
About the Book ... 

J 

About the Author ... 

ISBN 1-56032-7i2-X 
9 0 0 0 0> 

ENG IN 
TA 

( 

418. 9 . , 
. C6J59 
1999 

( 

MECHANICS OF 
COMPOSITE MATERIALS 

Second Edition 



( 

MECHANICS OF 
COMPOSITE MATERIALS 

SECOND EDITION 



) 

i 
l 

·,. 

' l 

( 

MECHANICS OF 
COMPOSITE MATERIALS 

SECOND EDITION 

ROBERT M. JONES 

Professor of Engineering Science and Mechanics 
Virginia Polytechnic Institute and State University 

Blacksburg, Virginia 24061-0219 



( 

USA Publishing Office: 

Distribution Center: 

UK 

Taylor & Francis, Inc. 
325 Chestnut Street 
Philadelphia, PA 19106 
Tel: (215) 625-8900 
Fax. (215) 625-2940 

Taylor & Francis, Inc. 
47 Runway Road, Suite G 
Levittown, PA 19057-4700 
Tel: (215) 629-0400 
Fax: (215) 629-0363 

Taylor & Francis Ltd. 
I Gunpowder Square 
London EC4A 3DE 
Tel: 171 583 0490 

Fax: 171 583 0581 

MECHANICS OF COMPOSITE MATERIALS, vr( 

Copyright © 1999 Taylor & Francis. All rights reserved. Printed in the United States of 
America. Except as permitted under the United States Copyright Act of 1976, no part of 
this publication may be reproduced or distributed in any form or by any means, or stored 
in a database or retrieval system, without the prior w1itten permission of the publisher. 

1234567890 

This book was produced in IBM Generalized Markup Language by Robert M. Jones and 
Karen S. Devens. Cover design by Michelle Fleitz. 
Printing by Edwards Brothers, Ann Arbor, Ml, I 998. 

A CIP catalog record for this book is available from the B,itish Library. 
© The paper in this publication meets the requirements of the ANSI Standard 239.48-
1984 (Permanence of Paper) 

Library of Congress Cataloging-in-Publication Data 

Jones, Robert M. (Robert Millard) 
Mechanics of composite materials I Robert M. Jones --- 2nd ed. 

p. cm. 
Includes bibliographical references and index. 
ISBN 1-56032-712-X (hardcover : alk. paper) 
I. Composite materials --- Mechanical properties. 2. Laminated 
materials --- Mechanical properties. I. Title. 

TA418.9.C6J59 1999 
620.1 'I 892---dc2 I 98-18290 

CIP 

ISBN: 1-56032-712-X (hardcover) 

CONTENTS 
PREFACE TO THE SECOND EDITION xiii 

PREFACE TO THE FIRST EDITION xv 

1 INTRODUCTION TO COMPOSITE MATERIALS....................................... 1 

1.1 INTRODUCTION................................................................................... 1 

1.2 THE WHAT-WHAT IS A COMPOSITE MATERIAL?..................... 2 

1.2.1 Classification and Characteristics of Composite Materials 2 
1.2.1. 1 Fibrous Composite Materials 3 
1 .2.1.2 Laminated Composite Materials 6 
1.2.1.3 Particulate Composite Materials 8 
1.2.1.4 Combinations of Composite Materials 10 

1.2.2 Mechanical Behavior of Composite Materials 11 
1.2.3 Basic Terminology of 

Laminated Fiber-Reinforced Composite Materials 15 
1 .2.3.1 Laminae 15 
1.2.3.2 Laminates 17 

1.2.4 Manufacture of 
Laminated Fiber-Reinforced Composite Materials 18 
1.2.4.1 Initial Form of Constituent Materials 18 
1.2.4.2 Layup 19 
1.2.4.3 Curing 23 

1.3 THE WHY- CURRENT AND POTENTIAL ADVANTAGES 
OF FIBER-REINFORCED COMPOSITE MATERIALS....................... 26 

1.3.1 Strength and Stiffness Advantages 27 
1.3.2 Cost Advantages 31 
1.3.3 Weight Advantages 36 

1.4 THE HOW-APPLICATIONS OF COMPOSITE MATERIALS ......... 37 

1.4.1 Introduction 37 
1.4.2 Military Aircraft 38 

1.4.2.1 General Dynamics F-111 Wing-Pivot Fitting 38 
1.4.2.2 Vought A-7 Speedbrake 40 
1.4.2.3 Vought S-3A Spoiler 42 
1.4.2.4 Boeing F-18 43 
1.4.2.5 Boeing AV-BB Harrier 44 
1.4.2.6 Grumman X-29A 45 
1.4.2.7 Northrop Grumman B-2 45 
1.4.2.8 Lockheed Martin F-22 46 

1.4.3 Civil Aircraft 47 
1.4.3.1 Lockheed L-1011 Vertical Fin 47 
1.4.3.2 Rutan Voyager 48 
1.4.3.3 Boeing 777 49 
1.4.3.4 High-Speed Civil Transport 49 

1.4.4 Space Applications 50 
1.4.5 Automotive Applications 50 

V 



vi Content} 

1.4.6 Commercial Applications 52 

1.5 SUMMARY............................................................................................ 52 

Problem Set 1 53 

REFERENCES 53 

2 MACROMECHANICAL BEHAVIOR OF A LAMINA .................................. 55 

2.1 INTRODUCTION ................................................................................... 55 

2.2 STRESS-STRAIN RELATIONS FOR ANISOTROPIC MATERIALS.. 56 

2.3 STIFFNESSES, COMPLIANCES, AND 
ENGINEERING CONSTANTS FOR ORTHOTROPIC MATERIALS ... 63 

2.4 RESTRICTIONS ON ENGINEERING CONSTANTS ........................... 67 

2.4.1 Isotropic Materials 67 
2.4.2 Orthotropic Materials 68 
Problem Set 2.4 70 

2.5 STRESS-STRAIN RELATIONS FOR PLANE STRESS 
IN AN ORTHOTROPIC MATERIAL..................................................... 70 

2.6 STRESS-STRAIN RELATIONS FOR 
A LAMINA OF ARBITRARY ORIENTATION ...................................... 74 
Problem Set 2.6 84 

2.7 INVARIANT PROPERTIES OF AN ORTHOTROPIC LAMINA ........... 85 
Problem Set 2.7 87 

2.8 STRENGTHS OF AN ORTHOTROPIC LAMINA................................. 88 

2.8.1 Strength Concepts 88 
2.8.2 Experimental Determination of Strength and Stiffness 91 
2.8.3 Summary of Mechanical Properties 100 
Problem Set 2.8 102 

2.9 BIAXIAL STRENGTH CRITERIA FOR AN ORTHOTROPIC LAMINA 102 

2.9.1 Maximum Stress Failure Criterion 106 
2.9.2 Maximum Strain Failure Criterion 107 
2.9.3 Tsai-Hill Failure Criterion 109 
2.9.4 Hoffman Failure Criterion 112 
2.9.5 Tsai-Wu Tensor Failure Criterion 114 
2.9.6 Summary of Failure Criteria 118 
Problem Set 2. 9 118 

2.10 SUMMARY .•......................•................................................................. 118 

REFERENCES 119 

3 MICROMECHANICAL BEHAVIOR OF A LAMINA .................................... 121 

3.1 INTRODUCTION ................................................................................... 121 

3.2 MECHANICS OF MATERIALS APPROACH TO STIFFNESS ........... 126 

3.2.1 Determination of E1 127 
3.2.2 Determination of E2 129 
3.2.3 Determination of v12 132 
3.2.4 Determination of G12 133 
3.2.5 Summary Remarks 135 

Contents vii 

Problem Set 3.2 135 
3.3 ELASTICITY APPROACH TO STIFFNESS ........................................ 137 

3.3.1 Introduction 137 
3.3.2 Bounding Techniques of Elasticity 137 
3.3.3 Exact Solutions 145 
3.3.4 Elasticity Solutions with Contiguity 147 
3.3.5 The Halpin-Tsai Equations 151 
3.3.6 Summary Remarks 157 
Problem Set 3.3 158 

3.4 COMPARISON OF APPROACHES TO STIFFNESS .......................... 158 

3.4.1 Particulate Composite Materials 158 
3.4.2 Fiber-Reinforced Composite Materials 160 
3.4.3 Summary Remarks 163 

3.5 MECHANICS OF MATERIALS APPROACH TO STRENGTH ........... 163 

3.5.1 Introduction 163 
3.5.2 Tensile Strength in the Fiber Direction 164 
3.5.3 Compressive Strength in the Fiber Direction 171 
Problem Set 3.5 184 

3.6 SUMMARY REMARKS ON MICROMECHANICS ............................... 184 

REFERENCES 185 

4 MACROMECHANICAL BEHAVIOR OF A LAMINATE .............................. 187 

4.1 INTRODUCTION ................................................................................... 187 

Problem Set 4.1 190 
4.2 CLASSICAL LAMINATION THEORY .................................................. 190 

4.2.1 Lamina Stress-Strain Behavior 191 
4.2.2 Stress and Strain Variation in a Laminate 191 
4.2.3 Resultant Laminate Forces and Moments 195 
4.2.4 Summary 199 
Problem Set 4.2 202 

4.3 SPECIAL CASES OF LAMINATE STIFFNESSES ............................. 203 

4.3.1 Single~Layered Configurations 203 
4.3.2 Symmetric Laminates 206 
4.3.3 Antisymmetric Laminates 214 
4.3.4 Unsymmetric Laminates 218 
4.3.5 Common Laminate Definitions 219 
4.3.6 Summary Remarks 221 
Problem Set 4.3 222 

4.4 THEORETICAL VERSUS MEASURED LAMINATE STIFFNESSES 222 

4.4.1 Inversion of Stiffness Equations 222 
4.4.2 Special Cross-Ply Laminate Stiffnesses 224 
4.4.3 Theoretical and Measured Cross-Ply Laminate Stiffnesses 229 
4.4.4 Special Angle-Ply Laminate Stiffnesses 232 
4.4.5 Theoretical and Measured Angle-Ply Laminate Stiffnesses 235 
4.4.6 Summary Remarks 237 
Problem Set 4.4 237 

4.5 STRENGTH OF LAMINATES .............................................................. 237 

4.5.1 Introduction 237 



( 
viii Contents 

4.5.2 Laminate Strength-Analysis Procedure 240 
4.5.3 Thermal and Mechanical Stress Analysis 242 
4.5.4 Hygroscopic Stress Analysis 245 
4.5.5 Strength of Cross-Ply Laminates 246 
4.5.6 Strength of Angle-Ply Laminates 255 
4.5.7 Summary Remarks 258 
Problem Set 4.5 260 

4.6 INTERLAMINAR STRESSES ............................................................... 260 

4.6.1 Classical Lamination Theory 262 
4.6.2 Elasticity Formulation 264 
4.6.3 Elasticity Solution Results 267 
4.6.4 Experimental Confirmation of lnterlaminar Stresses 269 
4.6.5 lnterlaminar Stresses in Cross-Ply Laminates 271 
4.6.6 Implications of lnterlaminar Stresses 272 
4.6.7 Free-Edge Delamination-Suppression Concepts 274 
Problem Set 4.6 275 

REFERENCES 275 

5 BENDING, BUCKLING, AND VIBRATION OF LAMINATED PLATES •...• 277 

5.1 INTRODUCTION ................................................................................... 277 

5.2 GOVERNING EQUATIONS FOR BE~, BUCKLING, AND 
VIBRATION OF LAMINATED PLATES ............................................... 279 

5.2.1 Basic Restrictions, Assumptions, and Consequences 279 
5.2.2 Equilibrium Equations for Laminated Plates 282 
5.2.3 Buckling Equations for Laminated Plates 285 
5.2.4 Vibration Equations for Laminated Plates 288 
5.2.5 Solution Techniques 288 

5.3 DEFLECTION OF SIMPLY SUPPORTED LAMINATED PLATES 
UNDER DISTRIBUTED TRANSVERSE LOAD ................................... 289 

5.3.1 Specially Orthotropic Laminated Plates 290 
5.3.2 Symmetric Angle-Ply Laminated Plates 291 
5.3.3 Antisymmetric Cross-Ply Laminated Plates 295 
5.3.4 Antisymmetric Angle-Ply Laminated Plates 298 
Problem Set 5.3 301 -

5.4 BUCKLING OF SIMPLY SUPPORTED LAMINATED PLATES 
UNDER IN-PLANE LOAD .................................................................... 301 

5.4.1 Specially Orthotropic Laminated Plates 303 
5.4.2 Symmetric Angle-Ply Laminated Plates 306 
5.4.3 Antisymmetric Cross-Ply Laminated Plates 307 
5.4.4 Antisymmetric Angle-Ply Laminated Plates 312 
Problem Set 5.4 315 

5.5 VIBRATION OF SIMPLY SUPPORTED LAMINATED PLATES ••.••••• ·315 

5.5.1 Specially Orthotropic Laminated Plates 315 
5.5.2 Symmetric Angle-Ply Laminated Plates 317 
5.5.3 Antisymmetric Cross-Ply Laminated Plates 318 
5.5.4 Antisymmetric Angle-Ply Laminated Plates 320 
Problem Set 5.5 322 

5.6 SUMMARY REMARKS ON EFFECTS OF STIFFNESSES ................ 323 

REFERENCES 329 

( 
Contents ix 

6 OTHER ANALYSIS AND BEHAVIOR TOPICS .......................................... 331 

6.1 INTRODUCTION ................................................................................... 331 

6.2 REVIEW OF CHAPTERS 1 THROUGH 5 ............•...••.......•..........•...... 332 

6.3 FATIGUE ...•......••..•••....•.•.......•.....................................•......................... 333 

6.4 HOLES IN LAMINATES ...•••...................................•..................•.......... 336 

6.5 FRACTURE MECHANICS ...............•..•.....•...•...•......•..•..............•.......... 339 

6.5.1 Basic Principles of Fracture Mechanics 340 
6.5.2 Application of Fracture Mechanics to Composite Materials 343 

6.6 TRANSVERSE SHEAR EFFECTS ••.....••.............•...••.....................•.... 345 

6.6.1 Exact Solutions for Cylindrical Bending 346 
6.6.2 Approximate Treatment of Transverse Shear Effects 350 

6.7 POSTCURING SHAPES OF UNSYMMETRIC LAMINATES .............. 356 

6.8 ENVIRONMENTAL EFFECTS ............................................................. 359 

6.9 SHELLS ........•..••.....•.•..••.......•........................•...............•.....•................ 361 

6.10 MISCELLANEOUS TOPICS ............................................................... 362 

REFERENCES 362 

7 INTRODUCTION TO DESIGN OF COMPOSITE STRUCTURES .............. 367 

7.1 INTRODUCTION .•..••.•••••.•....•........................••......•....•.....•......•....•........ 368 

7.1.1 Objectives 368 
7.1.2 Introduction to Structural Design 368 
7.1.3 New Uses of Composite Materials 368 
7.1.4 Manufacturing Processes 368 
7.1.5 Material Selection 369 
7 .1.6 Configuration Selection 369 
7.1.7 Joints· 369 
7 .1 .8 Design Requirements 370 
7.1.9 Optimization 370 
7.1.1 O Design Philosophy 371 
7.1.11 Summary 372 

7.2 INTRODUCTION TO STRUCTURAL DESIGN .................................... 372 

7.2.1 Introduction 372 
7.2.2 What Is Design? 372 
7.2.3 Elements of Design 376 
7.2.4 Steps in the Structural Design Process 380 

7.2.4.1 Structural Analysis 381 
7.2.4.2 Elements of Analysis in Design 381 
7.2.4.3 Failure Analysis 382 
7.2.4.4 Structural Reconfiguration 383 
7.2.4.5 Iterative Nature of Structural Design 384 

7.2.5 Design Objectives and Design Drivers 385 
7.2.6 Design-Analysis Stages 386 

7.2.6.1 Preliminary Design-Analysis 387 
7.2.6.2 Intermediate Design-Analysis 388 
7.2.6.3 Final Design-Analysis 388 

7.2.7 Summary 389 



x Contents 
( 

7.3 MATERIALS SELECTION .................................................................... 389 

7.3.1 Introduction 389 
7.3.2 Materials Selection Factors 390 
7.3.3 Fiber Selection Factors 391 
7.3.4 Matrix Selection Factors 392 
7.3.5 Importance of Constituents 393 
7.3.6 Space Truss Material Selection Example 394 
7.3.7 Summary 400 

7.4 CONFIGURATION SELECTION .......................................................... 400 

7.4.1 Introduction 400 
7.4.2 Stiffened Structures 400 

7.4.2.1 Advantages of Composite Materials in 
Stiffened Structures 401 

7.4.2.2 Types of Stiffeners 403 
7.4.2.3 Open- versus Closed-Section Stiffeners 405 
7.4.2.4 Stiffener Design 407 
7.4.2.5 Orthogrid 410 

7.4.3 Configuration in Design Cost 411 
7.4.4 Configuration versus Structure Size 413 
7.4.5 Reconfiguration of Composite Structures 414 
7.4.6 Summary 417 

7.5 LAMINATE JOINTS ................................ .:-:-....,_. ...................................... 417 

7.5.1 Introduction 417 
7.5.2 Bonded Joints 419 
7 .5.3 Bolted Joints 420 
7.5.4 Bonded-Bolted Joints 421 
7.5.5 Summary 422 

7.6 DESIGN REQUIREMENTS AND DESIGN FAILURE CRITERIA ....... 422 

7.6.1 Introduction 422 
7.6.2 Design Requirements 422 
7.6.3 Design Load Definitions 424 
7 .6.4 Summary 425 

7.7 OPTIMIZATION CONCEPTS ............................................................... 425 

7.7.1 Introduction 425 
7.7.2 Fundamentals of Optimization 426 

7. 7.2.1 Structural Optimization 426 
7.7.2.2 Mathematics of Optimization 429 
7.7.2.3 Optimization of a Composite Laminate 431 
7.7.2.4 Strength Optimization Programs 435 

7.7.3 Invariant Laminate Stiffness Concepts 440 
7.7.3.1 Invariant Laminate Stiffnesses 440 
7.7.3.2 Special Results for Invariant Laminate Stiffnesses 443 
7.7.3.3 Use of Invariant Laminate Stiffnesses in Design 446 
Problem Set 7.7.3 447 

7.7.4 Design of Laminates 447 
7.7.5 Summary 453 

7.8 DESIGN ANALYSIS PHILOSOPHY FOR 
COMPOSITE STRUCTURES ...................•........................................... 453 

7.8.1 Introduction 453 
7.8.2 Problem Areas 454 
7.8.3 Design Philosophy 455 

7.8.4 'Anisotropic' Analysis 455 
7.8.5 Bending-Extension Coupling 456 
7.8.6 Micromechanics 457 
7.8.7 Nonlinear Behavior 458 
7.8.8 lnterlaminar Stresses 459 
7.8.9 Transverse Shearing Effects 460 
7.8.10 Laminate Optimization 461 
7.8.11 Summary 462 

Contents xi 

7 .9 SUMMARY ...............................................•............................................ 463 

REFERENCES 465 

APPENDIX A: MATRICES AND TENSORS .................................................. 467 

A.1 MATRIX ALGEBRA .............................................................................. 467 

A.1.1 Matrix Definitions 467 
A.1.2 Matrix Operations 470 

A.2 TENSORS ...........•................................................................................. 472 

A.2.1 Transformation of Coordinates 473 
A.2.2 Definition of Various Tensor Orders 474 
A.2.3 Contracted Notation 475 
A.2.4 Matrix Form of Tensor Transformations 476 

REFERENCE 477 

APPENDIX B: MAXIMA AND MINIMA OF 
FUNCTIONS OF A SINGLE VARIABLE ....................•.......... 479 

REFERENCE 483 

APPENDIX C: TYPICAL STRESS-STRAIN CURVES .................................. 485 

C.1 FIBERGLASS-EPOXY STRESS-STRAIN CURVES ....•...................... 485 
C.2 BORON-EPOXY STRESS-STRAIN CURVES ..................................... 485 
C.3 GRAPHITE-EPOXY STRESS-STRAIN CURVES ..•••........•........•......... 485 

REFERENCES 494 

APPENDIX D: GOVERNING EQUATIONS FOR BEAM EQUILIBRIUM AND 
PLATE EQUILIBRIUM, BUCKLING, AND VIBRATION ....... 495 

D.1 INTRODUCTION ................................................................................... 495 

D.2 DERIVATION OF BEAM EQUILIBRIUM EQUATIONS ........•...........•.. 495 

D.3 DERIVATION OF PLATE EQUILIBRIUM EQUATIONS ..................... 498 

D.4 PLATE BUCKLING EQUATIONS ........................................................ 505 

D.5 PLATE VIBRATION EQUATIONS ........•.•..........•.•........•............•......... 506 

REFERENCES 506 

INDEX ............................................................................................................... 507 



PREFACE TO THE SECOND EDITION 

More than two decades have passed since the first edition of this 
book appeared in 1975. During that time, composite materials have 
progressed from almost an engineering curiosity to a widely used mate
rial in aerospace applications, as well as many other applications in ev
eryday life. Accordingly, the contents of the first edition, although in most 
respects timeless fundamental mechanical behavior and mechanics an
alyses, must be expanded and updated. 

The specific revisions include more thorough explanation of many 
concepts, enhanced comparisons between theory and experiment, more 
reader-friendly figures, figures that are more visually obvious in portrayal 
of fibers and deformations, description of experimental measurements 
of properties, expanded coverage of lamina failure criteria including an 
evaluation of how failure criteria are obtained, and more comprehensive 
description of laminated plate deflection, buckling, and vibration prob
lems. Moreover, laminate design is introduced as part of the structural 
design process. 

The 'latest' research results are deliberately not included. That is, 
this book is a fundamental teaching text, not a monograph on contem
porary composite materials and structures topics. Thus, topics are cho
sen for their importance to the basic philosophy which includes simplicity 
of presentation and 'absorbability' by newcomers to composite materials 
and structures. More advanced topics as well as the nuances of covered 
topics can be addressed after this book is digested. 

I have come to expect my students to interpret or transform the 
sometimes highly abbreviated, and thus relatively uninformative, problem 
set statements at the end of each section such as 'derive Equation (3.86)' 
to the more formal, descriptive, and revealing form: 

Given: 
Required: 

A composite material is to be designed. 
Find the critical fiber-volume fraction necessary to ensure 
that the composite material strength exceeds the matrix 
strength, i.e., derive Equation (3.86). 

Moreover, I expect students to explain on a physical basis where they 
start and what objectives they're trying to meet. In doing so, they should 
carefully explain the nature of the problem as well as its solution. I want 
students to gain some perspective on the problem to more fully under-
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xiv Preface 

stand the text. That is, I want them to focus on The Why of each problem 
so they will develop a feeling for the behavior of composite materials and 
structures. I also expect use of appropriate figures that are well dis
cussed. Figures that have not been fully interpreted for the reader are 
of questionable value and certainly leave room for misinterpretation. 
Also, I expect students to explain and describe each step in the 
problem-solving process with physically based reasons and explanations. 
Moreover, I expect observations, comments, and conclusions about what 
they learned at the end of each problem. I feel such requirements are 
good training for survival in today's and tomorrow's more competitive 
world. 

Completion of the problems will often require thoughtful analysis 
of the conditions and search for the correct solution. Thus, the problems 
are often not trivial or straightforward. The required mathematics are 
senior level except for the elasticity solutions in the micromechanics 
chapter where obviously the level must be higher (but the elasticity 
sections can be skipped in lower-level classes). 

I am delighted to express my appreciation to the attendees of more 
than 80 short courses from 1971 throu911. 1995 at government laborato
ries, companies, and open locations. .' l'\ey helped shape this second 
edition by their questions and comments, as did the more than twenty 
university classes I taught over the years. 

I thank those who offered suggestions and corrections from their 
experience with the first edition. I am also delighted to express my ap
preciation to those who contributed to both editions: Patrick Barr (now 
M.D.!) for illustrations in the first edition, some of which are used in the 
second edition; Ann Hardell for Adobe Illustrator illustrations in the sec
ond edition; my daughter, Karen Devens, for IBM Script and GML text 
production; and my secretary, Norma Guynn, for miscellaneous typing. 

Blacksburg, Virginia 
April 1998 

PREFACE TO THE FIRST EDITION 

Composite materials are ideal for structural applications where high 
strength-to-weight and stiffness-to-weight ratios are required. Aircraft 
and spacecraft are typical weight-sensitive structures in which composite 
materials are cost-effective. When the full advantages of composite 
materials are utilized, both aircraft and spacecraft will be designed in a 
manner much different from the present. 

The study of composite materials actually involves many topics, 
such as, for example, manufacturing processes, anisotropic elasticity, 
strength of anisotropic materials, and micromechanics. Truly, no one 
individual can claim a complete understanding of all these areas. Any 
practitioner will be likely to limit his attention to one or two subareas of 
the broad possibilities of analysis versus design, micromechanics versus 
macromechanics, etc. 

The objective of this book is to introduce the student to the basic 
concepts of the mechanical behavior of composite materials. Actually, 
only an overview of this vast set of topics is offered. The balance of 
subject areas is intended to give a fundamental knowledge of the broad 
scope of composite materials. The mechanics of laminated fiber
reinforced composite materials are developed as a continuing example. 
Many important topics are ignored in order to restrict the coverage to a 
one-semester graduate course. However, the areas covered do provide 
a firm foundation for further study and research and are carefully selected 
to provide continuity and balance. Moreover, the subject matter is cho
sen to exhibit a high degree of comparison between theory and exper
iment in order to establish confidence in the derived theories. 

The whole gamut of topics from micromechanics and macrome
chanics through lamination theory and examples of plate bending, 
buckling, and vibration problems is treated so that the physical signif
icance of the concepts is made clear. A comprehensive introduction to 
composite materials and motivation for their use in current structural ap
plications is given in Chapter 1. Stress-strain relations for a lamina are 
displayed with engineering material constants in Chapter 2. Strength 
theories are also compared with experimental results. In Chapter 3, 
micromechanics is introduced by both the mechanics of materials ap
proach and the elasticity approach. Predicted moduli are compared with 
measured values. Lamination theory is presented in Chapter 4 with the 
aid of a new laminate classification scheme. Laminate stiffness pred
ictions are compared with experimental results. Laminate strength con-
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cepts, as well as interlaminar stresses and design, are also discussed. 
In Chapter 5, bending, buckling, _and vibration of a simply supported plate 
with various lamination characteristics is examined to display the effects 
of coupling stiffnesses in a physically meaningful problem. Miscella
neous topics such as fatigue, fracture mechanics, and transverse shear 
effects are addressed in Chapter 6. Appendices on matrices and 
tensors, maxima and minima of functions of a single variable, and typical 
stress-strain curves are provided. 

This book was written primarily as a graduate-level textbook, but is 
well suited as a guide for self-study of composite materials. Accordingly, 
the theories presented are simple and illustrate the basic concepts, al
though they may not be the most accurate. Emphasis is placed on an
alyses compared with experimental results, rather than on the most 
recent analysis for the material currently 'in vogue.' Accuracy may suffer, 
but educational objectives are better met. Many references are included 
to facilitate further study. The background of the reader should include 
an advanced mechanics of materials course or separate courses in which 
three-dimensional stress-strain relations and plate theory are introduced. 
In addition, knowledge of anisotropic elasticity is desirable, although not 
essential. 

Many people have been most generous in their support of this 
writing effort. I would like to especially thank Dr. Stephen W. Tsai, of the 
Air Force Materials Laboratory, for his inspiration by example over the 
past ten years and for his guidance throughout the past several years. 
I deeply appreciate Steve's efforts and those of Dr. R. Bryon Pipes of the 
University of Delaware and Dr. Thomas Cruse of Pratt and Whitney Air
craft, who reviewed the manuscript and made many helpful comments. 
Still others contributed material for the book. My thanks to Marvin 
Howeth of General Dynamics, Forth Worth, Texas, for many photo
graphs; to John Pimm of LTV Aerospace Corporation for the photograph 
in Section 4.7; to Dr. Nicholas Pagano of the Air Force Materials Labo
ratory for many figures; to Dr. R. Byron Pipes of the University of 
Delaware for many photographs and figures in Section 4.6; and to Dr. 
B. Walter Rosen of Materials Sciences Corporation, Blue Bell, 
Pennsylvania, for the photo in Section 3.5. I also appreciate the per
mission of the Technomic Publishing Company, Inc., of Westport, 
Connecticut, to reprint throughout the text many figures which have ap
peared in the various Technomic books and in the Journal of Composite 
Materials over the past several years. I am very grateful for support by 
the Air Force Office of Scientific Research (Directorate of Aerospace 
Sciences) and the Office of Naval Research (Structural Mechanics Pro
gram) of my research on laminated plates and shells discussed in 
Chapters 5 and 6. I am also indebted to several classes at the Southern 
Methodist Institute of Technology and the Naval Air Development Center, 
Warminister, Pennsylvania, for their patience and help during the devel
opment of class notes that led to this book. Finally, I must single out 
Harold S. Morgan for his numerous contributions and Marty Kunkle for 
her manuscript typing (although I did some of the typing myself!). 

R.M.J. 

First Edition: 

Second Edition: 

To my neglected family: 
Donna, Mark, Karen, and Christopher 

To Christopher: 
He helped many others, 

but he couldn't help himself 
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Chapter 1 

INTRODUCTION TO 
COMPOSITE MATERIALS 

1.1 INTRODUCTION 

The objective of this chapter is to address the three basic questions 
of composite materials and structures in Figure 1-1: (1) What is a com
posite material? (2) Why are composite materials used instead of 
metals? and (3) How are composite materials used in structures? As 
part of The What, the general set of composite materials will be defined, 
classified, and characterized. Then, our attention will be focused on 
laminated fiber-reinforced composite materials for this book. Finally, to 
help us understand the nature of the material we are trying to model with 
mechanics equations, we will briefly describe manufacturing of composite 
materials and structures. In The Why, we will investigate the advantages 
of composite materials over metals from the standpoints of strength, 
stiffness, weight, and cost among others. Finally, in The How, we will 
look into examples and short case histories of important structural appli
cations of composite materials to see even more reasons why composite 
materials play an ever-expanding role in today's and tomorrow's struc
tures. 

•THE WHAT 

WHAT IS A COMPOSITE MATERIAL? 

•THE WHY 

WHY ARE COMPOSITE MATERIALS USED INSTEAD OF METALS? 

•THE HOW 

HOW ARE COMPOSITE MATERIALS USED IN STRUCTURAL APPLICATIONS? 

Figure 1-1 Basic Questions of Composite Materials and Structures 
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1.2 THE WHAT-WHAT IS A COMPOSITE MATERIAL? 

The word composite in the term composite material signifies that 
two or more materials are combined on a macroscopic scale to form a 
useful third material. The key is the macroscopic examination of a ma
terial wherein the components can be identified by the naked eye. Dif
ferent materials can be combined on a microscopic scale, such as in 
alloying of metals, but the resulting material is, for all practical purposes, 
macroscopically homogeneous, i.e., the components cannot be distin
guished by the naked eye and essentially act together. The advantage 
of composite materials is that, if well designed, they usually exhibit the 
best qualities of their components or constituents and often some quali
ties that neither constituent possesses. Some of the properties that can 
be improved by forming a composite material are 

• strength • fatigue life 
• stiffness • temperature-dependent behavior 
• corrosion resistance • thermal insulation 
• wear resistaRc-e • thermal c-enducttv#y 
• attractiveness • acoustical insulation 
• weight 

Naturally, not all of these properties are improved at the same time nor 
is there usually any requirement to do so. In fact, some of the properties 
are in conflict with one another, e.g., thermal insulation versus thermal 
conductivity. The objective is merely to create a material that has only 
the characteristics needed to perform the design task. 

Composite materials have a long history of usage. Their precise 
beginnings are unknown, but all recorded history contains references to 
some form of composite material. For example, straw was used by the 
Israelites to strengthen mud bricks. Plywood was used by the ancient 
Egyptians when they realized that wood could be rearranged to achieve 
superior strength and resistance to thermal expansion as well as to 
swelling caused by the absorption of moisture. Medieval swords and 
armor were constructed with layers of different metals. More recently, 
fiber-reinforced, resin-matrix composite materials that have high strength
to-weight and stiffness-to-weight ratios have become important in weight
sensitive applications such as aircraft and space vehicles. 

1.2.1 Classification and Characteristics of Composite Materials 

Four commonly accepted types of composite materials are: 

(1) Fibrous composite materials that consist of fibers in a matrix 
(2) Laminated composite materials that consist of layers of various 

materials 
(3) Particulate composite materials that are composed of particles 

in a matrix 
(4) Combinations of some or all of the first three types 

( 
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These types of composite materials are described and discussed in the 
following subsections. I am indebted to Professor A. G. H. Dietz (1-1] for 
the character and much of the substance of the presentation. 

1.2.1.1 Fibrous Composite Materials 

Long fibers in various forms are inherently much stiffer and stronger 
than the same material in bulk form. For example, ordinary plate glass 
fr~ctures at stresses of only a few thousand pounds per square inch (lb/ 
in or psi) (20 MPa), yet glass fibers have strengths of 400,000 to 
700,000 psi (2800 to 4800 MPa) in commercially available forms and 
about 1,000,000 psi (7000 MPa) in laboratory-prepared forms. Obvi
ously, then, the geometry and physical makeup of a fiber are somehow 
crucial to the evaluation of its strength and must be considered in struc
tural applications. More properly, the paradox of a fiber having different 
properties from the bulk form is due to the more perfect structure of a fi
ber. In fibers, the crystals are aligned along the fiber axis. Moreover, 
there are fewer internal defects in fibers than in bulk material. For ex
ample, in materials that have dislocations, the fiber form has fewer dis
locations than the bulk form. 

Properties of Fibers 

A fiber is characterized geometrically not only by its very high 
length-to-diameter ratio but by its near-crystal-sized diameter. Strengths 
and stiffnesses of a few selected fiber materials are arranged in in
creasing average Sip and E/p in Table 1-1. The common structural 
materials, aluminum, titanium, and steel, are listed for the purpose of 
comparison. However, a direct comparison between fibers and structural 
metals is not valid because fibers must have a surrounding matrix to 
perform in a structural member, whereas structural metals are 'ready-to
use'. Note that the density of each material is listed because the 
strength-to-density and stiffness-to-density ratios are commonly used as 
indicators of the effectiveness of a fiber, especially in weight-sensitive 
applications such as aircraft and space vehicles. 

Table 1-1 Fiber and Wire Properties* 

Fiber Density, p Tensile Sip Tensile E/p 
or lb/in3 Strength, S 105 1n Stiffness, E 107 in 

Wire (kN/m3
) 103 lb/in2 (km) 106 lb/in2 (Mm) 

(GNtm2
) (GNtm2

) 

Aluminum .097 (26.3) 90 (.62) 9 (24) 10.6 (73) 11 (2.8) 
Titanium .170 (46.1) 280 (1.9) 16 (41) 16.7 (115) 10 (2.5) 
Steel .282 (76.6) 600 (4.1) 21 (54) 30 (207) 11 (2.7) 
E-Glass .092 (25.0) 500 (3.4) 54 (136) 10.5 (72) 11 (2.9) 
S-Giass .090 (24.4) 700 (4.8) 78 (197) 12.5 (86) 14 (3.5) 
Carbon .051 (13.8) 250 (1.7) 49 (123) 27 (190) 53 (14) 
Beryllium .067 (18.2) 250 (1.7) 37 (93) 44 (300) 66 (16) 
Boron .093 (25.2) 500 (3.4) 54 (137) 60 (400) 65 (16) 
Graphite .051 (13.8) 250 (1.7) 49 (123) 37 (250) 72 (18) 

*Adapted _from Dietz (1-1] 
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Graphite or carbon fibers are of high interest in today's composite 
structures. Both are made from rayon, pitch, or PAN (Qoly9crylonitrile) 
precursor fibers that are heated in an inert atmosphere to about 3100°F 
(1700°C) to carbonize the fibers. To get graphite fibers, the heating ex
ceeds 3100°F (1700°C) to partially graphitize the carbon fibers. Actual 
processing is proprietary, but fiber tension is known to be a key proc
essing parameter. Moreover, as the processing temperature is in
creased, the fiber modulus increases, but the strength often decreases. 
The fibers are typically far thinner than human hairs, so they can be bent 
quite easily. Thus, carbon or graphite fibers can be woven into fabric. 
In contrast, boron fibers are made by vapor depositing boron on a 
tungsten wire and coating the boron with a thin layer of boron carbide. 
The fibers are about the diameter of mechanical pencil lead, so they 
cannot be bent or woven into fabric. 

Properties of Whiskers 

A whisker has essentially the same near-crystal-sized diameter as 
a fiber, but generally is very short and stubby, although the length-to
diameter ratio can be in the hundreds. Thus, a whisker is an even more 
obvious example of the crystal-bu!k-material--property-diffefeAC-e- paradox. 
That is, a whisker is even more perfect than a fiber and therefore exhibits 
even higher properties. Whiskers are obtained by crystallization on a 
very small scale resulting in a nearly perfect alignment of crystals. Ma
terials such as iron have crystalline structures with a theoretical strength 
of 2,900,000 psi (20 GPa), yet commercially available structural steels, 
which are mainly iron, have strengths ranging from 75,000 psi to about 
100,000 psi (570 to 690 MP a). The discrepancy between theoretical and 
actual strength is caused by imperfections in the crystalline structure of 
steel. Those imperfections are called dislocations and are easily moved 
for ductile materials. The movement of dislocations changes the relation 
of the crystals and hence the strength and stiffness of the material. For 
a nearly perfect whisker, few dislocations exist. Thus, whiskers of iron 
have significantly higher strengths than steel in bulk form. A represen
tative set of whisker properties is given in Table 1-2 along with three 
metals (as with fibers, whiskers cannot be used alone, so a direct com
parison between whiskers and metals is not meaningful). 

Table 1-2 Whisker Properties* 

Density, p Theoretical Experimental Sp'p Tensile E/p 

Whisker lb/in3 Strength, Si- Strength SE 105 in Stiffness, E 107 in 

(kNtm3
) 106 lb/in2 106 lb/in2 (km) 106 ib/in2 (Mm) 

(GN/m2
) (GNtrn2

) (GNtm2
) 

Copper .322 (87.4) 1.8 (12) .43 (3.0) 13 (34) 18 (124) 6 (1.4) 
Nickel .324 (87.9) 3.1 (21) .56 (3.9) 17 (44) 31 (215) 10 (2.5) 
Iron .283 (76.8) 2.9 (20) 1.9 (13) 67 (170) 29 (200) 10 (2.6) 
B4C .091 (24.7) 6.5 (45) .97 (6.7) 106 (270) 65 (450) 71 (18) 
SiC .115 (31.2) 12 (83) 1.6 (11) 139 (350) 122 (840) 106 (27) 
Al20 3 .143 (38.8) 6 (41) 2.8 (19) 196 (490) 60 (410) 42 (11) 
C .060 (16.3) 14.2 (98) 3 (21) 500 (1300) 142 (980) 237 (60) 

*Adapted from Sutton, Rosen, and Flom [1·2] (Courtesy of Society of Plastic Engineers 
Journal). 
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Properties of Matrix Materials 

Naturally, fibers and whiskers are of little use unless they are 
bonded together to take the form of a structural element that can carry 
loads. The binder material is usually called a matrix (not to be confused 
with the mathematical concept of a matrix). The purpose of the matrix 
is manifold: support of the fibers or whiskers, protection of the fibers or 
whiskers, stress transfer between broken fibers or whiskers, etc. Typi
cally, the matrix is of considerably lower density, stiffness, and strength 
than the fibers or whiskers. However, the combination of fibers or 
whiskers and a matrix can have very high strength and stiffness, yet still 
have low density. Matrix materials can be polymers, metals, ceramics, 
or carbon. The cost of each matrix escalates in that order as does the 
temperature resistance. 

Polymers (poly= many and mer= unit or molecule) exist in at least 
three major forms: linear, branched, or cross-linked. A linear polymer is 
merely a chain of mers. A branched polymer consists of a primary chain 
of mers with other chains that are attached in three dimensions just like 
tree branches in Figure 1-2. Finally, a cross-linked polymer has a large 
number of three-dimensional highly interconnected chains as in Figure 
1-2. Linear polymers have the least strength and stiffness, whereas 
cross-linked polymers have the most because of their inherently stiffer 
and stronger internal structure. The three main classes of structural 
polymers are rubbers, thermoplastics, and thermosets. Rubbers are 
cross-linked polymers that have a semicrystalline state well below room 
temperature, but act as the rubber we all know above room temperature 
(remember the Challenger rubber 0-rings that failed so catastrophically!). 
Thermoplastics are polymers that branch, but generally do not cross-link 
very much, if at all. Thus, they usually can be repeatedly softened by 
heating and hardened by cooling. Examples of thermoplastics include 
nylon, polyethylene, and polysulfone. Thermosets are polymers that are 
chemically reacted until almost all the molecules are irreversibly cross
/inked in a three-dimensional network. Thus, once an epoxy has 'set', it 
cannot be changed in form. Examples of thermosets include epoxies, 
phenolics, and polyimides. A typical organic epoxy matrix material such 

LINEAR BRANCHED CROSS-LINKED 

Figure 1-2 Polymer Structure 
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as Narmco 2387 (1-3] has a density of .044 lb/in3 (11.9 kN/m3
), 

compressive strength of 23,000 psi (.158 GPa), compressive modulus 
of 560,000 psi (3.86 GPa), tensile strength of 4200 psi (.029 GPa), and 
tensile modulus of 490,000 psi (3.38 GPa). 

Other matrix materials include metals that can be made to flow 
around an in-place fiber system by diffusion bonding or by heating and 
vacuum infiltration. Common examples include aluminum, titanium, and 
nickel-chromium alloys. Ceramic-matrix composite materials can be cast 
from a molten slurry around stirred-in fibers with random orientation or 
with preferred flow-direction orientation because of stirring or some other 
manner of introducing the ceramic. Alternatively, ceramic matrix material 
can be vapor deposited around a collection of already in-place fibers. 
Finally, carbon matrix material can be vapor deposited on an already in
place fiber system. Alternatively, liquid material can be infiltrated around 
in-place fibers and then carbonized in place by heating to high temper
ature. The process involving liquid infiltration and carbonization must be 
repeated many times because carbonizing the liquid results in decreased 
volume of the matrix. Until the voids can no longer be filled (they become 
disconnected as densification continues), the potential matrix strength 
and stiffness have not been achieved. 

1.2.1.2 Laminated Composite Materials 

Laminated composite materials consist of layers of at least two 
different materials that are bonded together. Lamination is used to 
combine the best aspects of the constituent layers and bonding material 
in order to achieve a more useful material. The properties that can be 
emphasized by lamination are strength, stiffness, low weight, corrosion 
resistance, wear resistance, beauty or attractiveness, thermal insulation, 
acoustical insulation, etc. Such claims are best represented by the ex
amples in the following paragraphs in which bimetals, clad metals, lami
nated glass, plastic-based laminates, and laminated fibrous composite 
materials are described. 

Bimetals 

Bimetals are laminates of two different metals that usually have 
significantly different coefficients of thermal expansion. Under change in 
temperature, bimetals warp or deflect a predictable amount and are 
therefore well suited for use in temperature-measuring devices. For ex
ample, a simple thermostat can be made from a cantilever strip of two 
metals bonded together as shown in Figure 1-3. There, metal A has 
coefficient of thermal expansion a.A and metal B has CJ.a greater than 
a.A- Consider the two cases of (1) two unbonded metal strips of different 
coefficients of thermal expansion placed side by side but not bonded and 
(2) the same two strips bonded together. For case (1 ), at room temper
ature, the two strips are the same length. When they are heated, both 
strips elongate (their primary observable change, but they do also get 
wider and thicker). For case (2) at room temperature, the strips are also 
of the same length but bonded together. When the bonded bimetallic 
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strip is heated, strip B wants to expand more than strip A, but they are 
bonded, so strip B causes the bimetallic strip to bendl This bending 
under a loading that would otherwise seem to cause only extension is 
our first (qualitative) example of the structural phenomenon of coupling 
between bending and extension that we will study in more detail in 
Chapter 4. 

TWO METAL STRIPS BONDED BIMETALLIC STRIP 

:~ AT ROOM TEMPERATU~ 

Figure 1-3 Cantilevered Bimetallic Strip (Thermostat) 

Clad Metals 

The cladding or sheathing of one metal with another is done to 
obtain the best properties of both. For example, high-strength aluminum 
alloys do not resist corrosion; however, pure aluminum and some alumi
num alloys are very corrosion resistant but relatively weak. Thus, a 
high-strength aluminum alloy covered with a corrosion-resistant alumi
num alloy is a composite material with both high strength and corrosion 
resistance which are unique and attractive advantages over the proper
ties of its constituents. 

In the 1960s, aluminum wire clad with about 10% copper was in
troduced as a replacement for copper wire in the electrical wiring market. 
Aluminum wire by itself is economical and lightweight, but overheats and 
is difficult to connect to terminals at wall switches and outlets. Aluminum 
wire connections expand and contract when the current is turned on or 
off so that fatigue breaks the wire causing shorts and, consequently, 
potential fires. On the other hand, copper wire is expensive and relatively 
heavy, but stays cool and can be connected easily to wall switches and 
outlets. The copper-clad aluminum wire is lightweight and connectable, 
stays cool, and is less expensive than copper wire. Moreover, copper
clad aluminum wire is nearly insusceptible to the usual construction-site 
problem of theft because of far lower salvage value than copper wire. 

Laminated Glass 

The concept of protection of one layer of material by another as 
described in the previous category, Clad Metals, has been extended in 
a rather unique way to automotive safety glass. Ordinary window glass 
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is durable enough to retain its transparency under the extremes of 
weather. However, glass is quite brittle and is dangerous because it can 
break into many sharp-edged pieces, especially in collisions. On the 
other hand, a plastic called polyvinyl butyral is very tough (deforms to 
high strains without fracture), but is very flexible and susceptible to 
scratching. Safety glass is a layer of polyvinyl butryal sandwiched be
tween two layers of glass. The glass in the composite material protects 
the plastic from scratching and gives it stiffness. The plastic provides the 
toughness of the composite material. Thus, together, the glass and 
plastic protect each other in different ways and lead to a composite ma
terial with properties that are vastly improved over those of its constitu
ents. In fact, the high-scratchability property of the plastic is totally 
eliminated because it is the inner layer of the composite laminate. 

Plastic-Based Laminates 

Many materials can be saturated with various plastics for a variety 
of purposes. The common product Formica is merely layers of heavy 
kraft paper impregnated with a phenolic resin overlaid by a plastic
saturated decorattve sheet that, in turn, is overTaid with a plastic
saturated cellulose mat. Heat and pressure are used to bond the layers 
together. A useful variation on the theme is obtained when an aluminum 
layer is placed between the decorative layer and the kraft paper layer to 
quickly dissipate the heat of, for example, a burning cigarette or hot pan 
on a kitchen counter instead of leaving a burned spot. Formica is a good 
example of a compound composite material, i.e., one made of more than 
two constituents, each making an essential, but different, contribution to 
the resulting composite material. 

Layers of glass or asbestos fabrics can be impregnated with 
silicones to yield a composite material with significant high-temperature 
properties. Glass, Kevlar, or nylon fabrics can be laminated with various 
resins to yield an impact- and penetration-resistant composite material 
that is uniquely suitable as lightweight personnel armor. The list of ex
amples is seemingly endless, but the purpose of illustration is served by 
the preceding examples. 

1.2.1.3 Particulate Composite Materials 

Particulate composite materials consist of particles of one or more 
materials suspended in a matrix of another material. The particles can 
be either metallic or nonmetallic as can the matrix. The four possible 
combinations of these constituents are described in the following para
graphs. 

Nonmetallic Particles in Nonmetallic Matrix Composite Materials 

The most common example of a nonmetallic particle system in a 
nonmetallic matrix, indeed the most common composite material, is 
concrete. Concrete is particles of sand and gravel (rock particles) that 
are bonded together with a mixture of cement and water that has 
chemically reacted and hardened. The strength of the concrete is 
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normally that of the gravel because the cement matrix is stronger than 
the gravel. The accumulation of strength up to that of the gravel is varied 
by changing the type of cement in order to slow or speed the chemical 
reaction. Many books have been written on concrete and on a variation, 
reinforced concrete, that can be considered both a fibrous and a partic
ulate composite material. 

Flakes of nonmetallic materials such as mica or glass can form an 
effective composite material when suspended in a glass or plastic, re
spectively. Flakes have a primarily two-dimensional geometry with 
strength and stiffness in the two directions, as opposed to only one for 
fibers. Ordinarily, flakes are packed parallel to one another with a re
sulting higher density than fiber packing concepts. Accordingly, less 
matrix material is required to bond flakes than fibers. Flakes overlap so 
much that a flake composite material is much more impervious to liquids 
than an ordinary composite material of the same constituent materials. 
Mica-in-glass composite materials are extensively used in electrical ap
plications because of good insulating and machining qualities. Glass 
flakes in plastic resin matrices have a potential similar to, if not higher 
than, that of glass-fiber composite materials. Even higher stiffnesses and 
strengths should be attainable with glass-flake composite materials than 
with glass-fiber composite materials because of the higher packing den
sity. However, surface flaws reduce the strength of glass-flake compos
ite materials from that currently obtained with more-perfect glass-fiber 
composite materials. 

Metallic Particles in Nonmetallic Matrix Composite Materials 

Solid-rocket propellants consist of inorganic particles such as alu
minum powder and perchlorate oxidizers in a flexible organic binder such 
as polyurethane or polysulfide rubber. The particles comprise as much 
as 75% of the propellant leaving only 25% for the binder. The objective 
is a steadily burning reaction to provide controlled thrust. Thus, the 
composite material must be uniform in character and must not crack; 
otherwise, burning would take place in unsteady bursts that could actu
ally develop into explosions that would, at the very least, adversely affect 
the trajectory of the rocket. The instantaneous thrust of a rocket is pro
portional to the burning surface area; thus, solid propellants are cast with, 
for example, a star-shaped hole instead of a circular hole. Many stress
analysis problems arise in connection with support of the solid propellant 
in a rocket-motor casing and with internal stresses due to dissimilar par
ticle and binder stiffnesses. The internal stresses can be reduced by 
attempting to optimize the shape of the burning cross section; again, a 
reason for a noncircular hole. 

Metal flakes in a suspension are common. For example, aluminum 
paint is actually aluminum flakes suspended in paint. Upon application, 
the flakes orient themselves parallel to the surface and give very good 
coverage. Similarly, silver flakes can be applied to give good electrical 
conductivity. 

Cold solder is metal powder suspended in a thermosetting resin. 
The composite material is strong and hard and conducts heat and elec-
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tricity. Inclusion of copper in an epoxy resin increases the conductivity 
immensely. Many metallic additives to plastic increase the thermal 
conductivity, lower the coefficient of thermal expansion, and decrease 
wear. 

Metallic Particles in Metallic Matrix Composite Materials 

Unlike an alloy, a metallic particle in a metallic matrix does not 
dissolve. Lead particles are commonly used in copper alloys and steel 
to improve the machinability (so that metal comes off in shaving form 
rather than in chip form). In addition, lead is a natural lubricant in 
bearings made from copper alloys. 

Many metals are naturally brittle at room temperature, so must be 
machined when hot. However, particles of these metals, such as 
tungsten, chromium, molybdenum, etc., can be suspended in a ductile 
matrix. The resulting composite material is ductile, yet has the 
elevated-temperature properties of the brittle constituents. The actual 
process used to suspend the brittle particles is called liquid sintering and 
involves infiltration of the matrix material around the brittle particles. 
Fortunately, in the liquid sintering process, the brittle particles become 
rounded and therefore naturally more ductile. 

Nonmetallic Particles In Metallic Matrix Composite Materials 

Nonmetallic particles such as ceramics can be suspended in a 
metal matrix. The resulting composite material is called a cermet. Two 
common classes of cermets are oxide-based and carbide-based com
posite materials. 

As a slight departure from the present classification scheme, 
oxide-based cermets can be either oxide particles in a metal matrix or 
metal particles in an oxide matrix. Such cermets are used in tool making 
and high-temperature applications where erosion resistance is needed. 

Carbide-based cermets have particles of carbides of tungsten, 
chromium, and titanium. Tungsten carbide in a cobalt matrix is used in 
machine parts requiring very high hardness such as wire-drawing dies, 
valves, etc. Chromium carbide in a cobalt matrix has high corrosion and 
abrasion resistance; it also has a coefficient of thermal expansion close 
to that of steel, so is well-suited for use in valves. Titanium carbide in 
either a nickel or a cobalt matrix is often used in high-temperature appli
cations such as turbine parts. Cermets are also used as nuclear reactor 
fuel elements and control rods. Fuel elements can be uranium oxide 
particles in stainless steel ceramic, whereas boron carbide in stainless 
steel is used for control rods. 

1.2.1.4 Combinations of Composite Materials 

Numerous multiphase composite materials exhibit more than one 
characteristic of the various classes, fibrous, laminated, or particulate 
composite materials, just discussed. For example, reinforced concrete 
is both particulate (because the concrete is composed of gravel in a 
cement-paste binder) and fibrous (because of the steel reinforcement). 
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Also, laminated fiber-reinforced composite materials are obviously both 
laminated and fibrous composite materials. Thus, any classification 
system is arbitrary and imperfect. Nevertheless, the system should serve 
to acquaint the reader with the broad possibilities of composite materials. 

Laminated fiber-reinforced composite materials are a hybrid class 
of composite materials involving both fibrous composite materials and 
lamination techniques. Here, layers of fiber-reinforced material are 
bonded together with the fiber directions of each layer typically oriented 
in different directions to give different strengths and stiffnesses of the 
laminate in various directions. Thus, the strengths and stiffnesses of the 
laminated fiber-reinforced composite material can be tailored to the spe
cific design requirements of the structural element being built. Examples 
of laminated fiber-reinforced composite materials include rocket motor 
cases, boat hulls, aircraft wing panels and body sections, tennis rackets, 
golf club shafts, etc. 

1.2.2 Mechanical Behavior of Composite Materials 

Composite materials have many mechanical behavior character
istics that are different from those of more conventional engineering ma
terials. Some characteristics are merely modifications of conventional 
behavior; others are totally new and require new analytical and exper
imental procedures. 

Most common engineering materials are both homogeneous and 
isotropic: 

A homogeneous body has uniform properties throughout, i.e., the 
properties are independent of position in the body. 

An isotropic body has material properties that are the same in every 
direction at a point in the body, i.e., the properties are independent 
of orientation at a point in the body. 

Bodies with temperature-dependent isotropic material properties are not 
homogeneous when subjected to a temperature gradient, but still are 
isotropic. 

In contrast, composite materials are often both inhomogeneous (or 
nonhomogeneous or heterogeneous - the three terms can be used 
interchangeably) and nonisotropic (orthotropic or, more generally, 
anisotropic, but the words are not interchangeable): 

An inhomogeneous body has nonuniform properties over the body, 
i.e., the properties depend on position in the body. 

An orthotropic body has material properties that are different in 
three mutually perpendicular directions at a point in the body and, 
further, has three mutually perpendicular planes of material prop
erty symmetry. Thus, the properties depend on orientation at a 
point in the body. 
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An anisotropic body has material properties that are different in all 
directions at a point in the body. No planes of material property 
symmetry exist. Again, the properties depend on orientation at a 
point in the body. 

Some composite materials have very simple forms of inhomogeneity. 
For example, laminated safety glass has three layers, each of which is 
homogeneous and isotropic; thus, the inhomogeneity of the composite 
material is a step function in the direction perpendicular to the plane of 
the glass. Also, some particulate composite materials are inhomogene
ous, yet isotropic, although some are orthotropic and others are aniso
tropic. Other composite materials are typically more complex, especially 
those with fibers placed at many angles in space. 

Because of the inherently heterogeneous nature of composite ma
terials, they are conveniently studied from two points of view: microme
chanics and macromechanics: 

Micromechanics is the study of composite material behavior 
wherein the interaction of the constituent materials is examined on 
a microscopic scale to determine their effect on the properties of 
the composite material. 

Macromechanics is the study of composite material behavior 
wherein the material is presumed homogeneous and the effects of 
the constituent materials are detected only as averaged apparent 
macroscopic properties of the composite material. 

In this book, attention will first be focused on macromechanics because 
it is the most readily appreciated of the two and the more important topic 
in structural design analysis. Subsequently, micromechanics will be in
vestigated in order to gain an appreciation for how the constituents of 
composite materials can be proportioned and arranged to achieve certain 
specified strengths and stiffnesses. 

Use of the two concepts of macromechanics and micromechanics 
allows the tailoring of a composite material to meet a particular structural 
requirement with little waste of material capability. The ability to tailor a 
composite material to its job is one of the most significant advantages 
of a composite material over an ordinary material. Perfect tailoring of a 
composite material yields only the stiffness and strength required in each 
direction, no more. In contrast, an isotropic material is, by definition, 
constrained to have excess strength and stiffness in any direction other 
than that of the largest required strength or stiffness. 

The inherent anisotropy (most often only orthotropy) of composite 
materials leads to mechanical behavior characteristics that are quite dif
ferent from those of conventional isotropic materials. The behavior of 
isotropic, orthotropic, and anisotropic materials under loadings of normal 
stress and shear stress is shown in Figure 1-4 and discussed in the fol
lowing paragraphs. 

For isotropic materials, application of normal stress causes exten
sion in the direction of the stress and contraction in the perpendicular 
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directions, but no shearing deformation. Also, application of shear stress 
causes only shearing deformation, but no extension or contraction in any 
direction. Only two material properties, Young's modulus (the exten
sional modulus or slope of the material's stress-strain curve) and 
Poisson's ratio (the negative ratio of lateral contraction strain to axial 
extensional strain caused by axial extensional stress), are needed to 
quantify the deformations. The shear modulus (ratio of shear stress to 
shear strain at a point) could be used as an alternative to either Young's 
modulus or Poisson's ratio. 

For orthotropic materials, like isotropic materials, application of 
normal stress in a principal material direction (along one of the inter
sections of three orthogonal planes of material symmetry) results in ex
tension in the direction of the stress and contraction perpendicular to the 
stress. The magnitude of the extension in one principal material direction 
under normal stress in that direction is different from the extension in 
another principal material direction under the same normal stress in that 
other direction. Thus, different Young's moduli exist in the various prin
cipal material directions. In addition, because of different properties in 
the two pri-Rcipal matefial directions, the contraction can be either more 
or less than the contraction of a similarly loaded isotropic material with 
the same elastic modulus in the direction of the load. Thus, different 
Poisson's ratios are associated with different pairs of principal material 
directions (and with the order of the coordinate direction numbers desig
nating the pairs). Application of shear stress causes shearing deforma
tion, but the magnitude of the shearing deformation is totally independent 
of the various Young's moduli and Poisson's ratios. That is, the shear 
modulus of an orthotropic material is, unlike isotropic materials, not de
pendent on other material properties. Thus, at least five material prop
erties are necessary to describe the mechanical behavior of orthotropic 
materials (we will find the correct number of properties in Chapter 2). 
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Figure 1-4 Mechanical Behavior of Various Materials 
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For anisotropic materials, application of a normal stress leads not 
only to extension in the direction of the stress and contraction perpen
dicular to it, but to shearing deformation. Conversely, application of 
shearing stress causes extension and contraction in addition to the dis
tortion of shearing deformation. This coupling between both loading 
modes and both deformation modes, i.e., shear-extension coupling, is 
also characteristic of orthotropic materials subjected to normal stress in 
a non-principal material direction. For example, cloth is an orthotropic 
material composed of two sets of interwoven fibers at right angles to 
each other. If cloth is subjected to a normal stress at 45° to a fiber di
rection, both stretching and distortion occur, as can easily be demon
strated by the reader. Even more material properties than for orthotropic 
materials are necessary to describe the mechanical behavior of 
anisotropic materials because of the additional response characteristics. 

Coupling between deformation modes and types of loading creates 
problems that are not easily overcome and, at the very least, cause a 
reorientation of thinking. For example, the conventional American Soci
ety tor Testing-and Materta-ls (ASTM} dog-bone tensile specimen shown 
in Figure 1-5 obviously cannot be used to determine the tensile moduli 
of orthotropic materials loaded in non-principal material directions (nor 
of anisotropic materials). For an isotropic material, loading on a dog
bone specimen is actually a prescribed lengthening that is only coinci
dentally a prescribed stress because of the symmetry of an isotropic 
material. However, for an off-axis-loaded orthotropic material or an 
anisotropic material, only the prescribed lengthening occurs because of 
the lack of symmetry of the material about the loading axis and the 
clamped ends of the specimen. Accordingly, shearing stresses result in 
addition to normal stresses in order to counteract the natural tendency 
of the specimen to shear. Furthermore, the specimen has a tendency 
to bend. Thus, the strain measured in the specimen gage length in Fig
ure 1-5 cannot be used with the axial load to determine the axial stiffness 
or modulus. Accordingly, techniques more sophisticated than the ASTM 
dog-bone test must typically be used to determine the mechanical prop
erties of a composite material. 

The foregoing characteristics of the mechanical behavior of com
posite materials have been presented in a qualitative manner without 
proof. In subsequent chapters, these characteristics will be demon
strated to exist, and further quantitative observations will be made. 

GAGE 
LENGTH 

Figure 1-5 ASTM Dog-Bone Tensile Specimen 
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1.2.3 Basic Terminology of 
Laminated Fiber-Reinforced Composite Materials 

For the remainder of this book, fiber-reinforced composite lami
nates will be emphasized. The fibers are long and continuous as op
posed to whiskers. The concepts developed herein are applicable mainly 
to fiber-reinforced composite laminates, but are also valid for other lami
nates and whisker composites with some fairly obvious modifications. 
That is, fiber-reinforced composite laminates are used as a uniform ex
ample throughout this book, but concepts used to analyze their behavior 
are often applicable to other forms of composite materials. In many in
stances, the applicability will be made clear as an example complemen
tary to the principal example of fiber-reinforced composite laminates. 

The basic terminology of fiber-reinforced composite laminates will 
be introduced in the following paragraphs. For a lamina, the configura
tions and functions of the constituent materials, fibers and matrix, will be 
described. The characteristics of the fibers and matrix are then dis
cussed. Finally, a laminate is defined to round out this introduction to the 
characteristics of fiber-reinforced composite laminates. 

1.2.3.1 Laminae 

The basic building block of a laminate is a lamina which is a flat 
(sometimes curved as in a shell) arrangement of unidirectional fibers or 
woven fibers in a matrix. Two typical flat laminae along with their prin
cipal material axes that are parallel and perpendicular to the fiber direc
tion are shown in Figure 1-6. The fibers are the principal reinforcing or 
load-carrying agent and are typically strong and stiff. The matrix can be 
organic, metallic, ceramic, or carbon. The function of the matrix is to 
support and protect the fibers and to provide a means of distributing load 
among, and transmitting load between, the fibers. The latter function is 
especially important if a fiber breaks as in Figure 1-7. There, load from 
one portion of a broken fiber is transferred to the matrix and, subse
quently, to the other portion of the broken fiber as well as to adjacent fi
bers. The mechanism for load transfer is the shearing stress developed 
in the matrix; the shearing stress resists the pulling out of the broken fi
ber. This load-transfer mechanism is the means by which whisker
reinforced composite materials carry any load at all above the inherent 
matrix strength. 

~ ~~ 
LAMINA WITH 

UNIDIRECTIONAL FIBERS 

FILL OIRECTION 
DIRECTION 

LAMINA WITH 
WOVEN FIBERS 

Figure 1-6 Two Principal Types of Laminae 
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Figure 1-7 Effect of Broken Fiber on Matrix and Fiber Stresses 

The properties of the lamina constituents, the fibers and the matrix 
ha~~ been only briefly discussed so far. Their stress-strain behavior i~ 
typ1f1ed ~~ ~ne of the ~our clas~es depicted in Figure 1-8. Fibers gener
ally exh1b1t linear elastic behavior, although reinforcing steel bars in con
crete are more nearly elastic-perfectly plastic. Aluminum, as well as 

ELASTIC-PLASTIC 

ELASTIC-PERFECTLY PLASTIC 

VISCOELASTIC 

(E1>€:f~) 

Figure 1-8 Various Stress-Strain Behaviors 
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many polymers, and some composite materials exhibit elastic-plastic 
behavior that is really nonlinear elastic behavior if there is no unloading. 
~ommonly, re~inous matrix materials are viscoelastic if not viscoplastic, 
1.e., have strain-rate dependence and linear or nonlinear stress-strain 
behavior. The various stress-strain relations are sometimes referred to 
as constitutive relations because they describe the mechanical constitu
tion of the material. 

Fiber-reinforced composite materials such as boron-epoxy and 
graphite-epoxy are usually treated as linear elastic materials because the 
essentially linear elastic fibers provide the majority of the strength and 
stiffness. Refinement of that approximation requires consideration of 
some form of plasticity, viscoelasticity, or both (viscoplasticity). Very little 
work has been done to implement those models or idealizations of com
posite material behavior in structural applications. 

1.2.3.2 Laminates 

A laminate is a bonded stack of laminae with various orientations 
of principal material directions in the laminae as in Figure 1-9. Note that 
the fiber orientation of the layers in Figure 1-9 is not symmetric about the 
middle surface of the laminate. The layers of a laminate are usually 
bonded together by the same matrix material that is used in the individual 
laminae. That is, some of the matrix material in a lamina coats the sur
faces of a lamina and is used to bond the lamina to its adjacent laminae 
without the addition of more matrix material. Laminates can be com
pos_ed of plates of different materials or, in the present context, layers 
of fiber-reinforced laminae. A laminated circular cylindrical shell can be 
constructed by winding resin-coated fibers on a removable core structure 
called a mandrel first with one orientation to the shell axis, then another, 
and so on until the desired thickness is achieved. 

Figure 1-9 Unbonded View of Laminate Construction 
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A major purpose of lamination is to tailor the directional depend
ence of strength and stiffness of a composite material to match the 
loading environment of the structural element. Laminates are uniquely 
suited to this objective because the principal material directions of each 
layer can be oriented according to need. For example, six layers of a 
ten-layer laminate could be oriented in one direction and the other four 
at 90° to that direction; the resulting laminate then has a strength and 
extensional stiffness roughly 50% higher in one direction than the other. 
The ratio of the extensional stiffnesses in the two directions is approxi
mately 6:4, but the ratio of bending stiffnesses is unclear because the 
order of lamination is not specified in the example. Moreover, if the 
laminae are not arranged symmetrically about the middle surface of the 
laminate, the result is stiffnesses that represent coupling between bend
ing and extension. These characteristics are discussed on a firm quan
titative basis in Chapter 4. 

1.2.4 Manufacture of 
Laminated Fiber Reinforced Composite Materials 

Unlike most conventional materials, there is a very close relation 
between the manufacture of a composite material and its end use. The 
manufacture of the material is often actually part of the fabrication proc
ess for the structural element or even the complete structure. Thus, a 
complete description of the manufacturing process is not possible nor is 
it even desirable. The discussion of manufacturing of laminated fiber
reinforced composite materials is restricted in this section to how the fi
bers and matrix materials are assembled to make a lamina and how, 
subsequently, laminae are assembled and cured to make a laminate. 

1.2.4.1 Initial Form of Constituent Materials 

The fibers and matrix material can be obtained commercially in a 
variety of forms, both individually and as laminae. Fibers are available 
individually or as roving which is a continuous, bundled, but not twisted, 
group of fibers. The fibers can be unidirectional or interwoven. Fibers 
are often saturated or coated with resinous material such as epoxy which 
is subsequently used as a matrix material. The process is referred to 
as preimpregnation, and such forms of preimpregnated fibers are called 
'prepregs'. For example, unidirectional fibers in an epoxy matrix are 
available in a tape form (prepreg tape) where the fibers run in the 
lengthwise direction of the tape (see Figure 1-10). The fibers are held 
in position not only by the matrix but by a removable backing that also 
prevents the tape from sticking together in the roll. The tape is very 
similar to the widely used glass-reinforced, heavy-duty package
strapping tape. Similarly, prepreg cloth or mats are available in which the 
fibers are interwoven and then preimpregnated with resin. Other vari
ations on these principal forms of fibers and matrix exist. 

BORON-EPOXY 
PREPREG TAPE 

Figure 1-10 

1.2.4.2 Layup 
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Boron-Epoxy Prepreg Tape 
(Courtesy of General Dynamics) 

Three principal layup processes for laminated fiber-reinforced 
composite materials are winding, laying, and molding. The choice of a 
layup process (as well as a curing pro~~s~) depends _on many f8:ctors: 
part size and shape, cost, schedule, familiarity with particular techniques, 
etc. 

Winding and laying operations include filament winding, tape lay_ing 
or wrapping, and cloth winding or wrapping. Filament winding consists 
of passing a fiber through a liquid resin and th~n windin~ it on. a mandrel 
(see Figure 1-11 ). The fibers are wrapped at different orientations on the 
mandrel to yield strength and stiffness in many directions. Subseguently, 
the entire assembly, including the mandrel, is cured, after which the 
mandrel is removed. If the mandrel is a sand casting, then using a water 
hose to clean out the new pressure vessel dissolves the sand casting. 
Some mandrels are barrel-stave-like assemblies that must be disas
sembled through an opening in the new pressure vessel. Tape laying 
starts with a tape consisting of fibers in a preimpregnated form held t<;>
gether by a removable backing material. The tape is unwound and laid 
down to form the desired shape in the desired orientations of tape layers. 
Tape laying can be by hand or automated ~ith_ an autom'.1ted tap_e-layi~g 
machine shown in Figure 1-12. Cloth winding or laying begins with 
preimpregn~ted cloth th~t i~ unrolled_ an~ deposi~ed i~ the de~ired. f<;>rm 
and orientation. Cloth winding or laying 1s more inflexible and ineff1c1ent 
than filament winding or tape laying in achieving specified goals of 
strength and stiffness because of the less efficient bidirectional ch8:racter 
of the fibers in the cloth than in unidirectional tape or fibers. That 1s, the 
bidirectional character of the cloth does not permit the large strengths 
and stiffnesses obtainable with unidirectional tapes because the cloth 
always has two essentially (but not necessarily) equal strength and 
stiffness directions. Moreover, fibers that are woven are often damaged 
to some extent by the bending inherent to the weaving process. Cloth 
layers are often used as filler layers in laminates for which strength and 
stiffness are not critical. 
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FILAMENT 
WINDING 

ROCKET 
MOTOR 

CASE 

Figure 1-11 Filament Winding a Rocket Motor Case 
{C--otntesy Sit ucturaf Comp-<J5tres tnausrffes J 

AUTOMATIC TAPE-LAYING OPERATION 

Figure 1-12 Automatic Tape-Laying Machine 
(Courtesy General Dynamics) 

Molding operations can begin with hand or automated deposition 
of preimpregnated fibers in layers. Often, the prepreg layers are also 
precut. Subsequently, the layers are compressed under elevated tem
perat.ure .to form the final laminate in a press as shown in Figure 1-13. 
Molding 1s used, for example, to fabricate radomes to close tolerances 
in thickness. Resin-transfer molding (RTM) is a process in which dry fi
ber or dry textile sheets and solid resin sheets are heated and formed 
on a mold or tool as in Figure 1-14. Thus, parts of complex shape can 
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be made quickly in a single step (avoiding the preimpregnation of fibers 
step). Effective use of such molding involves specification and control 
of a large number of material properties and processing parameters. The 
F-111 boron-epoxy fuselage frame assembly shown in Figure 1-15 is 
another molded composite part. Actually, the upper one-third of the 
frame is molded, and the lower two-thirds is laid-up tape. 

ELASTOMERIC 
DIAPHRAGM 

VACUUM 
CHAMBER 

I~ FEMALE MOLD HALF 

~ MOLDING COMPOUND 

~ (CHARGE) 

I MALE MOLD HALF 

HEAT & 
PRESSURE 

Figure 1-13 Compression Molding 
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Figure 1-14 Resin-Transfer Molding 

Figure 1-15 Molded F-111 Fuselage Frame Assembly 
(Courtesy of General Dynamics) 
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Sheet molding compound (SMC) consists of randomly oriented 
chopped fibers in a matrix of resin and filler. SMC is produced in the 
continuous manner shown in Figure 1-16. Note that the polyethylene film 
protects the roller system from getting 'gummed up' with the resin-filler 
paste. The rug-like rolls of SMC are then used in compression molding 
machines to create large parts such as the sides of cars and trucks. 

