 

it 
A=l"Ol642=- dZ 

4 

d = 1·137 cm 

(b) Maximum shear stress theory 
,e1 - P2 ~ fyv' 

2 2 
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' ..... 965 '6 165· 6 =950 
' A + A 

A= 1131 ·2 =1·190 cm2 = :!..d2 
950 4 

d=t·23 cm 

(c) Strain tnergy theory 

(
965·6)2 (-165'6)' 2 _l_ ( 965'6 165'6)= , 2 

A + A +m A X A fyp 

932383.36+27423.36 + 95942.016=/ 2/p X A2 

Putti ng the value of/' YP 

A2= 1 ·0331 + o·J304 + 0· t063 = 1 · 1698 

A= 1"08 1573= ..::__ xd2 

4 

d=l"l73 cm. 

'shilNG'rA: oti MATBkIAL~ 

. ; 

Problem 17·5, A thin aluminium alloy tube has a mean diameter of 20 cm and wall 
thickness 2 mm. The tube is subjected to an internal pressure of 20 kg/cm 2 and a tor(iue of 
12000 cm-kg. If the yield strength of the material is 2400 kg/cm2 and Poisson's ratio is 0·33, 
determine factor of safety according to 

(a) Maximum shear stress theory 
(b) Maximum principal strain theory 
(c) Strain energy theory. 

Solution. 

External diameter of t he tube, D=20'2 cm 

Internal diameter of the tube, d= 19·8 cm' 

Polar moment of inertia. 

re: 
J =3f (20·2' - 19·8'~ · 

n: =n (~6~4~6'64- 1536_95·36! = 1256'76 cm' 

Maximum stresses occur at the inner radius of the tube. 
., . 

f / .. 

So, shear stress due to twisting moment, at the· inner radius::· ... . i • • ;·, •. I • r . ) 

12000 19'8 
q= 1256·76 x -2- =94·53 kg/cm2 

Axial stress due to internal pressure 

r pD' h D' ct· 
1 a=4t w ere =mean tameter 

20X20 
= 4 x o·2 =500 kg/cm~: 



Circumferential stress due to internal pressure 

pD' 20 X20 
J.=~ = 2 x 0 .2 = lOOOkg/cm2 

The stresses at a point (at the inner radius) are f , , fa, q and - p (radial stress) 

Let us first determine the principal stresses, because f 0 and Ju are no longer principal 
stresses since they are accompanied by shear stress q in this case. The stress system is shown 
in Fig. 17'1 I. 

Maximum principal stress 

Pi= 1000+500 +~ (1000 -;500)2
_ )+(94.53)2 

fa = 500 kg/cm2 
= 750 + 100,V6'25 + 0'8936 

= 750 +267'27 

=1017'27 kg/cm2 

Other principal stress 

r-t---. 
/.,/,..,, 

L---,-----...J q = 94·5~ kg/cm2 
--+---q 

pz= 1000;-500 -...J( woo;-sooy+ (94.53)2 

= 750- 267'27 

tc = JOOO kg/cm2 

Fig. 17'11 

or 

= 482'73 kg/cm2 

Now the principal stresses at the inner radius of the tube are 

+ 1017'27 kg/cm2 + 482'73 kg/cm2 and - 20 kg/cm2. 

(a) Maxirnum shear stress theory 

1011·21+ 20 
- - 2- -

2400 
2 X F.S. 

Factor of 11afety 2400 . ,... 
= 1037'27 = 2 31-' 

(b) Maximum principal strain theor y 

Pi P~ Pa fyp 
7 - mE- mE = E x FS 

!017'27-0'33 x 482'73+ 0'33 x 20= 24..QO_ or lOJ.7'27 - ;52·10= 2400·. · ., . · 
FS F$ 
2400 F4ctor of safety = 

864
.
57 

= 2'776. 

( c) Strain energy theory 

(1017'27)2+ (482'73)i+ ( - 20)2-2 X 0'33( 1017'27 X 482 ·73 
- 482'73 X 20- 10 l 7'27 X 20) = ( 2iQQ ) 3 

F.S 
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1034838·2+233028'25 + 400- 0'66(49 l 066'74-96546-203454) 

2400·x 2400 -
(F.S)2 

1268266.4-0'66(191066'74)= 2400 X 
2400 

(FS)2 

1268266'4-126104'04= 2400 X 2400 
(FS)2 

Fl\ctQr of safety 

1142162.4= 2400 X 2400 
(FS)2 

= ""5'043 = 2·246~-

Problem 11·16. A hollow shaft 30 mm internal diameter and 50 mm external diameter 
i, subjected to a twisting moment of .800 Nm and an axial compressive force of 40 JcN. 
Determiq~ th~ factor of safety according to each of 5 theories of failure if the tensile and 
compressive yield strength of the material is 280 N/ mm2 and Poisson's ratio, IYm=0·3. 

Solution. 

Internal diameter of shaft = 30 mm 

External diameter of shaft= 50 mm 

Area of cross section, A=ff(502-302)/4= 12 '5664 x 104 mm 2 

Polar moment of inertia, 

J= n (504-304)/32= 53'40x 104 mm• 

Maximum shear stress at the outer surface of the shaft 

T D 
q= 7 X 2 where T=800 x 103 N mm 

800 X }03 . 
2 = 53.40 x 104 x25=37 45 N/mm 

Axial compressive stress,/= ~ where P=40 kN 

40x 1000 
= 12·5664 x 102 31 .830 N/mm1. 

O• the oater s,qJ;f,ace of the shaft 
--- s,- Cl; 

The stresses on any element are shown 
in Fig. 11·12. 

Principal stresses at the point are 

f 
+ 

f 
·-Shaft 

ax is 

Pi= f + J ( f) +q2 
q----

f = 31 ·S3 N/rn m 2 

= 3~'83+J ( 3\83 r +(37~ 

q = 37-45 N/rnm2 

Fig. 11·12 
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Poisson's ratio 

= 15"915 + -1253'287 + 1402'50 
=1 5"915+ 40"691 (compressive) 
=56"606 N/mm2 (compressive) 

P2= -{ -J ( { )+q~-
= 15"915-40'691 
= -24"776 N/mm2 (tensile) 

fy 9 =280 N/mm2 

=l/m=0'3. 

(a) Maximum. principal stress theory 

Factor of safety, FS=/Y__P = 280 4"9464. 
Pi 56"606 

(b) Maximum shear stress theory 

Pi and p 2 are of opposite sign. Therefore 
Pi-P2 fyp 
-2-=2xFS 

, 280 280 15= 56'606+24·776 = s 1 ·382 

Factor of safety =3'44 

(c) Maximdm principal s train theory 

Pi P2 f)P 
E mE= E(FS) 

56"606+ 0·3 x 24'776 = 
280 

F.S. 

Factor of safety, 

(d) Strain energy theory 

(56'606)2 +( - 24"776)2 + _l (56'606 X 24'776)=( fyp )
2 

m FS 

3204"24+613·85+841'48 = 
2~~~ since ~ =0·3 

Factor of safety, FS = JZSO x 2so yt6·8255 =1'10. 
4659'57 

(e) Shear strain energy theory 

(56"606+24'776)2+(-24·776)2+(-56"606)2 = ·2x { 2;J )2 

6623.03 + 613'85+3204"24= 
2

X 
280 

X~ . (FS)2 
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Factor of safety 

(FS)2= 2X280x280 =15"017546 
10441 ']2 

= 3'875. 

STRENGTH OF MATERIALS 

Problem 17·7. A 50 mm diameter mild steel shaft when subjected to pure torsion 
ceases to be elastic when the torque reaches 4 kNm. A similar shaft is subjected to a torque 
2·4 kNm and a bending moment M kNm. lf maximum strain energy is the criterion for elastic 
failure, find the value of M. Poisson's ratio = 0'28. 

Solution. 

Torque 

Shaft diameter 

T' = 4 kNm = 4 x 106 Nmm 

= 50 mm 

Maximum shear stress, 

'= 16 T' _ _!~X_4XlQ_s_ =162'97 N/ 2 
q n;ds - ,;(50)S mm 

Principal stresses on the surface of the shaft 162'97, -162'97, O N/mm2 

Strain energy per unit volume at which the shaft ceases to be elastic 

u'= 2~ [ (162'97)2+(- 162'97)2 - ; (162'97)(- 162'97)] 

X (162'97)2[ 2+ ~ J 
= -2~ (162'97)2(2'56) 

Shaft subjected to M and T 

Maximum shear stress due to T, 

I6 T 
q= r;d3 

Maximum bending stress due to M, 

f = 32 M 
n;d3 

where T = 2 '4 kNm= 2'4 x 106 Nmm 

Principal stresses are Pi = { + J ( { / + q2 

= 16 M + J ( 16 M )2 ( 16 T )z 
nd3 \J nd3 + nds 

= ~:s [ M+ ~M2+r2 J 
" ~ 2= { -

1J ( { y +q2 

·= __!_§_ [M- V M 2+ T2] Tid.3 . , 

... (I) 
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Strain energy per unit volume 

1 r 2 J 
u= 2E !_ P12 + P2 2

- m(P1P2) 

= 2~ [M2 +M2+r2+2 MV M 1 +rz+M2+M 2+r2 

But as per the strain energy theory u' = u 

( ~~3 )2[4M2 +(2"56) T2]=(162"97) 2(2"56) as 
I 
-=0 "28 
m 

• .,,.aa )2 
4M2-f-2'56 T2 =(162'97)2(2'56) { -

, 16 

= 162'97 X 162'97 X 2 56 X 
2

2
~t6 

= 2. 66 X 104 X 1t2 X 15625 X 104 

~=4l'020 X !C12 

4M2 =41 '020 X 1012-2'56 X (2"4 X !06)2 

= 41 '0/0X J012-!4'7456X l012 =26'2744X 1012 

M 2 = 6'5686x 1012 

M = 2'563x 10 6 Nmm = 2·563 kNm. 

865 

Problem 17'8. A hollow circular ste~l shaft is subjected to a twist ing moment of 80 
kg-metre and a bending moment of 120 kg-metre. The internal diameter of the shaft is 60% of 
the external diameter. Determine the external diameter of the shaft according to (a) Maxi
mum principa l stress theory (b) Maximum shear stress theory (c) Shear strain energy theory. 
Take 

Factor of safety =2 

Yield strength of steel = 2700 kg/cm2 

Solution. 
Say external diameter = D 
Then, internal diameter = 0-6 D= d 

l't 
Area of cross section, A = 4 (D2-0·36 D2

) 

Polar moment of inertia, 
'tT 'tT 

J = 
32 

(D4- d4)= 32 (D 4 - 0'64 x D4) 

= ;~
4 

(0'8704) = 0'08545 X D4 

Moment of inertia, I = ~ = 0'042725 1)'1 
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Maximum stresses will be developed on the outer surface of the shaft. 

M= 120 kg-m, T=80 kg-m 

Maximum direct stress due to bending moment 

M D 
!=-xi 2 

14'04 X 104 

Da 

I20x 102 D 
o·042725 D4 X 2 

kg/cm2 

Maximum shearing stress due to twisting moment 

T D 

Principal stresses 

q=TXT 

80 X 102 D 4 ·68X 104 

= 0·08 545 D4 x T = - D-a - kg/cm
2 

f ,---2-
P1=2+ ·; ( f) +q2 

t7'02X l04 '(702xl042 (4"68x 104 )2 = ____ D_a_ + \j na ) + Da 

- 1·0 2 X Q'l - 104 ,./ 49'28 + 21 '90 
- Da I- na 

7·02 X 104 8'43 7 X 104 15·457 
"" na + na- ·- - na . X 104 

p 2= { -J ( { r + q
2 

7·02 X I 04 8"437 X I 04 

DS na 
l '4I7 x 104 

Da 

' (a) Maximum Principal Stress Theory 

Yield point stress, 

Factor of safety 

Allowable 

f >v= 2700 kg/cm2 

= 2 

2700 
f yv' = -

2
- = 1350 kg/cm2 

P1 = f yp' 

J5'457 x l04 = 1350 na 

Shaft diapteter 

Da = l54570 = 114'496 
1350 

= 4"855 cm 
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or 

(b) Maximum shear stress theory 

Since p 1 and p 2 are of opposite sign 

Shaft diameter, 

P1-P2 fyv' 
- 2 =2 

15 ·457 104 +1'417x 104= 1~50 D3 X D3 • 

D3 = 
16

·
8
;:

5
~ 

104 
= 124·9925 

D=5 cm 

(c) Shear strain energy theory 

( Pi - P2)2+ A 2 + p?=2 fyv.12 
(16·874 X 104)2+(15·457 X 104

) 2 +(1 '4 l 7 X 104) 2= (1350)2 X 2 X D6 

ios [(16·874)2+(15'457)2 + (1 .417)2]=D6 
1350 X2700 ' 

Shaft diameter, 

D6=21·43 [284.73 + 238·92 + 2·00)...:....14418.5 
D3= 120·077 

D=4·934 cm 

SUMMARY 

If at a p oint in a strained body p1, p2 and p 3 are princ ipal stresses .mch that p 1>Pt>P. 
and/1 1) is the yield point stress of the material when tested in simple tension or compression 
test. 

(a) Maximum principal stress theory p1 ~In 
(b) Maximum shear stress theory 

(i) Pt - p3 <, f,v 
2 2 

(ii) If p 3 is equal to zero and Pi and p2 are of opposite sign. Then 

Pi-Pt ~f>..!? 
2 2 

Cc) Maximum principal strain theory 

1 [ P2 + Ps J ..,.-£ pi - -m- -,,, 
f,v 
E 

where .!._=Poisson's ratio, E= Young's modulus 
m 

(d) Strain energy theory 

iE [ Pt2 +Pl+Ps3
- 1~ (P1P2+P2Pa+PaP1) J ~ 1;2 

(e) Shear strain energy theory 
[(p1 - P2)2 +(p2 - Ps)2+ (pa- JJ1)

2
] ~2/,i} 
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MULTIPLE CHOICE QUESTIONS 

1. The elastic limit stress for a material is 270 N/mm2
• A machine member of circular 

section subjected to a uniaxial stress is to be designed. If the diameter obta ined by 
using the maximum principal stress theory is 40 mm, then by using the maximum shear 
stress theory, the diameter of the machine member will be 

(a) 40\1'2 mm (b) 40 mm 
(c) 40/ v2 mm (d) None of the above 

2. The principal stresses at a point are 70 N/mm2, 60 N/mm2 and -18 N/mm2
• Say /,P is 

the stress at the yield point of the material. Using the maximum principal stress theory 
we get factor of safety of 4. What is the factor of safety if maximum principal strain 
theory is used. Poisson's ratio for the: material is 1/3 

(a) 4 
(c) 5'0 

(b) 4·5 
(d) 5·5 

3. A thin cylindrical shell with D/t ratio equal to 40 is subjected to internal fluid pressure of 
2 N/mm2• The yield point stress of the material is 210 N/mm2

• Using the maximum 
shear stress theory for ~esigning the thin shell, the factor of safety is 
(a) 5·75 (b) 5'50 

(c) 5'25 (d) 5·00 

4. The principal stresses developed at a point are +60 N/mm2, -60 N/mm2 a nd o·o N/mm2
• 

Using the shear strain energy theory, the factor of safety obtained is '13. The yield 
point stress of the material is 

. 5 . 

6. 

7. 

8. 

(a) 60\!6 N/mrn2 

-.(c) · 60 N/mm2 

(b) 60 X y'3 N/mm3 

ld) None of the above. 

A shaft subjected to pure torsion is to be designed. The yield point stress of the material 
is 280 N/mm2 and Poisson's ratio =-=0·3. Which of the following theories gives the largest 
diameter of the shaft 
(a) Maximum principal stress theory (b) Maximum shear stress theory 

(c) Maximum principal strain theory (d) Shear strain energy theory. 

A shai subjected to pure torsion is to be designed. The yield point stress of the 
material is 2700 kg/cm2 and Poisson's ratio is 0·3. Whlch of the following theories of 
failure gives the smallest d iameter of the shaft 
(a) Maximum principal stress theory (b) Maximum principal strain theory 
(c) Strain energy theory (d) Shear strain energy theory. 

A thick cylind'er of internal diameter 10 cm and external diameter 20 cm is subjected to 
internal fluid pressure p. The yield strength of the material is 240 N/mm2

• Taking a 
factor of safety of 2 and using the maximum principal stress theory of failure, the 
maximum value o~ internal pressure p is 

. (a) 120 N/mro2 · 

(c) 72 N/mm2 

(b) 90 N/mm2 
(d) N/mm2 

A thick cylinder of internal diameter 20 cm and external diameter 30 cm is subjected to 
internal fluid pressure p. The yield strength of the material is 270 N/mm2

• Taking a 
factor of safety of 3 and using the maxir6.um shear stress theory, the maximum allowable 
value of internal pressure p is 
(a) 50 N/mm2 
(c) 25 N /mm2 

(b) 32·5 N/mm2 

(d) N/mm2 
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9. 

10. 

At a p1int in a strained m:iterial the principal stresses are p 1 , p2 and zero. What combi
nation of principal stresses will give the same factor of safoty by yielding according to the 
maximum shear stress theory and the distortion energy theory of failure ? 

(a) Pi=-pz (b) P1=i P2 
(c) Pi=P2 (d) Pi=-2pz 
A shaft is subjected to bending moment M and a tw;sting moment T simultaneously (at a 
particular section). The maximum shear stress due to T is 30 N/mm2 and maximum 
bending stress due to M is 80 N/mm2• The yield point stress of the material is 
280 N/mm2

• The maximum shear stress theory is used to design the shaft, the factor of 
safety obtained is 

(a) 3·5 
(c) 2·8 

I. (b) 

6 (a) 
2. (c) 
7. (c) 

(b) 3·0 
(d) 2·5 

ANSWERS 
3. (d) 

8. (c) 

EXERCISES 

4. (a) 

9. (c) 
5. (b) 

10. (c) 

11· 1. A shaft is subjected to a bending moment M and a twisting moment T. The 
ratio of M/T = 0'5. Show that strain energy per unit volume is 

512M2
( 1 ) 

U= Eit2d6, 2+m 
where dis the diameter of the shaft and 1/m is the Poisson's rotio of the nnterial and E 1s the 
Young's modulus of the material. 

17·2. Considering the principal stresses in a steam boiler asp, 0·5 p, 0. Poisson's ratio, 
I/m=0·2s, and the equivalent stress in a simple tensile test asf, find pin terms of each of the 
theories. [Ans. f, f, 1 · 162 f, 1 ·o 16 f, I · 154 f] 

17'3. The load on a bolt consists of an axial pull of IO kN together with a transverse 
shear force of 6 kN. Calculate the diameter of the bolt according to 

(a) Maximum principal strain theory 
(b) Shear strain energy theory. 
Take factor of safety as 2. 

Given yield strength of the material=310 N/mm 2 [Ans. 10·53 mm, 10'9 mm] 
Poisson's rat io = 0'27 

17· 4. A thin copper alloy tube has a mean diameter of 200 mm and a wall thickness 
of 3 mm The tube is subjected to an internal pressure of 2N/mm2 and a bending moment 
of2X 106 N mm. Ifthe yieid strength of the material is 180 N/mm2 and Poisson's ratio is 
0'35, determine the factor of safety according to (a) maximum principal stress theory (b) shear 
strain energy theory. [Ans. (a) 2·10 (b) 2'92] 

17-S. A hollow circular steel shaft is subjected to a twisting moment of 60 kg-metre 
and a bending moment of 50 kg-metre. The internal diameter of the shaft is half the external 
diameter. Determine the external diameter of the -shaft according to 

(a) Maximum principal strain theory. 
{b) Shear strain energy theory. 
Take factor of safety of 2. 
Yield strength of steel =2700 kg/cm2 

Poisson's ratio= 0'3 . [Ans. (a) 3'8 cm (b) 3'872 cm] 
17'6. A 5 cm diameter mild steel shaft when subj0ctcd to pure torsion ceases to be 

elastic when the t orque reaches 42000 kg-cm. A similar shaft is subjected to a torque 2800@ 
kg-cm and a bending moment M kg-cm. If the maximum stra in energy is the criterion for 
elastic failure, find the value of M. Poisson's ratio=0'3. [Ans. 24940 kg-cm] 



18 
Rotating Discs and Cylinders 

The problem of determining the stresses developed in bodies like shafts and discs rotating 
at high speeds is of considerable interest. Due to their high speeds of rotation, steam turbine 
shafts and discs experience large magnitudes of centrifugal forces . The stresses -:a used by these 
centrifugal forces are distributed ~ymmetrically about their axis of rotation. 

18'1. ROTATING RINGS 

Let us consider a thin ring of mean 
radius R, rotating about its axis at angular 
speed w radians/second. Say t is the radial 
thickness and b is the axial width of the ring. 
The axial width, b and radial thickness t both 
are small and it is assumed that there is no 
variation of stress along the thickness b or t. 
It is further assumed that there is no stress 
in the axic1l direction since thickness b is very 
small. 

P= weight density 0f the material. 

Now consider a small element abed 
subtending an angle 30 at the centre, at an angle 
tl from the horizontal axis X-X. 

Volume of the small element= R30 . b . t 

Weight of the small element =pR30 . b . t 

<!F, centrifugal force acting on the small element 

=( pR;t M)c,,2R 

where g = acceleration due to gravity 

( 
w 2pR2bt , 

Vertical component of 3F= ' 3(1 . sin 0 
g I 

Horizontal component of 3F= ( ~"'
2

;

2

bt ) 30 cos 8. 

The horizontal component of 3F will be cancelled when we consider another small 
element a'b' c' d' in 2nd quadrant at an angle 0, but the vertical component of 3F will be added. 

870 
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Total vertical component or the bursting force across the horizontal diameter X-X 
7t 7t 

= f ( pw:R2bt ) sin 6 dB = pw2:2bt /-cos 0 I 
0 0 
2pw2R 2bt 

g 

Say /c is the hoop stress developed along the horizonal section. 
Area of cross section = 2 x h X t (as shown by <>/ and gh) 

Resisting force = Jc X 2 X b X t 

F ·1·b . 2'f b 2p w3 R2bt or equ1 1 num, , . f= · g 

pw2R2 
Circumferential stress, /c= - -g 

pV2 -g- where V= linear velocity of the ring= wR. 
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Example 18"1-l. Find the safe number of revolutions per minute for a thin ring 2 
metres in diameter if the stress is not to exceed 150 N/mm2• 

Given, weight density = 7·8 cm3 (gram force/cm 3) 

Solution. Weight density, 

Allowable stress, 

Now 

But 

Angular velocity, 

p=0·0078 kg/cm3 

= 0·0078 x 9'8 N/cm3 = 0'07644 N/cms 
=76'44x 10a N/ms 

Jc= 150 N/mm2 = 150 X I 06 N/m2 

f, pV2 d 9"8 / 2 •=- an g= m sec 
g 

V2 __ f• .g = J_50 x l0r. x 9·8 = 1"923 104 
- p 76"44 X 103 X 

V= 138.675 metres/sec 
R = I metre 

w = ~ = 
138·ts = 138"675 radian/second 

138"675X60 . . 
R.P.M. = 

2
~-- = 1324"246 resolut10ns per mmute. 

Exercise tS·t-1. Calculate the stress in the rim of a pulley when linear velocity of 
the rim is 80 metres/second. What will be the stress if the speed is increased by 20 °Jo ? 

Specific weight = 0·0078 kg/cm3 

Acceleration due to gravity, 
g=981 cm/sec2 • [Ans. 508"87 kg/em 2, 732·77 kg/cm2] 

18"2. ROTATING THIN DISC 

Let us consider a thin disc of inner radius R1 and outer radius R2 rotating at angular 
speed w about its axis 0. The thickness t of the disc is small and it is assumed that stresses 
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n 

Fig. 18·2 

do not vary across the thickness and there is no axial stress in the disc. Consider a small 
element abed at radius r from the axis and subtending an angle 80 at the centre. Say the radial 
thickness of the small elemens is or as shown in the Fig. 18 ·2. 

When the disc is rotating at high speed, let us say that radius r changes to r+u and 
radius r+or changes to r+or+u+ou 

In other words change in radius r=u 
Change in radial thickness or= ou 
Moreover say the circumferential stress developed ~-= Js 
(This stress varies with the radius) 
Radial stress at radius r is p , 

(This stress also varies with the radius) 

and Radial stress at radius r+or is p,+op, 

Weight of the small element 

Considered =(roo)(or )(t)1P 

where p=weight density of the material. 

Centrifugal force on the small element 
along the radial direction eo 

( p ,., 01' o(j ) 2 
= \ g w r 

pw2r2toro0 
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Circumferential force on faces ad and be= Jo.Sr.I 
Radial force on face ab = ( p, .r~Ot) 
Radial force on face cd=(pr -l-8pr)(r+ Sr ) 8Bt 
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Res ) lving the forces in the radial d irecti on eo as shown in the figure and considering 
the equilibrium of the forces. 

or 

or 

p, .r.SB.t+-2/; . si n ~O . 8r.t 

= ( p,+Sp, )(r+Sr) 88 1+ -P'"
2 
(:_ t Sr SJ __ 

2 

. ,10 fi(J 
Since 80 is very small, sm -

2 
- ""' 

2 

N ow t.S8 is commpn on b0th the sides, the above expression can b~ simplified as 

pw2r2Sr 
p,.r+Jo Sr .:::..p ,.r-1- r Sp, -j-p, Sr+ Spr Sr I------

g 

Neglecting the term Sp , Sr, the expressio n can be furth er s implified as 

P"'2r 2Sr fo.or = r 8p,+ pr Br+ -=----
g 

Dividing throughout or we get 
Sp , pw2r2 

Ji() = r -- +pr+ Sr g 

Sp, ow2r 2 

fo - p ,=r -+ ' ·· 
Sr g 

Now consider the circumferential and radial strains 

C
. " . 

1 
. r+u-r Jg p, 

1rcum1erent1a stra in, ec= = -E - -E 

Radial strain, 

In the limits 

r m • 

u I [ p,] = - - Je - -r E m 

pr Jo 
= E-mE 

Su 
Sr 

~ = -1 [ p, -Jo J 
or E m 

!!!!_=_I [ p,-_f~ ! 
dr E · m _. 

Now differentiating the equation (2) with respect to r 

du _ _ l ( Ji_ Pr )+ r / dJo _ I dpr ) 
dr - E 9 m E \ dr m dr 

Equating equations (3) and (4) 

_!_ ( p, - Jg_)= J ( Jo - ~)+ .,. ( ~_fo __ _!_ f P.:...) 
E , m ~ m E dr m dr 

... (I) 

.. . (2) 

. .. (3) 

... (3) 

... (4) 
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( 
d fa l dp, ) ( p,-f9)=r - - -- -
dr m dr 

. ( 1 dpr d fa ) (fa-p,)=r - - . - --
m dr dr 

Substituting the value of ( / 9- p,) from equation(!), we get 

( 
l+-1 )l r dp, pw2r2 )=-'- jpr _ r dfs 

m \. dr + g m dr dr 

dpr pw1r 2 pw1r 2 d Jo 
r dr+ - g- + --;;g= -rri,-

r ( dp, df9 )= -( I+-'- ) pw2,2 
\ dr + dr m g 

.!!._ ( p, +fo ) =-( m+ I) pw
2
r 

dr m g 

Integrating the equation (6) we get 

p,+Jo= -( m+ 1) pw
2
r

2 +A 
m 2g 

where A is the constant of integration 

But from equation (I) 

dpr pw2r2 

fo - pr= r -+--dr g 

l!'iubstracting equation (I) from equation (7) 

2p, = A -( m+I) pw~,2 _ pw2r2 - r d~ 
m 2g g dr 

2pr+ r dp, = A _ 3m + I . pw2r_: 
dr 2m g 

Multiplying equation (8) throughout by r 

3m+ I 
2m 

Integrating equation (9) we get 

2 Ar2 3m+ I r p,= 2 - _ 8_m_ 

g 

pw2r4 .--+B 
g 

... (5) 

... (6) 

.. (1) 

... (8) 

... (9) 

where Bis another constant of integration 

,= ~+.!!._- 3m+ I pw2,2 
p 2 r2 8m · -g- ... (lo: 

Now substituting the value of p, in equation (I) 

fo=A - ( m+ l ) p~2~ -~-~+ 3m+l pwt{2 
m 2g 2 r 2 8m g 

A B m+3 pw2,.2 ----- - -- x--- i r 2 8 m 8 
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and 

Let us put 3m+I k f h . . 8m = i, a constant or t e material 

~! 3 
=k2, another constant for the material 

The expressions for radial and circumferential stresses can be written as 
A B pw2r2 

p,=2 + ~-ki-g-

A B pw2r2 
/9= 2-,r-k2 -g--

The constants A and B can be evaluated by using the boundary conditiom. 

Solid Disc 
The inner radius R1 =0, say outer radius = R 

875 

At the centre r=O and stresses cannot be infinite at the centre of the disc, therefore the 
constant B=.O. E:itpre11si0ns for stresses will now be 

or 

A pw2r2 

p,= 2 - ki -g-

A pw2r 2 

Jg= y-k2-g-

Now at the outer radius, r=R, radial stress pr=O 

A pw2R2 

0=2--k1-g-

A pw2R2 

y =k1g-

Radial stress at any radius r 
pwZ 

v,=k1 -- (R2-r2) . g 

Circuroferential stress at any radius r 
pw2 

jg= (k1R2 -k2r 2) g 

Hollow Disc 

where 

where k =m+3 
2 8m 

Boundary conditions are thal radial stress pr is zero at the inner radius R1 and at the 
outer radius R2• 

Therefore 

or 
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or 

Then · 

Radial Stress 

A --~+' pw2R12 
2 - R12 ''1 g 

= k1 pw
2 

(R1
2+ R22) 

g 

STRENGTH OF MA TERI A LS 

For the maximum value 

dp ~pw2R 2R 2 pw2,. 
-d,' =O=O+k12. . i 2 -2k --gr3 1 g 

r 4 = R12R22 

r= V R1R 2 

pw2 ) pw2 R1 2R22 pw2 
pr mox= k1-- (R12 +R22 -ki-- X k1--R1R2 

g g R1R2 g 

pw2 pw2 
= ki-- [R12+ R22

- R1R2- R1R21 = k1 - (R2 -R1) 2 
g g 

Circumferential stress __ 

/io =k1 pw2 (R 2+R 2)+k g 1 2 1 

Obviously maximum value of /e occurs where r is minimum i.e. at r= R1 

pw2 pw2R22 pw2R 2 
Jo mox= k 1 g (R1

2+R?)+k1 g k 3 g 
1 

2 
= pw [k (2R 2+R 2)-k R 2] g . 1 2 1 2 1 

Example 1s·2-1. A thin uniform steel disc of diameter 40 cm is rotating about !ts 
axis at 1800 r .p.m. Calculate the maximum principal stress and maximum shearing stress in 
the disc. 

Draw the circumferential and radial stress distribution along the radius of the disc. 

Density = 7700 kg/ms 

Poisson's ratio, -
1
- = O' 3 

m 

Solution. 

Density 

Constant, 

Radial stress, 

R = 20 cm = 200 mm 

= 7700X9'8 0 10-0 N/mm3= 7'456 x 10- 5 N/mms 

k =( ~m_±!__)= _!_ ( 3+ _l )= 3·3 1 8m 8 m 8 

k = m + ~ = _I ( 1 + l_ ) = -1..:2_ 
2 8m 8 m 8 
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where 

Now 

Radial stress 

g=981 x 10 mm/scc2 =9·81 x 103 mm/secz 

w:...:angular velocity 

= 2 X 
11

6
~ lSOO = 188"496 rad/sec 

pw2 k_3·3 x7'456x10-5 x(l88'496) 2 =0'll 10- 3 N/ 4 
g 1 - 8 9"81XJ03 X mm 
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pr=0·11 x 10-s (2002-r2)=4"4 N/mm2 at r=O, i.e. at the centre 
=0"11 X 10-a (2002-502)= 4' 125 N/mm2 at r=50 mm 

=0 ' 11 x 10- 3 (2002-1002 ) = 3·30 N/mm2 at r= 100 mn1 

= 0" 11 x 10-3 (2002 -1502)= 1 ·925 N/mm2 at r= 150 mm 
=0· 11 X 10-3 (2002 -2002) = 0 at r= 200 mm 

Hoop stress 

pw2 p w 2 
fo=-- k R.2--- Xk r 2 

g 1 g 2 

pw2k 
=4·4- - - 2 X r 2 

g 

Now pw2k2 =_t9 X 7"456XI0-5 x(I88'496)2=- 0·o
64 10

_
3 

. 
4 g 8 <./ 8 l XI oa x Ntrnm 

f9 =4'4-0'064x 10-a r 2= 4·4 N/mm2 at r= O i. e. at the centre 

=4'4 - 0"064X 10-sx 502 = 4'24 N/mm2 at r=50 mm 

= 4'4-0'064 X 10-ax 1002=3'76 N/mm2 at r= lO'J mm 

= 4'4-0'064x 10-3 x l:i02 = 2'96 N/mm2 at r=I50 mm 

=4'4-0'064x 10-3 x2002 = l '84 N/mm2 at r = 200 mm 

Fig. 18'4 shows the distribution of 
circumferential and radial stresses a long the 
radius of the disc. At the centre of the disc, 
there are maximum stresses 4·4 N/mm2, 
4·4 N/mm2 as Jo and p,. So the principal 
stresses at the centre of the disc are 4'4 
N/mm2, 4·4 N/mm2 and o·o N/mm2• Since 
the principal stress p 1 and p 2 are of the same 
sign. 

Maximum shear stress 

4'4 
=-= 2'2 N/mm2 

2 

I ' ·-1 · •• ·- · 

!: d ~:~ . !, (: '.· 

.i J· C 
··I 

Nfmm r / 2·0 

1·0 

I 

0 

centre 

50 100 150 200 mm 

Radius 

Fig. 18·4 

E,rn.mpJe 18'2-2 A thin uniform d isc of inner radius S cm and outer radius 20 cm 
is rotating at 6000 revolutions p~r minute a~out its axis . Draw the circumferential and radial 
stress distribution along the radius of the disc. 

Calculate the maximum principal stress and maximum shear stress in the disc. 
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Given weight density = 7800 kg/ma and Poisson's ratio= 0·28 

g=981 cm/sec2 

Solution. Inner radius R1 = 5 cm 

Outer radius R2=20 cm 

Constants 

Density, 

Angular velocity, 

3m+l 
8m 

3+ 0·28 
8 

0·41 

k2= m+3 = 1"84 =0"23 
8m 8 

p=7800 kg/m3= 0·oo78 kg/cm3 

2X itX6000 . . 
w = 

60 
= 628 32 radians/sec. 

k1pw2 

g 
0"41 X 0'0078 X (628"32)2 = 

1
.287 k / 4 

981 --r- g cm 

k 2Pw2 = 0·23 X 0·0078 X (628"32)2 = 0.722 kg/cm4 

g 981 

Moreover let us calculate 

k1 pw
2 

(Rl2 + Rz2)=1 "287(52+202)=546"97 kg/cm2 
g 

2 

k
1 
~xR1

2R22= 1"287x52x202=1·287x 104 kg. 
g 

Radial stress, Pr 

, = k . ~(R 2+R 2)-k pw2 R12R22 -k pw2,2 
p 1 g 1 2 1 g ,.2 1 g 

= 546"97- ~~87 X l0
4

- l "287 X r 2 ,.2 

= 546"97- 1 ·287 x 
104 

- 1 ' 287x 52 
52 

= 546'97- 5J4·S0-32'17= 0 

= 546'97 - l "287 
X I0

4 
l "287 X 102 

102 

= 546'97-128"7= 289"57 kg/cm2 

= 546.97- l "28~
5
: IO" - l "287 X 152 

at r= 5 cm 

at r=IO cm 

= 546'97- 57·2- 289·575 = 200"195 kg/.cm2 at r'= l5 cm 

- 46'97- 1 ·287 X 1Q4 
- 5 202 l "287 X 20i = 546'97 - 32.l 7-5I4·80=0 

at r=20 cm 
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Circumferential stress, Jg 

= 546.97+ 1·28~: 
104 

-0·122 x 5~ = 546·97+ 5l4"80-18·05 

= 1043"72 kg/cm2 at r= 5 cm 

= 546·97+ 1·28i; 104 
- 0·122x 102 = 546·91+ 128·1- 12·2 

= 603"47 kg/cm2 at r= 10 cm 

= 546"97 + 1
·
2s~; 104

. -0·122 x 152 = 546"97+51·2- 162"45 

= 441"72 kg/cm2 at r = 15 cm 

- 546'97+ 1 ·287 x 10' - 0·122 x202 = 546"97+ 32·11-2ss·s 
- 202 

= 290"34 kg/cm2 at r=20 cm 

Figure 18 · 5 shows the radial and 
circumferential stress distribution along the lOOO C 1043·72 kg/cm

2 
) 

radius of the disc 

Maximum stresses occur at the inner 
radius, where circumferential stress Jg is 
maximum. 

Therefore maximum principal stress 
= 1043'72 kg/cm2 

Again at the inner radius the principal 
stresses are 

104.i'72 kg/cm2, 0, 0 
So the maximum shear stress 

= I043·72 = 521 '86 kg/cm2 

2 

800 

600 
stress 

t 400 
kg/cm?. 

J 200 

Pr 

0 
(centre) - - Radius 

Fig. 18·5 

__ ...,. 
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Exercise 18'2-l. A thin uniform steel disc of radius 30 cm is rotating about its axis at 
3000 r.p.m. Draw the radial and circumferential stress distribution diagram along the radius of 
the disc. 

What are the maximum and minimum values of circumferential and radial stresses. 
p= 0·0078 kg /ems 

Poisson's ratio= 0'3 
acceleration due to gravity= 98 l cm/sec2

• 

[Ans. 291 ·336 kg/cm3 and 123'598 kg/cm2 , 291 "336 kg/cm2 and o·o kg/cm•] 

Exercise 1s·2-2. A thin uniform disc of inner diameter 5 cm and outer diameter 
25 cm is rotating at 10,000 R.P.M. Calculate the maximum and minimum values of circum
ferential and radial stresses. 
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Draw the radial and circumferential stress distribution diagrams along the radius of 
the disc. 

Given dcnsity =8830 kg/m3 a nd Poisson 's ratio=0·33 
Acceleration due to gravity, g=9"81 m/sec2• 

[Ans . 1291 "8 kg/cm 2, 309.06 kg/cm2 ; 910 kg/cm2 and 0·01 

18'3. DISC OF UNIFORM STRENGTH 

In the last article we have observed 
that radial and circumferential stresses in a 
rotating disc of uniform thickness vary along 
the radius of the disc and the circumferential 
stress is maximum at the inner radius of the 
rotating disc. There are many components in 
industry such as the rot0r c f a steam turbine 
which rotate at very high speeds and conse
quently high stresses arc developed. For such 
applications, rotors having constant strength 
throughout the radius have been designed by 
varying their thickness. 

Consider a disc of radius R, of vari
able thickness, rotating at an angular speed w 
radians/second about its axis 0 . Sa) the thick
ness at the centre= t0• Take a small element 
abed of radial thickness or, at a radius ,. sub
tending an angle 06 at the centre. The disc Fig. 18·6 

considered is of uniform strength i. e., radial stress on faces ab anded is f, and circumferential 
stress on faces be and da is a lso f. The thickness at the radius r is t and say the thickness at 
the radius r+or is t+ot . 

we get 

Volume of the element = (roB. t. or ) 

Say weight density 

Mass of the element 

=p 

p(rt o0 . or) = ------
" 0 

Centrifugal force on the element, 
CF= p(rt o0 or) w2r 

g 

_ _ pw2 r 2_ o~r....!_ 
g 

Radial force on face ab= ro8 . t .f 
Radi al force on face cd=(r+or)(t+ot)f . o0 
Circumferential force on faces be and da 

=f. t. o,. 
(Inclined at an angle o6/ 2 to the radial direction eo). 