CONTINUOUS STRAND 
ROVING 

RESIN-FILLER 
PASTE 

Figure 1-t6 Sheet Molding Compound Machine 

The roll-forming process can be used to directly produce long 
structural shapes in large quantities. The entering material form is rolls 
of variously orientated fiber-reinforced tape. The layers are consolidated 
and then formed into, e.g., a hat-shaped stiffener, as in Figure 1-17. 
Note the presence of a stiffer layer such as boron-epoxy in surrounding 
layers of glass-epoxy. Such an optimally placed stiff layer dramatically 
increases the bending stiffness, yet is easily made, unlike any metal 
stiffener. 

TEFLON TAPE 

FORMING 
STAGE 
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FEED RATE: 
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~ 
FORMED 
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PULLER-TABLE 
75 m LONG 
AUTOMATIC 
CUT OFF SAW 

Figure 1-17 Roll-Forming Process 

Pultrusion is also used to make structural shapes from composite 
materials. The incoming material is generally unidirectional and must be 
pulled through the pultrusion die because the uncured composite mate
rial is entirely too flexible to push (as in extrusion processes). The in
coming material can be preshaped by various guides and rollers as in 
Figure 1-18. 
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Figure 1-18 Pultrusion 

We have seen a variety of manufacturing processes, but certainly 
not all possible processes. Those processes would likely be used to 
produce many different parts with different characteristics and purposes. 
The diversity of parts might well be combined to form a single structural 
pa.r1 §U~h ci_S a. w_iog_ j_n Fig_ure 1-19. After each process, every part is 
nondestructively inspected. 

ALAMENT-WOUND 
SPARS 

COMPRESSION 
MOLDED RIBS 

Figure 1-19 Combining Manufacturing Operations to Produce a Wing 

1.2.4.3 Curing 

Curing primarily refers to the process of solidification of polymer 
matrix materials. Metal matrix materials are simply heated and cooled 
around fibers to solidify. Ceramic matrix and carbon matrix materials are 
either vapor deposited, mixed with fibers in a slurry and hardened, or, in 
the case of carbon, subjected to repeated liquid infiltration followed by 
carbonization. Thus, we concentrate here on curing of polymers. 

For thermoset-matrix materials, heat is usually added as a catalyst 
to speed the natural chemical reaction of polymerization. Two-part 
epoxies, such as found in your local hardware store, consis! of a tube 
of epoxy and a tube of chemical hardener that react when mixed. Heat 
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is not added to a two-part epoxy, but is given off as a product of the re
action. For virtually all epoxies, volatile gases are given off during curing. 
Those volatile gases come from heating the solvents used to keep the 
epoxy from curing prior to assembly time. 

In general, the higher the temperature during curing, the shorter the 
cure time (short of burning the material, of course). Heat is required 
because (1) some catalysts and/or hardeners do not react below a critical 
temperature; (2) molecular mobility is necessary for contact of reactive 
chemical groups; (3) heat drives off volatiles from solvents and water 
(otherwise, voids occur; note that volatiles will not outgas if pressure is 
also being applied); and (4) resin flows more easily to obtain uniform 
distribution. Pressure is required to consolidate (debulk) the fiber and 
matrix system and to squeeze out excess resin. 

A typical curing cycle of temperature versus time with notes on 
other actions is shown in Figure 1-20. The time scale is several hours, 
and the temperature scale is hundreds of °F (also hundreds of °C). The 
curing cycle starts with a gradual temperature increase under vacuum 
conditions so that volatiles and water (vapor) can be driven off. Then, 
the temperature is. gradLJally increci§.ec:I. tQ tb.e. maximum curing-temper, 
ature wh1ch ,s held-for a couple of hours to develop a high degree of 
cross-linking along with pressure application to consolidate the laminae. 
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(VACUUM) 

(RELEASE 
VOLATILES 

AND WATER) 

,-- POSSIBLE VENT 
i Of VACUUM BAG 

(80.100 psi) t 

TIME 

Figure 1-20 Typical Epoxy Cure Cycle 

We should examine the resin behavior during the curing process. 
Before curing, the initial form of the laminate is laminae laid adjacently 
in a 8-staged condition (partially cured to reduce resin flow during lami
nation or molding). The resin is a semi-solid with negligible strength and 
stiffness. As the temperature is gradually increased, resin cross-linking 
begins and is significant when the gel temperature is reached (the tem
perature at which the viscosity is so high that no further dimensional 
change occurs). The progressive cross-linking causes solidification, but 
the elevated temperature causes softening and hence lowers stiffness. 
At the highest temperature reached (if the proper prescribed cure cycle 
is followed which also means that the temperature must be held for a 
specified time), cross-linking is nearly complete. The resin is now 
solidified, but is of low stiffness because of the high temperature. Then, 
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the temperature is gradually decreased to room temperature over a pe
riod of about an hour to avoid thermal shock. The pressure can be re
leased quickly. If postcuring is performed, no further cross-linking occurs 
unless the previous maximum temperature is exceeded and held for at 
least an hour (presuming the previous maximum temperature was held 
for an hour or so). 

Curing can be performed in several devices: heated mold (Figure 
1-13), hot press (heated plates that are forced together), and an 
autoclave which is essentially a very large version of an ordinary kitchen 
pressure cooker as in Figure 1-21 . 

Figure 1-21 Autoclave (Courtesy of Thiokol) 

The curing process for thermoplastic-matrix materials does not in
volve cross-linking but only melting and cooling. That is, a thermoplastic 
is already a solid that, like metals, can be heated to soften and cooled 
to stiffen. For some thermoplastic materials, a small degree of cross
linking occurs, so such thermoplastics cannot be cycled more than a few 
times through a heating-cooling cycle. Also, the time at elevated tem
perature [usually nearly 1000°F (500°C)] need not be but a few moments. 
Thus, the laser heating and roller for consolidation device in Figure 1-22 
enables rapid simultaneous tape layup and curing. 

The term cocuring means that two parts that must be fastened to
gether are cured simultaneously and in contact to achieve permanent 
bonding between them. The process applies equally to thermoset-matnx 
composite materials and to thermoplastic-matrix composite materials 
(except the cocuring of two thermoplastic-matrix parts is not, of course, 

permanent). 
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Figure 1-22 Thermoplastic-Matrix Layup and Curing Device 

1.3 THE WHY- CURRENT AND POTENTIAL ADVANTAGES 
~ FIBER REINFORCED COMPOSITE MATERIALS 

The advent of advanced fiber-reinforced composite materials has 
be~n c~lle~ the bigg_e~t technical revolution since the jet engine [1-4). 
T_h1s claim_ ~s very_ striking because the tremendous impact of the jet en
gine on n:,1hta~ ~1rcr~ft performance is readily apparent. The impact on 
commercial av1at1on 1s even more striking because the airlines switched 
from propeller-driven pl~nes to all-jet fleets within the span of just a few 
years because of superior performance and lower maintenance costs. 

:he ~djective adv~n'?ed _in advanced fiber-reinforced composite 
matenals 1s u_sed to. d1stmgu1sh composite materials with ultrahigh 
strength 8:~d stiffness fibers such as boron and graphite from some of the 
more-fa~rnhar, b~t less-capable fibers such as glass. Such advanced 
?ompos1te materials have two major advantages, among many others: 
1mpro~ed strengt~ an~ stiffness, especially when compared with other 
materials on a unit weight basis. For example, composite materials can 
be made that have_ the same strength and stiffness as high-strength 
steel, yet are 70% hghterl Other advanced composite materials are as 
much as three times as strong as aluminum, the common aircraft struc
tural material, yet w~igh only _60% as much! Moreover, as has already 
b~en not~d, composite materials can be tailored to efficiently meet de
s1g~ requ!rem_ents of strength, stiffness, and other parameters, all in 
various d1rect1ons. These advantages will lead to new aircraft and 
spacecraft ?esigns tha~ are radical departures from past efforts based 
on convent!on~I m~tenals. However, the aerospace industry was at
tr~cted to titanium tn the 1 gsos for similar reasons, but found serious 
disadvantages after the investment of many millions of dollars in re
~ear?h, development, and tooling. That unfortunate experience with 
titanium caused a more cautious, yet more deliberately complete and 
well-balanced approach to composite materials development. The ad
vantages of composite materials are so compelling that research and 
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development is being conducted across broad fronts instead of just down 
the most obvious paths. Whole organizations have sprung up to analyze, 
design, and fabricate parts made of composite materials. The strength 
and stiffness advantages of advanced composite materials will be dis
cussed in Section 1.3.1, cost advantages in Section 1.3.2, and weight 
advantages in Section 1.3.3. 

1.3.1 Strength and Stiffness Advantages 

One of the most common ways of expressing the effectiveness of 
strength or stiffness of a material is as a ratio of either of the quantities 
to the density, i.e., weight per unit volume. Such an index does not in
clude the cost to achieve a certain strength or stiffness, but cost com
parisons are probably not valid by themselves because many factors 
influence cost beyond raw material cost. 

Consider some of the advantages of fiber-reinforced composite 
materials. V1;3_iyhjg_b S_t_re_11_g_th_ci_11d $_tiffne~~ aie abQYt the most cgmmon 
advantages that come to mind. We often express those strength and 
stiffness properties not in absolute terms, but in relative terms by dividing 
them by the density. Those strength-to-density and stiffness-to-density 
quotients are simply manners of expressing what we call specific strength 
and specific modulus or specific stiffness that are particularly attractive 
when weight-sensitive structures such as aircraft or spacecraft are ad
dressed. That is, we are asking: what will this material do for us per unit 
of weight that we use? 

First, we examine how the properties of the composite material 
constituents, fiber and matrix, generally contribute to the lamina proper
ties and, subsequently, how lamina properties influence the laminate 
properties. We plot vertically the strength and horizontally the stiffness 
or the modulus in Figure 1-23 on translation from constituent properties 
of the composite material to the level of the lamina and then finally to the 
level of the laminate. Typically, the fibers used in advanced composite 
materials are very high in strength and often very high in modulus. Next, 
we put those fibers in a matrix material that is typically low in strength 
and low in stiffness to create a unidirectionally reinforced lamina. Such 
a lamina is a layer that has substantially different strengths and stiff
nesses in different directions. The strength and stiffness in the fiber di
rection are the highest properties. However, perpendicular to the fibers, 
that is, at go0

, the lowest properties exist with some variation in between 
as the angle varies from 0° to go0

• In fact, it is possible to get even lower 
stiffness and strength properties than the go0 properties at some off-axis 
angle generally in the vicinity of 60° with some composite materials. At 
go0

, the lamina stiffness and strength are much more like the matrix 
properties than the fiber properties, whereas, at 0° to the fiber direction, 
the properties are fiber dominated. 
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A laminate is a bonded mixture of variously angled laminae and 
we ~ tha laminate properties flet te ~ctS11igh asihosE, ot1tre ~ 
lamma nor as low as those of the go0 lamina, but some value in between. 
Actually, the zone marked laminate in Figure 1-23 must include both the 
0° and the goo cases because we can make a laminate, if we so choose 
with all 0° fibers, i.e., all 0° layers. At some place in the zone labelled 
laminate, what is called an isotropic point or biaxially isotropic point exists 
as some measure of equal in-plane properties in at least two directions 
in ter_ms of s~i~~ess and strength. The so-called biaxially isotropic lami
nate 1s an art1f1c_1al lami_nate that is simply used as a basis for comparison 
of one composite laminate to another or of a composite material to a 
metal_. The type of properties plot in Figure 1-23 is the basic scheme that 
we will use for comparative purposes. 

A _rcprcsent~tion of the strength and stiffness of many materials on 
the basis of effectiveness per unit weight is shown in Figure 1-24. The 
pro~erties of common structural metals are denoted by open squares. 
Vanous f~rms of_ advanced composite materials are denoted by three 
ty_pes o_f ?1rcl~s: f1b~rs alone are represented with open circles; laminae 
with unid1rect1onal fibers arc shown as circles with a vertical line in them· 
and laminae with equal numbers of fibers in two perpendicular direction~ 
are shown with circles with a horizontal and vertical line in them. Obvi
o~sly, the most_ effective material lies in the upper right-hand corner of 
Figure_ 1-24. Fibers alone are stiffer and stronger than when placed in 
a. matrix. However, as we have already seen, the fibers are not used 
w1t~out a _matrix because of the important advantages of the combination 
of fibers m a matrix. Also, unidirectional configurations are stiffer and 
stronger in the fiber direction than biaxially isotropic configurations in ei
th~r. of t~e two directions. Practical laminates lie somewhere between 
unidirectional and biaxially isotropic configurations. 
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Figure 1-24 Strength and Stiffness of Composite Materials and Metals 

Let's compare various forms of specific composite materials with 
structural-grade metals. The metals each occupy only one point on a 
specific strength versus specific stiffness curve, e.g., the open squares 
in Figure 1-24. We need not consider their constituents, and there are 
no orientation aspects, so only one point is necessary to represent their 
stiffness and, simultaneously, their strength. However, for composite 
materials, strong directionally dependent factors must be accounted for. 
The bulk metals considered for structural applications are steel, titanium, 
and aluminum in the lower left-hand corner of Figure 1-24 and beryllium 
in the lower right-hand corner. Now, contrast those bulk metal properties 
with the properties of a high-modulus graphite fiber which is up and to the 
right about as far as possible in Figure 1-24. Observe that the graphite 
looks terrific at first glance. However, we cannot use graphite in strictly 
a fiber form. We must drop back from the capabilities of the fiber form 
to the unidirectional laminate form at least, if not perhaps back more to
ward the biaxially isotropic laminate. And the real practical application 
is some place in between these two simple composite laminates. 

A unidirectional laminate can be used in certain special applica
tions. For example, all the fibers can be aligned in the axial direction of 
a strut or column to take advantage of every possible capability of a 
graphite-epoxy composite material in that particular loading environment. 
However, for aircraft wings, all the fibers cannot be oriented in one di
rection. Multiple fiber orientations must be used to achieve the proper 
balance of strength and stiffness necessary to accommodate loads from 
various directions. Certainly the loads might be larger in one direction 
than another, and we would then prejudice the fiber system to accom
modate the higher load levels. We simply cannot do that prejudicing of 
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directional prope~ies ~ith a metal structure. We must accept uniform 
all-around_ prope~1es with a metal structure (unless we add stiffeners). 
. A wide variety_ of materials is ~epicted in Figure 1-24, e.g., both 

h1gh-stren~th graphite-epoxy. and high-modulus graphite-epoxy which 
natur~lly 1s further to the ~1ght on the figure than is high-strength 
gra~h1te-epoxy .. _Ge~erally, high-modulus graphite-epoxy is obtained by 
a higher grap~1t1zat1on temperature of the graphite fibers than high
strenQth waph1te. Boron falls fairly close to high-strength graphite. 
~erylhum 1s over to the right in fiber form and much lower on the chart 
1~ bulk _metal f?rm. The fiber form of beryllium is much stronger, i.e., up 
~1gher in the. figure, than the bulk form of beryllium. Thus, a beryllium
!1ber composite m~teri~I has.a significant advantage over bulk beryllium 
in strength. Beryllium fibers m a composite form lead to loss in stiffness 
to some extent because we have had to use a less-stiff matrix material 
to surround the beryllium fibers, but we still have a considerable strength 
~dvantage. In contrast, we see fiberglass to the left in the figure, which 
1s extremely strong, but not very stiff. When we put the glass fibers in a 
usable form, namely a unidirectional composite material we get the 
same sp~cific stiffn~~s as ordinary str"lJctLJraJ 11}13J~s~ but fiberglass does 
hav&aflighef specific s1~_ngth. FioergTass in the biaxially isotropic form 
has ~bout the same sp~1f1c strength as steel or titanium, but higher than 
aluminum. Ho~ever, fiberglass has a lower specific modulus than any 
of the conventional metals. Thus, we would typically use glass in a 
strength-critical_ application whereas any of the graphites, even the high
strength graphites, _would be used in stiffness-critical applications. In 
summary, for a st1ffnes~-_critical ~ppl!cation, we would use graphite
epoxy. For a strength-cnt1cal apphcat1on, we might use glass-epoxy or 
Kevlar-epoxy. 

. For example, we might make a strength-critical pressure vessel 
w1t_h. gla~s-epoxy. V'!e would wind the fibers so that they are not 
urnd1rect1onal, but resist t~e variously oriented pressure vessel stresses. 
~ pre~sure vessel has a biaxial state of stress, so we must do more than 
Just circumferential fiber ~inding. I~ some cases, some axial windings 
are necessary, and we might also wind some fibers at ±45° or other an
g!es: We can find the angle to optimize the strength of this highly 
b1ax1a!IY loaded structure. Some pressure vessels are made of 
graphite-epoxy as well as_ of fiberglass or Kevlar-epoxy. 

Kevl~r 49®-epoxy fits between the set of lines for S-glass-epoxy 
and the high-strength graphite-epoxy in Figure 1-24. Kevlar-epoxy is 
another _membe~ of _the family of materials that can be used for a partic
~lar ~es1gn apphcat1?~·. Actually, several grades of Kevlar have proper
ties m the general v1cm1ty labelled Kevlar in Figure 1-24. For a certain 
~alance of streng~h and stiffness, y~u might want a material some place 
m the Kevlar to h1gh~strength graphite region of materials rather than to 
go all the way to a. fiberglass or all the way to a high-modulus graphite, 
for example. That 1s, you must look at your specific design requirements 
to determine what material you really need. 
. . Boron fibers exhibit the highest stiffness and strength efficiencies 
m Figure 1-24. When placed in a lamina as unidirectional fibers, the 
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relative strength of boron-epoxy drops significantly whereas the relative 
stiffness drops only a little. In a biaxially isotropic configuration, boron
epoxy is stiff stiffer than steel or titanium, although it is of the same rela
tive strength. High-strength graphite fibers in composite materials exhibit 
similar behavior. However, high-modulus graphite fibers, although their 
stiffness is greater in all configurations than the other materials, have 
generally lower relative strengths (even lower than aluminum when 
placed in a biaxially isotropic configuration). S-glass-epoxy in a 
unidirectional layup has about 2 1/2 times the relative strength of steel 
or titanium, but is no stiffer (in fact, it is less stiff in a biaxially isotropic 
configuration than steel or titanium). Beryllium has about six times the 
relative stiffness of steel, titanium, or aluminum, but is no stronger. 
Beryllium wires are much stronger, but no stiffer, than bulk beryllium. 
Beryllium wires in a matrix exhibit some of the same general character
istics as other composite materials. 

The duality of the plot in Figure 1-24 is important. That is, stiffness 
is often equally important and sometimes even more important than 
str~nJJJh. SQITlELPf3QQIEl tend to ~ay strength when they actually mean 
stiffness. We must carefully and completely distinguish between these 
two very different physical concepts. 

Not all of the strength and stiffness advantages of fiber-reinforced 
composite materials can be transformed directly into structural advan
tages. Prominent among the reasons for this statement is the fact that 
the joints for members made of composite materials are typically more 
bulky than those for metal parts. These relative inefficiencies are being 
studied because they obviously affect the cost trade-offs for application 
of composite materials. Other limitations will be discussed subsequently. 

1.3.2 Cost Advantages 

Decreasing the cost of a material per pound of structure depends 
on increasing manufacturing experience in a given process and on de
veloping new, more effective manufacturing technologies, among other 
factors. The raw material graphite fibers fell from several hundred dollars 
a pound ($600-800/kg) in the early 1970s to $20 per pound ($40/kg) in 
1990 due to increased manufacturing experience and to the increased 
efficiencies of large-scale production. On the other hand, boron fibers, 
also several hundred dollars per pound ($600-800/kg) in the early 1970s, 
cost about $100 per pound ($200/kg) in 1980 because of inherent tech
nological limitations. The latter prices are for boron that is deposited on 
a tungsten substrate. If a glass substrate could be used, one techno
logical barrier would be overcome, and the cost of boron fibers could be 
as low as that of graphite fibers. In addition, smaller fibers could be 
produced by the glass substrate process. One difficulty in working with 
boron is that it reacts chemically with many matrix materials, as does 
carbon to a lesser extent. Thus, certain fiber coatings must be used 
which increase the cost and sometimes lower the potential effectiveness 
of the resulting composite material. 
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Various elements must be considered in the cost of a structure or 
an object. We first consider an element on which many people often 
focus too much attention, and that is the raw material cost. However, raw 
material cost is only one small element in the whole process of deter
mining the true cost of an object over its lifetime of use. Different mate
rials have different associated costs to design a structure. A certain 
amount of money is required to fabricate or manufacture the object. 
Different amounts of money are required to assemble parts that are 
made in various ways. Similar-appearing parts of different materials 
might require very different fastening techniques. The first three ele
ments mentioned constitute the initial cost of the object. Whenever the 
object comes out the door of the factory, what we pay for it is_the initial 
cost. When we add to that initial cost the operating and maintenance 
costs over the life cycle of the object as in Figure 1-25, then we begin to 
get a true picture of the real cost of the object. Using only the i_nitial cost 
to govern all decisions is totally unrealistic; operating and maintenance 
costs must be taken into account. 

Often the operating costs are lower for a composite structure_ thari 
rot a metallic structure. Tnos, we can-amomaucalfyalforaro pay more 
for the initial cost of the composite structure in order to achieve those 
lower operating costs as long as the key element, the life-cycle cost, is 
lower for composite structures. The life-cycle cost is made up of those 
initial costs mentioned, plus operating costs and maintenance costs, but 
less the salvage value as in Figure 1-25. Then, we must perform a cost 
analysis of the whole system and ask: which is the least-expensive 
choice? Like the TV ad, 'you can pay me now, or you can pay me later'. 
And if we pay at the beginning, we might very well have a lower life-cycle 
cost in many situations with composite structures. The development of 
composite structures is getting to the point where some applications_ of 
composite structures have both a lower initial cost and a lower operat1~g 
cost. Thus, the life-cycle cost is very much more favorable for composite 
structures than it is for some metal structures. 

e RAW MATERIAL COST } 

e DESIGN COST INITIAL COST 

e FABRICATION COST 

e ASSEMBLY COST LIFE-CYCLE COST 

e OPERATING COST 

e MAINTENANCE COST 

e SALVAGE VALUE 

Figure 1-25 Life-Cycle Cost Elements 

The operating cost includes items like fuel and other consumables. 
Maintenance costs are obviously repairs and periodic reworking of the 
structure. After the passage of years, nearly the entire aircraft structure 
has often been replaced part by part! The final category is the salvage 
value. What is the object worth at the end of its life? Consider an alu
minum airplane for which some scrap value exists at the end of its useful 
life. When the structure is no longer suitable to be flown, and there we 
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sit with a pile of aluminum, we can retrieve some salvage value. Think 
of the plane as a big pile of aluminum beer cans! However, that value 
is not really significant in comparison to the original cost. Admittedly, 
with a composite structure, there is no salvage value at all if the structure 
is made entirely of some composite materials. There is nothing that we 
can do with the structure when we are through with it as a structure. If 
we made the object, for example, with graphite-epoxy, then after the 
epoxy matrix is cured (epoxy is a thermoset polymer which means that 
curing is a one-way process), the composite material takes that cured 
shape permanently. We cannot melt the structure down and make it into 
anything else. At that point, the plane is a pile of junk with zero salvage 
value (in fact, you would have to pay someone to take it away). How
ever, even the salvage value of the aluminum aircraft is not enough 
higher than zero relative to the initial cost to make the salvage value a 
strong consideration in the overall economic analysis. 

Why are the various cost elements being described? Because you 
need to have a feeling for the comparisons that you must make in 
structural design in ordertO- decide whicl+ material is !}est w yew-· fIBf-
ticular application. One of the primary considerations in structural design 
is always cost. A material might appear very efficient when expressed 
in terms of weight, but we must usually think of cost as well. The cost
competitiveness of composite materials is generally best in applications 
to weight-sensitive structures simply because the specific strength and 
specific modulus of composite materials are typically very high when 
compared to ordinary structural metals. That is, composite materials are 
especially effective in weight-sensitive structures. 

Cost advantages of composite materials are obtained when we 
have and recognize the sometimes easier fabrication concepts for ad
vanced composite structures than exist for metals. Generally, all cost 
advantages or cost comparisons are becoming more favorable for com
posite structures with increasing production rates of composite raw ma
terials and composite parts. Those advantages and production rates go 
hand in hand, so if we develop new technology for production of com
posite materials, that new technology will drive down the cost of com
posite structures. 

Labor cost in a structure is directly related to part count. If part 
count can be reduced, then labor costs (and inventory costs) will de
crease. Composite structures are generally composed of many fewer 
parts than are metal structures. Integral part design and fabrication 
techniques reduce fastener count and bonding operations. Thus, com
posite structures can have cost elements that are considerably lower 
than those for metal structures. 

Often, the manufacturing processes involved for composite struc
tures fabrication are greatly simplified as compared to those for metal 
structures. Reduced part count results in a much lower assembly cost 
and overall reduction in the factory labor hours. 

Manufacturing efficiency embodies a wide variety of topics far be
yond the scope of this book. However, a materials utilization factor will 
be defined and characterized for composite materials and metals as a 
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quantitative way of expressing how efficiently materials are used in a 
manufacturing process. That materials utilization factor is defined very 
simply to be the amount of raw material required at the beginning of the 
manufacturing process divided by the amount of material that exists in 
the final part: 

Materials Utilization Factor= raw material weight 
final part weight 

The difference between the two weights is the amount of material re
moved in the manufacturing process. For some parts made of metals, 
the materials utilization factor can be as high as 15 to 251 Typically, that 
large number occurs when a lot of metal-removing operations are per
formed on an initially large block of metal. Those so-called 'hogging out' 
operations involve simply machining away much of the material, sweep
ing it up from the floor, putting it in a bin, and selling it back to the man
ufacturer for a small refund compared to what it cost originally. That 
process is a natural way of dealing with metals; metals are often carved 
down from a big chun_k _ to the final intricate shaJ)e. And, _thf3 lab_or arid 
machinTng costs associated with that caivlng-down operation are usually 
quite high. 

In contrast, with composite materials, the materials utilization factor 
is rarely higher than 1.2 to 1.3. That is, only a maximum of 20-30% of 
the material is wasted with composite structures. Whereas obviously 
with a materials utilization factor for some metal parts of 15-25, the waste 
is 1500-2500%! Those are not individually typical numbers, but are the 
worst cases in both situations, i.e., for metals and composite materials. 
For metals, there are many, many operations for which the waste factor 
is very low. And for composite materials there are also many situations 
where the waste factor is much lower than 20-30%. The point is that the 
worst-case situations are totally different for these two kinds of materials 
based on the way objects are inherently created with the two different 
types of materials. Composite materials are built up until the limits of the 
desired geometry are reached. At that point, the layup operation simply 
ceases. Composite materials and structures are fabricated in as close 
to the final configuration as possible, i.e., so-called near-net shape. 

An example of the contrast between these two situations is illus
trated in the context of the part of a wing called the doubly tapered wing 
spar. What you see in the middle of Figure 1-26 is not just an I-beam 
drawn in perspective. The spar actually is deeper and wider on the left
hand end near the fuselage than it is on the right-hand end because the 
wing is tapered both in height and width toward the tip. That is, the spar 
gets thinner and narrower in the direction away from the fuselage of the 
aircraft. To make such a wing spar of titanium requires starting with a 
block of material, as in the upper left-hand corner of Figure 1-26, which 
is as high as the deepest part of the beam and as wide as the widest 
part of the flange. Then titanium is machined away, including the cutting 
of lightening holes in the middle of the web because the web does not 
carry a lot of shear, so it can be made lighter by removing metal. 
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COST TITANIUM GRAPHITE-EPOXY 

RAW MATERIAL COST HIGH HIGH 

MACHINING COST VERY HIGH VERY LOW 

SC RAPP AGE VERY HIGH VERY LOW 

LAYUP COST NONE MODERATE 

Figure 1-26 Doubly Tapered Wing Spar 

For a ()On1posite \Yin.9 _ s_pc1r, the starting go int is a roll_ of tape as in 
the upper right-hand corner of Figure 1-26, and then the wing spar is built 
up in layers until the proper size is reached. Composite structures 
manufacturing is being contrasted here with a machining operation in
stead of, for example, a forging operation. Perhaps parts like this spar 
could be made of a titanium forging as well - in which case the materials 
utilization factor would be lower. However, the very high cost of the 
forging must be taken into account as well as the very considerable time 
in advance of production to obtain that forged spar. 

Let's contrast four different categories of operations between the 
titanium on the left and the graphite-epoxy on the right in Figure 1-26. 
First, for raw material cost, titanium is not an inexpensive material, so the 
cost is labeled high, and graphite-epoxy might also be called high. The 
machining costs for the titanium spar are undoubtedly very high. How
ever, little machining is required for the graphite-epoxy spar. The 
scrappage of material for titanium is very high. The wing spar involves 
one of those 'hogging-out' operations (very extensive machining away 
of significant amounts of material) where more than 1000% of the mate
rial is wasted relative to the final part weight. With graphite-epoxy, only 
approximately what material is needed is actually used. Hence, a very 
low scrappage rate exists. Another item in the budget is the layup costs. 
For titanium, there is no such cost. For a graphite-epoxy, such a part is 
no~ particularly ~ifficult to layup. That layup is a moderate cost, certainly 
quite moderate 1n comparison to the extensive machining required for a 
titanium spar. 

Specific numbers are not available for the final comparison in which 
all cost factors are weighed. First of all, a possibly higher raw material 
cost for graphite-epoxy is made up for, at least in a qualitative sense, by 
the fact that not as much machining is required for the graphite-epoxy 
spar. Essentially only as much graphite-epoxy as is needed is bought, 
whereas many times the amount of titanium that is needed in the final 
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part must be bought. The raw material. cost per unit of ~eight for the 
titanium is high and perhaps somewhat higher for the graphite .. But ~hat 
is the cost of the raw material that must be bought to put mto this object? 
The cost of the total amount of the titanium bought is likely greater than 
the cost of the graphite-epoxy. Moreover, the titanium spar has a very 
high machining cost. Thus, the bottom-line c~st !or the graphite-epoxy 
spar is expected to be lower than that for the titanium spar. Many other 
such comparisons are possible for various parts. 

Composite materials are not claimed to be a cure-all for every ap
plication or even necessarily competitive with ?ther ma~erials. Ho~ever, 
there are many instances in which composite materials are urnque!y 
well-suited because of their peculiar fabrication processes. Thus, this 
'special' case of a doubly tapered wing spar is not really special, but. is 
actually a powerful example of the class of applicati.ons where ?ompos1te 
materials offer significant advantages over conventional materials. 

1.3.3 Weight Advantages 

Wnat are 1ne oenelifs of sa.virig weTgnl in a structure? Generally, 
we can choose from several alternatives. First, we can directly transfer 
weight savings into savings of fuel so that more efficient operating con
ditions result. Or else we can carry a heavier load of fuel and increase 
the range of an aircraft or truck. Or some combination of the two is 
possible. Further consequences of decreased weight of an airplane are 
that engine thrust, wing area, and fuel can then be decreased. For ex
ample, for fighters, a 1-lb (.45 kg) decrease in a part could lead t? a 
2.5-lb (1.13 kg) total weight decrease! For spacecraft, the total weight 
decrease is even larger! An observation: every pound of sJructural 
weight saved in a satellite means more propellant can be earned, and 
that results in a longer-life satellite because the weight that can be put 
into orbit is usually fixed by the booster capacity. If we make a higher 
percentage of that satellite weight fuel rather than structure, then the 
satellite will serve longer. 

Weight savings can also mean the difference between whether the 
structure we design can perform its mission or not. The current Sp~ce 
Shuttle payload is limited to 60,000 lb (27,200 kg). If we have an object 
that we wish to carry up into space that weighs 65,000 lb (29,500 kg), 
then we are out of luck. That object does not satisfy the Shuttle's weight 
limit. We must wait for a new-generation Space Shuttle, or sufficient 
weight in the object to be carried :nust be saved to fit within the current 
Space Shuttle limitations. . 

The potential weight savings in a variety of structures are displayed 
in Figure 1-27. There, the savings range from a modest $25/lb ($55/kg), 
barely justifying the use of some composite materials, to the enormous 
$15,000/lb ($33,000/kg) in the Space Shuttle. In the case of the Space 
Shuttle use of composite materials fairly shouts for attention. In between 
those hYo extremes, composite materials have very strong justification for 
use. 
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• SMALL CIVIL AIRCRAFT 
• HELICOPTER 
• AIRCRAFT ENGINES 
• RGHTERS 
• COMMERCIAL AIRCRAFT ($20/lb/yr x 20 yr) 
• SST 
• NEAR-ORBIT SATELLITES 
• SYNCHRONOUS SATELLITES 
• SPACE SHUTTLE 

$25/lb 
$50/lb 

$200/lb 
$200/lb 
$400/lb 
$500/lb 

$1,000/lb 
$10,000/lb 
$15,000/lb 

Figure 1-27 Value of Weight Savings in Structures 

($55/kg) 
($110/kg) 
($440/kg) 
($440/kg) 
($880/kg) 

($1, 100/kg) 
($2,200/kg) 

($22,000/kg) 
($33,000/kg) 

The potential for weight savings is closely coupled to fuel savings 
for most vehicles. Recently, the impact of both aerodynamic improve
ments and structural weight savings via the use of composite structures 
was assessed. The basic conclusions were that composite secondary 
structures might save 10% but that composite primary structures might 
save more than 30%. In contrast, laminar flow control might save 20%, 
active controls for both tail and wing 10%, high-aspect-ratio wings 10%, 
and supercritical wings less than 5%. Thus, the import~mce of irnprove
ments m ootn aeroaynamTcs and composite structures is about equal. 

Potentially, the structural weight savings on current production mil
itary aircraft is limited to about 20% or less. That number is necessarily 
low without extensive redesign. Future commercial aircraft might have 
weight savings of 25% whereas military aircraft might have 35%. The 
difference is in the more extensive use of composite materials in the 
high-heating environments of military aircraft. Spacecraft might have 
weight savings as high as 40%. 

1.4 THE HOW-APPLICATIONS OF COMPOSITE MATERIALS 

1.4.1 Introduction 

Currently, almost every aerospace company is developing produ~ts 
made with fiber-reinforced composite materials. The usage of composite 
materials has progressed through several stages since the 1960s. First, 
demonstration pieces were built with the philosophy 'let's see if we can 
build one'. There may never have been any intention to put the part on 
an airplane and flight-test it because the objective was to make a first 
step toward learning about composite structures. The second stage was 
replacement pieces where part of the objective was to flight-test a part 
that was designed to replace a metal part on an existing airplane. The 
third stage is actual production pieces where the plane is designed from 
the beginning to have various parts fabricated from fiber-reinforced 
composite materials. The final stage is the a/I-composite airplane that 
many people have dreamed of building for many years. This last goal 
has been approached in the deliberate, conservative, multistage fashion 
just outlined. A substantial composite materials technology and manu
facturing base has been built and awaits further challenge. 

The impact of composite materials use on jet-engine performance 
is also very substantial. Currently, with various metal alloys, thrust-to-
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weight ratios of 5 to 1 are achieved. Fiber-reinforced plastics and metals 
might lead to ratios as high as 16 to 1. Ultimately, with advanced 
graphite-fiber composites, thrust-to-weight ratios on the order of 40 to 1 
appear possible. An eightfold increase in the performance index of 
thrust-to-weight ratio should lead to drastically pyramided weight savings 
in an entire aircraft due to substantially lessened structural support re
quirements. However, the road to this goal can be perilous. For exam
ple, the Rolls-Royce bankruptcy of the 1970s appears to be closely tied 
to a lost gamble on the timely development of graphite-epoxy fan blades 
for the Lockheed L-1011 engines. 

In the near future, aircraft will be built with a very high percentage 
of components made from composite materials. Only then will the full 
advantages of weight savings be realized because nearly all parts of a 
plane interact with or support other parts. Hence, the effect of weight 
reduction in one part of a plane pyramids over the entire plane. Weight 
reductions are well-motivated because the structure of a typical airplane 
might weigh 30% of the total weight with only about 10% being payload 
and the rest fuel, electronic gear, etc. Thus, if materials that are 50% 
more effective in stiffnessand strength were ~~~weightwouki 
be reduced by the amount of the payload. The implications of such a 
significant reduction are manifold. The payload could be doubled, the 
range extended, operating efficiency improved, or some combination of 
these and other factors would occur. Obviously, such benefits are wel
come improvements, but there is a sometimes more significant benefit 
from weight savings. In the case of the 1960s United States Supersonic 
Transport (SST) project, the possibility of carrying any payload at all was 
in doubt right up to the time when the project was cancelled. Similarly, 
the economic feasibility of VTOL (Vertical TakeOff and Landing) craft 
depends on the extensive use of composite materials. In all applications, 
improved fatigue life and reliability of composite materials are welcome 
added attractions. 

1.4.2 Military Aircraft 

A variety of military aircraft projects have occurred over the years - far 
more than can be summarized in a short space here. Thus, only some 
of the significant milestones will be described. 

1.4.2.1 General Dynamics F-111 Wing-Pivot Fitting 

The F-111 is a swing-wing fighter-bomber made by General Dy
namics (now Lockheed Martin) in Fort Worth, Texas. The wings are 
perpendicular to the fuselage during takeoff or landing, and they are 
swept back at high speeds. Early in the production, some of the planes 
crashed, and the cause was traced to premature fatigue cracks in the 
forged-steel wing-pivot fitting shown in Figure 1-28. There, we can see 
the primary pivot point and where an actuator arm is attached with a 
piston to cause the wing to pivot. In the area of the central plate, fatigue 
cracks were identified when some of the planes were taken apart for in
spection. 
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The obvious solution is to thicken the metal in that region of the 
wing-pivot fitting where failures occur so the stress levels are reduced 
below the endurance limit of the material. As an alternative solution, Dial 
and Howeth [1-5] reported that a boron-epoxy doubler was applied to 
reduce the stress levels. This doubler could be called a 'boron-epoxy 
Band-Aid'. Like a Band-Aid, the doubler was glued on the lower surface 
of an already existing wing-pivot forging as a reinforcement. Let's look 
at two contrasting situations to see how that solution actually worked out. 

• BORON-EPOXY 
DOUBLER(BONDED 
TO LOWER SURFACE OF 
WING PIVOT 1'1TTING} 

Figure 1-28 F-111 Wing-Pivot Fitting (Courtesy of Lockheed Martin) 

Consider first the case of new aircraft. That is, the wing-pivot fitting 
crack problem was identified during the production run, so many air
planes had not yet been built. Obviously, the wing-pivot fittings on the 
unbuilt aircraft did not have any fatigue cracks. So General Dynamics 
put the doubler on the wing-pivot fitting before wing assembly. Let's 
compare the relative cost of the two different options. Suppose we had 
to redesign that steel wing-pivot fitting. The cost of the design modifi
cation and its fabrication and installation was in addition to the cost of the 
basic wing-pivot fitting which is the baseline or 100% relative cost for 
subsequent comparisons. 

In contrast, if we take the already-designed wing-pivot fitting and 
simply put the boron-epoxy doubler on it (i.e., fabricate and install the 
doubler), the cost savings is 21%1 That is a very worthwhile cost 
savings. That is, for all airplanes that had not yet been produced, the 
least-expensive approach was simply to put on the boron-epoxy Band
Aid. And that cost savings occurred at a time (the late 1960s) when 
boron-epoxy cost several hundred dollars per poundl This 21% savings 
in cost did not reflect one other very important issue. That issue is the 
long lead time to get such a large forging changed and back into pro
duction. 

If General Dynamics had chosen to redesign the forging and re
quest new forging production, they would have faced at least a year of 
production shutdown. The cost of that shutdown would far outweigh the 
21% savings for a part. This 21% savings could actually have been a 
cost well above the original cost, and they would have been better off 
spending the money than stopping the production line. Thus, there are 
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various reasons why we choose alternative approaches, and they are 
not necessarily related to the cost of the part we are addressing. This 
21 % savings was a plus, both in the short-term and in the long-term cost 
of this essential aircraft modification. 

The really big cost savings occurred for the aircraft that were al
ready flying. In that case, the wing-pivot fitting that is not capable of 
doing the necessary job could be replaced with a redesigned wing-pivot 
fitting. However, we must pay for two wing-pivot fittings plus disassembly 
of the wing to remove the old wing-pivot fitting and then reassembly of 
the wing afterwards. That multiple assembly cost is very high. In con
trast to that situation, as long as the existing wing-pivot fitting does not 
have fatigue cracks, then we can put on the boron-epoxy doubler and 
save about 60% over the alternative total replacement with a thickened 
steel forging in the region of the fatigue crack. That was the big savings, 
other than stopping the production line. This doubler was supposedly the 
first cost-effective application of advanced composite materials in about 
1968. Some very important design trade-offs are prominent in this ex
ample. 

t.it1.2 Vought A-7 Speedbrake 

The next example of military aircraft applications of composite ma
terials is the Vought (now Northrop Grumman) A-7 speedbrake that drops 
from the bottom of the aircraft to decrease speed as in Figure 1-29. The 
A-7 is a diving fighter-bomber, so it must be able to slow down very 
rapidly by use of such a speedbrake. The metal design is a fairly intricate 
interlacing of longitudinal and lateral stiffeners in Figure 1-29 and weighs 
about 123 lb (56 kg). The composite speedbrake is a much simpler de
sign with two bent (or jogged) struts that take loads in the different di
rections in Figure 1-30. Vought's all-composite-bonded structure with 
some molded fittings that were also laminated weighed 80 lb (36 kg), 
about a one-third weight savings. The simplicity of the composite 
speedbrake is readily apparent from comparison of Figures 1-29 and 
1-30. The shape of the composite struts could not be duplicated with 
metal unless they were forged or machined, and both processes are 
quite expensive. 

OVERALL WIDTH 6' 

Figure 1-29 Metal A-'/ Speedbrake (Courtesy of Northrop Grumman) 
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Figure 1-30 Composite A-7 Speedbrake (Courtesy of Northrop Grumman) 

Some of the most significant problems in making this speedbrake 
with graphite-epoxy were in the regions where a hinge or pivot point is 
needed. We will examine this topic more in Section 7.5, but, for now, 
be aware that graphite epoxy does not have a particularly htgh trearing 
strength. Any time a pivot, pin, or fastener exists, we must be concerned 
about the bearing strength of a composite structure, i.e., the ability of the 
composite material to support the pivot, pin, or fastener in direct bearing. 
Thus, Vought had to approach that problem cautiously, and, at the pivot 
point on the speed brake, they encapsulated some aluminum, which had 
adequate bearing strength, with graphite-epoxy as in Figure 1-31. Thus, 
this is a compound composite part with three constituents: graphite, 
epoxy, and aluminum. In a production environment, this speedbrake 
would not be made of aluminum next to graphite-epoxy because galvanic 
corrosion (discussed in Section 6.7) would exist between the two mate
rials. But because this was a demonstration part and not intended for 
long-time flight use, the speedbrake pivot point area could be built with 
a material that is inexpensive such as aluminum because it is easy to 
machine. Vought was trying to demonstrate a principle, not to make a 
production part. 

Figure 1-31 A-7 Speedbrake Bearing Pin Holder 
(Courtesy of Northrop Grumman) 
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1.4.2.3 Vought S-3A Spoiler 

The next example is a spoiler made by Vought (now Northrop 
Grumman) for the Lockheed S-3A. The S-3A is a submarine search 
plane, and the spoiler is a relatively small flap-like object in the wing. In 
section A-A through the metal spoiler in Figure 1-32, we see that several 
machined extrusions are used as stiffeners internal to this structure. The 
spoiler skin has been chemically milled to change its thickness in various 
areas. Both machining extrusions and chem-milling are high-cost oper
ations, so the spoiler looks quite simple, but is quite costly. 

dE 
r CHEM-MILLED SKIN 

~ 4cHINED EXTRUSION 
MACHINED EXTRUSION 

SECTION A-A 

Figure 1-32 Metal S-3A Spoiler (Courtesy of Lockheed Martin) 

For the composite spoiler design, the bottom is a variable-thickness 
skin on one side in Figure 1-33, but with composite materials that con
struction is not difficult. We do not have to chem-mill a composite ma
terial to change its thickness. All we do is stop building up the material 
in layers in the middle, but continue to build it up at the sides. That's a 
very natural process for composite materials and does not involve a 
costly machining operation. Instead of machined extruded stiffeners, a 
honeycomb core is placed on the inside of the laminae. That honeycomb 

85" ·1 
A I 

.040 

SECTION A-A 

: THREAD INSERTS 

2 LAMINATE SKINS 
1 HONEYCOMB CORE 

141NSERTS 

Figure 1-33 Composite S-3A Spoiler (Courtesy of Lockheed Martin) 
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core is simply band-sawed to shape and laid on the lower skin. The 
upper layer of skin is then draped over that band-sawed core and the 
""'.hole assembly is _co-cured. Thus, the composite spoiler involv~s a very 
simple manufacturing procedure and a simple configuration. 

Th~ original metal spoiler weighs 13 lb (5.9 kg), and the graphite
epoxy with ~oneycomb-core spoiler weighs less than 8 lb (3.6 kg). Thus, 
Vought ach1~~ed a 41 % weight savings. Contrast the high machining 
and c~em-m1lling c~sts for the metal spoiler and its high weight with the 
graphite-epoxy design. Actual costs are not available but from the 
weight ~avings _and from the types of machining operatio~s involved, the 
composite spoiler could be much more cost-effective than the metal 
spoil~r. That conclusion i~ true even if the graphite-epoxy raw material 
cos~ 1s more than the aluminum cost because we are not comparing the 
des~gn~ based on raw material costs alone. Raw material cost is only the 
beginning of the true cost story. Fabrication costs can have a very 
strong, if not dominant, influence on the total cost of the structure. 

1.4.2.4 Boeing F-18 

. Composite materials are used extensively in the F-18, an attack 
fighter made by McDonnell Douglas (now Boeing) and Northrop (now 
North~op Grum~an): The various speckled areas in Figure 1-34 are 
graph1te-epo'."Y in pnmary structure: the vertical fin, the wings, and the 
honzontal tail surfaces. Also, graphite-epoxy is used in various small 
doors and other regions around the entire plane, which are secondary 
structures. 

NLO STRUT DOOR DRAG BRACE F-

HOIIIZONTAL STAIIIUTOR 

STAIIIU.TOR 
ACCESS COVER 

Figure 1-34 F-18C/D Composite Materials Usage (Courtesy of Boeing) 

Wha! are some of the important issues in the design and projected 
use of vanous second-generation part-composite aircraft, and why does 
graphite-epoxy play such an important role? If we consider aircraft 
weight alone, using graphite-epoxy can easily save approximately 10% 
of the total wei~~t in Figure 1-35 over conventional metal aircraft design. 
For those spec1f1c structural elements made of composite materials as 
?ompared_ to if they had been m~de with metals, the percentage savings 
1s much higher. Much larger savings, perhaps 30%, occur in the number 
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of parts in Figure 1-35. That savings in parts leads to yet another cost 
savings in the management system that must track all the parts through 
the production and assembly process to the final product and continue 
in the warehousing system to be able to replace parts 1n the future. 

SAVINGS 

METAL 

COMPOSITE 

10% 

AIRCRAFT 
WEIGHT 

30% 

NUMBER 
OF PARTS 

50% 

MMH/FH 

Figure 1-35 Typical Savings in Second-Generation Part-Composite Aircraft 

The prospective savings in the ordinary maintenance that must be 
done in order to keep planes in the air. i.e., maintenance man-hours per 
flight hour, is 50% by using composite materials instead of metals in 
Figure 1-35. That percentage is enormous! And. the maintenance 
man-hours per flight hour issue is a very important indication of aircraft 
reliability and the cost of maintaining an aircraft over its lifetime. The 
main point is this: we cannot necessarily focus only on the issue of 
weight or on the issue of manufacturing costs. All of these costs must 
be examined at the same time to get a life-cycle cost estimate for a 
prospective aircraft. 

1.4.2.5 Boeing A V-88 Harrier 

On the AV-SB Harrier, also made by McDonnell Douglas (now 
Boeing) the shaded areas in Figure 1-36 are graphite-epoxy. The wing 
is 160 to 180 layers of graphite-epoxy at the thickest portion. About 1300 
lb (590 kg) of graphite-epoxy are used in the entire structure. One of the 
reasons why we would like to use some of the advanced composite 
materials involves an issue that has not been mentioned so far. One of 
the alternative materials to some composite materials is titanium which 
is a strategic metal, i.e., a material of strategic importance in that it is not 
found naturally in the United States, yet it is necessary in some applica
tions. If we can conserve strategic metals for applications where we 
absolutely must use them, then our concern about the strategic metal 
supply is lessened. We can make some substitutions for titanium with 
advanced composite materials, but not necessarily with graphite-epoxy. 
Some titanium is used in higher temperature situations than an epoxy is 
able to function. Other matrix materials for high-temperature applications 
are under development. 
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Figure 1-36 AV-88 Harrier Composite Material Applications 
(Courtesy of Boeing) 

1.4.2.6 Grumman X-29A 

The most unique feature of the Grumman X-29A is its forward
swept wings as seen in Figure 1-37. In metal aircraft, forward-swept 
wing structures must be especially stiffened at great weight penalty to 
avoid aerodynamic divergence. Only a few such aircraft have been built. 
In contrast, composite wing structures can be tailored layer by layer in 
laminate stiffnesses to successfully resist aerodynamic divergence and 
to simultaneously save weight over the usual rearward-swept wings! 
Such structural advances enable the use of the aerodynamically better 
performing forward-swept wings that offer the improved agility so essen
tial to air-combat performance. 

Figure 1-37 Grumman X-29A (Courtesy of Northrop Grumman) 

1.4.2.7 Northrop Grumman B-2 

The B-2 stealth bomber in Figure 1-38 is made by Northrop 
Grumman. Virtually all external parts are made of various composite 
materials because of their radar-absorption characteristics and/or their 
capability to be formed to shapes that naturally lower the radar cross 
section of the plane. However, the details are not publicly available, nor 
are they for the Lockheed Martin F-117 A stealth fighter. 
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Figure 1-38 B-2 Stealth Bomber (Courtesy of Northrop Grumman) 

1.4.2.8 Lockheed Martin F-22 

The Lockheed Martin F-22 air-superiority fighter first flew in 1997 
as in Figure 1-39. The plane has about 26% composite structures with 
two main manufacturing techniques used. Resin-transfer molding (RTM), 
as discussed in Section 1.2.4.2, permits thicker, more complexly shaped 
parts such as wing spars that are one-third the weight of a metal spar, 
20% less expensive, and have half the rejection rate. Conventional tape 
layup for large flat pieces such as wings has no rivets so the flight-control 
surfaces are smooth leading to less drag. 

Figure 1-39 Lockheed Martin F-22 (Courtesy of Lockheed Martin) 
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1.4.3 Civil Aircraft 

1.4.3.1 Lockheed L-1011 Vertical Fin 

The vertical fin of the Lockheed L-1011 is shown in Figure 1-40 
where the placement of the fin along with the internal structural members 
is apparent. The spar that goes up the entire fin is light enough to be 
picked up by one person even though it is over 20 ft (7 m) long. The 
main problem that was uncovered in the construction of this vertical fin 
was the difficulty to attach one composite part to another. And, in any 
structural test of the vertical fin, that is where the failures occurred. Re
inforcements were then designed, and the fin achieved its design goal. 

Figure 1-40 Lockheed L-1011 Vertical Fin (After Jackson, et al. [1-6)) 

The design goals of the vertical fin project were not only to achieve 
a lighter weight than with aluminum construction, but to reveal the cost 
implications of this kind of construction in comparison to metals. The 
cost of the aluminum fin on the left-hand side of Figure 1-41 is contrasted 
with the graphite-epoxy fin on the right-hand side. The cost is separated 
into various categories. For example, the aluminum fabrication material 
is about 5% of the total cost whereas graphite-epoxy is 14% of the total 
cost. Thus, the raw material cost would appear to be nearly three times 
as much for the graphite-epoxy as a percentage of the overall cost of the 
fin as for the aluminum. That comparison does not sound good, but raw 
material cost is simply not the basis on which to make an initial, much 
less a final, cost judgement. The other costs that are involved, such as 
support labor and structural assembly labor, are much lower for com
posite structures than they are for metallic structures as is seen in Figure 
1-41. These costs are, in fact, so much lower that the other costs actu
ally overwhelm that initial disadvantage of a higher raw material cost to 
the point where the bottom-line cost for the composite fin is 10% less 
than for the metal finl Labor is the key issue in increased fabricability 
of composite materials which makes them much more cost-effective than 
metals in many applications, and that fact is becoming more evident ev
ery day. 
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Figure 1-41 L-1011 Vertical Fin Cost (After Alva, eta/. {1-7]) 

The point is that, despite a higher raw material cost, the fabrication 
cost

1 
went ~own enough to totally overwhelm the increased raw material 

cost! Obv1ously,. the labor costs far exceed the raw material cost, so 
small ch~nges m lab_or costs are much more important than large 
changes m raw m~tenal costs. A very important point: do not think in 
_terms of raw matenal cost alone. We must integrate the fabrication costs 
in th~ ~otal co.st before we can ~ake a valid comparison. Here, 
graph!te ~po'o/ 1s m?re _than compet1_t1ve. Graphite-epoxy is the favored 
material m this app!1cat1?n because 1t is more cost-effective than alumi
num. That comparison 1s based o~ initial cost alone without taking into 
account the lower long-term operating and maintenance costs. 

1.4.3.2 Rutan Voyager 

One ?f the mos_t sig_nificant recent aircraft is the Rutan Voyager, an 
all-compo~1te plane m Figure 1-42 which was flown around the world 
non-sJop m 1989. _Burt Rutan of the Rutan Aircraft Factory created a 
seemingly endless line of all-composite aircraft in the 1980s and 1990s. 

Figure 1-42 Rutan Voyager (Courtesy of Scaled Composites) 
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1.4.3.3 Boeing 777 

The Boeing 777 large twin-engine wide-body aircraft in Figure 1-43 
entered service in 1995 with more use of composite materials than any 
previous Boeing commercial aircraft. Approximately 18,500 lb (8,400 kg) 
of composite materials are used in each plane for both primary structure 
(a first for Boeing) and secondary structure for a total of 10% of the 
structural weight. Most notable is the large tail of carbon fibers in a 
toughened epoxy matrix with advantages of a 15-20% weight savings, 
enhanced corrosion resistance, improved aerodynamics, and surface 
detectability of impact damage. Production of the tail is highly auto
mated, including tape layup, forming, and machining. The many fuselage 
floor beams in Figure 1-43 are also made with the toughened epoxy resin 
system. More ordinary carbon-epoxy is used in a variety of applications: 
tail rudder and elevators, inboard and outboard flaps, flaperons and 
ailerons, landing-gear doors, and engine cowlings. A hybrid of glass and 
carbon is used in the wing-to-body fairings. Lastly, the brakes are 
carbon-carbon. 

• GRAPHITE 

~ HYBRID 

WING FIXED LEADING EDGE 

TRAILING-EDGE PANELS 

NOSE-GEAR DOORS 

FIN TORQUE BOX 

STABLIZER TORQUE BOX 

INBOARD AND OUTBOARD SPOILERS 

ENGINE COWLINGS 

Figure 1-43 Boeing 777 (Courtesy of Boeing) 

1.4.3.4 High-Speed Civil Transport 

Much work is underway for the High-Speed Civil Transport (HSCT) 
as a successor to the various Supersonic Transports (SSTs) - the 
British-French Concorde, the Soviet Tupelov Tu-144, and the never
produced United States version. For the SSTs, the desired performance 
goals were attained at the expense of profitability. That is, the speed and 
range met the design requirements, but the structural weight to achieve 
them was so large as to preclude carrying a profitable payload. Ad
vances in high-temperature structural concepts are the key to meeting 
profitability requirements for the HSCT as in Figure 1-44 to serve, for 
example, the Pacific-Rim market. 
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Figure 1-44 The High-Speed Civil Transport (Courtesy of Boeing) 

1.4.4 Space Applications 

Everyone is familiar, to some degree, with space activities. How
ever,. few are co~v~_rsant with the role that various composite materials 
play in these act1v1t1es. Weight savings are a crucial arena for space 
struct~res because of the enormous cost of boosting every structure from 
eart~ int? space. Thus, composite materials are playing a compelling 
role rn virtually all space structures, but not as much as they will in the 
future as more applications are developed. 

.. Some graphite-epoxy structures can be tailored to have a zero co
eff1c1ent of !hermal expansion, a big advantage for large antennas that 
must pass in ~n~ out of t_he sun, yet maintain dimensional stability for 
accuracy of pointing the signal. For example, a graphite-epoxy truss is 
used to stabilize and support the Hubble Space Telescope. 

1.4.5 Automotive Applications 

~utom?tive applications of composite materials have an entirely 
new d1mens1on. - _low-cost'. high-~ate production - compared to aircraft 
and space appllcat,ons. This duality of the usual pair of economic factors 
of ~ow~cost production coupled to high-rate production is essential to 
marnta,~ the present ~ehicle cost at the current high rates of production 
y~t attain the goal of increasing the current average gas mileage of 27.5 
miles per gallon (11.7 km/I) to 80 miles per gallon (34 km/I). Economic 
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and marketing advisors suggest that the typical prospective car pur
chaser will act positively only if the initial cost of the car does not increase 
above the current cost. Simultaneously, the corresponding level of de
mand forces production rates that cannot be met with current manufac
turing techniques. For example, tape-laying machines have production 
rates sufficient to manufacture all the needed aircraft per year. However, 
those same tape-laying machines are woefully inadequate to manufac
ture parts at the rates necessary to sustain automobile production that 
has a current rate per day which far exceeds the number of aircraft made 
in a decade! Furthermore, autoclave curing each such part would be a 
further bottleneck in the manufacturing problem because each part would 
take several hours to cure. Thus, new manufacturing techniques are 
essential before widespread use of composite parts in the automotive 
industry occurs. Moreover, the raw fiber cost of, for example, carbon fi
bers must be quite a lot less than currently to enable production of suit
ably low-cost parts. 

Many attempts have been made to incorporate composite materials 
in automobile production starting with Henry Ford's 'corn cob car' in the 
late 1930s (not to mention earlier uses of wood!). The fiberglass-bodied 
Chevrolet Corvette, first introduced in 1953, is the only long-term suc
cess. Certain individual car parts, such as springs and driveshafts, have 
unique characteristics that have proven production records of low-cost, 
high-production rates, and high weight savings that can satisfy body
mass-reduction requirements to meet the fuel economy goals. For ex
ample, the steel springs for the 1980 Chevrolet Corvette weighed 41 lb 
(19 kg) whereas the 1981 and later composite springs weighed only 8 lb 
(3.6 kg). 

In the 1970s and 1980s, many attempts were made to update the 
data base of information on then-current manufacturing techniques, 
costs, and part weights. Moreover, the normal composite materials 
manufacturing advantage of being able to replace a large number of 
interconnected metal parts with a far smaller number (as low as one) of 
composite parts was explored to assess impact on overall manufacturing 
cost. In 1979, a Ford LTD (full-size) sedan was produced slowly from 
$25,000 (1979 dollars) in raw material for a total project cost of $3.5 
million with a weight reduction to 2500 lb (1100 kg) from the usual 3740 
lb (1700 kg) of the equivalent steel car. The total project cost is quite 
irrelevant because any single car will always cost more than $1 million 
to produce. However, the raw material cost alone was greater than the 
equivalent economic value of the car, i.e., what you could have bought 
instead. Moreover, the manufacturing techniques were far too slow to 
keep up with the normal consumer demand. Accordingly, the checkpoint 
result of 1979 was unsatisfactory (although some individual parts such 
as springs and driveshafts did survive to somewhat standard production). 
The further checkpoint of 1997 reveals substantial progress toward faster 
manufacturing processes and lower-mass vehicles, but the cost of car
bon fibers to achieve a low enough mass to meet fuel economy goals 
still precludes production at the cost of a typical 1997 passenger sedan. 
However, large-scale molding has been demonstrated by Ford to result 



52 of Composite Materials 

in one-fifth the number of body parts with molding composite parts being 
60% less. cos~ly than stamping metal parts of similar shape. Thus, 
progress 1s being made year-by-year toward the goal of composite cars 
that cost the same as metal cars, yet use far less of our precious petro
leum resources. 

1.4.6 Commercial Applications 

. Some co~posit~ materials found their way into commercial appli
cations very quickly 1f costs could be controlled or were not an issue. 
For example, fiberglass fishing rods were produced in the 1940s and 
became virtually the standard by the 1960s. Many other fiberglass pro
du.cts became popular: boats, cars to a limited extent, tennis rackets, 
skis, ~urf boards. More ~ostly fiber systems such as boron-epoxy and 
graphite-epoxy are used in golf clubs and tennis rackets despite their 
high cost_ because highly competitive consumers are quite willing, and 
even anxious, to spend more money on an 'exotic' fiber system that just 
might. give them an 'edge' in their game. In fact, the early use of 
graphite-epoxy on golf clubs was a significant factor in enhanced use in 
military aircraft because the increased production volume of graphite
epoxy lowered the cost for all users. Graphite-epoxy is quite effective in 
reinforcing already built columns of bridges in seismically active regions 
such as California and Japan. More and more applications will occur as 
the world's inventors use their imagination and cunning to improve old 
products and to create new products. 

1.5 SUMMARY 

The basic questions of The What, The Why, and The How of 
composite materials and structures have been addressed. Much more 
could be said about, for example, polymers, metals, ceramics, and car
bon used as matrix materials. Also, many more composites manufac
turing. techniques are available. Moreover, many more examples of 
effective use of composite materials in structures do exist. However, an 
introduction to each topic has been provided, and hopefully, those intro
ductions will suffice for the purpose of giving background on composite 
materials prior to studying their mechanics. 

Lamina macromechanics will be studied thoroughly in Chapter 2. 
The_n, lamina micromechanics will be introduced in Chapter 3. Next, how 
la~inae ~re combined to form a 1.aminate is treated in Chapter 4 along 
with laminate strength and how mterfaminar stresses arise and affect 
strength and fatigue life. In Chapter 5, the structural performance of 
laminated plates is addressed with emphasis on deflections, buckling 
loads, and vibration modes and frequencies. A variety of miscellaneous 
analysis and behavior topics is introduced in Chapter 6. Finally, in 
~hapter 7, the broad topic of design of composite structures is briefly 
introduced. In all parts of the book, always expect surprises relative to 
the often-inapplicable intuition you have developed based on the rela
tively simple behavior of isotropic metafsl 
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Problem Set 1 

For each of the following questions, write mini-essays that are at least a page long and 
have figures that you discuss and describe. Use your imagination and available resources 
such as the library and the World Wide Web to get more information than is in the book. 
Properly cite each of your sources. 

1.1 Define a composite material in a more extensive manner than the one-sentence ver
sion in Chapter 1. 

1.2 Find a description of how carbon and graphite fibers are made and summarize it. 
1.3 Describe and discuss thermoset-matrix and thermoplastic-matrix materials. Contrast 

their production times if you were to build a composite structure with both materials. 
1.4 Find another example or type of laminated composite material than those mentioned 

in Chapter 1 and describe it. 
1 .5 Describe some other composite materials that are not addressed in Chapter 1. 
1.6 Describe the kind of structural element that can be produced using each of the man

ufacturing layup processes that were studied in Chapter 1. 
1. 7 Find another manufacturing process for creating a composite structure than ad

dressed in Chapter 1 or in class and describe it. 
1.8 Find a description of an innovative composite structure, device, or object in a publi

cation such as Aviation Week and Space Technology, Mechanical Engineering, Civil 
Engineering, etc. and write a synopsis of its important characteristics. 
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Chapter 2 

MACROMECHANICAL 
BEHAVIOR OF A LAMINA 

2.1 INTRODUCTION 

The basic questions of lamina macromechanics are: (1) what are 
the characteristics of a lamina? and (2) how does a lamina respond to 
applied stresses as in Figure 2-1? A lamina is a flat (or curved as in a 
shell) arrangement of unidirectional or woven fibers in a supporting ma
trix. The concepts developed in this chapter apply equally to both types 
of lamina, but we will explicitly address only unidirectional laminae. A 
lamina is the basic building block in laminated fiber-reinforced composite 
materials. Thus, knowledge of the mechanical behavior of a lamina is 
essential to the understanding of laminated fiber-reinforced structures. 
This chapter is focused on macromechanical behavior, i.e., the behavior 
when only averaged apparent mechanical properties are considered, 
rather than the detailed interactions of the constituents of the composite 
material which will be addressed in Chapter 3. The basic restriction of 
both chapters is to linear elastic behavior. Both stiffnesses and strengths 
will be investigated for complex through simple materials in what follows. 

FILL 
DIRECTION 

LAMINA WITH LAMINA WITH 
UNIDIRECTIONAL FIBERS WOVEN FIBERS 

9 RESPONSE TO 
LOADING? 

Figure 2-1 Basic Questions of Lamina Macromechanics 

55 
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2.2 STRESS-STRAIN RELATIONS FOR ANISOTROPIC MATERIALS 

The generalized Hooke's law relating stresses to strains can be 
written in contracted notation as 

cri = C1i el i,j = 1, ... , 6 (2.1) 

:,"here cri are the stress components shown on a three-dimensional cube 
rn x, y, and z ~oordinates in Figure 2-2, Cii is the stiffness matrix, and 9 a~e th~ strain components. The contracted notation for three
d1mens1onal. str~sses and strains is defined in comparison to the usual 
tensor notation rn Table 2-1 for situations in which the stress and strain 
tensors are sy~metric (the usual case when body forces are absent). 
Note that, by virtue of Table 2-1, the strains are therefore defined as 

au av :.. .. 
£1 = ax ~=ay ~= ~; 

¥23=~+dW dW ~ ¥ ~ ~ 
I'. az ay Y31 = ax +az ,12=ay+ax 

(2.2) 

where u, v, and ware displacements in the x y and z directions (or the 
1, 2, and 3 directions). ' ' 

Figure 2-2 Stresses on an Element 

Table 2-1 Tensor versus Contracted Notation for Stresses and Strains 

Stresses Strains 

Tensor Contracted Tensor Contracted 
Notation Notation Notation 

0'11 (0'1) 0'1 £11 (£1) 
0'22 (0'2) 0'2 ~ (ti) 
0'33 (aa) 0'3 £33 (£3) 

'f:13 =0'32 0'4 'Y23 = 2ti3· 
't31 = 0'31 0'5 'Y31 =2ta1 
't12 = 0'12 O'e 'Y12 = 2E12 

*Note that 111 represents engineering shear strain 
whereas Eij(I ,;. J) represents tensor shear strain. 

Notation 

£1 

ti 
E3 

E4 

E5 

Ee 

( ( 
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Note that the engineering shear strain, y11, in Table 2-1 is the total 
angle of shearing under a state of simple shear in Figure 2-3. Also, the 
tensor shear strain, 91, is half of the angle of shearing under pure shear 
stress in Figure 2-3. Engineering shear strain implies a rotation of the 
originally square element, whereas tensor shear strain does not have an 
accompanying rotation. These distinctions have little significance for the 
usual engineering calculations, but have crucial significance in what fol
lows. 

tJt· ~ 't 

+Ot 
~ 

SIMPLE SHEAR PURE SHEAR 

Ct Y12= 2~2 fQ, , I 
ENGINEERING TENSOR 
SHEAR STRAIN SHEAR STRAIN 

Figure 2-3 Engineering Shear Strain versus Tensor Shear Strain 

The stiffness matrix, CiJ• has 36 constants in Equation (2.1 ). How
ever, less than 36 of the constants can be shown to actually be inde
pendent for elastic materials when important characteristics of the strain 
energy are considered. Elastic materials for which an elastic potential 
or strain energy density function exists have incremental work per unit 
volume of 

dW = aide1 (2.3) 

when the stresses ai act through strains d9. However, because of the 
stress-strain relations, Equation (2.1 ), the incremental work becomes 

dW = Cii9de1 (2.4) 

Upon integration for all strains, the work per unit of volume is 

w = ~ cii99 (2.5) 

However, Hooke's law, Equation (2.1), can be derived from Equation 
(2.5): 

whereupon 

Similarly, 

a2w -c aer9 - lj 

(2.6) 

(2.7) 
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a2w --=c., aeja9 1 

But the order of differentiation of W is immaterial, so 

Cii=CJI 

(2.8) 

(2.9) 

Thus, the stiffness matrix is symmetric, so only 21 of the constants are 
independent. 

In a similar manner, we can show that 

W = ~ sijcricrj (2.10) 

where Sii is the compliance matrix defined by the inverse of the stress
strain relations, namely the strain-stress relations: 

9 = sijcrj i, j = 1, ... , 6 (2.11) 

Reasoning similar to that in the preceding paragraph leads to 

sii = sii (2.12) 

i.e., that the compliance matrix is symmetric and hence has only 21 in
dependent constants. At this point, note that the stiffnesses and com
pliances are not described with mnemonic notation, but are unfortunately 
reversed in common usage. The stiffness and compliance components 
will be referred to as elastic constants (although they could be functions 
of temperature or moisture content). 

With the foregoing reduction from 36 to 21 independent constants, 
the stress-strain relations are 

cr1 C11 C12 C13 C14 C15 C1s E1 

cr2 C12 C22 C23 C24 C25 C2s ~ 

C13 C13 C23 C33 C34 C35 C35 Ea 
(2.13) = 

't23 C14 C24 C34 C44 C45 C45 'Y23 

't31 C15 C25 C35 C45 C55 C55 'Y31 

't12 C1s C2s C35 C45 c56 c66 'Y12 

as the most general expression within the framework of linear elasticity. 
Actually, the relations in Equation (2.13) are referred to as characterizing 
anisotropic materials (anisotropic means without isotropy) because there 
are no planes of symmetry for the material properties. An alternative 
name for such an anisotropic material is a triclinic material (three axes 
of the material are all oblique to one another). Materials with more 
property symmetry than anisotropic materials will be described in the next 
few paragraphs. Proof of the form of the stress-strain relations for the 
various cases of material property symmetry is given, for example, by 
Tsai [2-1]. 

( 
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If there is one plane of material property symmetry, the stress-strain 
relations reduce to 

cr1 C11 C12 C13 0 0 C1s E1 

cr2 C12 C22 C23 0 0 C2s ~ 

C13 C13 C23 C33 0 0 C35 Ea = (2.14) 
't23 0 0 0 C44 C45 0 'Y23 

't31 0 0 0 C45 C55 0 'Y31 

't12 C1s C2s C35 0 0 Cea 'Y12 

where the plane of symmetry is z = 0 (or the 1-2 pl~ne). Such a material 
is termed monoclinic and has 13 independent elastic constants. 

If there are two orthogonal planes of material property symmetry for 
a material, symmetry witt exist relative to a third i:nutuatty_ orth?g~nat 
plane. The stress-strain relations in coordinates aligned with pnnc1pal 
material directions 1 are 

cr1 C11 C12 C13 0 0 0 E1 

C12 C12 C22 C23 0 0 0 ~ 

C13 C13 C23 C33 0 0 0 Ea 
= (2.15) 

't23 0 0 0 C44 0 0 'Y23 

't:31 0 0 0 0 C55 0 'Y31 

't12 0 0 0 0 0 Css 'Y12 

and are said to define an orthotropic material. Note th.at then~ is no 
interaction between normal stresses cr1, cr2, cr3 and sheanng strains 'Y23, 
'Y: y such as occurs in anisotropic materials (by virtue of the presence 
lto~~xample, c14). Similarly, there is no interaction betw~en shearing 
st;esses and normal strains as well as none between sheanng stresses 
and shearing strains in different planes .. Note also _that there are now 
only nine independent constants m the stiffness matnx.. . 

If at every point of a material there is one plane m wh1~h _the me
chanical properties are equal in all directions, then the ~atenal 1s called 
transversely isotropic. If, for e~ample, the ~ -2 plane 1s ~he plane of 
isotropy, then the 1 and 2 subscripts on the _st1~nesses are mterchang~
able. The stress-strain relations have only five independent constants. 

1
Princlpal material directions (PMD} are directions that are parallel to the inters9cik?"s of 

the three orthogonal planes of material property symmetry. Principal material coordinates 
(PMC} are the set of axes in principal material directions. 
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<J1 C11 C12 C13 0 0 0 £1 

<J2 C12 C11 C13 0 0 0 ~ 

<J3 C13 C13 C33 0 0 0 ta = (2.16) 
't23 0 0 0 C44 0 0 'Y23 

't31 0 0 0 0 C44 0 'Y31 

't12 0 0 0 0 0 (C11 - C12)/2 'Y12 

If there is an infinite number of planes of material property sym-
m~try, th.en the fore~oing relations simplify to the isotropic material re-
lat1ons with only two independent constants in the stiffness matrix: 

<J1 C11 C12 C12 0 0 0 £1 

<J2 C12 C11 C12 0 0 0 ~ 

<J3 C12 C12 C11 0 0 0 ta = 
't23 0 0 0 (C11 - C12)12 0 0 'Y23 

't31 0 0 0 0 (C11 - C12)12 0 'Y31 

't12 0 0 0 0 0 (C11 - C12)/2 'Y12 

(2.17) 
The strain-stress relations for the five most common material 

property symmetry cases are shown in Equations (2.18) to (2.22): 

Anisotropic (21 independent constants): 

£1 S11 S12 S13 S14 S1s S1s <J1 

~ S12 S22 S23 S24 S2s S2s <J2 

ta S13 S23 S33 S34 S35 Saa CJ3 = (2.18) 
'Y23 S14 S24 S34 S44 S45 S45 't23 

'Y31 S1s S2s S35 S45 S55 Sss 't31 

'Y12 S1s S2s Saa S45 Sss S66 't12 

( 

I 
I 
I 
I 
I 

I 
l 
,, 

! 

( 
Macromechanlcal Behavior of a ..amlna 61 

Monoclinic (13 independent constants) (for symmetry about z = O ): 

£1 S11 S12 S13 0 0 S15 <J1 

~ S12 S22 S23 0 0 S2s <J2 

ta S13 S23 S33 0 0 Saa <J3 
= (2.19) 

'Y23 0 0 0 S44 S45 0 't23 

'Y31 0 0 0 S45 Sss 0 't31 

'Y12 S1s S2s S35 0 0 $66 't12 

Orthotropic (9 independent constants): 

£1 S11 S12 S13 0 0 0 <J1 

~ S12 S22 S23 0 0 0 <J2 

ta S13 S23 S33 0 0 0 <J3 
= (2.20) 

'Y23 0 0 0 S44 0 0 't23 

'Y31 0 0 0 0 S55 0 't31 

'Y12 0 0 0 0 0 $66 't12 

Transversely Isotropic (5 independent constants): 

£1 S11 S12 S13 0 0 0 CJ1 

~ S12 S11 S13 0 0 0 <J2 

ta S13 S13 S33 0 0 0 CJ3 
= (2.21) 

'Y23 0 0 0 S44 0 0 't23 

'Y31 0 0 0 0 S44 0 't31 

'Y12 0 0. 0 0 0 2(S11 -S12) 't12 

where the 1-2 plane is a symmetry plane in which the compliances are 
isotropic and in the 3-direction (transverse to the symmetry plane), the 
compliances are different. 
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Isotropic (2 independent constants): 

£1 8 11 S12 S12 0 0 0 (J1 

£2 8 12 S11 S12 0 0 0 (J2 

£3 812 S12 S11 0 0 0 CT3 

Y23 0 0 0 2(S11 - S12) 0 0 
(2.22) 

't23 
Y31 0 0 0 0 2(S11 - S12> 0 't31 
Y12 0 0 0 0 0 2(S11 - S12) 't12 

. t bone of the major objectives in studying the strain-stress relations 
1s o ~ _able t? conclude what deformation response occurs because of 
a spec1f1c applied stress. The strain-stress relations can be written as 

(2.23) 
Y12 = S16cr1 + S2acr2 + S3acr3 + S4at23 + S5at31 + Saat12 

Acco)rdingly, for an applied uniaxial stress cr1 = cr (all other stresses are 
zero: 

£1 = S11cr ~ = S12cr £3 = S13cr 

Y23 = S14cr Y31 = S15cr Y12 = S16cr (2.24) 

1:he physical interpretation of these strains is that an originally equal
rrded cu~e has many deformations. Specifically, each side deforms in 
ength _differently from any other side (because s -:t. s -:t. s ) and 
each srde of the cube undergoes a different sheanAh dei5rmat1g~ (be
~au~e S1_4 -:t. S1s -:t. S16), as depicted imperfectly in Figure 2-4 where the 

as ed lines represent the undeformed cube and the solid iines repre
sent the deformed c~be. Try to imagine yourself in a room that under
ghoes these deform~tron_sl In contrast, an isotropic material would have k e ~ame change rn side l~ngth in the 2- and 3-directions (because 
S 12: ~13)_ and_ no shearing def~rmatio~ of any side (because 
. 14 1s - S16 - 0). Thus, for an anisotropic material, significant coupl
ing occurs between the applied stress and the various strain responses. 

y~: 
Figure 2-4 Deformation of an Anisotropic Cube under cr 

y 
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Those various couplings are shown for an arbitrarily stressed body 
in Figure 2-5 where the physical significance of each compliance is la
beled. There, the terms S11 , S22, and S33 each represent extensional 
response to an individual applied stress, cr1, cr2, and cr3, respectively, in 
the same direction. The terms S44, S55, and S66 represent shear strain 
response to an applied shear stress in the same plane. The terms 
S12, S13, and S23 represent coupling between dissimilar normal stresses 
and normal strains (extension-extension coupling more commonly known 
as the Poisson effect). The terms S14• S15, S16, S24• S25, S26• S34, 
S35, and S36 represent normal strain response to applied shear stress in 
a more complex manner than for the preceding compliances (shear
extension coupling). Finally, the terms S45, S46, and S56 represent shear 
strain response to shear stress applied in another plane (shear-shear 
coupling). In contrast, the only coupling that exists for an isotropic ma
terial is extension-extension coupling. Thus, the deformation response 
of an anisotropic material even to simple stress states can literally be in 
every direction and in every plane. We will see in Section 2.6 that 
orthotropic materials can exhibit apparent anisotropy when stressed in 
non-principal material coordinates. Moreover, we will see that S11 , S22, 
and S33 are related to the Young's moduli in the 1-, 2-, and 3-directions, 
respectively. Also, S12, S13, and S14 will be related to the Poisson's ra
tios and Young's moduli. Finally, S44, S55, and S66 will be related to 
shear moduli in the 2-3, 3-1, and 1-2 planes, respectively. 

EXTENSIONl 

£1 ~.,1 ... 

= 

r EXTENSION-EXTENSION COUPLING 

f SHEAR-EXTENSION COUPLING 

01 

02 

03 

't23 

SHEAR-SHEAR COUPLING 

Figure 2-5 Physical Significance of the Anisotropic Stress-Strain Relations 

2.3 STIFFNESSES, COMPLIANCES, AND 
ENGINEERING CONSTANTS FOR ORTHOTROPIC MATERIALS 

Engineering constants (sometimes known as technical constants) 
are generalized Young's moduli, Poisson's ratios, and shear moduli as 
well as some other behavioral constants that will be discussed in Section 
2.6. These constants are measured in simple tests such as uniaxial 
tension or pure shear tests. Thus, these constants with their obvious 
physical interpretation have more direct meaning than the components 
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of the relatively abstract compliance and stiffness matrices used in Sec
tion 2.2. 

Most simple material characterization tests are performed with a 
known load or stress. The resulting displacement or strain is then 
measured.. The engineering constants are generally the slope of a 
stress-strain curve (e.g., E = <JIE) or the slope of a strain-strain curve 
(e.g., v = -Ey /Ex for <Jx = '! and all other stresses are zero). Thus, the 
components of the ~omphance (S1i) r:natrix are determined more directly 
than t~ose of th~ stiffness (C1i) matnx. For an orthotropic material, the 
compliance matnx components in terms of the engineering constants are 

1 V21 V31 
0 0 0 

E1 - E2 - E3 

V12 1 V32 
0 0 0 -E°; E2 - E3 

V13 V23 1 0 0 0 

[Sii]= 
-E°;-~ E3 (2.25) 

0 0 0 1 0 0 
G23 

0 0 0 0 1 0 
G31 

0 0 0 0 0 _1_ 
G12 

where 

E1, E2, E3 = Young's (extension) moduli in the 1-, 2-, and 3-directions 
v1i = ~oisson's ratio (extension-extension coupling coefficient), 

1.e., the negative of the transverse strain in the j-clirection 
over the strain in the i-direction when stress is applied 
in the i-direction, i.e., 

9 v
11 
= - ti" (2.26) 

for <J1 = <J and all other stresses are zero 
G23' G31 , G12 = shear moduli in the 2-3, 3-1, and 1-2 planes 

Note .that an orthotropic material that is stressed in principal material 
coordinates (the 1, 2, and 3 coordinates) does not exhibit either shear
extension or shear-shear coupling. Recall that an orthotropic material 
has nine independent constants because 

SIJ = S11 (2.27) 

and the compliance matrix .is .the inve~ of the stiffness (C11) matrix that 
was shown to be symmetnc in Equation (2.9). When engineering con
stants are substituted in Equation (2.27), 

( 
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VIJ VJI 

~=Yi i,j = 1, 2, 3 (2.28) 

Thus, three reciprocal relations must be satisfied for an orthotropic ma
terial. Moreover, only v12, v13, and v23 need be further considered be
cause v21 , v31 , and v32 can be expressed in terms of the first-mentioned 
group of Poisson's ratios and the Young's moduli. The latter group of 
Poisson's ratios should not be forgotten, however, because for some 
tests they are what is actually measured. 

The difference between v12 and v21 for an orthotropic material is 
emphasized with the aid of Figure 2-6 where two cases of uniaxial stress 
are shown for a square element. First, stress is applied in the 1-direction 
in Figure 2-6. Then, from Equations (2.20) and (2.25), the strains are 

(2.29) 

where the direction of loading is denoted with the pre-superscript, the 
directions of strain and deformation are denoted with subscripts, and the 
deformations are 

(2.30) 

Second, the same value of stress is applied in the 2-direction in Figure 
2-6. The strains are 

(2.31) 

and the deformations are 

2 V21 a1 =-<JL 
E2 

(2.32) 

1~ 2~ 

~} 
--2---, r-------, 

L1: 2 I 

L1I L 
G 

I 
I I 
I J 

·l~'a, I • L • I l-1a G 

1 • 
1 

L 

STRESS IN 1-DIRECTION STRESS IN 2-DIRECTION 

Figure 2-6 Distinction between v 12 and v21 
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Obviously, if E1 > E2 ,rs is the case for a lamina reinforced with fibers in 
the 1-direction, then .11 < 2.12 as we would expect because the lamina 
is stiffer in the 1-direction than in the 2-direction. However, because of 
the reciprocal relations, irrespective of the values of E1 and E2, 

(2.33) 

which is an obvious generalization of Betti's law to the treatment of 
orthotropic bodies. That is, the transverse deformation (and transverse 
strain) is the same when the stress is applied in the 2-direction as when 
it is applied in the 1-direction. Clearly, v12 is not at all the same as v21 . 

Because the stiffness and compliance matrices are mutually in
verse, it follows by matrix algebra that their components are related as 
follows for orthotropic materials: 

(2.34) 

where 

2 2 2 
S = S11S22S33- S11S23-S22S13-S33S12 +2S12S23S13 (2.35) 

In Equation (2.34), the symbols C and S can be interchanged everywhere 
to provide the converse relationship. 

The stiffness matrix, Cii• for an orthotropic material in terms of the 
engineering constants is obtained by inversion of the compliance matrix, 
Sii• in Equation (2.25) or by substitution in Equations (2.34) and (2.35). 
Tlie nonzero stiffnesses in Equation (2.15) are 

1-V12V21-V23V32-V31V13-2v21V32V13 

E1E2E3 

in which .1 is identical to S in Equation (2.35). 

(2.37) 

( 
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Note especially that if a material is suspected to be orthotropic, 
mechanical tests at various angles will reveal whether there are coordi
nates for which shear-extension coupling does not exist. Hence, the 
orthotropy, isotropy, or lack thereof can be determined, although at a 
sometimes significant cost. The easiest way to determine principal ma
terial directions is visual observation. However, for visual observation to 
work, the characteristics of the material must obviously be readily seen 
by the naked eye. For example, in a fiber-reinforced lamina made from 
the boron-epoxy tape in Figure 1-10, the longitudinal direction is readily 
determined (and defined) to be the 1-direction along the fibers. Similarly, 
the 2-direction is in the plane of the tape transverse to the longitudinal 
direction. Finally, the 3-direction is defined to be perpendicular to the 
plane of the tape. 

2.4 RESTRICTIONS ON ENGINEERING CONSTANTS 

2.4.1 Isotropic Materials 

For isotropic materials, certain relations between the engineering 
constants must be satisfied. For example, the shear modulus is defined 
in terms of the elastic modulus, E, and Poisson's ratio, v, as 

G 2(1 ~ v) (2.38) 

Thus, in order that E and G always be positive, i.e., that a positive normal 
stress or shear stress times the respective positive normal strain or shear 
strain yield positive work, 

V >-1 (2.39) 
In a similar manner, if an isotropic body is subjected to hydrostatic pres
sure, p, i.e., <Jx = cr = cr2 = -p, then the volumetric strain, the sum of the 
three normal or eJensional strains (the first-order approximation to the 
volume change), is 

p p 
9 = ~ + r_., + Ez = E/3(1 - 2v) K (2.40) 

where K is the bulk modulus, 
E 

K= 3(1-2v) 

Thus, K is positive only if E is positive and 

V <_!_ 
2 

(2.41) 

(2.42) 

If the bulk modulus were negative, a hydrostatic pressure would cause 
expansion of a cube of isotropic material! Finally, for isotropic materials, 
Poisson's ratio is restricted to the range 

-1 < V < _!_ (2.43) 
2 

so shear or hydrostatic loading does not produce negative strain energy. 
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2.4.2 Orthotroplc Materials 
______ / 

For orthotropic materials, the relations between engineering con
stants are more complex. Those relations must be rigorously investi
gated to avoid the pitfalls of an intuition built up on the basis of working 
with isotropic materials. First, the product of a stress and the corre
sponding strain represents work done by the stress. The sum of the work 
done by all stresses must be positive in order to avoid the creation of 
energy. This latter condition provides a thermodynamic constraint on the 
values of the engineering constants. What was previously accomplished 
for isotropic materials is, in reality, a consequence of such a constraint. 
The constraint was generalized for orthotropic materials by Lempriere 
[2-2]. Formally, he showed that the matrices relating stress to strain must 
be positive-definite, i.e., have positive principal values or invariants. 
Thus, both the stiffness and compliance matrices must be positive
definite. 

This mathematical condition can be replaced by the following 
physical argument. If only one normal stress is applied at a time, the 
corresponding strain is determined by the diagonal elements of the 
compliance matrix. Thus, those elements must be positive, that is, 

S11• S22• S33, S44, S55, S66 >0 (2.44) 

or, in terms of the engineering constants, 

E1, E2, E3, G23, G31, G12 > 0 (2.45) 

Similarly, under suitable constraints, deformation is possible in which 
only one extensional strain arises or is applied. Again, work is produced 
by the corresponding stress alone. Thus, because the work done is de
termined by the diagonal elements of the stiffness matrix, those elements 
must be positive, that is, 

C11 , C22, C33, C44, C55, C66 > 0 (2.46) 

whereupon from Equation (2.34) 

and 
X = 1 -V12V21 -V23V32 -V31V13-2v21V32V13 > 0 (2.48) 

because the determinant of a matrix must be positive for the matrix to 
be positive-definite. Also, from Equation (2.34), the positive nature of the 
stiffnesses leads to 

IS23I <.../S22S33 IS13I <.../S11S33 IS12I <.../S11S22 (2.49) 

Use the compliance symmetry condition, Equation (2.12), in the form 

i,j= 1, 2, 3 (2.50) 

to write the conditions of Equation (2.47) as 

( 
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(2.51) 

Equations (2.51) can also be obtained from Equations (2.49) if the defi
nitions for Sii in terms of the engineering constants are substituted. 
Similarly, Equation (2.48) can be expressed as 

2 E1 2 E2 2 E3 
1 -V21--V32--V13-

E2 E3 E1 1 
2 <2 (2.52) V21V32V13 < 

and can be regrouped to read 

[1-v:, :: ][1-V~3 :: ]-[V21-{f +V32V13-Jir >0 

(2.53) 
In order to obtain a constraint on one Poisson's ratio, v21 , in terms of two 
others, v32 and v13, Equation (2.53) can be further rearranged as 

[ E2 2 E2 2 E3 -JI] _ V32V13~+ 1-V32- 1-V13- -
E3 E1 E1 

<V21 < (2.54) 

[ E2 2 E2 2 E3 -JI] - V32V13-- 1-V32E 1-V13- -
E1 3 E1 E1 

Similar expressions can be obtained for v32 and v13. 
The preceding restrictions on engineering constants for orthotropic 

materials are used to examine experimental data to see if they are 
physically consistent within the framework of the mathematical elasticity 
model. For boron-epoxy composite materials, Dickerson and DiMartino 
[2-3] measured Poisson's ratios as high as 1.97 for the negative of the 
strain in the 2-direction over the strain in the 1-direction due to loading 
in the 1-direction (v 12). The reported values of the Young's moduli for the 
two directions are E1 = 11.86 x 106 psi (81.77 GPa) and E2 = 1.33 x 106 

psi (9.17 GPa). Thus, 

... {E; 
-\/~ =2.99 (2.55) 

(which is far greater than the value of one for an isotropic material), and 
the condition 

(2.56) 
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is satisfied. Accordingly, v12 = 1.97 is a reasonable number even though 
our intuition based on isotropic materials (v < 1/2) rejects such a large 
number. The data reported were insufficient to verify the determinant 
condition, Equation (2.48), that might be more stringent. Also, the 'con
verse' (or minor) Poisson's ratio, v21 , was reported as .22. This value 
satisfies the reciprocal relations in Equation (2.50). 

If the measured material properties satisfy the constraints in this 
section, then we can proceed with confidence to design structures with 
the material. Otherwise, we have reason to doubt either the material 
model or the experimental data or both! 

The restrictions on engineering constants can also be used in the 
solution of practical engineering analysis problems. For example, con
sider a differential equation that has several solutions depending on the 
relative values of the coefficients in the differential equation. Those co
efficients in a physical problem of deformation of a body involve the 
elastic constants. The restrictions on elastic constants can then be used 
to determine which solution to the differential equation is applicable. 

Problem Set 2.4 

2.4.1 Show that the determinant inequality in Equation (2.48) for orthotropic materials 
correctly reduces to v < 1/2 for isotropic materials. 

2.4.2 Derive Equation (2.52) from the determinant inequality in Equation (2.48). 
2.4.3 Derive Equation (2.53) from Equation (2.52). 
2.4.4 Derive Equation (2.54) from Equation (2.53}. 
2.4.5 Show that Equation (2.54) reduces for isotropic materials to known bounds on v. 

2.5 STRESS-STRAIN RELATIONS FOR PLANE STRESS 
IN AN ORTHOTROPIC MATERIAL 

For a unidirectionally reinforced lamina in the 1-2 plane as shown 
in Figure 2-7 or a woven lamina as in Figure 2-1, a plane stress state is 
defined by setting 

't31 = 0 (2.57) 

so that 
<r1 :if: 0 <r2 :if: 0 't12 :if: 0 (2.58) 

in the three-dimensional stress-strain relations given in Equations 
(2.18)-(2.22) for anisotropic, monoclinic, orthotropic, transversely 
isotropic, or isotropic materials. Note that a plane stress state on a lamina 
is not merely an idealization of reality, but instead is a practical and 
achievable objective of how we must use a lamina with fibers in its plane. 
After all, the lamina cannot withstand high stresses in any direction other 
than that of the fibers, so why would we subject it to unnatural stresses 
such as cr3? That is, we expect to load a lamina only in plane stress 
because carrying in-plane stresses is its fundamental capability. A 
unidirectionally reinforced lamina would need 'help' carrying in-plane 
stress perpendicular to its fibers, but that help can be provided by other 
(parallel) layers that have their fibers in the direction of the stress. Thus, 
a laminate is needed, but we concentrate on the characteristics of a 
lamina in this chapter. Practical examples of in-plane loaded structural 
elements are most car body panels, aircraft wings and fuselages, etc. 
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3 

2 

Figure 2-7 Unidirectionally Reinforced Lamina 

For orthotropic materials, imposing a state of plane stress results 
in implied out-of-plane strains of 

(2.59) 

where 

(2.60) 

Moreover, the strain-stress relations in Equation (2.20) reduce to 

[

£1 ]-[511 512 0 ][(J1 l 
~ - 512 522 0 <r2 

'Y12 0 0 566 't12 

(2.61) 

supplemented by Equation (2.59) where 

511 =-1- 512=- V12 =- V21 522=_1_ 566=-G1 (2.62) 
E1 E1 E2 E2 12 

Note that in order to determine ~ in Equation (2.59), v13 and v23 must 
be known in addition to the engineering constants in Equation (2.62). 
That is, v13 and v23 arise from 5 13 and 523 in Equation (2.59). 

The strain-stress relations in Equation (2.61) can be inverted to 
obtain the stress-strain relations 

(2.63) 

't12 0 0 066 'Y12 

where the QiJ are the so-called reduced stiffnesses for a plane stress 
state in the 1-2 plane which are determined either (1) as the components 
of the inverted compliance matrix in Equation (2.61) or (2) from the Cii 
directly by applying the condition cr3 = 0 to the strain-stress relations to 
get an expression for ~ and simplifying the results to get 
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ci3ci3 
oii = C11 - -c-

33 
i,j=1, 2, 6 (2.64) 

The term C63 is zero because no shear-extension coupling exists for an 
orthotropic lamina in principal material coordinates. For the orthotropic 
lamina, the Oii are 

011 
(2.65) 

(2.66) 
V12E2 V21E1 012 = _ __:..:::.._::_ 

1 -V12V21 1 -V12V21 

Note that there are four independent material properties, E1, E2, 
v12, and G12, in Equations (2.61) and (2.63) when Equations (2.62) and 
(2.66) are considered in addition to the reciprocal relation 

V12 V21 
~=~ (2.67) 

The preceding stress-strain and strain-stress relations are the basis for 
stiffness and stress analysis of an individual lamina subjected to forces 
in its own plane. Thus, the relations are indispensable in laminate anal
ysis. 

For plane stress on isotropic materials, the strain-stress relations 
are 

where 

[: I=[::: ::: : J[:: I 
Y12 0 0 2(S11 - S12) 't12 

1 
S11=E 

and the stress-strain relations are 

(2.68) 

(2.69) 

(2.70) 
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where 

E =G 
2(1 +v) 

(2.71) 

The preceding isotropic relations can be obtained either from the 
orthotropic relations by equating E1 to E2 and G12 to G or by the same 
manner as the orthotropic relations were obtained. 

Observing the physical symmetry of the fibers and matrix in a 
unidirectionally reinforced lamina enables us to deduce how some of the 
out-of-plane properties are related to the in-plane properties, E1, E2, 
v12, and G12. Consider the cube-shaped portion of a unidirectionally 
reinforced lamina in principal material coordinates in Figure 2-8. First, 
E3 = E2 because both stiffnesses are measured across fibers in the same 
manner. That is, in general, the 3-direction can be treated just as if it 
were the 2-direction for a unidirectionally reinforced lamina. Second, 
v31 = v21 (hence, v13 = v12) for the same reason. Third, irrespective of 
whether the shear stress 't13 or 't12 is applied, the resulting deformations 
are identical because, by symmetry, the fibers have the same orientation 
to the applied shearing stress, so G13 = G12. Even if the fiber distribution 
in the 2-3 plane of the cube in Figure 2-8 were random, the same con
clusions would apply. That is, with either the fiber-spacing regularity in 
Figure 2-8 or random fiber distribution in the 2-3 plane, the 2-3 plane can 
be regarded as a plane of isotropy because all stiffnesses, E, in the plane 
are the same. When we account for the different E1 from E2 in the 1-2 
plane, we recognize that the lamina is a transversely isotropic material 
in three dimensions. However, when we concentrate only on the 1-2 
plane, we call the lamina orthotropic. If the lamina is compacted in the 
3-direction during the curing process, then slight differences in the prop
erties between the 2- and 3-directions would result, and the material 
would be orthotropic in the three-dimensional sense. 

• 
3 I E3= Ed 

I V31 = V21 I 0"3 

cr2 * E2,V21 <i3 * E3,V31 

2 

j j I G13 = G12 I 

't12 * G12 't13 * G13 

Figure 2-8 Physical Symmetry of a Unidirectionally Reinforced Lamina 
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2.6 STRESS-STRAIN RELATIONS FOR 
A LAMINA OF ARBITRARY ORIENTATION 

In Section 2.5, the stresses and strains were defined in the prin ipal 
material coordinates for an orthotropic material. However, the princ al 
directions of orthotropy often do not coincide with coordinate directi ns 
that are geometrically natural to the solution of the problem. For ex m
ple, consider the helically wound fiber-reinforced circular cylindrical hell 
in Figure 2-9. There, the coordinates natural to the solution of th shell 
problem are the shell coordinates x, y, z, whereas the princi material 
coordinates are x', y', z'. The filament-winding angle is defined by 
cos(y', y) = cos a; also, z' = z. Other examples include laminated plates 
with different laminae at different orientations. Thus, a relation is needed 
between the stresses and strains in the principal material coordinates 
and those in the body coordinates. Then, a method of transforming 
stress-strain relations from one coordinate system to another is also 
needed. 

Figure 2·9 Helically Wound Fiber-Reinforced Circular Cylindrical Shell 

At this point, we recall from elementary mechanics of materials the 
transformation equations for expressing stresses in an x-y coordinate 
system in terms of stresses in a 1-2 coordinate system, 

[~]= 
. 29 sin 

2 sin 9 cos 9 a 2 (2.72) 

- 2 sin 9 cos 9 [a1 l 
sin 9 cos 9 - sine cos 9 cos2e- sin

2
e -c12 

where 9 is the angle from the x-axis to the 1-axis (see Figure 2-10). Note 
especially that the transformation has nothing to do with the material 
properties but is merely a rotation of stress directions. Also, the direction 
of rotation is crucial. 

Similarly, the strain-transformation equations are 

Ex Cos
2
9 sin

2
0 -2sin 9cos9 £1 

fy = sin
2
e cos

2
9 2sin 9cos 9 ~ (2.73) 

Yxy 
sin 9 cos 9 -sin a cos a cos

2
9 - sin

2
9 Y12 

2 2 

' ( i 

•,, 
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2 

Figure 2· 1 O Positive Rotation of Principal Material Axes from x·y Axes 

where we observe that strains do transform with the same transformation 
as stresses if the tensor definition of shear strain is used (which is 
equivalent to dividing the engineering shear strain by two). 

The transformations are commonly written as 

[
::] = [Tf

1

[::] 

'Cxy 'C12 

(2.74) 

Ex 
-1 

£1 

fy =[T] ~ (2.75) 

Yxy Y12 
2 2 

where the superscript -1 denotes the matrix inverse and 

2 sin 9 cos 9 

[T]= -2 sin acose (2.76) 

- sin 9 cos 9 sin e cos e cos2e - sin
2
e 

However, if the simple matrix 

[
1 0 OJ [R] = 0 1 0 
0 0 2 

(2.77) 

due to Reuter [2-4] is introduced, then the engineering strain vectors 
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l~] = [A][~ l 
Y12 Y12 

2 

(2.78) 

\ 

~L, 
/ [

~]=[A] ~ 
y, Yxy 
xy 2 

can be used instead of the tensor strain vectors in the strain transf
ormations as well as in stress-strain law transformations. The beauty of 
Reuter's transformation is that concise matrix notation can then be used. 
As a result, the ordinary expressions for stiffness and compliance matri
ces with awkward factors of 1/2 and 2 in various rows and columns are 
avoided. 

A so-called specially orthotropic lamina is an orthotropic lamina 
whose principal material axes are aligned with the natural body axes: 

[

crx ]-[cr1 ]-[011 012 0 ][E
1 l cry - cr2 - 0 12 0 22 0 ~ 

'txy 't12 0 0 066 Y12 

(2.80) 

where the principal material axes are shown in Figure 2-7. These 
stress-strain relations were introduced in Section 2.5 and apply when the 
principal material directions of an orthotropic lamina are used as coordi
nates. 

However, as mentioned previously, orthotropic laminae are often 
constructed in such a manner that the principal material coordinates do 
not coincide with the natural coordinates of the body. This statement is 
not to be interpreted as meaning that the material itself is no longer 
orthotropic; instead, we are just looking at an orthotropic material in an 
unnatural manner, i.e., in a coordinate system that is oriented at some 
angle to the principal material coordinate system. Then, the basic 
question is: given the stress-strain relations in the principal material co
ordinates, what are the stress-strain relations in x-y coordinates? 

Accordingly, we use the stress and strain transformations of 
Equations (2.74) and (2.75) along with Reuter's matrix, Equation (2.77), 
after abbreviating Equation (2.80) as 

[:; l = [aJ[::] . 
't12 'Y12 

(2.81) 

I ( 
J 

I 
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to obtain 

[:: l = [Tf
1
[:: l = [Tf

1
[0][R][T][Rf 

1
[~ l (2.82) 

~ ~2 ~ 

However, [R][T][Rr1 can be shown to be [T]-T where the superscript T 
denotes the matrix transpose. Then, if we use the abbreviation 

-1 -T 
[OJ= [T] [O][T] (2.83) 

the stress-strain relations in x-y coordinates are 

in which 

011 012 015 

012 022 025 

015 025 055 [~] (2.84) 

0 11 = 0 11 cos
4
0 + 2(012 + 2066) sin

2
0 cos20 + 0 22 sin

4
0 

0 12 = (011 + 0 22 - 4066) sin
2
0 cos

2
0 + 0 12( sin 

4
0 + cos 

4
0) 

0 22 =011 sin
4
0 + 2(012 + 2066) sin

2
0 cos20 + 0 22 cos

4
0 

- . 3 . 3 (2.85) 
0 16 = (011 -012 -206s) sin 0 cos 0 + (012 -022 + 2066) sin 0 cos 0 

0 26 = (011 -012 -20ss) sin
3
0 cos 0 + (012 -022 + 20ss) sin 0 cos

3
0 

0 66 = (011 + 0 22 - 2012 -2066) sin
2
0 cos20 + 0 66( sin

4
0 + cos

4
0) 

where the bar over the Qii matrix denotes that we are dealing with the 
transformed reduced stiffnesses instead of the reduced s.!!_ffnesses, QiJ· 

Note that the transformed reduced stiffness matrix Qii has terms in 
all nine positions in contrast to the presence of zeros in the reduced 
stiffness matrix Qij· However, there are still only four independent ma
terial constants because the lamina is orthotropic. In the general case 
with body coordinates x and y, there is coupling between shear strain 
and normal stresses and between shear stress and normal strains, i.e., 
shear-extension coupling exists. Thus, in body coordinates, even an 
orthotropic lamina appears to be anisotropic. However, because such a 
lamina does have orthotropic characteristics in principal material coordi
nates, it is called a generally orthotropic lamina because it can be re
presented by the stress-strain relations in Equation (2.84). That is, a 
generally orthotropic lamina is an orthotropic lamina whose principal 
material axes are not aligned with the natural body axes. 
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The only advantage associated with generally orthotr 
as opposed to anisotropic laminae is that generally orthotro ·c laminae 
are easier to characterize experimentally. However, if we do ot realize 
that principal material axes exist, then a generally orthotropic lamina is 
indistinguishable from an anisotropic lamina. That is, we c nnot take 
away the inherent orthotropic character of a lamina, but we c orient the 
lamina in such a manner as to make that character quite 1fficult to rec
ognize. 

As an alternative to the foregoing procedure, we can express the 
strains in terms of the stresses in body coordinates by either (1) inversion 
of the stress-strain relations in Equation (2.84) or (2) transformation of 
the strain-stress relations in principal material coordinates from Equation 
(2.61 ), 

(2.86) 

to body coordinates. We choose the second approach and apply the 
transformations of Equations (2.74) and (2.75) along with Reuter's matrix, 
Equation (2.77), to obtain 

Ex crx S11 S12 81s 
T 

S12 S22 S2s Ey = [T] [S][T] cry = 

Yxy 'txy S15 S25 s66 

where [RJ[Tr1[Rr1 was found to be [T]T and 

S 11 = S11 cos 
4
0 + {2S12 + S66) sin20 cos20 + S22 sin 

4
0 

S12 = S12( sin
4
0 + cos

4
0) + (S11 + S22 - S66) sin

2
0 cos20 

crx 

cry (2.87) 

'txy 

S22 = S11 sin 
4
0 + {2S12 + S66) sin

2
0 cos

2
0 + S22 cos 

4
0 (2.88) 

S 16 = {2S11 -2S12 - S66) sin 0 cos
3
0-(2S22 -2S12 -S~ sin

3
0 cos 0 

S26 = {2S11 - 2S12 - S66) sin
3
0 cos 0 - (2S22 - 2S12 - S66) sin 0 cos

3
0 

S66 = 2(2S11 + 2S22 - 4S12 - S66) sin
2
0 cos

2
0 + S66( sin 

4
0 + cos 

4
0) 

Recall that the Sil are defined in terms of the engineering constants in 
Equation (2.62). 

Because of the presence of 0 16 and 526 in Equation (2.84) and 
of S16 and S26 in Equation (2.87), the solution of problems involving so
called generally orthotropic laminae is more difficult than problems with 
so-called specially orthotropic laminae. That is, shear-extension coupling 
complicates the solution of practical problems. As a matter of fact, there 
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is no difference between solutions for generally orthotropic laminae and 
those for anisotropic laminae whose stress-strain relations, under condi
tions of plane stress, can be written as 

[:: l = ::: :: :: [:: l (2.89) 

't12 015 025 055 Y12 

or in inverted form as 

(2.90) 

where the anisotropic compliances in terms of the engineering constants 
are 

1 S11=-
E1 

(2.91) 

Note that some new engineering constants have been used. The new 
constants are called coefficients of mutual influence by Lekhnitskii [2-5) 
and are defined as 

'11i, 11 = coefficient of mutual influence of the first kind that characterizes 

stretching in the i-direction caused by shear stress in the ij-plane 
9 

'11i, ij = 'Yij (2.92) 

for 'tii = 't and all other stresses are zero. 

'11iJ, 1 = coefficient of mutual influence of the second kind characterizing 

shearing in the ij-plane caused by normal stress in the i-direction 
'Yij 

'11ij, I= e;-- (2.93) 

for cr1 = cr and all other stresses are zero. 

Lekhnitskii defines the coefficients of mutual influence and the Poisson's 
ratios with subscripts that are reversed from the present notation. The 
coefficients of mutual influence are not named very effectively because 
the Poisson's ratios could also be called coefficients of mutual influence. 
Instead, the l'lij,j and l'li,ii are more appropriately called by the functional 
name shear-extension coupling coefficients. 
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Other anisotropic elasticity relations are used to define Chentsov 
coefficients that are to shearing stresses and shearing strains\ what 
Poisson's ratios are to normal stresses and normal strains. Howeve~ the 
Chentsov coefficients do not affect the in-plane behavior of laminae! un
der plane stress because the coefficients are related to S45, S46, Sfe6 in 
Equation (2.18). The Chentsov coefficients are defined as / 

µ1i, kl= Chentsov coefficient that characterizes the shearing ${rain 

in the kl-plane due to shearing stress in the ij-plane, i.e., 
'Ykl 

µij, kl= Yij (2.94) 

for 'tii = 't and all other stresses are zero. 

The Chentsov coefficients are subject to the reciprocal relations 

~l,ij - µij,kl 

~-~ (2.95) 

Note that the Chentsov coefficients are more effectively called the func
tional name of shear-shear coupling coefficients. 

The out-of-plane shearing strains of an anisotropic lamina due to 
in-plane shearing stress and normal stresses are 

Tl1, 230"1 + ll2, 230"2 + µ12, 23't12 
(2.96) 

G23 

wherein both the shear-shear coupling coefficients and the shear
extension coupling coefficients are required. Note that neither of these 
shear strains arise in an orthotropic material unless it is stressed in co
ordinates other than the principal material coordinates. In such cases, 
the shear-shear coupling coefficients and the shear-extension coupling 
coefficients are obtained from the transformed compliances as in the 
following paragraph. 

Compare the transformed orthotropic compliances in Equation 
(2.88) with the anisotropic compliances in terms of engineering constants 
in Equation (2.91 ). Obviously an apparent shear-extension coupling co
efficient results when an orthotropic lamina is stressed in non-principal 
material coordinates. Redesignate the coordinates 1 and 2 in Equation 
(2.90) as x and y because, by definition, an anisotropic material has no 
principal material directions. Then, substitute the redesignated S

1
i from 

Equation (2.91) in Equation (2.88) along with the orthotropic compliances 
in Equation (2.62). Finally, the apparent engineering constants for an 
orthotropic lamina that is stressed in non-principal x-y coordinates are 
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_1_ =-1-cos
4
0+[-1-- 2v12 Jsin20cos20+-E1 sin40 

Ex E1 G12 E1 2 

v = Ex[ v12 ( sin 
4
0 + cos 

4
0) -[-1- + - 1- - - 1-] sin

2
0 cos20] 

xy E1 E1 E2 G12 

_1_ =-1-sin
4
0+[-1-- 2v12 Jsin20cos20+-E1 cos40 

Ey E1 G12 E1 2 (2.97) 

_1_ = 2[ _g__ + _g__ + 
4

v12 - - 1-] sin20 cos20 +-1- ( sin 40 + cos 40) 
Gxy E1 E2 E1 G12 G12 

Tl =E [[_g__+ 2v
12 --1-]sin0cos

3
0-[_g__+ 2v12 --1-]sin

3
0cos0] 

xy, X X E1 E1 G12 E2 E1 G12 

Tl =E [[_g__+ 2v
12 --1-]sin

3
0cos0-[_g__+ 2v12 --1-]sin0cos30] 

xy, y y E1 E1 G12 E2 E1 G12 

An important implication of the presence of the shear-extension coupling 
coefficient is that off-axis (non-principal material direction) tensile 
loadings for composite materials result in shear deformation in addition 
to the usual axial extension. This subject is investigated further in Sec
tion 2.8. At this point, recognize that Equation (2.97) is a quantification 
of the foregoing implication for tensile tests and of the qualitative obser
vations made in Section 1.2. 

The apparent anisotropic moduli for an orthotropic lamina stressed 
at an angle e to the principal material directions vary with e as in Equation 
(2.97). To gain a visual appreciation for how the moduli vary, values 
typical of a glass-epoxy composite material are plotted from Equati?n 
(2.97) in Figure 2-11. Similarly, values for. a boron-epoxy .composite 
material are plotted in Figure 2-12. In both figures, Ex 1s d1v1ded by E2 
and G is divided by G12• This normalization is done to permit a con
venienfcomparison of most of the moduli in a single figure. Note in both 
figures that G?CY is largest at e = 45°. The shear-extension c?upling co
efficient Tl xis, of course, zero ate= 0° and e = 90°, but achieves large 
values co~pared to v~ for intermediate angles. The modulus E

1 
be

haves essentially like Ex, except Ey is, of course, small for e near O and 
large when e is near 90°. Similar comments could be made for vyx and 

llxy,y· The values in Figures 2-11 and 2-12 are not entirely typical of all 
composite materials. For example, follow the hints in Exercise 2.6.7 to 
demonstrate that Ex can actually exceed both E1 and E2 for some 
orthotropic laminae. Similarly, Ex can be shown to be smaller than both 
E1 and E2 (note that for boron-epoxy in Figure 2-12 Ex is slightly sm~ller 
than E2 in the neighborhood of e = 60°). These results were summarized 
by Jones [2-6) as a simple theorem: the extremum (largest and smallest) 
material properties do not necessarily occur in principal material coordi
nates. The moduli Gxy, °':'xy• and Tl x c~n exhibit similar peculiarities 
within the scope of Equation (2.97). 1'othing should, therefore, be taken 
for granted with a new composite material: its moduli as a function of e 
must be examined to truly understand its character. 
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Figure 2-11 Normalized Moduli for Glass-Epoxy 
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Two observations are useful to rationalize why in Figures 2-11 and 
2-12 (1) Gl<Y exceeds G12 and (2) E45• is less than E1 for composite 
materials tnat have a fiber modulus much greater than the matrix 
modulus: 

(1) Relation of Gxy to G12 
The response of an element to shearing stresses to measure E1 is 

often better understood when the principal stress state at 45° to the 
shearing stresses is examined. For pure shear in principal material co
ordinates, the deformation response of the element on the bottom left
hand side of Figure 2-13 to normal stresses is clearly matrix-dominated. 
That is, the fibers cannot play a dominant role in the deformation process 
because they are not directly loaded (the action is more of a 'scooping' 
of the matrix). On the other hand, for pure shear in non-principal material 
coordinates on the right-hand side of Figure 2-13, the deformation re
sponse to the normal stresses in tension is fiber-dominated because the 
fibers are loaded directly, although the response to the normal stresses 
in compression is matrix-dominated because the matrix, which is less stiff 
than the fibers, deforms much more than the fibers. Thus, G in any 
coordinates other than principal material coordinates is greiler than 
G12· 

Figure 2-13 Unidirectional Lamina Shear Behavior 

(2) Relation of E45• to E1 
A fiber-reinforced composite material that is woven of fibers in two 

perpendicular directions as in Figure 2-1 has principal material directions 
in those two directions. If such a material is loaded in a fiber direction, 
we measure E1 as on the left-hand side of Figure 2-14. On the other 
hand, if such a woven material is loaded, for example, at 45° to principal 
material coordinates (so-called off-axis loading; also called on-the-bias 
loading}, the measured E45• is far less than E1• You can perform this 
experiment yourself with your shirt or blouse - a bidirectionally woven 
fibrous material essentially without a matrix (unless starched!). You can 
tell E1 is higher than E45• because far more deformation results when you 
pull off-axis with your fingers than when you pull on-axis with the same 
force. A unidirectionally reinforced lamina has the same relation 
E1 > E45• as the woven lamina, but a simple everyday object does not 
exist to demonstrate that fact. 
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Figure 2-14 Effect of On-Axis versus Off-Axis Loading on 
Stiffness of a Woven Lamina 

In summary, the engineering constants for anisotropic materials 
and orthotropic materials loaded in non-principal material coordinates 
can be most effectively thought of in strictly functional terms: 

Ei Extensional moduli (Young's moduli} 
Gii Shear moduli 
vii Extension-extension coupling coefficients (Poisson's ratios} 

lli,ij Shear-extension coupling coefficients (coefficients of mutual influence} 
µii,kl Shear-shear coupling coefficients (Chentsov coefficients} 

Note that the functional names immediately and obviously call to mind 
the operational nature of the various engineering constants. In contrast, 
the non-functional names are a maze of either complicated non-obvious 
terms or names of people who do not bring to mind what the terms are 
supposed to mean. Thus, the functional names are preferred for ease 
of use and clarity of understanding. 

Problem Set 2.6 

2.6.1 
2.6.2 
2.6.3 
2.6.4 
2.6.5 

2.6.6 

2.6.7 

Derive Equation (2.82). 
Prove [R][TJ[Rr1 = [TJ-T. 
Derive Equation (2.87). 
Prove [R][TJ-1[Rr1 =[TJT. 
Identify Equation (2.97) by interpreting Equation (2.88) using Equation (2.90) as well 
as Equations (2.91) and (2.62). Explain the key logical step that enables you to use 
both Equations (2.90) and (2.91) for anisotropic materials and Equations (2.62) and 
(2.88) for orthotropic materials in this problem. That is, in what way can we interpret 
a material as satisfying both definitions of a material? 
Plot the apparent engineering constants Ex, Ey, Gxy, v , TJxy x• and TJxy as functions 
of e from e = 0° toe= 90° in the manner of Figures 2-11 arid 2-12 for't1igh-modulus 
graphite-epof, an orthotropic material 

6 
with E1 = 30 x 106 psi (207 GPa), 

E2 = . 75 x 1 O psi (5.2 GPa), G12 = .375 x 1 O psi (2.59 GPa), and v12 = .25. 
Show that the apparent extensional modulus of an orthotropic material as a function 
of 9 [the first of Equations (2.97)] can be written as 
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E1 4 2 -=(1 +a-4b)cos 9+ (4b-2a)cos e+a 
Ex 
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where a= E1tE2 and b = _!_ (E1tG 12 - 2v 12). Use the derivatives of Ex to find its 
maxima and minima in the4manner of Appendix B. Hence, show that Ex is greater 
than both E1 and E2 for some values of e if 

E1 
G12> 2(1 +v12) 

and that Ex is less than both E1 and E2 for some values of 9 if 
E1 

G12 < 2[(E 'E ) . ' 1' 2 +'.1121 
That is, show that an orthotropic material can have an apparent Young's modulus 
that either exceeds or is less than the Young's moduli in both principal material di
rections. In doing so, derive the conditions for which each type of behavior exists, 
I.e., derive the inequalities. Plot E/E1 for some contrived materials that exemplify 
these relations. 

2.7 INVARIANT PROPERTIES OF AN ORTHOTROPIC LAMINA 

The transformed reduced stiffnesses in Equation (2.85} are obvi
ously very complicated functions of the four independent material prop
erties E1, E2, v12, and G12 as well as the angle of rotation, 0. To 
understand the physical implications of the various rotations that occur 
in actual laminates would require considerable practical experience. 
Matching up the highest E of E1 and E2 with the laminate direction re
quiring the highest stiffness is easy. However, if the design situation in
cludes requirements for various stiffnesses in several directions, then we 
must have a rationale for deciding the orientation of the laminae that 
make up a laminate. Obviously, then, we must understand how an indi
vidual lamina changes stiffness as it is reoriented at different angles to 
the reference direction. However, the present form of the transformation 
relations in Equation (2.85) is not particularly conducive to understanding 
their physical significance. 

Tsai and Pagano [2-7] ingeniously recast the stiffness transforma
tion equations to enable ready understanding of the consequences of 
rotating a lamina in a laminate. By use of various trigonometric identities 
between sin and cos to powers and sin and cos of multiples of the angle, 
the transformed reduced stiffnesses, Equation (2.85), can be written as 

in which 

0 11 = U1 + U2 cos 20 + U3 cos 40 

012 =U4 -U3 cos40 

022 = U1 - U2 cos 20 + U3 cos 40 

016 = ~ U2 sin 20 + U3 sin 40 

026 = ! U2 sin 20 - U3 sin 40 

566 = U5 - U3 cos 40 

(2.98) 
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011-022 
U2= 2 

011 + 022 - 2012 - 4066 
U3= 8 (2.99) 

011 +022+6012-4066 
U4= 8 

011 + 022 - 2012 + 4066 
Us= 8 

Note that Tsai and Pagano's angle of rotation is oppositely defined to that 
in Figure 2-10, so the sine terms in Equation (2.98) are also of opposite 
sign. 

The advantage of writing the_transformation eq~tions in the form 
of Equation (2.98) is that parts of 0 11 , 0 12, 0 22, and 0 66 are then obvi
ously invariant under rotations about the z-axis (perpendicular to the 
lamina). This concept of invariance is useful when examining the pros
pect of orienting a lamina at various angles to achieve a certain stiffness 
profile. For example, 

0 11 = U 1 + U2 cos 20 + U3 cos 40 (2.100) 

can be decomposed into its components in J.tie graphical manner of Fig
ure 2-15. There, we see that the value of 0 11 is determined by a fixed 
constant, U1, plus a quantity of low-frequency variation with 0 plus an
other quantity of higher frequency variation with 0. Thus, U1 is an ef
fective measure of lamina stiffness in a design application because it is 
not affected by orientation. The concept of invariance will be more useful 
in the study of laminates because laminates are made of a collection of 
laminae at various orientations to achieve a certain stiffness. Such tai
loring of the material and structural configuration, however, comes at the 
expense of capabilities in other directions. For example, from observa
tion of the variable nature of 0 11 , apparently trying to meet a required 
stiffness in one direction leads to a lower stiffness in some other direction 
unless the requirement is as low as 0 22 in this example. 

+ 

Figure 2-15 Decomposition of 011 into Components 

I< ( 
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Similar invariance concepts for anisotropic materials were also de
veloped by Tsai and Pagano [2-7). For anisotropy, the following defi
nitions 

(2.101) 

must be appended to Equation (2.99) and worked into Equation (2.98) 
in such a manner that Table 2-2 results, so the transformation equations 
can be written. 

Table 2-2 Transformation Equations for QIJ and Ot 
Constant cos20 sin20 cos4a sin40 

o;, u, U2 -2U6 U3 -U1 

022 u, -U2 2U6 U3 -U1 

0;2 U4 0 0 -U3 U7 

066 Us 0 0 -U3 U7 
20;6 0 2U6 U2 2U7 2U3 

2026 0 2U6 U2 -2U7 -2U3 

•a.i are for anisotropic materials. Qij for orthotropic materials 
ij -

are obtained by deleting U6 and U7 from the definitions of O;j'. 

The actual invariants in 'invariant properties of a lamina' include not 
only u1, u4, and u5 because they are the constant ter'!1s in Equation 
(2.93) but functions related to U 1, U4, a~d U5 as shown _in P~oblem Set 
2.7. The terms u2 and u3 are not invariants. The only mvarrants of an 
orthotropic lamina can be shown to be 

L1 =011 +022+2012=011 +022+2012= 2 (U1 +U4) (2.102) 

L2=066-012=066-012= Us- U4 

Discussion of invariance concepts for laminates will be deferred until 
Chapter 7 after the development of lamination concepts in Chapter 4. 

Problem Set 2.7 

2.7.1 Show that o,, + 0 22 + 2012 Is Invariant under rotation about the z-axls, I.e., that 

o,, +022 +20,2=0,1 +022+20,2 

2.7.2 Show that 0 66 -012 is invariant under rotation about the z-axis, i.e., that 

066 - 0,2 = 066 - 0,2 

2.7.3 Show that u5 = (U1 - U4)12, I.e., that the quantities U1, U4, and U5 are related and 
only two are Independent because one can be expressed in terms of the other two. 
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2.8 STRENGTHS OF AN ORTHOTROPIC LAMINA 
/ 

/ 

"' / 
2.8.1 Strength Concepts 

The strength characteristics of an orthotropic~lamma ~re just as 
important a building block in the description of laminates as the stiffness 
characteristics. As review, from previous studies, the central issue here 
is that principal stresses and strains are the largest values irrespective 
of direction or orientation; however, direction of stress or strain has, by 
definition, absolutely no significance for isotropic materials. Because of 
orthotropy, the axes of principal stress do not coincide with the axes of 
principal strain. Moreover, because the strength is lower in one direction 
than another, the highest stress might not be the stress governing the 
design. A rational comparison of the actual stress field with the allowable 
stress field is therefore required, irrespective of any principal values. 

What has been accomplished in preceding sections on stiffness 
relationships serves as the basis for determination of the actual stress 
field; what remains is the definition of the allowable stress field. The first 
step in such a definition is the establishment of allowable stresses or 
strengths in the principal material directions. Such information is basic 
to the study of strength of an orthotropic lamina. 

For a lamina stressed in its own plane, there are three fundamental 
strengths if the lamina has equal strengths in tension and compression: 

X = axial or longitudinal strength (in the 1-direction) 
Y = transverse strength (in the 2-direction) 
S = shear strength (in 1-2 coordinates) 

(The units are force/area, that is, allowable stresses). The directions of 
each of these strengths are shown in Figure 2-16; obviously, the 
strengths result from independent application of the respective stresses, 
cr1, cr2, 't12· 

l~l 
s +--

Figure 2-16 Fundamental Strengths for a Unidirectionally Reinforced Lamina 

That the principal stresses are not of interest in determining the 
strength of an orthotropic lamina is illustrated with the following example. 
Consider the lamina with unidirectional fibers shown in Figure 2-16. Say 
that the hypothetical strengths of the lamina in the 1-2 plane are 

( 
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X = 50,000 psi (350 MPa) 
Y = 1,000 psi (7 MPa) 
S = 2,000 psi (14 MPa) 

The stiffness would also be high in the 1-direction and low in the 
2-direction, as is easily imagined on the physical basis of the fiber ori
entation. Imagine that, in the 1-2 plane, the stresses are 

cr1 =45,000 psi (315 MPa) 
cr2 =2,000 psi (14 MPa) 

-r12 = 1,000 psi (7 MPa) 

Then, obviously the maximum principal stress is lower than the largest 
strength. However, cr2 is greater than Y, so the lamina must fail under 
the imposed stresses (perhaps by cracking parallel to the fibers, but not 
necessarily}. The key observation is that strength is a function of orien
tation of stresses relative to the principal material coordinates of an 
orthotropic lamina. In contrast, for an isotropic material, strength is in
dependent of material orientation relative to the imposed stresses (the 
isotropic material has no orientation). 

If the material has different properties in tension and compression 
as do most composite materials, then the following strengths are re
quired: 

X t = axial or longitudinal strength in tension 

Xe = axial or longitudinal strength in compression 

Yt = transverse strength in tension 

Y c = transverse strength in compression 

S = shear strength 

Remember that the preceding strengths must be defined in principal 
material coordinates. 

The shear strength in the principal material coordinates is seen to 
be independent of differences in tensile and compressive behavior, as it 
must be by definition of a pure shear stress. That is, the shear stress, 
whether 'positive' or 'negative', has the same maximum value in principal 
material coordinates for materials that exhibit different behavior in tension 
than in compression. This statement is rationalized by observati~>n of 
Figure 2-17 wherein positive and negative shear str~sses are ~pphed to 
a unidirectionally reinforced lamina. The convention of which shear 
stress is positive is consistent with Pagano and Chou's convention that 
a positive shear stress -r12 is directed in the positive 2-direction on a 
positive 1-direction face [2-8]. Note in Figure 2~~7 that there i~ no real 
difference between the stress fields labeled pos1t1ve and negative shear 
stress. The two stress fields are perfect mirror images of each other, 
even when the principal stresses are examined as in th~ lower half ?f 
Figure 2-17. Thus, the maximum value of shear stress 1s _the same rn 
both cases because the action of the stresses on the two pieces of ma
terial is identical. 



of Composite Materials 

POSITIVE SHEAR STRESS NEGATIVE SHEAR STRESS 

Figure 2-17 Shear Stress in Principal Material Coordinates 

However, the maximum value of shear stress in other than principal 
material coordinates depends on the sign of the shear stress. For ex
ample, at 45° to the principal material axes, positive and negative shear 
stresses result in normal stresses of opposite signs on the fibers as in 
Figure 2-18. There, for positive shear stress, tensile stresses result in 
the fiber direction, and compressive stresses arise perpendicular to the 
fibers. For negative shear stress, compressive stresses exist in the fiber 
direction and tensile stresses occur transverse to the fibers. However, 
both the normal strengths and normal stiffnesses for the material are 
different under tension loading than under compression loading. Thus, 
!~e apparent s~ear strengths and shear stiffnesses are different for pos-
1t1ve and negative shear stresses applied at 45° to the principal material 
coordinates. This rationale can readily be extended from the simple 
unidirectionally reinforced lamina to woven materials. 

POSITIVE SHEAR STRESS NEGATIVE SHEAR STRESS 

2 1 

"-~/ 
t~t -

2 1 '-/ 
t~t 
~ 

Figure 2-18 Shear Stress at 45° to Principal Material Coordinates 

The foregoing example is but one of the difficulties encountered in 
analysis of orthotropic materials with different properties in tension and 
compression. The example is included to illustrate how basic information 
in principal material coordinates can be transformed to other useful co
ordinate directions, depending on the stress field under consideration. 
Such transformations are simply indications that the basic information, 

( 
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whether strengths or stiffnesses, is in tensor form and therefore is subject 
to the rules governing tensor transformations given in Appendix A. 

The topic of materials with different strengths and stiffnesses in 
tension than in compression will not be covered further in much depth 
(except to report different strengths) because research on such materials 
is still in its infancy. However, the topic is very important for the general 
class of composite materials, if not fiber-reinforced laminated compos
ites. Ambartsumyan and his associates first reported research on this 
topic in 1965 [2-9). A few Americans have also investigated some as
pects of the mechanics of these materials (see Jones [2-1 OJ, Bert [2-11 ], 
and Bert and Reddy [2-12)). 

2.8.2 Experimental Determination of Strength and Stiffness 

For orthotropic materials, certain basic experiments can be per
formed to measure the properties in the principal material coordinates. 
The experiments, if conducted properly, generally reveal both the 
strength and stiffness characteristics of the material. Recall that the 
stiffness characteristics are 

E1 = Young's modulus in the 1-direction 
E2 = Young's modulus in the 2-direction 

v12 = -~ for cr1 = cr and all other stresses are zero 
E1 

v21 = _-=!_ for cr2 = cr and all other stresses are zero 
~ 

G12 = shear modulus in 1-2 coordinates 

where only three of E1, E2, v12, v21 are independent, and the strength 
characteristics are 

X = axial or longitudinal strength (1-direction) 
Y = transverse strength (2-direction) 
S = shear strength (1-2 coordinates) 

where X and Y can have different values in tension and compression. 
Several experiments will now be described from which the forego

ing basic stiffness and strength information can. be obta!ne~. ~or many, 
but not all, composite materials, the stress-strain behavior 1s linear from 
zero load to the ultimate or fracture load. Such linear behavior is typical 
for glass-epoxy composite materials and is quite reasonable for boron
epoxy and graphite-epoxy composite materials except for the shear be
havior that is very nonlinear to fracture. 

A key element in the experimental determination of the stiffness 
and strength characteristics of a lamina is the imposition of a uniform 
stress state in the specimen. Such loading is relatively easy for isotropic 
materials. However, for composite materials, the orthotropy introduces 
coupling between normal stresses and shear strains and between shear 
stresses and normal and shear strains when loaded in non-principal 
material coordinates for which the stress-strain relations are given in 
Equation (2.88). Thus, special care must be taken to ensure obtaining 
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the desired information. This care typifies the knowledge required to 
treat composite materials. 

Before we examine any specific tests, we need to examine the 
'testing' or measurement process itself. After all, testing is no substitute 
for thinking! Tests are, quite often, subtle in their implications. Thus, 
we must 

• understand the purpose of the test 
• visualize the expected result~ ) 
• know opportunities for errors 
• question the validity of 'standard' J~als 

when used for composite materials 

We would probably agree on the following criteria for a good test 
specimen: 

(1) The highest stress must occur in the gage section (region of smallest 
cross-sectional area) so that failure occurs in the gage section. 

(2} A uniform stress field must exist over the entire gage-section volume 
to eliminate volume-based statistical failure effects (e.g., a realistic 
distribution of ordinary defects must exist for the test to be repre
sentative of the actual material}. 

(3} Unwanted 'other' stresses must be eliminated from the gage section 
(e.g., eliminate bending stresses induced by load-application mech
anisms such as misalignment of loading grips}. 

(4) Alternatively to (3), account for certain end and edge effects (e.g., 
shear-extension coupling} in the data-reduction process. 

(5} The specimen material and the test procedure must be represen
tative of the intended application from the standpoint of 
(a} fabrication (a tape-laid specimen does not in any way represent 

a filament-wound structure!} 
(b} size effects (the characteristic dimensions of the specimen, e.g., 

thickness, cannot approach any characteristic material dimen
sion such as void size, fiber diameter, etc.} 

(c} environment (the loading rate, moisture content, and temper
ature of the specimen must be similar to, if not identical with, the 
actual structural application} 

These criteria will be used in the evaluation of several test specimens. 
Further, with any test specimen, there are certain natural 'regions 

of concern'. For example, consider the tension specimen depicted 
schematically in Figure 2-19. There, three regions are shown: (1} loading 
region where load is applied to the specimen, (2) gage region that must 
be uniformly stressed and that must be the location of failure under 
maximum load, and (3) transition region that provides a smooth transition 
(without stress concentrations} from the loading region to the gage re
gion. We will examine several tests that have been designed to measure 
the strengths and stiffnesses of composite materials. At all times, we 
must be conscious of both the test specimen criteria and the specimen 
regions of concern. 

( 
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Figure 2-19 Test Specimen Regions of Concern 

First, consider uniaxial tension loading in the 1-direction on a !lat 
piece of unidirectionally reinforced lamin~ where ~nly t~e gage sec!1on 
is shown in Figure 2-20. The specimen thickness 1s n~t JUS~ one la~ina, 
but several laminae all of which are at the same onentat1on (a single 
lamina would be too fragile to handle). The strains £1 and~ are meas
ured so, by definition, 

- p E -~ v 
2
=-1 X= puit (2.103} CJ1-A 1- £1 1 E1 A 

where A is the gage section cross-sectional area p~rpendicular to the 
applied load and P ult is the ultimate load on the specimen .. But, h?w _d~ 
we achieve a reasonable gage section given the test specimen cntena. 
Let's examine several specific test specimens to see how well they sat-
isfy the criteria. 

o; 
o;UL,= X 

/ ,I 

I--2 

ll 

Figure 2-20 Uniaxial Loading in the 1-Direction 

The ASTM D 638 tension test specimen is a fairly simp~~ specimen 
that requires some machining to create the rounded trans1J1on. from a 
wide loading region to a narrow gage region .. Th~ gage region 1s ab~ut 
one-quarter of the specimen length as shown 1_n F1gu~e 2-21. The typical 
failure occurs in the transition region. Thus, this specimen does not ~eet 
the criterion of failure in the gage region. However, ~cause the failure 
strengths achieved with this specimen ar~ underestimates of the real 
strength, this specimen is considered practical. 
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Figure 2-21 ASTM D 638 Tension Specimen 

Next, the straight-sided tension specimen has a transition region 
that is created by thickness change (instead of the width change of the 
ASTM D 638 specimen) as shown in Figure 2-22. Failures typically occur 
either in the bonded tabs or in the gage section. If the bonded tabs fail, 
then the failure load is never a measure of the subject material's strength! 

Finally, the bow-tie tension specimen has considerable machining 
required to create a very gradual transition region as in Figure 2-23. 
Moreover, this specimen is much longer than the previous two. However, 
failure consistently occurs in the gage region, so the bow-tie specimen 
is the only specimen of the three that satisfies the main criterion for a 
good specimen. 

.50 In 

3.00 In (1.27 cm) 

30.6 I (7.62 cm) ~1 n 
I :!: 1 ; ~ ,: : I 

FAILURE IN TAB OR GAGE AREA 

Figure 2-22 Straight-Sided Tension Specimen 
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Figure 2-23 Bow-Tie Tension Specimen 

Under compression loading, the long flexible tension specimens 
would simply buckle. Thus, lateral support to prevent buckling is neces
sary as shown in the compression test fixture with side-support ~!ates i_n 
Figure 2-24. There, the specimen is essentially as long as the fixture 1s 
tall, and only a small portion of the specimen can be seen where it is not 
supported. 

Figure 2-24 Compression Test Fixture 

As the second major measurement, consider uniaxial tension 
loading in the 2-direction on a flat piece of unidirectionally reinforced 
lamina as in Figure 2-25. As in the first experiment, £ 1 and £2 are 
measured so 

p CT2 £1 p ult 
CT2=-;;: E2=r;- V12=-~ Y=A (2.104) 

where again A is the cross-sectional area of the gage section and P ult is 
the ultimate load on the specimen. 

The stiffness properties should satisfy the reciprocal relations 

(2.105) 
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Figure 2-25 Uniaxial Loading in the Z.Oireclion 

or else one of three possibilities exists: 

(1) The data were measured incorrectly 
(2) The calculations were performed incorrectly 
(3) The material cannot be described with 

linear elastic stress-strain relations 

A~ the third major measurement to try to determine the remaining 
properties G12 and S, consider uniaxial tension loading at 45° to the 
1-direction on a flat piece of lamina, i.e., a 45° off-axis test as shown in 
Figure 2-26. By measurement of Ex alone, obviously ' 

Ex= P~A (2.106) 

Figure 2-26 Uniaxial Loading at 45° to the 1-Direction 

Then, by use of the modulus transformation relations in Equation (2.97) 

1 1 [ 1 
2

V12 1 1 J 
~=4 E,-~+ G12 +~ (2.107) 

wherein G12 is the only unknown. Thus, 
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G - ____ 1-'----=--
12- 4 1 1 2v12 

-----+--
Ex E1 E2 E1 

(2.108) 

Accordingly, we have supposedly found the shear modulus G12. How
ever, a relationship such as Equation (2.107) does not exist for strengths 
because strengths do not transform like stiffnesses. Thus, this exper
iment cannot be relied upon to determine S, the ultimate shear stress 
(shear strength), because a pure shear deformation mode has not been 
excited with accompanying failure in shear. Accordingly, other ap
proaches to obtain S must be used. 

Before consideration of other approaches to determination of the 
shear strength, however, it is appropriate to comment on the ease of 
performing the 45° off-axis te~ From Equation (2.87), it is apparent that 
because of the presence of S16 there is coupling between the normal 
stress cr and shear strain Yxy· Thus, although just a force P is indicated 
in Figur; 2-26, the experiment cannot be properly conducted unless the 
force is applied uniformly across the end and, in addition, unless the ends 
of the lamina are free to deform in the manner shown on the left of Figure 
2-27. Otherwise, if for example the end edges of the lamina were 
clamped in the jaws of a load frame and a resultant force P were applied, 
then the lamina would be restrained from shearing deformation, so it 
would deform in the fashion shown on the right in Figure 2-27 [2-13]. In 
the center of such a specimen, if it is long enough as compared to its 
width, the deformation is similar to the shearing and extension of the 
unrestr~ined lamina in Figure 2-27. That is, away from Saint-Venant end 
effects, the type of test does not matter. However, normally we do not 
choose to use enough material to have a useful gage section that does 
not have Saint-Venant effects. 

An additional characteristic of the off-axis test displayed in Figures 
2-26 and 2-27 is that the modulus.§x is not actually measured. lns!ead, 
the transformed reduced stiffness 0 11 is measured unless the specimen 
has a high length-to-width ratio. The reason for this discrepancy is that 
the geometrically admissible state of strain in the specimen depends 
strongly on the geometry. If the specimen is long and slender, the 
boundary conditions at the specimen end grips are of no consequence 
a la Saint-Venant. Accordingly, a pure uniaxial strain is obtained and 

crx = Ex ~ (2.109) 

However, if the specimen is short and wide, the end restraint of crx *' 0 
and ey = Yxy = 0 leads to a stress-strain relation 

crx=011 ~ (2.110) 

2Saint-Venant stated that two different loadings that are statically equivalent produce the 
same stresses and deformations at a distance sufficiently far removed from the area of 
application of the loadings. Thus, if two statically equivale~t loadings are applied and the 
observation point is near the end where the loading Is applied, then the stresses and def
ormations will be different for each loading. Hence the name Saint-Venant end effects. 
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NO ENO EFFECT RESTRAINED ENOS 

Figure 2-27 Deformation of a Unidirectiona Reinforced Lamina 
Loaded at 45° to the Fibers 

that is consistent with Equation (2.84). The reader should verify 
Equations (2.109) and (2.11 O) by imposing the stated conditions and 
deriving the ~lation for Cfx· That the difference between Ex in Equation 
(2.109) and 0 11 in Equation (2.110) is significant is best illustrated with 
Figure 2-28 for graphite-epoxy specimens. There, for off-axis loading at 
3?0 

_to th~ fiber directi?n, the __yalue of 0 11 is 10.4 times as great as Exl 
S1m1lar differences exist for 0 66 versus §xy. For materials with lower 
values of E1tE2, the difference between 0 11 and Ex is smaller than for 
graphite-epoxy. The practical significance of the difference between 
0 11 and Ex is that the length-to-width ratio of off-axis specimens must 
be large enough to ensure that we are measuring Ex and not 0

11
. 

Pagano and Halpin [2-13] present a quantitative analysis of the effect of 
length-to-width ratio on the apparent Ex. Note, at this point, that even 
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though we thought we had measured G12 with the procedure leading to 
Equation (2.108), the value of Ex wa~ seriously ?verestimated: Thus, the 
value of G1? from Equation (2.108) 1s also seriously overestimated and 
hence unreliable. 

The continuing search to determine the shear modulus and shear 
strength consists of a collection of tests. Several tests are discussed 
because each has faults, as will be seen, and because, to some extent, 
there is no universal agreement on the best way to measure the shear 
properties. 

The torsion-tube test described by Whitney, Pagano, and Pipes 
[2-14] involves a thin circular tube subjected to a torque, T, at the ends 
as in Figure 2-29. The tube is made of multiple la!"'inae wit~ their fiber 
directions aligned either all parallel to the tube axis or all circumferen
tially. Reasonable assurance of a constant st~ess st~te through the tube 
thickness exists if the tube is only a few laminae thick. However, then 
serious end-grip difficulties can arise because of the tlif""!SY nature of ~he 
tube. Usually, the thickness of the tube ends must be ~uilt up by b~ndmg 
on additional layers to introduce the load so that failure occurs 1~ the 
central uniformly stressed portion ~f the tub~ (recall the te~t spec1!11en 
criteria). Torsion tubes are expensive to fab_ncate a~d req~1re relatively 
sophisticated instrumentation. If the shearing strain y12 1s measured 
under shear stress 't12, then 

Also, the shear modulus is 

- T 't12---2-
21tr t 

Tult 
S ='t12 =--2-

ult 2xr t 

(2.111) 

(2.112) 

(2.113) 

for the linear portion of the stress-strain curve. However, a typical shear 
stress-shear strain curve is quite nonlinear as in Figure 2-29. Accord
ingly, the whole stress-strain curve instead of the initial 'elastic' f""!Odulus 
should be used in practical analyses as done by Hahn and Tsai [2-15] 
and Jones and Morgan [2-16]. Nevertheless, most composite materi~ls 
analyses are performed with the initial elastic modulus from Equation 
(2.113). 

Another test used to determine the shear modulus and shear 
strength of a composite material is the sandwich cross-beam test due to 
Shockey and described by Waddoups [2-17]. The composite lamina 

Txy 

Figure 2-29 Torsion-Tube Test 
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being evaluated is the facing of a sandwich beam whose core elastic 
modulus is about two orders of magnitude less than that of the lamina. 
A cross-shaped beam configuration is subjected to the loads shown in 
Figure 2-30. A state of plane stress results which at 45° to the x-axis is 
supposedly a uniform pure shear stress. However, because of inevitable 
stress concentrations at the corners of the cross, a uniform stress state 
is approached only in the very center of the cross. Failure initiates in the 
corners of the cross; thus, the cross-beam test, even with rounded cor
ners, is no longer regarded as an adequate measuring tool for shear 
strength and shear stiffness. 

Figure 2-30 Sandwich Cross-Beam Test Figure 2-31 Rail Shear Test 

Yet another shear strength and shear modulus test is the rail shear 
test as described by Whitney, Stansbarger, and Howell [2-18]. Basically, 
four pieces of rail are bolted together along two opposite edges of a 
lamina as shown schematically in Figure 2-31. One pair of rails 
protrudes at the top of the laminate, and the other pair at the bottom. 
The assembly is placed between the heads of a loading frame and 
compressed. Thus, shear is induced in the lamina. However, the ge
ometry of such a specimen must be carefully selected to account for end 
effects such as the free edges at the top and bottom of the lamina. 
These and other effects could lead to strength evaluations that are lower 
than physical reality. Nevertheless, the rail shear test is widely used in 
the aerospace industry because it is simple, inexpensive, and can be 
used for tests at both higher and lower than room temperature. 

2.8.3 Summary of Mechanical Properties 

As an illustration of the results of the measurements just described, 
the mechanical properties for four unidirectionally reinforced composite 
materials, glass-epoxy, boron-epoxy, graphite-epoxy, and Kevlar 49®-

( ( 
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epoxy, are given in Table 2-3. These values ~re rep~esentative of ~he 
strengths and initial stiffnesses that can be obtam_ed. with such m~tenals 
(except for graphite-epoxy of which many variations are available). 
However these values are for purposes of illustration only and should 
not be u~ed for design of composite structures. Only up-to-~ate in!or
mation of the specific fiber and matrix system should be used m des1g~. 
Again, recall the essential linearity of the normal stress-:normal strain 
results and the nonlinearity of the shear stress-shear strain results (es
pecially for boron-epoxy and graphite-epoxy). Ty~ical stress-str~(n 
curves for the first three materials are shown in Appendix C. The spec1f1c 
values will change when the fiber and matrix content of the composite 
material changes. The rationale for changing those values will be de
scribed in Chapter 3 on micromechanics of a lamina. The values in Ta
ble 2-3 will be used in example problems and homework problems 
throughout the book, and, as a matter of fact, were already used to obtain 
Figures 2-11 and 2-12. 