Resolving all the forces a long the radial direction eo and considering equilibrium, 

pw2r2 
-- (tRrSll) + f(r + or)(t + ot)SO=Ji' to0 

g 
. 1i(} + 2 . /. t . or sm -2 ' .. ( I) 
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or 

or 

or 

at 

bllt o0 is very small, so sin i = ;
0 

The above equation (1) can be simplified as follows (taking 06 on both the sides) 
pw2r2 
-- tor+Jrt +Jdrt + fr. ot+f orot g 

=frt+f. t 'or 

Neglecting the product of small quantities 
pw2r 2t 
-- or+frot=O g 

f ~=- pw
2

~ Sr 
t g 

~ =-·pw2r or 
t Jg 

Integrating both the sides 
pw2,.2 

In t = - -- + In A where In A is a constant 
2fg 

t pw2r 2 

In-- =- ---
A 2/g 

pw2r2 

2/g 
"X =e 

r=O Thickness, t= t0 

t0= A 
pw2r2 

So thickness at any radius, t= t0 e 
2/g . 
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Example 18'3-l. A steel disc of a turbine is to be designed so that the radial and 
circumferential stresses are to be the same and constant throughout and equal to 80 N/mm2, 
when running at 3500 1 pm. If the axial thickness at the centre is 1 · 5 cm what is the thickness 
at a radius of 50 cm 

p for steel= 0'0078 kg/cm3, g=981 cm/sec2 

Solution. Radius 
Thickness 

Angular velocity 

Constant strength, 

So 

p= 0'0078 X 9"8 X 10- 3 N/mm3 = 0'07644 X 10-a Njmma 

r= 500 mm 
t0= 15 mm 

2 X TCX 3500 
w = 

60 
= 366"52 rad/sec 

/ = 80 N/mm2 

pw2r2= 0'07644 X 1 o-s X (366. 52)2 X (500)2 = 
1
.
635562 

2/g 2 X 80 X 9810 

e- 1 '6355 =0' 195 

t=t
9 

e1.6355 = 15 X0"195 = 2'925 m~. 
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Exercise 18'3-l. A steel rotor of a steams turbine is rotating at 10,000 r.p.m. At 
the blade ri ng its diameter is 60 cm and its axial thickness is 9 cm. at the centre. Calculate 
the thickness of the rotor at the blade ring, if it has uniform distribution of stress equal to 
1600 kg/cm2 • p= O 0078 kg/cm3 

g=acceleration due to gravity = 9'81 m/sec2 • [Ans. 7'76 mm] 

18'4. ROTATING LONG CYLINDERS 

The analysis is similar to that of a thin disc. The only difference is that the length of 
the cylind(:r a long the axis is large as compared to the radius and axial stress is considered 
along the length of the cylinder i.e., at any radius the stresses are /e (circumferential stress), p, 
(radial stress) and /u (axial stress). Following assumptions are made while developing theory 
for long cylinders 

(I) Transverse sections of the cylinder remain plane at high speeds of rotation. This 
is true only for sections away from the ends. 

(2) At the central cross section of the cylinder, shear Hress is zero due to symmetry 
and there are only 3 principal stresses i.e.,/9, pr, and/a. 

If E is the Young's modulus 

Je pr fa 
Hoop strain, 1ae= - - - - -

E mE mE 

Radial strain, tar=-- - --= - p,-- (Je+Ja) pr Jo / a I [ 1 J 
E mE mE E m 

Axial strain, fu p, Jo I f 1 J 
"•= E - mE - mE= El fa - --;; (p, +-Jo) 

Refer to the article I s·2, considering a small element of rotating cylinder subtending 
an angle UJ at the centre. The element is at a distance rand of radial thickness Sr. The 
equation of equilibrium obtained is 

and 

Sp, pw2r2 

/9-p,=r -+ - -dr g 

Again we have considered 

Circumferential strain = .E..-
r 

and radi al strain 
Su 

- Sr 

So I - l J ~ =-EI /9- - (pr+/«) r L m 

Su 1 [ I J -- = - p, - - (fe+J,,) 
Sr E m 

Differentiating equation (2) with respect to r 

... (1) 

... (2) 

... (3) 

_d!:!_ = J.. r Jo-_!_ (p,+J.,)J+ _!_[,. dfo _ !_ ( dp, + dfa)J ... (4) 
fir E L rn $ dr m dr dr 
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Equating equations (3) and (4) 

,- 1 fi- f a = fi - pr _f: +!4fL- rdp, _ }'lifn 
P m 9 m 8 m m dr mdr mdr 

p,(1+_!_)-1911+..!.)-r dfo+,.!!.P.!_+,.if~=O 
m \ m dr mdr mdr 

Now as per the first assumptions that the transverse sections remain plane 
the long cylinder rotates at high speed, it is implied that axial strain is constant i.e. 

or 

or 

Ea= i [ fa- ~ (fo+ pr)]=constant 

fa- ..!.. (/o+ p,)=constant, since Eis constant 
m 

J)ifferentiating this expression with respect to r we get 

dfa _ _!__ !}h__ J__ dpr =O 
dr m dr m dr 

r dfa = __:_ { !!lo dpr ) 
dr m \ dr + dr 

Substituting the value of r gf.l'.~ in equation (5), 
(d' 
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... (5) 

even after 

( 
l ) ( I \ d•o r dp r dfo r d_p, --O 

Pr l+- -Jg l+- -r -~-1 + - _ _!.. + + 
m m I dr m dr ,n2 dr m2 dr 

or -(fio-pr)( 1+..!. )-r ( 1-J.. )dh+.!__( 1+ -1 )q_P..!..=o m m2 dr m m dr 

or l'.g-pr+r ( 1-_!_ )dfo _..!:.. dpr = 0 
JI m dr m dr 

. r dpr pw2r 2 

From equat10n (l)/9- p,=-a;:-+ - g-

Substituting in equation (6), 
r dp, pw2r 2 + r ( 1 __ 1_) dfg _ L 

dr + g m dr m 

( 1 __ 1_ )(d/9+dp, '+ pw
2r =O 

m dr dr J g 

'!.fj dp, = _ ( _]?!_) pw2r 

dr + dr m-1 g 

Integrating equation (7), 

( 
m ) pw2,2 

!o+p,=- m- 1 ~+A 

... (6) 

... (7), 

. .. (8) 

where A is the constant of integration. 

Subtracting equation (1) from equation (8), 
_ _f m_) pw2r 2 -r dp, _ pw

2
r

2 

2p,-A \ m-1 2g dr g 
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2 ,+r dp , = A _ pw2r 2 ( ~n +2 ) 
p dr 2g m- 1 

= A - pw
2r2 

( 3m-2 ) 
2g m-1 

or 
dpr pw2ra ( 3m- 2 ' 

2pr,r+ r2- = A - -- l dr 2g m - 1 1 

Integrating both the sides 

A r 2 pw~r4 
( 3m - 2 ) 

pr.r2=T - ~ m- 1 + B 

er Radial stress 
r = ~ !}_ - p,.,2,.2 ( 3m- 2 ) 

P 2 + ,.2 8g \·m- 1 
... (9) 

But from equation (8) 

e= _ _i _ _!!__ pw
2r 2 

( 3m - 2 )- ___.!!!_ ( pw
2
r2 )+A 

Hoop stress, /, 2 ,.2 + 8g m-1 m-1 2g 

= ~ - .!!_ pw
2r 2 

( 3m-2-4m) 
2 r2 + 8g m - 1 

= i_-~ - pw
2
r

2 
(' m + 2) 

2 r 2 8g m-1 
· ... (10) 

Solid Cylinders 

The stresses can n ot be infinite at. the centre, therefore constant B=O. The expressions 
for stresses will now be 

or 

- ~ pw
2r 2 

( 3m-2 ) 
p ,- 2 - 8g m - 1 

. r =~ - pw
2
r

2 
( m + 2) 

JB 2 8g m-J 

Say the radius of the solid cylinder is R 

Radial stress 

So 

pr= O at r=R 

A pw
2R2 

( 3m- 2) 
O= 2 _ _,___8g- m- 1 

_.i = pw2R2 ( 3m- 2 ) 
2 8g m- 1 

p = pw2 ( 3m - 2) (R2- rZ) 
' 8g m- 1 

Radial stress is maximum at r= O 

_ pw2R2 
( 3m-2 ) 

pr »>ax - S l g m-

Hoop stress, 
9_ pw2R 2 ( 3m- 2)- pw

2
r

2 
( m+ 2) 

f, 8g m -::- 1 8g m- 1 

= ~ [ R2 ( 3m - 2 ) - , 2( m+ 2 )] 
8g m- 1 m- 1 
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If we put 

Then 
pw2 

pr= -- k 8 (R2 - r 2) 
g 

pw2 f,= - [kaR2-k, r2] 
g 

Again the hoop stress is also maximum at the centre i.e., at r= O 

So 

Hollow Cylinder 

Stresses are A B pw2r2 

pr = 2 +,2 -k3 -g-

A B pw2r2 
/9=----k --2 ,2 4 g 

Radial stress is zero at inner and outer radii of the cylinder 
Say R1 = Inner radius 

R2 = 0uter radius 

0 = ~ !!_ - k pw2R12 
2 + Ri2 3 g 

0 = .4._+ _!!_ - -k pw2R22 
2 Rl 3 g 

From these boundary conditions 

Again 

B (-
1
- - -

1
- )-k8 pw

2 
(R1

2-R22)=0 R12 R22 g 

B (R22-R12) = -k pw2 R 2-R 2) 
Ri2R

2
2 s g l 2 1 

pw2 
B=-k - x R 2R2 

3 g 1 2 

~ = - !!_+k p(l)!R1Z 
2 R12 a g 

pw2 
=+k - X R 2+k S g 2 3 

2 
= ks~ (R12+R2a) 

g 

The expressions for stresses will now be 

Radial stress, p,=k 8 F"'t [ (R12+R2i)- R1
2
R22 ,2] 

g r2 

To obtain maximum value of p, 

dp, = O= + 2R1
2R22 

_ 2, 
dr r 3 
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or r'= R1
2R 2

2 

r= ,.f R1R2 

Maximum radial stress occurs at the radius of 4 R1R2 

_ k3Pw
2 [<R z+R 2)_ R1

2
R22 

pr ma:11- - - 1 2 R R g l 2 

= kaP w2 [R12+ R22-2R1R2] 
g 

= ksPw2 (R2- R1)2 
g 

The expression for the circumferential or hoop stress will be 

i,,w2 pw2 R12R22 pw2 
fa = ka g (Ri2 + R22)+ ks g -,.-2 - -k4g r 2 

Obviously this will be maximum when r is minimum i.e., at inner radius, R1 

pw2 pw2 Pw2 
fa ma.,=k 3 - - (R1

2+ Rz2) + k4 - - R22-k4 - XR1
2 

g g g 

= pw
2 

[k3 (2Rz2+R12) - k4Ri2] . 
g 

Example .18'4-1. A l.ong cylii:ider of di ameter 6~ .cm is ro~ating at. 3000 r.p.m. 
Calculate the maximum stress m the cylmder . Draw the vanat10n of radial and Clfcumferential 
stresses along the radius. 

Weight density 

Solution. 

Angular speed, 

= 0'0078 kg/ems 
g = 980 cm/sec2, Poisson's ratio = 0'3 

R =30 cm 

2 xn x 3000 . 
w = 

60 
= 314 16 rad/sec. 

3m-2 3-0'6 
ka=8(m- l) = 8(1-0'3) =0·4286 

8(1 - 0'3) 
0'2857 

Maximum radial and circumferential stresses occur at the centre 

pw2 
pr ma., __;/9 ma:11= k8 -- X R2 

Radial stress 

. g 

_ o· 4286 X 0'0078 X (314' 16)2 
302 _ 3

03
.
0 

k / 
- 980 x - g cmz 

pw2 
pr= k8 - - [Ra- ,2] 

g 

0'4286 X 0·0078 X (314'16)2 
- 980 
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Hoop stress 

= 0'3367 (900-r2) 

= 0'3367 (900 - 62) 
= 0'3367 (900 -1 22) 

= 0 3367 (900 - 182 ) 

= 0'3367 (900- 242) 

= 0'3367 (900- 900) 

= 303'0 kg/cm2 at r=O 
= 290'90 kg/cm2 at r= 6 cm 
= 254'54 kg/cm2 at r = l2 cm 
= 193'94 kg/cm2 at r = l8 cm 
= 109'09 kg/cm2 at r= 24 cm 
= 0 at r= 30 cm 

Pw 2 pw2 pw2 
/io=k3 - - R2 - k4 - r 2= -- fk R2 - k r ] g g g 3 4 

= 0'0078 ;
8
~l4' l6)

2 
(0'4286 X 900-0'2857 X r 2] 

= O 785 (385'74-0'2857 r 2)=303'0 at r= O 
= 0'785(38S'74 - 0'2857X62) = 294'73 kg/cm2 at r= 6 cm 
=--= 0·785(38S'74-0'2857 x 122)= 270'5 1 kg/cm2 n.t r = I2 cm 
= 0'785 (385'74- 0'2857 x 18 2) = 230' 14 kg/cm2 at r"=18 cm 
= 0 '785 (385·74- 0'2857 x242) = 173'62 kg/cm2 at r= 24 cm 
= 0 '785 (385·74- 0'2857 x 30 2)= 100'96 kg/cm2 at r=30 cm 

Fig. 18·7 shows the distribution of 
hoop and radial stresses along the radius of 
the tong cylinder. 

300 

200 

kg/cm2 

100 

Example 18'4-2. Calculate the maxi
mum stress in a long cylinder 5 cm inside 
diameter and 25 cm outside diameter rotating 
at 5000 r.p.m. st ress t 

Given: 0 6 12 18 24 30 cm 
Poisson's ratio 
Weight density 

= 0'3 
= 0'07644 N/cms 

g= 980 cm/sec2 

Ra d ius -

Fig. 18'7 

Solution. Inner Radius, R1 = 2·5 cm, Outer radius= 12 · 5 cm 

Maximum stress occurs at the inner radius of the cylinder 

pc,, 2 
Jo max = -- [k3 (2R22+R18)- k4 R12] g 

3m-2 
ka= 8(m- l ) 

3- 0'6 
8(1-0'3) = 0'4286 

m+ 2 1+ 0·6 . 
k4 = 8(m-l) 8(1 - 0 '3) = 0 2857 

2,; X 5000 . 
w = 

60 
=523'6 radians /sec 

pw2 _ 0'07644 X (523·6)2 -=
21

.
384 

N 
g - 980 - /cm4 
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/9 maa= 2 l '384 [0'4286 (2 X !2'52+ 2'52)- 0'285'7 X 2'52] 
= 2 l '34 [0"4286 (318'75)--0'2857 X 6'25] 
~ 21 ·34 [136'616-1 '785]=2877'3 N/cm2=28'77 N/mm2 

Radial stress 

P =k pw2 [<R 2+R 2)- R12Rl -r2 .] 
, 3 g l 2 ,z 

= 0'4286xo·o7466x(523'6)9 
[ 02.52 + 2·5)2 _ 12·52 x2·52 , 2 ] 

980 ,2 

=8'952 [ 162'5 -
97

~/
6 
-r2 J 

= 8'952 [ 162'5-
976

.
56 

-2·52 ] = o at r=2·5 cm 
2'52 

[ 
976'56 J = 8"952 162'5- -

5
-11 - -52 =881'2 N/cm2 at r=5 cm 

= 8'952 [ 162'5 -
9
;~~;

6 
-1·52 ]=795'73 N/cm2 at r=7·5 cm 

= 8'952 [ 162'5-
9~t;6 

- 102 ]=472'08 N/cm2 at r= 10 cm 

[ 
976"56 l = 8'952 162'5-
12

.52 - 12'52 =0 at r=l2'5 cm 

prmax occurs at r 2 = R 2R 2= 2'5X 12'5= 31'25 

pr,,,ax=8'952 [162'5 -
9Jt}5

6
- 31'25 ] = 895'2 N/cm2 at r= 5"59 err 

Hoop Stress 

pw2 [ ) R 1
2
Rl -k 2] Jo= ·g ks(R12 +R22 + ks · ,2 1 · r 

= 0·01466x <523·6)
2 

[0·42~ 6(12 ·52+ 2· s2)+ 0·4286 x 12.
52 

x 2·
52 

- 0·2857 x , 2 J 
980 r2 

=20'88 [ 69'6475+ 
418

;;
5 

- 0'2857 r 2 J 
[ 

418'55 J =20'88 69'6475+ 
2

.52 0'2857X 2'52 

= 2877'3 N/cm2 at r = 2'5 cm 

= 20'88 r 69'6475+ 
418

.
55 

0·2857 x52 ] = 20'88[69'6475+16'742-7'142] 
L 52 

= 1654'69 N/cm2 at r= 5 cm 

= 20'88 [ 69'6475+ ~L-~?
5 

- 0'2857 x 52 J 
= 20'88[69'6475+ 7·44- 16'07]= 1274'05 N/cm2 at r = 7'5 ~m. 
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- 20"88 [ 69 6475+ 
418

'
55 

- 0'2857 X 102 J - 102 

= 945·09 N/cm2 at r= 10 cm 

= 20'88 [ 69'6475+ 418.55 - 0'2857 X 12'52 J 
12'52 

=20"88[69 '6475 +2'6787- 44'640]= 578"0 N/cm2 at r=l2'5 cm 

Fig. 18'8 shows the distribution of 
circumferential stress fa and radial stress p, 
along the radius of the Jong cylinder. 

3000 ( 2 87 7·3 ) 

Exercise t8·4-1. A long cylinder of 
steel of diameter 40 cm is rotating about its 
axis at an angular speed of 300 radians/sec. 
Draw the radial stress and circumferential 
stress distribution along its radius. Determine 
the maximum and minimum values of radial 
and circumferential stresses. 

Given p= 0'07644 N/cms 

l/m= 0 '3. 

2000 

N/ cm2 t 
1000 

s tress 

7.5 10 12·5 0 2·5 5 
centre 

Ra dius -

Fig . 18·8 

889 

[Ans. 12·035 N/mm2, 0 ; 12'035 N/mm2, 4'012 N/mm2] 

Exercise 18'4-2. A long cylinder of steel of outer diameter 75 cm and inner diameter 
25 cm is rotating about its axis at 4000 r p.m. Draw the radial stress and circumferentia 
stress distribution along the radius. Determine the maximum and minimum values of circum-1 
ferential stress. 

What is the max imum radial stress and where is occurs. 
p= 0·078 kg/cm 3, l /m=0"3, g = 980 cm/sec2 

[Ans. 1715'2 kg/cm~ and 467"84 kg/cm2 ; 374'1 3 kg/cm2 at r'= 21'65 cml 

18'5. TEMPERATURE STRESSES IN THIN DISCS 

Consider a thin disc rotating at a high speed and subjected to temperature variation at 
the same time. Say the stresses developed in the disc are fa, circumferential stress and pr, radial 
stress, <1. is the coefficient of linear expansion of the disc and Tis the temperature change. At 
angular speed w , there is change in the radius of the disc. Refer to Fig. 18'2 and 18'3, con
sidering an element abed at radius r, of radial thickness 8r' and subtending an angle 88 at the 
centre. At high speed w say 

t changes to r+ u 

dr changes to dr+ du 

fa pr u 
Circumferential strain, E8= E - mE+aT= r ... (1) 

Radial strain, 
pr Jo du 

Er= -E- - mE +e&T= dr .. . (2) 
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Equation of equilibrium 

dp, pa.2r2 
fo-pr=r - +---dr g 

From equation (I) 

du =( .frJ... _ p_,._+r,.T )+~ ( d/9 _ dp, +Eix dT) 
dr E mE E dr mdr dr 

Equating this with equation (2), 

-pr·- - +BxT = - fo--+EaT +- ---+E"'-I ( /o 1 ( Pr ) r ( dfo dp, dT ) 
E m J E m E dr mdr dr 

pr ( 1+-1 ;'-fs( 1 + J_ )= I' dfo _..!_ 
m m dr m 

(/9-pr)( 1+ _!_ )=-r dfo +_c 
m dr m 

From equation (3) substituting the value of /o-p, 

( I+_!_),. dpr +( l+-1 ) pw2r2 = -r d!o+ .!..... 
m dr m g dr m 

,. dp, +r d..&, = - ( I + I_ ) p,v
2
r2 -rEr:t. dT 

~ ~ \ m g ~ 

d
dr (Jo+p,)= -( 1 + _l ) pw

2
r - -Eo. dT 

m I g dr 

Integrating equation (I), 

!1J+p,=-( 1 + _!_ ) Pw2,-2 -Er:t.T+A 
m 2g 

dp, E dT 
dr -r ,rt. -;t;:" 

••. (3) 

... \4) 

... (5) 

where A is the constant of integration. 

Substracting equation (I) from equation (5), 

( 
1 ) Pw2r 2 pw2r2 dp2 

2p, =- l+ ;n z;g---g- - r --a,:--EaT+A. 

dp ( I ) pw2r2 pw2,.2 
2p,+r dr' =- I + - -- - ---E ex T+A m ., 2g g 

Multiplying throughout by r 

dp, ( 3m+ l ) pw
2
ra . 2rp ..i..,.2 -- = - --- - - --E(I. Tr+Ar 

' ' dr 2m g . .. (6) 

Integrating equation (6), 

( 
3m+ l ) pw2r4 f Ar2 ,.2p,= - g;;,- -g--Ea Trdr+ 2 +B 

where Bis the constant of integration 

A B ( 3m + 1 ) pw2r2 Eu. f 
p, = y+ -,2 - , Sm -g--r2 Trdr ... (7) 
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From equation (5) 

/e=-( 1+ -l ) pw2,.2 -E (/. T+A -~-...!!_ 
m 2g 2 r2 

( 3m+l )~ Ea J Trdr + 8m g + r2 

A B m + 3 pw2r 2 E(/, J =------ . - - -EaT+- Trdr 2 r2 8m g ,2 ". (8) 

Constants A and B can be determined by using the boundary conditions for radial 
stress. 

Fot a solid disc, B=O because stresses cannot be infinite at the centre. 

Example 18'5-l. A thin uniform steel disc of diameter 50 cm is roti,t ing about its 
axis at 5000 r.p.m. Determine the stresses developed at the centre of the disc and at its 
periphery if the disc has a linear variation of temperature of 50"C between the centre and its 
outer edge. 

or 

Given: ex= 11 x 10- 6/°C, p= O·oo78 kg/cm3, g = 910 cm/sec2 

E=2· t x 106 kg/cm2, l/m=0'3 

Solution. For a solid disc 

p,=-~ _ 3m+ 1 . Pw2r 2 
_ E(/, [ Tr dr 

2 8111 g r2 J 
The variation of the temperature with radius can be written as 

Angular speed, 

50 r oc h .. T=~ , w ere r 1s m cm 

= 0 at r= O 
= 50°C at r= 25 cm 

T=2r °C 

A 3m+l 
pr = --

2 8m 
• pw2,2 - Ea J 2r2dr 

g ,.2 
2 X r. X5000 

w= 
60 

=523'6 rad/sec 

' 
pr=O at r=25 cm, outer radius 

O=-~ - ( 3m+ l Pw2 X252 _ 2'1 X lO~X 11 X 10-o f 2, 2 dr 
2 8m ) g 252 J 

25 

= ~-( 3m+l )625 Pw2 -0·03696 / 2r31 
2 \ 8m g 3 

0 

A I 3 + 0· 3 ) ow2 253 = --625 \ ·--o-o3696 x 2 x -
2 , 8 g • 3 

~- 625X3'3 X0'0078 X (523'6)2 + 385'0 
2 - 8 980 

= 562'56+385'0= 947.56 kg/cm2 
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/ ' . 
Maximum radial stress occurs at the centre of the disc 

A . 
pr ma:11= 2 -0- 0=947 56 kg/cm2 

Hoop stress 

A m+3 p w 2r 2 E oi J J,= --- --'-'-- · -- -E (I. T +- - Tr dr 2 8m g ,2 
where T = 2r 

- -A_ ( m+3 ) pw2r 2 
_ 2 E(I. J Ear+- - 2r2 dr - 2 \ 8m g ,2 

At the centre of the disc 
A (Jo)= 2 = 947'56 kg/cm2 

fo at the periphery i.e. at r=25 cm 

Jo '= 1-( n~! 3
) pgw

2 

x 252 - 2 x 2·Jx l06 X llxJ0-0 x2s 

2s 

+ E (I. f 2 ,.2 dr 
252 J 

0 

= 947'56 - 1
8
.9 x o·oo78 x <523·6)

2
x 625 -1155 

980 

25 
2' l X 1Q+6 X 11 X 10- 612r3 I 

+ 625 3 
0 

= 947'56 - 545'56- 1155 + 2 'l X l l X ~ ;< 253 
625 3 

= -753 + 385 ==-365 kg/cm2 

Example tS·S-2. A thin di.sc of outc.r radius ~O ~m and inner radius IO cm is rotating 
about its axis at 3500 r.p.m. The disc has a linear vanat10n of temperature of 60°C between 
the inner·and outer (hotter edge). Calculate the maximum stress. 

Solution, 

Angular speed, 

E= 208 x 103 N/mm2 p=0'07644 N/cm• 
1 
-=0·3, g = 980 cm/sec2, cx=ll X 10-0 per °C 
m 

£ = 208 x 106 N/cm2 

2r. X 3500 . . 
w= 60 =366 52 radians/second 

Radial stress at any radius 
\ A .. B 3m+I pw2r2 Eoc f 

pr= -2 + -,.2 - --- -- Trdr 8m g ,2 
Temperature variation can be written as 

T = 3 (r - 10) · i.e. at r= IO cm, T=O; at t=30 cm, T=60° 
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or 

Moreover p,= 0 at r = R1 = 10 cm and also at t = R2= 30 cm 

A B 3m + 1 pw2 102 

O= y+lOO Sm X g 

208 x 10~;
0

11 X 10-
6 f 3(,2_ 10 ,) dr 

A B 3m+ I pw2 X900 
0 = 2 + 900- Sm X g 

30 

- 208 x l 05 ;O~I x l 0~ f (3,2- 30 r) dr 

10 

~ _l!_ _ .2l_ 0'07644 X (366'52)2100 -0=432.22 2 + 100 - 8 X 980 

A B 3·3 0'07644x(366'52)2 X900 
2+ 900 = -8- x 980 

30 
+ 208 X I 06 X I l X I0-6 

[ !~ _ 15 , 2 J 
900 3 

JO 
= 3889'8+ 0·254 (13500+500)=7448'9 

..!!_ - ~ = 7448'9-432'22= 7016'68 
900 100 

B= - 7016'688~;x~ = -78'93x 10' 

: = 432·22- l~0= 432·22+7893= 8325·22 

Maximum stress occurs at the inner radius, r= 10 cm 

I". _ ~ J} __ m+3 pw2 X 100 
JS ma .. - 2 - ,oo 8m . g 

-£ .x T + ~O~ ~ (3r2 -30 r) dr 

A B 1·9 0'07644 X(366·52)2x 100 
= 2 - 100- 8 X 980 

= 8325'22+ 7893-256'86= 15961 '36 N/cm2 

= 159'6 N/mm2• 

Exercise 18'5-l_. A thin u~iform steel ~isc of ~iameter 49 cm is r.ot~ting at 2500 r.p.m 
about its axis. Determine the maximum stress if theJd1sc has a hnear vanatlon of temperature 
of 40°C between the centre and the outer edge. 

Given: 0t= 11 x 10-s per °C, p= 0·0078 kg/cm8, g=980 cm/sec2 
E= 2'1 x 106 kg/cm2, l/m= 0'3 

Determine the hoop stress at the centre and at the periphery of the disc. 
[Ans. 398'0 kg/cm2, -269'82 kg/cma] 
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Exercise 18'5-2. A thin disc of outer radrns 35 cm and inner radius 15 cm is rotating 
about its axis at 4000 r.p.m. The disc has a linear variation of temperature of 40°C between 
the inner and outer (hotter) edges. Calculate the maximum stress in the disc. 

£=208 x 103 N/mm2, g=980 cm/sec2 
p =0·07644 N/cm3 IX= 11 X 10- 0/°C 

l/m=o·3 [Ans . 99·6 N/mm2] 

P roblem 1s·1 . A composite ring is made by fitting a steel ring over a copper ring. 
The diameter of the ring at the common surface is 1 '60 metres. The radial thickness of both 
the rings is 20 mm and their axial width is 30 mm. Determine the stresses set up in the steel 
and copper rings if the composite ring is rotating at 2000 r.p.m. 

For steel £=210 X 103 N/mm2, p, =0'0078 kg/cm3 

For copper E= 105 X 103 N/mm2 pe = 0'0090 kg/cm3 

g = 9'81 m/sec2 

Solut ion. Fig. 18'9 shows the compo
site ring made of steel and copper rings. 

Radius at the common surfac. 
=80 cm=800 mm 

Mean radius of steel r ing 
R.=800+ 10=810 mm 

Mean radius of copper ring 
R. =800- 10=790 mm 

Density of steel = o·oo78 x9·8 N/cm2 

=76'44 x 10-0 N/mms 

Density of copper= 0 '009 x 9'8 N/cma 

Sttt l ring 

=88'2 X 10-s N/mms F ig. 1s·9 

211 N 2 X it X 2000 
Angular speed=w= 60 - 60 

=209·44 rad/sec 

Stresses due to rotation 

Hoop stress in steel, /s = pw2R.2 = 76'44 X 10-s X (209.44)2 X (810)2 
g 9·81 X 1000 

= 224'25 N/mm2 (tensile) 

Hoop stress in copper /, = fc02 R.z = 88·2 X 10-s X (209'44)2 x (790)2 

' • g 9·81 X 1000 

=246·13 N/mm2 (tensile) 

-l30 ~ 
mm 

":,-s l e>/,, showing therebr tb~t centrifuga~ force developed in copper ring is more than 
the centn fu¥al force on ~be steel rmg ,.e. , copper rmg exerts radial pressure on the steel r ing. 
Say the radial pressure 1s p N/mm2• 

Stres ses due to radial pressure 

Due to the radial pressure p at the common surface there will be compressive hoop 
. s~r~~s in copper ring and tensi le hoop stress in steel ring. 
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Tensile hoop stress in steel ring, 

f.'= pD. _ pR, _ pX 810 
• 2t - t - t 

Compressive hoop stress in copper ring, 

Jc'= p X 790 
t 

Resultant hoop stress in steel ring, 

== 224·25+ 
810 

P = 224'25 + 40'5 p since t = 20 mm 
t 

Resultant hoop stress ir. copper ring, 

Strain compatibility 

= 246'13- 790 
p = 246' ]3-39'5p 

t 

895 

Since both the rings are rotating together, circumferential strain in steel nng will be 
the same as the circumferentiaJ strain in copper ring. 

So i,, (224'25+40'5 p)= i_ (246'13-39'5 p ) 

but E,= 2 Ee 

So 224·5+40·5 p=2X246'I3-79 p 
119'5 p=268'0l 

p = 2'24 N/mm2 

So, 
Resultant hoop stress in steel ring = 224'25+ 40'5 Xp 

= 314'97 N/mm3 

Resultant hoop stress in copper ring = 246'13-39'5 Xp 
= 157'65 N/mm2 

Problem 18'2. A circular saw 3 mm thick X 60 cm diameter is secured upon a shaft 
of 8 cm diameter . The material of the saw has a density of o·0078 kg/cm 3 and P0isson's 
rat io= 0·3 . Determ.ne the permissible speed if the allowable hoop stress i, _2400 kg/cm2 and 
find the maximum rad ial stress. Acceleration due to gravity=98 l cm/sec2 • 

Solution. Density, p= 0·0078 kg/cm3 

Inner radius R1 = 4 cm 
Outer radius, R2 = 30 cm 

Constants k = 3m+ I _ 3"] k
2
= m+3 = ~:2. 

1 8m - 8 ' 8m 8 

Say the permissible speed= w radian/sec 
Maximum allowable hoop stress 

= 2400 kg/cm2 

Maximum stress occurs at the inner radius 

Ji - k 19w2 (R 2+ R 2)+ki pwl R12R22 - k pw2 R 2 
emax- g 1 2 - g - R/• 2 . g X 1 
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pw2 =g [2k1Rl-k2R1
2] 

2400= o·oo;:t·"2[ 2x \
3 

x 900-
1
: xI6 J -

2400 X 981 _ . 4 
w

2
= 0·0078 X738·7 - 40 86 X IO 

w=6"39 X 102 = 639 rad/sec 

N 
639 X 60 

6102 
I . . = 217 = revo ution per mmute. 

Maximum radial stress 

Occurs at r=v' R1R2= V4X30=10"954 cm 

- k1Pw2 (R z+ R 2)- k1pw2 R12R22 -k pw2 X 120 
prm•x- g 1 2 g X 120 1 g 

= ki;w2 
[ 16+900-

16 
~ ~OO 120 ] = kiP;

2 
(676) 

= \ 3 x o·g~[8 
X40"86X IO'x676 = 905"93 kg/cm2 

Maximum radial stress = 905"93 kg/cm2 at the radius of 10·954 cm. 

Problem 18"3. Determine the stresses due to the centrifugal force in a rotor with an 
outer radius 50 cm and radius of the hole 10 cm. The outer portion of the rotor is cut by 
slots 20 cm deep for windings, (as shown in the Fig. I?: I 0) . The rotor is of steel and rotates 
at 3000 r.p.m. The weight of the windings in the slots is the same as that 0f the material 
removed. 

p for steel 

Poisson's ratio 

= 0"076 N/cma 

= 0·3 and g = 9"81 m/sec2 

50cm 

Fig. 18·10 
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Solution. Because the slots are cut in the outer portion of the rotor, the part of the 
rotor between the radii 30 to 50 cm can support no teusile hoop stress. The centrifugal force 
due to this rotating ring of 30 to 50 cm radius produces a tensile radial stress across the surface 
of the disc of 30 cm radius. 

Say the radial stress at radius 30 cm= Po 
Say thickness of the rotor = t cm. 

Consider a small element abed subtending an angle 86 at the centre, at a radius r with 
radial thickness ~r~ 

Centrifugal force on the small clement 

= pw
2 

r (rdO . t dr) 
g 

Area of the section at radius 30 CID 

=(30d6x t) 

so so 
_ r pc.h 2d0 . t a, _ J pw 2

,
2d, 

Po- j g 30 d0 . t - 30 g 
30 30 

Stress 

so 
pw 2 r r3 J pw2 98. X J03 

Po= 30g 3 = 90g X 
30 

2000 . 
w=2 X 1r X 

60 
=209 44 rad/sec 

So, Po=
0

·
016!~:~~r44

)
2 

X98 X l03=372l'8 N/cm2• 

Now on a disc of outer radius 30 cm and inner radius 10 cm, a radial pressure p 
tensile is acting. Due to this Po, the hoop stress (or the circumferential stress) developed at 
radius 30 cm is 

2X 302 1800 
fo=Po X 302_ 102 = 3721 '8 X 

800 
=8374'08 N/cm2 

(Refer to the formula on thick cylinden;) 

Consid"eTfog, whole of the rotor as a hollow disc, let us find the circumferential stress 
at the radius 30 cm, 

where 

R1= 10 cm 

/oat r=30 CID 

= 3
/x 3'418(502 + 1_02) + 

3
/ X 3'418 X 

= 3665'80+ 391 '6458-730' 5975 
= 3326'85 N/cm2 

• . · 1 • 

r= 30 cm 

502 x I02 1·9 
J02 - 8 x3'4l8X302 
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Total maximum circumferential stress at the inner edge of the slot 

=8374"08+3326.85 
= 11700"93 N/cm2 = t 11·0 N/mm2 • 

Problem 18"4. A thin circular disc of external radius R 2 is forced on to a rigid shaft 
of radius R1 . Prove that when the angular speed is w, the pressure between the disc and the 
shaft will be reduced by · 

pw2 x lRl- R1
2) {(3m+ l)R2

2+(m- l)R1:} 

g 4{1m+lJR22+ (m-l)R1
2} 

Solution. The thin circular disc is forced onto the solid shaft, say the initial pressure 
between the shaft and the disc at the common surface is p. 

Due to .the radial pressure p, there will be initial hoop stress in the disc and at the 
inner radius, R1 

Hoop stress, (
R2+R2) h'=p R:2-R:2 . .. refer to the chapter on thick cylinders 

Circumferential strain in the disc at the inner radius 

€9
1 = J~ + m1;; Since p is compressive and Jo' is tensile. 

.. .(1) 

When the disc and the shaft are rotating at ~ radians/sec, say the radial pressure 
between the disc and shaft is p'. 

At the inner radius of the disc 

Circumferential stress due to p', 

Ji "= ' ( Rl+ R12
) tensile 

o p R22-R12 

Circumferential stress due to rotation 

Jio"'= k 1 ow
2 

(R12 +R22)+k1 ..£::!:_Rl- k2 pw
2 

R,2 , g g g . " . 

'.'m+I m+ 3 
k1 = ~ and k2= 8m- . where 

Ji ,,,_ Pw2 [(~m+ l)(R z+ R 2)+ ~m+l R22_ m+3+R 2] 
o - g 8m 2 1 8m 8m 1 

= pw2 [ (3m+ 1)<2R 2+R 2)- m+3. R 2] 
g , 8m 2 1 8m 1 

Resultant hoop stress, /o= Jo'' +Jo"' 

= , _(Ri+R1
2

) + pw
2 

[(3m+l) (2R 2 +R 2)- m+3 
P R2

2- R1 2 g 8m 2
.· 

1 8m 

Jfoop strain, 
Jo p' 

€ - - + - - since .fo is tensile and p'. js compressive o- E mE 
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pw2 [(3nz+ 1 ' (2R 2+R 2)- m+3 R 2 J + gE 8m ; 2 i 8m . i 

p' + mE ... (2) 

Equating the srains E 6, = E6 we get 

_p_ [R22+R12 _..!_ ]= J!...{ R2
2
+Ri2 ..!__ } Pw

2 
[(3m + 1 )(2R 2 + R 2)-m+3 R "] 

E R?-R12+ m E Rl+ R1
2 + m + gE 8m 2 1 8m 1 

or ( - ') [Rl+ R12 _!_ ]= pw2 ( 3m+ 1 ) (R 2+ R 2) + 3m+·I . R22_ 1!!._8+m3 R12 J 
p p R2

2 - R1
2 + m g 8m 2 1 8m 

or (p-p') c- (mRl+mR1
2)+(Rl-R1

2
' J 

L m(Rl-R.,_2) 

_ Pw2L- (3m -t- l)R2
2 + (3m+ l)R1

2 +(3m+l)R2
2-(m+3)R1

2 

- g 8m 

(p-p')[~(R2
2
+R1

2
)+(R2

2
-R1

2
) l=P'"2 

[(6m+2)R ?.+(2m-2)R 2) 
<R22-R12) J 8g 2 i 

(p-p'{(m+ l);:::t2-l)R
12 ]= ~~2 [(3m+ l)R2

2-t-(m- l)Ri2] 

or ( 
_ ')- pw2 [(3m+l)R2

2+(m- l)Ri2](R2
2-R12

) 

p p - 4g X (m-t-l )Rl+(m-l)R/ 

or Reduction in radial pressure 

, pw2 
2 2 [ (3m+I)R22+(m-l)R12_1 

. (p-p )= 4g (Rz -Ri) (m + l)R
2

2 + (m- l)R
1

2 ..., 

Problem 18·5. If a disc of inside and outside radii R1 and R2 is made up in two parts 
which are shrunk together, the common radius being R3, show that the hoop stresses at R1 and 
R2 will be equal to a rotational speed given by 

z_ 4pgRaz 
w - p(l + v)(Rs2-R1

2)(R/-Rg2) . 

. Solution. A disc made up in two 
parts inner disc (with radii R1 and R3) a nd 
outer disc (with radii R3 and R2) is shown in 
the figure 18'11, p is the junction pressure . 
Due to the junction pressure, there will be 
compressive hoop stress developed in inner 
disc and tensile hoop stress developed in the 
outer disc. 

Stresses due to junction pressure 

R2 
3 __ 011ter disc at radius R2, fe" = + 2p . 

R22-Rs2 

Fig. 18'11 

compressive 

tensile 

(Refo~· to the ch~pter on thick cylinders) 



Stresses due to rotation 

wnere 

and 

or 

or 

The expression for the hoop stress ·is 
pw2 pw2 

/e=k1 -- (R12+R22)+k1 g g 

k=3m+l . k= m+3 
l 8m ' 2 am 

k +k = 4m+4 _ m+ 1 
1 2 8m - 2m 

At the inner radius R1 

'"e1 = k1 Pw2 (R12+R22)+k1 Pw2 XR 2-k pw2 R 2 
JI g g 2 2 g 1 

At the outer radius R2 

Resultant stresses 

At the inner radius, /1=/e1+/,' 
k1 Pw2 (R12+R22)+k1 Pw2 R22-k2 Pw2R12 -2p Rs2 

g g g Rs2-J?.i3 

At the outer radius R2,/2 =/e2 +/s" 

= k1Pw2 (R12+ Rz2) + k1 Pw2 R 2-k Pw2 R22 2pR12 
g g l 

2 g + R22 - Rl 

But as per the conr.l)tion given 
/1=/2 

!_ctPw2 (Ri2+R22) :+k Pw2R22 - k Pw2R12 -2p Rs2 
g i g 2 g 'Ra2-R12 

= k1Pw2(R12 + R22) +k1 pw2R12 -k2Pw2R22+2p 
g g 

2p R3
2 '2,p Ra2 

R2
2 - Ra2 + Ra2-Rl g 

Problem t8·6. A thin hollow disc of outer radius R2 is shrunk over another solid disc 
of the same thickness ·but radius R1, such that the junction pressure between the two is p. 
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Show that in order that the outer disc may not be loosened over the inner disc 
velocity w, the minimum value of p should be 

at the angular 

3+v 8g. Pw~ (R2
2 - R1

2) where v=Poisson's ratio 

and P=Weight density 

Solution. When the outer disc is loosened over the in·ner disc, the ·r-adlal 'pressure 
between the two becomes zero. 

Initial hoop strain at R1 

Due to junction pressure p, 

Hoop stress in outer disc= p x R22+ R12 tensile 
R22-R12 

Hoop strain in outer disc=; x~:::;::+ :E tensile 

Hoop stress in the inner disc=-p compressive 

Hoop strain in inner disc= - f + ::E compressive 

Total hoop strain _ P R22+ R12 p p p 
e:s - E x R22- R

1
2 + mE +-E-mE 

=; ( R}~2
;

1
2 ) 

Hoop strain due to rotation at R 1 

Hoop stress in inner disc at R1 

Js = Pw2 [ 3~+1 XR 2 - m+3 Ri J 
g Sm 1 Sm 1 

= Pw
2R1

2 [3m+ l - m-3]= Pw2R1
2 

( m-l ) 
g Sm g 4m 

Hoop stress in outer disc at R1 

Net hoop strain 

Js' = Pw2 [3m+ l (R/+ R22)+ 3m+ 1 X R22 - m+3 X R z] 
g Sm Sm 8m 1 

= ~
12 

[ 
3
;: l (2R2

2+ R1i) - ~! 3 
R1Z J 

1--1, 
E 

( 3m + l - m- 3-2m+:2_)J 
8m . · · 

... (1) 
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=~{( 3m+l ) R z+R 2(0) } 
gE 4m 2 1 

_ Pw2 3m+l R 2 
~ gE X 4m ' t 

... (1) 

. r-.: 
From equations (1) and (2) for the outer disc to loosen over the inner disc 

p 2R22 pu,2 m+3 2 
Ex R22-R12= gE x ~R2 

1,. . 

Pw2 ( 3m+ I ) (R22-R12) 
p=g X 8m 

where -=v 
m ' 

Poisson's ratio 

So, 

Proble1n 1s·7. A thin steel disc of 80 cm radius is shrunk over a steel shaft of 1 $ cm 
diameter, such that the shrinkage pressure at the common surface is 150 N/mm2. 

At what speed will the disc be loosened on the shaft ? Neglect the change in the 
dimensions of the shaft. ' 

Solution. 

p, density of steel 

Junction pressure, 

For the disc, 

inner radius 

outer radius 

=0·07644 N/cms 

E = 2X 107 N/cm2 ; 

g = 980 cm/sec2 

p=I50 N/mm2 = 15000 N/cm2 

R1=1·5 cm 

R2= 40 cm 

Hoop stress due to shrinkage at the common surface in the disc 

Shrinkage strain 

R22+R12 402+ 7·52 
= p X Rl-Ri2 = 15000 X 402_7·52 

- 1656'25 - . 2 -15000 X 
1543

.75 - 16093 12 N/cm 

16093'1 2 15000 
= E -me 

15643'12 
E 

since 

(neglecting strain in shaft) 

-
1
- = 0·3 

m 
... (1) 

When the assembly in -rotating say at w radians/second, the disc is loosened and the 
radial stress between the two becomes zero. 
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Hoop stress in the disc at inner radius 

j, = pw2 [].l._ 
g 8 

(; 2+R 2)+ 3·3 R 2 - ~ XR 2] 
1 2 8 2 8 l 

as 3m+l _ 3} and 1+3,~ _ ~ 
8m -- 8 8m - 8 

903 

= ~w
2 

[ \
3 

(1 600+56"25) + ~-
3 

x J600 - ~-
9 

x 56"25 J 

Hoop strain 

= Pw
2 

[1343.20-13"36] 
g 
f, 1329·84+Pw2 

=E= - gE 

1329"84 
XPw2 

g 

... (2) 

Due to rotation, when the disc is loosened on the shaft, the shrinkage hoop strain 
becomes zero, therefore 

1329"84 p;2 = 1561: · 12 

or 
w2 = 156.43"12 Xg l5643" 12 X980 

1329'84 X fl = 1329'84 X 0'07644 

Angular speed, w=388'84 radian/sec 
= 3708 revolutions per minute 

Problem 18 8. A steel ring is shrunk on a cast iron hollow disc. Find the change 
in the shrink fit pressure produced by the inertia forces at 3000 r.p.m. If R1 = 4 cm, R:= IO 
cm and R 3 = 20 cm 

' Given Esteet= 2100 tonnes/cm2 

Ee.,.= 1100 tonnes/cm2 

1/m per steel and C.I. =0'3 
flsteet= 0'0079 kg/cm8 

Pc.,.= 0'0072 kg/ems 
g=980 cm/sec2. 

... i 

If the initial junction pre-ssure is 100 kg/cm2, calculate the speed at which the outer ring 
of steel will start slipping over the cast iron disc . 

Solution. Say the initial shrink fit pressure==p kg/cm2 

Steel ring, Inner radius, R2= IO cm 
Outer radius, R3= 20 cm 

Hoop stress at R2 in steel ring 

Rs2+ R2
2 202+ I 02 . 

= p · R
8

2 _ Rl' = p X 202_ 102 =-+- l '66 p (tensile) 

Cast iron disc, loner radius, R1 =4 cm 
Outer radius, R2= JO cm 

Hoop stress at R2 in cast iron disc 
R22 +R12 

=-p . R22 -R12 = -px 

=- l '38 p (compressive) 

100+ 16 
100- 16 
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To obtain the hoop stresses, we can refer to the chapter on thick cylinders. Moreover 
when the disc is stationery, i.e. , w= O, the equation for p, and/swill be 

A B 
p, = 2 + ,-2 

A B 
/9 = 2 - -;:;: 

These equations arc the same Lame's equat ions derived in the chapter 6 on thick 
cylinders. 

Hoop strain in steel ring at R. - 1 
"66P + _P_ 

. - Es rnEs 

1 ·66 p 0·3 p 0·933 10- G 
E 

8 s = 2. I X I 06 + 2"!x I QG = X · p 

Hoop strain in cast iron disc at R2 

_- 1"38p + 0"3p= - 1"08p_ 
- E o E, I· 1 x 106 

E = - 0°98 X 10-o p 
llo 

E= i"913 X J0- 6 p 

When the assembly is rotating at 3000 r.p.m., say the junction pressure is p'. 

Hoop stresses due to junction pressure p' 

At R2 in steel ring = p' x t ·66 (tensile) 
At R2 in cast iron disc = - p ' x 1 ·38 (compress ive) 

Hoop stresses due to rotation at R 2 

_ 2 x n x 3000 _ 314.! 6 d/ 
w - 60 - - ra sec. 

Pw2 Pw2 R 2 Pw2 
/ 91 = k1 - (R?+ Rs2)+ k 1 - X .:__!_ - k 2 - X R .. 2 

g g g • 
In steel ring, 

where k _ 3m+1_3·3 ·k _ rn + 3_ 1·9 
1 - 8m ·- 8 ' 2 8m - 8 

= Pw
2 [il (102+202) + 3·3 

X 20£- t·9 X Jos] 
& 8 8 8 

= Pwi, [206"25+ 165- 23"75]= Pw
2 

X 347·5 
g . g 

_ o·0079 x (314"16)2 X 34T5 =
276

:
48 

k / , 
- ' 980 g cm 

Tot~l hoop strc_t,s iR steel ring 
= (276"48+ J '66p') 

... ( I ) 
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. . . ( 276"48+ 1 ·66 p' ) p' Hoop stram m steel rmg= -------- + -Es mE, 
276'48 + l '96 p' 

e9,' = e--:-- . 
In cast iron disc 

=Pw
2 

[54"45-23'75] 
g 

0'0072 X (314" 16)2 30"7 
980 x -

=22'26 kp/cm2 

Total hoop stress=(22'26- l '38 p') 

Hoop strain in cast iron disc 

-( 22"26- l._1_8 p' ) p' 
- Ee + mEc 

22·26-1"08 p ' 
Eec = Ee 

e'=Total hoop strain 
I 276"48+1 "96p' 

= eo,-ee.= E, 

Now equating the hoop strains e= e' 

22"26-1"08 p' 
- -E.--

• -6 ,_276"48 +1"96p' 22'26- 1"08p' 
1 913 X 10 P - 2. l X loo l"1 X l QG 

905 

... (2) 

=131 "657 X 10- s+o·933p' X 10- 6 --20"23 X 10- 6 + 0'98 X p' X 10- r. 

or 1 "913 X 10- 6(p-p')=(l l l °427) X lQ-O 

Reduction in shrink fit pressure 

or ' 111·427 58 25 k / 9 

P- p - -- - = · g cm· - 1'913 

Now the initial junction pressure= p = 100 kg/cm2. 

If the outer steel ring starts slipping over the cast iron disc, the junction pressure will 
become zero i.e., p'=O at speed w' (say) 

Hoop stress due to rotation in steel ring at radius 10 cm 

I' '=!:_o'_2 
( 347.5)= 0·0079 X347"5 Xw' 2 

Je • g 980 

Hoop strain = lo,' = o·oo79 x 3·H·5 w '
2 

= 0"0133 x 10- 7 ' 2 

E, 980 x2·1 x 106 w 

Hoop stress due to rotalion in cast iron d isc at radius 10 cm 

/i '= p~(30.7)= (0"0072 X w'2 X30"7 
• 

80 g 980 

Hoop strain = Jo e' = 0·0072 X w'2 X 30"7 = 0"0020 10_7 , 2 
E~ 980 X J·l X 106 X w 
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or 

Total hoop strain =(0'0133-0'0020) X 10-7 

= 0'011 3X 10- 7w'2 

From equations { 1) and (3) 
1'913X 10-6 xp=0'0113X 10-7 w2 

,z_ 1 '913 X I 0- s X 1..2.2._= 169'29 X 1000 
w - 0·0113x l0 7 

w' =411 '45 radians/sec 
= 3929 revolut ions per minute. 

STRENGTH OF° MA TERI A LS .. 

... (3) 

Problem 18'9. A thin steel disc 80 cm d ia meter is shrunk on a steel shaft of 20 cm 
diameter, the shrinkage allowance is 1/1 800 of the radius at the common surface. 

(i) At what speed the disc will be loosened on the shaft 
(ii) What are the maximum stresses in the shaft and the disc when stationery 
(iii) What will be the maximum stress in the disc at half the rotational speed calculated 

in part (1). 
1 

Given Pstee/=0'0078 kg/cm3 

1/m=0'3 
Acceleration due to gravity = 980 cm/sec2 

E= 2X 107 N/cm2. 

Solution. 

Common radius, 
Radius, 

Shrinkage allowance 

Shrinkage strain 

R1 = 10 cm 
R2=40 cm 

1 
=,soo xR1 

I R1 1 
= 1800 X R1 = 1800 

Say the shrinkage pressure at the common radius = p. 
Then at R1, hoop stress in d isc 

R2
2+R1

2 1600+ 100 17 
= p. Rl- R12= P X 1600-100 p X 15 (tensile) 

at R1 , hoop stress in shaft=-p (compressivei 

Hoop stra in in disc 

Strain in shaft 

Total hoop strain 

= :; ~ fE= o·8} P (Taking 1/m= 0"3) 

=- L +Y- = _ ~7_p_ 
E wE E 

0'833 p 0·1 p 1 ·533 p 1 
- E + E --- - E - - 1800 

2 X 107 

P = i800 X 1·533= 7243 N/cmz. 

(ii) Maximum stress in disc 
17 

= 7248 X TI = 8214'4 N/mm2 = 82'144 N/mm2 

Maximum stress in shaft = - p = -7248 N/cm2 

(when stationery) = - 72"48 N/mm2, 
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Say at speed w radians, the disc will be loosened on the shaft. i.e., at this speed total 
hoop strain of disc and shaft at the common radius will be equal to the shrinkage strain 
provided. As a result the radial stress between shaft and disc will become zero. 

where 

Rotational stresses at R 1 

In the disc, 

Strain 

In the shaft, 

Strain 

Net hoop strain 

, 1337'5pw 2 

where p= 0'0078 x 9'8 N/cm3 € = 
o gE 

2 r J p 
2 

,.. 3·3 1 9 J Jo = p; l_ k1R12- k2Rl = ; L-s- 'x 100- 8 - X 100 

€ 
0 

-
[ 7·5 p<,,2 

g 

17'5 pw2 

gE 

1337'5 pu,2 - 17'5 pu,~ 
gE 

IJ20 pw2 

gE 

But the strain provided by shrinkage = fg~0-

Therefore 
1320 pw2 l 

gE = 1800 

2 gE 980x2x 107 

w = !800 x 1320xp- l800x 1320xo·o7644 

w = 328 · 5 radians/sec 

=3137 Revolutions per minute. 

(iii) w'= iw, the rotational speed is reduced to half Jo IX w2, so the hoqp stress in tµe 
disc due to rotation will be t X maximum hoop stress a t w 

J, , = pw2 X J}~7·5 = 0'07644 X (328. 5)2 X I 337'5 
e g 4 980x4 

= 2814'4 N/mm2. 

l I Secondly the shrinkage allowance will be reduced only by 4 th o f 
1800

. Remaining · 

11 
. 3 1 

shrinkage a owance 1s 4 x 1800. 
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Therefore junction pressure p' =3/4 Xp=7248 X 3/4 
(where disc is rotating at half the speed of w) =5436 N/cm2 

Hoop stress in the disc at R~ due top' =5436X 17/15=6160'8 N/cm2 

Total hoop stress in the disc =2814'4+6160'8 
= 8975'2 N/cm2 =89'75 N/mm2

• 

Probletn 18.10. A steel disc of a turbine is to be designed so that the radial and 
circumferential stresses are constant throughout and each equal to 120 N/mm3

, between the 
radius of 300 mm and 500 mm, when running at 5000 r.p.m. If the axial thickness at the 
outer radius of this zone is 20 mm, what should be the thickness at the inner radius. 

p for steel=0'0079 kg/cm8 

g, acceleration due to gravity=980 cm1sec2 

Solution. Density, 
Uniform stress 

p=0'0079 x 9'8 N/cm3 = 0'077 42 N/cms 

f= 120 N/mm2 = 120,00 N/cm2 

g=980 cm/sec 2 

Angular velocity, 
2XTCX5000 

w= 
60 

523'6 rad/sec. 

Thickness at radius 500 mm or 50 cm, t=2 cm 
pw2r2 _ 0'07742 X (523'6)2 X 502 
2fg - 2Xl20,00X980 

- pw2r2 

e 
2/g -2·266 1 

=e = 9·541 =0'1084 

t=to e-2·256 

2'256 

Thickness at centre, to= o·:048= 0';048=19'084 cm. 

Thickness at the radius of 300 mm or 30 cm 
pw2r '2 = 0'007742X(523'6)2 X302 =0.812 

2/g 2 X 12000 X 980 
t'=to [ 0 ' 812=to, x o·444 

= 19'084 X '444= 8'473 cm 

Thickness at the inner radius=8'473 cm. 

Problem 18'11. A rotor disc of a steam turbine has inside diameter 15 cm and out
side diameter 75 cm and axial width of 4 cm on its periphery blades are fixed at an angular 
pitch of 3°. The weight of each blade is 0·32 kg with effective radius of 40 cm. Determine 
the maximum rotational speed as per the maximum principal stress theory of failure. 

Yield strength=280 MPa. 
p=0'07644 N/cms 
g = 980 cm/sec2 

_!__ = 0'3, 
m 

Solution. Angular pitch of blades= ?' 

Number of blades = 360 
= 120 3 
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Weight of each blade 
Total weight 
Effective radius 

= 0"32 kg 
= 0"32X 120 
= 40 cm 

Say the rotational speed=w radians/second 

Centrifugal force on the periphery due to blades 

(120 X 0"32) 
= 

980 
--- w2 X 40 = l "567 w 2 kg 

= 1"567X9"8 w2 =15"36 w2 N 
Resisting area = 7t X 75 X 4=942"48 cm2 

Radial stress at the periphery of the disc 

]5"36Xw2 . _ 
942 .48 =N=l 63x 10 2 w2 N/cm2 

Radial stress at the inner radius, 7'5 cm = O 

_ A + B 3m+ l X pw2r2 Now radial stress p, - 2 -,.2 8
m 

g 

Using the boundary conditions 

O=~ + -!!_ __ 3·3 X 0"07644 w2X7J':_ 
2 7·52 8 980 

1·63 10-2 2= A + ~ _ 3·3 X O 07644 w2 X 37·52 
X w 2 37"52 8 980 

A B 
2+ 56"25 0·[8lxI0- 2w2 

A B 
T+ 1406"25 4'525X 10- 2 w2 + 1"63x 10-2 w 2 = 6"!55x 10-2 w2 

From these' equations 
B B 

56
.
25 

= 5·974 x 10- 2x w2 
1406"25 

B=- 5"974X 10- 2 w 2 X 1406"25 X 56"25 
1350 

=-3"5 w 2 

A_ = 0" 18 l X 10-2 w 2 -
2 

.. B 
56"25 

= 0"1 8 1 X 10- 2 w2= 6"22X 10 2 w2 =6"40! X 10-2 w2 

Maximum stress occurs at the inner radius, r= 7· 5 cm 

. - B m+3 pw2 x7·52 
J~ max= 6 401 X JO 2 

u,
2 = · 

7
.52 -~ 

9 

~09 

= 6'401 X I0-2 w2+6"22XI0-2 w2-~ X 0"0?644 X w2 X7'S2 

8 980 
= 12"621 X 10-2 w2-0"1 X 10-2 w 2= 12"52[ X 10- 2 wl 

= 280 MPa (as per the maximum principal stress theory) 
= 280 X 106 X 1 N/m2 

= 280,00 N/cm2 
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So 12'521 X L0· 2 w2 = 280,00 

w2 = ~- X 104= 22'362 X [04 
12'521 

w= 472'89 radians/second or N =4515 rpm. 

Problem 18'12. A steel d isc of uniform thickness t having a central hole of 
radius R1 8.110 outer radius R2 is shrunk on a shaft prod ucing a radial pressure p at 
the common surface, when the . assembly 
is stationery. Now the assembly is rotated at 
an angular speed w radians/second. The 
coefficient of frict ion between the shaft and 
the disc is µ.. Show that maximum power is 

transmitted when w = ;;. where w 0 is the 

angular velocity at which the radial pressur~ 
at the common surface becomes zero and disc 
show that maximum power transmitted is 
2·4) 84 µ.pw0Ri2t Watt. 

Solution. Fig. 18 ' 12 shows a disc of shoft 
outer radius R~ fitted over a shaft of radius 
R1 . When the shaft and the disc are statio- , F ig. 1s ·12 
nery, the radial pressure at the common sur-
face is p . , 

Hoop strain at the common surface when assembly is stationery 

Hoop stress in disc at 

Hoop strain in disc at 

Hoop strain in shaft at R1 =-L+ _P __ (compressive) 
E mE 

(because the hoop stress in shaft is also p compressive) 

Refer to the formulae of thick cylinders. 

e
11 

, total hoop strain -· p R 22+R12 + P + P - P 
E Rl-R1

2 mE E mE 

= }!_ [ R22+ R12+ R22-R12 ]= 2p R23 

E R22 _ R12 R 22 _ R12 

Hoop strain at tJte common surface when as se:anbly is rotating 

Say ang-qlar speed = w 

Junction pressure = p' 

Due to p', hoop stress in disc at R1 = p' ~::~ ;:: (tensile) 

hoop stress in shaft at R1 = - p' (compressive) 

.. . (1) 
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Due to w, hoop stress in disc at R1 

3m+ l. Pw2 (R 2 + R 2)+ 3m + I. Pw
2 x R 2 

- 8nr- g 1 2 8n1 g 2 

- m + 3 X pw2_ X R 2 

8m g 1 

3m+ I Pw. 
2 

[ 2R.2 + R 2 _m+3 . R 2 J = ~ g • I 3m + } I 

Tota l hoop stress in disc :it R1 

3111+ I 

Hoop strain in disc at R 1 

3m+ I 
= "snt -

Due to o,, hoop stress in shaft at R1 

3m + l 
8m 

Pw2 R 2_ m+3 pw2 R 2 
g i 8m . g . i 

3~+ I pw2 [R 2_ m+3 
= ~ · g 1 3m+l 

Total hoop stress in shaft at R1 

3m+ l . p,,,g2 
[ R 2 - m+3 R 2 1 , 

- 8m 1 3m + I • 1 J- P 

Hoop strain in shaft at R 1 

3m+ I • Pw
2 

[ R 2 _ m+3 R 2 J p ' p' 
= ~ gE 1 3m+I 1 - -y+mE 

Since p' is compressive 

Tota l hoop strain at R 1 

€o'=3m+l . Pw2 . 2R 2+R 2_ m+3 8m gE 1. 
2 

I 3m+l 

p' R22 + R12 p' 
+-y . R 2

2 - R12 + mE 

_ 3m+I pw2 [R z_ ~ R 2 

8m g E 1 3m + I • 1 

= 3m+ I_ . _!::o_:_ [ 2R 2 + R 2 _ m+} 
8m gE 2 1 3m+ I 

p ' 2R22 
+ -E X R-2-R z 

2 1 

3m+l . Pw2 X2R 2 +L 
-= ~ g E 2 E 

J+-~-L 
E mE 

R z R 2+ m+3 
. 1 - 1 3m+I 

... (2) 
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or 

or 

\ 
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Equating eo=Eo' we get 

p 2R2
2 p' 2R2

2 3m + l 
EX (R2

3-R1
2) =E X (Rl-R/) + Sm 

Pw2 

. gE x2Ri2 

(p-p') __ 3m+ l Pw
2 

(R 2 Sm g ~ -R12) 

Now when p' = O, speed is w 0 

3m+l 
p= 

Sm So 

3m+l P 
P

'= --- . _ (R 2.-R 2)(w 2_ w2)=K (co 2-w2) Sm g 2 1 o o 

Coefficient of friction between the shaft and disc=µ 

Power transmitted per revolution 

For maximum power 

But 

=(µp' X 2n:R1 X 1) R1 X w=µ X 2rt R1
2t)(wp') 

P=(µ X 2n: X R1
2t)(K)(co0

2w-w3} 

dP · -=0=(2nµR 2t)(K)(w0
2·-3w2) 

dw . 1 

w= ;; for maximum power transmission 

P 2 R 2 K( • wo wo ) 
max= f,I. 1 .it! \w0·x y' 3 - 3.,f3 

Sm 
Wo=--· 

3m+ l 

4 =:3J
3 

X µnR?tpw0 

= 2·4t84 µ R1
2 t p w0 Nm if Pis in N/m3 

= 2·4184 J,£.R?.t p w0 Watt 

SUMMARY 

1. For a thin ring rotating at angular speed w , mean radius R., 
py2 Pw2R2 

Circumferential i;tress,f.=-g- =--g-

p= wei¥ht density, V=linear velocity = w~ 
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2. For a hollow thin disc rotating at angular speed w, the radial and circumferential 
stre sses are 

where 

A B 3m+ I 
pr= 2 + -;:a - 8m 

!
8
= ~_.!!__ m+3 

2 r2 Sm 

If R1 =inner radius and R2=outer radius · 

g 

pw2r2 

g 
where 

Pr=O at r=R1 and R2 , constants A and B are determined 

A 
2 

3m+ 1 . Pw2 (R z+R 2) 
8m g i z 

B=- 3m+I 
8m 

1 p . , . - = 01sson s rat10 
m 

r, maa-- Pw
2 

[3m+ 1 m+3 J 
1• g Sm (2R22 +R1

2)-~.R1
2 atinnerradius 

Pw2 3m+I 
pr ma!'=g Sm (R2-R1)

2 at r=.f R1R2 

For a solid disc, R1=0, R2=R expressions will be 

A 3m+I Pw 2r2 

p,= -:r--~ . -g-

A m+3 Pw2 r2 

Je-T-~- . £ --

pr=O at r=R 

A 3m+ I 8w2R2 
2= 8m g 

3m+I f, '"a,, = pr max= Sm 1 the centre 

3. Disc of unifor~ strength 

Pw2r 2 

Thickness at any radius, t = t0 e - 2/g 
t0 = thickness at the centre 

f = constant strength throughout the disc 

4. For rotating long hollow cylinders, radial and hoop stresses arc 
A B 3m-2 Pw2r 2 

p,- - +-- - --- · --- 2 r 2 8(m- l) · g 

r = ~-_!!_ _ (m+2J Pw2r2 
JB 2 ,.~ 8(m-}) g 

p,=0 at r= R1 and R2 and constants A and Bare determined. 

· 3m - 2 Pw2 • 1 -
p, max= S(m-1) g (R2-R1 )

2 at r= v R1R2 

3m- 2 Pw2 m+ 2 Pw2 R 2 f, mn,,= S(m-- J) ---;;-- 12R/ + R1
2

) - 1 at R1 . ,., 8(m- l) f? 
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5. Temperature stresses in thin discs 

Radial stress, , = ~ .!!_ - 3m + 1 . Pw
2
r

2 
- Erx J Tr dr 

P 2 + r2 Sm g ,.z 
where T=temperature 

E= Young's modulus of elasticity 
(!.=coefficient of linear expansion 

. . A B m + 3 Pw2r ~ Eoc f 
Circumferential stress, Je = -

2 
- 2 - -

8
- · - - -E <1. T + -

2 
Tr dr 

r m g r 

MULTIPLE CHOICE QUESTIONS 

I. A thin rim is rotating about its axis. The linear velocity at the periphery is JO m/sec. If 
the density of the material is 0'098 N/cm2, the maximum stress developed in the rim 
(a) o· 1 N/mm2 (b) 0·2 .N/mm2 

(c) 0'5 N/mm2 (d) I N/mm2 

2. A thin hollow disc of inner radius 2 cm and outer radius 8 cm is rotating at a high speed, 
w radians/second . The maximum radial stress occurs at the radius 

w2~ W4~ 
W6~ ~s~ 

3. A thin solid disc of diameter 40 cm is rotating at N r.p.m. If the maximum radial stress 
developed is 200 N/mm2, then the maximum hoop developed will be 

4. 

5. 

6. 

7. 

(a) 200 N/mm2 (b) 250 N/mm2 

(c) 300 N/mm2 (d) 5-QO N/mm2 

A long cylinder of inner radius R1 and outer radius R2 is rotating at angular speed w 
radians/second. If pis the weight density, g = acceleration due to gravity, 1/m = Poisson's 
ratio, then expression for the maximum radial stress is 

(a) 3m-2 pw2 . (R 2_ R z) (b) 3m-2 pw2 (R - R )2 
8(m-l) g 2 1 8(m-l) g 2 1 

(c) 3m - 2 
pw

2 
(R / + R 2) (d" None of the a bove 

8(m-J) g · 1 1 

A solid thin disc is rotating a bout its axis at angular speed w radians/second. If the 
expression pw2/g = 0'8 kg/cm4, and radius of the disc is 50 cm, the radial stress at outer 
periphery is 
(a) 2000 kg/cm2 
(c) 500 kg/cm2 

(b) 1000 kg/cm2 

(d) None of the above 

A thin disc of inner radius 5 cm and outer radius 25 cm is shrunk on a solid shaft of 
diameter 5 cm. If the junction pressure between the disc and the shaft is 50 N/ mm2 
then hoop stress developed in the shaft at radius 5 cm. ' 
(a) 100 N /mm2 (b) 75 N/mm2 

(c) 50 N/mm2 (d) 25 N/mm2 

A thin disc of inner radius 5 cm and outer radius 25 cm is shrunk on a solid shaft of 
diameter 5 cm. If the junction pressure between the disc and shaft is 60 N/ mm2, then 
hoop stress developed at the periphery of the disc 
(a) 5 N/mm2 (b) 6 N/mm2 

\C) 7·5 N/mm2 (d) 10 N/ mm2, 
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. 8. A thin disc of inner radius R1 and outer radius R2 is rotating at 1000 r.p.m. The maxi
mum stress developed is 70 N/mm2• If the yield strength of the material is 280 N/mm2 • 

The speed at which the disc will fail according to the maximum principal stress theory of 
failure is 
(a) 1000 rpm 
(c) 3000 rpm 

1. (d) 
S. (d) 

2. (b) 
6. (c) 

(b) 2000 rpm 
: (d) 4000 rpm 

ANSWERS 

EXERCISES 

3. (a) 
7. (a) 

4. (b) 
8. (b) 

18·1. A composite ring is made of steel and brass rings. The diameter of the ring at 
the common surface is 120 cm. The radial thickness of both the riogs is IO mm, and axial 
width is 20 mm each. Determine the stresses set up in steel and brass rings if composite ring 
is rotating at 2500 r.p.m. 

E,tee1=2080 tonnes/cm2 

p,tte1=0'0078 kg/cm 3 

g=9'8 m/sec2 

Ebra•, = 1040 tonnes/cm2 
P&ra,,=0'00883 kg/ems 

[Ans. 2797'5 kg/cm2 (in steel ring), 1393·75 kg/cm2 (in brass)] 

18'2. A circular saw 2 mm thick x 36 cm diameter is secured upon a 4 cm diameter 
shaft. The material of the saw has density 0'0077 kg/cm3, and Poisson's ratio=0'285. 
Determine the permissible speed if the allowable hoop stress is 200 N/mm2 and find the maxi
mum ·value of the radial stress. g=981 cm/sec2• 

[Ans. 9425 RPM ; 78'8 N/mm2] 

18'3. Determine the stresses due to the centrifugal force in a rotor with an outer 
radius 65 cm and radius of the hole 10 cm. The outer portion of the rotor is cut by slots 
25 cm deep for windings. The rotor is of steel and ~otates at 1800 r .p.m. The weight of the 
windings in the slots is the same as that of the matenal removed. 

Given : p=0'0078 kg/cm3, g=981 cm/sec2 

1/m= 0·3 [Ans. 1485·3 kg/cm2] 

18 4. A thin circular disc of external radius 300 mm is forced on to a rigid shaft of 
radius 100 mm such that the radial pressure at the junction of the two is SO N/mm2. The 
assembly rotates at 300 radians/second. What is the final junction pressure between the two. 

[Ans. 15'62 N/mms] 

18'5. A disc of inside and outside dia~eters 20 c~ and 50 cm, is made up in two 
parts, which are shrunk together. the common diameter bemg 35 cm. The junction pressure 
at the common surface is 40 N/mm2. A what speed, the hoop stress at the inner and outer 
radii of the disc will be equal ? 

g=981 cm/sec2 , p=O·Oo78 kg/ems 

Poisson's ratio=0·29 [Ans. 8223 RPM] 

18·6. A thin hollow steel disc of outer radius 50 cm is shrunk over another solid 
disc of same thickness and radius 10 cm, such that the shrinkage pressure at the common 
surface is 100 N/mm2• At what speed will the disc be loosened on the shaft ? Neglect the 
strain in the shaft. 

p=0'07644 N/cms 

g=980 cm/sec2 

E=2X 107, N/cm2 
l/m=o·3 [Ans. 2018 RPMJ 
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18 7. A thin holiow steei disc of outer radius 50 cm ·is ·shrunk on another solid disc of 
the same thickness but radius 10 cm, such that the junction pressure between the two is p. 
What should be the minimum value of junction pressure p so that outer disc may not be 
loosened over the inner disc at an angular speed of 2500 r.p.m. 

p= 0'0078 kg/cm3, l/m= 0·3, g = 980 cm/sec1 

[Ans. 540"06 kg/cml) 

18"8. A steel ring is shrunk on a cast iron hollow disc. Find the change in shrink fit 
pressure produced by the inertia forces at 2500 r.p.m. If R1=5 cm, R2=15 cm and R8=25 cm 

E,1ee1=2IO kN/mm2 ECI= IIO kN/mm2 

p,1 .. 1= 0·0019 kg/cm8 pc1= 0·0012 kg/cm3 

1/m for steel and C.I. = 0·3 [Ans. 5'42 N/mmz 

18'9. A thin steel disc 50 cm diameter is shrunk over a solid shaft of diameter 10 cm. 
The shrinkage allowance is 1/ 1000. 

(a) What are the maximum stresses in the disc and the shaft when stationery ? 
(b) At what speed the disc will be loosened on the shaft ? 
(c) What will be maximum stress in the disc at half the rotational speed calculated 

in part (b) ? 
[Ans. (a) 104 N/mm2, - 96 N/mm2 ; 7013 RPM; 128'43 N/mm1 ] 

18"10. A steel disc of a turbine is to be designed so that the radial and circumferential 
stresses are to be constant and each equal to 800 kg/cm2, between the radii of 36 cm and 20 cm 
when running at 3500 r.p.m. If the axial thickness at the outer radius of this zone is 15 mm, 
what should be the thickness at the inner radius ? 

p=0'0079 kg/cma g = 980 cm/sec2 [Ans. 27·5 mip.] 

18"11. A steel rotor disc of a steam turbine has a uniform thickness of 5 cm. The 
outer-diameter of the disc is 60 cm and inner diameter 10 cm. There are 100 blades each of 
weight 0·3 kg fixed evenly around the periphery of the disc at an effective radius of 3j cm. 

Yield strength of the material = 300 MPa 
p= 0"0078 kg/cm3• Determine the maximum rotational speed as per the maximum 

shear stress theory of failure. [Ans. 5835 RPM] 



19 
Bending of Curved Bars 

In chapter 8 on Theory of simple bending we assumed the beam to be initially straight 
before the application of a bending moment and derived the relationship M/ I= E/R=f/y, and 
studied about the stresses developed and deflections in beams. But in this chapter we will 
study the effect of bending moment on bars of large initial curvature . 

19·1. STRESSES IN A CURVED BAR 

Fig. 19·1 shows a portion of a curved bar of initial radius of curvature R , subtending 
an angle Oat the centre of curvature 0. This curved bar is subjected to a bending moment M 

Fig.19·1 

tending to increase the curvature of the bar. To find out the stresses developed in the bar, let 
us derive a relationship between bending moment M, radius of curvature R and dimensions pf 
the section of the bar, for which foll owing assumptions are taken 

1. The transverse sections of the bti.r which are plane before the application of a 
bending moment remain plane after bending. 

2. The material obeys Hooke's law and stress is dire~tly proportiona l to strain. 

Consider a small portion IJHG of the curved bar in its initial unstrained position, 
where AB is a layer at a radial distance of y from the centroidal layer CD i.e. , a layer passing 

917 
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through the centroidal axis of the sections. At layer AB, stresses due to the bending moment 
Mare to be determined. 

· After the application of the bending moment, say l'J'H'G' is the final shape of the bar. 
The centroidal layer is now C'D' and the layer AB takes the new position A'B'. Say the final 
centre of curvature is 0 1 and final radius of curvature is R1 and 81 is the angle subtended by 
the length C'D' at the centre. 

Say /is the stress in the strained layer A'B' under the bending moment M tending to 
increase the curvature (or tending to reduce the radius of curvature), and e is the strain in the 
same layer. 

where 

or 

or 

and 

or 

or 

' ' 
• , , ! ' • , .. 

Strain 

Moreover, 

A'B'-AB 
e=- AB 

(R1+ y 1)61-(R+y)0 
- (R+y)O 

y1 =distance between centroidal layer C' D' an<l layer A' B', m 
the final p ,)sition 

~ - 1 
0 

, 0 = strain the centroidal layer i.e., when y = 0 

= R1 -'!J_ 1 
R 0 

l +~ = R1+Yi i1 
. R+y 8 ... (1) 

... (2) 

Dividing equation (I) by equation (2) 

Now y1 ""y- considering that change in thickness is negligible. 

So: strain·, 
EoL + L +eo- L+eoL-eo_y_ 

R1 R1 R R R 

i+ L 
R 
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( Here, we have added and substracted the term "i1 
) 

or ... (3) 

The stress in the layer AB (which is tensile as is obvious from the diagram, i.e., layers 
below the centroidal layer are in tension and layers above the centroidal layer are in compres
sion for the bending moment shown. 

lr ( 1+"0 )( ~
1 

_ ~ ) Y] 
f = EE=E "o+-----=-~~---

. 1+.L. 
R 

Stress, 

where E= Young's modulus of the material 

Total force on the section, F= ff. dA 

Considering a small strip of elementary area dA, at a distance of y from the centroidal 
layer CD. 

or 

... (4) 

where A is the area of cross section of the bar. 

Now the total resisting moment will be given by 

M = JJ.y. dA 

J 
(I + Eo) ( * -! ) =Ef E0 .ydA+E ; .y2dA 

1+-- ·· 

( 
1 1 )I y2 

= EE0 XO+ E (l+e0) Jf; - R l+y/R dA 

Because f ydA= O, i.e., first moment of any area about its centroidal layer is zero. 

So 
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J 
y2 

Let us assume T:+y/R dA= Ah2
, a quantity which depends upon the disposition of 

section and the radius of curvature. 

or 

or 

Therefore .. . (5) 

From equation (4) 

F= EE0 A+ Ell + e:0) ( )
1 

- ~-)J l +~/R · dA 

= 0, because the bar is in equilibrium and the net force on 
the section is zero. 

Now 

Considering the equation (4) again 

E e:0 A=E (l + e:o) (-
1
- - J.. ) X Ah

2 

R1 R R 
(since F= O) 

t 0 R = (I +€ ) (-1 __ l ) 
h2 o R1 R 

Substituting this value of (1 +e:0) ( ~
1 

- ~ ) in equation (5) 

M= E ( £// ) Ah2=R e:0 EA 

M 
e:o= EAR 

Substituting the value of e:0 in the equation for stress 

f -E _j!__+E ~ x _Y_ 
- . EAR . h2 l+y/R 

M y R 
f = AR +Ex I+y/R X rz Xe:o 

Putting the value of fo again 

M y 
f = AR +Ex I+y/R 

R M 
X fi2X EAR 

M M Ry 1 
=AR+ AR X I+y/ R Xh2 

M [ R2 y J . = AR 1+°"7i2 x R+y ... (tensile) 

... (6) 

... (7) 

. .. (8) 

On the other side of the centroidal layer y will be ne~ative as for the layer Ef shown 
in the Fi~ . 
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/'=stress "'hen y is negative 

M [ y R2 J = - --x - -1 compressive 
AR R-y h2 

.. . (9) 

The expression given in equations (8) and (9) are for the stresses due to the bending 
moment which tends to increase the curvature. If the bending moment tends to straighten 
the bar or tends to decrease the curvatue, then 81 < 8 and R1 > R and the stresses will be 
reversed 

Bending moment tending to decrease the curvature 

For y to be positive 

M [ R2 y J . f= AR l+ Fx R+y compressive 

On the other side of the centroidal layer, where y is negative 

, M [ y R2 J f = AR R-y X v - 1 (tensile) 

19·2. Ah2 FOR RECTANGULAR SECTION 

T 
Fig. 19·2 shows the rectangular cross 

section of breadth B and depth D of a 
curved bar with radius of curvature R, i.e. 
the radius from the centre of curvature C to 
the centroid G of the section. Consider a 
strip of thickness dy at a distance y from 
the centroidal layer. Area of the strip, dA 

= Edy 

B /'I'~--- R ---rC 
j_ IL.Alt'.~~ I 

where 

~%.....\-¥ ~~-R2-R_1==~:•1 

D/2 
f RBy2 

dA = J R+y dy 
-D/2 

+D/2 +D/2 +D/2 

= I ByRdy-J BR2dy+ 1-1:3

y dy 
- D/2 - D/2 -D/2 

Ah2= 0-R2BD-tBR3 In R+D/2 
R-D/2 

A= BD 

BD BR3 2 R+D 
h2 =-Rzx BD + BD In 2 R-D 

h2 R l 2 R+D -l 
R2 =75 n 2 R-D 

Fig. 19 2 

... (10) 

.. . ( I l) 

R z .B!__1=J!B. I R2 R [ R2 ]-l - p n R A n - 1= - B In 
\ 1 R1 A R1 
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where R= Radius upto the centroidal layer 
R1=Radius upto the inner surface of the curved bar 
R~=Radius upto the outer surface of the curved bar. 

STRl!NGTI-I OF MATERIAts 

Example 19·2-1. A circular ring of rectangular section, with a slit is loaded as 
shown in the Fig. 19·3. Determine the magnitude of the force P if the maximum resultant 
stress along the section a-b is not to exceed I 50 N/mm2 • Draw the stress distribution 
along ab. 

or 

Solution. Mean radius of curvature, 
R=ll cm 

Radius of curvature of inner surface, 
R 1 = 8 cm 

Radius of curvature of outer surface, 
R2= 14 cm 

Breadth 
Depth 

0 

B=4cm 
D= 6 cm 

p 

h2 R 
R2 = D Zn 

11 
= 6 ln 

R
2 

~ 38.56 
h2 

Fig. 19·3 . 

..&._1 
R1 

_!i - 1= ll X0'5596- l = 0·02593 
8 6 

Maximum resultant stress will occur at the inner radius i.e. , at the point b. 
Bending moment, M = PXR= II P N-cm 

Direct stress, 
p p 

jd = 4x6 = 24 N/cm2 (compressive) 

Resultant stress at the point 

b= - - x - - -1 -M ( R
2 

Y2 ) P 
AR h2 R - .v2 + ,4 

;v~= 3 ~m. 
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So PR ( R 2 
Y2 ) P P 

Jmaz=AR h2 XR-y
2 

-7+7 

150X 100= ~ ( :: X R~;
2 

)= ~ ( 38.56X ll~ 3 ) 

P= 24 X l5000X 8 24896·26 N= 24·9 kN 
3 X 38.56 

Stress Distribution (along Gb) 

p R2 y . 
f= A · h2 x R-y .. . . .. y vanes from Oto 3 

= 0 at y = O cm 

= 21: x~8 -56 x 
11

~
1 

= 4·o kN/cm2 at y = l cm 

24"9 38""6 - 2- - 8·89 kN/ 2 2 = 24 X ., X 
11

_ 2 - cm at y= cm 

24'9 3 
= ~X38"56X ll-; = 15"00 kN/cm2 at y = 3 Clli 

Along Ga y varies from O to 3 

Resultant stress, M ( R
2 

y ) P f= AR I+ h2 X R+y - 7. Since the direct stress is 

compressive 

p R2 y 
= 7X7ia X R+y 

= 0 at y = O cm 

= 
2
~: X38"56x 11 ~ 1 =3'333 kN/cm2 at y= l cm 

= 
2
~: x38"56 x 11~ 2 = 6'154 kN/cm2 at y= 2cm 

= 21: x 38'56 x 11~ 3 = 8·571 kN/cm2 at y = 3 cm 

8·571 kN/c m2 

a 

Resu l tant st ress 
distribution along 
ob 

Fig. 19'4 

b 
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Fig. 19'4 shows the stress distribution along the radial thickness ab of the section ab 
which has maximum bending moment PR. In this case the resultant stress at centroid G 
is zero. 