Table 2-3a Typical Mechanical Properties of Some Composite Materials 
(U. S. Standard Units) 

Unidirectionally Reinforced Composite Material 
Property 

Glass-Epoxy Boron-Epoxy Graphite-Epoxy Kevlar®-Epoxy 

E1 7.8x 106 psi 30x 106 psi 30x 106 psi 11 X 106 psi 
E2 2.6x 106 psi 3x 106 psi .75x 106 psi .ax 106 psi 

V12 .25 .3 .25 .34 
G12 1.3x 106 psi 1 X 106 psi .375 X 106 psi .3x 106 psi 

Xi 150 X 103 psi 200x 103 psi 150 X 103 psi 200x 103 psi 
Y, 4x 103 psi 12x 103 psi 6x 103 psi 4x 103 psi 
s 6x 103 psi 18x 103 psi 10 X 103 psi 6.4x 103 psi 
Xe 150 X 103 psi 400x 103 psi 100 X 103 psi 40x 103 psi 
Ye 20x 103 psi 40x 103 psi 17 X 103 psi 20x 103 psi 

Table 2-3b Typical Mechanical Properties of Some Composite Materials 
(SI Units) 

Unidirectionally Reinforced Composite Material 
Property 

Glass-Epoxy Boron-Epoxy Graphite-Epoxy Kevlar®-Epoxy 

E, 54GPa 207 GPa 207 GPa 76GPa 

~ 18 GPa 21 GPa 5GPa 5.5 Gpa 

V12 .25 .3 .25 .34 
G12 9GPa 7 GPa 2.6 GPa 2.1 GPa 

Xi 1035 MPa 1380 MPa 1035 MPa 1380 MPa 
Y, 28MPa 83MPa 41 MPa 28 MPa 
s 41 MPa 124 MPa 69 MPa 44MPa 
Xe 1035 MPa 2760 MPa 689 MPa 276 MPa 
Ye 138 MPa 276 MPa 117 MPa 138 MPa 
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Now that the basic stiffnesses and strengths have been defined for 
the principal material coordinates, we can proceed to determine how an 
orthotropic lamina behaves under biaxial stress states in Section 2.9. 
There, we must combine the information in principal material coordinates 
in order to define the stiffness and strength of a lamina at arbitrary ori
entations under arbitrary biaxial stress states. 

Problem Set 2.8 

2.8.1 Find, read, and summarize the ASTM specification for two of the •°"""""'---..,,,asure
ments described in Section 2.8. 

2.8.2 Find and describe two other tests to determine the shear s · ess and strength of 
an orthotropic fiber-reinforced lamina. 

2.9 BIAXIAL STRENGTH CRITERIA FOR 
AN ORTHOTROPIC LAMINA 

( 

Most measurements of the strength of a material are based on 
uniaxial stress states. However, the general practical design problem in
volves at lea~t a bi~xi~I if not a triaxial state of stress. Thus, a logical 
m~thod of ~sing ~niax1al_ strength information obtained in principal ma
terial_ c_oordmates 1s required for analysis of multiaxial loading problems. 
Obtaining the strength characteristics of a lamina at all possible orien
tations is physically impossible, so a method must be determined for 
obtaining the characteristics at any orientation in terms of characteristics 
in the principal material coordinates. In such an extension of the infor
mation obtained in principal material coordinates, the well-known con
cepts of principal stresses and principal strains are of no value. A 
multitude of possible microscopic failure mechanisms exists, so a tensor 
transformation of strengths is very difficult. Moreover, tensor transf
ormations of strength properties are much more complicated than the 
tensor transformation of stiffness properties. (The strength tensor, if one 
even exists, must be of higher order than the stiffness tensor.) Never
theless, tensor transformations of strength are performed and used as a 
phenomenological failure criterion (phenomenological because only the 
occurrence of failure is predicted, not the actual mode of failure). A 
somewhat empirical approach will be adopted: the actual failure envel
opes in stress space will be compared with simplified failure envelopes. 

. The ~impl_ified ~ailure envelopes are not derived from physical the
ones of failure in which the actual physical processes that cause failure 
on a microscopic level are 'integrated' to obtain a failure theory. We, in
stead, deal with phenomenological theories in which we ignore the actual 
failure mechanisms and concentrate on the gross macroscopic events 
of fail~re. Ph~n~menological th~ories are based on curve-fitting, so they 
are failure cntena and not theories of any kind (the term theory implies 
a formal derivation process). 

The_ simplified failure env~l?pes differ little from the concept of yield 
surfaces in the theory of plast1c1ty. Both the failure envelopes (or sur
faces) and the yield surfaces (or envelopes) represent the end of linear 
elastic behavior under a multiaxial stress state. The limits of linear elastic 
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Figure 2-32 Failure (Fracture) versus Yielding 

behavior are shown with the symbol x in the stress-strain curves for a 
fracture condition and two types of yielding conditions in Figure 2-32. 
Actually, the failure envelopes are not restricted to be the limit of multi
axial linear elastic behavior (although they are for brittle materials). The 
envelopes mask the actual material phenomena that are occurring and 
merely represent the levels of stresses at which failure occurs, even 
though other events such as yielding took place at lower stress levels. 

Our objective is the analytical definition of the failure surface or 
envelope in stress space that can be conveniently used in design. For 
example, the failure data for a hypothetical material are shown in two 
dimensions in Figure 2-33. There, the material has unequal strengths in 
tension and compression. We must, in some manner, describe those 
data with a curve or set of curves, each of which has an equation that is 
suitable for design use. That is, we must curve-fit the failure data with 
an equation that is a reasonable fit for design purposes. However, we 
must be fully aware that a single failure curve is merely an approximate 
or averaging process for all the events that actually cause failure. Thus, 
we are oversimplifying the actual failure process. 

DESIGN FAILURE ENVELOPE 

Figure 2-33 Hypothetical Two-Dimensional Failure Data and Design Curve 

Unfortunately, with curve-fitting, we lose the ability to determine the 
failure mode. That is, curve-fit failure criteria are generally disassociated 
from knowledge of precisely how the material fails. Perhaps the best 
description of the curve-fitting procedure is that by John Hart-Smith "most 
failure criteria are meaningless curves passed through unrelated data 
points" (2-19]. Think about itl Each of the principal material direction 
strengths, Xt, Xe, Yt, Ye, that correspond to the solid squares in Figure 
2-33 represents a totally different failure mode, so why should they be 
connected with a single curve? That is, as we will see later, Xt corre
sponds to fiber fracture, Xe to fiber buckling, Yt to matrix fracture, and 
Ye to matrix compression failure. And, the material behavior (or structural 
behavior in the case of Xe) corresponding to each failure is drastically 
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different. Thus, there is no physical reason to justify connecting the 
various failure points with a single continuous curve. In fact, there is 
reason not to connect the principal material strength data points with a 
continuous curve. Nevertheless, designers need something simple 
enough to use every day, so we pursue the curve-fitting approach. 

For conventional engineering metals, the curve-fitting process 
works fairly well. Note, however, that the curve-fitting process is less 
challenged than for orthotropic materials because metals are isotropic, 
so they don't have different strengths in different directions. Failure da a 
for cast iron, steel, copper, and aluminum are shown on Fig 2-34 
along with three common failure criteria. There, the cast iro data are 
best fit with the maximum normal stress failure criterion. li at is, cast 
iron apparently fails in a brittle manner when the largest pri cipal stress 
reaches the uniaxial failure stress irrespective of the value of the other 
principal stresses. In contrast, the other metals, steel, cop er, and alu
minum, fail in a ductile manner - perhaps by yielding. All their failure 
data are grouped essentially on or between the maximum shearing 
stress failure criterion and the maximum distortional energy failure crite
rion (also known as the von Mises failure criterion). The maximum 
shearing stress criterion is identical to the maximum normal stress crite
rion in the first and third quadrants in Figure 2-34, but different in the 
second and fourth quadrants. The maximum distortional energy failure 
criterion represents an interaction between principal normal stresses so 
that both normal stresses influence failure, not just one as in the maxi
mum normal stress criterion. One of the obvious conclusions to be 
drawn from Figure 2-34 is that different metals fail in different manners 
and thereby require correspondingly different failure criteria. Shouldn't 
we expect the same for composite materials? 

MAXIMUM NORMAL STRESS l l <>~:U~::E o• 
.,. 

/.; / +++ ~ + CAST IRON 
/' / 0 STEEL 

'/ -~~~ 

_1 I=// O-f-------.:1'-~-'- ll. ALUMINUM 
cr1'cruLTIMATE 

MAXIMUM SHEAR::G STRESS 
I 

I + 

\ -1 '~----~------1 .... ... .... 
... - -1.:_ MAXIMUM DISTORTIONAL ENERGY 

Figure 2-34 Failure Criteria for Metals 
(data compiled from various sources by Murphy (2-20)) 
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Our attention in this section is restricted to biaxial loading. We will 
examine the following biaxial strength criteria: (1) maximum stress failure 
criterion, (2) maximum strain failure criterion, (3) Tsai-Hill failure criterion, 
(4) Hoffman failure criterion, and (5) Tsai-Wu tensor failure criterion. In 
all failure criteria, the material, although orthotropic, is regarded as ho
mogeneous. Thus, we inherently cannot account for some of the failure 
mechanisms at the microscopic level. At the same time, the failure cri
teria tend to be smoother than the actual behavior that often exhibits 
considerable data scatter because of testing technique, manufacturing 
nonuniformities, etc. The final goal of a failure criterion envelope that is 
in agreement with an actual strength envelope would readily enable de
signing structural elements made with composite materials. 

For each of the failure criteria, we will generate biaxial stresses by 
off-axis loading of a unidirectionally reinforced lamina. That is, the 
uniaxial off-axis stress <Yx at 0 to the fibers is transformed into biaxial 
stresses in the principal material coordinates as shown in Figure 2-35. 
From the stress-transformation equations in Figure 2-35, a uniaxial 
loading obviously cannot produce a state of mixed tension and com
pression in principal material coordinates. Thus, some other loading 
state must be applied to test any failure criterion against a condition of 
mixed tension and compression. 

't12 = -crx sine cos0 

Figure 2-35 Biaxial Stresses from Off-Axis Uniaxial Loading 

Most comparisons of a failure criterion with failure data will be for 
the glass-epoxy data shown in Figure 2-36 as a function of off-axis angle 
0 for both tension and compression loading (2-21 ]. The tension data are 
denoted by solid circles, and the compression data by solid squares. The 
tension data were obtained by use of dog-bone-shaped specimens, 
whereas the compression data were obtained by use of specimens with 
uniform rectangular cross sections. The shear strength for this glass
epoxy is 8 ksi (55 MPa) instead of the 6 ksi (41 MPa) in Table 2-3. 
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Figure 2-36 Measured Failure Data for Glass-Epoxy (After Tsai {2-21)) 

2.9.1 Maximum Stress Failure Criterion 

In the maximum stress failure criterion, each and every one of the 
~tresses in principal n:,aterial coor~inat~s must be less than the respec
tive ~trengths; otherwise, fracture 1s said to have occurred. That is, for 
tensile stresses, 

0'1<~ 0'2<Yt (2.114) 

and for compressive stresses, 

(2.115) 

Also, 
(2.116) 

Note th~t the ~hear strength is independent of the sign of t 12 as dis
cu~s~d m Section 2.8. If _an~ one of the foregoing inequalities is not 
s~t1sf1ed, then ~he assumpt10n 1s. made that the material has failed by the 
failure me~hanis'!l ass~1ated with Xi, Xe, Yt, Y , or S, respectively. Note 
that there 1s no mteract,on between modes of failure in this criterion -
there are actually five subcriteria and five failure mechanisms. 

In applications of the maximum stress criterion the stresses in the 
body und~r consi~eration must be transformed to st~esses in the princi
~al maten~I coordinates. ~or example, Tsai [2-21] considered a unidirec
t1o~ally re1.nforced compos1!e la_mina subjected to uniaxial load at angle 
0 to the fibers as shown m Figure 2-35. The biaxial stresses in the 
principal material coordinates are obtained by transformation of the 
uniaxial stress, crx, as 

0'1 = crx cos2e cr2 = crx sin
2
0 t 12 = - crx sin 0 cos 0 (2.117) 

Then by inversion of Equation (2.117) and substitution of Equations 
(2.114)-(2.116), the maximum uniaxial stress, O'x, is the smallest of 

Xe ~ 
--2- < 0 x < --2-
cos 0 cos 0 

lcrxl < I sin 0~os 0 l 
(2.118) 

( 
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This criterion is illustrated in Figure 2-37 where the tension and com
pression behaviors have been plotted simultaneously for an E-glass
epoxy composite material with the properties in Table 2-3 except for the 
shear strength as already noted. The uniaxial strength of the 
unidirectional composite material is plotted in Figure 2-37 versus the 
angle 0 between the loading direction and the principal material di
rections. The maximum stress criterion is shown as several solid curves, 
the lowest curve of which governs the strength. The 'theoretical' cusps 
in the strength variation are not seen in the experimental data. Moreover, 
the 'theoretical' strength variation does not adequately represent the ex
perimental strength variation. Thus, another biaxial strength criterion 
must be sought. 
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Figure 2-37 Maximum Stress Failure Criterion (After Tsai [2-21)) 

2.9.2 Maximum Strain Failure Criterion 

The maximum strain failure criterion is quite similar to the maximum 
stress failure criterion. However, here strains are limited rather than 
stresses. Specifically, the material is said to have failed if one or more 
of the following inequalities is not satisfied: 

e1 < xEi ~ < v Ei lr121 < sE (2.119) 

including for materials with different strength in tension and compression 

£1 > XE ~>YE (2.120) 
C C 

where 
XEi(XE) = maximum tensile (compressive) normal strain in the 1-direction 

Y Ei(YE) = maximum tensile (compressive) normal strain in the 2-direction 

SE= maximum shear strain in the 1-2 coordinates 
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As with the shear strength, the maximum shear strain is unaffected by 
the sign of the shear stress. The strains in principal material coordinates, 
£1, £.!, y12, must be found from the strains in body coordinates by trans
formation before the criterion can be applied. 

For a unidirectionally reinforced composite material subject to 
uniaxial load at angle e to the fibers (the example problem in Section 
2.9.1 on the maximum stress criterion), the allowable stresses can be 
found from the allowable strains X.., Y Et' etc., in the following manner. 

First, given that the strain-stress relations are 

- 1 E1 -E(0'1-V120'2) 
1 

- 1 £i - E (0'2 -V210'1) (2.121) 
2 

't12 
'Y12 = G12 

upon substitution of the stress-transformation equations, 
2 

0'1 = O'x cos 0 
. 20 0'2 = O'x Sin 

t12 = - O'x sin 0 cos 0 

in the strain-stress relations, Equation (2.121), the strains are 

£1 = ~ ( cos2e-v12 sin2e) crx 
1 

(2.122) 

1(.20 2) £i=E Sin -V21 COS 9 O'x (2.123) 
2 

'Y12 =--d-( sin 9 cos 0) O'x 
12 

Finally, if the usual restriction to linear elastic behavior to failure is made, 

X. ~ s ~ ~ X =- Y =- SE=- ~ =- Y =- (2.124) 
ti E1 ti E2 G12 c E1 Ee E2 

(which could equally well come from measured values), then the maxi
mum strain failure criterion for uniaxial off-axis loading can be written as 

Xe X. 
2 2 < O'x < 2 
e · e e · 20 COS -v12 Sin COS -v12 Sin 

ye Yt 
2 2 < O'x < 2 2 (2.125) 

sin e-v21 cos 9 sin e-v21 cos 9 

lcrxl < I S 
sine cos el 

The only difference between the maximum strain failure criterion, 
Equation (2.125), and the maximum stress failure criterion, Equation 
(2.118), is the inclusion of Poisson's ratio terms in the maximum strain 
failure criterion. 

i( 
J 

( 
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As with the maximum stress failure criterion, the maximum strain 
failure criterion can be plotted against available experimental results for 
uniaxial loading of an off-axis composite material. The discrepancies 
between experimental results and the prediction in Figure 2-38 are simi
lar to, but even more pronounced than, those for the maximum stress 
failure criterion in Figure 2-37. Thus, the appropriate failure criterion for 
this E-glass-epoxy composite material still has not been found. 
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Figure 2-38 Maximum Strain Failure Criterion (After Tsai [2-21]) 

2.9.3 Tsai-Hill Failure Criterion 

Hill [2-22] proposed a yield criterion for orthotropic materials: 
2 2 2 

(G + H)cr1 + (F + H)cr2 + (F + G)cr3 - 2Hcr1~2 - 2Gcrt3 - 2F~2<r3 (2.126) 

+ 2Lt23 + 2Mt13 + 2Nt12 = 1 

This orthotropic yield criterion will be used as an orthotropic strength or 
failure criterion in the spirit of both criteria being limits of linear elastic 
behavior. Thus, Hill's yield stresses F, G, H, L, M, and N will be regarded 
as failure strengths. Hill's criterion is an extension of von Mises' yield 
criterion. The von Mises criterion, in turn, can be related to the amount 
of energy that is used to distort the isotropic body rather than to change 
its volume. However, distortion cannot be separated from dilatation in 
orthotropic materials, so Equation (2.126) is not related to distortional 
energy. Unfortunately, some authors still mistakenly call the criterion of 
this section a distortional energy failure criterion. 

The failure strength parameters F, G, H, L, M, and N were related 
to the usual failure strengths X, Y, and S for a lamina by Tsai [2-21 ]. If 
only t 12 acts on the body, then, because its maximum value is S, 
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2N=-1-
S2 

Similarly, if only a1 acts on the body, then 

and if only a2 acts, then 

G+H=-1-
X2 

F+H=-1-
y2 

(2.127) 

(2.128) 

(2.129) 

If the strength in the 3-direction is denoted by z and only a
3 

acts, then 

F+G=-1-z2 (2.130) 

Then,. upon C?mbination of Equations (2.128), (2.129), and (2.130), the 
following relatrons between F, G, Hand X, Y, z result: 

2F=-1-+_1 ___ 1_ 2G=-1-+_1 ___ 1_ 2H- 1 1 1 
y2 ~ ~ ~ ~ y2 -~+y2-7 

. (2.131) 
_For plane_ str«:ss rn the 1-2 plane of a unidirectional lamina with fi

~ers rn the 1-drrectron, O'_s = 't13 = 't23 = 0. However, from the cross sec
tron of such a lamina in Figure 2-39, Y = Z from the obvious geometrical 
symmetry of the material construction. Thus, Equation (2.126) leads to 

2 2 2 
0'1 0'10'2 0'2 't12 
x2 -~+ y2 + s2 = 1 (2.132) 

as the governing failure criterion in terms of the familiar lamina principal 
strengths X, Y, and S. And, the appropriate values of x or Xe and y 
or Y c must be used depending on the signs of a and a t Thus a dif t 
ferent surface is generated in each portion of th:ee-dimi~sional 'stres~ 
space 0'1, 0'2, 't12 (except that the surface is symmetrical about the plane 
't12 = O _because S has only one value). 

_F1~ally, for the off-axis composite material example of this section 
substrtutron of the stress-transformation equations, ' 

0'1 = O'X cos
2
0 

a2 = ax sin
2
0 

't12 =-ax sin 0 cos 0 

t3 

Figure 2-39 Cross Section of a Unidirectional Lamina 
with Fibers in the 1-Direction 

(2.133) 

( 
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in Equation (2.132) yields the Tsai-Hill failure criterion for uniaxial off-axis 
strength, 

cos 40 + [-1- - _1_] cos2e sin20 + sin 40 = _1_ (2.134) 
x2 s2 x2 Y2 a! 

which is one criterion, not three as in previous failure criteria. Because 
a composite lamina usually has different strengths in tension and com
pression, the values of X and Y must take on the appropriate values 
depending on the quadrant of stress space in which the stresses lie. 
Thus, the failure envelope in stress space consists of four different seg
ments that are continuous in value but not in slope at the uniaxial 
strengths. 

Results for this criterion are plotted in Figure 2-40 along with the 
experimental data for E-glass-epoxy. The agreement between the Tsai
Hill failure criterion and experiment is quite good. Thus, a suitable failure 
criterion has apparently been found for E-glass-epoxy laminae at various 
orientations in biaxial stress fields. 

The Tsai-Hill failure criterion appears to be much more applicable 
to failure prediction for this E-glass-epoxy composite material than either 
the maximum stress criterion or the maximum strain failure criterion. 
Other less obvious advantages of the Tsai-Hill failure criterion are: 

(1) The variation of strength with angle of lamina orientation is 
smooth rather than having cusps that are not seen in exper
imental results. 

(2) The strength continuously decreases as e grows from 0° 
rather than the rise in uniaxial strength that is characteristic 
of both the maximum stress and the maximum strain criteria. 
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Figure 2-40 Tsai-Hill Failure Criterion (After Tsai [2-21]) 
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(3) The agreement between the criterion and experiment is even 
better than that at first glance because Figures 2-37, 2-38, 
and 2-40 are plotted at a logarithmic scale. The maximum 
stress and strain criteria are incorrect by 100% at 30°1 

(4) Considerable interaction exists between the failure strengths 
X, Y, S in the Tsai-Hill criterion, but none exists in the previ
ous criteria where axial, transverse, and shear failures are 
presumed to occur independently. 

For E-glass-epoxy, the Tsai-Hill failure criterion seems the most 
accurate of the criteria discussed. However, the applicability of a partic
ular failure criterion depends on whether the material being studied is 
ductile or brittle. Other composite materials might be better treated with 
the maximum stress or the maximum strain criteria or even some other 
criterion. 

2.9.4 Hoffman Failure Criterion 

To account for different strengths in tension and compression, 
Hoffman added linear terms to Hill's equation (the basis for the Tsai-Hill 
criterion) [2-23]: 

2 2 2 
C1 (cr2 - 0'3) + Cicr3 - 0'1) + C3(0'1 - 0'2) 

2 2 2 
+ C4cr1 + C5cr2 + C5cr3 + C7t23 + Ca-r31 + C9-r12 = 1 

(2.135) 

where the 9 Ci are determined from the 9 strengths in principal material 
coordinates: Xt, Xe, Yt, Ye, 2t, 2c, S23, S31 , and S12. For plane stress in 
the 1-2 plane (cr3 = -r23 = -r31 = O) and transverse isotropy in the 2-3 plane 
as in Figure 2-39 (2t = Yt, 2c =Ye• S31 = S12), the failure criterion in 
Equation (2.135) simplifies to 

in which Xe is an inherently negative number, e.g., Xe= -100 ksi (or -690 
MPa), unlike in Hoffman's paper, but consistent with usage in this book. 
For equal strengths in tension and compression (Xe= -Xt = -X and 
Ye= -Yt = -Y), the Hoffman failure criterion reduces to the Tsai-Hill cri
terion in Equation (2.132). Both criteria are ellipsoids in cr1, cr2, -r12 space 
as in Figure 2-41. The Hoffman ellipsoid is symmetric about the cr1-cr2 
plane, has principal axes at 

1 
_
1
[ yeyt ] 

~=-cot ---1 
2 XeXi 

(2.137) 

and center at 

Xi+Xe Yt+ ye Yt+ ye (Xi+Xe)YtYe 
cr1= 2 + 2 <r2= 2 + 4XiXe (2.138) 

Note for materials with equal strengths in tension and compression that 
~ is 45° and the center of the ellipsoid is at the origin. 

1 
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-0"2 

Figure 2-41 Hoffman Failure Surface 

The Hoffman failure criterion is in very . good aweement with 
glass-epoxy failure data [2-21] in Figure 2-42, with grap~1te-~poxy data 
[2-24] in Figure 2-43, and with bor~n-~poxy dat~ [2-25] m f'.1gure 2-44: 
The fact that the Hoffman failure criterion 1s a single curve in all qu~d 
rants of a -cr space implies that the curve in any single quadrant shifts 
from the cbrr~sponding Tsai-Hill failure criterion segment: However, that 
result is a normal consequence of using only one curve m all four quad-

rants. f .1 ·t . 
Attractive features of the Hoffman a1 ure en enon are 

(1) Interaction between failure modes is treated instead of ~epa
rate criteria for failure like the maximum stress or maximum 
strain failure criteria. 

(2} A single failure criterion is used in all quadrants of crr<12 s~ac_e 
instead of the segments in separate quadrants f?r the :sa1-H1II 
failure criterion because of different strengths m tension and 

compression. . ·t · f 
(3} In design use, the Hoffman criterion is the simplest en enon o 

all criteria discussed. 
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Figure 2-42 Hoffman Failure Criterion for Glass-Epoxy 
(Data from Tsai [2-21]) 
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Figure 2-43 Hoffman Failure Criterion for Graphite-Epoxy 
(Data from Kim (2-24]) 

<Jx 
ksi 

200 
150 BORON-EPOXY Ox 

1000 AVC05505 6 
100 2 xfty1 

70 .~~ 500 

40 

0 200 
20 Ox 

10 
100 

----...L62 
50 7 

50~·~1~----'~-'--~..l_--1~.......1 
5° 30· 45• 60° 75• 90• 

• TENSION 

OFF-AXIS ANGLE, 0 

<Jx 
MPa 

Figure 2-44 Hoffman Failure Criterion for Boron-Epoxy 
(Data from Pipes and Cole (2-25]) 

2.9.5 Tsai-Wu Tensor Failure Criterion 

. . The ~receding biaxial failure criteria suffer from various inadequa-
~res rn therr repres~ntation of expe~mental data. One obvious way to 
improve the correlatro_n between !i criterion and experiment is to increase 
t~: num~~r of terms rn the prediction equation. This increase in curve
!1ttrng abrhty plus the added feature of representing the various strengths 
rn tensor fo":1.Y!as ~sed by_ Tsai and Wu [2-26). In the process, a new 
strength . def1nrt1~n 1~ required to represent the interaction between 
stresses 1n two d1rect1ons. 

( 
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Tsai and Wu postulated that a failure surface in six-dimensional 
stress space exists in the form 

F1 a1 + FIJ a1 ai = 1 i, j = 1, ... , 6 (2.139) 

wherein F1 and Fil are strength tensors of the second and fourth rank, 
respectively, and the usual contracted stress notation is used (a4 = -r23, 
a5 =-r31 , and a6 =-r12). Equation (2.139) is obviously very complicated; 
we will restrict our attention to the reduction of Equation (2.139) to the 
case of an orthotropic lamina under plane stress conditions: 

2 2 2 
F1°1 + F2°2+ F5<15 + F11°1 + F22°2+ F66as+2F12°1°2 = 1 (2.1 40) 

The terms that are linear in the stresses are useful in representing dif
ferent strengths in tension and compression. The terms that are quad
ratic in the stresses are the more or less usual terms to represent an 
ellipsoid in stress space. However, the independent p~uameter F12 is 
new and quite unlike the dependent coefficient 2H = 1/X in the Tsai-Hill 
failure criterion on the term involving interaction between normal stresses 
in the 1- and 2-directions. 

Most components of the strength tensors are defined in terms of the 
engineering strengths already discussed. For example, consider a 
uniaxial load on a specimen in the 1-direction. Under tensile load, the 
engineering strength is Xt, whereas under compressive load, it is Xe (for 
example, Xe= - 400 ksi (-2760 MPa) for boron-epoxy). Thus, under 
tensile load, 

and under compressive load, 

F1Xc+F11~=1 

Upon simultaneous solution of Equations (2.141) and (2.142), 

Similarly, 

(2.141) 

(2.142) 

(2.143) 

(2.144) 

Similar reasoning, along with our observation that the shear strength in 
principal material coordinates is independent of shear stress sign, leads 
to 

F66=_1_ 
S2 

(2.145) 

Note that for equal strengths in tension and compression (X t = -Xe and 
Yt=-Yc), 
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(2.146) 

(2.147) 

which is remarkably similar to y,e Tsai-Hill failure criterion except for the 
value of F12, which is not -1/X . 

Determination of the fourth-rank tensor term F12 remains. Bas
ically, F12 cannot be found from any uniaxial test in the principal material 
directions. Instead, a biaxial test must be used. This fact should not be 
surprising because F12 is the coefficient of the product of er

1 
and er

2 
in 

the failure criterion, Equation (2.140). Thus, for example, we can impose 
a state of biaxial tension described by er1 = er2 = er and all other stresses 
are zero. Accordingly, from Equation (2.140), 

(2.148) 

Now solve for F12 after substituting the definitions just derived for 
F1, F2, F11 , and F22: 

F12 =~ [1 -[-1-+_1_+_1_+_1_Jer+ [-1-+_1 _ Jer2](2.149) 
2er Xi Xe Yt Ye Xi Xe YtYe 

The value of F12 then depends on the various engineering strengths plus 
the biaxial tensile failure stress, er. Tsai and Wu also discuss the use of 
off-axis uniaxial tests to determine the interaction strengths such as F

12 [2-26]. 

At this point, recall that all interaction between normal stresses er
1 and er2 in the Tsai-Hill failure criterion is related to the strength in the 

1-direction: 
2 2 2 

er1 _ er1er2 + er2 + ,:12 = 
1 

x2 x2 y2 s2 (2.150) 

Thus, the Tsai-Wu tensor failure criterion is obviously of more general 
character than the Tsai-Hill or Hoffman failure criteria. Specific advan
tages of the Tsai-Wu failure criterion include (1) invariance under rotation 
or redefinition of coordinates; (2) transformation via known tensor
transformation laws (so data interpretation is eased); and (3) symmetry 
properties similar to those of the stiffnesses and compliances. Accord
ingly, the mathematical operations with this tensor failure criterion are 
well-known and relatively straightforward. 

Pipes and Cole [2-25] measured the interaction term F12 in various 
off-axis tests for boron-epoxy. They reported significant variation of F

12 for off-axis tension tests and acceptable variation for off-axis com
pression tests. However, compression tests are much more difficult to 
perform than 'simple' off-axis tension tests on a flat specimen with a high 
length-to-width ratio. A compression specimen with a high length-to-

( 
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width ratio to avoid shear-extension coupling effects is extremely sus
ceptible to buckling. Hence, a tubular specimen (with a rotating end to 
avoid shear-extension coupling effects) must be used .. Although the de
termination of F12 was not precise, Pipes an_d Cole _ob~amed the excellent 
agreement between the Tsai-Wu tensor failure cntenon and the ex~er
imental data shown in Figure 2-45. Changes of F12 by a factor of eight 
resulted in only slight changes in predicted streng_th over the rB:nge 
5° < e < 25°_ Also, the difference be~een the Tsai-Wu te~sor failure 
criterion and the Tsai-Hill failure criterion was less than 5 Yo over the 
range 5° < e < 75°. 

200~~~~~~~~---::---~. 
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50 
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0° 15° 30° 45° so0 15° soP 
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Figure 2-45 Tsai-Wu Tensor Failure Criterion (After Pipes and Cole [2-25]) 

The Tsai-Wu failure criterion has several important characteristics: 

( ) Increased curve-fitting capability over the Tsai-Hill ~nd 1 
Hoffman criteria because of an additional_ term in the.equation. 

(2) The additional term, F12, can be determined only with an ex-
pensive and difficult-to-perform biaxial test. .. 

(3) Graphical interpretations of the results are fac1htated by the 
tensor formulation. 

Because of the difficulty and expense of obtaining a reliab_le value of 
F and the fact that F12 seems to have little influence on the_fmal results, 
N~rayanaswami and Adelman [2-27] suggeste~ that F12 simply be re
garded as zero. This practical approach avoids the expense of the 
biaxial test. 
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2.9.6 Summary of Failure Criteria 

Other strength criteria are described by Sendeckyj [2-28). 
Tennyson, MacDonald, and Nanyaro addressed the next logical step in 
a curve-fitting procedure, namely a third-order polynomial fit to failure 
data [2-29]. However, the added complexity of their criterion has limited 
its use even though they identified some loading conditions under which 
their criterion is necessary to properly describe the actual failure behav
ior. 

Problem Set 2.9 

2.9.1 Identify which subcriterion for failure applies for each segment of the multiseg
mented maximum stress and maximum strain failure criteria curves in Figures 2-37 
and 2-38 for uniaxial off-axis loading crx. 

2.9.2 Derive Equation (2.131) from Equations (2.128), (2.129), and (2.130). 
2.9.3 Derive Equation (2.132) from Equations (2.131) and (2.126). 
2.9.4 Derive Equation (2.134) from Equations (2.132) and (2.133). 
2.9.5 What is the Tsai-Hill failure criterion when the fibers of a unidirectional lamina in the 

1-2 plane are aligned in the 2-direction? Denote the lamina strength in the fiber di
rection by X as usual; thus, the strength in the 1-direction is Y. Compare this crite
rion with Equation (2.132). 

2.9.6 Find the Tsai-Hill failure criterion for pure shear loading at various angles 0 to the 
principal material directions, i.e., the shear analog of Equation (2.134). 

2.9.7 Note for Tsai's E-glass-epoxy data in Figure 2-36 that the uniaxial compressive 
strength at some angles between 0° and 90° is actually less than Ye (not true for 
uniaxial tensile strength). The correct inference to be made is that E-glass-epoxy 
has a low shear strength. This situation is the strength analog for the Tsai-Hill failure 
criterion in Equation (2.134) of the stiffness variation studied in Problem 2.6.7. Find 
the relation between S, X, and Y such that such low values of off-axis uniaxial 
strength occur and also the relation for the case where values of off-axis uniaxial 
strength higher than X occur. 

2.9.8 Determine the character of the Tsai-Hill failure criterion for pure shear loading be
tween off-axis angles of 0° and 90° by examining the characteristics of the result 
from Problem 2.9.6 using the techniques of Appendix B. That is, this is the shear 
analog of Problem 2.9.7. 

2.10 SUMMARY 

In Section 2.2, the stress-strain relations (generalized Hooke's law) 
for anisotropic and orthotropic as well as isotropic materials are dis
cussed. These relations have two commonly accepted manners of ex
pression: compliances and stiffnesses as coefficients (elastic constants) 
of the stress-strain relations. The most attractive form of the stress-strain 
relations for orthotropic materials involves the engineering constants de
scribed in Section 2.3. The engineering constants are particularly helpful 
in describing composite material behavior because they are defined by 
the use of very obvious and simple physical measurements. Restrictions 
in the form of bounds are derived for the elastic constants in Section 2.4. 
These restrictions are useful in understanding the unusual behavior of 
composite materials relative to conventional isotropic materials. Atten
tion is focused in Section 2.5 on stress-strain relations for an orthotropic 
material under plane stress conditions, the most common use of a com
posite lamina. These stress-strain relations are transformed in Section 
2.6 to coordinate systems that are not aligned with the principal material 
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directions of the lamina. This transformation is neces~ary in or~er ~o 
describe the behavior of composite materials that have fibers running in 
directions other than the natural geometrical directions of the st~uctural 
element (e.g., a helically wound circular cylindrical shell has hel1~al co
ordinates in which the fibers are arranged in contrast to the axial and 
circumferential coordinates of the circular cylindrical shell). The str~ss
strain relations for an orthotropic lamina with principal material directions 
that are not aligned with the obvious geometrical di~ection~ are fu~her 
related to generalized engineering consJants. and a_nrsotrop1c material~. 
The transformed reduced stiffnesses derived 1n Section 2.6 are shown in 
Section 2.7 to have certain combinations that are invariant with respect 
to rotation of coordinates in the plane of the lamina. The invariants are 
useful in design of laminated composite structures. Next, in Section 2.8, 
the important topic of lamina strength is addressed. Th_ere, the co"!lmon 
approach for conventional isotropic materials of com~ann~ the maximum 
principal stress with the maximum allowable stress 1s reJe?ted for com
posite materials. Tests are de~ribed. to ~eas~re. the st1ffnE:sses an? 
strengths of orthotropic composite laminae 1n pnnc~pal mate_na! coordi
nates. The procedures for estimating the ~tre~gth m. non-pnn?!Pal ma
terial coordinates and the strength under b1ax1al loading cond1t1~m.s are 
discussed in Section 2.9. There, a failure criterion that is quadratic in the 
biaxial stresses is seen to agree well with experimental data. 
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3.1 INTRODUCTION 

Chapter 3 

MICROMECHANICAL 
BEHAVIOR OF A LAMINA 

We addressed the 'apparent' properties of a lamina in Chapter 2. 
That is, a large enough piece of the lamina was ?onsidered ~o that the 
fact that the lamina is made of two or more constituent matenals cannot 
be detected. Thus, almost magically, we were able to say that a boron
epoxy composite material of unidirectional boron !ibers. in e~oxy_ has 
certain stiffnesses and strengths that we measured in various d1rect1ons. 
However, this question has not been asked: how can the_ stiffnesses ~nd 
strengths of a graphite-epoxy composite materia~ be vaned. by changm_g 
the proportion of graphite fibers to epoxy matrix? That 1s, the ba~,c 
question of micromechanics is: what is the relati_onship of ~he ?ompos1te 
material properties to the properties of the constituents as in Figure 3-1? 

FIBER 

Et 

x, 

MATRIX 

Em 

Xm 

3 

2 

COMPOSITE MATERIAL 

Ee,=? 

Xe,=? 

Figure 3-1 Basic Question of Micromechanics 
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Just as there must be some rationale for selecting a particular 
stiffness and/or strength of material for a specific structural application, 
there must also be a rationale for determining how best to achieve that 
stiffness and strength for a composite of two or more materials. That is, 
how can the percentages of the constituent materials be varied so as to 
arrive at the desired composite stiffness and strength? 

An appropriate division of the efforts just mentioned is helped by 
defining two areas of composite material behavior, micromechanics and 
macromechanics: 

Micromechanics - The study of composite material behavior 
wherein the interaction of the constituent materials is examined in detail 
as part of the definition of the behavior of the heterogeneous composite 
material. 

Macromechanics - The study of composite material behavior 
wherein the material is assumed homogeneous and the effects of the 
constituent materials are detected only as averaged apparent properties 
of the composite material. 

Thus, the properties of a lamina can be experimentally determined in the 
'as made' state or can be mathematically estimated on the basis of the 
properties of the constituent materials. That is, we can predict lamina 
properties by the procedures of micromechanics, and we can measure 
lamina properties by physical means and use the properties in a macro
mechanical analysis of the structure. Knowledge of how to predict 
properties is essential to making composite materials that must have 
certain apparent or macroscopic properties. Thus, micromechanics is a 
natural adjunct to macromechanics when viewed in a materials design 
rather than a structural analysis environment. Real design power is 
demonstrated when the micromechanical predictions of the properties 
of a lamina agree with the measured properties. However, recognize that 
a micromechanical analysis has significant, inherent limitations. For ex
ample, a perfect bond between fibers and matrix is a usual analysis re
striction that might well not be satisfied by some composite materials. 
An imperfect bond would presumably yield a material with properties 
degraded from those of the micromechanical analysis. Thus, microme
chanical theories must be validated by careful experimental work. With 
such broad statements as background, let us now turn to the study of 
some specific micromechanics theories. 

The two basic approaches to the micromechanics of composite 
materials are 

(1) Mechanics of Materials 
(2) Elasticity 

The mechanics of materials (or strength of materials or resistance of 
materials) approach embodies the usual concept of vastly simplifying 
assumptions regarding the hypothesized behavior of the mechanical 
system. The elasticity approach actually is at least three approaches: (1) 
bounding principles, (2) exact solutions, and (3) approximate solutions. 
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All approaches are characterized by more. ri~orous satisfacti~n. ?f phys
ical laws (equilibrium, deformation continuity and compat1b1l1ty, and 
stress-strain relations) than in mechanics of materials. Both basic ap-
proaches will be discussed in this cha~ter. . . 

The objective of all micromechanics approaches 1s to _determm~ t~e 
elastic moduli or stiffnesses or compliances of a composite material m 
terms of the elastic moduli of the constituent materials. For example, the 
elastic moduli of a fiber-reinforced composite material must be deter
mined in terms of the properties of the fibers and the matrix and in terms 
of the relative volumes of fibers and matrix: 

where 

Cii = Cii(E1, v1, V1, Em, vm, Vm) 

E
1
= Young's modulus for an isotropic fiber 

v
1 
= Poisson's ratio for an isotropic fiber 

V _ Volume of Fibers 
1- Total Volume of Composite Material 

with analogous definitions applying for the matrix material. 
An additional and complementary objective of micromechanics ap

proaches to composite materials analysis is to determine the stre~gths 
of the composite material in terms of the str~ngths. of the const1tu~nt 
materials. For example, the strength of a fiber-reinforced ~ompos1te 
material must be determined in terms of the strengths of the fibers and 
the matrix and their relative volumes (relative to the total volume of the 
composite material). In functional form, 

Xi= Xi(Xif• Vf, Xim• V m) 

where 
x. = X Y S = Composite Material Strengths 

I ' , 

xif = x,, v1, sf= Fiber Strengths 
Volume of Fibers 

Vf = Total Volume of Composite Material 

with analogous definitions applying for the matri~ material. The foregoing 
definitions could be modified to account for different strengths under 
tensile and compressive loading. Also, the definitions could be simpli!ied 
for isotropic fibers and/or isotropic matrix materials. Actually, we might 
be surprised at the form of the actual functional relationship for composite 
material strength in compression-more on this later. 

Not much work is available regarding micromechanical theories of 
strength. However, considerable work as been done on micromechan
ical theories of stiffness. We will concentrate on those aspE:Cts o~ 
stiffness theory that are most prominent in usage ~e.g., the Halpm-Tsa1 
equations) in addition to those aspects that c_learl~ illustrate the _thrust _of 
micromechanics. Available strength information will be summarized with 
the same intent as for stiffness theories. 

Irrespective of the micromechanical stiffness approach used, the 
basic restrictions on the composite material that can be treated are: 
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• The lamina is 
• initially stress-free • macroscopically homogeneous 
• linearly elastic • macroscopically orthotropic 

• The fibers are 
• homogeneous • regularly spaced 
• linearly elastic • perfectly aligned 
• isotropic • perfectly bonded 

• The matrix is 
• homogeneous • isotropic 
• linearly elastic • void-free 

In addition, no voids can exist in the fibers or matrix or in between them 
(i.e., the bonds between the fibers and matrix are perfect). These re
strictive conditions should be at least somewhat suspicious. That is, 
some of them look perfectly plausible, but others should be readily ap
parent as somewhat unlikely to occur. For example, the matrix might 
very well have few voids such that it can be considered void-free, but the 
bonds between fibers and matrix surely are not perfect. 

Basic to the discussion of micromechanics is the representative 
volume element that is the smallest region or piece of material over which 
the stresses and strains can be regarded as macroscopically uniform and 
yet the volume still has the correct proportions of fiber and matrix, i.e., is 
still representative of the composite material and its constituents by vol
ume. Microscopically, however, the stresses and strains are nonuniform 
because of the heterogeneity of the material. Thus, scale of the volume 
element is very important. Generally, only a single fiber appears in a 
representative volume element, but more than one fiber can be required. 
The fiber spacing in a composite lamina with unidirectional fibers consti
tutes one dimension of the representative volume element. One of the 
other two dimensions is the lamina thickness or fiber spacing in the 
thickness direction if the lamina is more than one fiber thick. The third 
dimension is arbitrary. A typical representative volume element for a 
lamina with unidirectional fibers is shown in Figure 3-2. 

LAMINA 
THICKNESS 

LAMINA 
THICKNESS 

MACROSCOPICALLY HOMOGENEOUS LAMINA MICROSCOPICALLY HETEROGENEOUS 
REPRESENTATIVE VOLUME ELEMENT 

Figure 3-2 Representative Volume Element - Lamina with Unidirectional Fibers 
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For a lamina with fibers woven in two directions, the representative 
volume element must be much more complex than that for a lamina with 
unidirectional fibers. If the weaving geometry is neglected, !WO of the 
dimensions of the representative volume element are the spacings of the 
respective fibers. Finally, the third dimension is governed by the n~mber 
of fibers in the thickness. If the actual weave _geometry (curved f1be_rs) 
is to be considered, finite element representation of the repre~e.ntative 
volume element, as in Figure 3-3, might be desira~le. '.here, finite ele
ments in the shape of triangles and quadrilaterals, in~luding s~uares, are 
used to represent both the fiber and the surrounding matrix, and the 
matrix is presumed perfect. 

MATRIX 
FIBER 

Figure 3-3 Finite Element Model of . 
a Representative Volume Element for a Woven Lamina 

Irrespective of the analysis approach, the representative volu~e 
element must be carefully defined and used. In fact, the represe_ntat1ve 
volume element is crucial to the analysis and is the micromechanics an
alog of the free-body diagram in statics and dynamics. The re~resen
tative volume element is of higher order than th~ free:~ody diagram 
because deformations and stresses are addressed in add1t1~n to forc~s. 

The results of the micromechanics studies of comp~s1t~ _materials 
with unidirectional fibers will be presented as plots of an ind1v1~ual me
chanical property versus the fiber~volume f~actio~. A schematic repre
sentation of several possible functional relat1onsh1ps between ~.property 
and the fiber-volume fraction is shown in_ Figure 3-~- I~ add1!1on, both 
upper and lower bounds on those functional relat1onsh1ps will be ob-
tained. 

MECHANICAL 
PROPERTY 

OF 
COMPOSITE 
MATERIAL 

O .2 .4.6.8 

FIBER-VOLUME FRACTION, V f 

FIBER VALUE 

Figure 3-4 Typical Forms of Micromechanics Results 
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The mechanics of materials approach to the micromechanics of 
material stiffnesses is discussed in Section 3.2. There, simple approxi
mations to the engineering constants E1, E2, v12, and G12 for an ortho
tropic material are introduced. In Section 3.3, the elasticity approach to 
the micromechanics of material stiffnesses is addressed. Bounding 
techniques, exact solutions, the concept of contiguity, and the Halpin
Tsai approximate equations are all examined. Next, the various ap
proaches to prediction of stiffness are compared in Section 3.4 with 
experimental data for both particulate composite materials and fiber
reinforced composite materials. Parallel to the study of the microme
chanics of material stiffnesses is the micromechanics of material 
strengths which is introduced in Section 3.5. There, mechanics of ma
terials predictions of tensile and compressive strengths are described. 

3.2 MECHANICS OF MATERIALS APPROACH TO STIFFNESS 

The key feature of the mechanics of materials approach is that 
certain simplifying assumptions must be made regarding the mechanical 
behavior of a composite material in order to get an effective solution. 
Each assumption must be plausible, i.e., there must be a reason why the 
assumption might be true (in mechanics, assumptions cannot be arbi
trary!). The most prominent assumption is that the strains in the fiber 
direction of a unidirectional fiber-reinforced composite material are the 
same in the fibers as in the matrix as shown in Figure 3-5. If the strains 
were not the same, then a fracture between the fibers and the matrix is 
implied. Thus, the assumption has a plausible reason. Because the 
strains in both the matrix and fiber are the same, then it is obvious that 
sections normal to the 1-axis, which were plane before being stressed, 
remain plane after stressing. The foregoing is a prominent assumption 
in the usual mechanics of materials approaches such as in beam, plate, 
and shell theories. We will derive, on that basis, the mechanics of ma
terials predictions for the apparent orthotropic moduli of a unidirectionally 
fiber-reinforced composite material, namely, E1, E2, v 12, and G12. Note 
that the basis for the simplifying assumptions for each prediction is firm, 
and not wishful thinking. 

r 
MATRIX 

I. L 
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l--- 1 
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I--
I • 

Figure 3-5 Representative Volume Element Loaded in the 1-Direction 

( 
Mlcromechanlcs of a La1111na 127 

3.2.1 Determination of E1 

The first modulus to be determined is that of the composite material 
in the 1-direction, that is, in the fiber direction. From Figure 3-5, 

AL 
E1 =T (3.1) 

where e1 applies for both the fibers and the matrix according to the basic 
assumption. Then, if both constituent materials behave elastically, the 
stresses in the fiber direction are 

O't = '=t E1 O'm = EmE1 (3.2) 

The average stress cr1 acts on cross-sectional area A of the represen
tative volume element, cr1 acts on the cross-sectional area of the fibers 
At, and O'm acts on the cross-sectional area of the matrix Am· Thus, the 
resultant force on the representative volume element of composite ma
terial is 

(3.3) 

By substitution of Equation (3.2) in Equation (3.3) and recognition from 
macromechanics that 

(3.4) 

apparently 

At Am 
E1 =E1---,;+Em-,;:- (3.5) 

But the volume fractions of fibers and matrix can be written as 

A, Am 
V1=---,; Vm=-,;:- (3.6) 

Thus, 
E1 = E1V1+ EmVm (3.7) 

which is known as the rule of mixtures tor the apparent Young's modulus 
of the composite material in the direction of the fibers and is graphically 
depicted in Figure 3-6. The rule of mixtures represents a simple linear 
variation of apparent Young's modulus E1 from Em to E1 as V1 goes from 
O to 1. The fiber modulus is typically many times the matrix modulus. 
Thus, at usual practical fiber-volume fractions around .6, the fiber 
modulus dominates the composite modulus E1. Even large changes in 
Em have very little effect on E1 (certainly not in proportion to the change 
in Em) as long as the fiber-volume fraction is not close to zero. Thus, 
we regard E1 as a fiber-dominated property. 

The load sharing between fiber and matrix can be viewed as a 
simple springs-in-parallel model as in Figure 3-7. There, if all springs 
deform the same amount (the equal-strains assumption) and k, > > km, 
then the fiber spring takes most of the applied load. 

To appreciate the practical value of this analysis for E1, examine 
the experimental results relative to the predicted straight line in Figure 
3-8. The agreement is excellent! 
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FIBER-VOLUME FRACTION, Vf 

Figure 3-6 Variation of E1 with Fiber-Volume Fraction 
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3.2.2 Determination of E2 

The apparent Young's modulus, E2, of the composite material in the 
direction transverse to the fibers is considered next. In the mechanics 
of materials approach, the same transverse stress, 0"2, is assumed to be 
applied to both the fiber and the matrix as in Figure 3-9. That is, equi
librium of adjacent elements in the composite material (fibers and matrix) 
must occur (certainly plausible). However, we cannot make any plausible 
approximation or assumption about the strains in the fiber and in the 
matrix in the 2-direction. 

0'2 t2 
FIBER 

{ 
MATRIX 

Figure 3-9 Representative Volume Element Loaded in the 2-Direction 

The strains in the fiber and in the matrix are, therefore, found from 
the stresses: 

0"2 0"2 
9 = °E;- Em = Em (3.8) 

The transverse dimension over which, on average, 9 acts is approxi
mately VfW, whereas Em acts on VmW· Thus, the total transverse de
formation is 

(3.9) 

or 
(3.10} 

which becomes, upon substitution of the strains from Equation (3.8), 

0"2 0"2 
~ = Vf °E;- + V m Em (3.11) 

but from the macroscopic stress-strain relation 

[ 
Vf 0"2 V m0"2 ] 

0"2=E2~=E2 ~+~ (3.12) 

whereupon 

(3.13) 
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which is t~e mec~ani~s of materials expression for the apparent Young's 
modulus m the direction transverse to the fibers. Equation (3.13) can 
be nondimensionalized as 

E2 = 1 
Em V m + V1 (EmtE1) 

(3.14) 

Values of E:/Em are given in Table 3-1 for three values of the fiber-to
matrix modulus ratio. 

Table 3-1 Values for Ez'Em for Various Et'Em and v, 

Ei v, 
Em 

0 .2 .4 .5 .6 .8 .9 1 
1 1 1 1 1 1 1 1 1 

10 1 1.22 1.56 1.82 2.17 3.56 5.26 10 
100 1 1.25 1.66 1.98 2.46 4.80 9.17 100 

Predicted results for E2 are plotted in Figure 3-10 for three values 
o! the ~iber-to-matrix-modulus ratio. Note that if v, = 1, the modulus pre
dicted 1s that of the fibers. However, recognize that a perfect bond be
~e~n fi_bers is then i_mplie~ if a tensile cr2 is applied. No such bond is 
implied 1f a compressive cr2 1s applied. Observe also that more than 50% 
by_ volume of _fibers is require~ to raise the transverse modulus E2 to 
twice the matrix modulus even 1f E1 = 10 x E I That is the fibers do not 
contri~u!e muc~ to the_ transverse modulus ~nless th~ percentage of fi
bers. 1s 1m~ract1cally high. Thus, the composite material property E2 is 
matrix-dominated. 

A simple springs-in-series model represents the representative 
volu,:n~ element l?ad_ed in the _2-dir~tion as in Figure 3-11. There, the 
matrix 1s th~ s?ft h~k m the chain of stiffnesses. Thus, the spring stiffness 
for the matrix 1s quite low. We would expect, on this basis that the matrix 
deformation dominates the deformation of the composite 'material. 

E2 
Em 

3 

2 

10 

E1/Em = 100 9 

8 

7 

6 
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4 
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2 

.2 .4 .6 .8 1.0 

v, 

Figure 3-10 Variation of E2 with Fiber-Volume Fraction 

( ( 
Mlcromechanlcs of a Lainlna 131 

MATRIX FIBER MATRIX 

Figure 3-11 Deformation Sharing in a Fiber-Reinforced Lamina 

Obviously, the assumptions involved in the foregoing derivation are 
not entirely consistent. A transverse strain mismatch exists at the 
boundary between the fiber and the matrix by virtue of Equation (3.8). 
Moreover, the transverse stresses in the fiber and in the matrix are not 
likely to be the same because v1 is not equal to vm. Instead, a complete 
match of displacements across the boundary between the fiber and the 
matrix would constitute a rigorous solution for the apparent transverse 
Young's modulus. Such a solution can be found only by use of the theory 
of elasticity. The seriousness of such inconsistencies can be determined 
only by comparison with experimental results. 

Another observation on this solution is that if the Poisson's ratios 
of the fiber and the matrix are not the same (they are likely different), 
then longitudinal stresses are induced in the fiber and matrix (with a net 
resultant longitudinal force of zero) with accompanying shearing stresses 
at the fiber-matrix boundary. Such shearing stresses will naturally arise 
under some stress states. Thus, this material characteristic cannot be 
regarded as undesirable or indicative of an inappropriate solution. 

The predictions for E2 from Equation (3.13) are shown along with 
measured values for E2 in Figure 3-12. There, obviously this approach 
is an underestimate of the contribution of the flexible matrix material to 
E2. As we will see in Section 3.4, better approaches are available for 
prediction of E2, but at the cost of far more complexity. 
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Em= .5 x 10& psi (3.45 GPa) 
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FIBER-VOLUME FRACTION, Vt 
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Figure 3-12 Predicted versus Measured E2 (Data from Tsai [3-11) 
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3.2.3 Determination of v12 

The so-called major Poisson's ratio, v12, is obtained by an ap
proach similar to the analysis for E1. First, the major Poisson's ratio is 

V12=-1 (3.15) 
E1 

for the stress state a1 = a and all other stresses are zero. Then, the 
deformations are depicted in the representative volume element of Figure 
3-13. There, the fundamental simplifying assumption is that the fiber 
strains are identical to the matrix strains in the fiber direction, as in the 
approach to E1• The transverse deformation l:lw is macroscopically 

/:lw = - W~ = Wv 1~ 1 

but is also microscopically 

ll.w=~w+l:l,w 

r FIBER /:iw/2 
_J_ 

w[ --------- -TI 
I 
I 

MATRIX I 

-----------
1. L .I ~L.I 

(3.16) 

(3.17) 

• 
(7'1 

-• 
• 

Figure 3-13 Representative Volume Element Loaded in the 1-Direction 

In the manner of the analysis for the transverse Young's modulus, E2, the 
transverse deformations l:lmw and 1:1,w· are approximately 

~w=WVmVmE1 l:l,w=WVtVtE1 (3.18) 

Combine Equations (3.16)-(3.18) and divide by e1W to get 

v12 =vmVm+vtVf (3.19) 

which is a rule of mixtures for the major Poisson's ratio and is plotted in 
a manner similar to that for E1 in Figure 3-14. Because the Poisson's 
ratios vm and Vt are not significantly different from each other, the com
posite material major Poisson's ratio v12 is neutral, i.e., neither matrix
dominated nor fiber-dominated. Experimental· results for v12 are pre
sented in Section 3.4.2. 
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0 1 v, 
Figure 3-14 Variation of v12 with Fiber-Volume Fraction 

3.2.4 Determination of G12 

The in-plane shear modulus of a lamina, G12, is determined in the 
mechanics of materials approach by presuming that the shearing 
stresses on the fiber and on the matrix are the same (clearly, the shear 
deformations cannot be the samel). The loading is shown in the repre
sentative volume element of Figure 3-15. By virtue of the basic 
presumption, 

't 't 
'Ym=-G 1,=-

m Gf 
(3.20) 

The nonlinear shear stress-shear strain behavior typical of fiber
reinforced composite materials is ignored, i.e., the behavior is regarded 
as linear. r 

w 1--. 
a Shear Stress Loading 

Figure 3-15 Representative Volume Element Loaded in Shear 

Llm 
T 

On a microscopic scale, the deformations are shown in Figure 3-15. 
Note that the matrix deforms more than the fiber in shear because the 
matrix has a lower shear modulus. The total shearing deformation is 

l:l=yW (3.21) 

and is made up of, approximately, microscopic deformations 
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Then, because .1 = '1m + At, division by W yields 

y=VmYm+V1Yf 

(3.22) 

(3.23) 

or upon substitution of Equation (3.20) and realization that macroscop
ically 

Equation (3.23) can be written as 

Finally, 

_'t_ = V _'t_ + Vf ....L 
G12 m Gm Gf 

GmGf 
G12 = ----'----

V mGf + Vf Gm 

(3.24) 

(3.25) 

(3.26) 

which is the same type of expression as was obtained for the transverse 
Young's modulus, E2. As with E2, the expression for G 12 can be nor
malized by a modulus related to the matrix, that is, 

G12 = 1 
Gm V m + Vf(Gn/Gf) 

(3.27) 

which is plotted in Figure 3-16 for several values of GrGm. Only for a 
fiber volume of greater than 50% of the total volume does G12 rise above 
twice Gm even when GrGm = 101 As with E2, the composite material 
shear modulus G 12 is matrix-dominated. Measured values of G 12 have 
a relation to the predicted values similar to those for E2 in Figure 3-12 
(see Section 3.4.2). 
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Figure 3-16 Variation of G12 with Fiber-Volume Fraction 
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3.2.5 Summary Remarks 

The foregoing are but examples of the types of mechanics of ma
terials approaches that can be used. Other assumptions of physical 
behavior lead to different expressions for the four elastic moduli for a 
unidirectionally reinforced lamina. For example, Ekvall (3-2] obtained a 
modification of the rule-of-mixtures expression for E1 and of the ex
pression for E2 in which the triaxial stress state in the matrix due to fiber 
restraint is accounted for: 

(3.28) 

(3.29) 

where 

' Em 
Em= 2 

1-2vm 
(3.30) 

However, these modifications of the previously derived expressions are 
not significant for vm < 1/4. Ekvall made other modifications to account 
for such features as square or rectangular versus round fibers and for 
stress concentrations due to fibers (3-3]. 

Problem Set 3.2 

3.2.1 Use a mechanics of materials approach to determine the apparent Young's modulus 
for a composite material with an 'inclusion' of arbitrary shape in a cubic element of 
equal unit-length sides as in the representative volume element (AVE) of Figure 
3-17. Fill in the details to show that the modulus is 

E=..Q'..= FIA= F/(1[L]x1[L)) F 
E li/L li/(1 [LI) 6[L] 

where [L] represents units of length and can be written as 

1 f1 
dx 

E= J0 E1+(Ei-E1)~(x) 

where A.?(x) is the distribution of the inclusion. Note that the slice dx long of the AVE 
represents a microscopic portion of the AVE, i.e., recognize the difference between 
what happens for a slice and what happens for the entire AVE. Use this result in 
Problems 3.2.2 through 3.2.4. 

3.2.2 Verify that the general expression for the modulus of a dispersion-stiffened com
posite material reduces to 

l= Em+(Ed-~)v!3 

Em Em + (Ed - Em)~3[ 1 - V ~
13

] 

for a cubic particle of modulus ~ in a matrix with modulus Em. The volume fraction 
of the cubic particles is V d and that of the matrix Is V m or 1 - V d· Hint: the repre
sentative volume element Is a cube within a cube. 
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Figure 3-17 Particulate Reinforcement (After Paul {3-4]) 

3.2.3 Determine the expression for the modulus of a composite material stiffened by par
ticles of any cross section but prismatic along the direction in which the modulus is 
desired as in Figure 3-18. 

Figure 3-18 Prismatic Reinforcement (After Paul [3-4]) 

3.2.4 Determine the expression for the modulus of a composite material that consists of 
matrix material reinforced by a slab of constant thickness in the direction in which 
the modulus is desired as in Figure 3-19. 

Figure 3-19 Slab Reinforcement (After Paul [3-4]) 

3.2.5 To what conclusion are you led if you assume for the determination of E2 in Section 
3.2.2 equal strains in the fiber and the matrix instead of equal stresses in the di
rection perpendicular to the fibers? 

3.2.6 Develop a schematic model with fiber springs and matrix springs in which the actual 
surrounding of the fiber with matrix material is taken into account, i.e., for a cross 
section such as that with the dimension 'lamina thickness' in Figure 3-2, except 
make the fiber cross section square instead of round. 
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3.3 ELASTICITY APPROACH TO STIFFNESS 

3.3.1 Introduction 

The division of micromechanics stiffness evaluation efforts into the 
mechanics of materials approach and the elasticity approach with its 
many subapproaches is rather arbitrary. Chamis and Sendeckyj (3-5] 
divide micromechanics stiffness approaches into many more classes: 
netting analyses, 1 mechanics of materials approaches, self-consistent 
models, variational techniques using energy-bounding principles, exact 
solutions, statistical approaches, finite element methods, semiempirical 
approaches, and microstructure theories. All approaches have the 
common objective of the prediction of composite materials stiffnesses. 
All except the first two approaches use some or all of the principles of 
elasticity theory to varying degrees so are here classed as elasticity ap
proaches. This simplifying and arbitrary division is useful in this book 
because the objective here is to merely become acquainted with ad
vanced micromechanics theories after the basic concepts have been in
troduced by use of typical mechanics of materials reasoning. The reader 
who is interested in micromechanics should supplement this chapter with 
the excellent critique and extensive bibliography of Chamis and 
Sendeckyj [3-5). 

The variational energy principles of classical elasticity theory are 
used in Section 3.3.2 to determine upper and lower bounds on lamina 
moduli. However, that approach generally leads to bounds that might 
not be sufficiently close for practical use. In Section 3.3.3, all the princi
ples of elasticity theory are invoked to determine the lamina moduli. 
Because of the resulting complexity of the problem, many advanced an
alytical techniques and numerical solution procedures are necessary to 
obtain solutions. However, the assumptions made in such analyses re
garding the interaction between the fibers and the matrix are not entirely 
realistic. An interesting approach to more realistic fiber-matrix inter
action, the contiguity approach, is examined in Section 3.3.4. The widely 
used Halpin-Tsai equations are displayed and discussed in Section 3.3.5. 

3.3.2 Bounding Techniques of Elasticity 

Paul (3-4) was apparently the first to use the bounding (variational) 
techniques of linear elasticity to examine the bounds on the moduli of 
multiphase materials. His work was directed toward-aAalysis of the 
elastic moduli of alloyed metals ratherJl}~_Q_!9W~_!t~~r-rE3lQ_fQr..C.ed com
posite materials. Accordingly-:-the treatment is for ~posite 
material made of different isotropic constituents. The composite material 
is isotropic because the alloyed constituents are uniformly dispersed and 
have no~p!ei~rr_ed orientation. The modulus of the matrix material is Em 

1The basic assumption in netting analysis is that the fibers provide all the longitudinal 
stiffness and the matrix provides all the transverse and shear stiffness as well as the 
Poisson effect. On the basis of our observations of mechanics of materials results, we 
recognize the netting analysis assumption to be grossly conservative. Hence, netting 
analysis will be ignored in this book, and more useful theories will be addressed. 
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and the modulus of the dispersed material is Ed, whereas the modulus 
of the composite material is E. The volume fractions of the constituents 
are V m and V d such that 

(3.31) 

Obviously, any relationship for the composite modulus, E, must yield 
E = Em for V m = 1 and E = Ed for V d = 1. 

One of the simplest relationships that satisfies the foregoing re
strictions is the rule of mixtures 

E = EmVm + EdVd (3.32) 

wherein the constituents of the composite material are presumed to 
contribute to the composite stiffness in direct proportion to their own 
stiffnesses and volume fractions. The rule of mixtures will be shown to 
provide an upper bound on the composite modulus E for the special case 
in which 

Vm=Vd=V (3.33) 

Another simple relationship between the constituent moduli results 
from the observation that the compliance of the composite material, 1/E, 
must agree with the compliance of the matrix, 1/Em, ~m= 1 and 
with the compliance of the dispersed material when V d = 1. The resulting 
rule of mixtures for compliances is 

1 vm vd -=-+- (3.34) 
E Em Ed 

which will be shown to yield a lower bound on the composite material 
modulus, E. ---- - ---

In a uniaxial tension test to determine the elastic modulus of the 
composite material, E, the stress and strain states will be assumed to 
be macroscopically uniform in consonance with the basic presumption 
that the composite material is macroscopically i§otropic and honJ.Q9ene
ous. However, on a microscopic scafe;"oofnthe stress and strain states 
will be nonuniform. In the uniaxial tension test, 

E=_Q_ 
E 

(3.35) 

where a is the applied uniaxial stress and E is the resulting axial strain. 
The resulting strain energy can be written in two equivalent forms: 

1 2 
U = _ _Q_ V (3.36) 

2 E 
1 2 U=-EE V 
2 

Lower Bound on Apparent Young's Modulus 

(3.37) 

The basis for the determination of a lower bound on the apparent 
Young's modulus is application of the principle of minimum complemen
tary energy which can be stated as: Let the tractions (forces and mo
ments) be specified over the surface of a body. Let a:, a;, a~, -c;,, :tvz• 
-c~ be a state of stress that satisfies the stress equations of equi11orium 
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and the specified boundary conditions, i.e., an admissible stress field. 
Let U0 be the strain energy for the stress state a~. a;, a~. -c~, ~z, 't~x 
given by use of the stress-strain relations (a simple rearrangement of the 
isotropic stress-strain relations in Equation (2.17) in terms of E and v) 

ax= (1 + v)(~ - 2v) (t,c + Ey + Ez) + (1 ! v) Ex 
(3.38) 

E 
-cxy = Gyxy = 2(1 + v) 'Yxy 

and the expression for the strain energy 

U = ! L ( O'x£,c + O'fy + aztz + 'txy 'Yxy + 'tyz 'Yyz + 'tzx 'Yzx)dV (3.39) 

Then, the actual strain energy U in the body due to the specified loads 
cannot exceed U0

, that is, 

Us U0 (3.40) 
For a lower bound on the apparent Young's modulus, E, load the 

basic uniaxial test specimen with normal stress on the ends. The internal 
stress field that satisfies this loading and the stress equations of equilib
rium is 

0 0 0 0 0 0 0 (3 41) ax = a O'y = O'z = 'txy = 'tyz = 'tzx = . 

We know full well that suc~omLStr~s st_c1te_c~_n_r:iotexist throughout 
the compQ§jt(! material, yet we seek the implication of such an approxi
mation. The stramenergy for the stresses in Equation (3.41) is 

( 0)2 2 
U0 = _!_ f ~ dV = L f dV (3.42) 

2.Jy E 2.lyE 

But E is obviously not constant over the volume because the matrix has 
modulus Em over volume VmV and the dispersed material has modulus 
Ed over volume VdV where Vis the total volume. Thus, 

L dV = f dV + f dV = V m V + V d V (3.43) 
E .1y v Em .1y v Ed Em Ed 

m d 

whereupon 

U O = L _!!!._ + _EL V 2 [ V V ] 
2 Em Ed 

(3.44) 

However, by virtue of the inequality U s U0 and the definition of U in 
Equation (3.36), 

(3.45) 

or 
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(3.46) 

Finally, 

Em Ed 
E ~ (3.47) 

VmEd+VdEm 

which is a lower bound on the apparent Young's modulus, E, of the 
compositematerlafln1erms of the· ri'fodulrana volume fractions of the 
constituent materials. Note that this bound coincides with the value for 
the -.!!!_odulus transverse to the fibers by the ~ matericns-ap
proach. 

Upper Bound on Apparent Young's Modulus 

The basis for the determination of an upper bound on the apparent 
Young's modulus is the principle of l!!!!!J.._mum potential energy which can 
be stated as: Let the di~ified over the surface ofthe 
body except where the corresponding traction is zero. Let ~. ~. e;. 
'(xy, iyz, 'fzx be any compatible state of strain that satisfies the specified 
displacement boundary conditions, i.e., an~ Let 
U* be the strain energy of the strain state Ex, etc., by use of the stress
strain relations 

CJ = vE (F. + E.. + "-) + E "· 
x (1 +v)(1 -2v) " ·y -z (1 +v) " 

(3.48) 
E 

'txy = Gyxy = 2(1 + v) 'Yxy 

and the expression for the strain energy 

U = ~ L (CJA + CJfy+ CJzEz + 'txy'Yxy + 'tyz'Yyz + 'tzx'Yzx)dV (3.49) 

Then, the actual strain energy U in the body due to the specified dis
placements cannot exceed U*, that is, 

usu* (3.50) 
To find an upper bound on the apparent Young's modulus, E, sub

ject the basic uniaxial test specimen to an elongation eL where £ is the 
average strain and L is the specimen length. The internal strain field that 
corresponds to the average strain at the boundaries of the specimen is 

~=e ~=e;=-ve r~=r~=r~=o (3.51) 

where v is the 9rPparent_Poisson's ratio of the composite material. We 
know full well that such a uniform strain state cannot exist throughout the 
composite material, yet we seek the implication of such an approxi
mation. By use of the stress-strain relations, Equation (3.48), the 
stresses in the matrix for the given strain field are 
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1. ... 

(3.52) 

(3.53) 

The strain energy in the composite material is obtained by substituting 
the strains, Equation (3.51), and the stresses, Equations (3.52) and 
(3.53), in the strain energy, Equation (3.49): 

*- e2 L 1-vd-4vdv+2v
2 

/ L 1-vm-4vmv+2v
2 

U -
2 2 EddV+

2 2 EmdV 
d 1-vd-2vd 1-v -2v 

m m m (3.S4) 
or 

U* = £
2

2 
[-1_-_v_d_-_4_v_d_v_+_2v_

2
_ E V 1 - vm - 4v m v + 2v

2 
V ] 

2 d d+ 2 Em m V 
1-vd-2vd 1-vm-2vm 

(3.55) 

However, by virtue of the inequality U s U* and the definition of U in 
Equation (3.37), 

1 2 l [ 1-vd-4vdv+2v
2 

1 -vm-4vmv+2v
2 

] 
2E£ Vs.2 2 EdVd+ 2 EmVm V 

1-vd-2vd 1-vm-2vm 

(3.56) 

whereupon the upper bound on E is, by simple cancellation of terms in 
Equation (3.56), 

2 2 
1-vd-4vdv+2v 1-vm-4vmv+2v 

Es 2 EdVd+ 2 EmVm (3.57) 
1 -vd - 2vd ___ 1_-_v_!!m~-_2v_jffi~-----

The value of Poisson's ratio, v, for the @mP2Site material is unknown 
at this sta~of the analysis, so the upper bound on E 1s mspecific. In 
accordance with the principle of minimum potential energy, the expres-
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sion ~?r the strain energy U* must be minimized2 with respect to the un
spec1f1ed constant v to specify the bound on E. The minimization pro
cedure consists of determining where 

au· 
~=O 

and at the same time veri ing that 

First, 

a2u· 
av2 >0 

a2u· 2v [ 4E V 4E V ] --=-£- d d + m m 
'.:l..2 2 2 2 
ov 1 -vd-2vd 1-vm-2vm 

(3.58) 

(3.59) 

(3.62) 

However, the matrix and dispersed material are isotropic, so v < 1/2 and 
vd < 1(2 (the_ usual limit on Poisson's ratio for an isotropic ~aterial as 
seen in Section 2.4} Thus, upon substitution of these values for v and 
vd,. the. value of a U*/clv2 is seen to be always positive (even ~hen 
~U /c)v IS not zero) ~ecause the typicrl term (1 - b - 2b2) is always posi
tive ~hen b < 1/2 .. Finally, b:cause a U*/clv2 is always positive, the value 
of U wh~n Eq~at1on .(3.61) 1s used, corresponding to a minimum, maxi
mum, or 1~f!ect1on poinJ on the curve for U* as a function of v, is proved 
to be a minimum, and in fact, the absolute minimum 

,...........__ ..,,..-.-,..____ • I • ~- - - ·-- - • 

. The va!u.e of Poisson s @t10, v, for the composite material has been 
derived .exphc1tly as ~q1!ation {3.61). Thus, the upper bound on E can 
be obta1.ned by substituting the expression for v, Equation (3.61), in the 
expression for the up~er b?und on E in terms of v, Equation (3.57). 
However, the alge~~. so an explicit expression for the 
upper bound on E 1s not presented. In practical applications, the value 
of v ~an be calculate~ from Equation (3.61) and then substituted in 
Equation (3.57) to obtain E. For the special case in which v = v the 
expression forv, Equation (3.61), reduces to~ 

2
Note ~t this point that the potential energy of external forces is independent of material 

properties. Thus, its derivatives with respect to v are zero and only u• affects the · 
1mlzation. • min-
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~~!d V d + Sn \Im (3.63) 

which is the value of the apparent Young's modulus, E1, in the fiber di
rection of a fiber-reinforced composite material derived by the mechanics 
of materials approach. Thus, the expression for E1 is an upper bound 
on the actual E1. In addition, the mechanics of materials solution obvi
ously includes an implicit equality of the Poisson's ratios of the constitu
ent materials. 