Exercise 19'2-l. A curved bar of rectangular cross section 4 cm x 6 cm is subjected 
to a bending moment of 2 kNm, its centre line is curved to a radius of 20 cm Determine 
the maximum tensile and compressive stress in beam, if the bending moment tends to increase 
the curvature. What is the stress at the CG of the section. 

Plot the stress distribution diagram to a suitable scale along any section. 

[Ans. +113 N/mm\ - 143 N/mma, +4·t6 N/ mm2 tat C.G.)] 

19'3, VALUE OF h2 FOR SECTIONS MADE UP OF RECTANGULAR STRIPS 

Sections such as T , I, channel section and bar section are made of rectangular strips. 
The va lue of h2 for each section can be determined by consider ing each strip separately. In the 
case of single rectangular strip section 

_!i:__.B._r BJ,, ~ l_ I 
R2 - AL R1 j 

where B is the breadth, R2 is the radius of outer fibres and R1 is the radius of the inner fibres 
of the section. U sing this expression, let us determine h2/ R2 for various sections . 

(i) T-section. Fig. 19"5 shows a 
T section with following dimension, 

Breadth of the flange=B 
-~::~~-R-3 -R2----- -------:1 

Breadth of the web =b 

R= Radius of curvature upto centroid 
_...,....._..,....t---~ 

--·IC 
i 

G of the section 

R1 = Radius upto extreme edge of web 

R2= Radius upto inner edge of flange 

R3 = R adius upto outer edge of flange 

A= Area of cross section of T section 

= B (R8 - R2)+b (R2- R1) 

flange 

~ =!i.[ B In ..&..+b In ..&.J-1 
R2 A R2 R1 

Fig. 19·5 

(ii) I-section. Fig. 19 '6 shows an I section with flange and web of breadths B and b 
respectively. 

R= Radius of curvature upto centroid G of the section 
R1 = Radius upto outer edge of inner flange 

R2 =Radius upto inner edge of inner flange 
R3= Radius upto inner edge of outer flange 

R4 =Radius upto outer edge of inner flange 

A= area of cross section = B(R4- R3)+b(R3 -R2 )+B(R2-R1 ) 

h2 R [ R4 b I Ra R2 ] - = -A B In R + 11 R + B In -R - l. 
R 2 a 2 1 
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i----~--- R,4 ------1 

Inner flongt 

C 

B 

.L 
~ t~ R1 

Rz __ ____. 
~--R 

Fig. 19·6 Fig. 19·7 

(iii) Channel section. Fig. 19·7 shows a channel section with 

B= breadth of web 

b=breadth of flanges 

R= Radius of curvature upto centroid G of the section 

R1 =Radius upto inner surface 

R2 = Radius upto outer edge of web 

R3 = Radius upto the oute(edge of flange 

A= Area of cross section= B(R2-R1) + 2b(R3- R2) 

_.!!._.!i[2h In !i_a + B In .!!:.:...J-1 
R 2 - A R2 R1 

(iv) Box section. Fig. 19'8 shows a box section with 

B= Breadth 
b=Thickness as shown 
R= Radius of curvature u pto the 

centroid G of the section 
R1 = Radius upto inner surface 
R2=Radius upto inside edge as 

shown 
R3= Radius upto other inside edge 
Rt=Radius upto outer surface of 

the section 
A= Area of cross section 

= B (R2-R1)+ 2b(R3 - R2) 
+B(R4- R3) 

- = - B In --+2b I1i - + Bin - - - - 1. h2 R [ R 2 R3 R4 J 
R 2 A R1 R 2 · Rs 

Pig. 19·8 



Example 19 3-1. A curved beam whose ceniroidal line is a circular arc of 12 cm 
radius. The cross section of the beam is of T-shape with dimensions as shown in the Fig. 19'9. 
Determine the maximum tensile and compressive stresses set up by a bending moment of 6 
tonne-ems ; tending to decrease the curvature. 

M 

B 

Fig. 19·9 

Solution. The Figure shows the curved bar with T-sectiou subjected to a bending 
momertc M tending to decreas~ the curvature ; therefore there will be tensile stresses between 
to G, and compressive stresses between G to B. 

Let us first calculate the distance of centroid from the outer edge of web 

Yl
= sx1x2·s+6x1xs·s = 12·s+33 =

4
.
116 s+6 11 - cm 

y2= 6- 4'136= 1'884 cm 

Radius of curvature, R= 12 cm (given) 

Radius upto inner surface, R1 = 12- 1 '884= l O' l 36 cm 

Radius upto outer edge of flange, R2 = l l '136 cm. 

Radius upto outer edge of web, R3= R1 + 6= J0' 136+ 6 = 16'136 cm 
B= 6cm,b = I cm, Area,A=6 x l + lx5= 11 cm2 

h
2 

R [ R2 R3 J R2= A BJ,, R1 + b In R2 - 1 

h2 12 [ 11 '1 36 16'136] 
R

2 
=u 6 Xln 10'1 36 + I In 11'136 -l 

= :~[ 6 x o·93s + o·3712 J - 1= 1·01694- 1= 0·01694 

R
2 

= 59.03 
h2 

Maximum compressive stress at point B 

_ M [ l + !!:._ x ___b._J- 6 x 1 [ 59'03x 4·t36] 
- AR h2 R+y1 - 11 x 12 l + 16'136 

= 0'733 tonne/cm2 



BENDING OF CURVED BARS 927 

Maximum tensile stress at point A 

= ~[ /~Y2 X ~:-l ]=11:12[12~81~:84x~\03 
- I J 

= 0·453 tonne/cm2 

Example 19'3-2. Fig. 19·10 shows a press applying 200 kN force on a job. Deter
mine the stresses at the points a and b. Th•:! section is hollow as shown. 

R = 37cm 

R1=24cm R2 :30cm 

R3= 50crn R4 = 5~ cm 

punch press 

Fig. 19·10 

cm 

Section at a - b 

Solution. Let us first deter mine the position of the centroid 
l6 X4X2-l- 2 X20 X 14 X4-l-24x6x27 

Yi= I6 X4-tix20 X 4-l-24 x6 

_ 128-1-2240+ 3888 - 17 
- 368 - cm 

Y2=30-17= 13 cm. 

Radius of curvature, R= 24-l-13= 37 cm 

Area of cross section, A=24 x 6+2 x 4 x 20+4 x 16 = 368 cm2 

h2 R l- 30 50 54 J w= A 24 ln 24 +2x4X /n30 +l6X /n 50 -1 

37 = 
368 

[24xo·2232+2x 4 x o ·s105+ 16 x o·o169]- 1 

= 3!~ [5·3568-1-4'084+ t '2304]- l 

37 = 3°6'g X ]0·6712- 1 = l "07292-1=0'07292 

R
2 

= 13"714 1z2 
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Bending moment, 

Direct tensile stress, 

M =Force x(60 + R) = 200X97 kN cm 
200 fa=37s = 0'543 kN/cm2 

Bending stress due to Mat a 

M L- Y2 X R2 - I J 
= AR R-y2 h2 

200 x97 [ 13 J 
= 368 X37 37-13- xJ 3·7 l4-- l 

= 9' 159 kN/cm2 (tensile) 

Bending stress due to Mat b 

= - M [ 1+-11 ____ X. R_2_] 
AR . R+Y1 h2 

, 200 X 97 [ 17 . J-
= 368 X 37 1+37+17 X 13 714 

= 7'576 kN/cm2 (compressive) 

Resultant stress at the point a 

= 9' 159+ 0'543=9'702 kN/cm2 

= 97·02 N/mm2 (tensile) 

Resultant stress at the point b 
= 7·576- 0'543 = 7'033 kN/cm2 

= 70'33 N/mm2• 

STRENGTH OF MATERIALS 

Exercise 19'3-l. An open ring of channel section is subjected to a compressive force 
of 50 kN as shown in Fig. 19· 11 . Determine the maximum tensile and compressive stresses 
along the section ab. 

t~ a - b-+---+-

1·5cm ~ 
~f.-6cm~itJ 

l--scm~ 
Sec1ion a1 a- b 

Fig. 19·11 

[.Ans. f a= 246'69 N/mm2 (compressive),fo= 230'24 N/mm2 (tensile)J 
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Exercise 19'3-2. A load P = 15 k N is applied on a C-clamp as shown in the 
Fig. 19' 12. Determine the stresses at the points a and b. 

(Ans. f.,=257·55 N/ mm2 (tensile), 112'65 N/mm2 (compressive)J 

~2 

b 

-t,or~9n -,,or I 
---,~ ·C 
20mt~a ·· 1 

r-30m rn--j 

Section at a-a 

Load line 

P:: 15 kN 

R1 = 30mm 

R2 = 80mm 

ac:: 30mm 

Fig. 19·12 

19'4. Ah2 FOR A TRAPEZOIDAL SECTION 

Fig. I 9· 13 shows a trepezoidal section of a curved bar with breadths B1 and B2 and 
depth D and radius of curvature R. Say C is the centre of curvature, and G is the centroid 
of the section. Then 

B1+2B2 D · 
J11=--- x-

B1 + B2 3 

A= area of cross section 

Consider a strip of depth dy at a dis
tance of y from the centroidal layer. 

If b= breadth of the strip 

Area of the strip, 

dy 

Now 
Yi 

Ah2 = f _Bi:_dA = -AR2 + J Rs dA 
J R + y . R+ y 

- y. 

Yi 

Fig. 19·13 

= - AR2+Rs I[ B1+B2D Bi (yi-y ) .J R ~y dy 

-~ ' 
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Yi Yi 

= ··-AR2+Ra f ..J!J___ dy+Ra f _!!_2-BL. ---12_ dy 
jR+y J D R+y 

-y, -y, 

+Yi 

- Ra J ( B2-;;B1 )Rty dy 
-Ys 

Example 19'4-l. Determine the maximum compressive and tensile stresses in the 
critical section of a crane hook lifting a load of 5 tonnes. The dimensions of the hook are 
shown in the Fig. 19'14. The line of application of the load is at a distance of 8 cm from the 
inner fibre. (Rounding off of the corners of the cross section are not to be taken into account). 

p 

C = Centre of curva ture 

K = load - ax is 

Sec t ion along A - B 

Fig. 19·14 

Solution. Fig. 19' 14 shows, a crane hook anti the trapezoid&! $ection. The load line 
{(/( ' is away from the centre of the curvature <;;. 
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Position of CG of the section 

B1 + 2B2 D 
Y 1 x - where B1 = 4 cm ; B2 =8 cm ; D= 12 cm 

B1+B2 3 

4+16 12 20 
4+8 X T = 3 cm 

16 
Y2= 3 cm So 

Radius of curvature, 
16 34 

R = 6 + - - = - CID 
3 3 

Area of cross section, A= BiiB2 X D = 4;-8 x l2 = 7.2 cm2 

Now { 2 = -I+~ [{ B1+ B
2
~B

1 
(Yt + R)}ln ~~~:-(Bi-B1) J 

Substituting the values 

h~ 34 [ { 8 -4 ( 34 20 ) } 
R2 = -l +3x72 4+-1-2- 3 +3 In 

l.!+ 79 l 3 3 
34 _ ~ -(8.-4) 
J ·3 

= -I + i~ [10 In 3-4] = -1 + ~~6 [lOX I '09876- 4] 

= -1 + ] '0999 = + 0·0999 

R
2 

= 10"01 ft2 

Distance 
16 ' 40 

KG= y2 + 8= 3 + 8= 3 cm 

Bending moment, 
40 200 

M = 5 X 3 = -
3
- tonne-cm 

This bending moment tends to reduce the curvature so the portion GA will be in 
compression and portion GB will be in tension. 

Direct stress, /d =-2._ = 0 '0694 tonne/cm2 (tensile) 72 ,. 

Maximum compressive stress at A, 

M [ 1 + Ra Yi J . r 
/ A = AR b2 X R+Y1 -Jd 

200 X 3 [ . 20 1 J . 
3x 72 x 34 1+ 1001 x 3 x 18 -006.74 

as R+ Yi= 18 cm 

= 0'0817 [4'7074]- 0"0694= 0·3t52 tonne/crn2 
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Maximum tensile stress at B 

/B = ~ [R~\
2 

X :: - 1 ]+fd 

= 3 ~o~;/34 [ 136 x 1~·01 -1 ]+0·0694 

= 0"0817 [7"898]+0"0694= 0"7146 tonne/cm2• 

Exercise 19"4-l. The section of a crane hook is a trapezium. At the critical section, 
the inner and outer sides are 40 mm and 25 mm respectively and depth is 75 mm. The centre 
of curvature of the section is at a distance of 60 mm from the inner fibres and the load line 
is 50 mm from the inner fibres . Determine the maximum load the hook can carry if the 
maximum stress is not to exceed 120 N/mm2

• [Ans. 30'56 kN] 

19"5. Ah2 FOR A CIRCULAR SECTION 

Fig. 19"15 shows the circular section 
of diameter d of a curved bar of radius of 
curvature R, from the centre of curvature C 
upto the: centroid G ~f the .section. 

Area of cross sectiqn, A= ~d2 
. 4 

d 
2 

C 

Consider a strip of depth dy at a dis
tance of y from the centroidal layer as shown. 

Breadth of the layer, 

b=J( ~ Y-y2 
- R=-1 

or 

dy 

Area of the strip, Fig. 19·15 

dA=bdy=~ ( ~ r-y2
• dy 

Now Ah2= J~dA y+ R 

+d/2 
R J y 2 4R 1 y2 I d )3 

h2= A R+y dA = 1ed2 (R+ y) X \J ( 2 -y2. dy 
-d/2 

d2 [ 1 ( d )
2 

15 ( d 
4 J =16 l+2 2R +16 2R) + ... 

Exalllple 19"5-1. A curved bar is formed of a tube of 8 cm outside diameter and 
thickness o·s cm. The centre line of this beam is a circular arc of radius 15 cm. Determine 
the greatest tensile a?d compress.ive stresses set up by a bending moment of 2 kNm tending to 

increase its curvature. · 
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Solu.tion. The Fig. 19' 16 shows the 
cross section of a curved bar of radius of 
curvature R = 15 cm. 

Area of cross section, 
... 

A= 4 (82-72) = l l '781 cm2 

Area of inner circle, 

Area of outer circle, 

A2 = : (82)=50'266 cm2 
Fig. 19· 16 

Bending moment, _ 

Now 

For a circular section 

For inner circle 

For outer circle 

M=2 kNm=2X 105 N cm 

AN= I Ry2dA 
R+y 

hi2 = 1 (,2 [ l + ; ( Jo )2 + ; 6 ( ;o r +". J 
= ~: [l + 0·0212+ 0·0009]= 3'14856 

d2
2 

[ l ( 8 I 5 ( 8 )' J h21=16 l+ 2 30) + 16 30 + ... . 

= :; [1+0·03555+0·00158J= 4·14s52 

A/z2 = .A..2h2
2-A1h1

2 = 50'266 X 4' 14852-38'485 X 3' 14856 
=208'53- 121' 17=87'36 

h2= 87'36 = 7'415 
l l '781 

R2 15 X 15 
Iii'= 7·415 30'344 

Maximum tensile stress at b, 

M[ R
2 Yi] f~= AR I +/ii" x R+Yi where Yi = 4 cm 

2Xl05 
[ 30'344X4] 

= 11 ·781X l5 l + (15+4) 

-= 1131'766 (1+6'388)=8361'5 N/cm2 
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Maximum compressive stress at d, 

•a= M c~ x~-1 J 1 ' AR h2 R-y2 

2 x1 0~ [30'344 x 4 J = 11 .781 x 15 05_ 4) - 1 = 11356"36 N/cm2 

Exercise 19'5-l. A bar of circular 
cross section is bent in the shape of a horse 
shoe. The diameter of the section is 8 cm 
and the mean radius R is 8 cm as shown in 
the Fig. 19' I 7. Two equa l and opposite 
forces of I 5 kN each are applied so as to 
straighten the bar. Determine the greatest 
tensile and compressive stresses and plot a 
diagram showing the variation of the normal 
stresses along the central section. 

[Ans. 39'22 N/mm2 (maximum 
compressive stress) 
99'83 N/mm2 (maximum 
tensile stress)] 

-r 
Bern 
d ia 

t 

19'6. RING SUBJECTED TO A DIAMETRAL LOAD 

Fig. 19'18 shows a circul ar ring of 
mean radius R subjected to a diametral pull P. 
Consider a section CD at a11 angle 0 from 
the line of application of the load i.e., Y1 Y2 , 

and determine the bending moment and 
stresses in this section . Due to symmetry, 
the ring can be divided into four equal 
quadrants. Say M1 is the bending moment 
on the section AB along the line of symmetry 
X1X2, 

14--- 20 cm ---l 
Fig. 19·17 

Takin.& moments about CD, 
Bending moment at the section CD, 

M = M 1+; (R- R sin 8) 
-< I 

where 

From equation (5) of article 19' I. 

M=E(l+€0) ( -
1
- --

1 
)Ah2 

R1 R 

E= Young's modulus 

€ 0 = Strain in cen;troidal l~y~r 

R=lnitial radius of curvature 

R1 = Radius of curvature after bending 
r Ry2 

. .. Ah~= j . R+y 4A, 

p 
2 p 

Fig. 1~·18 

..E. 
2 
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So E(l +£0) {\. -
1---1 \Ah2 ,= M1 + PR -· PR sin 20 

. R1 R J 2 2 , 

Multiplying this equation throughout by Rd0 and integrating for one quadrant 

i.e , 8=0 to 2 
n/2 

I E (l + £ 0) ( ~ - ~ ) Ah2 Rd0 
0 1 

n/2 

= I M1RdO+ 
0 

n/2 

1 
0 

n/2 n/2 ' 

j _P;2 

d6- } P~
2 

s in 6 dO 

0 0 

-2!.. + p R2i; - p R2 
= M1R 2 4 2 

Now (I +£0) = ~ 1 
. :L (equation (2) of article 19"1 ) 

9 35 

... (1) 

Now for one quadrant initial · angle 0= 90°=n/2 and final angle 01= 90~= n/2 due to 
symmetry, i.e., angle L Y10X1 remains 90° even after the applicati on of diamctra l load 

or 

R 
So (I + £ 0) R = I 

1 

Substituting this in equation ( I ) above, we get 

rt/2 i EAh2 • d0- E(l +f0)Ah2 f = M1R; + p~
2

- ( ; - I ) 

0 

~ ~ PR2 ( ~ ) 
-E£0 Alz2T= M 1 R 2 + - 2- 2 - 1 

Again by equation (4) of art icle ( 19"1) 

Normal force on the section, 

F= E£ 0A+E(l+£0) ( -y-y )J y dA 
i 1+ L 

R 

Now 1 y I Ry -I Ry+y2-y2 I I y2 - dA= -- dA- R dA = ydA- R+y dA 
l +-1'... R+y + Y 

R 

= 0--1 f Ry2 dA = - Ah2 
R JR +y R 

( 
1 1 ) Ah2 

T herefore normal force, F= E£oA - E( 1+£o) Ri - R -R 

... (2) 

.. . (3) 
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Normal force on the section CD, 

So, 

p . () F= 2 Sill 

= EA£0 - 1 (refer to equation 5 again) 

= Eh0-~ -
2
; (R-R sin 6) 

M1 P P . e 
= Eho- R-2 +2 sin 

Substituting the value of E 0 in equation (2) above 

-EAh2X ; [~}+2;A]=M2~rt+ p~2 ( {-1) 

M1 ,.; P M1 R,.; PR2 
( ,.; ) - R xh2 x 2 - 4 xh2rc = - 2-+2 T-1 

p PR2 PR2 TC M1 Tt - 4 . h2,r - 4 ,r + - 2- =M1R 2- + -R fi2 T 

Now 

PR
2 

_ PR
2 

_ Ph
2 = M1[ R2+h2 l 

n 2 2 R J 

PRS PR PR [ R2 

M1 = n( R2+ 1i2f-2 = 2 R2+h2 

M=M1+ PR 0 - sin 8) 
2 

PR R2 2 PR PR PR . 
- 2 X R2+1i2X ,; - 2 + 2 - 2 sin 6 

PR[ R
2 

2 . J =2 R2+1i2 X -;- -sm 8 

M will be maximum when 0= 0° 

PR 
M.,.a•= rc(R2+ hZ) 

M will be zero when 
. -1 R2 2 

O=sm - - x-· R2+h2 ~ 

... (4) 

So there will be 4 sections, one in each quadrant where the bending moment M will 1:>~ 
zero ~nd consequently the stress due to bendin~ will be ?:ero, · 
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Now substituting the value of M1 in equation 
M1 ~p P R 2 

€o= EAR +2EA = EA x1.(R2 +h2) 
... (5) 

and ( 
1 1 ) M 

E(1+£o) Ri-R = Ah2 

Stress, f=E£o+E(I +€0) ( +-+)--y-
1 i+ L 

R 

[Refer to equation (3) of article 19· 1, f= EE] 

P R2 M Ry 
= A X n(R2 +h2) + Ah2 X R+y 

_ _! R 2 Ry _ 1 JP R R2 2 PR . J 
- A x 7t(R2+1i2)+ R+y x Ah2~ 2 x (R2+1i2) x-;-- T sm 0 

p [ R2 R2 ( R2 2 . ) y J 
- A n(R2 -l-h2)+ 2h2 R2+h2 X re sm 8 R+y 

. . r, p sin e 
Direct stress at any section, 1tt=2 A 

Resultant stress at any point on the section 
p [ R2 R2 ( R2 2 . ) y J p . 

fa=_ A rc(R2+h2' + 21i2 R2+ lz2 x-; - sm 0 R+ y + 2A sm (} 

Stress along Y1Y2 axis, where 0= 0° 

p r R2 R2 ( R2 2 \ y J 
/R = --Alrc(R2+h2)+ 2h2X R2+1z2 x-;- / R+ y 

PR
2 

[ R2 .r J 
= A1t(R2+ 1i2) 1+ h2XR+y 

at the point K, y = d/2 ... where d=diameter of the rod of the ring 

PR2 [ R
2 

d J 
ft = Arc(R2+h2) 1 + h2 X 2R+d tensile 

at the point J, y = -d/2 

PR2 [ R
2 

d ] 
fJ = rcA(R2+h2) h2 X 2R - d - 1 compressive. 

It can be observed that maximum stress occurs at the point J, where the ciiametral 
load is applied. 

Stresses along X 1X 2 axis, where 0= 90°. 

, p L- R2 R2 ( R2 2 ) y J p 
JR = A ,;(R2 +h2) + 2h2 R2+h2- X-;- - l R+y + 2A 

At the point B, y=+d/2 
p [- R2 R2 

( R2 2 d J P 
fb' = ~ n(R2+h2)+ 2h2 R2 +h2 X ~ - l) 2R+d +"""""£4 

(compressive) 
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At the point A, y=-d/2 

p [ R2 R2 ( R2 2 ) d ] P . 
/,4' =7: n(R:i+ hi) 21z2 R2 + h2 x -; - l 2R-d + 2A(tenstle). 

Exam ple 19"6-1 . A r ing is made of round steel 2 bar cm diameter·and the mean diameter 
of the ring is 12 cm. Determine the greatest intensities of tensile and compressive stresses 
alon! a diameter XX if the ring is Sl;l_~jected to a pull of 10 kN along diameter YY. 

S0h1tioa. Fig. 19" 19 shows a ring of mean dia meter 12 cm, bar diameter 2 cm, 
subjected to a diametral pull P. 

Radius of curvature, R= 6 cm 
Bar diameter, d= 2 cm 
Pull, P= 10 kN 

Area of cross section, A = _!:. (2)2 =3" 1416 cm2 

4 

/z
2 = t; l 1 + ~ ( 2! r + 1 ~ ( 2~ r +... J 

= ;~ [ l + ~ ( :2 / + J~ ( -l2 ; + · ·· J 
= ! [ I + 7~ + I~ X 3~ X 3~ + ... J 
= !- [t+o·o1388+ 0·00024J= o·25353 

Ri 6 x 6 
or h.2 = 0·25353 = 142. 

Stresses 

P: 10 ~ "J 
y 

Fig. 19·19 

P [ R2 R
2 

( R
2 

2 ) d J P 
f A= A rt(R2-t- fz~) - - 21zi X Ra+ 1z2X -;-1 2R- d +2A tensile ,r. 

10,000 [ 36 142( 36 rt ) 2 J 10 000 
= 3·141 6 ~(36+ 0·25353)- 2 (36+ 0·25353) x 2 -l 12- 2 + 2 x i ·14I6 

= 3183"09[0"316-14'2(0·632- I)] + 1591"54 

= 17639"41 + 1591"54= 19230"95 N/cm2= 192"30 N/mm2 

p [ R2 R2 ( R2 2 ) d ] p 
f B= A ,;(R2+ 1z2) + -2_7ii R2+1z2 X-; - 1 2R+d + 2A compressive, 

= 3183"09 [ 0"316+ 
1
~
2 

(0"632 - 1) X 
12

~
2
]+ 1591 "54 

= 3183'09(0'31 6- 3"7326]+ 1591"54 · .- 9283 '71 N/cm2 

;;=-92"83 N/mm2 (compressive stress) 
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Exercise 19·6-l. A ring is made of round steel rod of diameter 2·4 cm. The mean 
diameter of the ring is 24 cm. The ring is pulled by a force of JOO kg. Determine the greatest 
intensities of tensile and compressive stresses along the diameter of loading. 

[Ans. 260'95 kg/cm2 (tensile), 303·33 kg/cm2 (compressive] 

19'7. CHAIN 
1
Ll'Nk SUBJECTED TO A TENSILE LOAD 

Figure 19'20 shows a chain link of 
mean radius R, length of the straight portion 
/, subjected to pull P. Consider a section CD 
at an angle O from the line of application Y1 Y2 
of the pull P. Let us determine the bending 
moment and stresses in this section. Due to 
symmetry, the ring can be divided into four 
equal parts as shown. Say M 1 is the bending 
moment on the section AB along the line:ox1. 

where 

Taking moments at the section CD, 

M=M1+; (R-R sin 0) 

From equation (5) ofiarticle 19· 1 

M=E(l+E0) ( ~
1 

- ~ ) Alz2 

E= Young's modulus 
E0 = Strain in the centroidal layer 
R= Initial radius of curvature 

R 1 = Final radius of curvature 

p 

p Ah~=J Ryi dA 
R+y Fig. 19·20 

Therefore, 

( I 1 ) p 
E{l + Eo_) R~-R Ah2 = M1+ 

2 
(R-RsinO) 

Multiplying throughout by RdO and integrating from O to rc/2 
rc /2 

f ( l 1 \ 
1 

E{l + i;o) Ri - ~ R J Ah2 RdO 
0 

n/2 rc/2 

= J M1 • Rd0+ J 
0 0 

rc/2 

1 PRS 
-

2
- sin 0 dO 

0 

rc/2 

J 
0 

TC PR2 PR2 

= M1 R -+--xrc-
2 4 2 ' . ' (1) 
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Now, (equation (2) of article 19' I) 

In this case initial angle 0= L X 10Y1=90° 

But final angle 61 will not be 90°, but there will be slight change from 90°. 

Slope at X- M1l 
1 - E/X2 

where / is the moment of inertia of the section 

rc/2 

J R(I +to) di = .!!_ - M1 I 
R1 . 2 2 El 

0 , 

Substituting in equation (1) 

EAh2 (...!: __ M 11 )-Ell+€o) Ah2 .!: =MR.!!.+ PR2_(_!:-1) 
2 2 El 2 1 2 2 2 

-EAh2 X M1_!_-E € Ah2 !!_= M1R ~ + PR
2 (-K--1 ~ 

2El O 2 2 2 2 I 

Again by equation (4) of article 19 ' I 

Normal force on the section CD, 

F= E e0 A+ E (l + £0 ) (-RI - __!____) J _!!l.._ dA 
1 R R+y . 

Now f _Bl_ dA = r Ry+ y
2

- yz dA = r ydA-J _l'.:_ dA 
R+y R+y R+y 

= 0- -1_ f R~ dA = - Ahz 
R J R+y R 

Therefore normal force, 

( 
I I '\ Ah2 F= Ee0 A- E(l+e0) - - -

1
--

R1 R R 

P . e =z Sill 

!'_ · 0 - EA h2 ( ( 1 I ) 1 
2 

sin - E0-EA .J +e0 ) - ___ x--
R1 R R 

M 
= EA t o- 7f (by equation (5) of article 19'1) 

= £0 EA- ~ [ M1+ p: (I-sin 6)] 
M1 PR P 

= Eo EA-R- 2R +2 sin 0 

So M1 P 
Eo= EAR+ 2 EA 

... (2) 

... (3) 

... (4) 
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where 

Substituting the value of E0 in equation (2) above 

-EAh2 M1_!__EAh2 _i,; I~ _!_)= M1 R '1t PR2 (~-1) 
X 2 EI 2 \ EAR + 2EA 2 + 2 2 

l=Ak2 ; k = radius of gyration of the section 

PR1 

- 2-

( 
nR 1ziz w 1i2 ) p R2 ( ii: ) ii: 

M1 y + 2k2 +2 x R. =-2- 1-y -Ph2 4 

Dividing throughout by rc/2 

But 

( 
h2J h2 

\ P R2 ( 2 ) p1z2 M1 R+-+-1=-- - -1 --nk2 R · ?. TT 2 

p (.B: - B:__!!_) 
,. 2 2 

M - --- ·---- ·---1- h2J Jz2 

R+ rr:k2 +y 

R 
M=M1+- (R- R sin 8) 

2 

p ( .B:_ _ R2 _ !!:_) 
i,; 2 2 PR . 

= ---'----h2/ h2 +-2- ( 1-sm O) 

R+ rck2 +If 

Substituting the value of M1 in equation (4) 

1 re 2 2 P 

[

p (!!:_- ~-..!!..)l 
Eo= EAR -· h2l h2 + 2EA. 

R+ nk2 +R 
.j 

Stress at any layer at a distance of y from the neutral layer is 

f = E Eo+E (l+E0) ( -
1
-- -

1 )-y-
R1 R r+L 

( 
1 1 ) M 

Moreover E (1 +e:0) Ri - R = Ah2 

M 
f=E 'o+ Ah2 X 

y 

M Ry 
= E e:o+ Aha X R+y 

R 

941 

... (5) 

... (6) 
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stilENaTiI op MAtERrAts 

Putting the values of M and t 0, stress due to bending moment 

[ 

p (!!:... __ R2 _}!:_\ J 
I re 2 2 J P Ry 1 

fb -= AR R+ h2/ !!__ + 2A + (R+y) X Ah' 
rck2 + R 

[ 

( R2 R2 h2 ) ] 
p -;--2-2 Ry 1 PR . 

X lz2/ fi2 + R+y X Ah2 x-2- (l-sm 8) 
R+ nk2 +R 

Direct stress 'due to F, fa= {A sin 0 

Resultant stress, 

This is the equation for resultant stress in any section along the curved portions 
X2 Y1 X1 and X2' Y2 X1' of the chain link. 

The bending' moment M1 on the straight portion X1 X1' and X2 X2' will remain constant 
and for the straight .'portion bending stress will be found with the help of general flexural 
formula. To obtain the resultant stress in this straight portion, direct tensile stress P/2.A will 
be added to the bending stress. 

On the inner surface or" the ring which is also called intrados stress can be obtained by 
putting y = - d/2 in equation , ( 5) where d is the diameter of the bar of the chain link. Similarly 
for the outer surface which is also known as extrados the resultant stress is obtained by 
replacing y by +d/2 in equation (6) above. 

Ma:simum stress along Y 1 0 Y 2 axis 
0=0° 

p [ Ri y J[~-y-~] JR= AR I+ Jiz X R+y h2/ h2 
R+ nk2 +2 

. :..· PR2 y P 
+ 2h2A X R+y +2,4 
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At the intrados 

At the extrados 

d 
y=--

2 

d y=+-2 

Ma-ximum stresses along X 1 0 X 2 axis 
0=90° 

At the intrados 
d 

y=--
2 

[~-f-}] 
h2/ h2 

R-1-- +-n2k R 

, p R2 d -;--r-T p 

[ 

R2 R2 1i2 J 
/RI= A~ [ l - h2 X 2R- d J --"Ji:!... !!:_ +-x 

R-1- nk2 -1- R 

At the extrados 

, P[ R2 d 
jRE =-AR 1+7z2 X 2R+d 

Maxi1nu1n stres~ in straight portion 

X1 Xi' or X2 X2' 

Bending moment 

[ 

R2 R2 h~ J ~ - ··2- 2 P 
I h2/ h2 -j- A 

R+---+ -
nk2 R 

943 
,j!.:. 
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Stress due to bending, /b= 3
;:1 

Direct stress, 
P 2P 'd=- - -2A - nd2 

f1t., resultant stress at introdos and extrados 
32 M1 I 2P 

= nd3 :c .,,.d2 • 

STRENGTH OF MATERIALS 

:Example 19·1-1. A chain link is made of round steel rod of 1 cm diameter. If 
R= 3 cm and /= 5 cm, determine the maximum stress along the section where tensile load is 
applied. If P= l kN. 

Solution. R = 3 cm, d=l cm, 1=5 cm, and P= l kN 

h2= :~ [ 1 + + (2~-r + i6 ( :R r + ... J 
=-h-C 1 + ~ ( ! r + f6 ( i) 'J 
= -fu" [l + 0·01390+ 0·00024]=0'06 338 

R2 3 X3 
h2= 0'06338 = 142 

Area, A=; ( 1)2 = 0'7854 cm2, 

d I I 
Radius of gyrat ion, k= 4 =4 cm k 2 = 

16 

R2 R2 h2 9 9 0'06338 
R 2 2 - R 2 2 

= 2'8648- 4 50l.-0'03169= -J '66689 

R+ !!_2/ +.!!_ = 3+0'06338 X 5 X 4 X 4 0'06338 
,r.k2 R 1, X l + 3 

= 3+ J '6139+ 0·0211 = 4'635 

( RZ - R2 _ _!!~ )/( R + _!!:!_+ }£ )= - !_'_§6§__8.2_ =-0'3 ,96 
,r. 2 2 rr.k2 R 4'635 

8= 0°, Therefore 

Maximum stress at intrades, 
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1000 [ 1 J =0.7854 x 3 1-142x 5 [-0'3596] 

1000 X 142 l 1000 
-2X0'7854 X5+ 0·7859X2 

=424'4[9'853]-18079'96+636'62 

= 4181 '61 - 18079'96+636'62 = -13261 '73 N/cm2 

= -- 132'61 N/mm2 

Maximum stress at extrados, 

(compressive) 

/RE = JR[ l+ ~
2 

x 2R:d] [ :• --,Z-=-I. l 
R+ rck2 +R J 

P R 2 d P 
+ 2A x F x2R+d+ 2A 

1000 [ I J = 0.7854 X 3 1 + I 42 X 'l [ -0'3596] 

1000 I 1000 
+ 2 X 0'7854 X 

142 X 7- + 0'7854 X 2 

=- 3248'50+ 12914'26+636'62 = + 10302'38 N/cm2 

=+ 103'02 N/mm2 (tensile) 

Maximum stress occurs at the intrados, i.e. where the load is applied. 

945 

Exercise 19'7-l. A chain link is made of round steel rod of l cm diameter. If 
R= 3 cm and /= 5 cm, determine the maximum stresses along the section at the end of the 
straight portion. A load of 1000 N (tens ile) is applied on the chain link. 

[Ans. 54·54 N/mm2 (tensile), 19'75 N/mm2 (compressive)] 

19'8. DEFLECTION OF CURVED BARS 

In order to estimate the stiffness of a curved beam subjected to bending moment it is 
necessary to determine the deflection of t he curved beam and in such cases the influence of the 
initial curvature of the beam on its deflection is considerable. Fig. l 9·21 shows centre line 

ABCD- centri line of curved 
bar. 

AD-chord 

BG - Perpendicular to the chord. 
from the poin·t B . 
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ABCD of a curved bar subjected to variable bending moment. Consider a small portion BC 
of length ds along the centre line. Say the bending moment at Bis Mand M-1-'SM at C. Due 
to the bending moment say the centre line of the curved beam takes new position ABF and the 
ele ment BC rotates by an angle d<p = L DBF a t the point B. The angular rotation is small 
and the displacement of the point D is also small. 

Displacement DF,c:BD d:/> 
LBDF,::,,,90° for very sma ll displacement DF 

Components of the displacement are DE perpendicular to the chord AD and EF parallel 
to the chord AD i.e. the line joining the ends of the centre line of the curved beam considered. 

FE shows negative displacem ent towards the poiut A. 

Deflection of the point D with respect to A is 'SD j and considering the small length els 
only say the deflection is 

6.8D;1=-EF=-DF cos C1. •• •• •• where LDEF= rr.. 
=-(BD def>) cos a 

LADF=r1. 

Therefore LBDG= 90°-a. or LDBG= a 
and BD cos z=BG 

Therefore b. 'SDA = -(BD cos ix) d4,=-BG dcp=-h dcp 

where h is the perpendicular distance of the point B from the chord AD. 

Moreover 

So 

d /, = J! ds 
El 

6.'SDA = _ M h ds 
El 

Total deflection of D with respect to A 

A 
'SDA = - r /z M ds 

J El 
D 

(i) D eflection of a clo!':ed ring 

Fig. 19·22 shows the quadrant of a 
ring of mean radius of curvature R subjected 
to diametral pull P along OY1 • We have to 
determine the deflection along the load line 
or a long the chord Y2Y1. 

OY1 is half the chord Y2 Y1 , Consider 
a small length ds at Cat an angular displace
ment 8. 

M 

I 

, , 

CC1 = perpendicular di&tance on 
chord from the point C 

=/i=R sin~ 
~ - i;~~-

Fi¥. 19·~ 
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Bending moment at the section C, 

M =M1 + PR (I - sin 0) 
2 

_ PR3 PR_+ PR 
rc(R2 +h2 ) 2 2 

947 

(l - sin 0) 

PR I R2 2 . 
= 2L R2+h2 x-; -sm 0 J (see equation 4 of article 19·6) 

i>y1 o = deflection along the load 
Y1 

_ f (R sin 8) [ PR ( __!!::_ 1__ . 0 -- j El 2 R2 +1z2X re sm 
0 

)] Rd0 

Note that we have considered only one quadrant, when we consider the complete ring, 
the deflection: along the load will be 3r1 r2. 

n/2 

p R3 { 2 ( R2 )I I =- EI -;- R2+h2 - cos 8 

rc/2 

}+ PR3 I~ ___ sin 2~ J 

EI 2 4 
0 

p R3 
( R2 

) 2 p R 3 
rt 

=- EI R2+h2 x-; + EI X 2 
p Ra 2 ( R2 

) P Ra re 
= - EI . x-;-\R2+h2 +Elx -4 

PRa [ re 2 ( R
2 )l 

= El 4- ~ R2+ h2 j 

1 x -
2 

(ii) Deflection perpendicular to load line 
Refer to the Fig. 19·22 again, now the chord is 

0 

OX1 and perpendicular distance CC2=h on the chord OX1 from C ; h= R cos (J 

3x1 o-=deflection perpendicular to load line 
X1 
f ( R cos 0 )[ PR I RZ 2 . 

= - j EI 2\ R2+1z2 X -; -sm 0 
0 

)] Rd0 

Total deflection, J dO 

n/2 
p R3 I 2 I R2 

\ . cos 2 0 
=- E-I - -n:- lR2·+h-2) sin e+-....,.4-- I 

0 

PR3 [ 2 ( R2 ) 
=- El X -; R2+ 1i2 . X l + -±-(-1-1) J 

! .... 
p Ra [ I 2 ( R2 )] 

= .E I r---; RZ+h2 
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Example 19'8-l. A ring with a mean diameter of 120 mm and a circular cross section 
of 40 mm in diameter is subjected to a diametral compressive load of 10 kN. Calculate the 
deflection of the ring along the load line. E=200 GN/m2• 

Solution. Since the diametral load is compressive, there will be reduction in diameter 
alon2 the load line and increase in diameter perpendicular to the load line. 

R=60 mm=6 cm; d=40 mm= 4 cm ; P=lOX 103 N 

E= 200 GN/m2 =200 x 105 N/cm2 

h2= 1; [ I+~ ( ;R / + 1
5
6 ( ;R r+ ... J 

= ~ [ 1++( :2 / + ·t6 ( :2 r +,. L ] - 1 

= 1[ 1 +o·oss5+o·oo38J = 1 ·0593 = 1 ·0593 

R2 36 
R2 + h2= 37'0593 = 0·97 

11:d' 71: 
I = 64 = 

64 
(4)4 = 411:= 12'5664 cm' 

Deflection along the load line 

P R3[ n 2 ( R2 ) J 
= - El 4 - ;- ·R.2+h2 

LO X 103 
63 [ n 2 J 

= - 200 X l05 X ]2'5664 4 -4X0'97 

= - 0'0398 X 10-s [0'7854- '6167] X 216 cm 

= - 0'0067 x 10-sx 216 cm 

= -1 '443 X 10-s cm (reduction in diameter). 

Exercise 19'8-l. A ring with a mean diameter of 150 mm and a circular cross section 
of 30 mm is subjected to a diamctral tensile load of 4 kN. Calculate the deflection of the ring 
along the direction perpendicular to load line. E=200 kN/mm2 [Ans. 2'786 x 10- 2 mm] 

U)'9. DEFLECTION OF A CHAIN LINK 

Fig. 19'23 shows the quarter of a chain 
link subjected to axial tensile load P. The 
radius of curvature of the link is R and length 
of the straight portion is /. Consider a 
section at an angle 0 from the axis OY1 • We 
have to determine the deflection along the 
load P or along the chord Y2Y1• 

CC1 =h=perpendicular from C to 
the chord 

= R sin 8 

p 

0 Ca 

l 
2 

X 

Fig. 19·l3 
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Bending moment at the section 

p (!f._- R2 _ j12 ) 

re 2 2 PR . 
M= lh2 h2 +2 (l - sm 0) 

R+ ,rk a + R 
(Refer to equation 6 of article 19'7) 

R'A RI hZ 

= PK'+ p: (I - sin 0) h K
l --;- - 2 -2 

w ere /hfJ h'A 
R+ .,,.ks +R 

Over the length //2, the bending moment is constant and is equal to 
M1 = PK' where the value of K' is as above. 

Deflection along the line of loading 

rc/2 

8:r :r '- 2JR sin 
8
{ PK'+ PR (I sin 0) } Rd/j - 2R XPK' X _!_ 1 2 

- - El 2 - 17 EI 2 
0 

rc/l 

2R
2

J{PK' . 0 P .'?... 0 PR · 2e }de RPK'I =- EI Sill + -2 sm v - 2 sm -m-
0 

rc /2 rc/2 

- - 2R2 I- PK' cos 0 j_2R2 I- PR cos 6 \ 
- El El 2 

0 0 

rc/2 rc/ 2 
+ 2R

2 I PR( ~ - sin 20)1- RPK'l 
El 2 2 2 El 

0 0 

JJI:.... _ , _ 2R2 
( PR ) 2R2 PRn] RPK'I 

= E I x ( PK) El 2 x 1 + EI L 8 • - EI 

__ 2R2 
[ PK'+ PR _ PRn]- RPK'/ 

- EI 2 8 EI 

_ PR2[ rcR - 2K'- R ] - ~ 
- El 4 El · 

Deflection due to direct load P/2 is 

"' Pl 
0 = 2AE 

Total deflection t- · ~ '+~' PR
2 [rcR 2K, R J RPK'!_ + Pl 

o:r1:r2= o r1Y2 o = EI 4 - - - El 2AE 

where 



(ii) Deflection perpendicular to load line 

In this case chord is XX and CC2= h= R cos 0+ //2 

rr/2 

" _ r R cos 0 {PK' + PR (l . e) Oxx - - -xr-- 2 -sm 

0 

Froin _theory of st!Ilple bending deflection in straight portion 

STilENGTII OF MA1FER:1ALS 

} 
Rd0- fK'IR 

El 

( 
M1 '\ ,, = EI x I .I R ~here M1 is bending moment on straight 

portion and / is the length of the straight portion. 

i' .. 

\·· j\·i'/ 

\.\ 

rr /2 rr /2 n/2 
2R2 [r f PR r PR ] PK'!R 

8xx= - El j PK' cos 8 d0+ J 2 cos 0 d0 - } 4 sin 28. d0 -~ 
0 0 0 

rr/2 rr /2 rr /2. 

=-
2Pf/ [ K' \ sin e\+ f I sin 0 I+ : \ cos 28 \ ] - f;j/-

o O 0 

_ _ 2PR2 
[ K'+ B_ + B_( - 2) ] - PK'lf!._ 

- EI 2 8 El 

_ _ 2PR
2 

( K' +Ji ) - PK'IR 
- - El 4 EI 

where where k= radius of gyration . 

Example 19'9~1. A chain link is made of a steel r od of 12 mm d iameter. The straight 
poi;tion is 60 ~m in length and the ends are 60 mm in radius . Deter mi ne t he deflection of the 
link alpng the"load line when subjected to a load of 10 kN. E= 200 X 103 N/mm2

• 

'' 
Solution. Rod diameter, d= 1 ·2 cm. 

Area of cross section, A ~ rc:
2

= 1'131 cm2 

Length of straight portion 1= 6 cm 

Radius of curvature, R = 6 cm 
Load, P = lO kN 

E= 200 X 105 N/cm2 

~adius of gyration, k = d/4= 0'3 cm 

·.,' -
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R2 R2 h2 36 36 0'09045 
K' _ · rc _=_ T - 2 = -;- - 2 - 2 

- R + lh2 .!!:_ 6+6X0'09045 0'09045 
-rrk2 + R rc x 0·09 + 6 

l l '459-18-0'0452 -6'5862 
= 6+ 1 ·919+0·01so = 1·934 =-0'83 

rcd4 n: I = 64= 64 (1'2)4 =0'1018 cm4 

Deflection along the load lin~ 

~ PR2 
[ 1tR J PRK'l Pl_ 

"Y1Y2 "'--= EI -4--2K' -R - EI + uE 

l O X I 03 X 63 [ rt X 6 J 
=2oox105 x o·1018 -4-+zxo·83 - 6 

10 X 103 X 6 X0'83 x6 lO x 103X 6 
+ 200 X I 05 XO· l 078 ~. 2 X 1' l 31 X 200 X 105 

= 1060'9 x 10-3[0'3724]+ 146"76x 10-a+ J '326 x 10-s cm 
= 10-a[39S'08+ 146'76 + l '326]=543· i66 x 10-s cm 
= 5'43 mm. 

9:S l 

I , 

Exercise 19·9-l. A ch:: in link is made of a steel rod of 12 mm diameter . The 
straight portion is 60 mm in length and the ends are 60 mm in radius. Determine the deflection 
of the link along the direction perpend icular to the load line if the chain link is subjected to a 
load of 100 kg. 

E=2000 x 103 kg/cm 2. [Ans. 0'3837 mm] 

Problem 19· 1. A curved bar of rectangular section with breadth B and depth 6 cm 
is bent to a radius of curvature 6 cm. It is subjected to a bending moment of 4000 kg cm 
tending to reduce the curvature. Determine the breadth of the section if the maximum stress is 
not to exceed 500 kg/cm2

• 

Solution. Fig. 19'24 shows a 
curved bar of rectangular section B X 6 cm 
subjected to a bending moment tending to 
reduce the curvature . 

M= 4000 kg-cm 

y1 = J2 = 3 cm 
R= 6cm 
A = 6X B cm2 

lz~ R 2R -;- D 
R2 = D In 2R-D 

= _i_ x ln · 12+6 -l = /113 - 1 
6 12-6 

= J '09876- 1= 0'09876 

8:_= 10' 126 fl2 

Fig. 19·24 
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In this case maximum tensile stress will occur at the inner fiber at point a 

_ _!!__(· _B.2 X Y2 - )= 4000 ( . 26 _3 __ 1) 
Stress.j.,- .AR h2 R -y2 1 6xBx6 10 I x 6-3 

1014 = ~ = 500 kg/cm 2 

1014 
B= 

500 
=2·028 cm. Breadth, or 

Problern 19·2. For the frame of a punching machine 1,,hown in Fig. 19 25 
determine the circumferential stresses at A and Bon a section inclined at an angle 0= 45° to the 
vertical Force P= 100 kN. 

1, • 

Pc~~ 

Fig. 19·25 

Solution. Force P = 100 kN 

Perpendicular force on the section AB= P sin 45°= ;
2 

Tangential force on the section AB= P cos 45°= ,:
2 

Area of cross section, A= 30x I0+5x20+: 5 x 10= 550 cm2 

Location of G 

K, 

30 X IO X 5 + 20 X 5 X 20 + 15 X IO X 35 
)'2 = 550 

1500+2000+ 5250 = 15.9 cm 
550 

y1= 40- 15'9=24'1 cm 

Radius of curvature, R=R1 + Y2= 20 + 15'9= 35'9 cm 

Bending moment on the section, 

M= J2 x(OK'+ OA + y2) 

JOO =-:Jz x (lOOx V2+35"9) 

;=1n3s·9 kN cm 

P sin 0 
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Direct force on the section, 

P'=_f._ =___!_22_ =70·7 kN ...;2 ...;2 
h2 R [ 30 50 60 J R2 = A 30 In 20 + 5 In 30 + 15 In 

50 
- 1 

;: = ~~6 [30X0"4056+5X0"5106+15X0"1824]- l 

=0"0652[12" ]68 +2·553+2·136]- l = l '1382-1 =0' 1382 
R2 
-=7"236 h2 

Tensile stress at point A 

= M [---1.l:_ X _!!: - I ]+ P' 
AR R-h h2 A 

= 12538'9X 1000[ 15"9 X 7.236_ l]+ 70·7x 1000 
550 X 35'9 3S-9-15'9 550 

==635'04 [ 4'752] + 128'54 

= 3146'25 N/cm2 = 31 '46 N/mm2 

Compressive stress at point B 

= M [ 1+ R2 x---2L-]- p ~ 
AR h2 R+Yi A 

12538'9 X 1000 [ l + 7'236 X 24' I ]- 70'7 X I 000 
550 X35'9 35'9+24" 1 550 

= 635'04 [3'906]- 128'54 
= 2351'9 N/cm2 =23'52 N/mm2. 

95) 

Problem 19'3. The radius of the inner fibres of a curved bar of trapezoida'l section 
is equal to the depth of the cross section. The base of the trapezium on the concave side is 
four t imes the base on the convex side. Determine the ratio of the stresses in the extreme 
fibres of the curved bar to the stresses in the same fibres of a straight bar subjected to the same 
bending moment. 

Solution. 
Now R2=D 

R1=2R2=2D 
B2= 4B1 

_ B1 +2B2 x D 
Yi - Bd-S2 3 

= _!11+8B1 X ..Q._= 0'6 D 
B1+4B1 3 

So y 2=0'4 D 

D 
Area, A=(B1 + B2) 2 Fig. 19·~6 



954 STRENGTH OF MATERIALS 

R = R2+Ji= 1·4 D 

~: = ~ [{ B1+ B2
;B

2 (Yi+R)} In ( ;:~: )-(B2-B1) J-1 
= ~ [{ B1+ 3t1 XR1 }/n c::~~~:~~)- (3B1)J-1 

1·4D = ~ [7B1 I,. 2-3B1]-l 

1"4D 
2.5 BiD [7B1 /11 2-3B1]- I 

=0.56[7 X 0·693-3]- l = 0·03656 

Let us consider that this curved bar is subjected to a bending moment, M tending to 
reduce the curvature. 

Maximum tensile stress, 
(when y=-y2) 

f-~[----1'.L R2 - 1 J 12 - AR R-y2 . f12 

i 

- M [ 0"4D 2T3'i I J 
- 2·5B1D x 1·4D _ 1"4D- 0·4Dx --

= ~ . ~ ~ D" [10.94-1] 
·' ) 1 ~ 

2·&4 M 
- B1D2-

Maximum compressive stress, 
(when y = + Yt) 

Stresses in the straight bar 

... ( I) 

I '• 

... (2) 

Let us divide the section in two triangles as shown, as to calculate the moment of 
inertia In. 

Area of triangle / , 

Area of triangle II, A2= B~D = 2B1D 
. \ 

/Yr of triangle I, about its C.G. 

= B1Ds 
J6 
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Distance, h1= (0·6 - 0·333) D=0·2661 D 

Jyy of triangle II, about its C.G. 
. = B2Ds 

36 

Distance, h2=(0·4-0·333) D= 0·06661 D 

Jyy of the whole section=_p3~ ~ + Bt (0'2667 D)2+B1i3 
+2B1D (0'0667 D)2 

and 

= J_B Da + B1D ~ Dz+ 2B1DXD2 X4 
36 1 2 X 900 900 

- 11 B D3 
- 60 1 

Maximum tensile stress, 

r' M 
12 =-

1
- XY2 
n 

Maximum compressing stress, 

So the ratios ft - 2·84 = 1 ·303 
N - 2·18 

!1 = 2·627 = 0'804. 
!1' 3·27 

Proble1n 19'4. The cross section of a triangular hook: has a base of 5 cm and altitude 
7·5 cm.and a radius of curvature of 5 cm at the inner face of the shank. If the allowable stress 
in tension is 100 N/mm2 and that in compression is 80 N/mm2, what load may be applied along 
a line 7·5 cm from the inner face of the shank. 

Solution. Fig. 19'27 shows a triangu
lar section with base 5 cm and altitude 7· 5 cm. 
Radius of curvature R1 is equal to 5 cm. 
C.G. of the section lies at a distance of 
7·5 T cm from the base. 

So y 2= 2'5 cm, y 1 =5 cm 
Radius of curvature, · 

R = 5+ 2'5 = 7'5 
Breadth, B1 = 0 and B2 = 5 cm 

and depth D= 1·5 cm 
Area of cross section, 

A= 5x 7·5 = 18'75 cm2 

2 

R1 :5cm 

Fig. 19·27 

l ond 
p 



Say load api;>ll.ed 
Bending moment 

}!:__ __ B_[{· B + B2- B1 ( +R)J J R.+Yi -(B - B) ]-I 
R2 - A 1 D Yi n R-y2. 11 1 

1 ·5 [{ 5 . } 1·5+5 J = 
18

.75 O+ ~ X (5 + 7 5) In 1.5 _ 2.5-5 - I 

= ;/
75 

[8'33 x o·916- 5J-1=1·os2-1=o·os2 

RS 
- = 19·23 h2 

= P New,tons ; 
M =(7'5+2'5) P = lO P N cm 

Maximum tensile stress at A, 

= Mr _ l!_ x~-1 J+_f_ 
AR L R-y2 h2 A 

= fg·~Osi fs[ 7.;~ 2·5 X 19'23.-1 ]+ 1i75 = 10000 N/cm2 

or P[0'6126+ 0·0533] = 10000 
or P = 15017·2 N = lS'Ol 7 kN 

Maximum compressive stress at B, 

M [ R
2 

Yi J P = AR 1 +: h2 X R+Y1 - A • 

lOP [ 5 J P 
= 18·1s x 1·s 1+ 19·23 x 1·s+5 -is 75 

= P[0·6180- 0·0533] = 8000 N/em2 

P= 14166'8 N = 14'166 kN 

So the maximum permissible load is 14'166 kN. 

Problem 1,9:5, A ehain link is made 0f round~ steel1 110d of; diamet¢r, !121 mm. If 
R= 40 mm and /= 601 mm, draw the stress distribution diagram along the intrad'Os if the link 
is- subjected to a tensile load of l '5 kN. 

Solution. 
Bar diameter, .d= 12 mm 
Radius of curvature, R= 40 mm 
Length of straight portion, 

/= 60 mm 1 

Load, P = l500 N 

d2 [ 1 ( d , 2 5 ( d )4 J 
h2= 16 l+2 2R J +I6 2R + .. .... 1 · 

(12)2
[ 1 ,· 12 )2 5(12)' 1 

= ~ 1+ -iC so, + 16 ,so + ..... 

= \~
4 

r1 + 0·0112s+ o·ooo16J = 9·10299; 

R2 402 

7i2 = 9·10269 = 175·77 



Area of cross section, A=~ (12)2= 113·098 mm2 
4 

p 1500 . 2 -y= 113.098 = 13 26 N/mm 

Radius of g,yvation = k 2= !!:_ = (1 2)
2 

=9 mm 
16 16 

Moreover 

R2 RZ h2 1600 1600 9· 10269 
n - --y-T=-n- --2- - 2 509.29-800-4.55 

=-295'26 

R+·h2l +J!:=40+ 9'10269x60 + 9·10269 =40+19'316+0·227 
nk2 R n X 9 40 

=59.543 

Along the intrados y= - d/2, the equation for the resultant stress is 

p [ R2 d J[7--y- h~] 
/Ri= AR . l-~x 2R- d_ h21 h~· 

R+ nk2 + R 

PR2 . d P 
- 2Alt2 (1 - sm 6) 2R-d + 2A (l+sin 8) 

Substituting the values 

· I 500 [ . 12 J . 
Jiu= 113·098 x 40 l - t7577 x 80-12 [-4959] 

1500 . . 12 1500 
2X ll3.098 X 175 7? (1-sm e) 80-12 + 2 X 113·098 (l+sfu' ,,, 

= 49.357-205'695 (1-sin 6)+ 6·631 (l+sin 6) 
= 49·357-205'695+ 6·631=- 149 707 N/mm2 at 0=0° 
=49·351- 2os·695 (1-0·2588)+ 6·631 0 + 0·25s8) 
= 49.357-152.461+8'347=- 94·757 N/mm2 at 8= 15° 
= 49. 357-205'695 ( 1- 0· 5)+ 6·63 I (1 + 0·5) 
= 49.357-102'847+9·946=-43 '544 N/mm2 at 6= 30° 
= 49.357- 205'695 (l-0'707)+6·63 I O + 0·107) 
= 49'357-60 ·268+ l J ·319= + 0'408 N/mm2 at 0= 45° 
= 49.357- 205'695 (l-0'866)+6·63 l ( l + 0·866) 
= 49·357-27'565+ 12·373=+34.167 N 1mm~ at 0= 60° 
= 49. 357- 205'695 (1-0'9659)+ 6·63 l (I + 0·9659) 



Sf.RBNGTH OF MATBkIALS 

·= 49'357-7·014+13'036=55'379 N/mm2 

=49'357-205'695 (l-1)+6'631 (1 + 1) 
=49'557-0+ 13'262=62'619 N/mm2 

at 0=75° 

at 0=90° 

Fig. 19'28 shows the variation of resultant stress along the intrados, showing that 
maximum compressive stress occurs at the inner fibre where load is applied and maximum 
te&sile stress occurs at the section where the straight line portion in the link _commences. 

------r 
+ 62 ·619 N/mm2 . . 

o,_____,.~~----~,--~~_..L r ·. 90· 

-1l.9· 707N/mm 2 

l_l - & 

Pig. 19·28 

SUMMARY 

I. If a curved bar of radius of curvature R and area of cross se~tion A is subjeeted 
to a (i) bending moment tending to increase the curvature 

Stress in any layer. M [ R2 y J f= AR l +h2 X R+ tensile for positive y 
y . 

M [ R2 
y • 

:= AR 1z2 X R-y - 1 J compressive for negative y 

(ii) Bending moment tending to decrease the curvature 

Stress in any layer, M [ R2 y J f = AR I +h2x R + y compressive for positive y 

= 1ef_ [ R
2 

X _ Y_ - 1 J tensile for negat ive y . 
AR h2 R- y 

2. For a rectangular section 
h2 R R2 
R2 =n In R1 - l 

'\"~qn; :- · D=depth of the section 

where 

R2= radius of outer surface of curved bar 
R1 =radius of inner surface of curved bar. 

{ ·'Fora circular section of diameter d 

, d
2 r 1 ( d )2 s ( a )"- J 

h2= 16l 1+2 2R +I6 2R + ... .... 

4. For a trapezoidal section. 

L hi R [{ B2-B1 (R)} / R1 ) R2 =A B1+ D 2 n ~ -(B2-B1) --- 1 

Bi, B2 = width of the outer and inner surfaces respectively 
Ri, R2 = radius of outer and inner surfaces respectively 

· D=depth of the section 
,. A= area of the section. 
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5. A circular ring of mean radius R is subjected to a diametral pull P, then resultant 
stress on any section at an angle 6 from the load line is 

p [ R2 R2 ( R2 2 . ) v J P . 
jR= A nfR2+h2f + 2h2 R2+1i2 x-; -sm 0 R+y + 2.A sm 0 

where y=distance of the layer under consideration from the centroidal layer. 

6. A chain link of radius at end R, length of the straight portion /, is subjected to an 
axial tensile load P. 

-where 

where 

Resultant stress on any section inclined at an angle 0 from the load line 

p r- R2 y l p R2 y p 
jR= AR L 1+ fl X -k+y - K'+ 2Ah2 (I-sin 8) R+y + 2A (I +sin 0) 

R2 R2 h2 
K' _ -;- - 2 _ - 2 

h2/ lz2 
R+ 1tk2 +7J. 

y=distance of the layer under consideration from the centroidal layer' · 
k=radius of gyration of the section. 

7. Deflection in· a curved bar along a chord 

f Mds 
~e;,,ord=-J h~ 

M=bending moment on a section 

h=perpendicular distance from the point on centre line of the sectio1~ to the 
chord · 11 > 

E= Young's modulus of elasticity 

/ = moment of inertia of the section. 

8. A circular ring of mean ril,dius R subjected to a diametrnl load P 

PRa [ T? 2 ( R 2 ) ·1 
Deflection along 1he load = EI 4 --; R2+1z2 _J 

Deflection perpendicular to the load line 

PRa r I 2 ( R2 )] =EIL 2--; R2+ h2 . 

., r . . 

9. A chain link of mean radius at ends R and length of the straight portion/, subjected 
to axirul load P · · · 

Deflection along the load line 

· PR2 
[ "1; J PRK'l Pl = - gj- ·- ;;·-.-:- 2K' - R - ~+ 2AE . 

\he value of K' is as above 

Deflection perpendicular to the load line 

_ _ 2PR
2 

[ K' + .B__J- PRK'l 
- El 4 El . 

.. '· 

.- !' t,. 

! ·n,f'\', : .. ) 

; . . '! 
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MUL TIPL•E CH01.CE QUESTIONS 

1. A bar of square section 4 cm X 4 cm is curved to a mean a radius of 8 cm. A bending 
moment Mis appl.ied on the bar. The moment M tries to straighten the bar. If the 
stress at the innermost fibres is 80 N/mm2 tensile, then the stress at the outermost fibres is 

(a) ·80 N/mm2 (compressive) (b) 80 N/mm2 (tensile) 

(c) More than 80 N/ mm2 (compressive) (d) Less than 80 N/mm2 (compressive). 

2. The most suitable section of a crane hook is 
(a) Square (b) Round 
(c) Hollow round (d) Trapezoidal. 

3. If bar of square section 4 cm X 4 cm is curved to a mean radius of 80 metres. A bending 
moment M, tending to increase the curvature is applied on the bar. If the stress at the 
outermost fibres is 1000 kg/cm 2 tensile, then the stress at the innermost fibres wiU be 
appproximately equal to 

(a) 1500 kg/cm2 (compressive) 
(c) 1125 kg/cm2 (compressive) 

(b) 1250 kg/cm2 (compressive) 
(dJ 1000 kg/cm2 (compressive\ 

4. A ring is subjected to a diametral tensile load. The variation of the stress at the intrados 
surface from the point of loading up to the section of symmetry is 

(a) Maximum tensile stress to maximum compressive stress 
(b) Throughout tensile stre~s 
(c) Maximum compressive stress to maximum tensile stress 
(d) Throughout compressive stress. 

5. The distribution of stress along a section of a curved bar subjected to a 
tending to increase its curvature is 

(a) Linear 

(c) Parabolic 

1. (d) 2. (d) 

(b) Uniform 

(d) Hyperbolic. 

ANSWERS 

3. (d) 

EXERCISES 

4. (c) 

bending moment 

5. (d) 

19·1. Prove that the ratio of the extreme tensile and compressive stresses in t!he case 
of a curved bar subjected to pure bending is approximately 1 ·76 if the bar is of rectangular 
section whose depth, D=8 cm and the radius of curvature, R= 10 cm. 

19'2. A curved bar of rectangular section with breadth Band depth D= 2B is bent to 
a radius of curvature .equal to 1·2 D. It is subjected to a bending moment of 1 k Nm tending 
to increase its curvature. Determine the size of the section if the maximum stress is not to 
exceed 80 N/mm2• [Ans. B= 24'35 mm. D=4'8·7 ·mm1 

19'3. For the frame of a punching machine shown in Fig. 19'25. Detertnine the 
circumferential stress at the points A and B on a section inclined at an angle 0=60° to the 
vertival. Ta}(e fon;:e P = 1~0 kN. ~Ans. so·o~ N/mm2 (tensile)

1 
36'86 N/mmt (comvressive)l 
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19'4, A curved beam with a circular 
centre line has a trapezoidal cross section 
shown in Fig. 19'29 and is subjected to pure 
bending in its plane of symmetry. The face 
b1 is of the concave side of the beam. If 
h= 10 cm, and a= 10 cm, find the ratio of 
b1/bi of base widths so that the extreme fibre 
stresses in tension and compression will be 
numerically equal. [Ans. 1 '87) 

961 

Fig. 19·29 

19· 5. The cross section of a triangular hook has a base of 4 cm and altitude 6 cm and 
a radius of curvature of 5 cm at the inner face of the shank. If a load of 500 kg is applied 
along a line 8 cm from the inner face of the shank, determine the maximum tensile and com
pressive stresses developed in the critical section of the shank. 

[Ans. 579·02 kg/cm2 (tensile), 560'48 kg/cm1 (compressive)) 

19·6. A chain link is made of round steel rod of diameter 12 mm. If R=40 mm and 
/=60 mm, draw the stress distribution diagram along the extrados for an angle of 90° starting 
from the outermost edge (along the direction of loading) of the curved bar, if the bar is . 
subjected to a tensile load of 10 kN. 

[Ans. 119'32 N/mm2 (tensile) to-27'08 N/mm2 (compressive) stress] 



20 
Unsymmetrical Bending and Shear Centre 

In chapter 8 on theory of simple bending, an assumption is taken that section of the 
beam is symmetrical about the plane of bending. This condition is satisfied if the plane of the 
loads contains the axis of symmetry of all the sections of the beam. Beam sections like 
circular, rectangular, square and I sections are symmetrical about the plane of bending and 
about the neutral axis, while T-section and chall};l~l section with web horizontal are symm~tri~al 
about the plane of bending but unsymmetrical about the neutral axis. Then a beam section 
such as angle-section, is not symmetrical about both the centroidal axis. If the cross section 
of the beam has an axis of symmetry then this axis of symmetry is always a principal axis of 
inerti a, and if beam section has two axes of symmetry, then these are two principal axes. 

If the load line on a team does not coincide with one of the principal axes of the 
section, the bending t :1 kes place in a plane different from the plane of principal axes. This 
type of bending is known as unsymmetrical bending. There are two reasons of unsymmetrical 
bending as follows : 

I. The section is symmetrical like I section, rectangular section, circular section but 
the load-line is inclined to both the principal axes. 

IT. The section itself is unsymmetrical like angle section or a channel section with 
vertical-web and load line is along any centroidal axis. 

Fig. 20·1 (a) shows a beam with I section with load-line coinciding with Y-Y principal 
axis. I-section has two axes of symmetry and both these axes are principal axis. Section is 
symmetrical about Y-Y plane, I.e. , the plane of bending. This type of bending is known as 
symmetrical bending. 

Fig. 20' l (b) shows a cantilever with rectangular section, which has two axes of 
symmetry which are principal axes but the load line is inclined at an angle oi with Y-Y axis. 
This is first type of unsymmetrical bending. Then Fig. 20· 1 (c) shows a cantilever with angle
section which does not have any axes of symmetry, i.e., X-X and Y-Y are not the axes of 
symmetry. Load line is co inciding with Y-Y axis. This is the second type of unsymmetrical 
pendin~. 

96i 
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w 

Symmetricel_ -~~oitig 

~nsyrn mitr,co~ be n d ing 

S, r t,ie i r,co! scc t, cn bu t 

ob l ,c:; yi h od 

Unsyrnme tr,co l ben d ,og 

( Unsymmetrical section ) 
( C ) 

Fig. 20·1 

y 

Before we proceed further let us study about the principal axes crf a section. 

20·1. PRINCIPAL AXES 

. Fig. 20·2 shows a beam section which 
is symmetrical about the plane of bend ing Y-Y, 
a requirement of the theory of simple bending 
or symmet11ical bending. G is the centroid of 
the section. XX and YY are the two per
pendicular axes passing through the centroid. 
Say the bending moment on the section (in the 
plane YY of the beam) is M. about the axis 
XX. Consider a small element of area dA with 
(x, y) co-ordinates 

Stress on the element, 
M 

f=-1 .y 
.ex 

MydA 
Force on the element, dF= - -1-

x,r 

V 

.x X 
y 

Fig, 20·2 

... (1) 
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or 

or 

or 

Bending moment about YY axis, 

dM= MyxdA 
fxx 

Total moment, M'=J MyxdA 
fxx 

If no bending is to take place about YY axis, then 

M'=O 

f
MyxdA = O 

lxx: 

}ef Jxy. dA = O 
fxx 

JxydA=O 

... (2) 

... (3) 

The expression fxydA is called a product of inertia, of the area about X-X and YY 
axis, represented by l;,y· If the product of inertia is zero about the two co-ordinate axes 
passing through the centroid, then the bending is symmetrical or pure bending. Such axes 
(about which product of inertia is zero) are called Principal axes of the section and moment of 
inertia about the principal axes are called Principal moments of inertia. 

The product of inertia may be positive, negative or zero depending upon the section 
and co-ordinate axis. The product of inertia of a section with respect to two perpendicular 
axes is zero if either one of the axes is an axis of symmetry. 

Example 20·1-1. Show that product of inertia of a T-section about a centroidal axis 
is zero. 

Solution. Fig. 20·3 shows a T-section 
with flange BX h1 and web b X h2• The section 
is symmetrical about YY axis. Say G is the 
centroid the section on the axis YY, and X-X 
and YY are the centroidal axes 

/,,11=/zp' for flange+/.,./' for web 

For flange x varies from 

B B - 2 to +2 
For web x varies from 

- ~ to + ~ 

Now, 

Ya + B/2 

lzr = j J xy dx dy 
Ya - B/2 

Y, +b/2 

!Y j 

Fig. 20·3 

+ I J xy dy dy 
- Yi -b/2 

· · -..&)• 
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Y3 + B/2 Y2 +b/2 

=I I ~2 

l y dy+ 1 11~ I y dy 

Y1 -B/2 -YI -b/2 

Yo Y1 

= 0 X 1 y dy + oxJ y dy =0 

Y1 
(for flange) 

-yl 
(for web) 

Example 20·1-2. Determine the product of inertia about axes X and Y for a triangular 
section shown in the Fig. 20"4. 

Solution. Consider a small element 
of area dA at co-ordinates x, y. 

Product of inertia about!XY axis, 

20 

In= f 
0 

2y 

I xy dx dy 

0 

Note that limiting value of 
x=40 mm=2X limiting 
value of y 

20 2y 

= f [ f x dx J y dy and also 
0 0 

20 2y 20 20 

40 

=I [ 
0 

= i I t I y dy= f 2Y
2
·Y 

0 0 0 

dy = I 2y3 dy 

0 

20 

I 
y4 I 204 

= 2 = 2 = 80000 mm4
• 

0 

Exercise 20·1-1. Consider an I section 
with flanges Bx t1 and web H X t 2 and show 
that product of inertia about its centroidal 
axes is zero. 

Exercise 20·1-2. Fig. 20·5 shows a 
rectangular section with breadth b and height 
h. Determine the product of inertia of the 
section about X-Y axis. 

y 

Fig. 20·4 

I~ 

T 
.h. 

1 . )( 
OJ---b 4 ,/ 

Fig. 20·5 
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20'2, PARALLEL AXES THEOREM FOR PRODUCT OF INERTIA 
Fig. 20'6 shows a section with its cent

roid at G and G X', GY' are the two rectangular 
co-ordinates passing through G. Say the 
product of inertia about X' Y' is Dry, let us 
determine the product of inertia about the 
axes OX and OY i.e. lzv. 

Say distance of G from OX axis=J 
and distance of G from OY axis=x 

Consider a small element of area 
dx. dy 

Say co-ordinates of the element about 
the centroidal axes GX', GY' are x', y'. 

Then co-ordinates of the element about 

y 
Se~tion 

V 
~----'----~-+---- (x_ 

X-Y axes are Fig. 20·6 
x =x+x' and y=y+y' 

So product of inertia, I~,= I xy dA= J (x+x')( y+y') dxdy 

.,. = J x'y' dA+xy J dA+y J x' dA+ x J y'dA 

= I:xy+x y A+o+o 

( because J x' dA = J y' dA=O about centroidal axes ) 

lxy=l:xy+A x y 

i.e. the product of in~rtia of any section with respect to any set of co-ordinate axes in 
its plane is equal to the product of inertia of the section with respect to the centroidal axes 
parallel to the co-ordinate axes plus the product of the area and the co-ordinates of the centroid 
of the section with respect to the given set of co-ordinate axes. 

Example 20'2-l. Fig. 20·7 shows an unequal channel ·section, determine its product 
of inertia Ix, and l:xy· 

Solution. Let us break up the section 
into 3 rectangular strips I, II and III as shown 
and write the co-ordinates of their centroids 
with respect to the given set of axes YOX. 

- - - ------ ---- - - - - - --

Strip Area x y Ax y 
i 

I 
I 20 cm2 Siem 1cm 100 cm4 

II 8 cm2 0''5 cm 6cm 24 cm4 

Ill 112 c~2
' 3 cm 11 cm 396 cm4 

2cm 

I 
8cr'n 

:r: ---ti . . _ l 
l " : 2cm -,,,m _J--r,x 

. 10 cm 

Fig. 20·7 
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Remember that the product of inertia of these rectangular strips about their principal 
axes passing through the respective centroids is zero, because rectangular strips have two axes 
of symmetry. 

Uxy)i=O+ 100 cm4 
(J,,.)11=0+24 cm4 

Ux,.>m=0+396 cm4 

Ix ,=520 cm4 

(using the parallel axis theorem for 
product of inertia) 

To determine L _, let us first determine the position of the centroid of the section . 
xy 

__ 2oxs+sxo·5+12x3 _
3
.
5 .t- 20+8+ 12 - cm 

y 20X l+8x6+ 12 X 11 
20+8+ 12 =5 cm 

Area of crnss section, A= 20+8+ 12=40 cm2 

lxy=lzv-A x y=520-40x3·Sx5=- 180 cm' 

Exercise 20·2 -t. Fig. 20·3 shows an 
an unequal angle section , determine its product 
of inertia Ix. and '-y (through the centroidal 
axes) .t 

f Ans. 24'75x 104 mm4, 
-32'30 X 104 mm4] 

Fig. 20·8 

20'3. DETERMINATION OF PRINCIPAL AXES: 

In article 20· 1 we have learnt that principal axes pass through the centroid of a section 
and product of inertia of the section about principal axes is zero. Fig. 20·9 shows a section 
with centroid G. XX and YY are two co-ordinate axes passing through G. Say UU and VV 
is another set of axes passing through the centroi~ G and inclined at an angle e to the X-Y 
co-ordinate. Consider an element of area dA at pomt P having co-ordinates (x y). Say 
u, v are the co-ordinates of the point P in U- V co-ordinate axes. ' 

where 

·· or 

So u= GA'= GD+DA'= GD+AE (as shown in the enlarged figure) 
GD=GA cos 8= x cos 8 
AE= DA'=y sin 8 

u=x cos o+ y sin 8 
v=GB'= PA'=PE-A'E 

= PE- AD since A'E= AD 
= PA cos 8-x sin 6=y co~ 8-x sin o 
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Similarly x, y co-ordinates can be written in terms of u, v co-ordinates . 

X 
. -)( 

GA= Su 
G8 1t6v 
GC = 6 
~ :Neutr,, \ 

ox i~. 

Fig. 20·9 

x = GC- AC= GC-A'F= u cos 8- v sin 0 

(as PA'= vand GA'= u) 

y=GB=PA= AF+ FP= A'C+FP= u sin 0+v cos() 

Second moment of area about U-U 

/,,,, = J v2dA = f (y cos 0-x sin 8)2 dA 

= J y2 cos2 0 dA + f x2 sin2 6 dA - J 2xy .sin 0 cos 8 dA 

= lxx cos2 0+In sin2 0-J sin 2 6. xy dA 

= f xx cos2 8+ l>Y sin2 0- l:ty sin 2 8 

= i U. .. + In)+l Uxx-ln) cos 2 8-/~11 sin 2 0 

Second moment of area about V-V 

/-.= J u2 dA = f (x cos 8+ y sin 9)2 dA 

= f x2 c0s2 0dA+ J y2 sin2 8 dA+ J 2 xy sin 6 cos 0. dA 

= lvv cos1 o+Iu sin2 0+ 1.'I sin 2 () 

= ! (/.u+ I,.)+ t (/1111 - lu) cos 2 0+ / ," sin 2 6 

From equations ( l) and (2 ', 

J,,.,+J, 0 =lxx (sin1 8+cos1 0) + In (sin• 8+ cos1 0)= Ixx+ In 

Product of ;nertia about UV axes 

/u v= I UV dA·= r (x cos 9+y sin 8) (y cos 0- x sin 6) tf!{ 

... (I) 

.. . (2) 

... (3) 
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= J xy (cos2 0-sin2 e) dA+ J y2 sin 8 cos 0 dA- j x2 sin 0 cos 9 dA 

sin 29 sin 20 
J.,.=Ix, cos 28+ 1,.,, 

2 
-!yy 

2 

:Blilt as per the condition of pure bending or symmetrical bending Iu.= 0, then U and V 
will be the principal axes 

or 

Or 

2 lx y COS 28-1-(Ixx- fyy) sin 20=0 

tan 20 = 2 l xv = 1'"• 
f,v - f xx (/yr-f:u)/2 

... ( -4) 

Say 01 and 82 are two values of 0 given by equation (4) 

62=81+90° 

. 20 lxy 
sm 1 - J=·-=-=:........:...:....-==== 

. ( ~ ;Ixx r + Ix,,2 

d 20 
(J,,, - l xx)/2 

an cos 1= J ( fvv; f.,., )9+lx>2 

Substituting these values of sin 2 01 and cos 201 

1 1 2 (J,,,.--Jn) 2 (l,,,-Ixx) 
Uxx + Ivv)+ 

J[ } (/,y- Ixx) J2+1 .. ,,2 

~ [ { (l,,- l xx) J+ I .. i 

Similarly 

Now for 

(/uu)d1 = ~ Urx+ J,,)-Jl + (/11v - fxx) J+J.-;2 

(Jvt)01 =} Uxx+ fvv)+ J [ ~ (/yy- J,.-) T + l .-,2 -

02=81 + rt/2 
sin 202=sin (201 +rc)=-sin 291 

cos 28 2=cos (201 +7t)=-cos 201 

Substituting these values in equations (I) and (2) 

(/uu) o2= ~ (/~x+Ivvl+J[-~-(-ly_i, ___ f.,-:1)-J-2+ 1~,2 

{Jvu)e2 = ~ (f,, ,,+J,,)-J[ ~ (111-fxx) J + fx_..2 

From equations 5, 6, 7, 8 we learn that 

(/ .. .,)01 = (J,.)02, and (1 .. ),1 = (/vu)11 2 

1t{aximum and minim um values of luu and lvu 
1 1 

[,,,,= -i· (! .... + In)+ 2 Un- l ,n.) cos 20+1 .. , sin 28 

. . . (5) 

.. . (6) 

... (7) 

... (8) 
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i.e. 

or 

For maximum value of l,m, 

dfuu = O 
dB 

{- (1,,,-lxx) (-2 sin 20)+lxyX2 cos 28 = 0 

tan 28 
I_., 

This shows that the values of (/.,11)e1 and U vv)e1 are the maximum and m101mum values 
of fu u and Iv,. These values arc called the principal values of moment of inertia as luv= 'O. 
The directions 81 and 82 are called the principal directions . 

Moment of inertia about ~-ny axis 

If the principal moments of inertia /.,,. and /,. are known then moment of inertia about 
any axis inclined at an angle 8 to the principa l axes can be determined. Say u, v are the 
co-ordinates of an element of area dA in the U-V principal axes system. X and Y are the 
co-ordinates axes inclined at an angle 8 to the U-V axes. 

x co-ordinate of element = u cos tj-v sin 8 

y co-ordinate cf element=u siu a+v cos 8 

Moment of inertia, /})'=-:} x2 dA= J (u cos 9- v sin 6)2 dA 

= J u2 cos2 8 dA+ J v2 sin2 9 dA--- j 2 uv sin c;s e dA 

Similarly 

= h v COS2 B+Iuu sin2 0-0 since J UV dA = O 

= l ,v cos2 e+Iuu sin2 8 

fu = f.,u cos2 8+ I .v sin2 0 

From equations (9) and ( 10) 

J,,.+ J,,= /,..,+ fov=J, 

polar moment of inertia about an axis passing through G and normal to the section. 

Example 20·3-1. Determine the 
principal moments of inertia for the equal 
angle shown in the Fig. 20· 10. 

Solution. Let us consider the angle 
section in two portions I and II as shown and 
determine the position of the centroid 

(due to symmetry x=_y) 

Moment of inertia, l srr-= I11~ 

,. 