Paul's work [3-4) is primarily aJJP~ to isot!'.Qei_c composite ma
terials, but it can .be--illterpreted)i'(feriiis_ot.b=terials. 
For example, Equation (3.63) is the upper bound on the transver · 
modul~ a fiber-reinforced composite material, whereas Equation 
(3.47) is the lower bound. Obviously, the bounds, as pl~tted in Figure 
3-20 for a glass-epoxy composite material [E1 = 10.6 x 10 psi (73 GPa) 
and Em= .5 x 1 O psi (3.5 GPa)], a{e far apart_ Bounds on other moduli 
can be obtained in a similar manner (see Problem Set 3.3). 

10 (GLAss-EPOXYI 
Er= 10.6 x 111' psi (73 GPa) 

Em = .5 x 111• psi (3.5 GPa) 

t t t t 
E2 ~ 

1o"psi ~ 
5 + + + + 

0 .2 .4 .6 .8 1 
FIBER-VOLUME FRACTION, Vt 

10 

Figure 3-20 Bounds on E2 for a Glass-Epoxy Composite Material 

Hashin [3-6) and Hashin and Shtrikman [3-7) attempted to tighten 
Paul's bounds to obtain more useful estimates of moduli for isotropic 
heterogeneous materials. Their approach was to use a concentric
spheres model to treat the heterogeneous material as an elastic sphere 
inside a concentric-spherical portion of elastic matrix material in propor
tion to the volume content of spherical inclusions in the total volume of 
the composite material. The included spheres never touch one another 
in the model, although clearly as the volume percentage of particles in
creases, so does the lik~_of particle contact. Moreover, lack of 
contact might imply perfect particle spacing, an unlikely situation from the 
practical standpoint. 

Hashin and Rosen [3-8) extended Hashin's work to fiber-reinforced 
composite materials. The fibers have a circular cross section and can 
be hollow or solid. Two cases were treated: (1) identical fibers in a 
hexaQQ!}aUirray and (2) fibers of various diameters (but same ratio of 
instae to outside diameter, if hollow) in a random array. The two types 
of arrays are depicted in Figure 3-21. In both cases, the basic analysis 
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~lement is a set of concentric cylinders with their axes in the fiber direc
tion. For the randor:r, arr~y, in analogy to Hashin's concentric-s heres 
mode~, the corn~e.ntnc-cylm_der model consists of the fiber with p matrix 
material around it_ 1_n proportion to the volume content of matrix in the total 
volume. An add1t1onal matrix volume term is needed in the hexa onal 
array case to account for the volume left over when the circles of r~dius 
rm ~re ~raw~ ar~und eac~ fiber in Figure 3-21a. The concentric-cylinder 
r:no el_ 1tse~f 1s displayed 1n Figure 3-21 a. The Young's modulus in the 
fiber d1rect1on turns. out to be, for all practical purposes, the rule of mix
tures. The ~~a~s.verse Young's modulus for a random 
arraY- or a b.e)!aganaL.arr,gy __ Q!-sorio-or-h tto 
than the objectives oithis..book 1----~ w-flbers are more complex 

•11 ---·- -+eave-rvvm ,or. Some oIThe expressions 
;1 be _plotted l~t~r when experimental data are compared with various 

eoret1cal pred1ct1ons. At any rate, the bo on modu · · · 
hex~ay_are rather ~ar apart for r e ratio ;f :n a 
modulus to mat!"!)( rl:1,C>Q!Jlus m the composite material, a typical situation 
forpra7tlcal composite materials. On the other hand, this random-array 
model 1~~E:lsentation of most practical fiber-reinforced 
~~~pos1te ~aterials. _If, ho_wever, many differe~~~--2.LUQ.E'lrs were in-

. e~. to fill the matrix voids between the various concentric cylinders 
as 1n 1gure 3-21b, the model would presumably be accurate. 

FIBER 

a HEXAGONAL ARRAY OF REGULAR HOLLOW FIBERS 

b RANDOM ARRAY OF IRREGULAR HOLLOW FIBERS 

Figure 3-21 Hashin and ~osen'~ Fiber-Reinforcement Geometries 
and Compos,te-Cyhnder Model (After Hashin and Rosen (3-8]) 
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3.3.3 Exact Solutions 

The problem of determining exact solutions to various cases of 
elastic inclusions in an elastic matrix is~ very diff.[Q.ult and well beyond the 
scope of this book. However, it is appropriate to indicate the types of 
solutions that are available and to comp~r~ them with !be mechanics of 
materials_ resylts (in a later section). As in many other elasticity prob
lems, the Saint-Venant semi-inverse method is prominent among the 
available techniques. In brief, the semi-inverse method consists of 
'dreaming up' or assuming a part of the solution, i.e., some of the com
ponents of stress, strain, or displacement, and then seeing if the as
sumed solution satisfies the governing differential equations of equilib
rium and the boundary conditions. The assumed solution must not be 
so rigorously specified that the equilibrium and compatibility equations 
cannot be satisfied. As an example, the assumption that plane sections 
remain plane is a semi-inverse method approach. In combination with 
the bounding theorem of elasticity, the semi-inverse method is quite ef
fective . 

Problems of inclusions in solids are also treated by exact elasticity 
approaches such as Muskhelishvili's complex-variable-mapping tech
niques (3-9]. In addition, numerical solution techniques such as finite 
elements and finite differences have been used extensively. 

A strong background in elasticity is required for solution of problems 
in micromechanics of composite materials. Many of the available papers 
are quite abstract and of little direct applicability to practical analysis at 
this stage of development of elasticity approaches to micromechanics. 
Even the more sophisticated bounding approaches are a bit obscure. 

The elasticity approaches depend to a great extent on the specific 
geometry of the composite material as well as on the characteristics of 
the fibers and the matrix. The fibers can be hollow or solid, but are 
usually circular in cross section, although rectangular-cross-section fibers 
are not uncommon. In addition, fibe~otr.opic, but c_~n have 
more complex material behavior, e.g., graphite fibers are transversely 
isotropfc. 
~- -,he fibers can exist in many types of cross-sectional arrays. Se
veral typical arrays with various fiber types are shown in Figures 3-22 
through 3-25. There, the representative volume element for each array 
is shown along with a simplified representative volume element that is 
just as representative by virtue of symmetry, but does not include a whole 
fiber (nor does it need to). Note in Figure 3-24 that if the rows of the 
staggered array with round fibers are offset by one-half the fiber spacing, 
the representative volume element is the same as for the square array, 
but with principal loading directions rotated by 45°. Also, the staggered 
array of rectangular cross-section fibers in Figure 3-25 is sometimes 
called a diamond_ arr,!y ... _Herrmann and Pister (3-10] were apparently the 
first to use the representative volume element and recognize its inherent 
symmetry. · -
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~i: 
SIMPLIFIED 

REPRESENTATIVE 
REPRESENTATIVEVOLUME ELEMENT 

VOLUME ELEMENT 

Figure 3-22 Hexagonal Array and Representative Volume Elements 

~ 

[j] ~..1 
REPRESENTATIVE 

VOLUME ELEMENT 

REPRESENTATIVE 
VOLUME ELEMENT 

Figure 3-23 Square Array and Representative Volume Elements 

~f_ 
SIMPLIFIED 

REPRESENTATIVE 
VOLUME ELEMENT 

REPRESENTATIVE 
VOLUME ELEMENT 

Figure 3-24 Staggered Square Array of Round Fibers 
and Representative Volume Elements 

~ Sl~ED ~ REPRESENTATIVE 
VOLUME ELEMENT 

REPRESENTATIVE 
VOLUME ELEMENT 

Figure 3-25 Staggered Square Array of Rectangular Fibers 
and Representative Volume Elements 

Adams and Tsai [3-11] studied ra,n<:fo,m arr~s_of two types: (1) 
~~~=r~e rand.om arrays and (2) hexagonal random arrays. Both arrays 

pea~e_not truly-l.andom. However, results of 
the he~agonal random-array analysis agree better with experiments than 
do _res~ rs of the square random:array analysis. Thi~ati n is more -
satrsfy~ng than a previous result that (nonrandom) square-arra~yses 
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agreed better with experiments than the more physJ~c1Uy_ _ _realistic 
hexagonal array analyses. 

A variation on the exact solutions is the so-called self-consistent 
model that is explained in simplest engineering terms by Whitney and 
Riley [3-12]. Their model has a single hollow fiber embedded in a con
centric cylinder of matrix material as in Figure 3-26. That is, only one 
inclusion is considered. The volume fraction of the inclusion in the 
composite cylinder is the same as that of the entire body of fibers in the 
composite material. Such an assumption is not entirely valid because the 
matrix material might tend to coat the fibers imperfectly and hence leave 
voids. Note that there is no association of this model with any particular 
array of fibers. Also recognize the similarity between this model and the 
concentric-cylinder model of Hashin and Rosen [3-8]. Other more com
plex self-consistent models include those by Hill [3-13] and Hermans 
[3-14] which are discussed by Chamis and Sendeckyj [3-5]. Whitney 
extended his model to transversely isotropic fibers [3-15] and to twisted 
fibers [3-16]. 

'i INSIDE FIBER RADIUS 

rf FIBER RADIUS 

rm MATRIX RADIUS 

Figure 3-26 Self-Consistent Composite Cylinder Model 

3.3.4 Elasticity Solutions with Contiguity 

In the fabrication of fibrous composite materials, the fibers are often 
somewhat randg_mly placed rather_than being packed in a regular array 
(see Figure 3-27). (This random nature is much more typical of small
diameter-fiber graphite-epoxy composite materials than of larger
diameter-fiber boron-epoxy composite materials.) Thus, the analyses for 
the moduli of composite materials with regular arrays must be modified 
to account for the fact that fibers are contiguous, i.e., that fibers touch 
each other rather than being entirely surrounded by matrix material. But, 
the fibers do not touch in many instances. Rather, some are contiguous 
and some are not. From an analytical point of view, a linear combination 
of (1) a solution in which all fibers are isolated from one another and (2) 
a solution in which all fibers contact each other provides the correct 
modulus. If C denotes degree ot ca.m.!9.!:~.!_ty, then C = o corresponds to 
no contiguity (isolated fibers) and C = 1 corresponds to perfect contiguity 
(all fibers in contact) as in Figure 3-28. Naturally, with high volume 
fractions of fibers, C should approach_Cz1_: This approach is an ex
ample of what Ctlami~[3-5] call a semiempirical method, 
but it could also be classified as a bounding technique~--- · ---
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Figure 3-27 Schematic Diagram of Actual Fiber Arrangement 

. . . .. . . ·,· [ggg: 
C•O 

ISOLATED FIBERS 
RESIN CONTIGUOUS 

C•l 
ISOLATED MATRIX 

FIBERS CONTIGUOUS 

Figure 3-28 Extremes of Fiber Contiguity (After Tsai [3-1]) 

. For the ~lasticity appr-0ach in which the contiguityj§_~onsidered, 
T~] obtains for the modulus~ to the fibers ------ -

E2=2[1-vf+(vf-v )V ][(1-C} K,(2Km+Gm)-Gm(K,-Km)Vm 
m m {2Km + Gm) + 2(K,- Km)V m 

where 

+ C l<,{2~ +Gt)+ Gf(Km - K,)V m ] {3.64) 

(2Km + Gt) - 2(Km - K,)V m 

I<, Et Gt Et K = Em G Em 
2(1 -vf) 2(1 + vf) m 2(1 - vm) m 2(1 + vm) {3.65) 

and C ~ies between O ~nd 1. From a practical point of view, C would be 
deter~ined by comparis~n of theoretical curves of E2 versus Vt (or Vm) 
for various values of C wrth experimental results. The value of C for the 
p~ediction that bes~ agrees with experiment is then the appropriate de
sign value for the given material. Because C = o corresponds to the case 
where each fiber is isolated and C = 1 corresponds to the much less likely 
case where all fibers are in contact, low values of C should be expected. 

Tsai also obtains 

v = (1 - C} K,vf(2Km + Gm)Vf + Kmvm{2K, + Gm)V m 

_1~ K,(2~ + Gm) - Gm(K,- Km)V m 
+ C Kmvm{2K,+ Gf)Vm + K,vf{2~ + G1)Vf 

K,{2Km + G~ + G1(Km - K,)V m 

{3.66) 

( 
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2G1-(G1- Gm)Vm (G1+ Gm)-(G1-Gm)Vm 
G12 = (1 -C}Gm 2Gm + (G,-Gm)Vm + CG, (G,+ Gm)+ (G,-Gm)Vm 

(3.67) 

wherein the definitions of Equation (3.65) apply and C has the same 
value as in Equation (3.64). 

For the C!lQdulus in the djrection of the fibers, Tsa~ rule 
of mixtures to acge>LJntJor im~~c1!QnsJnJ1ber ~nment: 

E1 = k(V1E1 + V mEm) (3.68) 
-=-

The fiber misalignment factor k, ordinarily varies from .9 to 1, so 
Equation (3.68) does not represent a very significant depa~ the 
rule of mixtures. Of course, k is an experimentally determined constant 
and is highly dependent on the manufacturing process. 

Tsai [3-1] perfol'(®d some interesting parametric st~1die_~ to~ t~e 
values of E1, E2, v12, and G12 for glass-fiber-epoxy-resin compgs1t~ 
materials. The-baseline constituents have properties E1 = 10.6 x 10 psi 
(73 GPa), vf = .22, Em= .5 x 106 psi (3.5 GPa), and vm = .35. By use of 
Equations (3.68), (3.64), (3.66), and (3.67), E1! E2, V12, a~d G12 ~re 
plotted in Figures 3-29 through 3-31 for the baseline composite mate~al. 
In addition, the influence of fiber modulus is assessed by using 
E1 = 16 x 106 psi {110 GPa) and E! = 6 x_ 10~ psi (41 GPa)_ in_ the gove~n
ing equations and is shown graphically in Figure 3-29. S1m1lar!Y.-Jb.e_m
fluence of the matrix modulus is shown in Figure 3-30 and that of the 
matrixamfliber Poisson's ratios in Figure 3-31. In all figures, the fiber 
misalignment factor,_!, is Y,Qity and the fi~ contiguity facto~ C, is .2. 
Both values were found to be reasonable by comparison with exper
imental data (see Section 3.4, Comparison of Approaches to Stiffness). 
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Figure 3-29 Contribution of E1 to E1, E2 , and G12 (After Tsai [3-1]) 
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Figure 3-30 Contribution of Em to E1, E2, and G12 (After Tsai [3-1]) 
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Figure 3-31 Contribution of v1 and vm to E1, E2, and G
12 

(After Tsai [3-1]) 

The influence of the fiber modulus is felt most by the composite 
modulu~ in the fiber direction, E1, as evidenced by Figure 3-29. The 
?ompos1te modulusJ!!nsv~rs~ to the fiber~. is most strongly 
influenced by the matrix modulus as seen in Fi~ure 3-30 where E takes 
on values of 1.2 x 10

6 
psi (8.3 GPa) and .2 x 1 o psi (1.4 GPa) in ;ddition 

to the baseline val~e. The composite shearing modulus, G
12 

appears to 
be more strongly influenced by _the matrix modulus than by the fiber 
modulus when Figures 3-29 and 3-30 are compared. From Figure 3-31, 
clearly the Poisson's ratios of the fiber and the matrix have little effeg 
on the composite moduli for practical values of the Poisson's ratios. In 
fact, they have no effect on the composite modulus in the direction of the 
fibers, E1, because they do not appear in the expression for that 
modulus. No study similar to that shown in Figures 3-29 through 3-31 
was performed for the composite material major Poisson's ratio, v

12
• 

The contiguity factor, C, is actually a so-called 'fud e factor' used 
to make sense out of the comparison of experimental data wit heore
tical predictions. This correlation factor is useful only when the data fall 
between the theoretical bounds. The concept of a contiguity factor, i.e., 

( ( 
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some expression of the continuity of one phase of a composite material 
relative to another, is more easily seen to affect the tensile properties of 
a lamina than the compressive properties. There might be some inter
esting relation of contiguity to granule and fiber stiffnesses in tension and 
compression. 

3.3.5 The Halpin-Tsai Equations )fJ1 
~ the preceding micromechanics results are represented by 

comelicated equations and/or curves. The equations are usually some
what avt_kward to use. The curves are generally restricted to a_r~latively 
srnall portion of the potential des'ign regime. Thus, a need clearly exists 
for simple results to be used in the design of composite materials. 

Halpin and Tsai [3-17] developed an interpolation procedure that is 
an approximate representation of more complicated micromechanics re
sults. The beauty of the procedure is~irst, it is simple, so it can 
readily be used in the design process. Second, it enables the gener
alization of usually limited, although more exact, micromechanics results. 
Moreover, the procedure is apparently q11ite accurate if the fiber-yolutruL_ 
fraction (V1) does not aperoach one. · 

·· The essence of the procedure is that Halpin and Tsai [3-17] showed 
that Hermans' solution [3-14) generalizing Hill's self-consistent model 
[3-13) can be reduced to the approximate form 

and 

where 

in which 

V12 =vtVf+vmVm 

M 1 +Qvf 
Mm = 1 -T1Vt 

M = composite material modulus E2, G12• or v23 
Mt= corresponding fiber modulus E1, G1, or v1 

Mm= corresponding matrix modulus Em, Gm, or vm 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

and 5-!_s a measure of fiber reinforcement of the composite material that 
depends on the fiber geometry, packing geometry, an~ 
tio~ The values of s are obtained by comparing Equation (3-72) and 
another approximation, Equation (3-73), with exact elasticity solutions 
and assessing a value of, or function for, s by curve-fitting techniques. 

Note that the expressions for E1 and'v;2 are the generally accepted 
rule-of-mixtures results. The Halpin-Tsai equations are equally applica
ble to fibe_r:. ri~ or particulate composites. _for example, Halpin and 
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Thomas [3-18) successfully applied Equations (3-72) and (3-73) to anal
ysis of the stiffness of glass-ribbon-reinforced composite materials. 

The only <:!!,fficul_!y in using the Halpin-Tsai equations seems to be 
in the ~rminat1on of a suitable value for . Halpin and Tsai obtaified 
excellent agreementwitl, ams an oner's results [3-19) and [3-20) for 
circular fibers in a square array when = 2 for lculation of E2 and 
;:::::_ 1 for ca~iu>fJ312 9t a fiber-volume fraction,~see 1gur s 
3-32aricr3-33). For thesame values of;, excellent agreement was also 
obtained with Faye's results [3-21 J and [3-22) for fibers with square cross 
sections in a diamond array when the fiber-volume fraction ranged up 
through ~ as in Figures 3-34 and 3-35. When Faye's rectangular cross
section fioers were addressed, Halpin and Tsai found that correlation 
with their equations requi~ the value of s for transverse modulus cal-
culations to be -

;:_2 = ~ .. ~ (3.73) 

where alb is the rectangular cross-section aspect ratio. Also, the value 
of ; for shear modulus calculations had to be 

log ~
12 

= 1.73 log ~ (3.74) 

to obtain the agreement with Faye's ·re1fu1ts shown in Figures 3-34 and 
3-35. 

Predictions of the Halpin-Tsai equations for glass-epoxy and 
boron-epoxy composite materials are shown in Figures 3-36 and 3-37. 
There, Faye's solutions for square arrays and hexagonal arrays are 
plotted in addition to Hermans' solution (to which the Halpin-Tsai 
equations are, of course, related). Note that the Halpio-Tsai pFediGtions.. 
with ; = 2 gene§!Jy tan below the square-array results but above the. 

xa anal arra results for Vt> .65. Below that fiber-volume fraction, the 
Halpin-Tsai results a c ose to Faye's square-array results. 

However, Hewitt and de Malherbe [3-23) point _gut.Jbat the Halpin
~ equatiens yield ao uoderestjmate of the shear modulus G12 of 
composit~ materials with circular fibers in a square array for fiber-volume 
fractions greater than .5. Specifically, the underestimate is 30% at 
Vt = . 75 for Gy'Gm = 20, a realistic value for both glass-epoxy and 
graphite-epoxy composite materials. They suggested that, instead of 
Halpin and Tsai's value of one for;, the value determined from 

--··-------~ 10 
; = 1 + 40Vt (3.75) 
~ 

correlates better in the Halpin-Tsai equations with Adams and Donner's 
numerical solution as shown in Figure 3-38. Such a relation for ;, like 
any other, is empirically determined. More refined estimates of ; could 
be found, but care must be taken not to fall into the pit of deriving an 
expression that exceeds both the necessary accuracy requirements and 
defeats the original intent of a simple design tool that is easy to use. 
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Figure 3-32 Halpin-Tsai Calculations (Circles) versus Adams and Doner's 
Calculations for E2 of Circular Fibers in a Square Array 
(After Halpin and Tsai [3-17]) 
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Figure 3-33 Halpin-Tsai Calculations (Circles) versus Adams and Doner's 
Calculations for G12 of Circular Fibers In a Square Array 
(After Halpin and Tsai (3-17]) 
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Figure 3-34 Halpin-Tsai Calculations (Circles) versus Foye's Calculations 
for E2 of Rectangular Cross-Section Fibers in a Diamond Array 
(After Halpin and Tsai (3-17]) 
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Figure 3-35 Halpin-Tsai Calculations (Circles) versus Foye's Calculations 
for G12 of Rectangular Cross-Section Fibers in a Diamond Array 
(After Halpin and Tsai (3-17]) 
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Figure 3-38 Modified Halpin-Tsai Calculations versus Adams and Donner's 
Calculations for G12 of Circular Fibers in a Square Array 
(After Hewitt and de Malherbe {3-23)) 

The mere existence of different predicted stiffnesses for different 
arrays leads to an important physical observation: Variations in com
posite material manufacturing will always yield variations in array geom
etry and hence in composite moduli. Thus, we cannot hope to predict 
composite moduli precisely, nor is there any need to/ Approximations 
such as the Halpin-Tsai equations should satisfy all practical require
ments. 

Some physical insight into the Halpin-Tsai equations can be gained 
by examining their behavior for the ranges of values of ; and fl. First 
although it is not obvious, ; can range from o to oo. When ; = o, ' 

1 vf vm 
-=-+- (3.76) 
M Mt Mm 

which is the series-connected model generally associated with a lower 
bound of a composite material modulus. When ; = oo, 

M=VtMt+ VmMm (3.n) 
which is the parallel-connected model, known as the rule of mixtures 
generally associated with an upper bound of a composite materiai 
modu!us. Thus,. s is a measure of the reinforcement of the composite 
mat~nal by the fibers. For small values of ;, the fibers are not very ef
fective, whereas for large values of ;, the fibers are extremely effective 
in increasing the composite stiffness above the matrix stiffness. Next the 
limiting values of 11 can be shown to be: for rigid inclusions, ' 

( 
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for homogeneous materials, 

and for voids, 

11 = 1 

11 =0 

(3.78) 

(3.79) 

11 = - J_ (3.80) s 
The term 11V, in Equation (3.71) can be interpreted as a reduced 

fiber-volume fraction. The word 'reduced' is used because 11 ~ 1. More
over, it is apparent from Equation (3.72) that 11 i~ affected by the con
stituent material properties as well as by the reinforcement ge?metrx 
factor ;. To further assist in gaini~g appreci~tion of t~e ~alpm-Tsa1 
equations, the basic equation, Equation (3.71), 1s plotted m Figure ~-39 
as a function of 11v,. Curves with intermediate values of; can be quickly 
generated. Note that all curves approach infinity as 11V, approaches one. 
Obviously, practical values of 11V1 are less than about .6, but most curves 
are shown in Figure 3-39 for values up to about .9. Such master curves 
for various values of s can be used in design of composite materials. 
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Figure 3-39 Master M!Mm Curves for Various l; 

3.3.6 Summary Remarks 

There is much controversy associated with micromecha~ical a~a
lyses and predictions. Much of the contr?vers~ has t? do with which 
approximations should be used. The Halpm-Tsa1 equations seem to be 
a commonly accepted approach. 



( 

158 Mechanics of Composite Materials 

One of the important conclusions of some of the microstructure 
work (see Chamis and Sendeckyj [3-5]) is that macroscopic homogeneity 
may not exist for composite materials. That is, microstructural consider
ations might be required. 

Problem Set 3.3 

3.3.1 
3.3.2 

3.3.3 

3.3.4 

3.3.5 
3.3.6 
3.3.7 

Derive Equations (3.52) and (3.53), and use them to derive Equation (3.54). 
Consider a dispersion-stiffened composite material. Determine the Influence on the 
upper bound for the apparent Young's modulus of different Poisson's ratios in the 
matrix and In the dispersed material. Consider the following three combinations of 
material properties of the constituent materials: 

Case Em Vm ~ yd 

1 5 x 106 psi (34.5 GPa) 0 50 x 106 psi (345 GPa) .3 
2 5 x 106 psi (34.5 GPa) .3 50 x 106 psi (345 GPa) .3 
3 5 x 106 psi (34.5 GPa) .3 50 x 106 psi (345 GPa) 0 

The values of E for values of V d = O, .2, .4, .6, .8, and 1.0 (and any values In between 
necessary to plot representative curves) should be tabulated and plotted as E versus 
Vd so that both specific numerical and visual differences can be examined. 
Use the bounding techniques of elasticity to determine upper and lower bounds on 
the shear modulus, G, of a dispersion-stiffened composite material. Express the 
results In terms of the shear moduli of the constituents (G for the matrix and G for 
the dispersed particles) and their respective volume fractions (V m and V dl· 'the 
representative volume element of the composite material should be subjected to a 
macroscopically uniform shear stress 't which results in a macroscopically uniform 
shear strain y. 
Determine the bounds on E for a dispersion-stiffened composite material of more 
than two constituents, i.e., more than one type of particle is dispersed in a matrix 
material. 
Derive Equation (3. 76). 
Derive Equation (3.77). 
Show that the limiting values of Tl are given correcUy by Equations (3.78)-(3.80). 

3.4 COMPARISON OF APPROACHES TO STIFFNESS 

3.4.1 Particulate Composite Materials 

The mechanics of materials approach to the estimation of stiffness 
of a composite material has been shown to be an upper bound on the 
actual stiffness. Paul [3-4] compared the upper and lower bound 
stiffness predictions with experimental data [3-24 and 3-25] for an alloy 
of tungsten carbide in cobalt. Tungsten carbide fY'/C) has a Young's 
modulus of 102 x 106 psi (703 GPa) and a Poisson's ratio of .22. Cobalt 
(Co) has a Young's modulus of 30 x 106 psi (207 GPa) and a Poisson's 
ratio of .3. 

The constituent material properties are substituted in Equations 
(3.61) and (3.57) to obtain the upper bound on E of the composite ma
terial and in Equation (3.47) to obtain the lower bound on E. In addition, 
the mechanics of materials approach studied in Problems 3.2.1 through 
3.2.4 is also compared with the experimental data. Specifically, the result 

( 

Mlcromechanlcs of a Lamina 159 

for the modulus of a composite material that is stiffened by dispersion 
of cube-shaped particles is used, that is 

E Em+ (Ed - Em)~3 

Em Em+(Ed-Em)V~(1-V~
13

) 

(3.81) 

The predictions of the various approaches are plotted along with 
experimental data in Figure 3-40. Note that the upper bound on Young's 
modulus, E, is indistinguishable from a straight line. Thus, the effect of 
Poisson's ratio, v, in Equation (3.61) on the result of Equation (3.57) is 
negligible for the Poisson's ratios and Young's moduli of cobalt and 
tungsten carbide. For practical purposes, the upper bound is given by 
the simple mechanics of materials expression known as the rule of mix-
tures: 

E = EmVm + EdVd (3.82) 

in which vm = v d· The experimental data for E fall between the upper and 
lower bounds for E as they must for the bounds to be true bounds. 
Moreover, the approximate mechanics of materials prediction, Equation 
(3.81 ), appears to agree very well with the experimental data indicated 
with the triangles. The data indicated with open circles do not correlate 
particularly well with the approximate prediction of Equation (3.81). 
However, no information is available regarding the shape of the dis
persed particles. In addition, the constituent materials might not be pre
cisely the same in both sets of experimental data. Hashin and Shtrikman 
[3-7] obtained much closer bounds on the same experimental data. 
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Figure 3-40 Predicted Modulus Bounds and Experimental Data 
for Tungsten Carbide in Cobalt (After Paul {3-4]) 
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3.4.2 Fiber-Reinforced Composite Materials 

Tsai conducted experiments to measure the various moduli of 
glass-fiber-epoxy-resin composite materials (3-1]. The glass fibers and 
epoxy resin had a Young's modulus and Poisson's ratio of 10.6 x 106 psi 
(73 GPa) and .22 and .5 x 106 psi (3.5 GPa) and .35, respectively. 

For various volume fractions of fibers, the experimental results are 
compared with the theoretical results in Equations (3.68), (3.64), (3.66), 
and (3.67) for E1, E2, v12, and G12, respectively. The theoretical results 
depend on k, the fiber misalignment factor, and C, the contiguity factor, 
so theoretical curves can be drawn for a wide range of values of k and 
C. T~e objective of the comparison of theoretical and experimental re
sults 1s to demonstrate both qualitative and quantitative agreement in 
order to validate a theoretical prediction. If the theoretical results have 
the same shape as the experimental results, then the agreement is 
termed qualitative. Further, if, by consistent adjustment of the parame
ters k and C, the two sets of results agree in value as well, then the 
agreement is termed quantitative. Thus, the concepts of fiber misalign
ment factor and a contiguity factor will be investigated. 

The experimental and theoretical results for E1 are shown in Figure 
3-41 for a resin content by weight ranging from 10% to 100%. Because 
E1 is not a function of C, only k was varied - two values were chosen: 
k = 1 and k = .9. Some experimental results in Figure 3-41 lie above the 
curve for k = 1 (i.e., above the upper bound!); some results lie below 
k = .9. However, most results lie between k = .9 and k = 1 with k = .9 
being a conservative estimate of the behavior. The actual specimens 
were handmade, so the resin content might not be precise, and fiber 
misalignment is not unexpected. Thus, the results above the upper 
bound are not un~sual nor is the basic fact of variation in E1. 

The theoretical and measured results for E are shown in Figure 
3-41 as a function of resin content by weight. T~eoretical results from 
Equation (3.64) are shown for C = 0, .2, .4, and 1, and the data are 
bounded by the curves for C = 0 and C = .4. The theoretical curve la
beled 'glass-resin connected in series' is a lower, lower bound than the 
C = 0 curve and is an overly conservative estimate of the stiffness. 
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Figure 3-41 E1 and E2 versus Resin Content (After Tsai {3-1]) 
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The existence of a contiguity factor, C, has been reasonably well 
demonstrated by the results of Figure 3-41. However, a more critical 
examination of the concept of a contiguity factor is in order. For this 
purpose, some special experiments were devised in which steel-epoxy 
composite materials were used. In order to obtain a composite material 
with C = o (no contiguity of fibers, i.e., no fibers touch), steel rods were 
inserted in holes in an epoxy bar. For a composite material with C = 1 
(perfect contiguity of fibers, i.e., all fibers touch), epoxy resin was placed 
in holes in a steel bar. In both cases, there were 54 holes transverse to 
the longitudinal axis of the bar. Thus, when the bars in Figure 3-42 are 
pulled in their longitudinal direction, the modulus E2 can be measured. 
The steel is always regarded as the fiber, so E1 = 30 x 10

6 psi (207 GPa) 
and v1 = .3. The epoxy material has values Em= .45 x 106

, .60 x 10
6

, and 
.50 x 106 psi (3.1, 4.1, and 3.5 GPa) for three successive cases in addi
tion to Vm = .35. The results for E2 in the three cases are summarized 
in Figure 3-43. Note that the range of matrix content for the right-hand 
panel of Figure 3-43 is one-tenth the range of the left-hand and center 
panels. Moreover, the vertical scale of the right-hand panel is ten times 
that of the left-hand and center panels. Obviously, the experimental data 
agree very well with the results from Equation (3.64) for the cases C = 0 
and C = 1. The data for C = 1 are fairly close to the theoretical results, 
but recognize that such small percentages of matrix are involved that the 
comparison is difficult. On the other hand, the data for C = 0 agree to 
an extent that is a little surprising. Thus, the physical significance of the 
contiguity factor has been established. 

Figure 3-42 Steel-Epoxy Specimens (After Tsai {3-1]) 
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Figure 3-43 E2 of Steel-Epoxy Composite Materials with C = O and C = 1 
(After Tsai {3-1)) 

The experimental results for v12 of a glass-epoxy composite mate
rial are shown along with the theoretical prediction from Equation (3.66) 
as a function of resin content by weight in Figure 3-44. Theoretical re
sults are shown for contiguity factors of C = O, .2, .4, and 1. Apparently, 
C = 0 is the upper limit of the data whereas C = .4 is the lower limit. Thus, 
the concept of contiguity factor is further reinforced. 
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Figure 3-44 v12 and G12 of a Glass-Epoxy Composite Material 
(After Tsai {3-1)) 

G12 
GPa 

Micromechanics of a Lamina 163 

The experimental results for G12 are also shown in Figure 3-44, 
along with theoretical results from Equation (3.67) for C = 0, .2, .4, and 
1. As with the previous moduli, the experimental data are bounded by 
curves for C = 0 and C = .4. The upper (parallel-connected phases) and 
lower (series-connected phases) bounds due to Paul (see Section 3.3) 
are shown to demonstrate the accuracy of the bounds in the present 
case where E1 is much greater than Em· The lower bound results of 
Hashin and Rosen (3-8] correspond to C = 0, but their upper bound is 
below some of the experimental data in Figure 3-44. 

3.4.3 Summary Remarks 

For particulate-reinforced composite materials, Paul derived upper 
and lower bounds on the composite modulus (3-4]. His approximate 
mechanics of materials solution agrees fairly well with experimental data 
for tungsten carbide particles in cobalt. 

For fiber-reinforced composite materials, Tsai gives expressions for 
E1, E2, v12, and G12 that are in good agreement with experimental data 
for a glass-fiber-reinforced-epoxy-resin composite material (3-1]. A 
contiguity factor, C, is the key to the agreement. Thus, the constituent 
material properties have the following effects on the properties of the 
composite material: 

(1) E1 makes a significant contribution to E1 
(2) Em makes a significant contribution to E2 and G12 
(3) v1 and vm have little effect on E2 and G12 and no effect on E1 

The contiguity factor is very important for glass-fiber-reinforced compos
ite materials for which Ef /Em= 20. However, for composite materials for 
which E1 /Em is close to unity, contiguity is probably not important. This 
latter conclusion is deduced from the results for C = O and C = 1 in Figure 
3-45 where a fictitious glass-epoxy comijosite material is considered. 
There, a fictitious matrix with Em= 5 x 10 psi (34.5 GPa) is combined 
with a high-modulus glass fiber (E1 = 16 x 106 psi) (110 GPa) to give 
E/Em = 3.2. Note in Figure 3-45 that E2, as calculated from Equation 
(3.64), changes very little between C = 0 and C = 1. 

3.5 MECHANICS OF MATERIALS APPROACH TO STRENGTH 

3.5.1 Introduction 

Prediction of the strength of fiber-reinforced composite materials 
has not achieved the near-esoteric levels of the stiffness predictions 
studied in the preceding sections. Nevertheless, there are many inter
esting physical models for the strength characteristics of a matrix rein
forced by fibers. Most of the models represent a very high degree of 
integration of physical observation with the mechanical description of a 
phenomenon. 
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Figure 3-45 ~2 of a Fictitious Glass-Epoxy Composite Material 
(After Tsai [3-1]) 

Two maj?r topics will be addressed in this section: tensile strength 
~nd c~mp~ess1ve strength of a unidirectionally reinforced lamina in the 
fiber d1rect1on. T~e t~nsile strength will be examined in Section 3.5.2 by 
use of a !710de_l with f1~ers that all have the same strength in addition to 
a model ·~ which the fibers have a statistical strength distribution. The 
compres~1ve st~ength will be examined in Section 3.5.3 by use of a model 
for buckling of fibers surrounded by a matrix. These two topics occupied 
the att~ntion of many fine investigators for ten years or so. However, to 
date, little work has been done on other topics of obvious importance 
such as prediction of shear strength. 

3.5.2 Tensile Strength in the Fiber Direction 

A unidirectional fiber-reinforced composite material deforms as the 
load inc~ease~ in the followin~. four stages, more or less, depending on 
the relative brittleness or ductility of the fibers and the matrix: 

(1) Both !ibers and_ matrix deform elastically 
(2) The fibers C?ntmue to deform elastically, 

but the matrix deforms plastically 
(3) Both Jhe fibers and the matrix deform plastically 
(4) The fibers fracture followed by fracture of the composite material 

These stages . are illustr~ted in Figure 3-46 for generic stress-strain 
curves for the fibers, matnx, and composite material. Note that the fibers 
are generally the stiffer, stronger, and less ductile of the two composite 
material constituents. as implied in Figure 3-46. Of course, for brittle fi
ber~, stag_e 3 might not be realized. Similarly, a brittle matrix might not 
achieve e1the~ stage_ 2 or 3. Whether fracture of the composite material 
occ~~s as a f1~er failure or as a matrix failure depends on the relative 
ductility of the fibers versus matrix as well as on the fiber-volume fraction. 
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FIBER 

Figure 3-46 Deformation Stages of a Fiber-Reinforced Composite Material 

Fibers of Equal Strength 

Consider fibers that all have the same strength and are relatively 
brittle in comparison to the matrix as studied by Kelly and Davies [3-26]. 
Moreover, both the fibers and matrix are active only in the linear elastic 
range (stage 1 in Figure 3-46). If the composite material has more than 
a certain minimum volume fraction of fibers, V1, the ultimate strength is 
achieved when the fibers are strained to correspond to their maximum 
(ultimate) stress. That is, in terms of strains, 

Ecmax = 9max (3.83) 

Because the fibers are more brittle than the matrix, they cannot elongate 
as much as the matrix. Thus, the fibers are the weak link, from the strain 
viewpoint, in the strength chain that the composite material comprises. 

The schematic stress-strain curves for the fibers and the matrix 
shown in Figure 3-47 (again, stage 1 only of Figure 3-46) are useful in 
interpreting the reasoning to obtain the composite material strength. 
Thus, if the fiber strain is presumed equal to the matrix strain in the di
rection of the fibers (as in the micromechanics prediction for E1), then the 
strength of the composite material is 

(3.84) 

where 

a1 = maximum fiber tensile stress 
max 

(am\ = matrix stress at a matrix strain equal to 
mu 

the maximum tensile strain in the fibers 

Obviously, if fiber reinforcement is to lead to a greater strength than 
can be obtained with the matrix alone, then 

(3.85) 
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Figure 3-47 Schematic Stress-Strain Curves for Fibers and Matrix 

Equations (3.84) ~n~ (3.85) can be .solved for the critical Vf that must be 
exceeded to obtain fiber strengthening of the composite material: 

,,--; 0 m - (crm).,_ V _ max ,._ 

fcritical - O't - (cr ) (3.86) 
max m 9._ 

For smaller values of v,, the behavior of the composite material 
might not follow Equation (3.84) because there might not be enough fi
bers to control the matrix elongation. That is, the matrix dominates the 
composite material and 'carries the fibers along for the ride'. Thus, the 
fibers would be subjected to high strains with only small loads and would 
fra?ture. If all fibers ~r~ak at the s~me strain (an occurrence that is quite 
unlikely from a statrstrcal standpoint), then the composite material will 
fracture unless the matrix (which occupies only Vm of the representative 
volume element) can take the entire load imposed on the composite 
material, that is, 

(3.87) 

Thus,. in this case, the matrix is the only contributor to the composite 
material strength. In fact, the composite material acts as matrix of 
amount Vm and holes, not fibers, of amount v,1 Finally, the entire com
posite material fails after fracture of the fibers if 

O'c = O't v, + (crm)... (1 - v,) ~ O'm (1 - v,) (3.88) 
max max •nm: · · ,nax 

from which a minimum v, for validity of Equation (3.88) can be obtained 
as 

(3.89) 
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The preceding expressions, Equations (3.84) through (3.89), are 
more easily understood when they are plotted as in Figure 3-48. There, 
the composite material strength (i.e., the maximum composite material 
stress) is plotted as a function of the fiber-volume fraction. When v, is 
less than Vtminimum• the composite material strength is controlled by the 
matrix deformation and is actually less than the matrix strength. When 
v, is greater than Vtminimum• but less than Vfcriticar• the composite material 
strength is controlled by the fiber deformation, but the composite material 
strength is still less than the inherent matrix strength. Only when v, ex
ceeds Vtcntical does the composite material gain strength from having fi
ber reinforcement. Then, the composite material strength is controlled 
by the fiber deformations because v, is greater than Vfminimum· Note that 
the shape of Figure 3-48 will vary as Vtcritical varies. Also, from Equation 
(3.86), Vtcntical is small when 

O'm = (crm).-, (3.90) 
max •max 

as is the case for glass fibers reinforcing a resin matrix. In the latter 
case, the composite material strength is always fiber-controlled because 
vfcritical always exceeds vfminimum· 

The preceding analysis is premised on having continuous fibers of 
equal strength all of which fracture at the same longitudinal position. 
However, fibers under tension do not all have the same fracture strength 
nor do they fracture in the same place. Rather, because surface 
imperfections vary from fiber to fiber, the individual fibers have different 
fracture strengths. A statistical analysis is then necessary to rationally 
define the strength of a composite material. 

0 1 V 
V fcRITICAL 

fMINIMUM 

FIBER-VOLUME FRACTION, Vf 
Figure 3-48 Composite Tensile Strength versus Fiber-Volume Fraction 

(After Kelly and Davies [3-26]) 
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Fibers with a Statistical Strength Distribution 

Rosen analyzed the strength of composite materials reinforced by 
fibers with a statistical strength distribution by use of the model shown in 
Figure 3-49 [3-27]. There, the representative volume element includes 
several fibers that are not broken and one fiber that is broken. Obviously, 
the representative volume element either changes size during loading 
and subsequent fiber fracture or else the number of fiber fractures in a 
fixed-size volume element increases. The broken fiber has presumably 
been subjected to a stress high enough to initiate fracture at a surface 
imperfection. The broken fiber causes redistribution of stresses around 
the fracture. Stress must then pass from one end of the broken fiber past 
the break to the other end. The mechanism for accomplishing this stress 
transfer is the development of high shear stresses in the matrix over a 
short distance from the fiber break as shown in Figure 3-49. The longi
tudinal fiber stress is thereby increased from zero at the break to the 
stress level, cr1 , of any other fiber in the composite material far from the 
break. Thus, tPie fiber-tension problem is transformed into a fiber-pull-out 
problem after fiber fracture. 

\t f f t \ 

X X 

\ I I J J \ 
cr 

Figure 3-49 Rosen's Tensile Failure Model (After Rosen [3-27]) 

Failure of the composite material can then occur in two ways. First, 
the matrix shear stress around the fiber could exceed the allowable ma
trix shear stress. More precisely, the bond between the fiber and the 
matrix might be broken due to high shear stress in the aforementioned 
mechanism for transfer of stress between broken fibers. Second, the fi
ber fracture could actually propagate across the matrix through other fi
bers and hence cause overall fracture of the composite material. If a 

( 
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good bond is achieved between the f(ber and the matrix an~ if the ll'!atrix 
fracture toughness is high, then the fiber fractures can continue until the 
statistical accumulation is sufficient to cause gross composite material 
fracture. 

By use of statistical analysis, Dow and Rosen [3-28] obtained 

[ 

1 - v;'2 ]- 11(2~) 

(}Cmax = (}refvf v;'2 (3.91) 

where crref is a referenc~ stress !e~el that is a fun.ction of t~e fibe~ a~d 
matrix properties and (3 1s a stat1st1cal parameter m the Weibull d1stnb
ution of fiber strength. 

Rosen's results are plotted in Figure 3-50 for (3 = 7.7, a represen
tative value for commercial E-glass fibers. Also plotted in Figure 3-50 is 
the rule-of-mixtures expression 

0 c = (}refvf (3.92) 
max 

in which the tensile strength of the matrix has been ignored because it 
is much less than the fiber tensile strength. Thus, cr ef must be inter
preted as essentially the fiber tensile strength, but witfi some statisti?al 
implications. Note in Figure 3-50 that Ro~en's results from Equa~1on 
(3.91) do not go to one at V1 = 1. This behavior occurs because th~ fiber 
packing has a maximum density as a hexagonal array of uniform
diameter fibers for which v1 = .904. Note that Rosen's results c3:re close 
to the rule-of-mixtures expression. However, the two expressions are 
based on such widely differing approaches that it is fallacious to infer 
from mere agreement with each other and with experimental data that the 
correct physical theory has been found. 

NORMALIZED 
TENSILE .6 <Jc STRENGTH t t t 

O'CMAX 

rn]] O'REF 
.4 

.2 
+ + + 

<Jc 

.2 .4 .6 .8 1.0 

FIBER-VOLUME FRACTION, V1 

Figure 3-50 Composite Tensile Strength versus Fiber-Volume Fraction 
(After Dow and Rosen [3-28)) 
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Several interesting conclusions can be drawn from observation of 
Figure 3-50. Basically, the fracture strength of the composite material 
exceeds that of an individual fiber because Rosen's results lie above the 
rule-of-mixtures expression. Moreover, the energy-absorption capacity 
of the composite material also exceeds that of the fibers. These char
acteristics follow from observation of Figures 3-51 and 3-52 where, first, 
fiber strength (E-glass fibers) is shown to be inversely proportional to fi
ber length and, second, the number of fiber fractures is seen to increase 
as the ultimate load for the composite material is approached. Note in 
Figure 3-52 that fibers actually fracture at half the ultimate load and that 
the number of fractures rapidly accumulates until the overall composite 
material fractures. Figure 3-51 on fiber strength versus length can be 
rationalized by likening a fiber with surface imperfections to a chain; the 
longer the chain (fiber), the higher the probability of a weak link (surface 
imperfection). 
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Figure 3-51 Fiber Tensile Strength versus Fiber Length 
(After Dow and Rosen [3-28]) 

140 

120 

100 
CUMULATIVE I NUMBER 

OF 80 

FIBER 
FRACTURES 

Figure 3-52 

60 

40 

20 

o~~~~~~~~~~ 

0 .2 .4 .6 .8 1.0 

FRACTION OF ULTIMATE LOAD 

Cumulative Number of Fiber Fractures versus 
Percentage of Ultimate Composite Load 
(After Rosen, Dow, and Hashin [3-291) 
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Definitive studies of composite material tensile strength from a 
micromechanics viewpoint simply do not exist. Obviously, much work 
remains in this area before composite materials can be accurately de
signed, i.e., constituents chosen and proportioned to resist a specified 
tensile stress. 

3.5.3 Compressive Strength in the Fiber Direction 

When fiber-reinforced composite materials are loaded in com
pression, Dow and Rosen speculate that the mode of failure appears to 
be fiber buckling within the restraint of the matrix material [3-28). One 
indication of such failures is the periodic nature of the photoelastic stress 
pattern for the E-glass fibers of three different diameters in an epoxy 
matrix shown in Figure 3-53. If fiber buckling were to occur in the matrix, 
then a column on an elastic foundation model would appear to be rea
sonable. For such a model, the buckle wavelength can be shown to be 
directly proportional to the fiber diameter. This theoretical result is veri
fied by the experimental data shown in Figure 3-54 where a best-fit linear 
relation is represented as a 45° line on the log-log plot. Moreover, those 
data further strengthen the overall hypothesis that fiber buckling is re
sponsible for compressive failure. This mode of failure was c~lled 
microbuckling by Greszczuk [3-30). Note that, thus far, we have avoided 
making arbitrary assumptions, but instead are attempting to make effec
tive approximations that are guided by careful observations of actual 
behavior. 

5 x 10-3 In 3.5 x 10-3 in 
(.13 mm) (.089 mm) 

DIAMETER OF E-GLASS FIBER IN EPOXY RESIN 

.5 X 10-3 in 
(.0013 mm) 

Figure 3-53 Photoelastic Stress Patterns for Three E-glass Fibers 
Embedded in an Epoxy Matrix 
(Courtesy of Materials Sciences Corporation) 
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Figure 3-54 Experimental Results for Fiber Buckle Wavelength 
versus Fiber Diameter (After Dow and Rosen [3-28]) 

In addition to being caused by mechanical compressive loads, fiber 
buckling can be caused by shrinkage stresses developed during curi~g 
of the composite material. The shrinkage stresses result from the matrix 
having a higher thermal coefficient of expansion than the fibers. As a 
matter of fact, the photoelastic stress patterns in Figure 3-53 were due 
to matrix shrinkage during curing of a single glass fiber embedded in an 
epoxy matrix. 

Two modes of fiber buckling are possible in the representative vol
ume element of Figure 3-55a. First, the fibers can buckle out of phase 
relative to one another (symmetric about a line halfway between the fi
bers) to give the 'transverse' or 'extensional' buckling mode in Figure 
3-55b. There, an originally vertical line in the matrix midway between 
each fiber (the dashed vertical lines in Figure 3-55b) does not move. 
All other originally vertical lines change to sine waves with an amplitude 
that increases as the distance from the midpoint between each fiber in-

t t t 
REPRESENTATIVE EXTENSION MODE 
VOLUME ELEMENT ORTRANSVERSE MODE 

a b 
SHEAR MODE 

C 

Figure 3-55 Extensional Mode and Shear Mode of Fiber Buckling 
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creases to a maximum at the fiber. Moreover, horizontal lines of original 
length 2c extend or contract as in Figure 3-55b. Thus, the matrix extends 
or contracts in the y-direction transverse to the x-direction. Hence, the 
name transverse mode or extension mode is used. The second mode, 
the shear mode , is so named because the matrix is subjected to shear
ing deformation because the fibers buckle in phase with one. another 
(antisymmetrically with respect to the line halfway between the fibers) as 
shown in Figure 3-55c. There, all originally vertical lines in the matrix 
shear first to the right and then to the left of their originally straight posi
tion in the form of a sine wave. Also, originally horizontal lines do not 
change orientation or length during buckling, but do translate in the y
direction. Thus, the matrix shears in the x-y plane with all the shear be
ing relative to the x-axis. Hence, the name shear mode is used. 

In the model for both buckling modes, the fibers are regarded as 
plates L long, infinitely wide, and h thick separated by matrix _2c wi~e. 
Thus, the problem is made two-dimensional because the d1mens1on 
perpendicular to the x-y plane in the figure is disregarded. The two
dimensional buckling model result should be an upper bound on the ~eal 
three-dimensional fiber buckling problem (in which the fiber buckles into 
a helix at a lower load than that corresponding to sinusoidal buckling in 
a plane). Each fiber is subjected to axial _compressive load P .. The fib~rs 
are also regarded as being much stiffer than the matrix (that 1s, 
G1 > > Gm), so the fiber-shearing deformations are neglect~d. Of c?urse, 
the buckling load of a fiber that is surrounded by supporting matrix ma
terial is significantly higher than if no matrix material were present. In 
essence, the lateral support of the continuous matrix material is analo
gous to increasing the number of discrete lateral supports for an Euler 
Column. That is, 

P=m21t2 EL 
L2 

(3.93) 

has results for buckling mode dependent on the number of lateral sup
ports (m - 1) in Figure 3-56. For high values of m, the buckling load is 
enormously larger than if m is only one (a column without lateral support). 
However note that the matrix support is elastic, i.e., a deforming support 
like a sp;ing, not the rigid support of the Euler column with discrete sup
ports. 

• • • 

m = 1 m=2 m=3 m = high 

Figure 3-56 Buckling of a Discretely Supported Euler Column 
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The analysis to find the fiber buckling load in each mode is based 
on the energy method described by Timoshenko and Gere [3-31]. The 
buckling criterion is that the change in strain energy for the fiber, AU1, 
and for the associated matrix material, AUm, is equated to the work done 
by the fiber force, AW, during deformation to a buckled state, that is, 

AU1+AUm =AW (3.94) 

In the energy method, buckle deflection configurations are approximated 
for the various buckle modes. The corresponding buckling loads are then 
calculated by use of Equation (3.94). An important feature of the energy 
method is that calculated buckling loads are an upper bound to the actual 
buckling load for the problem considered. Thus, if the unknown buckling 
displacement, v, of an individual fiber in the y-direction (transverse to the 
fibers in Figure 3-55) is represented by the Fourier sine series 

00 

v = " a sin n1tx L. n L (3.95) 
n=1 

then a buckling load will be obtained that is higher than the actual buck
ling load. If Equation (3.95) is used in energy expressions for transverse 
buckling and for shear buckling of the fiber-reinforced composite mate
rial, then the lowest of the two buckling loads governs the fiber buckling 
of the composite material. A buckling mode having deformations inter
mediate to the transverse and shear modes (i.e., fiber deformations that 
are neither in phase nor perfectly out of phase) would be expected to 
have a higher buckling load than either of the two simple modes. 

Transverse or Extension Mode 

For the transverse buckling mode in Figure 3-55, the matrix mate
rial expands or contracts in the y-direction. However, the matrix strain 
in the y-direction (transverse to the fibers) is presumed to be independent 
of y, i.e., simply twice the two adjacent fiber displacements, v, divided 
by the original distance between the fibers: 

f-y = tl = ~~ (3.96) 

whereupon from the stress-strain relations the matrix stress is 

cry= Em ~ (3.97) 

Any deformation of the matrix material in the x-direction is ignored. Thus, 
the change in strain energy is presumed to be dominated by the energy 
of transverse (extensional} stresses. Thus, for the matrix, 

AUm = ~ L CJY EydV 

Substitute Equations (3.96) and (3.97) to get 

(3.98) 

\__ 
E L 2 AU = _!!!_ v dV m 2 
2c 

(3.99) 

/ 
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Substitute Equation (3.95) for the transverse deflection to get 

E t ~ ~ · m1tx · n1tX dxdy (3100) AUm = ~ L. k.,I aman sm -L- sm -L- . 
2c m=1 n=1 

where the dimension of the representative volume elem~nt in the z
direction is unity. Now interchange integration and summation to get 

oo oo r2c L 
AUm = E~ L L Jn J, aman sin mt sin nr dxdy 

2c m=1n=1 o o 

However, the sine function is orthogonal to itself, i.e., 

Thus, we get 

L [0, m¢n J
0 

sin mt sin nr dxdy= ~, m=n 

Eml L 2 AU =-- an m 2c 
n 

(3.101} 

(3.102) 

(3.103) 

For the fibers, the change in strain energy is related to the c~rvature of 
the bent fiber, v", considered as a column in the manner of T1moshenko 
and Gere [3-31], 

EI IL 2 AU1 = - 1- 1 (v") dx 
2 0 

(3.104) 

but 1 = h3112 for a fiber of thickness h and unit depth (b~a.us.e _the di
men~ion perpendicular to the x-y plane in Figure 3-55_ 1s infinite . and 
hence disregarded). Substitute the series for the deflection (after differ-

entiation) to get 

3 L 00 00 2 2 X 
AU = E,h f " " a a ( m1t ) ( ~) sin mlroc sin n~ dxdy 

f 24 J, £..J £..J m n L L (3.105) 
Om=1n=1 

Interchange integration with summation and use the orthogonality result 
in Equation (3.102) to get 

iE,h
3 

" 4 2 AU,= k.,/n an (3.106} 
48L

3 
n 

Finally, the work done by the external force P during buckling is 

AW= P6 (3.107} 

where 6 is the distance that p moves during buckling of a fiber fro"!' its 
originally straight position in Figure 3-57. Note that the column (fiber) 
does not change length during the buckling pr~ess (but must, of course, 
shorten as P increases from zero to the buckling load}. 
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ds 

Figure 3-57 Deformation of a Simply Supported Column during Buckling 

The ?iffere~tial movement, do, of the force P is the difference between 
the d1fferent1al arc length of the column, ds, and the x-direction differential 
length, dx. Thus, from the triangle of differential distances in Figure 3-57, 

d6=ds-dx=~dx2 +dy2 -dx=dx-V 1 + [ : r 
=d{n:r+-··J=n~:r 

-dx 

(3.108) 

Accordingly, 

1 LL [ dy ]2 O=- - dx (3.109) 2 0 dx 

;hen, upon. substitutio~ of the derivative of the transverse deflection, v, 
or Y, Equation (3.95), m the work expression, Equation (3.107), 

L oo oo 

AW = : L ];1 n~ aman ~7t :7t cos ~x cos nrx dxdy (3.110) 

l~terchange integration with summation and use the cosine analog of the 
sine orthogonality result in Equation (3.102) to get 

2 
AW= P1t ~n2a2 

4l ,/- n (3.111) 
n 

in which'. for this two-dimensional problem, the fiber load per unit of width 
perpendicular to the plane of Figure 3-55 is 

P = a, h ~.112) 

i.e., the fib~r axial stress times the fiber thickness. Upon substituti~~f 
t(he forego1~g energ~ expressions in the buckling criterion Equation 
3.94), the fiber buckling load is ' 

\ 

( 
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(3.113) 

Now ~resume that P achieves a minimum for a particular sine wave, say 
the m h wave. Thus, 

2 2 [ 4 ] 1t Ef h 2 24l Em 1 a, = m + -
er 12L2 1t

4ch3
Ef m2 

(3.114) 

where m is the number of half waves in the buckled column shape. From 
the aforementioned photoelasticity investigations [3-28), m is obviously 
a very large number. Thus, a1 can be treated as a continuous function 
of m and the minimum of a1 l's obtained from the stationary value con-
dWon er 

aa, 
__ er =0 
am 

subject to the condition for a minimum that 
2 a a, 

er 

am2 

clc1 
-"'-=0 

ilm 

(3.115) 

>0 (3.116) 

If m were small, the minimum a1 must be found for discrete (integer) 
values of m. The following reas6ning is offered in support of the pre
ceding contention. Consider a hypothetical plot of a1 versus m where 
a1 has values only at integer values of m in Figure 3~8 because there 
mflst be an integer number of buckle half waves to satisfy column end 
conditions. The buckling load for the indicated lowest minimum at 
m = 2.7 does not physically exist and deviates substantially in value from 
the physical minimum at m = 3 because the mode number is squared in 
the buckling expression. However, the buckling load for the second 
minimum at m = 37.5, although it does not physically exist, is a reason
ably close approximation to the actual minimum because the percentage 
difference between the buckling load form= 37.5 and that form= 37 or 
38 is negligible. The minimum of a1 as a continuous function of m is 

er 

(jf = 2 
er 

(3.117) 

as can easily be verified (Problem 3.5.4). In the preceding derivation, 
recognize that 

(3.118) 
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\J ~ 37.5 
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Figure 3-58 Hypothetical Relative Minima of cr
1 er 

The buckling stress in the composite material is then 

Vf EmE, 
3(1 -Vf) (3.119) 

wherein the matrix is assumed to be essentially unstressed in the x
direction in comparison to the fibers. 

Alter~atively, the x-direction strain at buckling can be calculated 
from Equation (3.117) and the uniaxial stress-strain relation as 

-2-V vf .... [E;;: 
't. - 3(1-V1) \,/ If (3.120) 

If th~ matrix is assumed to have the same strain in the fiber direction as 
the fiber (the fundamental approximation for strains in the determination 
of E1 in Section 3.2.1, which is reasonable if no fractures occur), then 

<Jm=EmEt (3.121) er 

whereupon the maximum composite material stress is 

(3.122) 
or 

Finally, 

<Jc = [v, + (1 - V,) Em Ja, 
max E, er (3.123) 

<Jc = 2[v, + (1 - V,) Em J V,Em§__ ~4) 
max E, 3(1 - V,) '--

Th~ difference betw~en Eq~atio~s (3.1 J 9) and (3.124) is slight for high 
ratios of e, to Em as m practical fiber-reinforced composite materials. 
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Shear Mode 

For the shear buckling mode in Figure 3-55, the ~iber dis~lac.ements 
are equal and in phase with one another. The matnx maten~I 1s .alte~
nately sheared in one direction .and then t~e o!her as th~ x-~llrect1on. 1s 
traversed. However, changes m deformation m the y-d1rect1~>n are ig
nored. Thus, the shear strains are pres~n:ied to be a funct~on of the 
fiber-direction coordinate alone. The matrix 1s sheared according to 

y = lY._ + .Q!!_ (3.125) 
xy ax ay 

where v is the displacement in the y-direction and u. is the displa?e!flent 
in the x-direction. Then, because the transverse displacement 1s inde
pendent of the transverse coordinate y, 

dv I dv I (3.126) 
dx matrix = dx fiber 

Because the shear strain is independent of y, 

.Q!!_=_1_ [u(c)- u(-c)] (3.127) ay 2c 

as can be verified by examination of Figure 3-59. Next, because the 
shear deformation of the fiber is ignored, 

u(c) = lL ..QY. I (3.128) 
2 dx fiber 

But, from substitution of Equation (3.128} in Equation (3.127), 

au h dv I (3.129) 
ay = 2C dx fiber 

Now substitute Equations (3.129) and (3.126) in Equation (3.125) to get 

'Y = [1 +JL J ..QY_ I (3.130} 
xy 2c dx fiber 

B~ 
~ -11" 2c 'I 

BEFORE BUCKLING 
AFTER BUCKLING 

Figure 3-59 Fiber Deformations During Shear Mode Buckling 
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Recall the basic stress-strain relation 

'txy = Gm 'Yxy (3.131) 

The change in strain energy of the matrix is merely that due to shear: 

'1Um = ! l 'txy YxydV (3.132) 

Substitute the deflection function, Equation (3.95), the shear strain ex
pression, Equation (3.130), and the stress-strain relation, Equation 
(3.131), in Equation (3.132) to get 

[ h]2
,i~22 

AUm = Gmc 1 + 2c 2L "'-'n an 
n 

(3.133) 

The change in strain energy of the fiber is still given as Equation (3.106), 
and the work done is still that in Equation (3.111 ). Thus, upon application 
of the buckling criterion, Equation (3.94), 

Gm 1lE, [ mh ]2 
cr,cr =-v-,-(1--'-'--v-,-> +12 T (3.134) 

Because the buckle wavelength is L /m, the second term in Equation 
(3.134) is small when the buckle wavelength is large relative to the fiber 
diameter, h. Thus, the fiber buckling stress is approximately 

Gm cr - (3.135) 
fer - v, (1 - v,) 

The maximum composite material stress (i.e., the strength) is then 

and the strain at buckling is 

Gm 
crcmax = 1 - V

1 

1 [Gm] Ecr= v, (1 -V,) E, 

Predicted versus Measured Strength 

(3.136) 

(3.137) 

The maximum stress expressions, Equations (3.119) and (3.136), 
are plotted in Figure 3-60 for a glass-epoxy composite material. Note 
that the shear mode has the lowest strength for the composite material 
over a wide range of fiber-volume fractions. However, the transverse or 
extensional mode does govern the composite material strength for low 
fiber-volume fractions. For fiber-volume fractions of between .6 and .7, 
the predicted compressive strength is between 450 and ,600 ksi (3100 
and 4100 MPa). These high strength levels have not been'Obtail'led for 
glass-epoxy composite materials. If such a composite material were to 
have a strength of 500 ksi (3400 MPa), the strain would have to exceed 
5%. Under these conditions, the matrix would deform plastically. Thus, 
the predicted strength should be below the curve labeled 'elastic shear 
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mode' in Figure 3-60. As an approximation to the inel~stic beh~vior, Dow 
and Rosen [3-28) replaced the matrix shear modulus_ in Equation 

O 
(3.13~) 

by a shear modulus that varies linearly from the elastic value ~t 1 Yo stra1~ 
to a zero value at 5% strain as in Figure 3-61. The resulting str~ngtd 

urve is labeled 'inelastic shear mode' in Figure 3-60. The pred1cte 
~om ressive strengths then appear more reasonable for glass-epoxy 
com~osite materials, but are still not as low as actual ~1:llue~. 1:'hat t~~~e 
predicted strengths are too high shou!d not. be su_rpnsing in view ~ctu:i 
fact that the analysis is o~ly two-d1mens1onal instead of the 
three-dimensional fiber buckling problem. 
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Figure 3-60 Compressive Strength of Glass-Epoxy Composite Materials 
(After Dow and Rosen [3-28]) 
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Dow and Rosen's results are plotted in another form, composite 
material strain at buckling versus fiber-volume fraction, in Figure 3-62. 
These results are Equation (3.137) for two values of the ratio of fiber 
Young's modulus to matrix shear modulus (E1/Gm) at a matrix Poisson's 
ratio of .25. As in the previous form of Dow and Rosen's results, the 
shear mode governs the composite material behavior for a wide range 
of fiber-volume fractions. Moreover, note that a factor of 2 change in the 
ratio E1 /Gm causes a factor of 2 change in the maximum composite 
material compressive strain. Thus, the importance of the matrix shear 
modulus reduction due to inelastic deformation is quite evident. 
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Figure 3-62 Compressive Strain at Microbuckling for 
Fiber-Reinforced Composite Materials 
{After Dow and Rosen {3-28]) 

Schuerch examined boron-fiber-metal-matrix composite materials 
parametrically with Rosen's equations and found them to require plastic 
buckling analysis [3-32]. Moreover, so do S-glass-epoxy composite ma
terials, but boron-epoxy composite materials apparently buckle elastically 
according to Schuerch. Greszczuk studied the shear mode of micro
buckling and determined that as the matrix shear modulus increases, the 
mode of failure changes from microbuckling to gross compression failure 
of the fibers [3-30]. 