... (9) 

•.. (10) 
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10Xl3 9 X l3 
= - 1-2 - +10 (2·81-o·s)2 + 12 +9 c2·81-o·sp 

=;: o·833 + s6· 169+ 0·1so+ 50·552 
= 108'304 cm4 

. Co-ordinates of centroid of portion I 

= [(5-·2'87),-(2'87-0'5)]=(2" 13, -2·37) 

Co-ordinates of centroid of portion II 
= [-c2·s1-0·5), (S-5-2·87JJ =(-2·31, 2·63) 

Product of inertia, l zy= lO (2'13) (- 2"37)+9 (2°63) (-2'37J 

97! 

(as the product of inertia about their own centroidal a xes is zero, since portions I anJ 11 are 
rectangles). 

So fxy= -50'481-56"098= - 106"579 cm4 

If O=angle of the principal axes VU with respect to X-axis 

or 2 0=90°, or 8= 45° 

106'579 
o·o 

Principal angles are 01=45°, 02= 90°+45"= 135° 

Principal moments of inert ia 

CIC 

I l 
Iu .. = ·2 (l..,+ Tyy)+2 Un-In.) cos 201 - /,,v sin 20

1 

=} (108'304+108·304)+ ~ x oxcos 90°+ t06"579 Xsin 90° 

= 108"304+ 106'579=214·883 cm4 

fvv = fxx+ln-f,.,. =2X 108'304- 214'883 

= 1·725 cm4• 

Example 20 3-2. Fig. 20· 11 shows 
m I section 15 cm X 20 cm. Axes X'X' and 
'' Y' are inclined at an angle of 30° to the 
.xes of symmetry. Determi ne the moment 
,f inertia about th!se axes. Calculate also 
1e product of inertia /,,'/. 

Solution. The I section shown has 
wo axes of symmetry i.e. , VU and VV passing 
h.r ough the centroid G. Therefore. these are 
1e principal axes and f uu and f ,v are the 
rincipal moments of inert ia. The angle of 
1clinations of VU and VV axes with respect 
> X'X' and Y'Y' axes is 0=30°. 

u 

I/ 

Fig. 20'Jl 

-~1 . . ,;~ 

T1c .. 
I 

y 



972 

sini 0= 0'25 cos2 8=0'15 

/ / ,'= Irv cos2 B+ l «u sin2 p 
Ix'x' = l uu cos2 O+Ivv sin2 0 

I;TR'ENGTH OP MA 1'BRIALS 

Now !,.,.= 
15 ;;os - 14

;
2

161 
10,000- 4778'667=5221'333 c~ 

lvv= 
2~?3 

+ 
16:i 13 

+ 
2

~ ~
53 

562'5+1'333+562'5 

Therefore, 

= 1126'333 cm4 

[y'y'= 1126·333 x 0·15 + 5221 ·333 x 0·25 

d:844'749 + 1305'333 = 2150'082 cm• 

/x'x' = 5221 '333 X 0'75+ 1126'33 x 0'25 

= 3915'999 + 281 '583 = 4197'582 cm4 

Now luu= f (/x' x ' + IY 'y')+T (Jx'x' -fy'y' ) cos 26-Ix'r' sin 20 

522 l '333= ~ (4197'582+ 2150'082) 

+ + (4197 '582 - 2150'082) cos 60°- Jx 'y'X 0'866 

5221 '333 = 3173'832+51 J '875 - /x 'y 'x 0'866 

I I I = - 15 15' 626 = - l 750' l 45 ( 
x Y 0'866 cm 

Exercise 20'3-l. Determine the 
principal angles and principal moments of 
inertia for the section shown in the Fig. 20· 12. 

[Ans. 29° 31', 119° 31'; 
luu= 360'044 cm', 
Iw = 38'29 cm'] 

Exercise 20'3-2. Consider a rect
angular section of 6 cm width and 12 cm 
depth. Determine /xx, /yy and Jxy about XX 
and YY axis inclined at an angle of 45° to the 
principal axes. 

[An,;;. 540'0 cm', 540'0 cm', - 324 ·o cm'] 

20'4. STRESSES DUE TO UNSYMMETRICAL BENDING 

Fig, 20'12 

When the load line on a beams does not coincide with one of the principle axes of ti 
section, unsymmetrical bending takes place. Fig. 20· 13 (a) shows a rectangular sectio· 
symmetrical about XX and YY axis or with U-U and V- V principal axes. Load line is inclim 
at an angle ef, to the principal axes VV, and passing through G (centroid) or C (shear centre) , 
the section. 
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Y,V 

~ 

\ I I 

(, IE" 

V,t y 
( 0) 

p 

-- u,x X 

"' \ y 

(b) 

Fig. 20·13 
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p 

· -x.t:J 

v,v (c) 

Fig. 20' 13 (b) sho,vs an angle section which does not have any axis of symmetry. 
Principal axes UU and VV are inclined to axes XX and YY at an angle 0. Load line is inclined 
at an angle cf, to the vertical or at an angle (90-¢- B) to the axis U-U. Load line is passing 
thtough G (centroid of the section) or C (shear centre). 

Fig. 20'13 (c) shows a cha:mel . section which has one axis of symmetry i.e., XX. 
Therefore, UU and VV are the principal axis. G is the centroid of the section while C is the 
shear centre. Load line is inclined at an angle cf, to the vertical (or the axis VV) and passing 
through the shear centre of the section. 

Shear centre for any transvers'e section of a beam is the point of inter section of the 
bending axis and the plane of transverse section. If a load passes thrcugh the shear centre 
there will be only bending of the beam and no twisting will occur. If ?. section has two axes 
of symmetry, then shear centre coincides with the centre of gravity or centroid of the section 
as in the case of a rectangular, circular or I section. For sections having one axis of symmetry 
only, shear centre does not coincide with centroid but lies on the axis of symmetry, as shown in 
the case of a channel section. 

For a beam subjected to symmetrical bending only, following assumptions are made : 
(i) The beam is initially straight and of uniform section throughout 

(ii) Load or loads are assumed to act through the axis of bending · 
(iii) Load or loads act in a direction perpendicular to the bending axes and load line 

passes through t!ie centre of transverse section. 
Fig. 20' 14 shows the cross section of 

a beam subjected to bending moment M,. in 
the plane YY. G is the centroid of the section 
and XX and YY are the two co-ordinate axes 
passing through G. Moreover UU and VV 
ttre the principal axes inclined at an angle 0 
to the XX and YY axis respectively. Let us 
determine the stresses due to bending at the 
point P having the co-ordinates u, v corres
ponding to principal axes. Moment in the 
plane YY can be resolved into two components 
M1 and M2 . 

M
1

, moment in the plane UU= M sin B 

M2, moment in the plane VV= M cos 9 
The components M1 and M2 

have their axes along VV and UU respec
tively. 

X 

1Y 
' 
M 

Fig. 20·14 

M1 : M sine 

Mz:M cosEl 

GA' :u 

GB:v 

A 
Ll:1$A • cit 
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Resultant bending stress at the point P 

Ji 
M1 • u M2 • v M sin ~ . u + M cos 6 . v b---+---= 

- fvv luu fvv luu 

=M [ v cos 8 + u sin 8 J 
luu loo 

... (1) 

The exact nature (whether tensile or compressive) depends upon the quadrant in which 
the point P lies. In other words sign of co-ordinates u and vis to be taken into account 
while determining the resultant bending stress. 

The equation of the neutral axis can be determined by considering the resultant 
bending stress. At the neutral axis bending stress is zero i.e., 

M[ v cos 6 + u sin 8 ]=o 
luu lv0 

or 
sin 8 luu 

V=--- x - .U 
COS 8 l oo 

= -tan o;. u ... (2) 

where tan o;= -- - =tan 6 -sin 8 luu ( luu ) 
COS 8 · lo v / 00 

This is the equation of a straight line passing through the centroid G of the section. 
All the points of the section on one side of the neutral axis have stresses of the same nature 
and all the points of the section on the other side of the neutral axis have stresses of opposite 

·nature. 

Example 20'4-l. A40 romX40 mmx 
5 mm angle section shown in the Fig. 20· 15 is 
used as a simply supported beam over a span 
of 2'4 metres. It carries a 0·200 kN of load 
along the line YG, where G is the centroid of 
.the s,ection. Determine resultant bending 
stresses on point A, B and C i.e., outer corners 
of the section, along the middle section of the 
beam. 

Solution. Let us first determine the 
position of the centroid 

x~J= 40x5 x 2·5+35 x 5 x 22·5 
200+ 175 

_ 500+3937'5_ 11 '83 
- 375 - mm 

J 

l . 

/ 

Fig. 20·15 

Moments of inertia, I x,= 
57}53 

+ 5 x 35(22'5- ll'83)2+ ~ ~/
3 

+40 X5(11'83 - 2'5)2 

= 17864'583+ 19923'557+416'667 + 17409'780 

= 55614'537 mm4= 5'56I x 10' mm4 

= In (because it is equal angle section) 
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Co-ordinates of G1 (centroid of portion I) 

Co-ordinates of centroid 

= + (20 - 11·83), - (11 ·83 - 2·5) 
= (8·11, -9'33) 

G2=- (11 ·83-2·5), + (22·5 - 11 ·83)= -9·33, + 10·61 

Product of inertia, l x;= 40 X 5(8 ' 17)(- 9'33)+35 x 5(-9'33)(10'67) 

915 

(Product of inerti a about their centroidal axes is zero because porti on I and II are 
rectangular strips) 

Principal angle, 0 

fry = - l 5245'22-17421 '44= - 32666 '66 mm4 

=- 3'266 x 104 mm4. 

tan 20=, - _!x !__ = -3'266Xl04=<X 
2 u~v- lxx) 0 

= tan 90° 6=45°. 

Principal Moment of Inertia 

Bending moment 

1 ..... . = lUxx+I~v)+Hixx-ln) cos 90°-lzll sin 90° 
= H5'56l +5'50) x 104+} x O Xcos 90°+3'266 x 104 

•=5'561 +3·266) x 10'1=8'827 x 104 mm4 

fvv = fx.,+fyv-fuu=l5'561 +5'561 - 8'827) X 104 

= 2'295 x 104 mm4 

M = WI= 0'200 x 103 X2'4X 103 = O·J 20X l06 N mm 
4 4 . 

Components of bending moment, 

M 1= M sin 45°= 0·12oxo·101 x 106 = 84'84x 10a N mm 
M 2 = M cos 45°=0·12oxo·101x 106 = 84'84x 10s N mm 

u-v co-ordinates of the points 

Point A. x= -11 '83, y = 40- l I '83 = 28'17 

'~:. \'J 

-·-; , ; 
. ' 

u= x cos B+ y sin S= -l l'83X0'707+28 ' 17 x0·7o7 = 11·55 mm 
v= y cos 0- x sin 6=28·11 x o·101+ 11·83x0·7o7= 28'28 mm 

Point B. 

Point C. 

x= - 11 '83, y = - 11 '83 
u= -11·g3 X 0'707- J l '83 X 0'707= - 16'727 mm, V=O 

x = 40-11.83 = 28·11. y = -11'83 
u= 28'17xcos 45°-1 1·g3 sin 45° 

= 28' l 7X0'707- l l '83 X0'707= 11 ·55 mm 
v= -11 '83 X 0'707-28'17X 0'707= -28'28 mm 

Resultant bending stresses at points A, Band C. 

JA= f::!1u + M2v=84.84x1oal 11·55 28'28 J 
lo f~• L2'295 X]04+ 8'827XIQ4 

= 69'88 N/mm2~ 
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- -11"627 0 J 
/n=84"84xto:iL2·295XlO' + 8"827xl0' =-42"98 N/mm2 

- • 3 [ 11 ·55 
/c-84 84X 10 !"'.!95 X lO' 

!8"!8 J 
S"8!7Xl0' =+15"51 N/mm2. 

Example 20·4-2. Fig. 20· 16 llhows I section of a cantilever 1 ·2 metres Ion: imbjected 
to a load W =40 kg at free end along the direction Y'G inclined at 15° to the vertical. Deter
aine the resultant bending staess at corners A and B, at the fixed section of the cantilever. 

Solution. I section iii symmetr ical about XX and YY axis, therefore XX and YY 
are tlle principal axes UU and VV. 

Moment of Inertia 

3x53 2·sx4·53 
fuu = fx x= ~ 12 

=31"25-21"26 
=9"99 cm' 

0·25 x2x3a 4·5x(o·2)s 
IH=lyy= 12 +-12-

= 1"125 + 0·003= 1·128 cm' 
Maxm. Bending moment 

M = W/=40 X l 20=4800 kg-cm 
Components of bending moment 

M1 = Msin 15°=4800 X0"2588 
= 1242"24 kg-cm 

M 2=M cos 15°= 4800 X 0'9659 
= 4636"32 kg-cm 

... 

Due to bending moment M1, there 
will be tensile stresses at points B and and 
compressive stresses at points D and A Fig. 20·16 

Due to bending moment M 2 there will be tensile stress on points A and B and com
pressive stress on points C and D. 

.. .. Resultant bending stress on A, 

463~-~x2·5 - 124~·-~~; 1·5 = 1160'24- 1651'91 

= -491'67 kg/cm2 

B fB-- M2 x2·5 + M1 X 1 ·5 
Resultant stress on , / .,,. IH 

4636"32 X2'5 1242'24X ]"5 
9·99 + 1 · 128 = 1160"24+ 165) '!} t 

= ~8 12"15 k~/cm\ 
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Exercise 20·4-l. Fig. 20· 12 shows Z-secticn of a beam simply supported over a 
span of 2 metres. A vertical lo(td W= 2 kN acts at the centre of the beam and passes through 
the centroid of the section. Determine the resultant bending stress at points A and B. 

[Ans. - 11·05 N/mm2, + 17'05 N/mm2
] 

Exercise 20·4-2. A cantilever of rectangular section of breadth=4 cm and depth 
6 cm is subjected to an inclined load W at !he free end. The length of the cantilever is 2 
metres and the angle of inclination of the load to the vertical is 25°. What is the maximum 
value of W if the maximum stress due to bending is not to exceed 200 N/mm2• 

[Ans. 1558·24 NJ 

20'5. DEFLECTION OF BEAMS DUE TO UNSYMMETRICAL BENDING 

Fig. 20· 17 shows the transverse section 
of a beam with centro id G. X-X and Y-Y 
are two rectangular co-ordinate axes and 
U-U and V-V are the principal axes inclined 
at an angle 6 to the XY set of co-ordinate 
axes. Say the beam is subjected to a load W 
along the line YG. This load can b~ resolved 
into two components i.e., 

Wu=Wsin 0 
(along UG direction) 

W.=W cos 0 
(along VG direction) 

Say deflection due to Wu is G.4 in t he 
direction GU 

i.e. , GA=Su= K.w .. .za 
E l vo 

X 

'\ -,. 

y GA : 

GB = 
y 

\ 

y ' '\/ 

Fig . 20·17 

___ \.) 

where K is a constant depending upon the end conditions of the beam and position of the load 
a long the beam. 

i.e., 

Deflection due to w. is GB in the direction GV 

Total deflection , 

KWv/3 

EI,,,, 

= KW/3 
{ sin2 0 + cos2 0 

E \J lv,2 I ,.,.2 

Total deflection 6 is a long the direction GC, at angle y to VV axis 

CG GA Wu f .,,;, 
tan Y= GB = GB = 7;.,- X W. 

W sin 0 I~u luu 
= W cos 8 X I •• = tan 0 l .v 

Comparing this with the equation (2) of article 20 (4) 

,. • I • 
8 f uu tan o:= tan . -

1
- , 
v~ 
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where ex is the angle of inclinat·ion of the neutral ax·is with respect to UU ax,is 

and 0 luu tan y = tan . -
1 vv 

where y is the angle of inclinations of direction of 8 with respect to VV axis 

y=ri, showing thereby that resultant deflection 8 takes place in a direction perpendicular 
to the neutral axis. 

Example 20'5-l. A simply supported beam of length 2 metres carries a central load 
4 kN inclined at 30° to the vertical and passing through the centroid ·of the section. Determine 
(!) maximum tensile stress (2/ maximum compressive stress and (3) deflection due to the 1oad 
(4) direction of neutral axis. Given E= 200 x 105 N/cm2. 

,v 

A sj_ r---------. 2cm -rT 4 -64cm 

U-,-x-- · ----111!'::-.~ -~ '1NA -Ne':ltrl. 
~:72° QXIS 

\ 15cm 

C 0 

- ~ 
1cm 

~ 12·36cm 

'Beam with central 
load . 

Fig. 20·18 

Solution. Let us first determine the position of the centroid of the T section shown 
in the Fig. 20'18. 

1s x 1 x 1·s+10x 2x os+n 
J= 15+ 20 12'36 cm 

The section is symmetrical about vertical axis, therefore the principal axes pass through 
the centroid G and are along U-U and V-V axes shown. 

So lO X
23 +20 (4'64-1 '0)2+ l X !SB+ 15 (12'36-7'5)2 

12 12 
= 6'667+264 '992+ 28 l '250+ 354'294 
=907'203 cm4 

2 X 103 15 x i s 
!,,=lu=lf + l f = 166'667+ 1·7S0 = 1~7'917 cm 
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Load, 
CompG)nents of W, 

Bending moment, 

Bending moment, 

W=4000 N 
Wv=4000xcos 30°=4000x0·866= 3464 N 
W.,=4000 X sin 30°=4000 X 0"500 = 2000 N 

M.= W~x l = 3464:200 173,200 N cm 

M .. = -w .. / I = 2000: 200 = 100,000 N cm 

Dne to M., there will be maxi.mum compressiv.e stres.s on A and B ~.nd maxim\im 
tensile sti;ess at C and D. 

Du.e to Mu there will be maximum compressive stress at Band D and max~mum tensile 
stress at A and D. 

or 

where 

So maXiimum c0mpressive stress at B, 

fs 
M. x 4··64 MuX5 ----+--luu Iv. 

= 173200 X4'64 -1- 100000 X5 = 885'852+ 2977.661 907'203 · 167'917 •. · ' · · · 

=3863·5 N/cm2 =38'63 N/mm2 

Maximum tensile stress at C 

Deflection 

So 

Now 

Jc= Mo X 12"36 + Mu X 0'5 
luu l vv 

_ 173200 X 12'36 + 1oooooxo·5 
- 907'203 167'9 L 7 
= 2359·727 + 297·766 =2657·493 N/cm2 

= 26'57 N/mm2 

KW/3 J sin2 
() cos2 0 

8--- --+- -- E l vv2 l uu2 

K= 1/48 as the beam is simply supported and ca rries a concen
trated load at its centre 

KW/3 J . ( luu ) 2 

8= -E sm2 0X -1 +cos2 8 luu ov 

sin 8=0'5 ; sin2 8=0'25 
cos 0=0'866, cos2 0=0'75 

1 4000 X (200)3 f 
3=48 x 200 x 105 X907'203 V 0'25 X ( 9o7·20J )'+0·75 

169'917. 

= 0·0367 .fo·25x2s·so+ o·15 
=0'0367X2'8065=0'103 cm= 1'03 mm 

Position of the neutral axis 
1.... 300 907'203 

tan oi:= tan 0 ~ = tan x 
169

.
917 

= 0·5774 x 5· 3;39 

= 3'0828 
oi: ::: 72° 
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Exercise 2o·s-t. A cantilever 2·8 m long having T-section with flange 12 cm X 2 cm 
and web 13 cm x 2 cm carries a concentrated load Wits free end but inclined at an angle of 
45° to the vertical. Determine the maximum value of W if the deflection at the free end is not to 
exceed 2 mm. Given E= 200 x 103 N/mm2• What is the direction of neutral axis with respect 
to the vertical axis. [Ans. 221·-20 N, 15° 2-4'] 

20·6. SHEAR CENTRE 

In chapter 9 we studied about the distribution of shear stresses in the transverse section 
·or a beam subjected to bending moment M and shear force F. Summation of shear stresses 
over the section of the beam gives a set of forces which must be in equilibrium with the applied 

--~hear force .F. In the case of symmetrical sections such as rectangular and I sections, the 
applied shear force is balanced by the set of shear forces summed over the rectangular section 
or over the flanges and web of I section and the shear centre coincides with the centroid ·of the 
sect ion. If the applied load is not placed at the shear centre, the section twists about this 
point and this point is also known as centre of twist . So the shear centre of a section can be 
defined as a point about which the applied shear force is balanced by the set of shear forces 
obtained by summing the shear stresses over the section. 

For unsymmetrical sections such as angle section and channel section, summation of 
shear stresses in each leg gives a set of forces which should be in equilibrium with the applied 
shear force. 

u 

(a ) ( b) 

Fig , 20·19 

Shem 
cen tr e (d 

- . ..._ Fig. 20· 19 (a) shows an equal angle section with principal axes UV. We have learnt in 
previous ·examples that a principal axis of equal angle section passes through the centroid of 
the section and corner of the equal angle as shown in the · Fig. Say this angle section is 
subjected to bending about a principal axis VU with shearing force F at right angles to this 
axis. The sum of the shear stresses along the legs, gives a shear force in the direction of 
each leg as shown. It is obvious that the resultant of these shear forces in legs passes through 
the corner of the angle' and unless the applied force F is applied through this point, there will 
be twisting of the angle section in addition to bending. This point of the equal angle section 
is called its shear centre or centre of twist . 

For a beam of channel section subjected to loads parallel to the web , as shown in 
Fig. 20·19 (b), the total shearing force carried by the the web must be equal to applied shear 
force F, then in flanges there are two equal and opposite forces say F1 each . Then for equili-
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brium F x e:, is equal to F1.h ') , and we can determine the position of' the shear centre along 
th . f . . . F1 Xh e axis o symmetry 1.e. e= -F-

Similarly Fig. :w· 19 (c) shows a T-section and its shear centre. Vertical force in web 
F is equal to the applied shear force F and horizontal forces F1 in two portions of the flange 
balance each other at shear centre. 

Example 20'6-l. Fig. 20·20 shows a channel section, determine its shear centre. 

Solution. Fig. 20·20 shows a channel 
section with flanges bx t1 and web h x 12. X-X 
is the horizontal symmetric axis of the section. 
Say F is the applied shear force, vertically 
downwards. Then shear force in the web will 
be F upwards. Say the shear force in the 
top flange = F1, 

Shear stress in the flange at a distance 
of x from right hand edge 

where 

Fay 
= fxx t 

F = applied shear force 

A 

x-

Fig. 20·20 

aY = (t1 • x) ~ , first moment of area about ~xis X-X 

t= !1 (thickness of the flange) 

F.t1x h Fxh 
q= f.u,l1 ·i -= 2 f xx 

Shear force in elementary area 

(t1 dx= dA.) 

Total shear force in top flange 

b 

(say) 

= J q.t1 .dx 
0 

b 

where b=breadth of the flange 

Fi = r f'x t1h dx= Ft1h b2 

I 2 fu /,., 4 
0 

There will be equal and opposite shear force in the bottom flange . 

. Say shear centre is at a distance of e from web along the symmetric axis XX. 

Then for equilibrium 
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3 . . . 

; · Motnei1t of inertia, 14»= \2
~ -1-

2x~; 113 
+2 X b X t1 ( ; r 

. h. h h . 2bf13 . \' 'bl . . m w 1c , t e expression ~ 1s neg 1g1 e m companson to other terms 
\ .. , 

.,- ; .. 11 

Substituting this in the expression for e 

if we take 

Then 

t 1b2h2 12 3t 1b2 

e=-4 - X h2(t2h + 6bt1) = (t /i + 6bt1) 

bt1 = area of flange = A, 

ht2 =area ofweb=Aw 

3b At 3b 
e= = 

Ato+6A, 
6
+ Aw 

A, 

Exercise 20'6-J. A channel section has flanges 6 cm x I cm and ·web 8 cm x o·s cm. 
Determine the position of its shear centre. [Note that b=5'75 cm and h= 9 cm.] 

[Ans. e=2·543 cm] 

Problem :zo·1. Find the product of inertia of a quadrant of a circle about axes X and 
Y as shown in Fig. 20'2 l . 

So1ution. Fig. 20·21 shows the quad
rant of a circle of radius R. Consider a small 
element at radius r, radial thickness dr and 
subtending an angle d8 at the centre. 

Area of the element, 

dA=r dl.dr 

Co-ordinates of the element 

x=r cos 0 and y=r sin 0 

R rr/2 

V 

... 

T 
y 

_t_ ~------__.....__ 

1-x~ 
Fig. 20·21 

Product of inertia, l , o= J J (r cos 0.r sin i) rd0 dr 

0 0 

R rt / 2 

= I { r3 J sin 8 cos 0 d0 } dr 
0 0 

R 

= I ,s I 
0 

cos 20 
4 

rt/2 R 

I dr=J ,s( i) dt= f 
0 0 
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Proble1n 20·2 A beam of angle section shown in Fig. 20 22 is simply supported over 
a span of J ·6 metres with 15 cm leg vertical. A uniformly distributed vertical load of IO k N/m 
is applied throughout the span. Determine (a) maximum bending stress (b) direction of 
neutral axis (c) deflection at the centre. E=2IO kN/mm2• 

Solution. Let us first determine the 
position of the centroid 

to x 1 x o·5+I4 x l xs ,= 14+10 

= _!__!7_ = 4·875 cm 
24 

_ 14 xo·s+1 o x5 
;'( =-- - 14+1_0_ 

= 57 
=2"375 cm 

24 
Moment of inertia 

I = JOXI3 + 10(4"875- 0"5)2 
xx 12 

+
1 

X 
143

+ 14(7+1-4"875)2 

12 

NA-Neutrol axi'! 

• 
> 

=0"833+ 191"406+228"667+ 136"718 
= 557"624 cm 4 

Fig. 20·22 

lyy = 
1 
;2

108 
+ I 0(5-2" 375)2 + 

1
~; JS + 14(2"375- 0"5)2 

=83"333+ 68 '906 + 1 · 167 +49'218=202"624 cm4 

Co ordinates of G2 and G1 : [- l ·875, (8-4"875)] and [(5-2"375),-4'375] 
l xy=' 14(8 - 4"875)(-1 "875)+ 10(5-2'375)(-4'375) 

= -82 "031-114"843 = - · 196·874 cm4 

(Note that parallel axes theorem for product of inertia is used here and product of 
inertia of rectangular .strips about their own centroidal axes is zero) 

Dire~tions of Principal axes 

28 l .zy = -19..,,..,6"=87,....,4~...,..,--
tan = -uyy- lx.)/2 (202·624 - 557'624)/2 

= 19~"874 = I '1091 
177·5 

or 0=23° 59' 28= 47° 58' 

cos 28 = 0"6695 sin 20 = 0'7420. 

Prjncipal mo1nents of Inertia 

luu= ~ (l,..,+ lyy) + "I Uxx - l yy) COS 0-lxy sin 20 ;· .:,-, 

=+ (557"624 + 202.-624) + ~ (557"624-202'624) X0'6695 

+ 196'874 X 0·742 

~ ~80" li4+ 177·5 X0"6695 + 14f080= 64~"040 yt:P,4 
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h-11 = ~ (l..,,.+!yy)+ + (Jy,. - la) cos 2e+lxy sin 28 

= 380. I 24 - 177' 5 X 0·6695 -196.874 X 0·742 
= 380.124- I 18'836-146'080= 115'208 cm4 

(a) Maximum b ending stress 

w = rate of loading= 10 kN/m= 10,000 N/m= 100 N/cm 

Components, 
wu= w sin 8= lOO x0·4065=40'65 N/cm 
wo = w cos O=IOOX0"9 i38 = 9l 38 N/cm. 

The beam is simply supported and carries uniformly distributed load, the maximum 
bending moment occurs at the centre of the beam. 

where 

. w., / 2 40'65 X 16:) X 160 
Bendmg moment A4u= -

8
- = · ---8----= 130080 N cm 

(above span length /= 160 cm) 

. wo/2 9I"38X160Xl60 
Bendmg moment Mo = 8 - = 8 =292416 N cm 

As is obvious, maximum bending stress occurs at tbe point A with co-ordinates 
x=--2'375, y= 15- 4'875 = 10· 125 

Co-ordinates u=x cos O+y sin 8= -2·375 X 0·9138+ 10' 125 X 0'4065 
= -2·170+4' l 16= + 1'946 cm 

v= y cos 0-x sin 0= 10'125X0'9138+2·375X0'4065 
= 9·252+ 0'%5=10'217 cm 

Maximum Bending stress, 

f-4 = Mu.U + Mv.V 
I • ., I .. u 

= 130080X 1·946 + 29"2416X 10'217 = 2 l97'20+46~31"67 
115'208 645·040 

=:= 6828·87 N/cm2= 68'28 N/mm2 

Direction of neutral a~is 

tan (/. = tan 8. 
1
1

u" = 0'4448 X 
64

S'0
4
0= 2·49o4 

"° 115·20s 

CY. = 68° 7' 

. kl4 w Jsin2 
(J cos2 0 

Deflection at the centre = --E - - 1 2 + 1, 2 
vv uu 

Const~nt, 

Span length, 

w= rate of loading 

5 
k = 384 

I= 160 cm. 
E=iIO x -105 N/cn1~ , . . . 
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Detlection, ~ 5 1604 OO 1 J f . 2 Iu .. 2 e 
o= 384 X 210 X 105 X I X Tu;; \J sm . 1 •• 2 +cos2 

= 40"635 f ~0"4065)2X ( 645:040 )2 +(0"9138)2 
luu \J 115 208 

6!~··6!~ xJ 5180+0·835=0·I54cm=1"54mm 

(in the direction perpendicular to the neutral axis) 

Problem 20"3. A cantilever of I section 3 m long carries a load of 2 kN at the free 
enti and 3 kN at its middle. Line of load 2 kN is passing through the centroid of the section 
and inclined at an angle of 30° to the vertical and the line of application of load 3 kN is also 
passing through the centroid but inclined at 45° to the vertical on the other side of load 2 kN 
a1 shown in the Fig. 20·23. I section has two flanges 12 cm x 2 cm and web 16 cm x 1 cm. 
Determine the the resultant bending stress at the corners A, B, C and D. 

f ixe d 
end 

3kN 2kN 

Fig. 20·23 

Solution. Moment of Inertia, 

I _ 12 X203_ ll X l63 8000- 3754·667 
xx- 12 12 

= 4245"333 cm4 

I _ 2x2x12s+ 16Xl3 = 576+ 1.333 
n- 12 12 

= 577·333 cm4 

2k N 
I 

_J_ 
2cm 

T 
16cm 

J_ 
/ 

2cm 

T 

I section shown is symmetrical about XX and Y Y axis, so principal axes UU and VV 
passing through the centroid of the section are along XX and YY axis. 

Loads applied can be resolved into components along U and V directions. 

Components of 2kN load 
Wu1= 2000 Xsin 30°= 100 N 
W,1 = 2000 X cos 30° = 1732 N 

Comppnents of 3 kN load 
w .. 2 = 3000 Xsin 45°= 3000 x o·107=2121 N 
W,~= 3000xcos 45°=~000 x 0·707= 2121 N. 
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Bending moments at the fixed end 

Mu-=Wu1 X3+Wu2X 1'5 
= -1000 x 3+ 2121 x 1·5 Nm 
=181 '5 Nm=0'18 x 105 N cm 

Mv= Wo1 X 300 + Wv2 X 150 
= 1732X300+2121 X 150 
=8 ·38 x 101 N cm. 

Resultant bending stresses 

' ... . ... ~ . 

f
- Mux 6 Mv XI O O·J8 x lOi x 6 8·38 X l05 X I0 

A - - T + fuu 577·333 + 4245·333 

= - 1·s10 + 19·739)x 102 N/cm2= 17:869 N(m1?2 

fs =+ Mu X 6 + J,-1, X IO ( + I '870+ ]9·739) X 102 N/ mm2 . 
!av fuu 

= 21.609 N/mm2. 

Due to Mu there will be tensile stresses on points Band C and compressive stresses on 
points D and A. 

Due to M. there will tensile stress on points A and B, and compressive stress on points 
C and D. 

Stress, Jc=+ 6Mu _ M . XIO = ( +1 ·870 - 19'739)X l02 N/cm2 
Iva fuu 

= - 17·869 N/ mm2 

Stress, Jo=- 6Mu M.X l0· = (- 1'87- J9·739) X l02 N/cm2 
f vv fuu 

= - 21 ·609 N/mm2 

Problem 20·4_ Fig. 20·24 shows an unequal I section. Determine the position of its 
shear centre. 

Solution. Fig. 20·24 shows an unequal 
I section, with flanges b1 -\-h2 wide and t 1 

thick. The web 1s h high and t2 thick. 
The section is symmetric about X-X axis, 
therefore shear centre will lie on this axis. 
Fig. shows the direction of shear flow in 
flanges and in the web. Say the shear force in 
flange for width b1 is F1 and for width b2 is F2 . 

The shear force in web is say F8• The applied 
shear force is F acting at the shear centre. 

For equilibrium 
F3=F 

Shear stress in any layer, 

FaJ 
q=h 

... (1) 

Fig. 20·24 

where I I 2(b +b ) f1S + (b h2 + , hJ. • '• = xx = l 2 J2 2 1+b2Jf1 X4 f2 , 12 · .;:, -

t=thi<;kae~s of the se<;tion 

... (2) 
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Shear Force F1 

Considering an area dA=t1 dx. 
h 

aJ=x . t1 • 2 
bi 

F1=J q . dA= Fxti !!_ Xt dx 
f u f I 2 1 

0 
b1 

J2 ~xx Xh f1 . X dx 
0 

b1 
= Fht1 I x2 ]= Fa t1 b1

2 

~2Ixx 2 4 fx.. 
0 

Similarly the shear force in the other portion of the flange, 
Fh t1 • bl 

F2 4Ixx 

Taking moments of the shear force about the centre of the web 
F2 Xh=F1 xh+F . e 

(F2-F1)h= F. e 

Fh2 t1 (b 2 b 2)- l7 
- 2- i - .1.·e 4fxx 

or distance of shear centre from the centre of the web 
t1h2 (b22-b12) 

e= 4 [ .,., 

987 

... (3) 

Problem 20·5, Determine the position of the shear centre of the section of a beam 
shown in Fig. 20·2s: 

Solution. Fig. 20·25 shows the section 
for which the shear centre is to be determined. 
In the diagram direction of shear flow is given. 
Due to symmetry shear forces, F1 = F6 shear 
forces, Fi=F,. The section is symmetrieal 
about the axis XX, therefore shear centre will 
lie on this axis. 

or F6 

Let us determine shear force F 1 

Shear stress in the vertical portion AB 
. FAJ 
q---f,..,h 

F(b1- y)t1 (!!_+ +b1 - Y) 
. [.,~ t1 X 2 y 2 

= F(b1 -y) (h+ b1+Y ) 
[.,., 2 

where F _is the applied shear force on the section 

A 

F 

Fig. 20·25 



.Now, 

Shear force 

dA=f1 dy 

b1 

Fi= Ip (~i .z:) (h+b1 +y) f1 dy 

0 

b1 

= 
2
;:: I (hb1-hy+b12-b1y+b1y-y2

) dy 

0 

= Ft1 [ b 2h·-!!_b 2+b 3_ b1S J 
2lo 1 2 1 1 3 

= Ft1 [ b1
2
h + 2h1

3 ]= Fbi2/1 [Jh+4b1] 
2fxx 2 3 12 fxx 

Shear force in horizontal portion BC 

bs 

F2= J lxx~
2 

X (b1!1 X ( h+ ~ )+t2X. ~ ) tidx 
0 

I 

_ _f_l b1t1h + b12!1 + t2h ~ , 
- fxx 2 X 2 X 2 • 2 

bs 

0 

F [ b1b2t1h b2b12
t1 t2bz2h J 

= - +--+--
lxx 2 2 4 

= F4 (due to symmetry) 

Taking moments of the shear forces about the centre O of the vertical web 

F.e+ 2f1.b2=f'/..h --.... 

Fe = Fh [b1bst1h + b1
2
bat1 + t1blh J-F5ab11t1 [Jh+4bil 

lxx 2 2 4 6 lxx 

e= ..!!_ [ b1bit1 + t aba
2 

J + hb1
2b2t1 _ b'il.bJtib _.!_ X b.hi't1 

lxx 2 4 2Ixl!J 2 lxx 3 lxx 

~ !!:_ X b1bat1+ h2t2b22 _! btf>i1t1 
- lxx 2 4 lxx - 3 -y;;;-

= b1bat1 c~ _ ]:__bi2]+ t2h
1
b2

2 

lxx 2 3 4 lxx 
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Moment of inertia !.,,, 

= 2 X b1
3

X f1 +2b t ( h h1 )
2 

12 11 y +y 

+ 2b2tl +2b t (.!!_)2 + t 3h
3 

12 2 2 2 12 

919 

Problem 20·6. Fig. 20'26 shows a section of a beam subjected to shear force. Deter
mine the position of the shear centre of the beam. 

Solution. The Fig. 20'26 shows a 
section with web h X t, flanges b2 x t and pro
jection b1 x t. Say the applied force is F and 
shear force in different portions is F1, F2, F3, 

F• and F5 as shown. 

and 

Due to symmetry F1 ~= F5 and F2 = F1 
Shear stress in any layer 

FaJ q=--
lxxt 

Portion V. (i.e. vertical projection) 

area a=y.t 

J=( !.-b1 )+ L , 2 2 

=( h-~1+Y) 

area, dA = t.dy Fig. 20·26 

Shear force 

Portion IV-Flange 

) h (lz b ) ay= (t.x 2 +b1Xt 2 -b1 +-f-

= tx !!...+b1t(!!__!!.L) 
2 2 2 

dA = dx.t 

h 

... (1) 



where 

Shear force 

ba 

= i L I (xh+b1h-b13
) dx 

0 

=2~:x [ ~
2 

xh+b1h1h-h12h2 J 

STRENGTH OF MATERI~ts 

Taking moments of the shear forces about the centre O of the web 

F.e=2 F5Xb2+F4 xh 

= t h12 b2 (3 h+4b )+___!_!: ( b22h +b b h- b ib ) 
e 6 lu 1 2 lxx 2 1 2 1 2 

= t h12h2 (3h+ 4b1) +~ (b 2 h+2b b h-2b 'b) 
6 lxx 4 J,,., 2 1 2 1 2 

= 1/Jx., (6th h12b2+8 t b18 b2+3t h2b22 + 6 t b1b2h2-6 b11b2t h] 

= l2t lxx (8 bi8b2 + 3h2b22+ 6 b1b2h~] 

I, = txhs + 2Xb2X (t)3+ 2b t (}!_ )2+ 2XtXb13 

.. ,, 12 12 2 2 12 

+ 2b1t X ( ~ - bl r 
= \~s + b26t

8
· + b2 ~ h2 + t :13 + ~1t (h- b1)2 

Problem 20·1. For a ,ection shown in the Fig. 20·21, determine the position of the 
shear 9entre. The thickness of the section is t throughout. 

where 

Sol•tion. Due to ._c;ymmetry 

Shear force in portion AB, F 1 = F4, shear force in portion DC 
Shear force in p ortion BO, F2= F3, shear force in portion CO 

Shear force F1 

Shear stress, 

S:h.ear force, 

So 

Distance, 

Fay 
q= IN A l 

a=zt 

dA=t dz 

where F=applied shear force 

(as shown) 

.Y=(a2 sin 45°- a1 sin 45°) + _!__s in 45° 
2 
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F 

Shear force, 

Moment of I.,., 

Fig. 20·27 

ox,s 

SC - 9H::or 
centre 

·;J. ·-~ · 

a1 

F = r £.!..!_( 2a2 - 2a1+z ) t dz 
1 j INA t 2v'2 

0 

a1 

=2 : 2
1

1NA j 2a2 z.- 2a1z+z2
) dz 

0 

Moment of inertia of AB, about their principal axes 

r - a1 ta I . -'-' t . a1 s 
l uu - ~, vv-~ 

0= 45° (as shown in Fig. 20'27) 

lu= luu cos2 e+ Ive sin2 6 

a1t ( ) = 24 a12+ t2 

fuu+lw 
2 

lNA
1 = lu,+ta1 [ (a2 - ~

1 
) sin 45° J2 

= /, + ta1(2a2- .a1)2 
h 8 

991' 

., .. , 



Of 

= ;i (a1
2+t2+ 12a1

2 +3a1
2-12,,1a2) 

= i~ .(t2 +4a1
2 + I2a1?- l2a1a2) 

Similarly moment of inertia of BO 

I , a~ta I'= tasa 
uu = ~ , w 12 

8= 45° 

I , f , 2(J + f, . 2 {) fuu'+ f,n' 
x~ = U u COS ID Sl11 = --

2 
-

a2t ( z+ 2) = 24 Oz t 

INA 11= I.,.,/+a2t ( ~
2 

/ sin2 45° 

azt ( z+ 2)+ = 
24 

a2 t a2t 

= 1~ (4a22 + t2) 

Fig. 20·28 

Total mome,1t of inertia of the section, 

INA = 2INA 1+ 2INA" 

( af) 

STRENGTH OP MATBRIAf.S 

fN,4 = ~~ (t2 + 4a12+ 12 a2
2 - 12 a1a2)+ ~~ (4a2 +t2

) 

Taking moments of the shear forces about the point 0 

F Xe= F1 Xa2+ F1 Xa2 

Ft a1' a2 (3 ) 
= 3v2 INA az - 201 

t a1ia2 ( ) 
~- 3y~ !NA 3a2-2a\ 
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SUMMARY 

1. Unsymmetrical bending occurs in a beam (i) if the section is symmetrical but load 
line is inclined to the principal axes (ii) if section itself is unsymmetrical. 

where 

2. Product of inertia, Ix,= JxydA 
Product of inertia of a section about its principal axes is zero. 

3. For a .;ymmetrical section, principal axes are along the axes of symmetry. 

4. Parallel axes theorem for product of inertia 

lx,= L +AxJ xy 
lx1 =product of inertia about any co-ordinate axes X-Y 

/x.Y=Product of inertia about centroidal axes ,.y_f' 
x, .Y=Cordinates of the centroid of the section about XY co-ordil)ates. 