Lager and June compared Dow and Rosen's ~ preqictions 
with experimental results for boron-epoxy composite materials thal have 
two different matrix materials [3-33]. The theory appears to correlate well 
with the data if the matrix moduli in Equations (3.119) and (3.136) are 
multiplied by .63, that is, 

( 
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((J ) . = 2v, c extension max 
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Figure 3-63 Compressive Strength of Boron-Epoxy Composite Materials 
{After Lager and June [3-33]) 

Zhan and Latour [3-34] used a more refined mechanics of mate
rials modei9than Rosen to demonstrate that. th~ shear modef~nd thf :~ 
tension mode of microbuckling must comcrde at z~ro ' er-vo u . 

fr'.3ction, unlike Rosen's r~!u~s ~~:n~~:'5.9fi~!r~'dic~a~!:~~!f~~~;da:~ 

~~~~:b~;
6

~1 i:i~~~~i:J· !ith !e another d;in~h~~~k~~es~nt~~~~ ~~ 
be no difference in bucklingh load ble~~~~t af high v the theoretical re
tension mode. Moreover, t ey exp a,~ t rimental results ~~:r1:~~i~rs~~~g w:::1:~~t~iu~~~~l~~g T~::~::crirf~ther factors that 
could result in short wavelength frber buckling. 
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Problem Set 3.5 

3.5.1 Derive Equation (3.86). 
3.5.2 Derive Equation (3.89). 
3.5.3 Derive Equation (3.113). 
3.5.4 Derive Equation (3.117) and verify that it Is a minimum. 
3.5.5 Derive Equation (3.133). 
3.5.6 Derive Equation (3.134). 

3.6 SUMMARY REMARKS ON MICROMECHANICS 

The micromechanics approaches presented in this book are an at
tempt to predict the mechanical properties of a composite material based 
on the mechanical properties of its constituent materials. In nearly all 
fiber-reinforced composite materials, there is considerable difference 
between expectation and reality. Thus, we must ask: what is the useful
ness of micromechanical analysis beyond gaining a feeling for why 
composite materials behave as they do? Basically, there are two an
swers: one related to designing a material and one related to designing 
a structure. 

First, if we are designing a composite material to achieve certain 
properties, we must have a design rationale that can only be microme
chanics. However, obviously adjustments (perhaps empirical) must be 
made to the rationale to obtain agreement between predicted and actual 
properties for given constituent properties and volume percentages. That 
is, something must be done to make up for the quantitative shortcomings 
of micromechanics theories used in the design of materials for specified 
properties. The actual properties of a composite material result from 
processing variables that are often difficult to assess, even qualitatively: 

• nonuniform curing • fiber damage 
• residual stresses • random fiber packing 
• voids • contiguous fibers 
• cracks • misaligned fibers 

Thus, it seems inevitable that micromechanics predictions of properties 
will always be imprecise. 

Second, if we are designing a structure made of composite mate
rials, we might ideally wish to have the freedom to design the material for 
the structure as well as the structure itself. In such a situation, we would 
need micromechanics in the sense of answer number one (material de
sign). However, we would much more likely be obliged to standardize 
the material (e.g., use a particular graphite-epoxy tape) and concentrate 
on how to use the standard material to best advantage. Specifically, how 
to orient laminae of known (measured, not predicted!) properties to 
achieve design goals would be the thrust of our efforts. Thus, the second 
possible answer to the question of the usefulness of micromechanics is 
that in many cases there is virtually no need for mlcromechanics. That 
is, the structural designer will probably rely almost exe[IJ_ajv_ely p'n the re
sults of mechanical tests for his material property data. He cannot risk 
using unsubstantiated micromechanics predictions that are often con
siderably in error. 

( 
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The reader should be exposed to both micromechanics ~nd 
macromechanics in order to function eff9<:tively in_ e!th~r ma!erial design 
or structural design. The main thrust of this book 1~ m line with struct~ral 
design and analysis requirements. Thus, the point of our ~ddress1n~ 
micromechanics is to better understand how and why composite materi
als function. 
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Chapter 4 

MACRO MECHANICAL 
BEHAVIOR OF A LAMINATE 

4.1 INTRODUCTION 

A laminate is two or more laminae bonded together to act as 8:n 
integral structural element (see, for example, Figure 4-1). !~e two basic 
questions of laminate analysis are: (1) what are th_e cond1~1ons that the 
laminae must meet to be a laminate? and (2) how will a l~mmate ~espond 
to loading, i.e., imposed forces an~ mo~en~s? The_vanous laminae are 
oriented with (local) principal material directions at different angles t? ~he 
global laminate axes to produce a structural element capable of resisting 
load in several directions. The stiff~esses and ~trengths of such a co_m
posite material structural configuration are obtained from the properties 
of the constituent laminae by procedures derived in thi~ c~~pter. T~ose 
procedures enable the analysis of laminates that. have md1v1dual laminae 
with principal material directions oriented at arbitrary angles to the _cho
sen or natural axes of the laminate. As a conseque~ce of thE: a~1trary 
laminae orientations, the laminate might not have definable principal di-

rections. 

RESPONSE? 

LAMINATE 

LAMINAE 
Figure 4-1 The Basic Questions of Laminate Analysis 

187 
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The reason laminae are combined to create a laminate is to 
achieve the largest possible bending stiffness for the materials used. 
Recall the 'two-beam' problem from basic mechanics of materials. First, 
consider the two beams as not fastened together and loaded at midspan 
by a concentrated force as in Figure 4-2a. In contrast, the same two 
beams could be fastened together by nails, screws, or bonding as in 

j) Figure 4-2b. The --®flection is IQGS for the bonded beams than the un
bonded :E__eams by a factor of four! _Thus, bondiog laminae together re
sults in a compellingly large in~ding resi~e. 

l l 
'"""''" ___ L ___ .,-tj 

§:1~ j,! 1 l t 1 t 1~ 1 t11 l !i. 
b 1~ .1 

~ 
E..::::::-.:::::::=f-: _3 
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= __ :_;PL=-
3 
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48EI 4BE{2) _1_ bh3 
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3
_ = --'---PLcc,_

3 
__ 

48EI 48E _1_ b{2h)3 
12 

llunbonded = 4~nded 

a Unbonded Beams b Bonded Beams 

Figure 4-2 Reason for Lamination: The Two-Beam Problem 

The fundamental analysis of a laminate can be explained, in prin
ciple, by use of a simple two-layered cross-ply laminate (a layer with fi
bers at 0° to the x-direction on top of an equal-thickness layer with fibers 
at 90° to the x-direction). We will analyze this laminate approximately 
by considering what conditions the two unbonded layers in Figure 4-3 
must satisfy in order for the two layers to be bonded to form a laminate. 
Imagine that the layers are separate but are subjected to a load N in the 
x-direction. The force Nx is divided between the two layers such that the 
x-direction deformation of each layer is identical. That is, the laminae in 
a laminate must deform alike alongib~ioJ~rface between the layers or 
else fracture must exist! Accordingly, deformation compatibility of layers 
is a requirement for a laminate. Because of the equal x-direction defor
mation of_ e_ach _layer, the top (0°) layer has the most x-direction sJress 
because 1t 1s stiffer than the bottom (90°) layer in the x-direction./ THe 
x-direction stresses in the top and bottom layers can be shown to have 
the relation / · 

T E1 B 
crx =rcrx (4.1) 

2 
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Figure 4-3 Analysis of a Two-Layered Laminate 

Now consider the lateral (y-direction) displacements of bot~ layers 
in Figure 4-3. Without bonding of the two laminae, the lateral d1spla?e
ments can be shown by use of the strain-stress relations and the relation 
of strain to displacement to have the relation 

T E1 B ) ~=~~ (4.2 

That is, although we required equal x-direction disp~acements of the two 
layers (the proportion of Nx in each layer. was adJusted to cr~ate. that 
equal-displacement condition), the lateral d'.spl8:CElments...aru.~er- _ 
emJhose different displacements are a violation .QUb_e req~rre? de_ or
mation compatibility of laminae in a la~emedy t~1s v1olat10~, 
the top layer must get wider by application of a lateral tensile stress <!Y· 
and the bottom layer must get narrower by application of _a comp1:esswe 
stress crB. The two deformations must result in equal-width lam_1nae to 
satisfy ~formation compatibility. ~oreover, ~he l_ater~I stresses m each .::1! 
layer must satisfy force equilibrium m the y-d1rect1on, 1.e., <:XJ 

cr; Lt + cr~ Lt = O (4.3) 

where L is the length and t is the lamina ~ickness. 8 Thus, the forces 
corresponding to the lateral stresses, cry . an<!_~._ __ rtJ.yst -be self
equiljbrating - in this case, eg!;lal and OPP.£~-- oecause !:lo lo~~: 
~lied in--1hey-d~~ ---- Next -observeth-atthe x-directiQf' disp1icements of eaph 1aye~ are 
also affect~d by the lateral sires~~~~~!:)_~ cry an<:\-hence ~~ an~ IX 
noJgnger equal. Thus, the ~-d1rect1on ~t~~ss~~ an_~-~ be ad
juste..9-Jo._1:elrnpo~e c;l~Jorm_?t1Qn _GQ_mpat1b1hty of tne 1Wo layers 1n the x-
direction. 

- This step-by-step imposition of conditions of 

• deformation compatibility 
• stress-strain relations 
• equilibrium 
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seemingly results in a never-ending succession of adjustments in x- and 
y-direction stresses until all conditions are simultaneously met. This ap
proach to laminate analysis has revealed the essential character of, and 
principles used in, laminate analysis. The example of a two-layered 
laminate is understandable, yet the method seems hopeless for a 
many-layered laminate, especially if laminae at some arbitrary angle rel
ative to the laminate x-direction are considered. Thus, we adopt a dif
feren!__approach to sim_LJLt~~~atisfy all the required conditions; 
name! cla · al · atio t Moreover, we will discover that this 
'simp e' two-layered cross-ply laminate has another important character
istic that might surprise us. 

Classical lamination theory is derived in Section 4.2. Then, special 
stiffnesses of practical interest are classified and examined in Section 
4.3. Next, the theoretical stiffnesses obtained by classical lamination 
theory are compared with experimental results in Section 4.4. In Section 
4.5, the strengths of various laminates are predicted. Finally, the 
stresses between the laminae of a laminate are examined in Section 4.6 
and found to be a probab cau e of delamination of so_f!l_E3Jaminates. 

Problem Set 4.1 

4.1.1 Use the strain-stress relations, Equation (2.61 ), and the definition of deformation 
=EL to find the stresses in Equations (4.1) and (4.2). 

4.1.2 Did we leave out any behavioral phenomenon In the discussion of Equations (4.1) 
and (4.2)? If so, what Is It? Describe its effect on the results we obtained. 

4.2 CLASSICAL LAMINATION THEORY 

Classical lamination theory consists of a collection of mechanics
of-materials type of stress and deformation hypotheses that are de
scribed in this section. By use of this theory, we can consistently pro
ceed directly from the basic building block, the lamina, to the end result, 
a structural laminate. The whole process is one of finding effective and 
reasonably accurate simplifying assumptions that enable us to reduce 
our attention from a complicated three-dimensional elasticity problem to 
a sQJvable.two-dimfil)$iaoal mechanics of deformable bodies problem. 

Actually, because of the stress and deformation hypotheses that 
are an inseparable part of classical lamination theory, a more correct 
name would be classical thin lamination theory, or even classical lami
nated plate theory. Wewilfuselnecommon term classical lamination 
theory, but recognize that it is a convenient oversimplification of the rig
orous nomenclature. In the composite materials literature, classical 
laminatfon theory 1s often abbreviated as CLT. 

First, the stress-strain behavior of an individual lamin~ is re~ie ed 
in Section 4.2.1, and expressed in equation form for the kt lam1na f a 
laminate. !hen, the variati~ns o! stres~ and strain through the thic ess 
of the laminate are determined m Section 4.2.2. Finally, the rel ion of 
the laminate forces and moments to the strains and curvatures is found 
in Section 4.2.3 where the laminate stiffnesses are the link from the 
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forces and moments to the strains and curvatures. The derivations in this 
section are quite similar to the classical work by Pister and Dong [4-1] 
and Reissner and Stavsky [4-2]. 

4.2.1 Lamina Stress-Strain Behavior 

The stress-strain relations in principal material coordinates for a 
lamina of an orthotropic material under plane stress are 

[::]= ::: ::: : [:: l 
't12 0 0 Oas Y12 

(4.4) 

The reduced stiffnesses, Oii• are defined in t~rms of the ~ngineering 
constants in Equation (2.66). In any other c_oordmate system m the plane 
of the lamina, the stresses are -~ 

[

cr l 011 012 015 [Ex l 
cr: = 012 022 02a Ey 

'txy 015 025 Oas Yxy 

(4.5} 

where the transformed reduced stiffnesses, Oii• are given in terms of the 
reduced stiffnesses, 0 1j, in Equation (2.85). 

The stress-strain relations in arbitrary in-plane coordinates, namely 
Equation (4.5}, are useful in the definition of the laminate stiffnesses 
because of the arbitrary orientation of the constituent laminae. Both 
Equations (4.4) and (4.5) can be thought of as stress-strain relations for 
the kth layer of a multilayered laminate. Thus, Equation (4.5) can be 
written as 

(4.6) 

we will proceed in the next section to define the strain and stress 
variations through the thickness of a laminate. The resultant forces and 
moments on a laminate will then be obtained in Section 4.2.3 by inte
grating the stress-strain relations for each layer, Equation (4.6), through 
the laminate thickness subject to the stress and strain variations deter-
mined in Section 4.2.2. 

4.2.2 Strain and Stress Variation in a Laminate 

Knowledge of the variation of stress and strain through the laminate 
thickness is essential to the definition of the extensional and bending 
stiffnesses of a laminate. The laminate is presumed to consist of per-
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fectly bonded laminae.1 Moreover:. the bonds-are-presumed-to-- be 
infinit . thin as w~U~s_noo-shear-dlfilQrmable. That is, th~
pla ments are c across la · · no lamina 
c~ relative to another._ Thus, the laminate acts as a single layer 
Wit very special properties that later We Will see constitute a structural 
element. 

Accordingly, if the laminate is thin, a line originally straight and 
perpendicular to the middle surface of the laminate, i.e., a normal to the 
middle surface, is assumed to re · · · e 
mid~the laminate is deformed, e.g., bent, extended, 
contracted, sheared, or twisted. Requiring the normal to the middle sur
face to remain straight and normal under deformation i.L_equivalent to 
ig119ring the shearing strains in planes perpendicul~r to th_!!_l!l.lggl~Lfilll:
face, that 1s, 'Y: = y. = O where z is-the-~ of the normal to the 

'- middle surface ~e 4-4 (note that 'Yx:z and 'Yyz are the angles that a 
deformed normal would make with the deformed middle surface}. In 
addition, the normals are pre o th ~o that the 
strain perpendicular to the middle surface ~ed as well, that is, 

= . oregoing collection of assumptionsllf-1he behavior of the 
single layer that represents the laminate constitutes the familiar Kirchhoff 
hypothesis for plates and the Kirchhoff-Love hypothesis for shells (and 
is the two-dimensional analog of the ordinary one-dimensional beam 
theory assumption that plane sections, i.e., sections normal to the beam 
axis, remain plane after bending - thus, the physical justification of the 
collection of assumptions should be obvious}. Note that no restriction 
has been made to flat laminates; the laminates can, in fact, be curved 
or shell-like. 

The implications of the Kirchhoff hypothesis on the laminate dis
placements u, v, and w in the x-, y-, and z-directions are derived by use 
of the laminate cross section in the x-z plane shown in Figure 4-4. The 
displacement in the x-direction of point B from the undeformed middle 
surface to the deformed middle surface is u0 (the symbol 'nought' (o) is 
used to designate middle-surface values of a variable}. Because line 
ABCD remains straight under deformation of the laminate, the displace
ment at point C is 

1That the layers are perfectly bonded Is not an Idealization that cannot be realized in a 
practical sense. In fact, tests exist to determine whether layers are bonded to one another. 
Those tests are an integral part of current manufacturing technology for composite struc
tures. One such test is the simple coln tap that anyone can perform. The noise from tap
ping a coin on a laminate changes pitch from regions of perfect bonding to regions where 
disbands exist. Accordingly, effective bonds between laminae are ensured by suitable n
spection. Thus, the usual (correct) perception that bonds between fiber and matrix at e 
microscopic level are never perfect has no analog at the (rnacroscopfc) laminate I el. 
Laminates that are not completely bonded will likely be rejected (or repaired, If e) In 
usual manufacturing practice. The reason for this Insistence on good bonds Is that neariy 
perfect bonds are required In all laminates to ensure that the laminae work together as a 
unit as in Flgure 4-2 instead of separately (If the laminae are not bonded, then we don't 
have a laminate!). 
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Figure 4-4 Geometry of Deformation in the x-z Plane 

Uc=U0 -Zcl3 (4.7} 

But because, under deformation, line ABCD further remains perpendic
ular to the middle surface, 13 is the slope of the laminate middle surface 
in the x-direction, that is, 

dWo 
13=~ (4.8} 

Then, the displacement, u, at any point z through the laminate thickness 

is 
dWo 

U=U0 -Z~ 

By similar reasoning, the displacement, v, in the y-direction is 

dWo 
V=V0 -Z~ 

(4.9} 

(4.10} 

The laminate strains have been reduced to £,c, Ey, and Yxy by vi~ue 
of the Kirchhoff hypothesis. That is, Ez = 'Yx:z =:Jyz-= 0. For small strains 
(linear elasticity}, the remaining strainsareaefiried in terms of displace-
ments as 

tic=: 
dV 

f-y=~ 
au dV 

'Y =-+xy ay ax 

(4.11} 

Thus, for the derived displacements u and v in Equations (4.9} and 
(4.10), the strains are 
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2 au0 <N0 a W0 
1, =--+---2z--
xy ay ax axay 

or 

where the middle-surface strains are 

0 auo 
Ex ax 

0 avo 
fy = ay 

0 auo avo 
Yxy --+--

ay ax 

and the midrll•>-<•urtace curvatures are 
~ -------------- 2 a W0 

Kx 
o/--2 
a W0 

Ky =-
ay2 

2 o W0 

1'xy 2 axay 

I 
6--

1 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(The last term in Equation (4.15) is the ~of the middle 
surface.) We refer only to curvatures of the middle surface as a refer
ence surface and not of any other surface, s~re 
not needed-of'Hex, 1e~,, and Kxy. Thus, the Kirchhoff hypothesis has be 
readily verified to imply a linear variation of strain_through the lamin e 
thickness because the strains in Equation (4.13) have the fo f a 
straight line, i.e., y = mx + b. The foregoing strain analysis is valid only 
for plates because of the strain-displacement relations in Equation ( 4.11). 
For ci_r:gular_c~IL~-~~~~~~ns, the> term in Equation (4.11) must be 

( 
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supplemented by w0 /r where r is the shell radius; other shells have more 
complicated strain-displacement relations. 

By substitution of the strain variation through the thickness, 
Equation (4.13), in the stress-strain relations, Equation (4.6), the stresses 
in the kth layer can be expressed in terms of the laminate middle-surface 
strains and curvatures as 

011 012 01s 

012 022 02s 

01s 02s Oss 
k 

(4.16) 

The 0 11 can be different for · eac~ layer ?f the laminate,. so. the stress 
variation through the laminate thickness 1s not necessarily linear, even 
though the strain variation is linear. Instead, typical strai~ and _stre.ss 
variations are shown in Figure 4-5 where the stresses are p1ecew1se lin
ear (i.e., linear in each layer, but discontinuous at boundaries between 
laminae). 

' 

' 

z ~ 

1 

2 

-+-X 
3 

4 

LAMINATE STRAIN CHARACTERISTIC STRESS 
DISTRIBUTION MODULI DISTRIBUTION 

Figure 4-5 Hypothetical Variation of Strain and Stress 
through the Laminate Thickness 

4.2.3 Resultant Laminate Forces and Moments 

The resultant forces and moments acting on a laminate are ob
tained by integration of the stresses in each layer or lamina through the 
laminate thickness, for example, 

V2 V2 

Nx= J O'xdz Mx= J O'xZdz (4.17) 
-V2 -t/2 

Note in Figure 4-5 that the stresses vary within each lamina as wel~ as 
from lamina to lamina, so the integration is not trivial. Actually, Nx 1s a 
force per unit width of the cross section of the laminate as shown in 
Figure 4-6. 
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Figure 4-6 In-Plane Forces on a Flat Laminate 

Similarly, Mx is a momen~r unit width as shown in Figure 4-7. How
ever, Nx, etc., and Mx, etc., willoereferred to as forces and moments 
with the stipulation of 'per unit width' being dropped for convenience. The 
entire collection of force and moment resultants for an N-layered laminate 
is depicted in Figures 4-6 and 4-7 and is defined as 

y~ --....x 
Figure 4-7 Moments on a Flat Laminate 

[
:: ]=J112[::]m= !Jzk [::] dz 

xy -1/2 xy k - 1 'txy 2 k-1 k 

(4.18) 

and 

[
; ]=J

112

[~]zdz= tJzk [::] zdz (4.19} 

xy -1/2 xy k - 1 'txy 
2k-1 k 

where zk and zk _ 1 are defined in the basic laminate geometry of Figure 
4-8. Note there that the zi are directed distances (coordinates) in ac
cordance with the convention that z is positive downward. That is, zk is 
the directed distance fotnebottom of the kit! layer, and zk_ 1 i~she i
rected distance to the top of the kth layer. Moreover, z

0 
= - 2, 

z1 = - t/2 + t1, etc., whereas zN = + t/2, zN _ 1 = + tf2-.. tN, etc. The orce 
and moment resultants do not depend on z after integration, but are 
functions of x and y, the coordinates in the plane of the laminate middle 
surface. 

t 
2 Zo 
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Figure 4-8 Geometry of an N-Layered Laminate 

Equations (4.18} and (4.19} can be rearranged to take advantage 
of the fact that the stiffness matrix for a lamina is often constant within 
the lamina (unless the lamina has temperature-dependent or moisture
dependent properties and a temperature gradient or a moisture gradient 
exists across the lamina). If the elevated temperature or moisture is 
constant througti the thickness of the lamina (a 'soaked' condition), then 
the values of [Oijlk are constant in the layer but probably degraded be
cause of the presence of temperature and/or moisture. Thus, the 
stiffness matrix goes outside the integration over each layer, but is within 
the summation of force and moment resultants for each layer. When the 
lamina stress-strain relations, Equation (4.16}, are substituted, the forces 
and moments become 

Nx N 011 012 015 

[ ~ dz+ f' [ :]zdz 
Ny =L 012 022 025 ~ (4.20} 

Nxy 
k=1 

016 025 066 
0 

2k-1 'Yxy 
k 

MX 011 012 016 
0 

N [ Ex 

zm+ [ [ ~ ]z2dz My =L 012 022 026 
0 

ty 

Mxy 
k=1 

015 025 066 
0 

2k-1 'Yxy 2k-1 Kxy 
k 

(4.21} 

Sometimes the stiffness matrix for a lamina, [Oijlk, is not constant 
through the thickness of the lamina. For example, if a temperature gra
dient or moisture gradient exists in the lamina and the lamina material 
R!_Operties are temperature dependent and/or moisture dependent, then 
[Oijlk is a function of z and must be left inside the integral. In such cases, 
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the laminate is nonhomogeneous within each layer, so a more compli
cated numerical solution is required than is addressed here. 

We should now recall that~. ~. 'fxy, Kx, !Cy, and Kxy are not func
tions of z, but are middle-surface values so they can be removed from 
within the summation signs. Thus, Equations (4.20) and (4.21) can be 
written as 

Nx [ A11 A12 A15 l 0 

[811 812 B15r l Ex 

Ny = A12 A22 A2s r; + 812 822 826 !Cy 

Nxy Arn A25 A55 
0 

815 826 8ss K°xy 'Yxy 

(4.22) 

Mx [ 811 812 815 l 0 

[ D11 D12 D15r l Ex 

My = 812 822 825 r; + D12 D22 025 Ky 

Mxy 815 826 866 Yo 0 16 026 066 K°xy xy 

(4.23) 

where 
N 

Aii= L(QiiMzk-zk-1) 
k=1 

N 
1 ~ - 2 2 8ii = 2 L.J (QiiMzk - zk - 1) (4.24) 

k=1 
N 

1 ~ - 3 3 
Oii = 3 L.J(Qij)k(zk - zk-1) 

k=1 
In Equations (4.22), (4.23), and (4.24), the Aii are extensional stiffnesses, 
the Bij are bending-extension coupling stiffnesses, and the Oii are bend
ing stiffnesses. The mere presence of the Bii implies coupling between 
bending and extension of a laminate [because both forces and curva
tures as well as moments and strains simultaneously exist in Equations 
(4.22) and (4.23)). Thus, it is impossible to pull on a laminate that has 
Br terms without at the same time bending and/or twisting the laminate. 
T~at is, an extensional force results in not only extensional deformations, 
but bending and/or twisting of the laminate. Also, such a laminate cannot 
be subjected to moment without at the same time suffering extension of 
the middle surface. The first observation is borne out for the two-layered, 
nylon-reinforced rubber laminate depicted in Figure 4-9. Without load, 
the laminate is flat as in Figure 4-9a. Subject the laminate to the force 
resultant Nx and, because of the manner of support and lo~aing 
Ny~ Nxy = Mx ~ M?CY = 0. When the principal '!late rial directions of the tw 
laminae are oriented at + a. and - a., respect1v~ to the laminate x- s, 
we can show that the general expression for Nx is specialized to 

Nx = A11~ + A12r; + B151<xy (4.25) 

( ( 
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Thus, the force resultant Nx produces twisting of the laminate as evi
denced by the Kxt term in addition to the usual normal strains~ (exten-

sion) and ~ (con raction) as rea: d. i

1

1y.se je .. n in Figure 4~9a. 

jj' ~ 
1111 11 

a Unloaded b loaded with Nx 

Figure 4-9 Twisting of a Two-layered Antisymmetric Laminate under Tension 
(After Ashton, Halpin, and Petit [4-3]) 

4.2.4 Summary 

Classical lamination theory consists of a comprehensive set of de
formation hypotheses leading to the force-strain-curvature and moment
strain-curvature relations of Equations (4.22} and (4.23) shown in Figure 
4-10 where the physical significances of the Aii• Bii• and Dii are labeled. 
There, A16 and A26 represent shear-extension coupling at the laminate 
level analogous to that found for a single lamina in Chapter Two. Of 
course, the Br represent coupling between bending and extension, a 
phenomenon ~ot found at the lamina level. Finally, 0 16 and 0 25 repre
sent bend-twist coupling. Bend-twist coupling is illustrated by bending a 
fiber-reinforced rubber beam that has unidirectional nylon fibers at some 
angle to the spanwise direction in the horizontal plane as in Figure 4-11 b. 
There, the beam not only bends in the spanwise direction, but it also 
twists about its spanwise axis as outlined with white ink on the black 
rubber body of the beam such that two diagonally opposite corners of the 
beam actually lift off the supports. If the same beam is rotated 9~

0 

abo~t 
its spanwise axis (so the fibers are at some angle to the spanw1se axis 
in the vertical plane) and bent as in Figure 4-11a, then no twisting occurs! 
A plate with fibers at an angle to the spanwise direction behaves in a 
similar manner as shown in Figure 4-12. 
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SHEAR-EXTENSION COUPLING 

-

Mxy B1 s B2s Bss -. -
BENDING-EXTENSION COUPLING 

0 
"x 
0 

l:y 

0 
'fxy 

0 
"x 
0 

l:y 

0 
'fxy 

BENDING-EXTENSION COUPLING ~. -
B11 812 B1s Kx 

+ B12 822 B2s Ky 

B1 s B2s Bss Kxy 

BEND-TWIST COUPLING 

Figure 4-10 Physical Significance of 
Stiffness Terms in Force and Moment Resultants 

ORTHOTROPIC 
a Aligned Orthotropy 

J. 
ANISOTROPIC 

b Non-Aligned Orthotropy 

Figure 4-11 Effect of Bend-Twist Coupling on Beam Bending 
(After Ashton, Halpin, arui..Petit [4-3)) ~--
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Figure 4-12 Effect of Bend-Twist Coupling on Plate Bending 
(After Ashton, Halpin, and Petit [4-3)) 

• 
X 

The behaviors studied so far include isotropic materials, orthotropic 
materials (sometimes called specially orthotropic if loaded in principal 
material directions), generally orthotropic materials (merely an orthotropic 
material loaded in non-principal material directions), and laminates. 
Each of the configurations is shown in Figure 4-13 along with deformation 
response to axial loading. Note that shear-extension coupling does not 
occur for orthotropic materials loaded in principal material directions, but 
does occur if the loading is not in those directions. Finally, a laminate 
can twist when pulled in the axial direction. Also shown in Figure 4-13 
is the number of independent elastic constants for each material class 
(two for isotropic materials and four for orthotropic materials). Note es
pecially that a laminate has a maximum of 18 stiffnesses (six each of 
Aii• Bii• and Dii). The number of elastic constants for a laminate is a 
maximum of four per layer, but if the laminate is made of the same ma
terial in each layer, then the laminate has only four elastic constants. 

2 ELASTIC 
CONSTANTS 

4 ELASTIC 
CONSTANTS 

Figure 4-13 Material Forms (After Ashton, Halpin, and Petit [4-31) 
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Some engineers have tried to characterize laminates with effective 
laminate stiffnesses, Ex, Ey, vxy, and Gxy, and indeed such properties can 
be determined for a laminate by the usual measurements. However, it 
is crucial to recognize that with an effective laminate stiffness approach 

• shear-extension coupling is ignored 
• all bending response is ignored 

(including, of course, bend-twist coupling) 
• coupling between bending and extension is ignored 

(many laminates are symmetric, but many others are not) 

We must conclude that a laminate is not a material, but instead is a 
structural element with essential features of both material properties and 
geometry that cannot be ignored. Thus, an effective laminate stiffness 
approach is fatally flawed in most practical applications (although not for 
a laminate that is symmetric about the middle surface and subjected only 
to extensional loading). Accordingly, we must characterize laminates 
with the essential extension, bending-extension coupling, and bending 
stiffnesses of Equation (4.24). 

In conclusion, classical lamination theory enables us to calculate 
forces and moments if we know the strains and curvatures of the middle 
surface (or vice versa). Then, we can calculate the laminae stresses in 
laminate coordinates. Next, we can transform the laminae stresses from 
laminate coordinates to lamina principal material directions. Finally, we 
would expect to apply a failure criterion to each lamina in its own principal 
material directions. This process seems straightforward in principle, but 
the force-strain-curvature and moment-strain-curvature relations in 
Equations (4.22) and (4.23) are difficult to completely understand. Thus, 
we attempt some simplifications in the next section in order to enhance 
our understanding of classical lamination theory. 

Problem Set 4.2 

4.2.1 Verify for a single layer of isotropic material with material properties E and v and 
thickness t that the extensional and bending stiffnesses are 

Et Et3 

A,,=~=--2 D,1=D22 2 
1-v 12(1-v) 

which are commonly called B and D, respectively, in ordinary isotropic plate theory. 
What are the bending-extension coupling stiffnesses? 

4.2.2 Derive the summation expressions for extensional, bending-extension coupling, and 
bending stiffnesses for laminates with constant properties in each orthotropic lamina; 
that is, derive Equation (4.24) from Equations (4.20) and (4.21). 

4.2.3 Show that the stiffnesses in Equation (4.24) can be written as 
N_ N_ _ N_[-2 (] 

~i = ~ (01J)k fi. Bil=~ (01J)k fi. 21. D;J = ~ (01J)k fi. Zic+ 12 

wherein ~ is the thickness and zk is the distance to the centr_Qld of the kth orthotropic 
layer. What is the physical meaning of the coefficients of (011)k in each of the fore-
going expressions? " 

4.2.4 Determine the extensional, bending-extoon coupling, and bending stiffnesses -Of 
an equal-thickness bimetallic strip as shown in Figure 1-3 (a beam made of two 
different isotropic materials with E1, v1, a1, E2, v2, and a:z). Use the middle surface 
of the beam as the reference surface. 

( 
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4.2.5 Demonstrate that the force per unit width on a two-layered laminate with orthotropic 
laminae of equal thickness oriented at + a and - a to the applied force is 

0 0 
N.=A,,E,, +A1~ +B16JC,.y 

What are A11 , A12, and B16 in terms of the transformed reduced stiffnesses, (Q1i)+<X, 
of a lamina and the lamina thickness, t? 

4.2.6 Do all parts of Problem 4.2.5 for moment per unit width, M •. 

4.3 SPECIAL CASES OF LAMINATE STIFFNESSES 

This section is devoted to those special cases of laminates for 
which the stiffnesses take on certain simplified values as opposed to the 
general form in Equation (4.24). The general force-moment-strain
curvature relations in Equations (4.22) and (4.23) are far too compre
hensive to easily understand. Thus, we build up our understanding of 
laminate behavior from the simplest cases to more complicated cases. 
Some of the cases are almost trivial, others are more specialized, some 
do not occur often in practice, but the point is that all are contributions 
to the understanding of the concept of laminate stiffnesses. Many of the 
cases result from the common practice of constructing laminates from 
laminae that have the same material properties and thickness, but have 
different orientations of the principal material directions relative to one 
another and relative to the laminate axes. Other more general cases are 
examined as well. 

Stiffnesses for single-layered configurations are treated first to 
provide a baseline for subsequent discussion. Such stiffnesses should 
be recognizable in terms of concepts previously encountered by the 
reader in his study of plates and shells. Next, laminates that are sym
metric about their middle surface are discussed and classified. Then, 
laminates with laminae that are antisymmetrically arranged about their 
middle surface are described. Finally, laminates with complete lack of 
middle-surface symmetry, i.e., unsymmetric laminates, are discussed. 
For all laminates, the question of laminae thicknesses arises. Regular 
laminates have equal-thickness laminae, and irregular laminates have 
non-equal-thickness laminae. 

4.3.1 Single-Layered Configurations 

The special single-layered configurations treat~d in this se_ction a_re 
isotropic, specially orthotropic, generally orthotrop1c, and arnsotr?p.1c. 
The generally orthotropic configuration cannot, o! co~rse, b~ d1stm
guished from an anisotropic layer from the analysis pomt of view, but 
does have only the four independent material properties of an orthotropic 
material. 

Single Isotropic Layer 

For a single isotropic layer with material properties, E and v, and 
thickness, t, the laminate stiffnesses of Equation (4.24) reduce to 
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Et 
A11 =--2 =A 

1-v 

A12=VA 

A22=A 

A16 =0 

A25=0 

E t3 
011 =---2-=D 

12(1 -v) 

012 =VD 

0 22 =0 (4.26) 
015=0 

A_ Et _1-vA 
ea- 2(1 +v) --2-

025=0 3 

055 Et = 1 -v 0 
24(1+v) 2 

whereupon the resultant forces depend only on the in-plane strains of the 
laminate middle surface, and the resultant moments depend only on the 
curvatures of the middle surface: 

Nx A vA 0 ~ 
Ny = vA A 0 ~ (4.27) 

Nxy 0 0 1-v A 
2 

0 

'Yxy 

MX D vO 0 

[~] My = vO 0 0 

Mxy 0 0 1-v O 
2 

(4.28) 

Thus, there is no coupling between bending and extension of a single 
isotropic layer. Also note that 

A t2 

D=12 

Single Specially Orthotrop/c Layer 

(4.29) 

For a single specially orthotropic layer of thickness, t, and lamina 
stiffnesses, Qii• given in Equation (2.61 ), the laminate stiffnesses are 

3 
011t 

011=--
12 

3 
012t 

012=12 

a t3 

022= ~ 
015=0 

025=0 3 
055t 

055=12 

(4.30) 
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whereupon, as with a single isotropic layer, the resultant forces depend 
only on the in-plane strains, and the resultant moments depend only on 
the curvatures: 

(4.31) 

(4.32) 

Single Generally Orthotrop/c Layer 

For a single generally orthotropic layer of thickness, t, and lamina 
stiffnesses, aij, given in Equation (2.80), the laminate stiffnesses are 

- 3 a1it 
A1i=01it B1i=O 0 1i=~ (4.33) 

Again, there is no coupling between bending and extension, so the force 
and moment resultants are 

Nx 
[ A11 A12 A15 l ~ 

Ny = A12 ~ A25 ~ 
Nxy A15 ~6 Aas 

0 

'Yxy 

(4.34) 

MX 

[D

11 

D

12 

D

16r l My = D12 D22 D25 Ky 

Mxy D15 D25 D55 K,cy 

(4.35) 

Note, in contrast to both an isotropic layer and a specially orthotropic 
layer, that extensional forces depend on shearing strain as well as on 
extensional strain. Also, the resultant shearing force, Nxy, depends on 
the extensional strains, ~ and ~. as well as on the shear strain, fxy. 
Similarly, the moment resultants all depend on both the bending curva
tures, Kx and Ky, and on the twist curvature, 1Cxy. 

Single Anisotropic Layer 

The only difference in appearance between a single generally 
orthotropic layer and an anisotropic layer is that the latter has lamina 
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stiffnesses, Qij• defined implicitly in ~uation (2.84) whereas the gener
ally orthotropic layer has stiffnesses, Qii• defined in Equation (2.80). The 
laminate stiffnesses are 

3 
Qijt 

D--=--
11 12 (4.36) 

and the force and moment resultants are Equations (4.34) and (4.35). 

4.3.2 Symmetric Laminates 

For laminates that are symmetric in both geometry and material 
properties about the middle surface, the general stiffness equations, 
Equation (4.24), simplify considerably. That symmetry has the form such 
that for each pair of equal-thickness laminae: (1) both laminae are of the 
same material properties and principal material direction orientations, i.e., 
both laminae have the same (Qij)k; and (2) if one lamina is a certain 
distance above the middle surface, then the other lamina is the same 
distance below the middle surface. A single layer that straddles the 
middle surface can be considered a pair of half-thickness laminae that 
satisfies the symmetry requirement (note that such a lamina is inherently 
symmetric about the middle surface). 

Because of the symmetry of the (Or)k and the thicknesses tk, all the 
bending-extension coupling stiffnesses, ~hat is, the Bii• can be shown to 
be zero. The elimination of coupling between bending and extension has 
two important practical ramifications. First, such laminates are usually 
much easier to analyze than laminates with bending-extension coupling. 
Second, symmetric laminates do not have a tendency to bend or twist 
from the inevitable thermally induced contractions that occur during 
cooling following the curing process. For example, an unsymmetric 
cross-ply laminate that was laid up from individual layers on a flat steel 
plate and enclosed top and bottom with flat steel plates during curing in 
a hot press is shown in Figure 4-14 after being removed from the plates 
and the hot press. What a shock to see such a highly curved laminate 
come out of the curing process after you put in a set of flat laminae be
tween flat steel plates in a flat hot press! Consequently, symmetric 
laminates are commonly used unless special circumstances require an 
unsymmetric laminate. For example, part of the function of a laminate 
might be to serve as a heat shield, but the heat comes from only one 
side; thus, an unsymmetric laminate must be used (or will result anyway!) 
The force and moment resultants for a symmetric laminate are 

( ( 
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Figure 4-14 An Unsymmetric Laminate after Curing 

(4.38) 

Special cases of symmetric laminates will ~e desc~bed in the fo~ 
lowing subsections. In each case, the Aii an_d Dii m Equ_at1ons (4.37) an 
(4 38) take on different values, and some will even vanis~. 

· Note that even a laminate that is made ~ymmetncally ~b~ut the 
middle surface can have coupling between b~ndmg an~ extens10\ If th~ 
laminae have temperature-dependent material properties a~d a t erma 
gradient through the thickness is applied (re~all the heat shield e_xample 
in the beginning paragraph of this subsection), then the prem1fes bt 
which Equations (4.20) and (4.21) are based a_re no lo~ger app 1ca e. 
The stiffnesses are far more complicated than m Equation (4?4). Thde 
temperature gradient actually _changes the material properties an , 
hence, destroys the original laminate symmetry. 

Symmetric Laminates with Multiple Isotropic Layers 

If multiple isotropic layers of various thicknesses ~re arranged 
s mmetricall about a middle surface from both a geometric and a n:i~
tirial properiy standpoint, then the resulting l~minate does not exh1b1t 
cou lin between bending and extension. A _simple ex~mpl~ of a sym
met~ic Taminate with three isotropic layers 1s shown in Figure. 4-15. 
There the two types of symmetry, material property and_geo~etnc, a_re 

uite ~vident. A more complicated example ~f a symm~tnc lamm~te ~1th 
~ix isotropic layers of different elastic properties an~ thicknesses is g1v~n 
in Table 4-1. There also, the geometric and ~atenal property symme ry 
are both obvious. Note that layers 3 and 4 m Tabl~ 4-1 could t?gether 
be regarded as a single layer of thickness 6t without changing the 

stiffness characteristics. 
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X 

Figure 4-15 U~bonded '(iew of a Three-Layered Symmetric Laminate 
wrth Isotropic Layers 

Table 4-1 Symmetric Laminate with Six Multiple Isotropic Layers 

Layer Material Layer 
Properties Thickness 

1 E1,V1 t 
2 E2,V2 2t 
3 E3, V3 3t 
4 E3,V3 3t 
5 E2, V2 2t 
6 E1,v1 t 

The extensional. and bending stiffnesses for the general case are 
calculated from Equation (4.24) wherein for the kth layer 

- - Ek 
(Q 11)k = (022)k = --2 

1 -vk 
- vkEk 
(012)k=--2 

1-vk 

(4.39) 

The force and moment resultants take the simplified form 

:: =[::: ~ : l : 
Nxy O O A66 y';_.y 

(4.40) 

~ =[::: :: : ][~ l 
~ 0 0 066 1Scy 

( 
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wherein, for isotropic layers, A11 = A22 and 0 11 = 0 22 because of the first 
condition of Equation (4.39). The specific form of the Aii and Oii can be 
somewhat involved, as can easily be verified by examining some simple 
examples. 

Symmetric Laminates with Multiple Specially Orthotropic Layers 

Because of the analytical complications involving the stiffnesses 
A16, A26, 0 16, and 0 26, a laminate is sometimes desired that does not 
have these stiffnesses. Laminates can be made with orthotropic layers 
that have principal material directions aligned with the laminate axes. If 
the thicknesses, locations, and material properties of the laminae are 
symmetric about the middle surface of the laminate, there is no coupling 
between bending and extension. A general example is shown_ in Table 
4-2. Note that the material property symmetry requires equal [Qijlk of the 
two layers that are placed at the same distance above and below the 
middle surface. Thus, both the orthotropic material properties, [Qijlk, of 
the layers and the angle of the principal material directions to the lami
nate axes (i.e., the orientation of each layer) must be identical. 

The extensional and ben~ing stiffnesses are calculated from 
Equation (4.24) wherein for the k layer 

k k k 
E1 - V12E1 

(011)k = k k (012)k = k k 
1 -V12V21 1-V12V21 

(4.42) 

Because (016)k and (026)k are zero, the stiffnesses A16, A26, 0 16, and 
0 26 vanish. Also, the bending-extension coupling stiffnesses Bii are zero 
because of laminate symmetry. This type of laminate could therefore be 
called a specially orthotropic laminate in analogy to a specially orthotropic 
lamina (but really a laminate should not be called by a material property 
characterization name because laminates are not materials, but instead 
are structural elements). The force and moment resultants take the form 
of Equations (4.40) and (4.41 ), respectively, except that A11 * A22 and 
D11 * D22· 

Table 4-2 Symmetric Laminate with Five Specially Orthotropic Layers 

Layer 
Material Properties 

Orientation Thickness o,, 012 022 066 

1 F1 F2 F3 F4 o• t 
2 G1 G2 G3 G4 90° 2t 
3 H1 H2 H3 H4 90° 4t 
4 G1 G2 G3 G4 90° 2t 
5 F, F2 F3 F4 o· t 

A very common special case of symmetric laminates with multiple 
specially orthotropic layers occurs when the laminae are all of the same 
thickness and material properties, but have their major principal material 
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directions alternating at 0° and 90° to the laminate axes, for example, 
0°190°10°. Such laminates are called regular symmetric cross-ply lami
nates (regular because the laminae thicknesses are the same and 
cro~s-ply because the fibers in adjacent layers are at 90° to one another). 
A simple example of a regular symmetric cross-ply laminate with three 
layers of equal thickness and properties is shown in Figure 4-16. The 
fiber directions of each lamina are schematically indicated by the use of 
light lines in Figure 4-16. The laminate must have an odd number of 
layers to satisfy the symmetry requirement by which coupling between 
bending and extension is eliminated. Cross-ply laminates with an even 
number of layers are obviously not symmetric and will be discussed in 
Section 4.3.3. The less-common case of cross-ply laminates that have 
odd-numbered layers with equal thicknesses and even-numbered layers 
with thicknesses equal to each other but not to that of the odd-numbered 
layers will be discussed in Section 4.4, Theoretical versus Measured 
Laminate Stiffnesses. 

X 

Figure 4-16 Unbonded View of 
a Three-Layered Regular Symmetric Cross-Ply Laminate 

The logic to establish the various stiffnesses will be traced to illustrate the 
general procedures. First, consider the extensional stiffnesses 

N 

Aii = L, (QiiMzk-zk-1) (4.43) 
k=1 

The Ail are the sum of the product of the individual laminae Q .. and the 
laminae thjfknesses. Thus, the onl~ways to obtain a zero indfvidual Ar 
are for all Oii to be zero or for some Oii to be negative and some positivJ 
so that their products with their respective thicknesses sum to zero. 
From the expressions for the transformed lamina stiffnesses Q.. in 
Equation (2.80), apparently 0 11 , 0 12, 0 22, and 066 are positive'-defi~ite 
because all trigonometric functions appear to even powers. Thus, A11 , 
A12, A22, and A66 are positive-defiaj!e beca~e the thicknesses are, of 
course, always positive. However, 0 16 and 0 26 are zero for lamrna orb -
entatio~s of 0° and 90° to the laminate axes. Thus, A16 and A26 are zero 
for laminates of orthotippic laminae oriented at either 0° or 90° to the 
laminate axes. 
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Second, consider the bending-extension coupling stiffnesses 
N 1"'- 2 2 Bii = 2 £.- (01j)k{zk - zk - 1) (4.44) 

k=1 
If the cross-ply laminate is symmetric about the middle. surfac~ in bo_th 
material properties and geometry, then the B11 all vanish as 1s easily 
shown. 

Finally, consider the bending stiffnesses 
N 1"'- 3 3) Dii = 3 £.- (01j)k{zk - zk - 1 (4.45} 

k=1 
The variousp11 ~e sums of the prQ_ducLof the individual laminae 01i ~nd 
the term (zk - zk _ 1). ~ecause. 0 11 , ~ 12, 0 24,. and 0 66 are pos1t1ve
definite and the geometnc term 1s po~t1ve-def1!:!!_te, then D11, D12, D_22, 
and 066 are positive-definite. Also, 0 16 and 0 26 are zero fo_r lamina 
principal material property orientations of 0° and 90° to the laminate co
ordinate axes. Thus, 0 16 and 026 are zero. 

Symmetric Laminates with Multiple Generally Orthotropic Layers 

A laminate of multiple generally orthotropic layers that are sym
metrically arranged about the middle surface exhibits no coupling be
tween bending and extension; that is, the B11 are zero. Therefore, the 
force and moment resultants are representea by Equations (4.37) and 
(4.38}, respectively. There, all the Ar and Du are required because of 
coupling between normal forces and shea_ring strain, .s~earing force and 
normal strains, normal moments and twist, and twisting moment and 
normal curvatures. Such coupling is evidenced by the A15, A25, D15, and 
o26 stiffnesses. . 

Bend-twist coupling stiffnesses are the mechanism for contr~I of 
forward-swept wings on the X-29A in Figure 1-37. ~orward-_swept wings 
are subjected to aerodynamic forces that tend to twist the wing about an 
axis that is along the wing and off perpendicular to the fuselag~ bY_ the 
angle of the wing sweep, e.g., My in Fig~r~ 7-10. Aero~ynam1c _diver
gence (gross wing flapping that in the limit tears the w1_ng off) 1s the 
possible result. A composite laminate with la~inae at ~a~1ous angles _to 
the wing axis has 0 16 and 0 26 that cause the wing to tw1s~ in t~e opposite 
sense to the aerodynamic wing-twisting effect seen in Figure 4-17. 
Countering the wing-twisting effect on a metal wing causes large weight 
and cost penalties because the only way to create a structural ~16 a~d 
D for metal wings requires many stiffeners at an angle to the wing axis. 
fn2iontrast, the laminated composite wing might require a few extra l~y
ers of material, but no stiffeners, so both the weight and cost penalties 
are small to achieve the aircraft performance advantages of a forward
swept wing (e.g., improved agility and impr~ved high angle-of-att_ack _fly
ing qualities). In fact, a forward-swept wing can be smaller in size, 
weight, and cost than the usual rearw~rd_-swept wing. ~oncepts of what 
has become known as aeroelastic ta1lonng of composite structures are 
reviewed by Hertz, Shirk, Ricketts, and Weisshaar [4-4]. 
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METAL WING BENDS AND TWISTS UNDER AERODYNAMIC LOADS 

< 

COMPOSITE WING BENDS, BUT DOES NOT TWIST 

Figure 4-17 Response of Forward-Swept Wings 

A specia_l subclass of this class of symmetric laminates is the reg
ula~ symmetnc angle-ply laminate (angle-ply because the adjacent 
lam!nae are at + ex and.- ex t~ axial direction of the laminate). Such 
lam!nates have orth~trop!c laminae of equal thicknesses. The adjacent 
lamm~e have opposite signs of the angle of orientation of the principal 
material properties with respect to the laminate axes, for example, 
[ +ex I - ex I -t: ex]. Thus, for symmetry, there must be an odd number of 
lay~rs. A_ simple example of a three-layered regular symmetric angle-ply 
laminate_ 1s sh_own in_ Figure 4-18. A more complicated example of a 
symmetric lam1nat~ with generally orthotropic layers is given in Table 4-3. 
N~te that the laminae orthotropic material properties orientations and 
thicknesses are all symmetric about the middle surfac~. ' 

X 

Figure 4-18 Unbonded View of 
a Three-Layered Regular Symmetric Angle-Ply Laminate 
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Table 4-3 Symmetric Laminate with Five Generally Orthotropic Layers 

Layer 
Material Properties 

Orientation Thickness 
a,, a,2 022 Oes 

1 F, F2 F3 F4 +30• t 
2 G, G2 G3 G4 -50• 31 
3 H1 H2 H3 H4 +10° 51 
4 G1 G2 G3 G4 -ao• 31 
5 F, F2 F3 F4 +30· t 

The aforementioned coupling that involves A16, A26, D16, and D26 
takes on a special form for symmetric angle-ply laminates. Those 
stiffnesses can be shown to be largest when N = 3 (the lowest N for 
which this class of laminates exists) and decrease in proportion to 1/N 
as N increases (see Section 4.4.4). Actually, in the expressions for the 
extensional and bending stiffnesses A16 and D16, 

N 

A15= L(015Mzk-zk_1) 
k=1 

N 
1 " - 3 3 D15 = 3 ""'(015)k(zk - zk-1) 

k=1 

(4.46) 

(4.47) 

Obviously, A16 and D16 are sums of terms of alternating signs because 

(Q16)+a = - (016)_-a (4.48) 

Thus, for many-layered symmetric angle-ply laminates, the values of 
A16, A26, D16, and D26 can be quite small when compared to the other 
Aii and Dii• respectively. 

When the always-present advantage of zero Bii because of sym
metry is considered in addition to the low A16, A26, D16, and D26, many
layered symmetric angle-ply laminates can offer significant, practically 
advantageous simplifications over some more general laminates. In ad
dition, symmetric angle-ply laminates offer more shear stiffness than do 
the simpler cross-ply laminates, so are used more often. However, 
knowledge of the effect of A16, A26, D16, and D16 on the individual class 
of problems being considered by an analyst or designer is essential be
cause even a small A16 or D16 might cause significantly different re
sponse results from cases in which those stiffnesses are exactly zero. 
Only in the situation where A16, A26, D16, and D26 are exactly zero can 
they be ignored without further thought or analysis. 

Symmetric Laminates with Multiple Anisotropic Layers 

The general case of a laminate with multiple anisotropic layers 
symmetrically disposed about the middle surface does not have any 
stiffness simplifications other than the elimination of the Bil by virtue of 
symmetry. The A16, A26, D16, and D26 stiffnesses all exist and do not 
necessarily go to zero as the number of layers is increased. That is, the 
A16 stiffness, for example, is derived from the Oil matrix in Equation 
(2.84) for an anisotropic lamina which, of course, has more independent 
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material properties than an orthotropic lamina. Thus, many of the 
stiffness simplifications possible for other laminates cannot be achieved 
for this class. 

4.3.3 Antisymmetric Laminates 

Symmetry of a laminate about the middle surface is often desirable 
to avoid coupling between bending and extension. However, many 
physical applications of laminated composite materials require unsym
metric laminates to achieve design requirements. For example, some 
form of coupling is necessary to make jet turbine fan blades with pretwist 
without using a complex mold. As a further example, if the shear 
stiffness of a laminate made of laminae with unidirectional fibers must 
be increased, one way to achieve this requirement is to position layers 
at some angle to the laminate axes. To stay within weight and cost re
quirements, an even number of such layers might be necessary at ori
entations that alternate from layer to layer, e.g., [ + o: I - o: I+ o: I - o:]. 
Therefore, symmetry about the middle surface is destroyed, and the be
havioral characteristics of the laminate can be substantially changed from 
the symmetric case. Although the example laminate is not symmetric, it 
is antisymmetric about the middle surface, and certain stiffness simplifi
cations are possible. 

Antisymmetry of a laminate requires (1) symmetry about the middle 
surface of geometry (i.e., consider a pair of equal-thickness laminae, one 
some distance above the middle surface and the other the same distance 
below the middle surface), but (2.l_some kind of a 'reversal' or mirror im
age of the material properties [Qijlk· In fact, the orthotropic material 
properties [Qij]k are symmetric, but the orientations of the laminae prin
cipal material directions are not symmetric about the middle surface. 
Those orientations are reversed from 0° to go 0 (or vice versa) or from 
+ a to - o: (a mirror image about the laminate x-axis). Because the 
[Qii]k are not symmetric, bending-extension coupling exists. 

Antisymmetric laminates must have an even number of layers if 
adjacent laminae also have alternating signs of the principal material 
property directions with respect to the laminate axes. If adjacent laminae 
do not have alternating signs, then the number of layers need not be 
even. 

The stiffnesses of an antisymmetric laminate of anisotropic laminae 
do not simplify from those presented in Equations (4.22) and (4.23). 
However, as a consequence ~f antisymmetry of material properties of 
generally orthotropic laminae, but symmetry of their thicknesses, the 
shear-extension coupling stiffness A16, 

N 

A15 = L (015)k(zk- zk-1) ~_s4Ag) 
k=1 

2Because of the existance of bending-extension coupling, the terminology 'generally 
orthotropic' and 'specially orthotropic' have meaning only with reference to an individual 
layer and not to a laminate. 
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is easily seen to be zero because 

(015)+o, = - (015L-a (4.50) 

and layers symmetric about the middle surface h~ve_ equ~ thickn~s~ and 
hence the same value of the geometric term multiplying (015)k. S1m1larly, 
A is zero as is the bend-twist coupling stiffness D15, 

26 

1 f - 3 3 ) (4 51) 
D15= 3 ... ,)016Mzk-zk-1 · 

k=1 
because again Equation (4.50) holds, and the geometric tei:m multiplying 

(Q ) is the same for two layers symmetric about the middle surface. 
16 k . 1· I f D The preceding reasoning app 1es a ~o or_ 26· . 

The bending-extension coupling stiffnesses, Bii• v~ry fo~ different 
classes of antisymmetric laminates of generally orth?trop1c lam1~ae, and, 
in tact, no general representation exists other than in the following force 

and moment resultants: 

(4.52) 

[

B
11 

B
12 

B15] ~ [D11 D12 0 ][~] 

My = B12 B22 B25 ~ + D12 D;2 DO "Ky 

Mxy B16 B25 B55 Yxy O 66 ~ 

(4.53) 

The purpose of the remainder of this section i~ to disc~ss two im
portant classes of antisymmetric laminates, t~e ant1sym_metnc cr_oss-p~y 
laminate and the antisymmetric angle-ply laminate. N_e1ther la~rnate 1s 
used much in practice, but both add to our understanding of laminates. 

Antisymmetric Cross-Ply Laminates 

An antisymmetric cross-ply laminate consists of an e_ven. nun:iber 
of orthotropic laminae laid on each other with princ(pal mat~nal directions 
alternating at 0° and go0 to the laminate axe~ a~ in t~e simple example 
of Figure 4-19. A more complicated example 1s given in !able 4-4 ~where 
the adjacent layers do not always have the sequence O , then 90 , then 
O°, etc.). Such laminates do not have A15, A25, D15, and D25, but _do 
have bending-extension coupling. We will show later that the coupling 
is such that the force and moment resultants are 
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y 

X 

Figure 4-19 Unbonded View of 
a Two-Layered Regular Antisymmetric Cross-Ply Laminate 

Table 4-4 Antisymmetric Laminate with Six Specially Orthotropic Layers 

Layer 
Material Properties 

Orientation Thickness 
011 01,, o,,,, OAA 

1 F, F2 F3 F4 o• t 
2 G, G2 G3 G4 go• 3t 
3 H1 H2 H3 H4 90• 2t 
4 H, H2 H3 H4 o• 2t 
5 G, G2 G3 G4 o• 3t 
6 F1 F2 F3 F4 go• t 

(4.54) 

(4.55) 

A regular antisymmetric cross-ply laminate is defined to have 
laminae all of equal thickness and is common because of simplicity of 
fabrication. As the number of layers increases, the bending-extension 
coupling stiffness 811 can be shown to approach zero. 

Antisymmetric Angle-Ply Laminates 

An antisymmetric angle-ply laminate has laminae oriented at + ex 
degrees to the laminate coordinate axes on one side of the middle sur
face and corresponding equal-thickness laminae oriented at ~es 
on the other side at the same distance from the middle surface. A simple 
example of an antisymmetric angle-ply laminate is shown in Figure 4-20. 
A more complicated example with mixed materials and lamination angles 
is given in Table 4-5. 
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X 

Figure 4-20 Unbonded View of 
a Two-Layered Regular Antisymmetric Angle-Ply Laminate 

Table 4-5 Six-Layered Antisymmetric Angle-Ply Laminate 

Material Properties Orientation Thickness Layer 
011 012 022 Oee 

1 F1 F2 F3 F4 -45• t 

2 G1 G2 G3 G4 +30• 2t 

3 H1 H2 H3 H4 o· 3t 

4 H1 H2 H3 H4 o· 3t 

5 G1 G2 G3 G4 -30• 2t 

6 F, F2 F3 F4 +45• t 

A regular antisymmetric angle-ply lami'!ate_ has la,:ninae all of th~ 
same material and thickness for ease of fabrication. This class of lami
nates can be further restricted to have a single value of ex as opposed to 
the several orientations, materials, and thicknesses in Table ~-5. 

The force and moment resultants for an antisymmetric angle-ply 
laminate are 

Nx r11 

A

12 

0 l ~ [ 0 0 s,.r l 
Ny = A12 ~ 0 e; + 0 0 826 1'y 

Nxy 0 0 A66 
0 

816 825 0 1Scy Yxy 

(4.56) 

Mx 
[ o o B

16

] 

~ 
[D

11 

D12 0 r l My = 0 0 826 e; + D12 D22 0 Ky 

Mxy 816 826 0 
0 0 0 066 1Scy Yxy 

(4.57) 

The bending-extension coupling stiffnesses 8 16 and. 826 can be sh?wn 
to go to zero as the number of layers in the laminate increases for a fixed 
laminate thickness. 
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4.3.4 Unsymmetric Laminates 

Unsymmetric or nonsymmetric or asymmetric laminates are the 
mo~t ge~eral class of lami~ate. La~k of symmetry can occur by design 
as in deliberately constructing a larrnnate that is not symmetric about the 
m1d~le surface .. Or, a symmetric laminate could be built but subjected in 
se~1ce to heating from one side so that the resulting thermal gradient 
act1~g on the temp~rature-dependent material properties renders the 
la_minate _unsy_mmetri_c. We will briefly address unsymmetric laminates 
w1t_h mult_1ple 1sotrop1c, specially orthotropic, generally orthotropic, and 
an1sotrop1c layers. 

'.or the ge~eral case of multiple isotropic layers of thickness t and 
~aterial prop~rt1es _Ek and vk, the extensional, bending-extension c~upl
ing, and bending stiffnesses are given by Equation (4.24) wherein 

- - Ek 
(011 )k = (022)k = --2 

1 -vk 
(4.58) - vk Ek 

(Odk=--2 
1 -vk 

No s~ecial re~uction of the stiff~esses is possible when t k is arbitrary. 
That 1s, co_upling between bending an~ extension can be obtained by 
u~sy~metric arran~ement about the middle surface of isotropic layers 
with d1ff~rent material properties. and possibly (but not necessarily) dif
ferent thicknesses. !hus, coupling between bending and extension is 
not ~ result of ~at~rial orthotropy but ~ather of laminate heterogeneity; 
that 1s, a comb1nat1on of both geometric and material properties. The 
force and moment resultants are 

Nx r A12 0 l 0 

r 811 812 0 r 
1 

ex 

Ny = A12 A11 0 r; + 812 811 0 ~ 

Nxy 0 0 A66 
0 

0 0 866 1Cxy Yxy 

(4.59) 

MX 

[ 811 8
12 

0 l 0 

r11 o,, 0 r l €x 

My = 812 811 0 r; + 012 011 0 ~ 

Mxy 0 0 866 
0 

0 0 066 ~y Yxy 

(4.60) 

Unsymmetric laminates with multiple specially orthotropic layers 
can be shown to have the force and moment resultants in Equations 
(4.59) and (4.60) but with different A22 822 and 022 from A 8 and 

· · ' ' :~ 11,i 11• 011, respect1vel~. That 1_s, there are no shear-extension coupling terms 
n?r any be~d-t_w1s~ coupling terms, so the solution of problems with this 
kind of lamination 1s about as easy as with isotropic layers. 

. Unsy~metric laminates with multiple generally orthotropic layers 
or with multiple anisotropic layers have force and moment resultants no 

( 
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simpler than Equations (4.22) and (4.23). All stiffnesses are present. 
Hence, configurations with either of those two laminae are much more 
difficult to analyze than configurations with either multiple isotropic layers 
or multiple specially orthotropic layers. 

4.3.5 Common Laminate Definitio"\~/ ) 3 /; j 

First, we need a common, unambiguous manner of writing ho~ a 
laminate is specified to be laid-up, i.e., stacking-sequence notation. 
Then, quasi-isotropic, balanced, and hybrid laminates are defined. 

Stacking-Sequence Notation 

The manner of describing a laminate by use of individual layer 
thicknesses, principal material property orientations, and overall stacking 
sequence could be quite involved. However, fortunately, all pertinent 
parameters are represented in a simple, concise fashion by use of the 
following stacking-sequence terminology. For regular (equal-thickness 
layers) laminates, a listing of the layers and their orientations suffices, for 
example, [0~/90°/45°1. Note that onl the rinci al material direction ori
entatio~d be ~en. Many different laminates coul e ma e with 
the same layers.Tar example, [90°/0°/45°1. For irregular (layers do not 
have the same thickness) laminates, a notation of layer thicknesses must 
be appended to the previous notation, for example, [01/902f"4531l or 
[0°@t/90°@2tl45°@3tl. Finally, for symmetric laminates, the simplest 
representation of, for example, the laminate [0°/90°/45°/45°/90°/0°1 is 
[0°/90°/45°lsymmetric or [0°/90°/45°lsym or [~0 /90°/45°ls· If m_ultiple 
laminae occur at the same angle, then subscripts are used to designate 
the number of such multiple layers, e.g., [0°/0°/0°/90°/90°l = [03/9021. If 
sequences of laminae are repeated, then those sequences are grouped 
with a subscript to indicate the number of sequence repetitions, e.g., 
[0°/90°/45°/0°/90°/45°1 = [0°/90°/45°h. If one layer i~Pill by the 
middle surface, then a bar is put over the split layer, e.g., 
[0°/90°/0°1 = [0°/90°ls- Finally, if all the laminae are specified in the 
stacking sequence shown and no implications of symmetry, repeated 
sequences, etc., are desired nor can any ambiguity be tolerated, then a 
subscri~ used to indicate complete or JQtru. specification for empha
sis, e.g., [0°/90°/45°/ - 45°/0°/90°Jr, ~- fiosyrnmetry or repeate~ se
quence is desired. This notation will be used throughout th~ remainder 
of the book and is used widely in composite structures practice. 

Quasi-Isotropic Laminates 

The term quasi-isotropic laminate is used to describe laminates that 
have isotropic extensional stiffnesses (the same in all directions in the 
plane of the laminate). As background to the definition, recall that the 
term isotropy is a material property whereas laminate stiffnesses are a 
function of both material properties and geometry. Note also that the 
prefix quasi means 'in a sense or manner'. Thus, a quasi-i~otropi? lam
inate must mean a laminate that, in some sense, appears 1sotrop1c, but 
is not actually isotropic in all senses. In this case, a quasi-isotropic 
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l~min~te is taken to. mean equal extensional stiffnesses in all in-plane 
d1rect1ons of the laminate, i.e., 

Aii=AiJ A11 =A22 A12 =vA11 A66 = 1 ;v A11 A
16

=A
26

=0 (4.61) 

where the o_yerbar is used to designate a transformed property as with 
t~e Qii and Qii and v is the apparent Poisson's ratio of the laminate de
fined only for extensional properties. Moreover, all layers are of the 
same material and of equal thickness. (Another possible definition of a 
~uasi-isot~opic_ laminate is ?ne that has equal bending stiffnesses in all 
~n-plane d1rect1ons.)_ The simplest example of a quasi-isotropic laminate 
1s a three-lay~r laminate [ -60°/0°/60°]. The next simplest example is a 
f~ur-layer laminate. [0°/ -45°/4~0 /90°]. Those laminates are depicted in 
Figure 4-21 wherein the notation 1t/3 and 1t/4 is used. Those names, 
1t/3 and 1t/4, result from the facts that (1) the angle between layers in 
~0° an_d 45°, r_espectively, and (2) 60° and 45° are 1t/3 and 1t/4, respec
tively, ~n SI units. As the number of layers increases, the angle between 
the adJacent laminae decreases such that Li0 = 180°/N where N is the 
number of layers. Although the A1i are identical in all directions, the s .. 
and Dii depend on the orientation of the coordinate axes of the laminat~! 
Thus, a quasi-is_otropic l~minate can have bending-extension coupling 
as well as a varying bending response as the laminate is rotated in plane. 

[+600/00/-600] = ~ [-450/00/+450/900] = ~ 

Figure 4-21 Unbonded View of Simple Quasi-Isotropic Laminates 

Balanced Laminates 

Although the word 'balanced' is ambiguous and not definitive the 
common meaning for a balanced laminate is a laminate in which all 
equal-th~ckness lamin~e at angles e other than o~ and 90° to the refer
ence axis occur only in ±0 pairs. The individual + '8-and ""0 layers are 
not necessarily adjacent to each other. Note also that balanced lami
nates are required to be symmetric about the laminate middle surface 
so there m~st be two + e !ai:11inae and two - e laminae for each ± e pair'. 
The behavioral characteristics of a balanced laminate are that shear-
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extension coupling does not exist, nor does bending-extension coupling 
exist. However, bend-twist coupling does exist. 

Hybrid Laminates 

A hybrid laminate is a mixture of two or more material systems _to 
form a laminate. For example, graphite-epoxy laminae are used ~1th 
Kevlar-49®-epoxy laminae to create wing-to-body fairings for t~e B?emg 
757 and 767. Note that the two epoxies must be cure-compatible m or
der to achieve a functioning laminate. Thus, different fiber systems are 
often mixed in hybrid laminates, but not many different matrix systems 
can be used. An example of a graphite-epoxy laminate surrounded by 
layers of boron-epoxy could be written as [08/±45~,J90e3rJs. Note that 
this laminate is not quasi-isotropic becau~e the laminae,. although of t~e 
correct angular orientation for a 1t14 laminate, are of different material 
systems. 

4.3.6 Summary Remarks 

Single-layer 'laminates' (of course, such configu~ati?~s are not 
laminates but laminate stiffnesses must reduce to md1v1dual layer 
stiffnesse~) with a reference surface at the middle surface do not exhibit 
coupling between bending and extension. _With any o!her ref_erence 
surface there is indeed such coupling. Mult1layered laminates, in gen
eral, d~velop coupling between bending and extension .. The coupling is 
influenced by the geometrical as well as by the material property char
acteristics of laminates. There are, however, combinations of the ge
ometrical and material property characteristics for which there is no 
coupling between bending and extens(on. Those special cases have 
been reviewed in this section along with other special cases. All the 
special cases should be well understood _in order to. appreciate more 
complex laminates. Note from the collect,?n of ~pec1al case_s that th_e 
elastic symmetry of the laminae (whether 1sotrop1c, orthotrop,c, etc.)_ is 
not necessarily maintained in the laminate. The symmetry can ~e in
creased, decreased, or remain the same. Moreover, the symmetries of 
the three stiffness matrices, A, B, and D, need not be the same. Una-
voidable geometrical factors enter the stiffness calcul~tions. . 

The basic concept of coupling between bending and extension 
must be understood because there are many applications of composite 
materials where neglect of coupling can be catastrophic. This coupling 
is the key to the correct analysis of eccentrically stiffened plates and 
shells. For example, Card and Jones [4-5] showed that_ if longitu_din~I 
stiffeners are placed on the outside of an axially loaded circular ~ylmdn
cal shell, the buckling load is twice the value wh~n the san:ie st1ffen~rs 
are on the inside of the shell. Previously, the bend1ng-extens1on coupling 
between the stiffeners and the shell had been ignored! Similarly signif
icant differences will be shown in Chapter 5 for laminated plates. 
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Problem Set 4.3 

4.3.1 Prove that the bending-extension coupling stiffnesses, Bij, are zero for laminates that 
are symmetric in both material properties and geometry about the middle surface. 

4.3.2 Consider two laminae with principal material directions at + a and - a with respect 
to a reference axis. Prove that for orthotropic materials 

(01s>-+<x = - (01s>-« 
Discuss whether this relation is valid for anisotropic materials. That is, demonstrate 
whether a ±a angle-ply laminate of the same anisotropic laminae that are symmetric 
geometrically is antisymmetric or not. The transformation equations for anisotropic 
materials are given in Section 2.7. 

4.3.3 Quasi-isotropic laminates do not behave like isotropic homogeneous materials. 
Discuss why not, and describe how they do behave. Why is a two-ply laminate with 
a [0°/90°] stacking sequence and equal-thickness layers not a quasi-isotropic lami
nate? Determine whether the extensional stiffnesses are the same irrespective of 
the laminate axes for the two-ply and three-ply cases. Hint: use the invariant prop
erties in Equation (2.93). 

4.3.4 Show that B16 and B26 for an antisymmetric angle-ply laminate with equal-thickness 
layers of the same material approach zero as the even number of (equal-thickness) 
layers increases if the total laminate thickness is held constant. What happens if 
equal-thickness layers are added so the total laminate thickness increases? In both 
cases, develop equations for B16 and B26 that you can study, modify, and use to 
determine your answers. 

4.3.5 Show that A16 = ~ 6 = D16 = D26 = O for regular antisymmetric laminates wherein 
each equal-thickness layer is made of the same material. 

4.3.6 Start with the general expression for the force per unit width, Nx, in terms of the 
middle-surface strains and curvatures to derive the specific expression for Nx for a 
two-layered, equal-thickness [0°190°] laminate. Your final expression must be in 
terms of QQ and t, the laminate thickness. What is such a laminate called? What 
deformation characteristics does this laminate exhibit when subjected to Nx, i.e., 
what does this laminate do? 

4.3.7 Do all parts of Problem 4.3.6 for moment per unit width, Mx. 
4.3.8 A laminate consists of equal-thickness fiber-reinforced laminae with 40% of the 

unidirectional laminae in the x-direction, 30% at +45° to the x-direction, and the re
maining 30% at -45° to the x-direction. What is the minimum number of layers to 
achieve precisely the given percentages? How many layers are required to avoid 
coupling between bending and extension, if indeed that is possible? How many 
layers are required to make this laminate macroscopically orthotropic (i.e., behave 
as a single orthotropic layer)? Or is it ever macroscopically orthotropic? Discuss! 
In each case, state the stacking sequence of the laminate. 

4.4 THEORETICAL VERSUS MEASURED LAMINATE STIFFNESSES 

In preceding sections, laminate stiffnesses were predicted on the 
basis of combination of lamina stiffnesses in accordance with classical 
lamination theory. However, the actual, practical realization of those 
laminate stiffnesses remains to be demonstrated. The purpose of this 
section is to compare predicted laminate stiffnesses with measured lam
inate stiffnesses to determine the validity of classical lamination theory. 
Results for two types of laminates, cross-ply and angle-ply laminates, are 
presented. 

~ 
4.4.1 Inversion of Stiffness Equations 

Before the predicted stiffnesses are compared with measured 
stiffnesses, however, a slight reinterpretation of laminate stiffnesses is 
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required. Ordinarily, the resultant forces and moments are written in 

tenns of the middl~•·T::r[rfi? r CUNaturas as (4.62) 

However, in most experiments, the loads are applied, and the resulting 
deformations are measured, i.e., the defor~at1ons are th? dependent 
variables, not the loads. Thus, the expressions for the middle-surface 
extensional strains and curvatures in terms of the force and moment re-
sultants would be convenient. . . 

The first step in the derivation of the inverse of Equation (4.62) 1s 
to write it in the form 

N=AE0 +BK 

M = Be0 + Dic 

and solve Equation (4.63) for e0
: 

e0 =A-1N-A-1Bic 

whereupon Equation (4.64) becomes 
M = BA-1N + ( -BA-

1
8 + D)ic 

Equations (4.65) and (4.66) can be written as 

[ 
e° ] [ A-

1 
: _ A-

1 
B )[ N ] 

or 

-M- = ~A-=-1:~-~A-=-1; -ic-

e0 = A*N + B*ic 

M =H*N + D*ic 

where B* is not equal to H*. Now solve Equation (4.69) for ic: 

lC= o*-1M- o*-1H*N 

and substitute in Equation (4.68) to get 

e0 = s*o*-1M + (A* - B*0*-
1
H*)N 

Thus, 

[
.!:

0

-)=[-A~ -!3·~·~H~ l ~D~-~1[-N-] 
ic •-1 • , o·-1 M 

-0 H 1 

or 

x: H':o· M 

(4.63) 

(4.64) 

(4.65) 

(4.66) 

(4.67) 

(4.68) 

(4.69) 

(4.70) 

(4.71) 

(4.72) 

(4.73) 
[
./-] = [~'l B~1[-N -] 

wherein H' can be shown to be equal to ~~·~ T by virtue o~ th~ s~m~etiy 
of the A, B, and D matrices and the def1mt1ons of the A, B , D , A , B , 
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1d D* matrices. Of course, H' must equal (B') T because the matrix of 
e coefficients in Equation (4.62) is symmetric, so its inverse, the matrix 
coefficients in Equation (4.73), must also be symmetric. Demon

ration that the predicted values of A', B', and D' agree with measured 
llues is therefore fully equivalent to verification of the prediction tech
ques for A, B, and D. 

4.2 Special Cross-Ply Laminate Stiffnesses 

A cross-ply laminate in this section has N unidirectionally reinforced 
rthotropic) layers of the same material with principal material directions 
ternatingly oriented at 0° and 90° to the laminate coordinate axes. The 
1er direction of odd-numbered layers is the x-direction of the laminate. 
ie fiber direction of even-numbered layers is then the y-direction of the 
ninate. Consider the special case of odd-numbered layers with equal 
ickness and even-numbered layers also with equal thickness, but not 
1cessarily the same thickness as that of the odd-numbered layers. 
>te that we have imposed very special requirements on how the fiber 
ientations change from layer to layer and on the thicknesses of the 
rers to define a special subclass of cross-ply laminates. Thus, these 
ninates are termed 'special' cross-ply laminates and will be explored 
this subsection. More general cross-ply laminates have no such con
ions on fiber orientation and laminae thicknesses. For example, a 
3neral) cross-ply laminate could be described with the specification 
'@U90°@2t/90°@2t/0°@t] wherein the fiber orientations do not alter
te and the thicknesses of the odd- or even-numbered layers are not 
~ same; however, this laminate is clearly a symmetric cross-ply lami
te. 

For the special cross-ply laminates, two geometrical parameters 
~ important: N, the total number of layers, and M, the ratio of the total 
::kness of odd-numbered layers to the total thickness of even
mbered layers (called the cross-ply ratio). Thus, 

L tk 
M = k=odd (4.74) 

L tk 
k=even 

r example, if a five-layered laminate has a stacking sequence of 
190it'Of/90it'Of], then 

M= t+t+t -~ (4.75) 
2t+2t 4 

te that the cross-ply ratio, M, has specific meaning only when the 
ers have alternating 0° and 90° orientations. If the middle layer of the 
3going example were two layers of 0° orientation with each layer being 
thick, then M is easily shown to be one. However, then the layers 
uld not have alternating orientation nor would-odd-numbered layers 
re the same thickness. Thus, more general cross-ply laminates can
be described by use of the cross-ply ratio, M. 

The laminate stiffnesses, 

( 

,;, : 

' 
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N 

A11 = L (O,l)k(zk - zk- 1) 
k=1 

N 

s,1= ! I,<01iM~-z:_1> 
k=1 

N 

DIJ= ! I,<o11Mz:-z:_1) 
k=1 

(4.76) 

can be expressed in terms of M and N f?r lami~at~s with ~n od~ or even 
number of layers. In addition, F, the ratio of pnncrpal lamina st11•r==----.... •-=nesses, 

F = _0_22_ = _E_2 
011 E1 

(4.n) 

is used where F is the inverse of the usual modulus ratio E1/E====2. Tsai 
[4-6] displayed the following stiffnesses for laminates with t = .aminate 
thickness. 

Special Cross-Ply Laminates with N Odd (Symmetric} 

A11 =_j__M (M+F)011t 
1+ 

A12=012t 

A22 = 11 M (1 + MF)011t 

A1s =A2a=O 

A66 =066t 

B1i=0 

1 +MF A 
M+ F 11 

[(F-1)P+1]011t
3 

1 +M A11t2 
D11= 12 =[(F-1)P+1] M+F 12 

3 
012t 

D12=~ 

[(1 -F)P + F]011t
3 

1 + M A11t
2 

D22= 12 =[(1-F)P+F] M+F 12 

D15= D2a=O 

Ooot3 
Doo=~ 

where 
1 M(N -3)[M(N-1) + 2(N + 1)] 

-.....!--+ 
(1 + M)3 (N2 -1)(1 + M)

3 p 

(4.78) 

(4.79) 

(4.80) 

(4.81) 
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Special Cross-Ply Laminates with N Even (Antisymmetric) 

A - 1 11- 1 +M (M+F)011t 

A12=012t 
A _ 1 ( _ 1 +MF 

22- 1 +M 1 +MF)011t- M+F A11 

A1a=A2a=O 

A66=055t 

B _ M(F-1) 2_ M(F-1) 
11 - N(1 + M/ 011t - N(1 + M)(M + F) A11t 

822=-811 

812= 815= B2s = Baa= 0 

D _ [(F-1)R+ 1]01/ 
11- 12 

2 
[(F-1)R+1] 1+M A11t 

M+F 12 

D15= D25=0 

066t3 
D66=12 

where 

2 
[(1-F)R+F] 1 +M A11t 

M+F 12 

R=-1-+ 8M(M-1) 
1 + M N2(1 + M)3 

Observations on Special Cross-Ply Laminates 

(4.82) 

(4.83) 

(4.84) 

(4.85) 

. The ~pecial ~ross-ply laminate stiffnesses are given for symmetric 
lamma!es m Eq~at1ons (4.78) through (4.80) and for antisymmetric lami
nates !n Equat1.ons (4.82) th~ough_ (4.84). The extensional, bending
extension coupling, and bending stiffnesses are discussed separately in 
the following paragraphs. 

For both odd- and even-layered special cross-ply laminates the 
extensional stiffnesses, Ar, are indepen ent of N, the number of l~yers 
(although the N individual \amina thickne ses can be summed to get the 
total laminate thickness t, so N is implicit in tions (4.78) and (4.82)). 
However, A11 and A22 depend on M, the cross-ply ratio and on F the 
lamina. stiffn~ss ratio, as s.hown in Figures 4-22 and 4-23. For a typical 
glass-fiber-reinforced lamina, F = .3, so A11 varies from .65011 t to 
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.93011t as M changes from 1 to 10. Similarly, A22 varies from A11 to 

.38A11 over the same range of M. The stiffnesses A12 and A66 are in
dependent of Mand F. The remaining stiffnesses A16 and A26 are zero 
for all cross-ply laminates. 

Only special cross-ply laminates with an even number of layers 
have bending-extension coupling because the Bii are all zero for a spe
cial cross-ply laminate with an odd number of layers. The bending
extension coupling stiffnesses 8 11 and 822 are plotted as a function of 
the cross-ply ratio, M, in Figure 4-24. The number of layers, N, appears 
in the numerator of the ordinate in Figure 4-24. Thus, the value of 8 11 
obviously decreases as N increases because NB11 is constant for a fixed 
cross-ply ratio. Because N must be even to get any coupling, N = 2 
corresponds to the largest coupling between bending and extension. 
One physical interpretation of the bending-extension coupling stiffness 
8 11 is that it is a measure of the location of the neutral (stress-free) axis 
relative to the laminate middle surface. As a matter of fact, the ordinate 
in Figure 4-24 is the fraction of the total laminate thickness, T, that the 
neutral axis is shifted from the middle surface. The shifting, like 8 11 , is 
inversely proportional to N, so the neutral-axis shift gets smaller as the 
number of layers increases. Note that there is a different neutral axis in 
the x-direction than in the y-direction, i.e., there is no neutral surface. 

Figure 4-22 

.2 

0 

L STIFFNESS RATIO 

F= E2/E,=Q22/011 

4 7 

CROSS PLY RATIO, M 

10 

Extensional Stiffness, A11 , versus Cross-Ply Ratio, M 
(After Tsai [4-6]) 
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Figure 4-23 Extensional Stiffness, A22, versus Cross-Ply Ratio, M 
(After Tsai [4-6)) 
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10 

Figure 4-24 Bending-Extension Coupling Stiffness, 811 , 

versus Cross-Ply Ratio, M (After Tsai [4-6)) 

The bending stiffnesses, 0 11, are complicated functions of the 
number of layers, N, the cross-ply ratio, M, and the lamina stiffness ratio, 
F. Normalized values of 0 11 and 022 are shown in Figures 4-25 and 
4-26 for several values of F and N as a function of M. Extreme values 
of 011 and 022 occur when N = 2 a~N~ = 3 with valu~s for all other N 
falling in betw~en. The value of 0 1 approaches A111'°!12 and 022 ap
proaches A221'°112 as (1) M gets lar 2) N gets large, or (3) F ap
proaches one. Thus, with certain types of laminate layups, the 
stiffnesses can approach those for a homogeneous plate- or shell-like 
element. 
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Figure 4-25 Bending Stiffness, D11 , versus Cross-Ply Ratio, M (After Tsai [4-6]) 
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Figure 4-26 Bending Stiffness, D22, versus Cross-Ply Ratio, M (After Tsai [4-6)) 

4.4.3 Theoretical and Measured Cross-Ply Laminate Stiffnesses 

Two- and three-layered special cross-ply laminates were shown to 
have extrema of behavior in the preceding section. Thus, comparisons 
between theoretical and measured stiffnesses for such laminates should 
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be quite revealing. Any agreement for those cases would imply equal 
or better agreement for special cross-ply laminates with more than three 
layers. 

The individual laminae used by Tsai [4-6] consist of unidirectional 
glass fibers in a resin matrix (U.S. Polymeric Co. E-787-NUF) with moduli 
given in Table 2-3. A series of special cross-ply laminates was con
structed with M = 1,2,3, 1 O for two-layered laminates and M = 1,2,5, 1 o for 
three-layered laminates. The laminates were subjected to axial loads 
and bending moments whereupon surface strains were measured. Ac
cordingly, the stiffness relations as strains and curvatures in terms of 
forces and moments, that is, 

[-:+[ ;~T~ ][~-l (4.86) 

are natural to use. That is, theoretical values of A', B', and D' will be 
compared with measured values. Verification of one set of stiffnesses 
implies verification of the other set because the two sets, A, B, and D 
and A', B', and D', are inverses of one another as sets (that is, A :t. A'-1, 
etc.). 

The experiments were performed on two sets of beams with the 
beam axis at 0° and go0

, respectively, to the fiber direction of the odd
numbered layers. The beams were 1-in (25.4-mm) wide, .12-in (3-mm) 
thick, and of 6-in (152-mm) span. Strain rosettes were located on the 
upper and lower beam surfaces so that the middle-surface strains and 
curvatures can be calculated from simultaneous solution of 

o t upper 
Ei +2JG=9 

o t lower i = 1 • 2• 6 (4.87) 
Ei -2JG=9 

where t is the beam thickness. 
The stiffnesses A11 , A12 = A12, s; 1, and B12 were measured after 

application of pure uniaxial tension, N1, to a 0° beam; the stiffnesses 
B11, 821 = 812, D11 , and D21 = D12• after application of pure bending 
moment, M1, to a 0° beam. The stiffnesses A12 =A21 , A22, 821 =812, 
822, D12 = D21, and D22 were measured on a go0 beam. Pure twisting 
on a 0° square plate was used to measure D66. That is, two upward and 
two downward forces were applied at the four comers of a plate as in 
Figure 4-27 whereupon 

PL
2 

D66 = - (4.88) 
4wc 

where we is the corner deflection. The in-plane shear stiffness, Ase, was 
not measured. 

Macromechanlcal Behavior of a Laminate 231 

,~'::!:--;/ 

LuNDEFORMED PLATE 

p 

Figure 4-27 Twisting of a Square Plate 

The measured stiffnesses for two- and three-layered special 
cross-ply laminates are shown with symbols in Figure 4-28, and the the
oretical results are shown with solid lines. In all cases, the load was kept 
so low that no strain exceeded 500µ. Thus, the behavior was linear and 
elastic. The agreement between theory and experiment is quite good. 
Both the qualitative and the quantitative aspects of the theory are veri
fied. Thus, the capability to predict cross-ply laminate stiffnesses exists 
and is quite accurate. 
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Figure 4-28a Theoretical and Measured Special Cross-Ply Laminate Stiffnesses 
(U. S. Standard Units) (After Tsai [4-6]) 
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Figure 4-28b Theoretical and Measured Special Cross-Ply Laminate Stiffnesses 
(SI Units) (After Tsai {4-6]) 

4.4.4 Special Angle-Ply Laminate Stiffnesses 

An angle-ply laminate in this section has N unidirectionally rein
forced (orthotropic) layers of the same material with principal material 
directions altematingly oriented at + ex and - ex to the laminate x-axis. 
The odd-numbered layers are at - ex, and the even-numbered layers are 
at+ ex. Consider the special, but practical, case where all layers have the 
same thickness, that is, regular angle-ply laminates. Because of the 
special requirements on how the fiber orientations change from layer to 
layer and the equal thicknesses of each layer, these laminates are 
termed 'special' angle-ply laminates and will be explored in this sub
section. More general angle-ply laminates have no such conditions on 
fiber orientation or laminae thicknesses. For example, an angle-ply 
laminate could be [45°@t/60°@2t/60°@2t/45°@t]s wherein the fiber ori
entations do not alternate and the laminae thicknesses are not the same; 
however, this laminate is clearly a symmetric angle-ply laminate. 

The laminate behavior of these special angle-ply laminates can be 
described with the number of layers, N, the laminae orientation, ex, and 
the laminae stiffnesses, 0 11, in addition to the total laminate thickness, t. 
The laminate stiffnesses, 

N 

A11= L(OiiMzk-zk-1} 
k=1 

N 
1 ~ - 2 2 8 11 = 2 ..t.J (011M2k - 2 k -1> 

k=1 
N 

1 ~ - 3 3 0 11 = 3 ..t.J (Oii}k(zk - 2k - 1} 
k=1 

(4.89} 

( 

I 
) 
I 
! 
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can be expressed in terms of N, 0 11 (in which ex is accounted for}, and t 
for laminates with an even number of layers and with an odd number of 
layers. In both cases, 0 11 is calculated for - ex and 

011 +a=011-a 

012+a=012-a 

022 +a = 022 -a 

066 +a= 066 -a 

01a+a=-01a-a 

026 +a= - 025 -a 

(4.90} 

as can be verified by substitution in Equation (2.80). Tsai (4-6] displayed 
the following stiffnesses: 

Special Angle-Ply Laminates with N Odd (Symmetric) 

A11, A12• A22, Aas= (011, 012• 022, Oas)t 
- - t 

A15, ~6 = (016' 02a> N 

Special Angle-Ply Laminates with N Even (Antisymmetric) 

A11 , A12, A22' A66 = (011 , 0 12, 022' 0 66}t 

A1a•~a=O 

B11, B12• B22, B66 = 0 

- - t2 
B15, B2a = - (01a• 02a> 2N 

- - - - t3 
D11• D12• 022, 066= (011, 012• 022' 066)12 

015, D2a=O 

Observations on Special Angle-Ply Laminates 

(4.91) 

(4.92) 

(4.93} 

(4.94} 

(4.95) 

(4.96} 

The extensional stiffnesses, ~i• are shown in Figure 4-29 as a 
function of the lamination angle. The terms A11 , A12• A22, and Aas are 
independent of the number of layers, N. However, A16 and A26 depend 
on N. When N is odd, they are inversely proportional to N. When N is 
even, they are zero. Thus, the biggest values of A16 and A26 occur when 
N=3. 
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Figure 4-29 Normalized Extensional Stiffnesses for 
a Glass-Epoxy Angle-Ply Laminate (After Tsai [4-6]) 

The bending-extension coupling stiffnesses, Bii• are zero for an odd 
number of layers, but can be large for an even number of layers. The 
values of B16t(tA11 ) are shown as a function of lamination angle in Figure 
4-30. Because 816 is inversely proportional to N, the largest value of 
8 16 occurs when N = 2. The quantity plotted can be shown to be 

8 16 Mxy 
--=- (4.97) 
t A11 t Nx 

that is, the ratio of twisting moment to axial extensional force for pure 
extension,~- Similarly, 
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Figure 4-30 Bending-Extension Coupling Stiffness 816 for 
a Glass-Epoxy Angle-Ply Laminate (After Tsai [4-6]) 
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(4.98) 

From Figure 4-30, bending-extension coupling is largest when 0 = 45° 
and N =2. 

The bending stiffnesses include the bend-twist coupling terms 0 16 
and 0 26 when N is odd, but 0 16 = 0 26 = 0 for N even. Because, by virtue 
of Equation (4.93), 0 16 and 0 26 are inversely proportional to N, then their 
maximum value occurs when N = 3. Also, D16 and 0 26 achieve a maxi
mum for a lamination angle of 45° as shown in Figure 4-31. In simple 
bending, the twisting moment induced by the presence of 0 16 and D26 
is 30% of the applied bending moment. This coupling does not decrease 
rapidly as N increases. Thus, approximate solutions in which bend-twist 
coupling is ignored are not likely to be accurate. 
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Figure 4-31 Bend-Twist Coupling Stiffness D16 for 
a Glass-Epoxy Angle-Ply Laminate (After Tsai [4-6]) 

4.4.5 Theoretical and Measured Angle-Ply Laminate Stiffnesses 

The measurement procedures chosen to compare theory and ex
periment are the same as those in Section 4.4.3 for special cross-ply 
laminates. A two-layered special angle-ply laminate has the largest B16 
and 826• A three-layered laminate has the largest A16, A26, 0 16, and 
0 26. The experiments were conducted on beams with angle-ply layers 
at ± ex to the beam axis. Note that only half as many specimens are re
quired as for special cross-ply laminates because, for example, A11 and 
A22 are mirror images of one another about e = 45°. Because coupling 
between extensional forces and shearing deformations exists as well as 
between bending moments and twisting deformations, a complex strain 
state was anticipated. Thus, three-element strain rosettes were placed 
on the top and bottom beam surfaces. The shearing strain, Yxy, is then 
calculated from 
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upper _ 2 upper ( upper upper) 
"fxy - E45• - Ex + fy 

lower 2 lower ( lower lower) 
"fxy = E45• - Ex + fy 

(4.99) 

where e45° is the third strain (at 45° to the x and y axes) in the strain 
rosette. The middle surface strains and curvatures are calculated from 
Equation (4.87). 

The theoretical and measured stiffnesses are shown in Figure 4-32. 
As with cross-ply laminates, very good agreement was obtained. Thus, 
the predictions of laminate stiffnesses are quite accurate. 
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Figure 4-32a Theoretical and Measured Special Angle-Ply Laminate Stiffnesses 
(U. S. Standard Units) (After Tsai (4-6}) 
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Figure 4-32b Theoretical and Measured Special Angle-Ply Laminate Stiffnesses 
(SI Units) (After Tsai (4-6}) 
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4.4.6 Summary Remarks 

Measured special cross-ply and angle-ply laminate stiffnesses were 
compared with theoretical stiffnesses from classical lamination theory. 
Both symmetric and antisymmetric laminates were treated. The number 
of layers in each laminate correspond to predictions of the largest cou
pling stiffnesses A16, A26, Bii• D16, and D26 where these stiffnesses ex
isted. Thus, the comparisons between theory and experiment were for 
worst-case conditions. Accordingly, the good agreement obtained lends 
high confidence to theoretical predictions of stiffnesses for less severe 
conditions of coupling and for more general laminates. 

Problem Set 4.4 

4.4.1 

4.4.2 

4.4.3 

4.4.4 

4.4.5 

4.4.6 

4.4.7 

4.4.8 

Derive the extensional stiffnesses for regular symmetric special cross-ply laminates, 
that is, derive Equation (4.78) for the special case in which locid = leven = VN. 
Derive the bending stiffnesses for regular symmetric special cross-ply laminates, 
that is, derive Equation (4.80) for the special case in which lood = leven = VN . 
Derive the extensional stiffnesses for regular antisymmetric special cross-ply lami
nates, that is, derive Equation (4.82) for the special case in which lood = leven = VN 
(for which also M = 1 ). 
Derive the bending-extension coupling stiffnesses for regular special antisymmetric 
cross-ply laminates, that is, derive Equation (4.83) for the special case in which 
lood = leven = VN (for which also M = 1 ). 
Derive the bending stiffnesses for regular antisymmetric special cross-ply laminates, 
that is, derive Equation (4.84) for the special case In which lood = leven = VN (for 
which also M = 1) . 
Derive the stiffnesses for symmetric special angle-ply laminates In Equations 
(4.91 )·(4.93). 
Derive the stiffnesses for antisymmetric special angle-ply laminates In Equations 
(4.94) · (4.96). 
Derive Equations (4.97) and (4.98). 

4.5 STRENGTH OF LAMINATES 

4.5.1 Introduction 

Metal plates under in-plane tensile loading can exhibit either brittle 
or ductile behavior to failure as in Figure 4-33. There, a metal plate un
der in-plane compressive loading can buckle and yet carry an even 
higher load than the buckling load, although at the expense of much
increased deflection per unit of additional load applied. Neither the 
buckling load nor the yield load represents the maximum load-carrying 
capacity of the structural element. However, exceeding the buckling load 
(operating in the postbuckling regime) or the yield load is not always 
permissible in usual operating conditions. 

Laminated composite plates under in-plane tensile loading exhibit 
deformation response that is both like a ductile metal plate under tension 
and like a metal plate that buckles. That is, a composite plate exhibits 
progressive failure on a layer-by-layer basis as in Figure 4-34. Of 
course, a composite plate in compression buckles in a manner similar to 
that of a metal plate except that the various failures in the compressive 
loading version of Figure 4-34 could be lamina failures or the various 
plate buckling events (more than one buckling load occurs). 
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~RITTLE FRACTURE Nx BUCKLED PLATE 

LBRITTLE I [DUCTILEJ 

Figure 4-33 Load-Deflection Behavior of Metal Plates 
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Figure 4-34 Anal?gy between Buckled Plate and 
Laminate Load-Deformation Behavior 

For laminate strength just f . 
building block is the lamina ~ith ·t a~ h or laminate stiffness, the basic 
tive of this section is to resent I s m erent characteristi~s .. The objec
strength based on the str~ngths a a d~etodo!ogy for_ pred1~t1ng laminate 
mental to such a methodology is ~h 1\eract1ons of its lamrnae. Funda
each lamina, based on cone e nowledgE: of. the stress state in 
ever, because of the hetero e~ts developed earlier _rn this book. How
anisotropic nature of com os1teneous ~nd o~hotrop1c or perhaps even 
quire new analysis quite u~like th~:!e['al~, ff'lu~e modes occur that re
als. In particular, for a laminated com or !so ropic _hom~geneous materi
d~es not necessarily imply failure of~~s1te ~aterral, _failure of one layer 
might, in fact, be capable of sust . . ~ entire lamrnat~; the laminate 
change (decrease) in stiffness ~nmg hi'gher loa~s despite a significant 
ability of a plate loaded in in-· 1 n ana ogy t~ this phenomenon is the 
than the buckling load but at f na~e comp~ession to carry loads higher 
per unit of load (a dec;eased stiff~~~~)ase 1g the ~mo.unt of deformation 

Because of the various h . a~ s own m Figure 4-34. 
difficult to determine a streng~h ~~ft~rrsti~s of ~omposite laminates, it is 
their interactions are proper! a erron m which all failure modes and 
of a proposed strength crit~rio~c~~nted f~r. More.over, the verification 
measured strengths caused by inc Wf a Y complr?ated by scatter in 

ons1s ent processing techniques (that 
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are mainly unavoidable) and sometimes inappropriate and misleading 
experimental techniques. Nevertheless, a continuing effort must be 
made to define strength criteria that enable the accurate prediction of 
composite laminate strengths. Strength criteria are essential so a de
signer can predict the capability of a structural element under a complex 
loading state. Such criteria must be verified by comparison with meas
ured strengths; subsequently, judgment must be made as to whether the 
criteria adequately represent the physical phenomena given the inherent 
experimental difficulties of measuring the phenomena. 

All strength criteria for composite laminates depend on the 
strengths in the laminae principal material directions, which likely do not 
coincide with laminae principal stress directions. Therefore, the strength 
of each lamina in a laminate must be assessed in a coordinate system 
that is likely different from those of its neighboring laminae. This coor
dinate mismatch is but one of the complications that characterizes even 
a macroscopic strength criterion for laminates. The main factors or ele
ments that are peculiar to laminate strength analysis are shown in se
veral categories in Figure 4-35. There, the cure and use conditions affect 
the state of the material that is used in the laminate. For example, the 
difference between the stress-free, elevated-temperature, curing tem
perature and the service temperature causes thermal or residual 
stresses. Similarly, the difference between curing moisture content and 
service moisture content causes moisture stresses as does the differ
ence between moisture contents at any two different times. Moisture 
diffuses throughout epoxy matrix materials at a far slower rate (months) 
than temperature (minutes). In some cases, the history of environmental 
effects such as temperature and moisture must be considered. 

LAMINATE STRESS ANALYSIS 

• LAMINAE STIFFNESSES 
• COEFFICIENTS OF THERMAL 

EXPANSION 
• COEFFICIENTS OF MOISTURE 

EXPANSION 
• LAMINAE THICKNESSES 
• STACKING SEQUENCE 

• LAMINAE STRENGTHS 

CURE ANO USE CONDITIONS 

• CURING TEMPERATURE 
• CURING MOISTURE 
• SERVICE TEMPERATURE 
• SERVICE MOISTURE 
• ENVIRONMENT HISTORY 

• LAMINAE FAILURE CRITERIA 
• LAMINATE LOADS 

LAMINATE STRENGTH EVALUATION 

Figure 4-35 Laminate Strength-Analysis Elements 

The laminate stress-analysis elements are affected by the state of 
the material and, in turn, determine the state of stress. For example, the 
laminate stiffnesses are usually a function of temperature and can be a 
function of moisture, too. The laminae hygrothermomechanical proper
ties, thicknesses, and orientations are important in determining the di
rectional characteristics of laminate strength. The stacking sequence 
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affects the bending and bending-extension coupling stiffnesses and 
hence the strengths of the laminate. 

Finally, both the state of the material and the state of stress affect 
the laminate strength evaluation. That is, the actual temperature and 
moisture conditions influence the laminae strengths. Taken together with 
the laminae stresses, the laminae strengths and the laminate loads lead 
to an evaluation of the laminate capabilities. 

A laminate can be subjected to thermal, moisture, and mechanical 
loads with the objective of surviving those loads. A method of strength 
analysis is required to determine either (1) the maximum loads a given 
laminate can withstand or (2) the laminate characteristics necessary to 
withstand a given load. The maximum loads problem is, of course, an 
analysis situation, and the laminate characteristics problem is a design 
situation that will be discussed in Chapter 7. 

4.5.2 Laminate Strength-Analysis Procedure 

The analysis of stresses in the laminae of a laminate is a straight
forward, but sometimes tedious, task. The reader is presumed to be fa
miliar with the basic lamination principles that were discussed earlier in 
this chapter. There, the stresses were seen to be a linear function of the 
applied loads if the laminae exhibit linear elastic behavior. Thus, a single 
stress analysis suffices to determine the stress field that causes failure 
of an individual lamina. That is, if all laminae stresses are known, then 
the stresses in each lamina can be compared with the lamina failure cri
terion and uniformly scaled upward to determine the load at which failure 
occurs. 

The overall procedure of laminate-strength analysis, which simul
taneously results in the laminate load-deformation behavior, is shown 
schematically in Figure 4-36. There, load is taken to mean both forces 
and moments; similarly, deformations are meant to include both strains 
and curvatures. The analysis is composed of two different approaches 
that depend on whether any laminae have failed. 

If no laminae have failed, the load must be determined at which the 
first lamina fails (so-called first-ply failure), that is, violates the lamina 
failure criterion. In the process of this determination, the laminae 
stresses must be found as a function of the unknown magnitude of loads 
first in the laminate coordinates and then in the principal material di
rections. The proportions of load (i.e., the ratios of Nx to Ny, Mx to My,; 
etc.) are, of course, specified at the beginning of the analysis. The loa1 
parameter is increased until some individual lamina fails. The properties\ 
of the failed lamina are then degraded in one of two ways: (1) totally to \ 
zero if the fibers in the lamina fail or (2) to fiber-direction properties if the ' , 
failure is by cracking parallel to the fibers (matrix failure). Actually, be
cause of the matrix manipulations involved in the analysis, the failed 
lamina properties must not be zero, but rather effectively zero values in 
order to avoid a singular matrix that could not be inverted in the structural 
analysis problem. The laminate strains are calculated from the known 
load and the stiffnesses prior to failure of a lamina. The laminate defor
mations just after failure of a lamina are discussed later. 
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LOADING AND LAMINAE PROPERTIES 
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~--I CALCULATE LAMINATE DEFORMATIONS IF NO LAMINAE LEFT, 
GROSS LAMINATE FAILURE 

Figure 4-36 Analysis of Laminate Strength and Load-Deformation Behavior 

If one or more laminae have now failed, new laminate extensional, 
bendin -extension coupling, and bending stiffnesses_ a~e ~alculated. 
Lamin;e stresses are recalculated to determine their d1stnbut10~ after a 
lamina has failed (the stresses in the remaining laminae ,:n~st incr~ase 
to maintain equilibrium). Then we must verify that the remaining laminaed 
at their increased stress levels, do not fail at the same load t~at caus~ 
failure of the lamina in the preceding cycle thro~g~ the analysis. ~hat I~~ 
can the laminae stresses be successfully redistributed amon~ e u d 
failed layers? If no more laminae fail, then the load can be increase 

until another lamina fails, and the cycle is re~eated. I~ each/Yi'\:~~ 
increased stresses caused by failure of a lamina rr:1ust e ven iel n. 
cause an instantaneously progressive failure, that is, whe~e the. aminae 
all successively fail at the same load. When such_ a multiple failure oc-
curs the laminate is said to have suffered gross failure.. . . . 

' Note that the lamina failure criterion was not mentioned exphc1tly ~n 
the discussion of Figure 4-36. The entire pr~e~ure for strength analysis 
is independent of the actual lamina failure cnter!on, but the results of !~: 

rocedure the maximum loads and deformations, do depend o~ . 

~pecific la~ina failure criterion. Also, the load~defor~ati~n ~::;1i; ~~ 
piecewise linear because of the restriction to h~ear ~ as ,c r 'f the 
each lamina. The laminate behavior :,vould be p1ecew1se n~n ~:a~~erall 
laminae behaved in a nonlinear elastic manner. At any ~a e, . . 

behavior of the laminat~ is nonlinear ~f one oru:o~:!f-~:~~=~~~:f:~
1
~:~ 

gross failure of the laminate. In Section 2.9'. t r of failure 
criterion was determined to be the best practical represen a ,on 
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of an E-glass-epoxy lamina under biaxial stress conditions. Thus the 
Tsai~Hill criterion will be used in subsequent strength predictions i~ this 
section. However, one of the other criteria might be more suitable for 
materials other an E-glass-epoxy. 

4.5.3 Thermal and Mechanical Stress Analysis 

. Mechanical ~tress analysis, treated earlier in this chapter, does not 
s~fflce for analysis o~ laminates that have been cured at temperatures 
different from the design operating temperature. In such cases, thermal 
stresses arise and must be accounted for. The concepts of mechanical 
stress analysis will be reiterated in this section along with the necessary 
modifications for thermal stress analysis. 

The three-dimensional thermoelastic anisotropic strain-stress re
lations are 

Ei=Sijcrj+°'i~T i,j= 1, 2, ... , 6 (4.100) 

whderehin t~eftotal strains, 9, _are the sum of the mechanical strains, si1cr1, 
an t ~ six ree thermal strains, °'i~T. for a temperature change ~T. The 
three-dimensional stress-strain relations are obtained by inversion: 

O"i=C11(E1-¥T> i,j=1,2, ... ,6 (4.101) 

In both Equations (4.100) and (4.101), the six °'i are the coefficients of 
thermal ~eformation (expansi~n or contraction and distortion, i.e., shear), 
and ~ T 1s the temperature difference. In Equation (4.101 ), the terms 
CiJ<Xf T are the thermal stresses if the total strain is zero. 

For plane stress on an orthotropic lamina in principal material co
ordinates, 

0"1 011 012 0 E1 -<X1~T 

(4.102) 

't12 O O 066 'Y12 

Note that the coefficients of thermal expansion affect only extensional 
strains, not the shearing strain. 

The stresses in laminate coordinates for the kth layer are obtainet. 
by transformation of coordinates in the manner of Section 2.6 as 

0 x 011 012 015 Ex -yT 

O"y = 012 022 025 Ey -<ylT (4.103) . 

'txy 015 025 055 'Yxy-yT 
k k k 

wherein the appearance of nxy signifies an apparent coefficient of ther
mal shear or distortion as in the right-hand side of Figure 4-37. 
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Figure 4-37 Thermal Expansion and Distortion of an Orthotropic Lamina 

When the linear variation of strain through the thickness, Equation 
(4.13), is substituted in Equation (4.103) and the resulting expressions 
for the layer stresses are integrated through the thickness, the force re-
sultants are 

Nx [A11 A12 A15] ~ [811 812 815][K,c l N! 
Ny = A12 A,,_ A,. ~ + 8 12 B,,_ 826 ",, - N~ (4.104) 

Nxy A15 ~6 A55 'Yxy 816 825 8ss 'Kxy Nxy 

in which the A .. and 9 .. are the usual extensional and bending-extension 
coupling stiffnisses d~fined in Equation (4.24) and the thermal forces 

are 

N! 011 012 015 [<Xx l 
N~ = J a,,~,,_ 025 !Xy AT dz 

Nxy 015 025 055 <Xxy 
k k 

(4.105) 

Note that the so-called thermal forces, NT, are true thermal forces only 
when the total strains and curvatures are perfectly restrained, that is, 

zero. 
In a similar manner, the moment resultants are obtained by inte-

grating the moment of the stresses through the thickness: 

[

811 812 815] ~ [011 012 015][1'x l :; 
My = 812 822 825 ~ + 012 022 025 Ky - y (

4
-
1
0
6
) 

Mxy 815 825 855 'Yxy 015 026 055 'Kxy M~ 
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in which the o .. are the usual b d. . 
(4.24) and the thermal moments =~ mg stiffnesses defined in Equation 

M! 1 011 012 016 r~ 
1 

M; = 012 022 026 fly t!T z dz 
MT - -

xy 015 026 066 ~ 
k k 

(4.107) 

~~tually, only in the restricted case of perfect constraint are the NT and 
thermal forces and moments, respectively. However the force and 

moment resultants can be rearranged to read , 

Nx Nx + N; [A11 A
12 

A
16J ~ [8 8 8 J[K l 

N, = :, + :~ = :,2 A22 A,6 e; + a:: a: a:: ~ 
Nxy xy + xy 16 A26 A66 Y~ 816 826 866 "'Sey 

=[::: :: ::J ~ +[::: :: ::J[~ (]4.108) 

816 826 866 y~ D15 D26 D66 "'Sey 

(4.109) 

~~e~~alf:: ~ E~ua_tio~s (4.108) and (4.109), the thermal portion of 

mechanical loaedcs ~~~i~e~tr~;s ifo~~;sM ~a~ beE trea!ed as equivalent 
( 4 107) . . in quat,ons ( 4.105) and 

. , re~p~~t,vely, in addition to the me<!ianical loads, N and M. 
The f1ct1t1ous forces and moments N and M b" 

same rules as N and M for problems of mechanic~! %e ~u 1ect to the 
example, Equations (4.108) and (4.109) can be written :sdmg only. For 

. [-~] = [ ~; ~ ][-:~] (4.110) 

in analogy to Equation (4.62). Also, upon inversion of Equation (4.110), 

. [f 1=[~:tH-~1 (4.111) 

~::~~~~ya~~i;,::tion (4. 73). Thus, a highly advantageous formulation 

therm~,P~:;;~~~~ri~~~~n t~~ :fr~~:~1s·c~
1
1n lothadin

1 
g, _or mechanical a~d 

, e ammae can be deter-
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mined from Equation (4.102). The laminae stresses are used in the 
lamina failure criterion to determine the laminate stiffness up to the 
maximum load the laminate can take. Obviously, classical lamination 
theory including thermal effects is essential to the correct description of 
laminate behavior because of heterogeneity and the curing process for 
fabricating laminates. Interactions between laminae are developed as a 
result of the manner in which the laminae are placed in the laminate and 
cured. These interactions will be described and discussed in examples 
of cross-ply and angle-ply laminates. 

4.5.4 Hygroscopic Stress Analysis 

Hygroscopic (moisture) effects arise for polymer materials such as 
some epoxies that absorb moisture chemically after curing and therefore 
expand. These effects are directly analogous to thermal effects and are 
characterized by coefficients of moisture expansion ~1 and ~2 in principal 
material coordinates in direct analogy to cx1 and ~ for coefficients of 
thermal expansion. All calculations for thermal effects with the cx1 can 
be replaced by or supplemented with analogous terms for moisture ex
pansion. 

The time scale is quite different for diffusion or spreading of thermal 
effects as opposed to moisture effects. Thermally induced changes in 
deformations and stresses are usually rapid (within at most moments) 
because thermal diffusion is fairly rapid. In contrast, hygroscopic effects 
are quite slow because they depend on moisture diffusion in the material, 
a very slow process (weeks to months to even years to achieve uniform 
saturation). Shen and Springer showed that the usual thermal versus 
moisture diffusion values for materials lead to the conclusion that the 
temperature inside a surface-heated body approaches equilibrium (ther
mal soak) about 106 times faster than the moisture content approaches 
saturation [4-7). For example, a .50-in (12.5-mm) thick T300-1034 
graphite-epoxy laminate exposed to 90% humidity air at 170°F (77°C) 
takes about 15 seconds to reach thermal equilibrium, but about 13 years 
to reach moisture saturation [4-7]! The coefficient of moisture diffusion 
changes very little with moisture content but changes rapidly with tem
perature [4-7]. 

Calculation of the effects of both thermal and moisture processes 
depends on knowledge of the temperature field and the moisture field, 
respectively, in the structure being considered. Thermal problems in
volving temperature gradients are not uncommon (the structure might be 
heated from one side, and the heat is nonuniformly distributed prior to the 
thermal-soak condition). Moisture problems involving complex moisture 
distributions in the laminate such as in Figure 4-38 are the 'usual' prob
lem. A form of the curves in Figure 4-38 were obtained by Pipes, Vinson, 
and Chou for various values of Dt (D is the diffusion coefficient and t is 
the time with D constant over the range of temperature and moisture 
considered) [4-8]. The present curves were obtained from those of 
Pipes, Vinso~, and Chou by using the approximate value of 
D = 2 x 1 o-6 in /hr obtained from the work of Browning, Husman, and 
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Whitney [4-9] to get a time value for each curve. Note in Figure 4-38 that 
the moisture content changes continuously through the laminate thick
ness. That is, nothing special happens at lamina boundaries because 
the moisture diffusion occurs through the matrix phase of the composite 
material and is thus unaffected by fiber orientation in each lamina. The 
moisture through-the-thickness profiles for a T300-5208 [O/ + 45/ - 45Js 
laminate are shown for 5, 25, 50, and 250 hr, where the latter curve 
nearly represents moisture saturation (after 1 1/2 weeks). Obviously, 
moisture diffusion is quite slow, but also the moisture content is quite 
variable through the thickness. Naturally, with such a nonlinear time
dependent moisture distribution, the solution for stresses is complicated 
[4-8]. For moisture-saturated laminates, the solution is no more complex 
than the thermal effects found in the following subsections. 
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Figure 4-38 Possible Moisture Profiles through the Laminate Thickness 
(Adapted from Pipes, Vinson, and Chou [4-8]) 

4.5.5 Strength of Cross-Ply Laminates 

The procedure of laminate strength analysis outlined in Section 
4.5.2, with the Tsai-Hill lamina failure criterion will be illustrated for 
cross-ply laminates that have been cured at a temperature above their 
service or operating temperature in the manner of Tsai [4-10]. Thus, the 
thermal effects discussed in Section 4.5.3 must be considered as well. 
For cross-ply laminates, the transformations of lamina properties are 
trivial, so the laminate strength-analysis procedure is readily interpreted. 

The particular cross-ply laminate to be examined [4-10] has three 
layers, so is symmetric about its middle surface. Thus, no coupling exists 
between bending and extension. Under the condition Nx = N and all 
other loads and moments are zero, the stresses in the (symmetric) outer 
layers are identical. One outer layer is called the 1-layer and has fibers 
in the x-direction (see Figure 4-39). The inner layer is called the 2-layer 
and has fibers in the y-direction. The other outer layer is the 3-layer, but 
because of symmetry there is no need to refer to it. The cross-ply :l}atio, · 
M, is .2, so the thickness of the inner layer is ten times that of each of 
the outer layers (actually, the inner 'layer' is ten like-oriented lami ae . 
Each lamina is .005 in (.1270 mm) thick, so the total laminate thickness 
is .060 in (1.524 mm). 
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Figure 4-39 Unbonded View of 
a Three-Layered M = .2 Cross-Ply Laminate under Tensile Loading 

The properties of the example E-glass-epoxy lamina are 

E
1 

= 7 .8 x 106 psi (53.78 GP a) Xi= Xe= 150 ksi (1035 MPa) 

E2 = 2.6 x 106 psi (17.93 GPa) yt = 4 ksi (27.6 MPa) 

v12 = .25 Yc=20 ksi (138 MPa) (4.112) 

S=6 ksi (41.4 MPa) G12 = 1.25 x 10
6 

psi (8.62 GPa) 

CX1 = 3.5 X 10-6/°F (6.3 X 10-6/°C) ~ = 11.4 X 10-61°F (20.52 X 10-6/°C) 

where the number of significant figures for the SI units exceeds reason
able engineering practice in order to accurately co~vert U.S. Stan?a~d 
results to SI results throughout this example. The highest modu_lus ~s ~n 
the fiber direction, and the highest coefficient of thermal e~pans1on 1s m 
the direction perpendicular to the fibers. Moreover, ~II stiffnesses are 
regarded as the same in tension as in compression, although the 
strengths perpendicular to the fibers are different. 

Pre-failure Deformation 

Prior to any failure, the lamina reduced stiffnesses are 

aw= a~= 7.9660 x 10
6 

psi (54.92 GPa) 

aW =a\~= .6638 x 10
6 

psi (4.578 GPa) 

a~1 = 0~2/ = 2.6550 x 10
6 

psi (18.31 GPa) 

a~ = a: = 1.250 x 106 psi (8.620 GPa) 

0 (1) -0{2) - 0(1) - 0(2) - 0 
16 - 16 - 26 - 26 -

(4.113) 
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and the apparent coefficients of thermal expansion are 

~
1

> = r{2
> = 3.5 X 10-6/°F (6.3 X 10-6/°C) 

<{1> =~
2

) = 11.4 X 10-6/°F (20.52 X 10-6/°C) 

~=~=0 

The laminate extensional stiffnesses are 

A11 = .21243 x 10
6 

lb/in (.037207 GN/m) 

A12 = .03983 x 10
6 

lb/in (.0069767 GN/m) 
6 

A22 = .42485 x 1 O lb/in (.074405 GN/m) 

Aee = .07500 x 10
6 

lb/in (.013137 GN/m) 

The inverse extensional stiffnesses are 

A; 1 = 4.7918 x 10-6/(lb/in) [.27358 x 10-7/(N/m)] 
I -6 7 

A12 =-.44923x10 /(lb/in) [-.025653x10- /(Nim)] 

A~= 2.3959 x 10-6/(lb/in) [.13680 x 10-7/(N/m)] 
I -6 7 

A66 = 13.333 x 10 /(lb/in) [.76122 x 10- /(N/m)] 

(4.114) 

(4.115) 

(4.116) 

Thus, all numbers are in hand for calculation of the stresses in the ex
ample cross-ply laminate . 

. Consi?er a constant temperature of the laminate different from, and 
relative to, rts stress-free curing temperature. Then, the thermal forces 
are, from Equation (4.105), 

N!=33.1 tATpsi/°F {.41049tATMPa/°C) 

N; = 35.0 t AT psi/°F {.43407 t AT MPa/°C) 

NT -O xy-

(4.117) 

and the thermal moments, from Equation (4.107), are zero. 
B~ means of_ rather involved successive substitutions of Equation 

(4.108) rn (4.111 ), rn (4.13), and finally in (4.103), the stresses in the in
ner and outer layers can be shown to be 

(1) Nx [ N ] crx = 2.27 -t-+ 35.5AT psV°F 2.27 --f + .4409AT MPa/°C 

(1) Nx [ N ] cry = .12-t--16.0AT psi/°F .12--f-.19nAT MPa/°C 

't(1) - 0 
xy-
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cr~
2

) = .75 ~x - 7.1AT psi/°F [.75 ~x - .08819AT MPa/°C] 

crt2> = -.024 ~x + 3.U T psi/°F [ -.024 ~x + .03954AT MPa/°C J (4.119) 

-c'2) - 0 
xy -

The stresses have now been determined as a linear function of the ap
plied loads, Nx and AT. Note that the laminae stresses have been ex
pressed as a function of the average laminate stress, Nxft. The laminate 
stresses are different from one another because of different fiber orien
tation in each lamina. One plot of a hypothetical laminate stress distrib
ution is shown in Figure 4-5. A simpler plot for a three-layered regular 
cross-ply laminate under Nx is shown in Figure 4-40. There, it is obvious 
that the laminae stresses must be quite different from one another. The 
concept of an average laminate stress has some merit as an indicator 
of normalized laminate load. However, be very careful in interpreting the 
average laminate stress because it is merely a calculated norm, and, as 
is apparent in Figure 4-40, the average laminate stress need not exist in 
any layer/ Nevertheless, the average laminate stress is used in this 
analysis and the following analysis for angle-ply laminates. 

• AVERAGE LAMINATE STRESS 

N 
CT.. =_...!. 

X t 

Figure 4-40 Average Laminate Stress 

Application of the Lamina Failure Criterion 

The failure criterion must be applied to determine the maximum 
values of Nx and AT that can be sustained without failure of any layer. 
Actually, the failure criterion is applied to each layer separately. For the 
special orientation of cross-ply laminates, the Tsai-Hill failure criterion for 
each layer can be expressed as 
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2 2 2 [ i ] -(J;;y + [ ~ ] + [ ; ] = 1 

In the outer layer, because 'txy = 0, the criterion simplifies to 

(4.120) 

crx - crxcry + y cry = X (4.121) 
2 [ X ]

2 
2 2 

from which, upon substitution of the stresses results a quadratic 
equation with solution ' 

N ,~ T = 110LiT psi/°F + [57.5v2- 3000Lir2(psi/°F,2] 

• .2 1/2 (4.122) 
= 1.365LiT MPa/°C + [57.5Y- - .4621Lir2(MPa/°C)2] 

If the curing temperature is 270°F (132°C) and the laminate operates at 
70°F (21 °C) (room temperature), Li T = -200°F ( -111 °C), so 

N -f = 6300 psi (43.37 MPa) (4.123) 

Alternatively, if the laminate is cured at room temperature, LiT = o, so 

Nx 
-t-=30,400 psi (209.3 MPa) (4.124) 

In the inner layer, a similar set of steps yields 
N 

-f=9.6LiTpsi/°F+5320 psi (.1191LiTMPa/°C+36.68 MPa) (4.125) 

so if the laminate is cured at 270°F (132°C) and used at 70°F (21 °C), 
N -f =3400 psi (23.44 MPa) (4.126) 

or if cured and used at 70°F (21 °C), 

N -f = 5320 psi (36.68 MPa) (4.127) 

O~vi_ously, if the _lam_inate is c~red at 270°F (132°C), the inne.r layer will 
fail first by cracking in the y-drrection because of the large a<~J reaching 
Y1. Why are there cracks between all the indicated fibers in xthe middle 
(90°) layer in Figure 4-41? The applied or induced stress level has 
re.ached the inherent strength of the middle layer, so we would expect the 
~1ddle layer to. break in one place if it were only a single lamina sub
iected to the failure stress as in Chapter 2. However, the middle layer 
1s surrounded by and ~onded to, top and bottom, two load-carrying lay
ers. Those two layers impose stress (and strain) in the x-direction on the 
~iddl~ layer at 8:11 points in the middle layer along its length in the x
d1rect10~. '.hus, 1f o~e break occur~, then other positions in the middle J 
layer will still be_ ~ubJect~d to th~ fa1lurE; stress (or strain) and mustfilso/ 
fail. Those add1t1onal failures will continue until all x-direction positions 
are broken so that no load is carried in the x-direction in the middle layer. 

/i 
I 
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Figure 4-41 Unbonded View of 
a Three-Layered Cross-Ply Laminate with a Cracked Middle Layer 

Actually, the inner layer fails for both example curing temperatures, 
although the outer layer would fail first if the curing temperature were 
high enough. On the other hand, if the curing temperature were lowered, 
the laminate would exhibit higher strength. The values of N,!t for the two 
curing conditions are the values at failurE:: of ~he inner layer. !hose val
ues correspond to the point labeled N1 rn Figure 4-34, that 1s, the so
called 'knee' of the load-deformation diag_ram.. Up !o _the load 
corresponding to the knee, the load-deformation_ diagram 1s hnear and 
all layers are intact. The axial strain at the knee 1s 

~=A~ 1Nx=.098% (4.128) 

if the residual strains are ignored, that is, ~ is measured from zero load 
which is not the stress-free state. 

Behavior after the First Layer Fails 

After a layer fails, the behavior of the laminate depends on how the 
mechanical and thermal interactions between layers uncouple. Actually, 
failure of a layer might not mean that it can no _longer carry l?ad: In the 
present example of a cross-ply laminate, the rnne! lay~r with f1be~s at 
90° to the x-axis has 'failed', but, because of the orrentat1?n of the fibers 
(perpendicular to the main failure-causi~g stress), the failure shoul_d be 
only a series of cracks p~ral/e/ ~o the_ f1bE::rs. Th~s, ~tress can still be 
carried by the inner layer rn the fiber d1r~t1on (y-drrect1on). . . 

The degraded laminate then has stiffnesses b~sed on t~e orrgrnal 
properties of the outer layer and the following properties of the inner layer 

0~2{ = 0 0~ = 7.9660 x 10
6 

psi (54.92 GPa) (4.129) 

0~~=0 0~=0 

where the zeros are actually a very small number i~ order to avoi~ nu
merical difficulties in a computer analysis. The inverse extensional 
stiffness matrix of the laminate then has the values 
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A; 1 = .7542 x 10-6/(t psi) [ 109.4 x 10-6/(t MPa) J 
A; 2 = -.01178 x 10-6/(t psi) [ 1.7 x 10-6/(t MPa) J (4.130) 

A~2 = .1414 x 10-6/(t psi) [20.5 x 10-6/(t MPa) J 
Note that A22 is about the same as in the undegraded state. 

The resulting stresses are 

0'~
1
) = 6.00 ~x 

crt
1
>=.47 ~x -19.3.1ffpsi/°F [.47 ~x -.23953L\TMPa/°C] (4.131) 

't(1) = 0 
xy 

0'(2) = 0 
X 

cr~
2
) = -.09 ~x + 3.9£\ T psi/°F [ -.09 ~x + .04840£\T MPa/°C] (4.132) 

't(2) = 0 
xy 

Obviously, there is no thermal coupling in the x-direction, but the 
thermal coupling in the y-direction has increased from the undegraded 
state [compare Equations (4.118) and (4.119) with Equations (4.131) and 
(4.132)). The thermal coupling is so strong under the condition 
Nxlf = 3400 psi (23.44 MPa) and L\ T = -200°F ( -111 °C) that the outer 
layers fail by developing multiple cracks parallel to the fibers as in Figure 
4-42. T_his con~ention . ca_n be verified by substituting the resulting 
stresses m the failure criterion for the outer layer. Thus, as is indicated 
t~ be possible in the strength-analysis procedure of the right side of 
Figure 4-36, more than one lamina fails simultaneously, that is, at the 
same load. 

Figure 4-42 Unbonded View of a Three-Layered Cross-Ply Laminate . /) 
with All Layers Degraded (Cracked) / 
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Behavior after Degradation 

The laminate is now degraded to the point where the outer layers 
carry stress only in the x-direction and the inner !ayers can carry ~tress 
only in the y-direction. In both cases, the stress 1s parallel to the fibers. 
Thus the laminate is completely decoupled, both thermally and me
chanically. The only nonzero reduced stiffnesses are 

(1) (2) s · G ) 0 11 = 0 22 = 7 .9660 x 1 O psi (54.92 Pa 

and the associated laminate inverse extensional stiffnesses are 

A;1 = .7532 x 10-6/(t psi) [.010925/(t GPa)J 

(4.133) 

A; 2=0 (4.134) 

A~2 = .1506 x 10-6 /(t psi) [ .002185/(t G Pa)] 

Accordingly, the only lamina stress that develops is 
N 

0'~
1
>=6.0o+ (4.135) 

and the resulting laminate extensional stiffness in the x-direction above 
the 'knee' of the load-deformation curve is 

NJt = _1 _ = 1.3 x 106 psi (8.96 GPa) (4.136) 
~ A; 1t 

which is about one-third the undegraded stiffness. 

Maximum Laminate Load 

The stage is now set to determine the largest load the laminate can 
carry. Only the outer layers resist the loa9 N after the 'knee,' of the 
load-deformation curve. There, the stress m t~e outer layers 1s, from 
Equation (4.118), 

cr~1
) = 618 psi (4.26 MPa) (4.137) 

The largest possible value of crx under uniaxial conditions is 1 ~~ ksi 
(1035 MPa). Thus the outer layer can be stressed about an add1t1onal 
149.4 ksi (1030.7 MPa). The corresponding change in the force resultant 
is obtained from Equation (4.135) as 

AN Acr(1) 
T= 

6
_;

0 
= 149,400 psi/6 =24,900 psi (171.8 MPa) (4.138) 

When this change in force resultant is added to the force resultant at the 
'knee', the largest laminate average stress is determined to be 

Nx = 3400 psi+ 24,900 psi = 28,300 psi (194.5 MPa) 
t 

(4.139) 

which is reasonably close to the.measured IT)aximum load in Figure 4-43. 
Note that a 'knee' is observed m the expenments. Also, the results (!f 
another theory called Netting Analysis are shown in Figu~e 4-43; o~v1-
ously, that theory is incorrect for _fiber-re\nfo~ced m~tenals. _Netting 
analysis is premised on all load bemg earned m the f1~rs. so 1s more 
appropriate for woven fabrics because they have no matrix to carry loads. 
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Figure 4-43 Strength of a Cross-Ply Laminate with M = .2 (After Tsai [4-10)) 

Strength and Stiffness for Other Cross-Ply Ratios 

Theoretical and measured strengths and stiffnesses of three-layer 
?ro~s-ply laminates with cross-ply ratios ranging from .2 to 4 are shown 
in F1.gure 4-44. Th~ scatte~ in the data is partially due to the difficulty of 
making good tensile specimens; the characteristic dog-bone shape is 
formed by routing that often damages the 90° layer. 
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Figure 4-44 Strength of Cross-Ply Laminates 
{After Tsai, Adams, and Doner [4-11 ]) 
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The predicted strengths in Figure 4-44 are generally somewhat 
above the measured values. The predicted and observed stiffnesses, 
both initial (below the knee) and final, are in very good agreement. Thus, 
the stiffness aspects of classical lamination theory, as well as the present 
strength-analysis procedure, are verified . 

4.5.6 Strength of Angle-Ply Laminates 

Angle-ply laminates have more complicated stiffness matrices than 
cross-ply laminates because nontrivial coordinate transformations are 
involved. However, the behavior of simple angle-ply laminates (only one 
angle, i.e., ±ex) will be shown to be simpler than that of cross-ply lami
nates because no 'knee' results in the load-deformation diagram under 
uniaxial loading. Other than the preceding two differences, analysis of 
angle-ply laminates is conceptually the same as that of cross-ply lami
nates. 

The example considered to illustrate the strength-analysis proce
dure is a three-layered laminate with a [ +15°/-15°/ +15°) stacking se
quence [4-10). The laminae are the same E-glass-epoxy as in the 
cross-ply laminate example with thickness .005 in (.1270 mm), so that the 
total laminate thickness is .015 in (.381 mm). In laminate coordinates, 
the transformed reduced stiffnesses are 

~
11 = ~

2
{ = 7.342 X 10

6 
psi (50.68 GPa) 

~1 = ~~ = .932 X 10
6 

psi (6.428 GPa) 

~1 = Q~ = 2.743 x 10
6 

psi (18.91 GPa) 

~~=-~~=-1.129x10
6

psi (-7.781 GPa) 

~~ =-~~ =- .199 x 10
6 

psi (-1.372 GPa) 

~ = ~ = 1.518 x 10
6 

psi (10.47 GPa) 

and the apparent coefficients of thermal expansion are 

~
1> = ~ 2> = 4.029 X 10-6/°F (7.253 X 10-6/°C) 

~
1>= ~ 2)=10.871 x10-6!°F (19.57x10-6/°C) 

~ = -J;j = 1.975 X 10-6!°F (3.555 X 10-6/°C) 

(4.140) 

(4.141) 

The inverse extensional stiffness matrix can be shown to be 

9.603 -3.210 2.239 

A'= 25.41 .3148 X 10-6/(lb/in) (4.142) 

(symmetric) 44.48 
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or 

.05483 -.01832 .01278 

A'= .1450 .001797 x 10-6/(N/m) (4.142) 

(symmetric) .2539 

For a constant lamination temperature, 

N: = 37.5 t Lff psi/°F (.4655 t LiT MPa/°C) 

N; = 33.2 t Li T psi/°F (.4118 t Li T MPa/°C) (4.143) 

N~ = -1.24 t Li T psi/°F (.01535 t Li T MPa/°C) 

and the thermal moments are zero. When the laminate is subjected to 
Nx only, the stresses are 

cr~
1

) = .97 ~x - .44LiT psi/°F [.97 ~x - .00551LiT MPa/°C J 
cr~

1
)=-.005 ~x -.08LiTpsil°F [ -.005 ~x -.00097LiTMPa/°C ]<4.144) 

'C~ = -.10 ~x - 1. 79Li T psi/°F [ -.10 ~x - .0222Li T MPa/°C] 

cr~
2

) = 1.05 ~x + .89Li T psi/°F 

cr~
2

) = .01 ~x + .1 MT psi/°F 

'C':J = .20 ~x + 3.58Li T psi/°F 

[1.05 ~x -,.0110LiTMPa/°C] 

[.01 ~x - .00194LiT MPa/°C J 
[.20 ~x - .0445LiT MPa/°C] 

(4.145) 

Note that the stresses cry are very small in comparison to the shearing 
stresses. Thus, the Tsai-Hill lamina failure criterion can be simplified for 
this lamina to 

in which 

K1 = cos
4
0 + 624 cos20 sin

2
0 + 1406 sin40 

K2 = - (1244 cos
3
0 sin 0 + 4386 cos 0 sin30) 

~ = 625 cos 
4
0 + 4382 cos20 sin20 + 625 sin 40 

The values of K1 for 0 = -15° are 

(4.146) 

(4.147) 

K1 =46.20 

and for 0 = + 15° are 

K1 =46.20 
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~=363.91 K3 =821.00 (4.148) 

~=-363.91 (4.149) 

Thus, in the outer layer, the largest average laminate stress is 

N -+= 11.14LiT psi/°F + 37,400 psi (.1383LiT MPa/°C + 257.9 MPa) 
(4.150) 

so if the laminate is cured at 270°F (132°C) and used at 70°F (21 °C) 

N --f =35,170 psi (242.5 MPa) (4.151) 

Similarly, in the inner layer, 

N + = 52,600 psi (362. 7 MP a) (4.152) 

so the outer layer fails first and fails by fiber fracture, so no load or stress 
in any direction can be carried by the outer layer. Recall that actually 
there are two symmetric outer layers, so both fail totally and simultane
ously. Because the remaining inner layer cannot, by itself, withstand the 
laminate average stress of 35,170 psi (242.5 MPa), the inner layer fails 
immediately after the outer layers. Therefore, the maximum laminate 
average stress is 

N + = 35,170 psi (242.5 MPa) (4.153) 

and there is, as claimed, no knee in the load-deformation behavior. 
For other angle-ply lamination angles, similar predicted strengths 

were obtained and are shown along with experimental results in Figure 
4-45. The agreement between prediction and measurement is quite 
good. As further substantiation of the stiffness-prediction techniques in 
Section 4.4, theoretical and measured stiffnesses are plotted in Figure 
4-45 and are also seen to be in very good agreement. However, for 
lamination angles around 45°, the deformations at failure are, in general, 
several times the predicted deformations because of nonlinear stress
strain behavior. The nonlinear behavior is not unexpected because the 
large shearing stresses that are developed tend to deform the (nonlinear) 
matrix of the fiber-reinforced composite material more than they deform 
the fibers. Another interesting observation involves a comparison of the 
present angle-ply laminate data with the data for a unidirectional lamina 
at various orientations given in Figure 2-25 in Section 2.9. For angles 
larger than 0° but less than 45°, the angle-ply has up to about 50% higher 
strength than the unidirectional lamina. However, above 45°, the uni
directional lamina exhibits higher strength. These differences result from 
mechanical and thermal interactions between layers that do not occur in 
a lamina. 
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Figure 4-45 Strength of Angle-Ply Laminates (After Tsai [4-10]) 

4.5.7 Summary Remarks 

The strength of special classes of laminated fiber-reinforced com
posite materials has been analyzed on the basis of several hypotheses: 

• Linear elastic behavior to failure occurs for individual laminae. 
• The Kirchhoff hypothesis of linear strain variation through the 

laminate thickness applies (prior to degradation, if any; after de
gradation, linear only through the thickness of each lamina). 

• Strengths and stiffnesses of the laminae are the same in tension 
as in compression. 

• The Tsai-Hill criterion governs failure of a lamina (the strength
analysis procedure could, of course, involve another criterion). 

• Failure of a lamina might mean, for example, only lack of 
stiffness and strength perpendicular to the fibers with no degra
dation of lamina capability in the fiber direction. 

For cross-ply laminates, a 'knee' in the load-deformation curve oc
curs after the mechanical and thermal interactions between layers un
couple because of failure (which might be only degradation, not 
necessarily fracture) of a lamina. The mechanical interactions are 
caused by Poisson effects and/or shear-extension coupling. The thermal 
interactions are caused by different coefficients of thermal expansion in 
different layers because of different angular orientations of the layers 
(even though the orthotropic materials in each lamina are the same). 
The interactions are disrupted if the layers in a laminate separate. 

( 
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For angle-ply laminates, no such 'knee' or change in slope occurs 
in the load-deformation behavior. Simultaneous failure (fracture) of all 
layers occurs. 

For two- and three-layered cross-ply and angle-ply laminates of 
E-glass-epoxy, Tsai [4-10] tabulates all the stiffnesses, inverse 
stiffnesses, thermal forces and moments, etc. Results are obtained for 
various cross-ply ratios and lamination angles, as appropriate, from a 
short computer program that could be used for other materials. 

In the strength-analysis procedure discussed in this section, no 
account was taken of the possible increase in deflection that occurs when 
a layer fails. That is, if the laminate is simplistically represented by a set 
of springs in parallel (one spring represents one lamina) as in Figure 
4-46, then, when one spring breaks, the remaining springs must each 
have a higher load and hence a higher deflection. Accordingly, a hori
zontal jump (in strain or deflection) occurs in the load-deflection behavior 
of the laminate as depicted schematically in Figure 4-46. Such a step
wise load-deflection behavior has not been observed in experiments nor 
has it been analyzed, to the author's knowledge. The parallel-springs 
model for laminate failure in Figure 4-46 is far too simple to represent 
all pertinent events and conditions. For example, the loading conditions 
are not properly modeled in Figure 4-46. Loading in a loading frame 
could be either constant (prescribed) load or constant (prescribed) dis
placement on the loading head. Constant load would produce behavior 
in Figure 4-46, but constant displacement (such as in a screw-type 
loading frame) would produce a vertical jump (constant displacement) in 
the load-deformation behavior as in Figure 4-47. There, the postfailure 
loading slopes are identical, but the curves are offset from one another. 
In fact, the failures between fibers probably do not occur at precisely the 
same load. Thus, the actual load-deformation curve might be a series 
of small events (shifts down or to the right) spread over some range of 
load that merely tends to change the curve gradually. Available plots of 
measured load-deformation behavior do not resolve this question. Actual 
behavior in a real structure is probably neither prescribed load nor pre
scribed displacement, but something in between. 

Figure 4-46 Spring Analogy for Laminate Load-Deflection Behavior 
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Figure 4-47 Behavior upon First-Layer Failure 

Problem Set 4.5 

4.5.1 

4.5.2 

4.5.3 

4.5.4 

4.5.5 

Derive the thermoelastic stress-strain relations for an orthotropic lamina under plane 
stress, Equation (4.102), from the anisotropic thermoelastic stress-strain relations in 
three dimensions, Equation (4.101) [orfrom Equation (4.100)]. 
Derive expressions for a,., «xy, and a,.., In Equation (4.103) as a function of a 1, a:i, 
and 9. Verify that IXxy vanishes for lsofropic materials. What is IXxy for a bidirectional 
woven lamina with equal numbirs S-f fibers in each directions? 
Verify that the thermal forces Nx, Ny, and N!r for a three-layered cross-ply laminate 
with M = .2 are given bY, Equation (4.117). 
Verify that the stress crx1> for a three-layered cross-ply laminate with M = .2 is given 
by Equation (4.118). 
Verify that the lamina mechanical and thermal stresses in Equations (4.118) and 
( 4.119) for a three-layered cross-ply laminate with M = .2 satisfy the laminate equi
librium conditions. 

4.6 INTERLAMINAR STRESSES 

In classical lamination theory, no account is taken of stresses such 
as crz, 'tzx, and 'tzy which are shown on an element of an angle-ply lami
nate loaded witn Nx in Figure 4-48. These stresses are called 
interlaminar stresses and exist on surfaces between adjacent layers al
though they exist within the layers but are usually largest at the layer 
interfaces. Thus, in CLT, only the stresses in the plane of the laminate, 
crx, cry, and 'txy, are considered; that is, a plane-stress state is assumed 
to exist. Accordingly, classical lamination theory does not include some 
of the stresses that actually cause failure of a composite laminate. High 
interlaminar stresses are the basis for one of the failure mechanisms 
uniquely characteristic of composite laminates, namely, free-edge de
lamination and subsequent delamination growth as in Figure 4-49. 
There, the laminae could come apart in the z-direction as shown. They 
could also merely experience a crack between them and slide along the 
crack in either the x- or y-directions. See Section 6.5 for discussion of 
the opening, parallel-shear, and forward-shear modes of crack extension. 

\I 
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Figure 4-48 Symmetric Angle-Ply Laminate Geometry and Stresses 
(After Pipes and Pagano [4-12]) 

Figure 4-49 Free-Edge Delamination 

Moreover, classical lamination theory often implies values of cry and 'Cxy 
where they cannot possibly exist, namely at the edge of a laminate. 
Physical grounds will be used to establish that: 

• At the free edges of a laminate (sides of a laminate or holes), the 
interlaminar shearing stresses and/or interlaminar normal stress 
are very high (perhaps even singular) and would therefore cause 
the debonding that has been observed in such regions. 

• Layer stacking-sequence changes produce differences in tensile 
strength of a laminate even though the orientations of each layer 
do not change (in classical lamination theory, such changes have 
no effect on the extensional stiffnesses). Failures caused by 
interlaminar shear stresses, 'tzx and 'tzy, and/or interlaminar 
normal stress, crz, changes near the laminate boundaries are 
believed to provide the answer to such strength differences. 
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In this section, first, the interlaminar stress in the simple case of the 
fre~ edges _of an angle-ply laminate will be identified. Then, the concept 
of interlam1~ar stress~~ wi_ll be described with an elasticity approach. 
Ne~. expe~1mental venf1cat1on of the theory is offered. Then, a cross-ply 
lam1_nate w1!I be a~alyzed'. followed by a mixed-angle laminate. Finally, 
!he interaction of interlaminar stresses and stacking sequence and their 
influence on laminate strength will be examined along with some sug
gestions for how to suppress free-edge delamination. 

4.6.1 Classical Lamination Theory 

Consider a~ angle-ply laminate composed of orthotropic laminae 
that are symmetrically arranged about the middle surface as shown in 
Figure 4-48. Be_cause of t~e symmetry of both material properties and 
geometry, there 1s no coupling between bending and extension. That is 
~he lamin~te i_n Figure 4-48 can be subjected to Nx and will only extend 
in the x-direct1on and contract in they- and z-directions, but will not bend. 

The analysis of such a laminate by use of classical lamination the
ory _revolves about the stress-strain relations of an individual orthotropic 
lamina under a state of plane stress in principal material directions 

[

cr1 ]- 011 0
12 

0 

cr2 - 012 022 0 

't12 0 0 055 Y~2 
k k 

(4.154) 

which can be transformed to the laminate axes by use of Equation (2.85): 

[

:'t:x l = 011 012 015 
V 012 022 026 e; 

015 026 066 y~ 
k k 

(4.155) 

The extensional stiffnesses of the laminate are then 

(4.156) 

[:} (4.157) 

0 

The membrane strain state is 

( 
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o A22Nx o - A12Nx 
£ = £.. = (4.158) 

x A A A2 y A A -A2 
11 22- 12 11 22 12 

There is no overall shearing (y°xy) of the laminate. However, there is 
shearing strain in the principal material coordinates of each lamina in 
addition to normal strains as is proved by use of Equation (2.75): 

2 A12 2 
cos e-Asin e 

22 

2 A12 2 sin e---cos e 
A22 

(4.159) 

k 
- 2 cos e sin e[ 1 + ::: ] 

k 

We examine a buildup of two laminae to construct a two-layered 
angle-ply laminate in order to study the stress implications of classical 
lamination theory. First, we subject two unbonded laminae with fibers 
at + a and - a, respectively, to the same crx· The two separate laminae 
must deform into two oppositely oriented parallelograms as shown in 
Figure 4-50. To prepare those two laminae to be bonded to form a 
laminate (without shear deformation), equal and opposite shear stresses, 
'txy, must be applied to the laminae to return them to rectangular shape 
to form a deformation-compatible laminate. The two laminae, shown in 
pictorial view in Figure 4-50, have shearing stresses along the free 
edges! Those shearing stresses, although in equilibrium for the laminate 
as a whole, simply cannot exist on any free edge. Thus, classical lami
nation theory (CL T) has an inherent contradiction of obvious stress 
boundary conditions on each layer. 

LAMINAE 
UNDER 

TENSION 

t t t LAMINAE t t t 
-- UNDER - -

t~+ TENSION +~t 
t + AND SHEAR + t 
t + (NO SHEAR + t 

...-.-. DEFORMATION) r rt 

DEFORMATION-COMPATIBLE LAMINATE 

WITH STRESSES FROM CLT 

Figure 4-50 CL T Approach to Analysis of a Two-Layered Angle-Ply Laminate 
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Alternatively, consider the free-body diagram of half of the top layer 
of the four-layered angle-ply laminate in Figure 4-51. There, the left-hand 
side in the x-z plane is far from a free edge, so can have -c as predicted 
with classical lamination theory. In contrast, at the free edge, as in Fig
ure 4-51, t cannot exist on face ABCD. That is, ABCD must be 
stress-free b1cause it is a free edge. Moreover, txy on the front and back 
faces must go to zero at AB and CD. To achieve torce equilibrium in the 
x-direction, we must identify a stress that could replace the action of the 
~tress 'Cxy that cann_ot exist on face ABCD. The only possible such stress 
1s txz that must exist on the bottom of the top-layer free-body diagram. 
For moment equilibrium about a vertical axis, 'txz must be quite high be
cause it exists only near the free edge. Although we know the stress 
(t;iq) we are looking for and that it is high, we cannot determine how high 
w1tnout appealing to elasticity theory in the next subsection. 

z 

t 
z 

t 

A 

Figure 4-51 Free-Body Diagram for an Angle-Ply Laminate 

4.6.2 Elasticity Formulation 

Rather than a plane-stress state, a three-dimensional stress state 
is considered in the elasticity approach of Pipes and Pagano [4-12] to the 
problem of Section 4.6.1. The stress-strain relations for each orthotropic 
layer in principal material directions are 

0"1 C11 C12 C13 0 0 0 £1 

0"2 C12 C22 C23 0 0 0 £2 

0"3 C13 C23 C33 0 0 0 ~ 
= (4.160) 

'C23 0 0 0 C44 0 0 Y23 

'C31 0 0 0 0 Css 0 Y31 

'C12 0 0 0 0 0 c66 Y12 
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and can, upon transformation of coordinates in the 1-2 plane, be ex
pressed in laminate coordinates as 

O"x C11 C12 C13 0 0 c16 Ex 

O"y C12 C22 C23 0 0 C25 Ey 

O"z C13 C23 C33 0 0 C35 Ez 
(4.161) 

'Cyz 0 0 0 C« C4s 0 Yyz 

'Czx 0 0 0 C45 C55 0 Yzx 

'Cxy C15 C26 C35 0 0 C55 Yxy 

The strain-displacement relations are 

Ex= U,x Ey = V,y Ez = W,z 
(4.162) 

Yyz = V,z + w,y Yzx = w,x + u,z Yxy = U,y + v,x 

where a comma denotes partial differentiation of the principal symbol with 
respect to the subscript. 

If the laminate is subjected to uniform axial extension on the ends 
x = constant, then all stresses are independent of x. The stress-displace
ment relations are obtained by substituting the strain-displacement re
lations, Equation (4.162), in the stress-strain relations, Equation (4.161 ). 
Next, the stress-displacement relations can be integrated under the 
condition that all stresses are functions of y and z only to obtain, after 
imposing symmetry and antisymmetry conditions, the form of the dis
placement field for the present problem: 

u = Kx + U(y,z) v = V(y,z) w = W(y,z) (4.163) 

The stress-equilibrium equations then reduce to 

'Cxy,y + 'Czx,z = 0 

O"y,y + \z,z = 0 (4.164) 

'tyz,y + O"z,z = 0 

Upon substitution of the displacement field, Equation (4.163), in the 
stress-displacement relations and subsequently in the stress-equilibrium 
differential equations, Equation (4.164), the displacement-equilibrium 
equations are, for each layer, 

CssU,yy+ C55U,zz + C25V,yy+ C45V,zz + (C35 + C45)W,yz = 0 

C26U,yy + C45U,
22 

+ C22 V,yy + C44 V,22 + (C23 + C44)W,yz = 0 (4.165) 

(C45 + C36)U,yz + (C44 + C23)V,yz + C44W,yy + C33W,22 = 0 
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These coupled second-order partial differential equations do not have a 
closed-form solution. Accordingly, the approximate numerical technique 
of finite differences is employed. First, however, the boundary conditions 
must be prescribed in order to complete the formulation of the problem. 
Symmetry of the laminate about several planes permits reduction of the 
region of consideration to a quarter of the laminate cross section in the 
y-z plane at any value of x as shown in Figure 4-52. There, along the 
stress-free upper surface, 

'txz = 0 

along the stress-free outer edge, 

't = 0 xy cr =0 y 

't =0 yz 

't = 0 yz 

(4.166) 

(4.167) 

along the middle surface, z = 0, because U and V must be symmetric and 
W antisymmetric, 

U,z(y,O) =0 V,2 (y,O) = 0 W(y,O) =0 (4.168) 

and along the line y = 0, because U and V must be antisymmetric and 
W symmetric, 

U(O,z) = 0 

ho { W SYMMETRIC 
U AND V 

ANTISYMMETRIC 
ho 

U=V=W=O/ 

V(O,z) =0 

~~ 

._~ 
T T 1 T 1 I I 

: "[""LAYER INTERFACE 

U AND V SYMMETRIC 
W ANTISYMMETRIC 

b 

l 'txy = 0 

cry= O 

'tyz= 0 

-y 

(4.169) 

Figure 4-52 Finite Difference Representation and Boundary Conditions 