5. If/""' / .,,, Ix.,. are moments of inertia about any co-ordinates axes X-Y passing 
through the centroid of the section, Inclination of Principal axes with respect to X-Y axes 

8 1 1 2/x, =- tan-
2 f yy-fxx 

Principal moments of inertia 

luu, Iv. =hlxx+ 1.,.,.)± V[!(I> ,- lxx)]2+ lx.,.2. 

6. If principal moments of inertia of a section are / ,,.,, [.. then moment of inertia 
about an axis X-X inclined at angle (} to U-V axis is 

lx.,. = f,.,, cos20+1 •• sin2 6. 

7. Stresses due to unsymmetrical bending , if u, i• are the co-ordinates of a point and 
Mis the bending moment applied on the section and O is the angle of inclination of ax is of M, 
with respect to the principal axes UU. 

where 

Resulant bending stress at the I?.9inL 

fo = M [ v cos 0 
fu u 

+ u sin~]· 
fv u 

8. Angle of inclination of neutral axis with respect to principal axis UU 

ix= tan -i ( tan e . ::: ). 

9. Deflection of a beam under load W causing unsymetrical bending 

8_ KW/3 Jsin20 + cos2 0 
- E l vo2 luu2 

K=Constant depending upon end conditions of the beam and 
position of the load 

0=Angle of inclination of load W with respect to VV principal 
axes . 

10. If the direction of the applied load on a beam passes through the shear centre of 
the ~ection, no twisting takes place of the beam. . · 

11. For a section symmetrical al:,out two axes, shear centre lies at the c;:entroid of the 
~ection. 
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12. For a section symmetrical about one axis only, shear centre lies along the axis of 
symmetry. 

13. About the shear centre, the moment due to the applied shear force is balanced by 
the moment of the shear forces obtained by summing the shear stresses over the various 
portions of the section. 

MULTIPLE CHOICE QUESTIONS 

1. The product of inertia of a rectangular section of breadth 4 cm and depth 6 cm. about its 
centroid axes is 

(a) 72 cm' 
(c) 32 cm' 

(b) ~2 cm' 
(d) None of the above. 

2. The product of inertia of a rectangular sectiou of breadth 4 cm and depth 6 cm about 
the co-ordinate axes passing at one corner of the section and parallel to the sides is 

(a) 144 cm4 

(c) 52 cm4 

(b) 72 cm4 

(d) 32 cm4• 

3. For an equal angle section, co ordinate axes XX and YY passing through centroid are 
parallel to its length. The principal axes are inclined to XY axes at an angle 

(a) 22·5° (b) 45·0° 
(c) 67'5° (d) None of the above. 

4. For an equal angle section, mom·ents of inertia /,.~ and ! yy are both equal to 120 cm4• If 
one principal moment of inertia is 210 cm4, the magnitude of other principal moment of 
inertia is 

(a) 210 ~m4 

(c) 60 cm' 

(b) 120 cm4 

(d) 30 cm4• 

5. For a section, principal moments of inertia are fuu = 360 cm4 and / ,u= 160 cm4
• Moment 

of inertia of the section about an axis inclined a t 30° to the U-U axis, is 
(a) 310 cm4 (b) 260 cm4 

(c) 210 cm4 (d) 120 cm4
• 

6. For an equal angle section lxx= ln=32 cm4 and lx,.=-20 cm4
• The magnitude of one 

principal moment of inertia is 
(a) 52 cm4 (b) 42 cm' 
(c) 32 cm' (d) 16 cm'. 

7. For a T-section, shear centre is located at 

(a) Centre of the vertical web 
(c) At the centroid of the section 

(b) Centre of the horizontal flange 
(d) None of the above. 

8. For an I section (symmetrical about X-X and YY axis) shear centre lies at 

(a) Centroid of top flange (b) Centroid of bottom flange 
(c) Centroid of the web (d) None of the above. 

9. For a channel section symmetrical about X-X axis, shear centre lies at 
(a) The centroid of the section (b) The centre of the vertical web 
(c) Tlte centre of the top flan~e (d) None of tp.e c\POYe, 
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10. If the applied load passes through the shear centre of the section of the beam, then there 
will be 

(a) No bending in the beam 
(c) Bending and twisting in the beam 

(b) No twisting in the beam 
(d) No deflection in the beam. 

1. (d) 
6. (a) 

2. (a) 

7. (b) 

ANSWERS 

3. (b) 

8. (c) 

EXERCISE 

4. (d) 

9. (d) 

5. (a) 

10. (b). 

20'1. A section is a quadrant bounded by two concentric circles of radii 5 cm and 
8 cm. Determine its product of inertia about axes OX and OY, passing through the centre of 
circles. [Ans. 433'875 cm4J 

20·2. A beam of angle section 12 cm X 8 cm X 2 cm is simply supported over a span 
of 2 metres with 12 cm leg vertical. A wrtical load of l tonne is applied at the centre of the 
span. Determine (a) maximum bending stress tb) direction of netural axis ( c) deflection at the 
centre of the beam. Given E = 2 LOO tonnes/cm2 • 

[Ans. (a) 107 J ·8 kg/cm2 , (b) 42° 55' with respect to X-axis (c) 3' 1.5 mm) 

20·3. A beam 4·5 metres long is of a rectangular section 12 cm wide and 18 cm deep. 
The beam is simply supported at each end and carries a concentrated loads of 3 kN, l '5 m 
apart from each support. The plane of the loads make an angle of 30° to the vertical, and 
passes through the centroid of the section. Find 

(i) bending stress at the corner of the quadrant of the section, in which the lead is 
applied 

(ii) direction of neutral axis. 
[Ans. (i) 11 '22 N/mm2, (ii) 52° 24' with respect to horizontal axis] 

20'4. An unequal I section is shown 
in Fig. 20'29. Shear centre lies along X-axis. 

e t b 3 

Show that - 1 =-L_b2 
• Determine the value 

e2 ti 18 

of ei, if b1 = 6 cm, b2= 8 cm and t1 = t2 = f 3 = 
1 cm and h= 12 cm. [Ans. e1 = 8'44 cm] 

20'5. Determine the position of the 
shear centre of the section of a beam shown in 
Fig. 20·25 if b1=4 cm, b2 = 6 cm, h = 8 cm and 
t1 = t2=t8=1 cm. [Ans. [e= 2'021 cm] 

20'6. Determine the position of the shear centre 
if b1 =3 cm, h2= 5 cm, h = lO cm, t = 1 cm. 

Fig. 20·29 

of the section shown in Fig. 20'26, 
[Ans. e= 3'557 cm] 

20·1. For a section shown in the Fig. 20'27, determine the position of the shear centre 
if a1 = 4 em a

2
= 6 cm, t = 1 cm. [Ans. e= 1 '59 cm] 
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Mechanical Propetties 

Any machine member or a structure designed to sustain loads must have the necessary 
mechanical properties as strength, stiffness, toughness, hardness etc., before they can serve 

. any other purpose in addition to sustaining the loads. In this chapter mechanical properties 
· and how these are determined will be discussed. The behaviour of the materials under various 
types or°loads and moments and how they fail will also be analysed briefly. 

'21·1. BJ!:HAVIOtJR OF MATERIALS UNDER STATIC TENSION 

Members of engineering structures and devices are often subjected to steady axial -tensile 
loads, and response of the material to other types of loading sometimes be explained or 
predicted on the basis of their behavio'ur in ·simple tension. In J st chapter we have studied 
about the tensile test on the most commonly used structural material-mild steel and have 

· acquai~ted ourselves with terms like stress, strain, yield point, elastic and plastic behavio1.1r, 
, duct ili~y etc., etc. 

When a solid bar is loaded in tension, it elongates as the load is increased. The 
,,;mechanism by which elongation takes place in the solid material can be viewed as a simple 

separat ion of its atoms in the direction of loading. The atoms are displaced f:roJ?,?. their 
normal position of equilibrium and develop attractive forces between them which · balance 

p 

db =ab =bc,cd =da:r 
ab= be= cd,:dd = r' 

Extension 
/ , 

= bd - bd 

l ateral contraction , , 
=c a -c a 

y 
p 

Fig. 21·1 
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t:ke applied loads. In most crystalline materials, atoms are closely packed. Fig. 21' l shows 
four atoms in a close packed structure, with r as the interatomic distance. When a tensile 
force P is applied in the direction db, the interatomic distance changes to r'. Distance db 
increases to d'l>', while the distance ac decreases to a' c'. 

Normal strain 
d'b'-db 

- db 

Lateral strain 
a'c'-ac 

ac 

So long as the elongation involves only simple separation of atoms by very small 
amounts (not so large as shown in the figure) release of the applied force will allow the atoms 
to return to their normal equilibrium positions. The axially loaded bar will return to its 
original size and shape and the deformation is said to be elastic. Upto the elastic stage the 
deformation is reversible or recoverable. 

Say extension along Y-axis 

=By or dd'=iL 
2 

Contraction along X-axis= B,, or cc' = ;x 
Loeb= Locd= 30° or L.bcd=60° since db ~ bc """" cd 

db=r and ac= r v3 

or 
,. 

.ob=-. 2 
I' 

and oc= -
2 

Consider that while applying the 
load on atoms at b and d, position of 
atom b is fixed and atoms a, c and d are 
displaced, and so the centre o shifts to o'. 
Say · the displacement is very small and 
distance between b and c remains r or 
r'~r. Then displacement cc" is perpendicular 
to line be. Displacement of point c (i e., 
centre of atom at c) has two components 

c'c"=& 
2 

and , Bx cc= 2 

But Bx 2 o I 
-x-=tan 30 = --
2 By v3 

Bx 
a;= v3 

Now linear strain B,. B,. 
= bd =-;:-

Lateral strain 

,~ 
y,;; 

O' 

b ' 

C 

oc = ..!:. ""3 
2 
r ee = 2 

Fig. 21'2 
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Lateral strain 8x r 8,.. 1 
Poisson's ratio = ---- x--------- -Linear strain - r\/3 oy - -v3 oy - 3 

Most metals are found to have value of 1/m (Poisson's ratio) close to 1/3. 

Now as the tension on a solid bar increases and atoms are pulled farther apart, a 
stage is reached where the elongation is no longer a simple separation of atoms and irrecover
able structural changes take place in the material and the material's behaviour is said to be 
in elastic. Some of the atoms or molecules of the material under the distortion produced by 
tensile force, slip to new equilibrium positions at which they form new bonds with other 
atoms, thus permitting an elongation in excess of that produced by the simple elastic separation 
of atoms. After the removal of the load, there is no tendency of the atoms to return to 
their original positions. Such deformation is also called the plastic deformation. This stage 
i.e., onset of plastic deformation is said to be yielding of the material. The material which 
yields is said to be ductile. 

The most common mechanism of yielding in crystalline materials is slip, in · which two 
planes of atoms slip past each other causing one full section of the crystal to shift relative to 
the other. Slip occurs m,)St easily on certain crystallographic planes depending upon the 
crystal structure. Generally, the planes of easy slip are those on which atoms are most closely 
spaced-those having the largest number of atoms per unit area. 

The stress required to separate the two planes of atoms, breaking all the bonds 
simultaneously is much larger than the maximum elastic stress. Similarly the shearing stress 
necessary to shift one layer of atoms past another all at the same time is much larger than 
the actual shearing stress. The reason is that slip is progressive rather than simultaneous, 
it starts at one point in the slip plane where the presence of an imperfection in the crystal 
lattil:e makes it possible and moves through the crystal by a progressive shifting of atoms 
along the slip plane. 

The imperfections usually responsible for slip are called dislocations. These are small 
groups of a toms in the crystal lattice that are displaced from their regular positions, distorting 
the lattice slightly. Dislocations are present in great numbers in all crystals. These are 
formed during crystal growth and by plastic deformation. (The reader is advised to refer to 
a book on Materials Science and to study the various types of dislocations such as edge and 
skew dislocations). 

Most crystalline materials are aggregates of many crystals or grains. The directions 
of the plant.s of easy slip of individual crystals are oriented at random in all possible directions, 
throughout the material. 

When a tensile stress is applied along the axis of the bar, the maximum shear stress 
occurii on planes at 45° to the axis of loading. This stress will coincide with the planes of 
easy slip in some crystals but not in the majority of the crystals. Hence there are weak and strong 
cryiitals and slip will generally start in weak crystals- i.e., those which are most favourably 
oriented for slip. After slip has begun in certain crystals, its continued progress through the 
material involves slip in adjacent crystals and because of their different orientations, a greater 
stress is required-resulting in strain hardening. 

Fig. 21 ·3 (a) shows the stress strain curve for a general ductile material. From O upto 
A i:;; a straight line, beyond A the curve is not straight and the material has yielded. Stress 
at A is called the yield point stress. From A onwards, increasing stress upto the maximum 
la.ad point, (where necking takes place) is required to continue the slip or the plastic defor
mation. The material is strain hardened from A to Pm a., . Fig. 21·3 (b) shows the stress strain 
curve for mild steel. 0 to A is a straight line, at B there is considerable extension with slight 
decrease in load (from B to C). This point Bis called the upper yield point, C is the lower yield 
point. This · type of yielding is called discontinuous yielding which is a typical characteristic 
of mild steel. At C, strain hardening in the material starts and ends at the maximum load 
point P "'""' where necking takes place in the bar. 
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The crystal boundaries. offer m?re 1:esistan7e to s~ip th~n the in_tcriors of the crystals. 
Fig. 21 · 3(c) shows ~ polycryst~llme matenal with ranao?-1 or~entat!on of slip planes of individual 
crystals' The gram boundanes. are harder than th~ mtenor of the c~ystal, :,vith the net result 
that the slip through the boundanes 1?ecomes very difficult b~c~us~ d1slo~at10ns are impeded 
both by atomic disorder at the gram boundary and by prec1p1tat1011 of impurity atoms along 
grain boundaries. 

The range of mechanical ?~haviour in which_ yieldi~g and s~rain hardening takes place 
is called plastic stage. In add1t10n to the plastic stram there 1s a recoverable elastic strain. 
To provide the necess~ry internal stresses _to ba~~nc~ the ext~rnal loads, th~ a!oms are always 
separated by a certam amoun_t _fr".rn thelf ~qu1hbrmm spacings. As t?e y1~Idmg continues, the 
atoms are shifted to new equ1hbnu~ pos1t10n~ and at th~ sa~e time mteratomic spacing 
changes to develop the necess~ry mter at~m1c forces. . Fig. 21 3 (a) shows unloading of the 
bar from the point B, where BG 1s the unloadrng stress-stram curve. 

Elastic strain (recovered) =GH= EL 
Plastic strain (permanent) = OG=EP. 
In many materials, the rate of strain hardening decreases with increased strain and at 

the maximum load point i.e. P nm, strain hardening becomes zero i.e., where the strain 
hardening no larger compensates for the increased stress caused by the reduction in area. 
At this stage constriction or neck begins to form in the specimen. 
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The plastic range ends in the fracture of Jhe. bar, the break occurs at the smallest 
section of the n .ck. The very centre of the neck _ is m a state of triaxial tension, which 
~ncourages brittle type fracture. Fracture starts with a small crack in the centre of the neck. 
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The crack spreads rapidly outwards. By the time the crack has spread nearly to the circum
ference, there is only a narrow ring of material like a tube supporting the load. This tube 
fails by shearing action all around resulting in a cup and cone type fracture for ductile materials. 

In steels with increasing carbon content, the depth of the cup becomes shallower until 
for high carbon steel it may completely disappear. Fig. 21 ·4 (a) shows the formation of a fine 
crack in the centre of the neck. Fig. (b) shows the cup and cone type fracture for a ductile 
material as mild steel. Fig. (c) shows the fibrous fracture for very soft materials like wrought 
iron Fig. (d) shows the star type fracture for high carbon steel. 

High carbon ~teel 

Strq~s 
mild stee l 

~tress 

l 
0 Strain 

Fig. 21 ·5 

cost iron 

Strain 
(b) 

L,ronula r' 
fracturq 
of cast 
iron. 

Fig. 21 ·s (a) shows a comparison between the stress strain curves for wrought iron, 
mild steel and high carbon steel. As the carbon percentage increases in steel, its ductility goes 
on decreasing but strength goes on increasing. If we compare the strain energy absorbed by 
the specimen uptil fracture , then it is observed that wrought iron absorbs maximum strain 
energy t ill breaking and high carbon steel absorbs the least amount of strain energy. In 
other words wrought iron is tougher than mild steel and mild steel is tougher than high carbon 
steel. The toughness of a material is defined as its ability to absorb energy and deform 
plastically before fracture. Toughness is proportional to the combined effect of strength and 
ductility. 

When the carbon percentage in steel increases further and carbon comes out in the 
form of graphite flakes rendering the material weak, as in the case of cast iron, the material 
fails with very little extension with granular type of fracture showing separation of grains in the 
direction perpendicular to the axis of load. This type of fracture is called a brittle fracture. 

Non linear elastic properties. Some 
materials do not follow Hooke's law, therefore 
their stiffness does not remain constant but 
varies with stress. Sometimes average stiffness is 
taken at a given stress. This average stiffness 
is given by secant modulus. 

E,ecan1=( L )= jB 
€ €B 

Secant modulus depends on the loca
tion of point B. 

If the stiffness associated with a small 
increase in stress is designed, the instantaneous 
stiffness is determined from the slope of the 
tangent to the curve at that point. This slope 
is called the tangent modulus. As CD is the 
tangent to the curve OAB at the poin~ A. 

· E1anur. n1= ( Je) f =/A 

8 

,/ I 
A // I 

/ I 
/ I 

/ I 
/ • I 

// ; I 
0 ...... ---------e--

8 
Strain 

Non- linea r elastic curve 



MECHANICAL PROPERTIES 1001 

The modulus of resilience (discussed in chapter I) is not applicable in such cases 
because proportional limit does not exist in the non-linear behaviour of the material. 

Though the material is elastic, the 
strain energy is not always fully recoverable. 
The Fig. 21 ·7 shows a typical non-linear stress
strain diagram for rubber. Curve O' 1 A is 
the loading curve and the area under this 
curve gives the strain energy absorbed per 
unit volume when the rubber is stretched. 

Curve A 20 is the unloading curve and 
the area under this curve gives the strain 
energy recovered during unloading. And 

Area. between the loading and unload
ing curves = Strain energy lost in the form of 
internal friction between the molecules of 
rubber during one loading-unloading cycle. 

f 

o---------------1> € 
Strain 

Fig. 21"7 

This is a very good example of mechanical hysterisis and accounts for high damping 
capacity of rubber when used for vibration isolation supporting the vibrating machmery. 
Here the term resilience denotes the ratio between the recoverable strain energy and the energy 
absorbed by the material during deformation. A low resilience is desirable for good damping 
and a high resilience is desirable for low internal heat generation. 

Repeated loading. In a tensile test on a ductile material, if after unloading, the 
member is loaded again, the atoms will simply be displaced to the position they occupied just 
before unloadmg, after which further yielding will take place Fig, 21 · 8 shows that load is 
applied beyond the yield point (loading curve OABCD and then gradually released (unloading 
curve DEF), there will be permanent defor-
mation in the material (shown by OF). On -
reloading, it will be observed that (i) material 
loses elasticity and it no longer obeys Hooke's 
law (ii) yield point is considerably raised t 
(from point B to point H) and (iii) unloading 
and reloading curves form a mechanical 
hysterisis loop which represents the strain l 
energy lost in friction. 

The yield point is raised by a signi-
ficant value, almost as high as the stress o~-::--:':-----
value at the end of the previous loading. fhe 
material ,s said to be strain-hardened or Strain 
work-hardeued as in the cases of processes like 
cola rolling and drawing. Repeated loading Fig. 21 ·s 
al),d ®loading may raise the yield ~oint near _the ultimate stress point and the ductile material 
fails with only a very small elongat10n and with only a small reduction in area. 

21'2. BEHAVIOUR OF MATERIALS UNDER STATIC COMPRESSION 

For a material, stress-strain diagrams for tension and compression generally differ . 
Similarly the ductilitY. and mode of failure exhibited by a material under tensile and com
pressive loading also diff~r. It is in the l_)lastic range for yielding that differences between 
the behaviour under tens10n and compression are the greatest. Behaviour in the elastic 
range is important for brittle material which do not exhibit yielding. · . . . 
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Jn crystalli ne materials, the elastic action in compression is exactly the same as the 
elastic action in tension but in the reverse direction. So the elastic stress-strain curve in 
compression is a linear extensi0n of that in tension for many materials as shown in 
Fig. 2r9 (a). 
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In ducti le materials subjected to compression i,lipping of atoms on crystallographic 
planes leads to yielding at a stress approximately the same as the yidd stress in tension. This 
applies to discontinuous yielding also as in the case of mild steel, whi?h has upper and lower 
yield points in compression that arc usually the same as those for tension. 

In brittle materials, slip leads to fracture along a single shear plane or a multitudes 
of sma ll failures or shear (or slip) planes in all directions leading to fragmentation. 

The axial compressive stress required to cause fracture in a brittle material is much 
greater than the required tensile stress. In tension, fracture is initiated by stress raisers in the 
form of cracks, holes and other impe1 fections even through the stress is well below that necessary 
to cause slip on the 45° shear plane. Since in compression, those imperfections cease to act 
as stress raisers. Instead if cracks or holes are present in the material, these tend to close up 
under compressive force and their effect vanishes. The stress can then reach the larger values 
needed to initiate slip. Imperfections oriented a long the shear planes act as shear stress 
raisers. But these are far less effective than the stress raisers in tension. So the strength of 
a material is compression is often increased. Cast iron, concentre, soils 'are examples of this 
effect. The net result is that brittle materials are stronger in compression than in tension. 
Fig. 21 ·9 (c) shows the complete stress-strain diagram for a grey cast iron in tension and 
compression. The tensile strength c f a typical grey cast iron is 150-160 N/mm2 but its 
compressive strength is 750-800 N/mm 2

• 

The plastic range in compression extends from the end of the elastic stage to final 
fracture. Both the area of cross section and the strength of the material increase with 
compressive plastic strain, the former due to Poisson's effect and the latter due to strain 
hardening. Therefore the load wl1ich is the product of the area and the stress, always increases 
throughout the plastic range. The plastic range is potentially much larger in compression 
\h?;n tn t~n~ion: · · · · · · 
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Testing. A universal testing machine fitted with compression plates is usually used to 
to apply the compressive loads. As it is impossible to make specimens having perfectly 
parallel ends it is desirable to pr ovide some 
adjustment in compression plates so that 
they can be made to apply a uniformly distri
buted load over each end of the specimen. 
The simple adjustable compression plates 
have spherical seats as shown in Fig. 21·10. 

Effects of eccentr icity are more pro
nounced in compression than in tension be
cause of the lateral instability involved while 
applying compressive loads. Therefore it is 
utmost necessary to avoid eccentricity m 
loading the specimen. 
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The maj ority of compression tests are 
made on other than ductile materials, the Fig. 2t·lO 
samples are tested upto fracture. In cast irOi1 and concrete shear surfaces tend to run from one 
corner to the other coraer of the specimen and not necessarily o n 45° plane of the max.imum 
shear. This is due to the end restraints which strengthen the material in a cone-shaped region 
at each end and leaves a w~akness around the edge, as shown in Fig. 2 l" 10. 

Cast iron Concre t e 

F ig.(21·11 

Cylindrical specimens of concrete tend to fail ~along conical shear surfaces forming 
the typical hour-glass fracture of concrete. 

Wood has fibrous structure and fibres are aligned in one direct ion and load is applied 
along the fibre direction. At the time ?f ~racture each fibrous stick in wooden specimen 
breaks giving the type of fracture shown 10 Fig. 21 · 11. 

Load reversal in com pression. In crystalline materials loading in the plastic range 
in tension and then unloadin~ results in permanent deformation with elastic recovery. When 
the material is loaded again in tension, yield strength is raised to a higher value. But instead 
of applying the tensile load on reloading, if the load is reversed and a compressive load is 
applied, an interesting effect is observed i.e. yield strength in compression is reduced. 
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Say a ductile material has equal strength in tension 
(Jvf))T=(fvf))c as shown by the points A and A' in the Fig. 21 ·12. 
a ductile material is loaded in tensi,on upto the 

and in compression i.e. 
A specimen made of such 

point B and unloaded. (As shown by the 
loading curve OAB and unloading curve BC). 
Now the specimen is loaded again but in 
·compression, it is observed that the compres-
sive yield strength has been decreased i.e. 
from the stress at the point A', now it is 
reduced to the stress at the point D. This is 
the well known Bauschinge1 's effect. 

One of the reasons of Bauschinger's 
effect is that yielding in a polycrystalline 
metal is non-uniform. The crystals are ori
ented at random and when the specimen is 
loaded in tension, there crystals yield by 
different amounts so that stress varies slightly 
from crystal to crystal. When the specimen 
or a machine member is unloaded. it contracts 
until the average stress becomes zero. The 
crystals that yielded the least do not quite 
return to zero and remain in tension while the 
crystals that yielded the most go beyond zero 
and are under compression. Therefore there 
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Fig. 21 ·12 

are microscopic residual stresses throughout the material, some in tension and some in com
pression. Now when the material is subjected to compressive load, the crystals that a lready 
have residual compressive stresses will yield at a lower than normal stress aud therefore over
all yield stress is lowered i.e. fv </11.'. 

21"3. BEHAVIOUR OF THE MATERIALS UNDER BENDING 

In pure bending, no shear stress is present and only the normal stresses are present 
across the section. Fig. 21 ·13 shows a beam ABCD carrying loads W each, at distance 'a' 
from each support. The portion BC of beam 
is subjected to pure bending, as is obvious 
from the SF diagram, shear force is zero 
along the portion BC and the bending moment 
is constant and equal to Wa throughout its 
length of (l-2a). 

For convenience the beam may be 
thought of as composed of longitudinal 
elements of infinitesimal cross section or 
fibres, each of which is in a state of simple 
tension or compression. In chapter 8 we have 
studied about the relation ship between bend
ing moment, stress, section modulus and 
radius of curvature, and we have shown that 
variation of strain along the depth of the 
section is always linear even when the extreme 
fibres of the beam go to the plastic stage. 
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If the material were perfectly brittle, the flexure formula could be used all the way 
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upto rupture fr = M, · Y , is called t11e modulus of rupture where M, is the bending moment 
f xx 

causing rupture in the beam. 

Since no material is actually perfectly brittle, stress fr is never quite equal to the 
maximum stress in the b;;:am at rupture. It is however a commonly used property for materials 
like ceramics, cast iron, concrete, wood and brittle plast ics even though some of these have 
considerable plastic deformation before rupture. 
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Accompanying the change in length of the longitudinal fibres is a lateral strain, just as 
in simple tension and compression (due to the Poisson's effect) the fibres on the tension side of 
the beam contract laterally and those on the compression side expand iaterally. Consequently 
the beam becomes wider on the compression side and narrower on the tension side. A 
transverse curvature is produced in the opposite direction from the longitudinal curvature, (as 
shown in Fig. 21 '14 (b). 

Yielding in pure Bending. The atomic mechanism of yielding in pure bending is the 
same as in simple tension ; slip along planes in the general direction of the maximum shearing 
stress at 45° with the axis of the beam. When the extreme fibres (those farthes! from the 
neutral axis) reach the strain at which yielding begins in simple tension ; local yielding takes 
place. As bending continues, yielding progresses gradually inward towards the neutral surface. 
The stress in each fibre follows the stress-strain relationship for simple tension. 
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Fig. 20· 1 s (a) shows the stress-strain diagram for the material of the beam, in simple 
tension and compression. Fig. 21 · 15 (b) shows the stress distribution across the section of the 
beam just before yielding and Fig. 21 ·15 (c) shows the stress-distribution diagram across· the 
section, after yielding has started in extreme fibres of the beam. 

Because of the concentration of the maximum stress in the extreme fibres and the 
support given by the inner fibres, the beam usually docs not begin to yield until some what 
higher stresses are reached than are ordinarily observed in tension. When yielding does begin 
at some point, owing to imperfection it forms a small slip band starting at the extreme 
surface and progressing inward towards the neutral surface in the form of a wedge. This 
wedge acts like a notch having stress concentration at its tip and inner fibres therefore yield at 
stresses lower than the stress at extreme fibres. 

Final failure in beams made of ductile materials usually involves either excessive 
deformation or lateral buckling of some kind. 

Mild Steel. Beams of mild steel are of particular interest because of their wide use 
as structural members and because of the discontinuous behaviour in yidding of mild steel. 
After the yielding has progressed some distance from the outer surfaces, the stress distr ibution 
has the appearance shown in Fig. 21 ' 16 (a) the maximum stress Jui (stress at the lower yield 
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Fig. 21 ·16 

point) is approximately constant over the depth of yielding. At the limit, as the yielded region 
approaches the centre of the beam, the stress distr ibution can be represented by two rectangles 
as shown in Fig. 21 ·16 (b). 

This distribution is referred to as the fully plastic condition and the corresponding 
moment can easily be calculated. So long as the strain hardening does not occur, the bending 
moment cannot increase beyond this value, which is therefore called the ultimate moment, Mu 

where 

( 
bh \ h bh2 

Mu= /111. T )y=/111 · 4 

/w1=lower yield point stress 

b= breadth of the cross section 

lz=depth. 

The bending momeat at which yielding begins, 

J.,., 
M y=fvi. h/2 

M --"r b/zZ 
·-j'J • 6 . 
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Therefore Mu 1·5 I 1. · M, = or t 1e u t1mate moment 1s 50 per cent more than the 

yield moment. 

Ratio Mu/M, depends'upon the shape of the cross section ofthe beam therefore it is 
called a shape factor . For circular sections the value of shape factor is approximately 1 ·s. 

Residual Stres~es . . After a be~m has been bent into the plastic r ange, removal of the 
load leaves the beam with mtcrnal residual stresses. because the stress-strain diagram for 
unloading is different than for loading. Fig. 
21 • 17 shows the distribution of residllal 
stresses in the beam after unl oading. AOB is 
the stress distribution after the beam has been 
loaded producing stresses in the plastic range 
i.e., beyond the yield point. When the beam 
is unloaded, the stress distribution for un
loading is A'OB' and is linear as the strain 
distribution is always linear acrosss the depth 
of the section during loading of the beam and 
also during unloadin g of the beam so as to 
satisfy the assumption that plane sertions 
remain plane in pure bending. 

When the load is completely removed, 
the moment of stress distribution must be 
zero, so as to maintain equilibrium. Conse
quently the stress all across the cross 
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Residual stresses after complete 
unloading. 
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section is educed further (i.e., beyond zero) such that the stress in the outer fibres changes 
sing and produces an opposite moment to balance that of the remaining stress in the inner 
fibres . Line A'OB' represents the necessary superimposed linear stress distribution. The 
rostult is that in most parts of the unloaded beam, the residual stress is not zero. On the 
tenion side the re, are residual compressive stresses (/c a) in the outer fibres and tensile residual 
stresses in interior. On the compression side, there are residual tensile stresses (fc11.) in 
the outer fibres and compressive residual stress in the interior, the net moment of the distribu
tion is zero. 

Experimental Methods. Fig. 21 'I 8 (a) shows the experimental set up for pure 
bending on beam ABCD. The portion BC of the beam is subjected to pure bending or cons
tant bending moment and no shear force. Following conditions must be satisfied during testing 
(]) Loading has to be in the plane of symmetry so as to avoid unsymmetrical bending 
(2) Freedom from longitudinal restraint (3) Constant bending moment with zero shear in the 
portion of the beam under consideration. 

Experirr.ental observations are made on load and either deflection or strain. Deflection 
in the centre can be measured with a dial gauge a nd strain on top and bottom surfaces can be 
measured with the help of electrical resistance strain gages. 

Fig. 21 ·1g (b) shows the set up for 3-point loading of beam or bending with shear. The 
bending moment is not constant. Transverse shear transforms the stress in a beam from 
uniaxial to a biaxial state. The longitudinal fibres are no longer under simple tensile or com
pressive stresses, and the state of stress changes from point to point due to variation in bending 
moment. 

In the elastic analysis of bea ms, it is assumed that the effects of transverse shear and 
those of the normal and bending stresses can be considered separately. But in the plastic 
range, this cannot be done without introducing a certain degree of approximation. 

Be:nding tests with shear are also used to analyse the performance of full-sized 
members, as the bending test provides a direct means of evaluating th~ effects of su9h factors 
~s shape factor on the structural stabilit~ of the members. 
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21"4. BEHAVIOUR OF MATERIALS UNDER TORSION 

Torsion tests are performed on materials to determine properties rnch as Modulus of 
rigidity, yield strength and modulus of rupture. Parts such as shafts, axles and drills are 
subjected to torsional loading in service and torsion test is performed on such full sized mem
bers otherwise a test specimen is made on which the test is performed. The specimen generally 
has a circular cross section and in the elastic range, shear stress varies linearly from zero at the 
centre to the maximum at the surface. In the case of a thin walled tube, shear stress is nearly 
ur;tiform over the cross section of the specimen and it is preferable to use thin walled tube 
specimens for the determination of yield strength and modulus of rupture. 

The torsion-test specimen shown in the figure 21"19(a) is gripped in the chucks of a 
tarsi.on-testing machine. Twisting moment is gradually applied on the twisting head gripping 

Torsion test specimen 

(a) 

'!wisting 
moment 

-lr offset 

Fig. 21"19 

Angular tw,st e ----. 
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one end of the specimen and torque T is measured on the weighing head connected to the other 
end of the.specimen . Angular twist 6 is measured.with the help of a trnptomet,e.r, near one 
end of the test section with respect to tlhe test section of the specimen at the othet; end. A 
torque Vs. 8 (angular twist) dia~ram usually obtai.rie<;i for ll . d1,1~~il.~ ~ater.i~l i~ ~he ~!l \:µ t:P,<: 
Fig 21·19 (b): 
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The elastic properties in torsion may be obtained by using the torque at the propor
tional limit or the torque at some offset angle of twist, generally 0'04 radian/metre of gauge 
length, and calculating the shear stress at the twisting moment Tyv, using the torsion formula. 

Because of stress gradient acro,;s the radius of the solid shaft, the surface fibres are 
restrained from yielding by the less highly stressed inner fibres. Therefore, the first onset of 
yielding is not readily apparent. The use of a thin-walled tubular specimen minimises this 
effect because the shear stress is nearly uniform in the section of tube. However, an ultimate 
torsional shear strength or modulus of rupture is frequently determined by using Tm"'" in the 
torsion formala. 

where 

Modulus of rigidity, G= Tl 
J0 

where 0=angular twist within the elastic limit corresponding to torque T. 

P l f . . J rcd4 o ar moment o mertia, = 32 
M d 1 f Tmax X d o u us o rupture, q,= - J- 2 

d=diameter of solid circular section 
/=Gauge length of the specimen. 

TORSION FAILURE 
Fig. 21 ·20 shows the state of stress at a point on the surface of the circular specimen 

tested under torsion. The maximum shear stress occurs on two mutually perpendicular planes, 
parallel and perpendicular to the longitudinal axis XX of the specimen. The principal stresses 
Pi and P2 make an angle of 45° with the longitudinal axis and are equal in magnitude to the 

X X 

{b) (c) 

shear(ductile) Tensile ( britt le) 
failure failure 

Fig. 21·20 

s.hear stresses, Pi is a tensile stress and P2 .s an equal compressive stress. 
Torsion failures are different from tensile failures. Ductile materials fail in tension 

after considerable elongation and reduction in area, and showing cup and cone type fracture 
while in torsion a ductile material fails by shear along one of the planes of maximum shear 
stress. Generally the plane of fracture is normal to the longitudinal axis as shown in 
Fig. 21 '20(b). A briltle material fails in torsion along a plane perpendicular to the direction 
of the maximum tensile stress. This plane bisects the angle between the two planes of maximum 
shear stress and makes an angle of 45° with the longitudinal axis, resulting in a helical fracture 
(as shown in Fig. 21 '20(c)). 

21'5. BEHAVIOUR OF MATERIALS UNDER IMPACT 

The Impact tests are used in studying the toughness of the materials i e. the ability 
of the material to absorb strain energy during plastic deformation. In static t ensile test, the 
area under the load extension curve gives the strain energy absorbed by the specimen uptil 
breaking. In order to have high toughness, the material should possess high strength and 
large ductility. Brittle materials haw low toughness since they exhibit very small deformation 
before fracture. The use of such mat ~rials in structures or machines is dangerous since fractur~ 
µiay occur suddenly without any noti~eble deformation: 
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In the case of polycrystalline materials there are two types of fractures (i) brittle fracture 
as in the case of cast iron (ii) shear fracture (or the ductile fracture) as in the case of mild 
steel nnd aluminium. The strength of the meterial can be described by two characteristics i.e., 
(i) resistance of the material to separation and (ii) resistance of the material to sliding. If the 
resistance to sliding is greater than the resistance to separation, the material is brittle and if the 
resistance to separation is greater than the resistance to sliding, the material is ductile. 

Three basic factors contribute to a brittle type of fracture i.e. , (i) a triaxial state of 
stress (ii) a low temperature and (iii) a high strain rate or rapid rate of loading. All the three 
factors need not be present at the same time to produce a brittle fracture. 

(i) Triaxiality of s t resses. Fig. 21 ·21. shows a round bar with a groove (or notch) 
subjected to axial tensile force P. Due to the presence of the groove or the notch, the stress 
at the root of the notch is very high due to the effect of the stress concentration. Maximum 
stress at the root of the notch depends upon the root-radius. The material in the centre of the 

L----_ -------
Pr 

p 

Fig. 21·21 

bar, carrying the tensile load tries to contract laterally (i.e., along the radius) because of 
Poisson's effect, but it is hindered by the resistance of the unstrained material. The result is 
that there are tensile stresses acting radially outward on the inner portion of the material which 
produce a state of triaxial tension. These tri axial stresses f a, p,, pr leads to the brittle 'failure 
of the material along the notch. Therefore, the impact test on ductile materials is generally 
performed on bars with a notch, so as to have the effect of triaxiality of stresses. 

(ii) Effect of Temperature. Steels are used for building purposes and the notch 
impact strength of steel depends on temperature. The energy required for a given notched bar 
impact test falls rapidly and irregularly once 
the temperature drops below a critical tem
perature and usually a ductile steel breaks in a 
brittle manner. 

In general, at high temperatures, 
fractures in steel occur with large deformation 
and high values of impact energy are obtained. 
The fracture is fibrous in character. As the 
temperature drops, the impact energy values 
fall more or less rapidly within a critical tem
perature range, and brittle fractures occur (i.e. 
fracture with a very small deformation). The 
fracture is granular having crystalline appear
ance. At transitional temperatures mixed 
fractures occur with an alternating sequence of 
the; deformation ap.9 ip~~antan~ou~ fracture~: 

400 o.o,i. c 
I 

...J- Transit ion 

J' I 1. 
I 0-22. C 

ll 

. Temperature ----,..-

zone for 11 
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It can be easily seen that the transition curves flatten out as the carbon content is 
increased in steel and also the maximum impact energy at which only ductile fracture occurs, 
falls as the carbon content is increased. ln the Fig. 21 ·22, three zones for 0'22% carbon steel 
are shown, i.e., brittle zone, transition zone and ductile zone. If the temperature of 0'22% C 
steel is less than -140° F, brittle fracture occurs and if the temperature is more than 40°F, 
ductile fracture occurs. ' 

(iii) Effect of Straining Rate. The µlastic stress-strain curve of a ductile metal is 
raised by increasing the strain rate. In other words, if a tensi le load is applied on a metallic 
specimen with a very high strain rate, its yield point is increased in comparison to the yield 
point obtained in static tensile test. This effect is also temperature dependent and is more pro
nounced near the melting point of the metal. The effect is fairly small at room temperature. For 
example increasing the strain rate by a factor of l 00 increases the yield stress of copper by only 
10 to 15 per cent at room temperature. But if at the temperature near the mdting point if the 
strain rate is increased from 10-6 to 10+3 per second, the yield stress is almost doubled. 

Especially in mild steel, the yield point is subjected to striking variations with strain 
rate, which is closely associated with the causes of discontinuous yielding. With high strain 
rates, the stress can reach much higher values before gene·ral yielding begins in mild steel. 

The importance of increased yield strength at higher strain rates lies in its effect on 
ductility. The result is a decreased ductili ty and a greater tendency to brittle fracture, so 
increasing the rate of loading has the same general effect on ductility as increasing the triaxiality 
of stress. 

Ductile and Brittle States. We have learnt that the following three factors control 
the ductile or the brittle type of fracture or yielding and fracture stress. 

(a) Triaxiality (b) Temperature (c) Rate of loading. 

F ig. 21 ·23 illustrates the effect of these 3 factors. Consider a material loaded at point 
A representing the given triaxiality, strain rate and temperature . As the stress is increased 
along the line AA', the material is yielded at 
YA as YA<FA. Therefore, material will be in 
a ductile state and the final fracture will be 
ductile fracture. Now consider loading at 
point B, high triaxiality and strain rate and a 
lower temperature will produce brittle fracture. 
Obviously the point YB will never be reached 
and the material is in a brittle state. The 
transition value of triaxiality, strain rate or 
temperature is represented by the point C. To 
the right of this transition point C, the 
material is in a ductile state and to the left it 
is in a brittle state. 

In the neighbourhood of the point C, 
there will be usua lly some yielding followed by 
fracture. This transition phenomenon occurs 
over a wide range of values. 

Impact loading of unnotched samples 
provides evidence of transition strain rate above 
which ductile materials behave in a brittle 
manner. Low temperature testing of unnotch
ed specimens shows the existence of a _ tran
sition temperature. Similarly, the ductile 
materials tend to become brittle if triaxiality 
increases . 

fy 
B 

, 
C A 

Fracture 
stress 

Brittle state Ducti l e.s tate 
Transition 

B C A 

-Increasing t ri axial ity 

---- increa sing strain rate 

Increasin g temperature-

Fig. 2.1·23 
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Notch Effect. The strress concentration at the root of the notch provides large stress 
necessary to raise the yield stress and a high local strain rate at the root. 

<>r 

Say K,=theoretical elastic stress concentration factor 
/a,=average stress at the section containing notch 

fmaz=K, ,fao 

fma• =K· t fa• 
E . E 

Differentiating both the sides with respect to time 
0 0 

f!:ma,.=Kt Ea~ 

This shows that the local strain rate at the root of the notch is multiplied by the same 
concentration factor as the stress. 

lf the combined effect of triaxiality, high strain rate, low temperature and stress 
concentration raises the yield stress above the fracture stress, a crack . will form n·ear the root 
of the notch, which is locally yielded. The immediate effect of crack formation is a sharp 
local increase in strain rate which further increases the yield stress and brittle fracture continues 
and the crack rapidly runs through the material. 

Notch Sensitivity. The tendency 
of a ductile material to behave in a brittle 
manner in the presence of a notch is called 
notch sensitivity. This property also depends Impact 
on strain rate, triaxiality and temperature. en.ergy 
The effect of notch sensitivity is obtained by 
plotting a curve between impact energy and ) 
temperature for a notched bar impact test, 
keeping traxiality constant by using a standard U 
notch for all specimens and keeping strain 
rate constant at some high value by standard 
impact loading. The high overall strain rate 
multiplied by the stress concentration factor 
of the notch produces local strain rates as high 
as 108 cm/cm/second. 

Notch sensitivity is measured partly Temperature, T 
by the sharpness of the transition in the 
fracture energy or impact energy versus Fig. 21·24 
temperature curve shown in Fig. 21 '24 for a 
low carbon steel. The sharper the transition the more notch sensitive is the material. In 
the case of low carbon steel, the transition is so abrupt that a single temperature T defines it. 

Notched Bar Impact Test. This is a standard test on notch sensitivity combinin_g all 
the three factors i.e., triaxiality (notch), high strain rate (pendulum) and temperature. High 
temperatures upto 2000 °F are obtained in ovens/furnaces. Low temperature are obtained by (i) 
forced air circulation over dry ice (-109 °F) (ii) liquid nitrogen (- 319°F) and (iii) liquid 
hydrogen (-423 °F). The pendulum of the impact testing machine must be carefully 
constructed with the striking edge at its centre of percussion to minimise vibrations. 

In the case of Charpy impact test, standard specimen with a notch in the centre is 
supported like a beam loaded at the centre as shown in the Fig. 21 '.t.5 (a). The notch is on the 
tension side. While in the case of Izod impact test, the specimen is fixed as a cantilever loaded 
at the end. 
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The Charpy test has two advantages over the Izod test i.e. (i) It is easier to place the 
specimen in the machine, an impor tant consider~tion in low. temperature te,~ts when the test 
niust be performed within a few seconds aft~r removmg the specimen from a l0w temperature 
bath. (ii) It is also free from compressive . stresses around the notch, which are produced 
in the Izod specimen by the vice, when we consider the complexity of the stress distribution 
introduced by the notch itself. 

When the notched bar impact test is used to compare the notch sensitivities of 
materials, the significant information is simply a tabulation of comparative impact energy 
values. 

21·6. HARDNESS 

Hardness is the property of a material by virtue of which it resists penetration, 
indentation, scratch, wear and tear, abrasion and cutting. An appropriate definition of hardness 
is the resistance of the material to permanent deformation of its surface. 

The relationship between hardness an~ atomic structure was first developed by a 
German mineralogist Mr. Mohs, who determined hardness by surface scratching of one 
material by another material. He assigned Mohs hardness number from I to IO. .Mohs 
hardness number 10 was given to diamond, 9·7 was given to Tungsten cirbide. But the 
measurement of hardness by scratching is difficult to standardise and to interpret. Therefore 
for most engineering applications, Mohs' scale does not define the hardness number in a clear 
quantitative manner. 

Hardness Measurement. One way in which surface may be deformed permanently 
is by indentation. An indentor having a diamond point or a hardened steel ball is pressed on the 
surface of the material and a permanent deformation is produced. The depth of the penetra
tion or the area of the indent and the required compressive force are easily measured and provide 
an indication of hardness. The resistance to permanent deformation is simply expressed in 
terms of load applied and area of the impression. _ 
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Indentors ate inade 1ii various geoinetricai shapes such as spheres. cones and pyramids. 
The area over which the force acts increases with the depth of penetration. 

surface 

p 

square: 
pyramid 

p 

I 
Knoop 

Indenter 

p 

i 1"R I 
~ 

'lndentatioo~ 

\../[gj Indentation-!~ r --l d 1-/ x $ Indentation 8 
Increase in area of contac~ 

(e) {b) (c) (.d) 

Fig. 21·26 

In the Fig. 21 '26 (a) to (d) indentations produced on surfaces by conical, square 
pyramid, knoop and ball indentors are shown. Around the indentation produced by a ball 
the stress distribution is highly complex. As the material is forced outward from the region 

. of indentation, it is subjected to triaxial stresses which vary greatly from the centre to the 
edge of the i_n dentation. Friction ?etween. th~ ball and the surface adJs to the hydr~static 
compression component. [Note that 1f the prmc1pal stresses arc p, p, p each, equal rn all 
'the directions, it is said to hydrostatic component of stress). In the case of pyramid indentors 
the sharp corners produce even more complex stress conditions. 

Pyramid Hardness. Diamond points are ground in the shape of square or rhombus 
pyramids. 

Hardness= P / A 

Load, P= ). d2 

where d= diagonal of the square 

Area, A= ~d2 where ~ is a constant 

Hardness number 
>.d2 ). 

H = (Jd2 =T· 
independent of both the load and the size of the indentation. 

The hardness number of a material for the given shape of the pyramid is the sanie 
regardless of the load used. The independence of hardness number and load makes it possible 

·. to use a wide range of loads for different purposes. Large loads for large indentation for 
measuring gross or average hardness and smaller loads for measuring local hardness are used. 

It is easier to measure the diagonal of a pyramid indentation due to sharp edge than 
to measure the diameter of a circular impression. 

In the case of Vicker's Pyramid Number (VPN) the angle between the opposite faces 
--0f the pyramid is 136°. · 

Surface of contact between indentor and impression 
d2 

A= 2 sin r,..12 
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where «= 136° 

VPN=; X2 sin 

1015 

where 

(X p 
- = 1"8544 -
2 d2 

P = Load in kg 
d=diagonal in mm. 

Knoop Indentor is developed especially to study the microhardness i.e., the hardness 
of microscopic areas as in the individual metallic grains. The Knoop Hardness number is 
computed from the rrojccted area of the impression rather than the area of contact. 

p 
Knoop hardness - 0.07028 d2 

where P=Applied load in kg 
d= Long diagonal of the impression in mm 

Brinell Hardness Number. J.A. Brinell used hardened steel ball to determine the 
hardness of the metals. 

where 

where 

p 
BHN=A 

P=load in kg 
A=area of the indentation in mm2 

• 2 p 
= ,; D (D-4D2-a2) 

D =diameter of the ball 
d= diameter of indentation 

BHN is dependent on the load used. For this reason. it is necessary to use the same 
load for all meaurements with a given ball if a comparison of hardness of different materials 
i.s to be made. 

Rock well Hardness Test. This method is used to determine the hardness of a wide 
range of materials. Rockwell Hardness is m~usured by use of either a steel ball or a cone shaped 
diamond indenter. It differs from I3HN and VPN as in this test depth of impression is 
measured in place of diameter or diagonal of the indentation. But depth and diameter are 
always geometrically related, the hardness measurement is the same in principle. 

For metallic specimen 3 tests are used as 
Rockwell A-For case hardened materials and thin metals such as safety razor blades. 
Rockwell B-For soft or medium hard metals as mild steel, brass, copper etc. 
Rockwell C-For hard metals such as high speed steel, high carbon steel, tool steels etc. 

For Rockwell A and C, diamond indentor (120° cone angle) and for Rockwell B steel 
ball inductor (diameter 1 ·59 mm) are used. A minor load of 10 kg is applied initially to 
overcome the oxide film thickness on the metal which may have been formed in due course of 
time. Then additional load of 50, 90 and 140 kg is applied on the indenter in the case of Rock
well A, B and C tests respectively. 

where 

t 
Rockwell hardness = H- 0 .002 

H= a constant depending upon the type of the inductor used 
= 130 for steel ball indentor 
= 100 for diamond cone iQdentor 

!= depth in mm · 
9·902 m~1 = 1 uni~. 
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Mechanism of Indentation. When the indentor is pressed into the surface under a 
static compressive load , large amount of plastic deformation takes place locally. The material 
thus deformed flows out in all directions. The region affected extends to a distance approxi
mately 3 times the radius of indentation. Taking into account the principle of constant 
volume during the plastic deformation, the surface surrounding the impression bulges out slightly 
to account for the volume of the metal displaced under the indentor. In some cases, the metal 
bulges out ar0uncl the indentation as shown by Fig. 21 ·27 (a) this is called Ridging. This is 

Ridging Sin1<1n9 

metal tlow metal flow 

{al (b) 

Fig. 21-27 

generally obtained in cold worked alloys. While in same cases, the metal bulges out at the 
ends resulting in sinking at the impression shown by Fig. 21 '27 (b) . Sinking takes place in the 
case of annealed metals. 

In the case of ridging type impression, the diameter of the indentation is greater than 
the true value, whereas with sinking type impression, the diameter of the impression is slightly 
less than the true value. 

Time is an important factor in the process of hardness measurement as large plastic 
deformations are accompanied by large amount of transient creep which varies with the 
characteristics of the material. 

With the harder materials, the time required to reach the maximum deformation is 
n~arly 15 seconds. Such as for iron and steel. Soft materials like magnesium may require 
unreasonably long time, sometimes 2 minutes. 

Rebound hardness. Hardness measurements are sometimes made by dropping a 
hard object as on the surface and observing the height' of the rebound. Usually a diamond 
point is used to strike the surface. As it falls its potential energy is converted into the kinetic 
energy. A part of this kinetic energy is stored in the form of recoverable elastic strain energy 
in the surface and a part is dissipated in producing plastic deformation. The amount of strain 
energy stored depends upon the yield point, stiffness and damping capacity of the material. 
All the elastic strain energy is not recovered in the form of rebound of indentor due to the 
internal friction of the metal. So the rebound hardness measures a combination of hardness, 
stiffness and damping capacity. 

In the Shore seleroscope tests, a poil).ted hammer is allowed to fall from a heigb.;t of 
25·4 cm, within a glass tube, which has graduated scale inscribed on it. The standard hammer 
i.s a pproximately 6'35 mm diamete~, l '9 cm long and 2·4 gm weight with a diamond stri.king 
tip of radius 0·25 mm. The scale 1s graduated in 140 divisions. A rebound of 100 is approxi~ 
mately equivalent to the hardness of a martensitic high carbon steel. 

2·1. FATIGUE BEHAVIOUR OF MATERIALS 

Materials subjected to fluctuating loads or repeated load cycles tend to develop 
characteristics different from their behaviour under steady loads. This behaviour is called 
fatigue and is characterised by (i) loss of strength (ii) loss of ductility (iii) increased uncer
tainty in strength and service li~e. The inhomogeneit~ of the lllaterial is responsi~le for ~q 
i4e~e 3 features of fati~ue behaviour! · 
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The fatigue of the materials is primarily an effect of the repititions of the loads and 
not simply a time effect. The rate of application of the load is not an important factor in 
fatigue. A STM defines fatigue as "A general term used to describe the behaviour of materials 
under repeated cycles of stress or strain which cause a deterioration of the material that results 
in a progressive fracture. 

Fatigue occurs at stresses well within the ordinary elastic range as measured in a 
static tensile test on the material. Fatigue occurs under all kinds of loadings and at high and 
low stresses. 

Deterioration resulting from fatigue consists primarily in the formation of cracks in 
the material. These cracks originate from visible discontinuities which act as stress raisers. 
These discontinuities include design details such as holes, fillets, keyways etc ; imperfections in -
the material such as inclusions, blowholes or fabrication cracks. 

The progress of simple fatigue can be traced in 3 stages (i) nucleation (ii) crack 
propagation (iii) fracture as shown in Fig. 21 "28. In short, localised changes in the atomic 
structure begin within the first few cycles at scattered points in the material. These changes 
in atomic structure soon develop into submicroscopic cracks which grow as the loading cycles 
continue into the microscopic sizo and eventually~ become'.hlarge cracks which are visible. 
Finally when the cracks have grown to some critical size, the member becomes weak and it 
breaks. 

0 0{) 
nucleation 

(a) 

crock growth 

( b) 

Fig. 21"28 

( C) 

crack 

sudden 
fracture 

final fracture 

( d) 

(a) The mechanism of nucleation and cracks growth for metals can be explained as 
follows : 

, Fatigue in metals begi~s with highly locali~ed yielding: In polycrystalline metals in 
simple tension, there always exist a few crystals which are so onented that slip can easily start 
iri these crystals. As the load is increased, these weak crystals yield first, but since they are 
surrounded by elastic material, they do not affect the static stress-strain diagram noticeably. 
Nevertheless they do yield and at an overall stress that is within the elastic range of the 
material. If the material is loaded only for once, the effect of the localised yielding is insigni
ficant. But if the load is repeated, each repitition produces additional localised yielding which 
eventually results in the formation of submicros~opic cracks in the yielded region, due to the 
strain hardening effect produced by repeated loadmg cycles. 

Fig. 21 ·29 (a) shows a cantilever type cylindrical specimen rotating at w radian/sec
and subjected to a vertical load at the free end. The critical se:cticn of the specimen is sub 

. WI l . . . /t 32 M jected to a ·bending moment M = resu tmg m maximum stress maa,= nda . If a point .A. 

is considered on the periphery of the sectio~, then it i~ subjected to a · stress cycle 0, Ima,,, O, 
-/ma,, as shown in the Fig. 21 ·29 (b). Say m a particular crystal near the outer surface· of 
the specimen, at the cri~ical section, the str~ss has _exceeded fyp, as sh?wn in the Fig. (c). ~ith 
each stress reversal, yield stress goes on mcreasmg and when the yield stress reaches the ulti-

'American Society ror Testing and Materials,. 



STRENGTH OF MATER~ALS 

-mate stress of the material submicroscopic crack is developed at the point, which has acted as a 
stress raiser. As load cycles continue new submicroscopic cracks are formed mostly in the 
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Fig. 21·29 

same crystal and these submicroscopic cracks join together to make a microscopic crack. The 
microscopic cracks have been observed after only 0·1 per unit of the total number of cycles 
endured before failure. In general, the fatigue cracks start in the surface of the member 
possibly because the crystals adjacent to the surface are less restricted by the surrounding 
crystals. 

The first microscopic cracks appear in slip planes in certain unfavourably oriented 
crystals : i.e. crystals whose orientation is such that slip planes coincide with the planes of 
ma:ximum ·shear. So tbe microscopic cracks grow in these planes which are at 45° to the axis 
of the member, and these cracks usually originate in more than one such planes. The inter
section and joining of a number of such microscopic cracks produce a zig zag crack in a 
d,irection at right an~le to the axis. of the me~ber .. G~owth beyond the c1_:ystal of ori~in to 
adjoining crystals brmgs about slight .changes m d1rect10n to accomodate the planes of·easy 
s'lip. 

A notch effect accom'panies the crack and increases its tendency to grow in the gener:al 
direction at right :angle to tb:e tensile stress Fig. 2 I '28 (b) shows the gra"du8!l crack growth. 
Wiren the remaining cross sectional area becomes small enough, final fracture ,0ccurs in ~hieh 
!again the notch effect is ,the controlling factor . Thus the failure in ifatigue is ia 'btiitde 
failure. Sometimes the members are subjected to high maximum stre'Sse's •and gross !yielding 
of t4e eIJ,tire section takes place. Jn such a case strain hardening in general plays dominant 
role t'han the localised slip. 

f 

A majority of fatigue failur,es start at visible discontinuities which act as str{l~~ raisers, 
such as shown in Fig. 21 '30 (a) and (b). In such instances the initial yielding is causea nbt 
by ,ah unfa:vouraffiy oriented ·crystal 1but by a focal increase in stress resultfn~ f.roJD ·str.ess 
cen'eentraflon. 'Nucleation ·is •still highly locaHsed. The weak 'l)o'i.nts are itt0w 'the· -small 
ire'gions a ,ffectecl by the s'fress concentration. Fig. 21 ·30 ·~a~ shows the ifaligue :failu¥e ,of ca shlaft 
wbjectM :t0 111oad icydles, the shaft is havfog a large fillet radius and therefore fow <&tress :con
~ntr-ati0-n. -Cra9ks -nuvleate frQm a few poin,s on ~he s1.1rface and cracks ~row and ·propa~at~ 
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in more or less in the radial direction and final fracture takes place at the central section shown. 
Fig. 21 '30 (b) shows the fatigue failure of a shaft having high stress concentration arnund the 
circular corner CC. All around the periphery cracks are nucleated due to high localised stress 
and all these cracks join together to form an irregular crack all near the circumference. The 
crack progresses rat! ially till the final fracture takes place. 

(b) Statistical Nature of Fatigue. In fatigue, fracture depends on a random distri
bution of weak points and the whole chain of events preceding fatigue fracture depends on a 
series of random processes and varies widely from one member to another. Therefore the 
scatter in observed values is considerable. Consequently neither a single observation nor an 
average of several observations can, give a measure of fatigue life. So the fatigue life of a 
material can only be truly depicted as a distribution of values for individual specimens. With 
the use of statistical methods, the distribution of values can be used in a much more rational 
manner than the individual values with a suitable factor of safety. With the statistical analysis 
of data, a machine member can be designed for a low percentage of failures or a high 
percentage of survivals . 

(c) Fatigue Properties. The total number of cycles required to bring about the 
final fractures under the given conditions (of stress amplitude, maximum stress and rate of 
cycling) is the basic fatigue property. This is directly measured from experiments for indivi
dual specimen. 

Fig. 21 '3 L (a) shows the stress vs. number of cycles (upto failure) curve for a phosphor 
bronze strip subjected to reversed bending1 where m~an stress is zero, (b). The vertical axis 
represents the maximum stress,/max, the horizontal axis represents the number of cycles to 
failure or fatigue life N. The range of N becomes large !n comparison to /max and there is 
conside:i:a@le curvature at all points of the tange except for very large N. But if N is; pk>tt-ed: 
on- a logarithmic scale, the first part of the curve often becomes nearly a straight line and it 
is possible to fit most of the observations quite well by two straight lines intersecting at a point,. 
as shown in Fig. 2 L · 3 L (b ). If is interesting to note in this example that the point where, the. two 
lines meetis near the proportional limit stress for the material. 

When the f-N curve approaches a horizontal asymptote, the corresponding stress is. 
called the endurance limit fe, and the fatigue life at stresses lower than / • is assumed to bo 
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infinite. Ferrous metals usually have a fatigue limit whereas non ferrous metals often do not 
have fatigue limit, fe. 

Fatigue Strength ( fn) . In a general way fatigue strength is defined as the stress 
which a material can withstand respectively for N cycles, and is developed by interpolation 
froxµ graph of stress ver~us fatigue life. 

(d) Factors Affecting Fatigue. Fig. 21 '32 (a) shows a general stress-cycle, with 

f, · J, · · J, fm •m+fmtn d ./' l · , mu= max1mum stress ; n1tn= m101mum stress, m= mean stress= 
2 

~ II J"=a ternattbg 

fmaz-fm,n 
stress= 

2 

f 

l 

Most of the fatigue data in the literature have been determined for 

s tress - cycle: 
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Fig. 21·32 

completely reversed cycle of stress i.e., f m=O, because this type of cycle produces the worst 
type of effect. However conditions are frequently met in industrial applications where the stress 
cycle consists of an alternating stress and a superimposed mean or steady stress. For each 
value of mean stress, there is a different value of range i.e., fmax- J,,,in which can be withstood by 
the material without failure. Fig. 21 ·32 (b) shows the variation off, with /,. (mean stress). As th'.e 
mean stress becomes more tensile, the alternating stress f a, is reduced, until at the tensile strength 
j~ the st~ess range is zero_._ However for practical purposes testing is usually stopped when 
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the yield stress/, is reached. A straight line relationship follows the suggestion of Goodman, 
while the parabolic curve was proposed by Gerber. Test data for ductile metals generally· fall 
closer to the parabolic curve, but the tests data on notched specimens fall closer to the 
Goodman line, the linear relationship is usually preferred in engineering design. Relationship 
Eetwcen stresses can be expressed as 

"here 

fa f • [ 1-( ~: ) ] 
x= 1 for Good wan straight line 
x=l for Gerbar parabola 

fe =endurance stress or fatigue limit for completely reversed 
loading. 

But if the design is based on yield strength, then dashed straight line given by Soderbeg 
can be used and in the above expression/,, is replaced by f, (yield strength). · 

(e) Fatigue Damage. The problem of design for variable loading spectrum is of 
primary importance in the design of rotary wing aircrafts. It has been observed that fatigue 
cracks are nucleated during the first few cycles of loading, therefore practically no phase of 
service lift is free from damage of some kind. Crack propagation involves many factors, cut 
of which stress gradient is an important factor. Cracks propagate at different speeds in 
different materials, under different conditions. Experiments have been performed in which 
crack length was measured as a function of the number of cycles. Fig. 2 l '33 shows some 
typical curves of crack growths under various 
stress levels. Each curve ends with fracture at 
some critical crack length. Another effect of 
stress level is its effect on the character of crack; 
low stress level produces fine cracks and high 
stress levels produce course cracks. The 
order in which stress levels are applied has 
important effects on the progress of fatigue 
damage. A course crack started by high 
stress level will not propagate very rapidly 
under a subsequent low stress. On the other 
hand a fine crack started by a low stress level 
might propagate very rapidly under a sub
sequent high stress.. At the same ti11:e, strain 
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hardening at the tip of crack plays important Fig . 21·33 
part on how it behaves under subsequei:t ~igher . , 
or lower stress levels. All these vanat10ns tend to average out 1f stress levels are applied in a 
random order and cumulative damage theory has been developed on this very basis. 
According to this theory each series of stress cycles accounts for a certain fraction of total 
damage and when these fractions add upto unity failure occurs. 
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levels. 
The value of N is observed from stress versus fatigue life curves for different stress 

( /) Surface l:ffects. It has been observed that most fatigue cracks are nucleated 
near the surface of members. Therefore the condition of the surface is very important. A 
rough surface can lower the fatigue strength by as much as 15-20 per unit. Therefore 
surface scratcher must be removed by slow grinding and polishing operation. 

Electroplating a s~1rface. usuall)'. lowers the resistance to fatigue beeause electricall)' 
deposited metal layer contams microscopic cracks. 



The most coninion surface treatments for improving the resistance to fatiq,ue. and, 
increa-se service lift are those which produce residual compressive stresses in the surface such, as1 

Peening. 

Peening consists in striking the surface with a rounded hammer or ball, which m~~es 
a series of overlapping indentations covering the entire surface. The surface layer of the 
member is compressed which acts as a crack-resistant armor around the inner material 
and markedly improves the resistance to fatigue Metallic shots of diameter 0·2 mm to 4 mm 
in diameter are propelled against the surface at high velocity around 60 m/second. Cold 
surface rolling also introduces compressive residual stresses in the surface. 

(g) Understressii,.g. In some materials having well defined fatigue limit (/e) it has 
been obsei:ved that application of stress cycles at stresses below f • can strengthen the material. 
If these cycles are applied to materials in a series of increasing-stress cycles starting from just 
b,elpw f• (say IO million cycles at each level). These materials have found to withstand much 
higher stresses than /c 'without failure. This process of repeated cycling, at successivel;y hi·gher• 
levels, by which the fatigue properties of materials are improved, is called understressing. 

(h) Experimental Methods. Fatigue tests are performed on members by apply,ing. 
cyclic load in (a) simple axial loading i.e., tension-compression loading (b) rotating bending, 
(c) twisting (d) combination of these loads. 

There are two types of fatigue testing machings 
. (i) Constant load type, loading cycle remains the same throughout the experiment 

and deflection usually increases as specimen becomes weaker. 

(ii) Constant deflection type, a fixed cycle of displacement is imposed on the spc.cimcn 
and the resulting stress may change as fatigue progresses. 

The machines which are most commonly used in la boratories are 
(i) Rotating bending machine with pure bending 

(ii) Rotating bending machine with load on specimen suppo1ted as cantilever. 

Fig. 21 · 34 (a) shows the most popular type rotating beam fatigue testing machiIJ.e the 
specimen is carried between two bearings and connected to shafts wl1ich are supported-in· 
bearings. The assembly is connected to an electric motor and a revolution counter. Loaq' is• 
supported at the ends of the specimen as shown in the F ig. This type of load ing gives constm1,t' 

!. 

(a) 

shaft 

8 - Bearings 
S-Spec,men 
M-Electric motor 

. RC·Re.volution co~nter 
W-Weight 

F.g. 21 34 

C 

CS - cr ,t,cal 
s ection 

(b ) 

bending moment throughout the length of. the specimen. But the section of the specimen
varies uniformly with minimum diameter at the centre. Therefore maximu.m bending stress 
occurs at the centre. In this case stress is al ways completely reversed 'With means stress f,. = 0. 
The rotational speeds attainable are 3600- 10,000 R.P.M. 
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Another variation of rotating bending machine uses a specimen which is mounted and 
·loaded as a cantilever as shown in the Fig. 2l'34 (b). In this case bending moment linearly 
varies along the length of the specimen and specimen has mioimum diameter at the critical 
section shown. 

21'8. CREEP 

In many applications, materials are required to sustain steady loads for long periods 
of time for example blades of a turbine rotor, plastic mountings of electrical appliances, 
filaments in vacuum tubes, timber beams in roofs of building, steel reinforcement and concrete 
in prestressed concrete beams and lead sheathes of telephone cables. Under such conditions 
the material continues to deform until it is rendered useless. 

ASTM defines creep as the "The time dependent part of the strain resulting from 
stress". · 

Because the creep is very much dependent on temperature it is generally thought of ~s 
elevated temperature effect. 

Lead and plastic exhibit considerable creep at room temperature, while asphalt and 
tar creep even at temperatures far below room temperature. For materials like concrete and 
wood, temperature is not an important factor. 

Mechanism of Creep. A constant stress or a constant load is applied on a member 
and strain is measured with respect to time. 

( fracturt) D 

wc·J-i- Trans ient -~ ~ ci E:o _l----
._ _ -- - steady stat e _ ; 1-t-A l -

Instantaneous 

elastic+ plastic ~ 
strain Ill Eo• cre11p s tage i--- -+---- II __ ....., 

... 
_ _ _.__ _ _ _._ _ ____ _ __ ..1-stoge --Inter cept stage 
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--- --- Time t 
' 

Fig, 21·35 

. Fig. 21 ·35 shows the stra in-time curve with 3 distinct stages. Total strain at any time 
has following components 

(a) Elastic plus the plastic strains (if the stress is high enough) occur almost instant
aneously when the stress is applied,-represented by OA. This component is generally omitted 
in the creep curve 

(b) Transient creep strain. 
(c) Steady state creep strain. 

The main characteristic of transient creep is its decreasing rate as is obvious from AB 
part of the curve. Def,..lrmati?n is rapi? at first but . gradually become~ ~low~r anc;l ~lower
~ it aprroaches the fixed stratr~ rate-1.e., steady Stram nit~, 
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The steady strain continues under constant stress which remains constant 
throughout deformation. So it is identical with viscous flow and sometimes referred to as 
viscous creep. Steady strain rate is also dependent on temperature, it is also called hot creep. 
Transient creep takes place at all temperatures even at zero degree temperature so it is also 
called cold creep. 

The creep curve can be divided into 3 stages 
1. Transient creep or the primary creep. 
2. Steady state creep or the secondary creep 
3. Creep fracture or the tertiary creep. 

Transient creep. In crystaline materials, transient creep consists of a small additional 
yielding produced by thermal activation. (At higher temperature, the yield stress of the 
material is reduced) . Application of stress is accompanied by initial plastic strain which 
ceases as soon as the stress is just balanced by the strain hardening effect. Thereafter impulses 
of thermal energy contribute to cause further small increase, in strain and each increment in 
strain causes strain hardening. Consequently each increment becomes a little more difficult 
and further increments less and less frequent. Thus transient creep gradually approaches to 
a minimum. This mechanism also operates at stresses in the upper elastic range, where 
thermal activation can sometimes induce localised yielding at scattered points. 

In amorphous materials which do not strain hardden, transient creep is due to thermal 
activation only. Creep in concrete has been observed at stresses as low as one percent of the 
ultimate compressive strength. This is possibly due to (i) Flow of adsorbed water out of the 
cement get as a result of external pressure (ii) Closure of internal voids in the hardened 
cement paste. 

Viscous Creep. In crystalline materials which strain harden, viscous creep takes 
place when the strain hardening effect is just balanced by the thermal softening effect. Each in
crement of plastic strain is accompanied by an increase in yield stress (due to strain hardening) 
which in turn is gradually lowered by thermal softening so that more plastic strain occurs and 
the cycle is repeated continuously. It is shown by the part BC of the creep curve or the 
secondary creep. 

In amorphous or thermaplastics, viscous flow is the natural form of plastic deforma
tions. The chain molecules slip past each other constantly breaking and reforming their bonds, 
but there is no strain-hardening. Therefore entire deformation can be classified as creep. 

A secondary process in viscous creep of polycrystalline materials is the flow of the grains 
themselves as semi-rigid bodies. It is called grain boundary shearing and results in the 
rotation of grains during creep process. It ordinarily contributes only a small part of the 

Le ad ·under 
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After creep 

c ; c c ks or 
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incipient c r oc k s). 
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total creep strain but plays an important part in fracture by creep, since the cracks are 
developed around the grains rotated during creep as shown in Fig. 21.36. 

Creep Fracture. As the member under steady load continuously elongates, there is 
always an accompanying reduction in area and viscous creep in tension inevitably ends in 
fracture if allowed to continue long enough. This is shown by the part CD of the creep curve 
and at D, eventually the fracture occurs. · 

In the tertiary stage, at higher temperatures or under longer times, ductile metals 
begins to lose their ability to strain harden, when it occurs, more elongation is required to 
counteract the effects of thermal softening and the rate of elongation increases, and the 
fracture may occur without formation of a crack. If the elongation is large fracture is 
still ductile. 

Sometimes at high temperatures or after long periods of loading, metals fracture with 
very little plastic elongation. Under there conditions grain boundary shearing becomes 
important. The movement of whole grains relative to each other causes cracks to open up 
because of their irregular shapes , when one crack becomes large enough or several cracks join 
to form a larger crack, it spreads slowly across the member until fracture takes place. 

At low stresses acting for a long time deformation is sometimes almost negligible and 
fracture tends to be brittle. 

All the 3 stages of creep may not 
always appear 

(a) If fracture is brittle, without appre
ciable reduction in cross section, the third 
stage may be missing entirely. 

(b) For highf or T, the second stage 
is reduced and at still highe1 values, second 
stage may be completed, missing. 

(c) If the stress or temperature is low 
enough, the second stage increases to a con
siderable extent, as shown in Fig. 21 ·37_ 

Study of creep is complicated by the 
fact that four variables are involved : creep 

I D 
D 

Time , t 

strain, time, stress and temperature. Generally Fig. 21 ·37 
the creep-time curve is taken as the primary variation and effects of temperature and stress on 
it are studied. 

The creep tests are usually limited to 1000 hours or less. The extrapolation to service 
lives more than 10 times the duration of the test are sometimes necessary. The life of a steam 
power plant is 40 years, or 350,000 hours. 

Creep Properties. The most important properties used in design for creep are 

1. Creep strength--is defined as the highest stress that a material can withstand for a 
specified length of time without excessive deformation or rupture. The creep rupture strength 
is often referred to as the stress -rupture strength. These properties vary with temperature, a 
constant temperature is assumed and must be specified, for example the creep strength required 
for a steam turbine blade may be that stress which provides 0·20 per cent creep in 100,000 
hours at 1500°F. In a jet turbine only a very small strain is permitted because of the close 
tolerances (as 0'01 per cent strain in 2000 hours) 

Creep strength is determined experimentally as follows 

(a) Several specimens are simultaneously tested at the expected operating temperature 
but each under a different stress. The length of time required to produce the allowable strain 
j~ ~easured for each s~ecimen. A curve of stress versus time can be plotted. Fro~ th~ 
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results creep strengths can be tabulated on the basis of a specified amount of creep strain for 
various temperatures. 

(b) Another method is based on creep rate. 
A curve of creep rate versus stress is obtai ned for a series of creep time tests at the 

expected operating temperature. Each test is made at a di fferent stress and is cont inued until 
the minimum creep rate appears to be well established. 

where 
V0= Bf" 
V0 = creep rate 
B=a constant 

/ =stress 
In Vo = ln B+n In f 

In f is plotted against In v0• 

... (1) 

In using such a curve, total allowable strain E is d ivided by the service life t to give an 
allowable V0 • Corresponding to Vo, the value off i.e. creep strength is obtained. 

Stress relaxation . Bolts and other members required to hold two or more rigid 
plates in tight contact are frequently found to have relaxed considerably after· long periods 
of time as a result of creep. This is called stress relaxation and defined as the time dependent 
decrease in stress in a memb~r which is constrained to a certain fixed deformation. 

Say two plates· are joined by a bolt and a nut a nd €,=initia l strain in bot t. lf this 
initial strain €' is maintained constant the elongation caused by creep is simply substracted from 
it, thereby reducing the elastic part of the total strain. 

Elastic strain at a ny time €et= €t- €cr ( creep strain) 

The stress due to the reduction in elastic strain €cl goes on decreasing with time ~s 
shown in the d iagram 21 "38. 

f 
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Fig. 21·38 

Experimental Methods. Stress is applied by a testing machine which applies either 
a constant load or a con stant stress. In a constant stress machine the load is adjusted conti
P\lOUsly to conform to the changing cross sectiona l area. 

. P=f,.A= fc ( Ao/o ) 



where lo= constant stress 
A=cross sectional area at any instant 

Ao, /0=initial area and initial length 
/=length at a particular instant. 

Utmost care must be taken t0 avoid eccentricity of the loading. 

ro21· 

The specimens for creep tests are usually the same as for the conventional tensile test. 
Elongated ends having a thermocouple well in each may be provided. 

{ ~ gauge leng th 

r,1 " Pio t inum t u he 

Fig. 21·39 
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Strains in creep tests can be measured by a travelling microscope. A pla tinum alloy 
wire is spot welded to the specimen at one end of the gauge length and a platinum alloy tube 
is spot welded to the specimen at the other end, as shown in Fig. 21 ·39_ The wire slides inside 
the tube and reference marks on both are observed through a single telescope at the middle. 
Elongation is measured on a scale provided in the telescope. Temperature control is maintain
ed by the furnace. 

MULTIPLE CHOICE QUESTIONS 

1. The Poisson's ratio for most of the metals is close to 

(a) ..!_ (b) J_ 
5 4 

1 
(c) 3 (d) J_ 

2 

2. A metallic specimen is loaded in tension beyond the yield point, then it is unloaded com· 
pletely and reloaded again in tensi on. After unloading its yield point has 
(a) slightly decreased (b) slightly increased 
(c) considerably decreased {d) considerably increased 

3, The most important, reason for Bauschinger's effect in ductile materials is 
(a) ductile material's weakness in shear (b) compressive residual stress 

(c) tensile residual stress (d) None of the above 
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4. The length between the supports of a Charpy Impact test specimen is 

(a) 60 mm (b) 50 mm 

(c) 40 mm (d) 30 mm 

5. The notch-angle in the Izod Impact test specimen is 
(a) 25° fb) 30° 

(~) 35° (d) None of the above 

6. The angle between the opposite 
Pyramid Hardness test is 

faces of the diamond pyramid in the C!l!\e of Vi~kefs 

7. 

8. 

(a) 120° 
(c) 136° 

(b) 128° 
(d) 144° 

For the measurement of microhardness, the indentor used is 
(a) Vickers Diamond Pyramid (b) Brinell Ball 

(c) Knoop Indentor (d) None of the above. 
The depth of penetration of the hardened steel ball . in the specimen is 0' 140 mm. The 
Rockwell 'B' hardness of the material is 

(a) 70 

(c) 50 

(b) 60 
(d) 40 

9. The depth of penetration of diamond indentor in a specimen is 0·126 mm, the Rockwell 
C hardness number of the material is 
(a) 63 (b) 50 
(c) 37 (d) None of the above 

10. The process which does not improve the fatigue strength of a material is 
(a) shot peening of the surface (b) cold rolling of the surface 

.. (c) electroplating the surface (d) understressing the surface 
11. The clearance between the turbine rotor blade and the casing is reduced by Oi3, mm in, 

100.0 hours. If the blade length is 300 mm, the creep strain rate per hour is 
(a) l microstrain/hour (b) 2 microstrain/hour 
(c) S microstrain/hour (d) 10 microstrain per hour 

1. (c) 
7. (c) 

2. (b) 

8. (b) 

ANSWERS 

3. {b) 4. (c) 
9. (c) 10. (c) 

EXERCISE 

5. (d) 
11. (a) 

1. Explain the process of yielding in polycrystalline materials. 

6. (c) 

2. Show that Poisson's ratio for most of the metals having crystalline structµre is 
close to 1/3. · 

3. · What is discontinuous yielding '? 
4. Differentiate between the following : 

(i) Elastic strain and plastic strain 
(ii) Tangent modulus and secant modulus 

5. What do you understand by mechanical hysterisis loop'? Explain how repeated 
loading increases the yield stress of the material. 

6. Why is. the strength of cast iron more in compression, than that in tflnsion, 
explain? 
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brick. 

7. Compare the type of fracture in tens.ion for 
(a) Mild steel and wrought iron 
(b) High carbon steel and cast iron. 

8. Compare the type of fracture in compression for wood, cast iron, concrete and 

9. With the help of a neat sketch, explain the Bauschinger's effect. What are the 
main reasons for this effect. 

10. Explain the process of yielding in pure bending. 
11. Explain the following in pure bending 

(a) Modulus of rupture 
(b) Shape factor 

12. What is the difference between pure bending and bending with shear ? 
13. Mild steel ad cast iron are tested upto destruction in torsion. Compare their 

fractured surfaces. 
14. Explain how triaxial stresses are developed at the root of the notch in a cylindrical 

specimum subjected to uniaxial tension. 

15. Explain the temperature dependence of medium carbon steel for their impact 
behaviour. 

16. Explain clearly the ductile, transition and brittle zones far a material under impact. 
17. Discuss the effect oftriaxiality, strain rate and temperature on the impact energy 

of a material. 
18, What is notch sensitivity ? 

19. What are the various types of indentors used for hardness measurement ? 

20. Explain the principle of hardness measurement by Rockwell Hardness test. 
21. Explain the principle of hardness measurement by Brinell's Har,dness Test. 

22. Explain the mechanism of indentation in hardness measurement and how ridge 
around the indentor ic; formed ? 

23. Explain clearly the three stages which occur during a fatigue failure. 
24. Explain how a submicroscopic crack is initiated during fatigue loading of a 

member. 
25. What is the difference between fatigue strength and endurance limit in fatigue ? 
26. Explain Gerber parabola and Goodman straight line law for the determination of 

stress ampJitude. 
27. What is cumulative fatigue damage? 

28. Explain how fatigue strength is improved by shot peening, cold rolling and under
stressing the sur-face of the machine member. 

29. Explain how the strain rate goes on decreasing till it becomes constant during the 
transient creep. 

30. What is the difference between hot creep and cold creep ? 
31. Explain the temperature dependence of creep strain-time curve. 
32. Explain the stress dependence of creep strain-time curve. 
33. Explain how the following properties are determined experimentally 

(i) Creep strength 
(ii) Creep rate 

34. What is the difference between creep and stress relaxation ? 
35. Describe the procedure of performing a standard creep test on a specimen. 
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