(After Pipes and Pagano [4-12]) 

At the corner (b, 2h0 ) of the region, five stress conditions apparently 
govern the behavior. However, the problem would be overspecified if 
all five conditions were imposed at the same time. Rather, three are 
specified and, subsequently, the remaining two are seen to be auto
matically satisfied thereby acting as a built-in verification of the numerical 
results. Numerical experimentation revealed that the choice of the three 
conditions is immaterial; the remaining two are always satisfied. 

The numerical solution, as mentioned earlier, was obtained by the 
finite difference method. The two regions (layers) indicated in Figure 
4-52 are represented with a series of regularly spaced material points 
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as shown. At each point, the differential equations are approximated by 
finite difference operators (central difference operators inside the region 
with forward and backward difference operators being used at the 
boundaries). At the interface between layers, the continuity conditions 
for U, V, W, cr

2
, 'txz, and 'tyz are app~oximately satisfied by locating ma

terial points symmetrically about the interface. 
The resulting finite difference equations constitute a set of nonho

mogeneous linear algebraic equations. Because there are three de
pendent variables, the number of equations in the set is three Jime~ the 
number of material points. Obviously, if a large number of points 1s re
quired to accurately represent the continuous elastic body, a computer 
is essential. 

4.6.3 Elasticity Solution Results 

For a high-modulus graphite-epoxy composite materia1
3 

with 

E1 = 20.0 x 106 psi (138 GPa) G12 = G23 = G31 = .85 x 10
6 

psi (5.9 GPa) 

E2 = E3 = 2.1 x 106 psi (14.5 GPa) v12 = v23 = v31 = .21 (4.17
o) 

in a laminate with b = 8h 0 (width is four times the thickness), distributions 
of the stresses crx, 'txy, and 'txz at the interface betw~en la~ers (z = _ho) 
are shown in Figure 4-53. There, the stresses predicted with classical 
lamination theory are obtained in the central portion of the cross section. 
However, as the free edge is approached, crx decreases, 'txy ~a.es to 
zero, and, most significantly, 'txz increases from zero to infinity (a 
singularity exists at y = ± b). By use of other laminate geometries, the 
width of the region in which the stresses differ from those of classical 
lamination theory has been shown to be about the thickness of the lam
inate, 4h

0
• Thus, the deviation from classical lamination theory can be 

regarded as a boundary layer or edge effect. One laminate thickn~ss 
away from the edge, classical lamination theory is expected to be valid. 

The interlaminar shear stress, 'txz, has a distribution through half 
the cross-section thickness shown as several profiles at various dis
tances from the middle of the laminate in Figure 4-54. Stress values that 
have been extrapolated from the numerical data at material points are 
shown with dashed lines. The value of 'txz is zero at the upper surface 
of the laminate and at the middle surface. The maximum value for any 
profile always occurs at the interface between the top two layers. The 
largest value of 'txz occurs, of course, at the intersection of ~he fre~ edge 
with the interface between layers and appears to be a s1ngulanty, al
though such a contention cannot be proved by use of a numerical tech-
nique. 

3Note that these example material properties are not realistic (i.e., not physically possible) 
because the reciprocal relation is not satisfied for v23 or v31 and because G23 must be less 
than G12 and G31-
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Figure 4-53 Stresses at the Interface (After Pipes and Pagano [4-12]) 
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Figure 4-54 lnterlaminar Shear Stress Distribution through 
the Laminate Thickness (After Pipes and Pagano [4-12]) 
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4.6.4 Experimental Confirmation of lnterlamlnar Stresses 

Pipes and Daniel [4-13] performed experiments to confirm Pipes 
and Pagano's solution for interlaminar stresses. They used the Moire 
technique to examine the surface displacements of the symmetric 
angle-ply laminate under axial extension of Section 4.6.1. The Moire 
technique depends on an optical phenomenon of fringes caused by dis
placement of two sets of arrays of lines relative to one another (see Post, 
Han, and lfju [4-14]). One array is placed on the deformable specimen 
and the other nearby as a fixed reference. A laser beam is directed on 
the two arrays to produce the fringes. A fringe is the locus of points with 
the same component of displacement normal to the direction of the array 
lines. The number of fringes is proportional to the surface displacement. 
That one array is on the surface of the specimen is evidence that only 
surface displacements can be measured (we cannot put an array below 
the surface and also see it!). These fringes can be crudely observed in 
principle by putting two pieces of screen-door wire close to one another, 
shining a flashlight through the parallel screens, and slightly moving one 
screen, but keeping the other screen fixed in space. 

At various load levels on long, flat graphite-epoxy specimens, Moire 
fringes were photographed on the top surface of the upper angle-ply 
lamina. That lamina is one lamina thickness away from the interlaminar 
plane where both laminae must be a rectangle. The farther away from 
that interlaminar plane, the more the top lamina tends to deform into a 
parallelogram, as typified by the left half of Figure 4-55. On the right half 
of Figure 4-55 is shown a schematic representation of the S-shaped 
Moire fringes. The axial displacements determined by a more accurate 
Moire fringe analysis are shown along with the elasticity solution of Pipes 
and Pagano in Figure 4-56. If an orthotropic lamina is loaded off-axis 
with a tensile stress, then shear-extension coupling exists, leading to an 
originally rectangular shape both elongating and shearing into a 
parallelogram. That shape is the natural shape toward which even a 
lamina in a laminate is tending as we observe the behavior as we go 
away from the interface between the two top layers (±ex layers that must 
be a rectangle at their interface). Thus, a line drawn horizontally across 
the specimen in Figure 4-55 before loading tends to deform into a diag
onal line indicating shear deformation. However, the influence in the top 
layer of the shear stress 'txz, which is high at the free edge and quickly 
decreases in the direction away from the edge and in the direction toward 
the top surface, is to deform the diagonal line more at the free edge than 
as the middle of the laminate is approached. Thus, the predicted surface 
deformation is the somewhat S-shaped divergence from a straight line. 
That predicted divergence is plotted with the measured deformation in 
Figure 4-56 where we see excellent agreement. Thus, the physical ex
istence of interlaminar stresses has been clearly demonstrated. 
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Figure 4-55 Moire Fringe Patt (.' Aft • 
em ,., er Pipes and Daniel [4-13]) 
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Figure 4-56 Axial Displacement Distributi . 
(After Pipes and Daniel [4-1~) at the Laminate Surface, z = 2ho 
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4.6.5 lnterlaminar Stresses in Cross-Ply Laminates 

Consider the free-body diagram of half of the top layer of a 
[90°/0°]8 cross-ply laminate in Figure 4-57. There, cr , which we showed 
in Section 4.1 must exist from classical lamination t~eory (because of a 
mismatch in moduli and Poisson's ratios between the 0° and 90° layers 
in laminate coordinates), can exist on the left-hand side of the free body. 
However, the free-body diagram has free edge ABCD as its right 
boundary, so cry cannot exist on ABCD. To satisfy force equilibrium in 
the y-direction, the only stress with a component in the y-direction is 
'tyi· Moreover, 'tyz must exist on the bottom of the top layer near the free 
eage (because t_ can exist on the left-hand side of any free-body dia
gram of part of tWe right half of the top layer). For moment equilibrium 
about the x-axis, a couple with clockwise orientation must be provided to 
equilibrate the moment of cry on the left-hand face. The only stress that 
can provide such a moment is cr2 • However, cr2 is subject to the z
direction force-equilibrium requirement of no force resultant. A distrib
ution of cr2 that satisfies those two requirements is hypothesized by 
Pagano and Pipes to be as shown in Figure 4-58 [4-15]. Note that cr 
goes to zero in the region where classical lamination theory applies and 
perhaps to infinity at the free edge. High tensile values of crf would ob
viously cause free-edge delamination as could high values o 'tyz. 
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Figure 4-57 Free-Body Diagram for Cross-Ply Laminate 
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Figure 4-58 lnterlaminar Normal Stress (After Pagano and Pipes [4-15)) 
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4.6.6 Implications of lnterlamlnar Stresses 

The existence of interlaminar stresses means that laminated com
posite materials can delaminate near free edges whether they be at the 
edge of a plate, around a hole, or at the ends of a tubular configuration 
used to obtain material properties. In all cases, delamination could cause 
premature failure so must be considered in specimen design because 
otherwise the specimen does not represent the true physical situation. 

That the interlaminar stresses are affected by the laminate stacking 
sequence (arrangement of laminae, e.g., [ +45 I -45 I+ 15 I -15]s versus 
[ + 15 I -15 I +45 I -45]s) is significant to design analysts. Pagano and 
Pipes [4-15] hypothesized that the interlaminar normal stress, O'z, can be 
changed from tension to compression by changing the stacking se
quence. Their work was motivated by observations of Foye and Baker 
[4-16] of fatigue strengths differing by about 25,000 psi (173 MPa) for 
[ ± 15° I ± 45°]8 angle-ply laminates when the positions of the ± 15° 
laminae and the ± 45° laminae were reversed. Other data on static 
strength reveal qualitatively similar differences. However, classical lam
ination theory extensional stiffnesses and stresses are entirely unaffected 
by stacking sequence (bending stresses are excluded from the dis
cussion because there is no coupling between bending and extension 
because middle-surface symmetry exists). Foye and Baker observed 
progressive delamination as the failure mode in fatigue. The contention 
of Pagano and Pipes that the interlaminar normal stress, O'z, is respon
sible for delamination seems quite reasonable because of the following 
analysis. 

Consider the free-body diagram of a symmetric eight-layered lami
nate cross section in Figure 4-59. The laminate is subjected to load in 
the x-direction as in Figure 4-48. In the free-body diagram, a tensile O'y 
in the 15° layer implies a tensile CJ~ at the free edge; the converse holds 
for a compressive O'y· The interlaminar normal stress, CJ2 , is hypothesized 
by Pagano and Pipes to exhibit the distribution shown in Figure 4-58 
[4-15]. Note that O'z goes to zero in the region where classical lamination 
theory applies and perhaps to infinity at the free edge. The distribution 
of O'z is, of course, self-equilibrating. If the 45° layers were placed on the 
outside of the laminate, a compressive O'y would be predicted with clas
sical lamination theory; thus, O'z would be compressive and the laminate 
would not tend to delaminate. 

Accordingly, Pagano and Pipes reasoned that CJ2 is distributed 
through the thickness as shown in Figure 4-60 for two stacking se
quences, [15°/-15°/45°/-45°]s and [15°/45°/-45°/-15°]8 [4-15]. Obvi
ously, the latter sequence should have a greater strength than the former 
sequence because of less tendency to delaminate. The sequence 
[45°/ -45°/15°/ -15°]s should, by similar reasoning, lead to compressive 
stresses that are the mirror images of the tensile stresses of the 
[15°/ -15°/45°/ -45°]8 laminate and be much stronger .. The interlaminar 
shear stresses in the two cases can be shown to be essentially the same 
if not identical. Thus, the only logical conclusion to be drawn is that the 
interlaminar normal stress, O'z, must be the key to the success of this type 
of laminate. 
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Figure 4-60 Distribution of lnterlaminar Normal Stress . 
in Boundary-Layer Region vs. z (After Pagano and Pipes [4-15)) 

In summary, three classes of interlaminar stress problems exist: 

(1) [ ± e] laminates exhibit only shear-extension coupling (no Pois
son mismatch between layers), so 'txz is the only nonzero 
interlaminar stress. 

(2) [0°/90°] laminates exhibit only a Poisson mismatch between 
layers (no shear-extension coupling), so 'tyz and O'z are the only 
nonzero interlaminar stresses. . 

(3) combinations of the above, for example, [ ± 01' ± 0~ la~mates, 
exhibit both shear-extension coupling and Poisson mismatch 
between layers, so have 'txz, 'tyz, and O'z interlaminar stresses. 
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The significance of interlaminar stresses relative to laminate 
~tiffness, strength, and life is determined by Classical Lamination Theory, 
1.e., CLT stresses are accurate over most of the laminate except in a very 
narrow boundary layer near the free edges. Thus, laminate stiffnesses 
are affected by global, not local, stresses, so laminate stiffnesses are 
essentially unaffected by interlaminar stresses. On the other hand the 
details of locally high stresses dominate the failure process whe

1

reas 
lower global stresses are unimportant. Thus, laminate strength and life 
are dominated by interlaminar stresses. 

4.6. 7 Free-Edge Delamination-Suppression Concepts 

. Pa~sive free-e~ge delamination-suppression concepts are essen-
tially laminate stacking-sequence changes. The laminate stacking se
qu~nce ca~ sometimes be rearranged to reduce the delaminating effect 
of interlaminar stresses. For example, laminae of like orientation angle 
(whether + 0 or - O) should be separated and dispersed, i.e., use 
[15/45/ -45/ -15]8 , not [45/ -45/15/ -15]8 . In general, avoid thick or ef
!ectiv~ly thick l~minae, i.e., use [45/ -45/45/ -45Js, not [452" -45

2
]
5

• Note 
if laminae are interchanged in the stacking sequence that the A- are un-
affected whereas the Dii are highly affected. '1 

Active delamination-suppression concepts include edge reinforce
ment and edge modification. Edge reinforcement is a strengthening of 
the fre~ ed~e such as edge caps, stitching, or interleaved adhesive lay
ers a~ in F1g~re 4-61. Edge caps and stitching are capable of resisting 
both 1~terlc:Jn1nar normal and shear stresses. In contrast, interleaved 
adhes1v~ layers ca~not resist interlaminar normal stress any better than 
an unreinforced laminate, but do resist interlaminar shear stresses better. 

• EDGE REINFORCEMENT 

EDGE CAP 

• EDGE MODIFICATION 

PLY TERMINATION 

STITCHING 

NOTCHING 

INTERLEAVED 
ADHESIVE LAYERS 

TAPERING 

Figure 4-61 Free-Edge Delamination-Suppression Concepts 
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Edge modification is a change in the nature of the free edge that does 
not involve reinforcement with examples of ply termination, notching, and 
tapering also shown in Figure 4-61. Ply termination is a way of changing 
from a stacking sequence that would perform poorly at the free edge to 
a stacking sequence that is not highly affected by interlaminar stresses. 
Notching, although not an obvious aid, nevertheless 'confuses' the stress 
field near the free edge enough to reduce the delamination effect. 
Finally, tapering is a method of gradually changing from an unfavorable 
laminate to a favorable laminate as the free edpe is approached. An 
overview of the effectiveness of these delamin;ltion-suppression con
cepts is given by Jones [4-17]. 

Problem Set 4.6 

4.6.1 

4.6.2 

Demonstrate that use of classical lamination theory leads to 
(1 t 6 e; = 2.96 x 10

6 
psi (20.4 GPa) :: = 1.15 x 1 O psi (7.93 GPa) 

as stresses in each layer of the four-layered graphite-epoxy angle-ply laminate dis
cussed in Section 4.6.3. Disregard the sign of txy. What is cry? 
Obtain the displacements 

u =- (C1z + C2)y + (C4y + C5z + C6)x + U(y,z) 
2 

C4X 
v = (C1z + C2)x - -

2
-+ V(y,z) 

Csx2 
w = -C1xy + C7x - -

2
-+ C8 + W(y,z) 

by Integration of the stress-displacement relations when the stresses are functions 
of y and z only. These displacements result before the various symmetry conditions 
are applied to obtain Equation (4.163). (Hint: see Timoshenko and Goodier [4-18)). 
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Chapter 5 

BENDING, BUCKLING, AND 
VIBRATION OF LAMINATED PLATES 

5.1 INTRODUCTION 

Laminated plates are one of the simplest and most widespread 
practical applications of composite laminates. Laminated beams are, of 
course, simpler. However, such essentially one-dimensional structural 
elements do not display well the unique two-dimensional capabilities and 
characteristics of composite laminates. 

The objective in this chapter is to demonstrate the effect of the 
various coupling stiffnesses (A16, A26, Bii• D16, and D26) on the bending, 
buckling, and vibration behavior of laminated plates. That is, the basic 
question of laminated plate analysis is: what is the response of laminated 
plates to bending, buckling, and vibration as in Figure 5-1? The study 
of these effects is the logical culmination of a course on the mechanics 
of fiber-reinforced composite materials. The objective does not include 
a complete study of laminated plate theory. Instead, some of the im
portant laminated plate theory results are examined so that the physical 
significance of the effects of the stiffnesses are appreciated. The theory 
of laminated plates with associated solution techniques is a very suitable 
topic for further study. A more complete cataloging and classification of 
laminated plate problems is found in books by Whitney [5-1], Vinson and 
Sierakowski [5-2], Vasiliev [5-3], and Reddy [5-4]. 

DEFLECTIONS = ? BUCKLING LOADS = ? VIBRATION MODES 
AND FREQUENCIES = ? 

Figure 5-1 Basic Questions of Laminated Plate Analysis 
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The theoretical considerations underlying the basic theory of lami
nated plates are discussed in Section 5.2. Then, the differential 
equations and associated boundary conditions governing the bending, 
b~ckling,. and. vibrat(on behavio: of laminated plates are displayed along 
with a bnef d1scuss1on of possible solution techniques. Next, solutions 
for the various laminate configurations described in Section 4.3 are dis
played in Sections 5.3 through 5.5 for bending, buckling, and vibration 
problems. 

A simply supported rectangular plate is used consistently in all 
sections to illustrate the kinds of results that can be obtained, i.e., the 
influence of the various stiffnesses on laminated plate behavior. In ad
dition, only the simplest types of loading will be studied in order to avoid 
the solution difficulties inherent to complex loadings. Accordingly, in the 
interest of simplicity, just the bare thread of laminated plate results will 
be displayed. 

Sp~cially orthotropic plates, i.e., plates with multiple specially 
orthotrop1c layers that are symmetric about the plate middle surface 
have, as has already been noted in Section 4.3, force and moment re
sultants in which there is no bending-extension coupling nor any shear
extension or bend-twist coupling, that is, 

:: ·[::: ~ : l : (5.1) 

Nxy O O A66 y~ 

:: . r::: ::: : ir~ l (5.2) 

Mxy O O D66 "Sey 

For plate problems, whether the specially orthotropic laminate has a 
single layer or multiple layers is essentially immaterial; the laminate need 
?nly be characterized by D11 , D12, D22, and D66 in Equation (5.2). That 
1s, because there is no bending-extension coupling, the force-strain re
lations, Equation (5.1 ), are not used in plate analysis for transverse 
loading causing only bending. However, note that force-strain relations 
are needed in shell analysis because of the differences between defor
mation characteristics of plates as opposed to shells. 

Often, because specially orthotropic laminates are virtually as easy 
to a~alyze a~ isotropi~ plates, other laminates are regarded as, or ap
proximated with, specially orthotropic laminates. This approximation will 
be studied by comparison of results for each type of laminate with and 
without the various stiffnesses that distinguish it from a specially 
orthotropic laminate. Specifically, the importance of the bend-twist cou
pling terms D16 and D26 will be examined for symmetrjc angle-ply lami
nates. Then, bending-extension coupling will be analXwd for antisym-

Bending, Buckling, and Vibration of Laminated L_ . .:s 279 

metric cross-ply and angle-ply laminates and compared with the specially 
orthotropic approximation in which the Bii are igno_red. Thes~ co~par
isons will be made successively for bending, buckling, and v1brat1on of 
simply supported plates in Section 5.3, 5.4, and 5.~. res~ectively. _Finally, 
the engineering significance of the various coupling stiffnesses 1s sum
marized in Section 5.6. 

5.2 GOVERNING EQUATIONS FOR BENDING, BUCKLING, AND 
VIBRATION OF LAMINATED PLATES 

5.2.1 Basic Restrictions, Assumptions, and Consequences 

Most of the restrictions and assumptions on which laminated plate 
theory is based have been utilized in Chapter 4. However, for com
pleteness, they will be reiterated here in a slightly differe.nt m~nner. The 
seemingly dual terminology of restrictions and ass.umpt1ons 1s. u~ed be
cause the terms have fundamentally different meanings. Restnct,ons are 
limitations on the use of the theory that are obviously either satisfied or 
they are not. Thus, restrictions are concerned with the known. For ex
ample, a theory for square plates does not apply to round plates. :4s
sumptions are limitations on the theory that have ~ nature of uncertainty 
to them. That is, assumptions are concerned with the unknown. For 
example, stresses perpendicular to the surface of a plate are commonly 
assumed to be small enough to be regarded as zero, or assumed to be 
zero· however we do not know for certain just how small the stresses 
are ~nless we' appeal to a more accurate theory. Also, displacements 
might be assumed to be small to enable certain approximations. ~ow
ever whether the displacements actually are small can be determined 
onl/when the final results are_ kno~n. In su~m.ary, ~he difference be
tween restrictions and assumptions 1s that restrictions involve the known 
and assumptions involve the unknown (about which we wi~h to _specu
late). Thus, we certainly do not 'assume a rectangular pla!e, but 1~s~ead 
we 'restrict our attention to rectangular plates'. The following restrictions 
and assumptions provide further opportunity to clarify the diff~rence be
tween the two classifications, but mainly to build a firm foundation fo~ the 
study of laminated plate theory. Recall from Chapter 3 that assu.mpt1ons 
in engineering must be justified, i.e., we must know why we believe the 
assumption to be true from a physical standpoint. . . 

The geometry, forces, and moments for a plate are shown in Fig
ures 5-2 5-3 and 5-4, respectively. Note in Figure 5-2 that the plate 
aspect r~tio, ~. is merely a common way of quantitatively describing the 
shape of a rectangular plate. Recall that Nx, NY' Nxy and Mx, My, Mxy 
are the forces and moments per unit width of the plate. New are the 
Kirchhoff shear forces K and K in Figure 5-3 as well as the distributed 
transverse loading, p(x,y). Rec~II that the laminate geometry is defined 
in Figure 4-8. 
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Figure 5-2 Plate Geometry and Displacements 

Figure 5-3 Plate Forces 

Figure 5-4 Plate Moments 

Restrictions 

• Each layer is orthotropic (but the principal material directions of 
~ach layer need not b~ aligned with the plate axes), linear elas
t1~, and of constant thickness (so the entire plate is of constant 
thickness). 

• T~e plate thickness is very small compared to its length and 
width (such a configuration is commonly called a thin plate al-
though the name plate itself implies such a geometry) ' 

• No body forces exist. · 

Assumptions 

• Stresses acting_ in the x-y plane (the plane of the plate) dominate 
the plate behavior. Then, cr2, 'txz• and 'tyz are assumed to be zero 
such t~at an approximate state of plane sires. s is said to exist 
(wherein only crx, cry, and 'txy are considered}.--
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• The Kirchhoff hypothesis of negligible transverse shear strains, 
'Yxz and 'Yyz• and negligible transverse normal strain, Ez, consti
tutes a statement of nondeformable normals to the middle sur
face although there is an inherent, but commonly ignored, conflict 
with the assumption of zero transverse normal stress, cr2 • (This 
hypothesis is relaxed in Section 6.6.) 

• Displacements u, v, and w are small compared to the plate 
thickness (generally, although not necessarily, indicative of 
small-deflection theory). 

• Strains, Ex, Ey, and Yxy, are small compared to unity (small-strain 
theory). 

• Rotatory inertia terms are negligible. 

Consequences 

z 

~ 
I 

) 

? 

• If transverse shear strains are ignored or are assumed to be 
zero, then transverse shear stresses are also zero throughout 
the plate by virtue of the stress-strain relations. On the other 
hand, even if nothing is said about the transverse shear strains, 
we still know that the transverse shear stresses are zero on both 
the upper and lower plate surfaces if there is no shear loading. 
Commonly, in classical plate theory, the transverse shear strains 
are regarded as zero, yet transverse shear stresses are calcu
lated from equilibrium considerations. Such procedures will be 
ignored in this book for the sake of simplicity in presenting only 
a demonstration of the effect of the various coupling stiffnesses. 

• By virtue of the Kirchhoff hypothesis, the remaining strains, 
Ex, Ev, and y~, as well as the displacements, u and v, are a linear 
function of tlie transverse coordinate z. Moreover, the stresses 
are accordingly a linear, but discontinuous, function of the 
transverse coordinate z. Both of these results are shown sche
matically in Figure 5-5. 

• As the restriction to thin plates is relaxed, i.e., as the plate be
comes thicker, the assumption of plane stress, 0 2 = 'txz = 'tyz = 0, 
becomes less accurate. 

1 

2 

3 

4 

LAMINATE STRAIN CHARACTERISTIC STRESS 
DISTRIBUTION MODULI DISTRIBUTION 

Figure 5-5 Stress and Strain Distribution through the Laminate Thickness 
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. Not7 Jhat no assumptions involve fiber-reinforced composite mate
rial~ explicitly. Instead, only the restriction to orthotropic materials at 
van?us orie~tat!o.ns is significa~t bec~use we treat the macroscopic be
havior of an ind1v1dual ort~otrop1c (~as1ly extended to anisotropic) lamina. 
Therefore, ":'hat follows 1s. essent1~1ly a classical plate theory for lami
nated ~ateria~s. Actually, interlamrnar stresses cannot be entirely disre
garded in laminated plates, but this refinement will not be treated in this 
book other than what was studied in Section 4.6. Transverse shear ef
fects away from the edges will be addressed briefly in Section 6.6. 

5.2.2 Equilibrium Equations for Laminated Plates 

The equilibrium differential equations in terms of the force and 
moment resultants derived in Chapter 4 and the transverse loading p(x y) 
are ' 

Nx,x + Nxy,y = 0 (5.3) 

Nxy,x + Ny,y = 0 (5.4) 

MX,XX + 2Mxy,xy + My,yy = - p (5.5) 

where a comma d~notes differentiation of the principal symbol with re
~pect to th~ subscript that follows the comma. In this form, the equilib
rium eq~~t,?ns are m~rely th_ose of classical plate theory as derived from 
th~ equilibrium_ of a d1fferen_t1a! element in Appendix D. When the stipu
lation of a laminated plate 1s introduced by the explicit use of the force 
and moment resultants in Equations (4.22) and (4.23) and the strain and 
cha~_ge_ of curvat~re definitions in Equa~ons (4.14) and (4.15), then the 
equ11Jbnum equ~t,ons, Equations (5._3) to,(5.5), become (upon dropping 
the zero subscript used to denote middle-surface displacements) 

A11 u,xx+ 2A16u,xy+ A66u,yy+ A16v,xx+ (A12 +Ass)v,xy + A26v,yy 

- B11w,xxx - 3815W,xxy- (812 + 2866)w,xyy- B26w,yyy = 0 
(5.6) 

A15U,xx + (A12 + Ass)u,xy + A25U,yy + A55V,xx + 2A25V,xy + A22V,yy 
- B15W,xxx - (812 + 2855)W,xxy- 3B25W,xyy- B22W,yyy = 0 (5.7) 

D11 W,xxxx + 4D15W,xxxy + 2(012 + 2066)w,xxyy + 4D26w,xyyy + 022w,yyyy 

- B11 u,xxx - 3B16u,xxy- (B12 + 2B66)u,xyy- B26u,yyy (5.8) 

- B15V,xxx - (B12 + 2B66)v,xxy- 3826v,xyy - B22v,yyy = p 

~bvious a~d sometimes drastic simplifications occur when the laminate 
1s symmetri? about the middle s~rface (Bu= O), specially orthotropic (all 
the terms with 16 and 26 subsknpts vanish in addition to the s .. ), homo
geneo_us (B.li = O and Dii = Aiit"/12), or isotropic. In all tho~~ cases, 
Equat~ons (o.6) and (~.7) are ~oupled to each other, but uncoupled from 
Equat10~ (5.8). That 1s, Equation (5.8) contains derivatives of the trans
verse displacement w only,_ and Equations (5.6) and (5.7) contain both 
u and ~ but not w. Accordingly, only Equation (5.8) must be solved to 
determine the transverse deflections of a plate with the aforementioned 
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simplifications; the in-plane displacements can be found from the solu~ion 
of Equations (5.6) and (5.7). The more general case of unsymmetrical 
laminates requires the simultaneous solution of the th~ee coupl7d 
equations, Equations (5.6)-(5.8) for the transverse and in-plane dis-
placements. . 

Boundary conditions used to be thought of as a choice between 
simply supported, clamped, or free edges if all classes of elastically re
strained edges are neglected. The real situation for laminated plates is 
more complex than for isotropic plates because now there are actually 
tour types of boundary conditions that can be called simply supported 
edges. These more complicated boundary.conditions arise _b~cause now 
we must consider u, v, and w instead of Just w alone. S1m1larly, there 
are four kinds of clamped edges. These boundary conditions can be 
concisely described as a displacement or derivative of a displacement 
or, alternatively, a force or moment is equal to some prescribed value 
(often zero) denoted by an overbar at the edge: 

Un = Un or Nn = Nn 

Nn1=Nn1 

Mn=Mn 

W=W or Mn1,1+0n=Kn 

(5.9) 

in n and t coordinates where n is the direction normal to the edge and t 
is the direction tangent to the edge as in Figure 5-6. Also, On is the shear 
force and K is the well-known Kirchhoff force of classical plate theory 
(see Timos;enko and Woinowsky-Krieger [5-5]). For example, on the 
edge x = O in Figures 5-2 and 5-3, 

u=O or Nx=O (5.10) 

t 
n = NORMAL 

t = TANGENTIAL 
X 

l~n=U 

Ut= V 

Figure 5-6 Boundary Condition Notation 
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The eight possible types of simply supported (prefix S) and clamped 
(prefix C) edge boundary conditions [combinations of the conditions in 
Equation (5.9)] are commonly classified as (see Almroth [5-6]): 

S1: W=O Mn =0 Un=Un u,=u, 

S2: W=O Mn =0 Nn=Nn u,=u, 

S3: W=O Mn =0 Un=Un Nn,= Nnt 
(5.11) 

S4: W=O Mn =0 Nn=Nn Nnt = Nnt 

C1: W=O W,n=O Un= Un u, = u, 
C2: W=O w,n=O Nn=Nn u,=u, 

C3: W=O W,n=O Un=Un Nn1=Nnt 
(5.12) 

C4: W=O w,n=O Nn=Nn Nn,= Nnt 

whereupon a rectangular plate can be characterized as having any one 
of the eight conditions in Equations (5.11) and (5.12) on each of its four 
edges. The range of possibilities is, therefore, quite large (twelve possi
ble conditions on each of the four edges if the free-edge conditions are 
included). The simplest cases to analyze naturally involve like types of 
boundary conditions on opposite, if not all, edges. The emphasis in this 
book is on plates with four simply supported edges, so cases are chosen 
from those in Equation (5.11 ). Note that simply supported edges have 
no rotational restraint, but when this simplified terminology of simply 
supported edges is used, the specific in-plane conditions are not deter
mined. Obviously, the totality of boundary conditions including in-plane 
conditions must be specified by stating, for example, that a solution is 
obtained for S1 boundary conditions. 

To better appreciate the four possible simply supported edge 
boundary conditions, consider the support system for the edge of a plate 
illustrated in Figure 5-7 in near-physical terms with mechanisms that the 
reader can easily understand. Note that the support mechanisms de
picted are only for understanding how the various supports could work. 
Only the reader can decide what support conditions are applicable to a 
specific structure of interest. For a simply supported plate edge, the 
principal support mechanism in Figure 5-7 is a triangular prism with a 
circular-cross-section prismatic protrudance on top as a realistic mech
anism for the usual so-called knife-edge support for free rotation, i.e., 
Mx = 0. The end view of the triangular prism looks similar to the usual 
beam support, but with more realistic mechanisms that permit the motion 
required. For a plate, the protrudance is a bearing that permits (limited) 
rotation about the y-axis through the center of the protrudance which is 
located at the middle surface of the plate (but not precisely at the edge 
of the plate). The protrudance fits in a cavity in the plate such that ro
tation around the y-axis is possible, but motion transverse to the plate 
surface is prevented (w = 0) and translation along the y-axis of the circu-
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w=O w=O w=O w=O 

Mx=O Mx=O Mx=O Mx=O 

u=O Nx=O u=O Nx = 0 

v=O v=O Nxy= 0 Nxy = 0 

Figure 5-7 Simply Supported Edge Boundary Conditions 

lar prism is not permitted. The four manners of supporting the triangular 
prism are: 

(1) For the S1 condition, the triangular prism is fa~ten~d to a horizontal 
surface such that the prism cannot translate m either the x- or y
directions. Thus, u = o and v = o. Hence, forces Nx and Nxy must 

(2) ~~i~~he S2 condition, the triangular prism is su~ported o~ p~rtially 
embedded y-direction roller beari~gs _that permit translation m ~he 
x-direction, but none in the y-direct1on. Th~s, u *- 0 and v - 0. 
Hence, force Nx must be zero, but Nxy _musJ exist. . 

(3) For the S3 condition, the triangular pnsm 1s su~ported o~ p~rt1ally 
embedded x-direction roller bearings that permit translation rn the 
y-direction, but none in the x-direction. Thus, u = O and v *- 0. 
Hence, force Nx must exist, but Nxy m~st b~ zero. . 

(4) For the S4 condition, the triangular pn~m 1s su~po~ed on ~art1~lly 
embedded spherical bearings that permit translation rn any d1rect1on 
in the x-y plane. Thus, u *- O and v *- 0, so both forces Nx and Nxy 
must be zero. 

For a clamped plate edge, the principal support mechanism i~ a boxy 
mass that restrains rotation about the edge of the plate (w,x - O) and 
motion transverse to the plate surface (w = O). The four ways of sup
porting the boxy mass are analogous to the four ways for a simply sup-
ported edge and are shown in Appendix D. 

5.2.3 Buckling Equations for Laminated Plates 

A plate buckles when the in-plan~ compressive load gets so large 
that the originally flat equilibrium state 1s no longer stable, an~ the plate 
deflects into a nonflat (wavy) configuration. The load at _which the 1~
parture from the flat state takes place is called the buckling load. e 
flat equilibrium state has only in-plane forces and undergoes only ex-
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tension, compression, and shear. Thus, the flat equilibrium state is often 
called the membrane prebuckled state and consists of only in-plane 
deformations. More comprehensively, the load at which the plate de
formed configuration suddenly changes into a different configuration is 
called the buckling load. Note that with bending-extension coupling, an 
originally flat plate (when without load) under 'V'ial in-plane compression 
bends at all loads prior to bifurcation buckling. Thus, a membrane (flat 
and uniformly stressed) prebuckled state is not actually possible. How
ever, a first-order approximation to the bifurcation buckling load is made 
by ignoring the prebuckling out-of-plane deflections. Jones and Hen
nemann studied this approximation for laminated shells and found that 
the bifurcation buckling loads for a shell with bending-extension coupling 
induced prebuckling deformations are as much as 15% lower than a shell 
with such prebuckling deformations ignored [5-7]. 

Analysis of plates buckling under in-plane loading involves solution 
of an eigenvalue problem as opposed to the boundary value problem of 
equilibrium analysis. The distinctions between boundary value problems 
and eigenvalue problems are too involved to treat here. Instead, the 
buckling differential equations governing the buckling behavior from a 
membrane prebuckled state (prebuckling out-of-plane deformations are 
ignored) are 

oNx,x + oNxy,y = o (5.13) 

oNxy,x + oNy,y = 0 (5.14) 

oMX,XX + 2oMxy,xy + oMy,yy + Nxow,xx + 2Nxyow,xy + Nyow,yy = 0 (5.15) 

where o denotes a variation of the principal symbol from its value in the 
prebuckled equilibrium state. Thus, the terms oNx, ... oMx, ... are vari
ations of forces and moments, respectively, from their values in a mem
brane prebuckling equilibrium state. The terms ow and, by implication, 
ou and ov are variations in displacement from the same flat prebuckled 
state. In appearance, the buckling differential equations resemble the 
equilibrium differential equations except for the all-important variational 
notation and the fact that the right-hand sides of the buckling differential 
equations are zero. Note that if the prebuckling state is a membrane, 
then ow= w because there is no prebuckling....9ut.:9f-plane _g_isplacement. 
Also note that the applied in-plane loads Nx, Ny, and Nl<Y enter the 
mathematical formulation of the eigenvalue problem as coefficients of the 
curvatures rather than as 'loads' on the right-hand side of the equilibrium 
equation. The essence ....9f the eigenvalue problem is to determine the 
smallest applied loads, N.x, etc., that cause buckling. An important con
sequence of this type or problem is that the magnitude of the defor
mations after buckling cannot be determined without resort to 
large-deflection analysis; i.e., the deformations are indeterminate when 
only Equations (5.13) to (5.15) are considered. 

1Bifurcation buckling occurs at the load at which the load path forks into two load paths, the 
new one stable and the other, the continuation of the old path, unstable, irrespective of tre 
type of defonnation path prior to buckling (linear or nonlinear). 

( 
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The variations in force and moment resultants are 

oNX 
[ A

11 
A

1
2 A15 l ~ [811 012 01

, l oisc 

oNY = A12 A22 A25 ~ + 812 822 825 OKy 

oNxy A15 A25 A55 <rf~y 815 826 85e oKxy 

(5.16) 

oMx [ 011 012 01
, l OE; 

[D
11 

D
1
2 D1, l oisc 

oMy = 812 822 826 ~ + D12 D22 D25 OKy 

oMxy 815 825 855 &t°xy D15 D25 D55 oiscy 

(5.17) 

where the variations in in-plane strains and changes in curvature are re
lated to the variations in displacements by 

~ =OU,x 

OJSc = - ow 'XX 

~ =OV,y 

OKy = - OW,yy 

<rf~y = OU,y + OV,x 

oiscy = - 2ow,xy 

(5.18) 

(5.19) 

The buckling differential equations can be expre~s~d in t~r~s of the 
variations in displacements by substituting the variations in. 1~-pla~e 
strains and curvatures, Equations (5.18) and (5.19), in the variations in 
force and moment resultants, Equations (5.16) and (5.17), and subse
quently in the buckling differential equation~ in terms_ of t~e variation_s of 
forces moments and displacements dunng buckling, 1.e., Equations 
(5.13) 'to (5.15). 

1

The resulting equations take a form similar to the cor
responding equilibrium equations, Equations (5.6) t~ (5.8). Just as for 
equilibrium problems, buckling of generally la~inated_ plates ~a~ 
bending-extension coupling. However, some special laminates ex~1b1t 
no bending-extension coupling; hence, their buckling loads a~e obtain~d 
by solution of only Equation (5.15) or its variation of deflections equiv-

alent. . 
The boundary conditions for buckling proble~s are applie? only to 

the buckling deformations because the prebuc~lmg defor~at1ons ~re 
assumed to be a membrane state (even if bending-extension coupling 
does exist). One of the distinguishing features of an eig_envalue problem 
is that all the boundary conditions are homogeneous, 1.e., zero. Thus, 
during buckling, the simply supported edge boundary conditions are 

S1: ow=O oMn =0 oun=O ou1=0 

S2: ow=O oMn =0 oNn=O ou, = 0 
(5.20) 

S3: ow=O oMn =0 oun = 0 oNnt=O 

S4: ow=O oMn = 0 oNn = 0 oNn1= 0 
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C1: Sw=O Sw,n=O Sun=O 8u1=0 

C2: Sw=O Sw,n=O SNn=O Su1=0 
C3: Sw=O Sw,n=O Sun=O SNn1=0 

(5.21) 

C4: Sw=O Sw,n=O SNn=O SNn1= 0 

The boundary conditions could be different for each edge of a plate, so 
the number of combinations of possible boundary conditions is quite 
large as it was with equilibrium problems. 

5.2.4 Vibration Equations for Laminated Plates 

As with plate buckling, plate vibration, or oscillation about a state 
of static equilibrium, is an eigenvalue problem. The objective of the 
analysis is to determine the natural frequencies and the mode shapes in 
which laminated plates vibrate. The magnitude of the deformations in a 
particular mode, however, is indeterminate because vibration is an eigen
value problem. The governing vibration differential equations are ob
tained from the buckling differential equations by adding an acceleration 
term to the right-hand side of Equation (5.15) and reinterpreting all vari
ations to occur during vibration about an equilibrium state (no difficulty is 
presented because the variations during buckling are also from the 
equilibrium state): 

SNX,X + SNxy,y = 0 

SNxy,x + SNy,y = 0 

(5.22) 

(5.23) 

SMx,xx + 28Mxy,xy + SMy,yy + NxSw,xx + 2NxySw,xy + NySw,yy = pSw,tt (5.24) 

where p is the mass per unit area of the plate. 
The variations in forces and moments during vibration are given by 

Equations (5.16) and (5.17). The membrane prestress state (equilibrium 
stress state) is specified by Nx, Ny, and N . 

As with both the plate bending an'f! buckling problems, plate vi
brations include bending-extension coupling when the plate is unsym
metrically laminated. For symmetrically laminated plates, the coupling 
vanishes, and the vibration problem reduces to solution of Equation 
(5.24) alone because rotatory inertia terms are ignored. Irrespective of 
the lamination characteristics, the boundary conditions are the same as 
for the buckling problem. Alternatively, both the buckling and vibration 
problems can be formulated as a vibration problem with buckling loads 
being determined when the vibration frequency is equated to zero. 

5.2.5 Solution Techniques 

Many techniques exist for solution of the equilibrium, buckling, and 
vibration problems formulated in the preceding subsections. The tech
niques range from fortuitous exact solutions that are obtained essentially 
by 'observation' through numerical approximations such as finite element 

Bending, Buckling, and Vibration of Laminated( ..lS 289 

and finite difference approaches to the various approximate energy 
methods such as those of Rayleigh-Ritz and Galerkin. Because the ob
jective here is to demonstrate the importance of the various. coupling 
stiffnesses, only those solution techniques necessary for fruitful illus
trations are used. 

A prominent part of many of the techniques is separation of vari
ables. In that method, the deflection variables, or the variation in de
flection variables, are arbitrarily separated into functions of ~late 
coordinate x alone times functions of y alone. Wang [5-8] determined 
that separation of variables leads to exact solutions for some classes of 
plate problems, but does not for others, i.e., the_ deflections are not _al
ways separable. A specific exam~le of ~n approx1_mate u_se of separation 
of variables due to Ashton [5-9] will be discussed m Section 5.3.2. Other 
exact uses of the method abound throughout Section 5.3 through 5.5. 

Problem Set 5.2 

5.2.1 Derive Equations (5.6)-(5.8). . . . . 
5.2.2 Derive the analogy of Equations (5.6)-(5.8) for the buckling d1fferent1al equations, 

Equations (5.13)-(5.15). . . . . . 
5.2.3 Derive the analogy of Equations (5.6)-(5.8) for the vibration differential equations, 

Equations (5.22)-(5.24). 

5.3 DEFLECTION OF SIMPLY SUPPORTED LAMINATED PLATES 
UNDER DISTRIBUTED TRANSVERSE LOAD 

Consider the general class of laminated rectangular plates th~t are 
simply supported along edges x = 0, x = a_. y ~ 0, and y = b and subJected 
to a distributed transverse load, p(x,y), m Figure 5-8. The transverse 
load can be expanded in a double Fourier sine series: 

~ ~ . m1tx . nxy 
p(x,y) = £. £. Pmn sm -a- sm -b- (5.25) 

m = 1 n = 1 

Many different types of transverse loading can easily be represented by 
Equation (5.25). For example, a uniform load, Po, is given by 

~ ~ 16Po _1 _ sin m1ex sin nxy 
p(x,y) = £. £. 2 mn a b 

m = 1, 3, .. . n = 1, 3, ... 1t 

See Timoshenko and Woinowsky-Krieger [5-5] for other examples. 

y,v 

p(x,y) 

Figure 5-8 Simply Supported Laminated Rectangular Plate 
under Distributed Transverse Load, p(x,y) 

(5.26) 
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Some of the various types of lamination possible, specially 
orthotropic, symmetric angle-ply, antisymmetric cross-ply, and antisym
metric angle-ply, will be analyzed for the loading given in Equation (5.25). 
The results will be compared with each other to determine the influence 
of the bend-twist-coupling stiffnesses (D16 and D2s) and the bending
extension coupling stiffnesses (B1i). All the plate edges are simply sup
ported; however, as has been observed in Section 5.2, such a 
specification is still ambiguous. Thus, pay special attention to the precise 
formulation for the boundary conditions in each of the cases discussed. 

5.3.1 Specially Orthotropic Laminated Plates 

A specially orthotropic laminate has either a single layer of a spe
cially orthotropic material or multiple specially orthotropic layers that are 
symmetrically arranged about the laminate middle surface. In both 
cases, the laminate stiffnesses consist solely of A11 , A12, A22, Ass, D11 , 
D12, D22, and Dss· That is, neither shear-extension or bend-twist coupl
ing nor bending-extension coupling exists. Thus, for plate problems, the 
transverse deflections are described by only one differential equation of 
equilibrium: 

D11 W,xxxx + 2(D12 + 2Dss)W,xxyy + D22w,yyyy = p(x,y) (5.27) 

subject to the simply supported edge boundary conditions that for this 
laminate are 

x=O, a: 

y=O, b: 

W=O 

W=O 
Mx=- D11W,xx-D12W,yy=O 

My=- D12w,xx - D22w,yy = 0 (5.28) 

Note that because the in-plane deformations, u and v, are not present in 
the differential equation, the simply supported edge boundary condition 
takes on an especially simple form as compared to Equation (5.11 ). 

If the transverse loading is represented by the Fourier sine series 
in Equation (5.25), the solution to this fourth-order partial differential 
equation and subject to its associated boundary conditions is remarkably 
simple. As with isotropic plates, the solution can easily be verified to be 

00 00 

w = ~ ~ a sin m1tx sin n1ty 
£. £. mn a b 

m=1 n=1 
(5.29) 

That is, Equation (5.29) satisfies the differential equation, Equation 
(5.27), and the boundary conditions, Equation (5.28), so is the exact 
solution if 

Pmn 
-4-

1t amn=~----------=--=------------

D11 [ ~ J4 + 2(D12 + 2Dss{ ~ t[ ~ J2 + D22[ ~ r 
For a uniform transverse load, the solution is easily shown to be 

(5.30) 
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W= 16:o L f X 

1t m = 1, 3, 5, ... n = 1, 3, 5, ... 

_1 _ sin m1tx sin n1ty (5.31) 
mn a b 

X 2 2 4 

D1{ ~ J4+2(D12+2Dss{ ~ J [ ~] +D22[ ~] 

Once the deflections are known, the stresses are straightforwardly ob
tained by substitution in the stress-strain relations, Equation (4.16): aft~r 
the strains are found from Equation (4.12). Note that the solution m 
Equation (5.31) is expressed in terms of only the laminate stiffne~ses 
D11 , D12, D22, and Dss· This solution will not be pl?tted here, but will be 
used as a baseline solution in the following subsections and plotted there 
in comparison with more complicated results. 

5.3.2 Symmetric Angle-Ply Laminated Plates 

Symmetric angle-ply laminates were described in Section 4.3.2 and 
found to be characterized by a full matrix of extensional stiffnesses as 
well as bending stiffnesses (but of course no bending-extension couplin_g 
stiffnesses because of middle-surface symmetry). The new facet of this 
type of laminate as opposed to specially orthotropic laminates is the ap
pearance of the bend-twist coupling stiffnesses D16 and D2s (the shear
extension coupling stiffnesses A1 s and A2s do not affect the transverse 
deflection w when the laminate is symmetric). The governing differential 
equation of equilibrium is 

D11w,xxxx + 4D15w,xxxy + 2(D12 + 2Dss)W,xxyy (5.32) 
+ 4D2sw,xyyy + D22w,yyyy = p(x,y) 

subject to the simply supported edge boundary conditions 

x=O, a: w=O Mx=- D11w,xx- D12w,yy-2D16w,xy= 0 
(5.33) 

y=O, b: w=O My=- D12w,xx- D22w,yy-2D2sw,xy=0 

Note the presence of the bend-twist coupling stiffnesses in the boun~ary 
conditions as well as in the differential 6~uation. As with the specially 
orthotropic laminated plate, the simply supported edge boundary condi
tion cannot be further distinguished by the character of the in-plane 
boundary conditions on u and v because the latter do not appear in any 
plate problem for a symmetric laminate. 

The solution to the governing differential equation, Equation (5.32), 
is not as simple as for specially orthotropic laminated plates because of 
the presence of D16 and D2s. The Fourier expansion of the deflection 
w, Equation (5.29), is an example of separation of variable_s. However, 
because of the terms involving D16 and D2s, the expan~1on does not 
satisfy the governing differential equation bE:cause the vanables '.3re not 
separable. Moreover, the deflection expan~1on also does not satisfy t~e 
boundary conditions, Equation (5.33), again because of the terms in
volving D16 and D2s-
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Ashton solved this problem approximately by recognizing that the 
differential equation, Equation (5.32), is but one result of the equilibrium 
requirement of making the total potential energy of the mechanical sys
tem stationary relative to the independent variable w [5-9]. An alternative 
method is to express the total potential energy in terms of the deflections 
and their derivatives. Specifically, Ashton approximated the deflection 
by the Fourier expansion in Equation (5.29) and substituted it in the ex
pression for the total potential energy, V: 

V = 21 ff[011 (w, xx/+ 2012W,xxw•yy + 022(w,yy)2 + 4055(w,xy)2 
(5.34) 

+ 4016w,xxw•xy + 4026w,yyw,xy- 2pw ]dxdy 

where the term involving pw is the potential energy of the external forces 
(negative of the work done), namely the transverse load p, and the re
mainder of V is the internal strain energy of the plate. The energy for 
an unsymmetrically laminated plate is displayed by Whitney [5-1]. Basic 
energy principles and their application to applied mechanics, particularly 
structural mechanics, are discussed in the classical book by Langhaar 
[5-1 O]. 

If enough terms are taken in the deflection expansion, the approx
imate energy converges to the exact energy as long as the geometric 
boundary conditions (w = 0 and w,x = 0) a~ satisfied even if the natural 
boundary conditions (Mn = Mn and Nn = Nn) are not satisfied. This 
method is the well-known Rayleigh-Ritz method when the energy is made 
stationary relativ_e to the coefficients of the deflection expansion accord
ing to the principle of stationary potential energy. The resulting equations 
are a set of simultaneous linear algebraic equations that can be solved 
numerically with the aid of a digital computer. Note that, for the simply 
supported edge boundary conditions, only one geometric boundary con
dition, w = O, exists. Also, only one natural boundary condition, Mn= o, 
exists. The double sine series deflection function, Equation (5.29), sat
isfies the geometric boundary condition, but not the natural boundary 
condition. Thus, Equation (5.29) is an acceptable deflection approxi
mation for the Rayleigh-Ritz method. However, the convergence of the 
method is slow because the natural boundary condition is not satisfied 
exactly. 

Ashton used 49 terms (up through m = 7 and n = 7) in the deflection 
approximation, Equation (5.29), to obtain for a uniformly loaded square 
plate with stiffnesses 02i011 = 1, (012 + 2066)/011 = 1.5, and 0 1sf011= 
0261011 = -.5 a maximum deflection (at the plate center) [5-9] of 

4 
ap 

wmax = .00425 0 11 
(5.35) 

However, if 0 16 and D26 are ignored, that is, the symmetric angle-ply 
laminate is approximated as a specially orthotropic laminate with 
D2i011 = 1, (D12 + 2066)ID11 = 1.5, and 0 16 = D26 = 0, then the maxi
mum deflection is 
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a4p 
wmax = .00324 0 (5.36) 

11 
Thus, the error from ignoring the bend-twist coupling terms is about 24%, 
certainly not a negligible error. Hence, the specially orthotropic laminated 
plate is an unacceptable approximation to a symmetric angle-ply lami
nated plate. Recognize, however, that Ashton's Rayleigh-Ritz results are 
also approximate because only a finite number of terms were used in the 
deflection approximation. Thus, a comparison of his results with an exact 
solution would lend more confidence to the rejection of the specially 
orthotropic laminated plate approximation. 

Ashton observed that skew (parallelogram-shaped) isotropic plates 
under uniform distributed load p0 as shown in the orthogonal X-Y coor
dinates in Figure 5-9 are governed by the equilibrium differential equation 

2 
w,xxxx - 4 cos 0 w,xxxy + 2(1 + 2 cos 0)w,xxyy 

Po sin
4
0 

-4 cos 0 w,xyyy+w,yyyy= 
0 

with simply supported edge boundary conditions [5-11] 

x=O, a: W=O w,xx-2 cos 0 w,xy=O 

y=O, b: w=O w,yy-2 cos 0 w,xy=O 

(5.37) 

(5.38) 

The essence of Ashton's contribution is that he identified the skew plate 
stiffnesses as being a transformation of the symmetric angle-ply stiff
nesses or, more generally, the anisotropic bending stiffnesses, that is, 

022 =011 =0 

016 = 026 =-COS 0 
D11 D11 

D +2066 2 12 =(1 +2cos 0) 
D11 (5.39) 

- . 40 p=p Sin 

The stiffnesses in Equation (5.39) are equivalent to the stiffnesses of an 
equivalent orthotropic material with principal material axes of orthotropy 
at 45° to the plate sides. The orthotropic bending stiffnesses of the 
equivalent material can be shown to be 

z,Z 

~'-:-------'~ ~ 
y y 

Figure 5-9 Skew Plate Geometry 
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I 2 
D11 = 0(1 + 2 cos e + cos e) 

I 2 
D22 =D(1-2cose+cos e) (5.40) 

D~ 2 + 20~6 = D sin
2
e 

where, of course, D'16 and D26 are zero because they are in principal 
material directions for an orthotropic material. Values of D'.. and o .. are 
given in Table 5-1 for several values of the equivalent s~ew angle e. 
From Equation (5.40), as e gets smaller, D11 gets larger, D22 gets 
smaller, and, most importantly, D16 gets larger, that is, the plate becomes 
more anisotropic. 

Because exact solutions for skew isotropic plates are readily avail
able, Ashton was able to get some exact solutions for anisotropic rec
tangular plates by the special identification process outlined in the 
preceding paragraph. Specifically, values for the center deflection of a 
uniformly loaded square plate are shown in Table 5-2. There, the exact 
solution is shown along with the Rayleigh-Ritz solution and the specially 
orthotropic solution. For the case already discussed where D2iD11 = 1, 
(D12 + 2D55)ID11 = 1.5, and D16/D 11 = D2~D11 = -.5, the exact solution is 

4 
ap 

wmax = .00452 D (5.41) 
11 

Thus, the Rayleigh-Ritz solution is 6% in error, whereas the specially 
orthotropic solution is 28% in error. 

Table 5-1 Equivalent Bending Stiffness Ratios (After Ashton [5-11]) 

Equivalent D' 22 0;2+2D~ o;e D22 D12 +2D66 D,e -.-
o;, 

-,- o;- o,, 
-

Skew Angle 0 o,, o,, o,, 

goo 1.000 1.000 0. 1. 1.000 0. 
80° .495 .702 0. 1. 1.061 -.174 
63° .141 .376 0. 1. 1.412 -.454 
60° .111 .333 0. 1. 1.500 -.500 
54° .0675 .260 0. 1. 1.690 .587 

Table 5-2 Maximum Deflection Coefficients, K, for 
Exact, Specially Orthotropic, and Rayleigh-Ritz Solutions* 

Equivalent Exact Specially Rayleigh-Ritz 
Skew Angle Solution Orthotropic Solution 

0 K Solution K 
K 

goo .00406 .00406 .00406 
80° .00411 .00394 .00408 
530 .00444 .00336 .00422 
60° .00452 .00324 .00425 
54° .00476 .00301 .00430 

• After Ashton [5-11] 
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The deflection results for the three approaches are plotted in Figure 
5-10 as a function of the ratio of the principal stiffnesses, D11JD22• which 
gets large as e decreases. Thus, the larger the 0 16 and D26, the smaller 
e becomes and hence the more inaccurate both the Rayleigh-Ritz ap
proach and the specially orthotropic approximation become. 

.005 

.D04 

K .003 

.002 

.001 

0 
0 2 

~ 

EXACT 
SOLUTION 

-I~ rnRECOON Of 
PRINCIPAL STIFFNESS 

4 6 8 10 12 14 

011 1 022 

Figure 5-10 Transverse Deflection Coefficient versus Principal Stiffness Ratio 
(After Ashton [5-11 ]) 

5.3.3 Antisymmetric Cross-Ply Laminated Plates 

Antisymmetric cross-ply laminates were described in Section 4.3.3 
and found to have extensional stiffnesses A11 , A12, A22 = A11, and A55; 
bending-extension coupling stiffnesses 8 11 and 822 = -811 ; and bending 
stiffnesses D11 , D12, D22 = D11 , and D66. The new terms here in com
parison to a specially orthotropic laminate are 8 11 and 822. Because of 
this coupling, the three equilibrium differential equations are coupled: 

A11 u,xx + A66u,yy + (A12 + A66)v,xy- B11 w,xxx = 0 (5.42) 

(A12 + A66)u,xy + A66v,xx + A11v,yy + B11 w,yyy = 0 

D11 (w,xxxx + w,yyyy) + 2(D12 + 2D66)w,xxyy - B11 (u,xxx -V,yyy) = P 

(5.43) 

(5.44) 

Whitney and Leissa solved this problem for the simply supported edge 
boundary condition S2: 

x=O,a: w=O Mx = B11U,x- D11W•xx - D12W,yy = 0 (5.45) 

v=O Nx = A11 u,x + A12v,y- B11w,xx = 0 (5.46) 

y=O, b: W=O My=- B11v,y- D12w,xx- D11 w,yy = 0 (5.47) 

U=O Ny= A 12u,x + A11v,y + B11w,yy = 0 (5.48) 

and observed that the deflections 
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00 00 

u = ~ ~ A cos m1tx sin n1ty 
£..J £..J mn a b 

m=1 n=1 
00 00 

v = ~ ~ B sin m1tx cos n1ty 
£..J £..J mn a b 

m=1 n=1 
(5.49) 

00 00 

w = ~ ~ C sin m1tx sin n1ty 
£..J £..J mn a b 

m=1 n=1 

satisfy the three governing differential equations and the boundary con
ditions if the transverse loading is represented by the Fourier sine series 
in Equation (5.25), so are the exact solution (the form of which need not 
be repeated here) [5-12]. 

If the transverse load is but one term of the Fourier series, that is, 

P = p sin m1tx sin n1ty 
mn a b (5.50) 

as form= 1 and n = 1 in Figure 5-11, then fortunately the governing dif
ferential equations and boundary conditions can be solved exactly. The 
Arnn• Bmn• and Cmn in Equations (5.49) can be expressed in terms of 
Pmn and the laminate stiffnesses in analogy to Equation (5.30). Then, for 
an arbitrary transverse loading described with a Fourier series, we merely 
sum the contributions from the deflection solution for each term of the 
series. 

• 7tX 

~~P=Po•'"a 
~"'-._.__L......ll'--II'--1~~~ 

SECTION A-A 

• 7tX • 1tY 
P=PoSmasmb 

X 

A 

Figure 5-11 Sinusoidal Plate Transverse Loading 

We want to study the effect of the number of layers on laminate 
performance. The fair comparison is to keep the total laminate thickness 
constant to consider only equal-weight laminates. Then, we vary the 
number of layers by dividing the laminate into more and more layers. 
That is, we construct the sequence of antisymmetric cross-ply laminates 
with an increasing number of layers but of constant thickness as in Figure 
5-12. 
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~ 
2 LAYERS 4 LAYERS 

••••• 
••••• 
•••• 
6 LAYERS 

§···iii···~ 
8 LAYERS 12 LAYERS 00 LAYERS 

Figure 5-12 Antisymmetric Cross-Ply Laminate Example 

The normalized maximum deflection of a rectangular antisymmetric 
cross-ply laminated graphite-epoxy plate subject~d to t~e sinusodi~I 
transverse loading of Figure 5-11 [m=1 and n=1 m Equation (5.50)] 1s 
plotted in Figure 5-13 for 2, 4, 6, and an infinite number of layers. Th_e 
infinite-number-of-layers case corresponds to the specially orthotrop1c 
plate solution in which bending-extension c~upling is. ignored. ~or a 
two-layered plate, neglect of bending-extens1~n coupling results !n ~n 
underprediction of the deflection by 64%;_ that 1s, the acJual _deflection 1s 
nearly three times the specially orthotrop1c plate ~pprox1m_at1on! ~he ef
fect of bending-extension coupling on the deflections obviously dies out 
quite rapidly as the number of layers increases,. irrespective_ of !he pl_ate 
aspect ratio, alb. That is, the specially orthotrop1c plate solution 1s rapidly 
approached. However, only when there are more than six layers can 
coupling be ignored without significant error. 

Figure 5-13 Deflection of an Antisymmetric Cross-Ply Laminated Plate 
under Sinusoidal Transverse Load 
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For various laminated composite materials, the effect of bending
extension coupling on plate deflections depends essentially on the ortho
tropic modulus ratio, ~1/E2. Values of G121E2 and v12 are fixed in this 
example because the influence of their variation on the deflections is very 
small compared to that of E11E2. At E11E2 = 1 in Figure 5-14, the effect 
?f bending-extension coupling is nonexistent, as it must be. As E11E2 
increases, the effect of bending-extension coupling increases. Thus, the 
deflections in a two-layere~ boron-epoxy plate (E11E2 = 1 O) are not as 
much larger than the specially orthotropic plate approximation as in a 
two-layered graphite-epoxy plate (E11E2 = 40). 

30r-------------

10 20 30 40 

MODULUS RATIO, El 
E2 

50 

Figure 5-14 Deflection of a Square Antisymmetric Cross-Ply Laminated Plate 
under Sinusoidal Transverse Load 
(After Whitney and Leissa [5-12]) 

5.3.4 Antisymmetric Angle-Ply Laminated Plates 

Antisymmetric angle-ply laminates were described in Section 4.3.3 
and _found to . have ext~nsion~I stiffnesses A11 , A12, A22, and A66; 
b~ndmg-extens1on coupling stiffnesses B16 and B26; and bending 
stiffnesses D11 ,D12• D22, and D66. Thus, this laminate exhibits a different 
type of bending-extension coupling than does the antisymmetric cross
ply laminate. The coupled governing differential equations of equilibrium 
are 

A11U,xx + A66U•yy + (A12 + A55)V,xy- 3B16W•xxy- B26W•yyy = 0 (5.51) 

(A12 + A55)u,xy + A66v•xx + A22V•yy - B16w•xxx - 3B26w•xyy = 0 

D11 W,xxxx + 2(D12 + 2D55)W,xxyy + D22W,yyyy 

- B16(3u,xxy- v,xxx) - B26(u,yyy + 3v,xyy) = p 

(5.52) 

(5.53) 
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Whitney solved the problem for simply supported edge boundary 
condition S3 [5-13 and 5-14] (recall that S2 was used for antisymmetric 
cross-ply laminated plates in Section 5.3.3): 

x=O, a: W=O Mx = B16(u,y + v,x) - D11 w,xx - D12w,yy = 0 (5.54) 

U=O Nxy = A66(u,y + v,x) - B16w,xx - B26w,yy = 0 (5.55) 

y=O, b: W=O MY= B26(u,y + v,x) - D12w,xx - D22w,yy = 0 (5.56) 

V=O Nxy = A66(u,y + v,x) - B16w,xx - B26w,yy = 0 (5.57) 

He then observed that the deflections 

~ ~ . mnx nny 
u = LJ LJ Arnn sm -a- cos -b-

m = 1 n = 1 
00 00 

" " mnx . nny v = LJ LJ Brnn cos -a- sm -b- (5.58) 
rn = 1 n=1 

~ ~C . mnx . nny 
w = LJ LJ rnn sm -a- sm -b-

m = 1 n = 1 
identically satisfy the governing differential equations and boundary 
conditions if the transverse loading is represented by the Fourier sine 
series in Equation (5.25), so are the exact solution. Thus, the Arnn• 
Bmn• and Cmn in Equation (5.58) can be expressed in terms of Prnn and 
the laminate stiffnesses in analogy to Equation (5.30). Then, for an ar
bitrary transverse loading described with a Fourier sine series, we merely 
sum the contributions from the deflection solution for each term of the 
series. 

To study the effect of number of layers on laminate performance, 
we construct a sequence of equal-weight (constant thickness) angle-ply 
laminates with an increasing number of layers as in Figure 5-15. 
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Figure 5-15 Antisymmetric Angle-Ply Laminate Example 
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Maximum deflection results for a graphite-epoxy laminate for which 

E G 
- 1 =40 ~=.5 v 12 =.25 (5.59) 
E2 E2 

are shown in Figure 5-16 as a function of angle-ply angle for the 
sinusoidal transverse loading 

p = p sin ~ sin !!i_ (5.60) 
0 a a 

The deflection behavior is symmetric about e = 45°, i.e., the maximum 
deflection for e = 30° is the same as the result fore= 60°, etc. Clearly, 
bending-extension coupling is quite significant for two-layered laminates, 
but rapidly decreases as the number of layers increases. The bending
extension coupling effect has nearly vanished if the laminate has eight 
or ten layers. For a fixed laminate thickness, the bending-extension 
coupling stiffnesses 

(5.61) 

obviously decrease as N increases, so the source of the change in the 
influence of bending-extension coupling is clear. 

Results for a square plate under sinusoidal transverse load with a 
variable modulus ratio, E1tE2, and a± 45° lamination angle are shown in 
Figure 5-17. There, the effect of bending-extension coupling on de
flections is significant for all modulus ratios except those quite close to 
E1tE2 = 1. 
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Figure 5-16 Deflection of a Square Antisymmetric Angle-Ply Laminated Plate 
under Sinusoidal Transverse Load 
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Figure 5-17 Deflection of a Square Antisymmetric Angle-Ply Laminated Plate 
under Sinusoidal Transverse Load 

Problem Set 5.3 

5.3.1 Derive Equation (5.30). 
5.3.2 Verify Equation (5.31). 
5.3.3 Obtain the coefficients A.nn, Bmn• and Cmn in Equation (5.49). 
5.3.4 How do A11 , ~. 0 11 , and 0 22 change as the number of laminae increases for the 

example antisymmetric cross-ply laminates in Figure 5-12? 
5.3.5 Obtain the coefficients A.nn, Bmn• and Cmn in Equation (5.58). 
5.3.6 How do A11 , Ai2 , 0 11 , and 022 change as the number of laminae increases for the 

example antisymmetric angle-ply laminates in Figure 5-15? 

5.4 BUCKLING OF SIMPLY SUPPORTED LAMINATED PLATES 
UNDER IN-PLANE LOAD 

Consider the general class of laminated rectangular plates that are 
simply supported along edges x = 0, x = a, y = 0, and y = b and subjected 
to uniform in-plane force in the x-direction as in Figure 5-18. Other more 
complicated loads and boundary conditions could be treated. However, 
the importance of the various stiffnesses in buckling problems is well
illustrated with this simple loading. More comprehensive treatment of 
plate buckling in general is given by Timoshenko and Gere (5-15] and 
of laminated plate buckling in particular is given by Whitney (5-1]. 

Figure 5-18 Simply Supported Laminated Rectangular Plate 
under Uniform Uniaxial In-Plane Compression 
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When columns buckle a lateral . 
column length, as is well kn' deformation develops alon th 
~ansverse to the plane of th~;~te ~::n/r'.!te~. buckl~, the deform~tio~ 

oreover, that two-dimensional nat o- 1mens1onal wavy nature 
load direction, as shown for the urel has multiple sine waves in th~ 
5-19. Generally, if the plate is veexamp e_ of two buckle waves in Figure 
~a~es bdeve1op. Note that the no"Jallol~e17nth:. load direction, many sine 

unng ucklmg. igure 5-19 does not move 

NODAL 
LINE 

Figure 5-19 T · 
yp1cal Simply Supported Plate Buckling Mode 

The load-deformation behav· 
that of_ columns. First as load in ior of plates is more complicated than 
:~add direction while r~maining fl~;ea;~s, t~~ plate simply shortens in the 

he eformation path bifurcates (tak en, e plate buckles at N where 
!cf P~I to the bu~kled shape in Figure e~_i;e lJ twbo pa!hs) from the flat 

. ua Y support increased load · . er ucklrng, the plate can 
s!1ffness as in Figure 5-20 In c over the bucklrng load, but at decreased 
higher_ than the buckling l~ad. ~~~:s:h co~mns cannot support any load 
very_ different meaning for their buckli e I od structural elements have a 
maximum load, the other (the I . ng oa s; one (the column) is the 
deformation behavior (a changrate)I IS only an interruption in the load-

In s ope called a knee) N . , 
BIFURCATION IN DEFORMATION PATH 

Figure 5-20 Load-Deform r B . 6 
a ion ehav1or for an In-Plane Loaded Plate 
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This knee in the load-deformation curve for a plate occurs only for 
a plate that is perfectly flat before loading. For plates with increasing 
magnitudes of initial imperfections, the knee is rounded over, and the 
load-deformation curve decreases as in Figure 5-21. 

N 

Ne 

Figure 5-21 Buckling of Plates with Increasing Initial Imperfections 

The buckling load will be determined for plates with various lami
nations: specially orthotropic, symmetric angle-ply, antisymmetric cross
ply, and antisymmetric angle-ply. The results for the different lamination 
types will be compared to find the influence of bend-twist coupling and 
bending-extension coupling. As with the deflection problems in Section 
5.3, different simply supported edge boundary conditions will be used in 
the several problems addressed for convenience of illustration. 

5.4.1 Specially Orthotropic Laminated Plates 

A specially orthotropic laminate has either a single layer of a spe
cially orthotropic material or multiple specially orthotropic layers that are 
symmetrically arranged about the laminate middle surface (to form a 
symmetric cross-ply laminate). In both cases, the laminate stiffnesses 
consist solely of A11 , A12, A22, A66, 0 11 , 0 12, D22, and 0 66. That is, nei
ther shear-extension or bend-twist coupling nor bending-extension cou
pling exists. Then, for plate problems, the buckling loads are determined 
from only one buckling differential equation: 

D110W,xxxx + 2(012 + 2D55)ow,xxyy + D220W,yyyy + Nxow,xx == 0 (5.62) 

subject to the simply supported edge boundary conditions 

X = 0, a: ow== 0 oMX == -D110W,xx - D120W,yy == 0 

y == 0, b: OW== 0 oMy == -D120W,xx - D220W,yy = 0 
(5.63) 

Note that because of the absence of the variations in in-plane displace
ments, ou and ov, the boundary conditions are much simpler than the 
general case in Equation (5.20). 
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The solution to this fourth-order partial differential equation and 
associated homogeneous boundary conditions is just as simple as the 
analogous deflection problem in Section 5.3.1. The boundary conditions 
are satisfied by the variation in lateral displacement (for plates, ow actu
ally is the physical buckle displacement because w = o in the membrane 
prebuckling state; however, ou and ov are variations from a nontrivial 
equilibrium state. Hence, we retain the more rigorous variational notation 
consistently): 

ow= A sin m1tx sin n1ty (5.64) 
mn a b 

where m and n are the number of buckle half wavelengths in the x- and 
y-directions, respectively. In addition, the governing differential equation 
is satisfied by Equation (5.64) if 

N, = •'[ O 11 [ ';: ]' + 2(012 + 2066,( g ]'+ 0 22[ g n ~ J'] (5.65) 

The smallest value of Nx obviously occurs when n = 1, so the buckling 
load expression further reduces to 

N, = n '[ 0 11 [ ';: ]' + 2(012 + 2066) :, + 022[ b~ ][ ~ ]'] (5. 66) 

The smallest value of Nx for various m is not obvious, but varies for dif
ferent values of the stiffnesses and the plate aspect ratio, alb. 

For example, if D11 tD22 = 10 and (012 + 2066)/022 = 1 (represen
tative values for boron-epoxy, then Equation (5.66) becomes 

N,=n
2
022(1or ';: ]' + :, + [ ~ ]' b~ ] (5.67) 

which is plotted in Figure 5-22 versus the plate aspect ratio. There, for 
small plate aspect ratios (that is, alb < 2.5), the plate buckles into a single 
half-wave in the x-direction. For example, the buckling load of a square 
plate is 

(5.68) 

As the plate aspect ratio increases, the plate buckles into more and more 
buckle half-waves in the x-direction and has an Nx versus alb curve that 
gets even flatter and, in fact, approaches 

2 - 8.324561t 0 22 
Nx = 2 (5.69) 

b 
For other materials, other families of curves such as in Figure 5-22 are 
obtained with correspondingly different buckling loads and different 
points of change from one buckling mode to another. 

Figure 5-22 
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Buckling of Rectangular Specially Orthotropic Laminated Plates 
under Uniform Compression, Nx 

We are now prepared to address the question posed in Figure 5-23. 
Consider two rectangular plates that are simply support_ed on. all four 
edges, of the same thickness, and made of the sa,:ne f!ber_-remf~xced 
material. One plate consists of all unidirectional material with fibers m the 
load direction. The other plate has the same layers, but alter~ately ~r
ranged in the form of a symmetric cros~-ply l~minate. Ma~y ~1ght think 
or expect that the plate with the most fibers m the _l?ad. d1rect1on would 
have the highest buckling load. However, _that. pos1t1on 1s bas_ed on ~he 
premise that the buckling load depends pnmanly o~ the be~dmg res1~t
ance in the load direction. However, the plate buck/mg load. 1s a function 
of all four bending stiffnesses 0 11 , 0 12, D24, and D66, as 1s clear from 
Equation (5.66). Thus, it should not be ~~rpn~ing that t_he cross-ply plate 
has a higher buckling load than the urndirect1onally reinforced plate. In 
fact the support on all four edges of a plate signifies that a plate cannot 
simply deform as a wide column (as a plate supported on only the two 
loaded edges would be). The b_ehavi_or of ~ wide. col~mn would, of 
course, be dominated by the bending stiffness 1n the d1rect1on of the load. 

UNIDIRECTIONAL LAMINATE CROSS-PLY LAMINATE 

e SIMPLY SUPPORTED ON ALL FOUR EDGES 

e SAME FIBER-REINFORCED MATERIAL 

e SAME THICKNESS 

Figure 5-23 Which Plate Has the Highest Buckling Load? 
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5.4.2 Symmetric Angle-Ply Laminated Plates 

Symmetric angle-ply laminates were found in Section 4.3.2 to be 
characterized by a full matrix of extensional stiffnesses as well as bend
ing stiffnesses, but not to have bending-extension coupling. The princi
pal difference between these laminates and specially orthotropic 
laminates is the introduction here of the bend-twist coupling stiffnesses 
0 16 and 026 {the shear-extension coupling stiffnesses A16 and A26 are 
immaterial for buckling of a symmetrically laminated plate because the 
three governing differential equations are uncoupled). Accordingly, the 
governing buckling differential equation is 

0 11ow,xxxx + 4016ow,xxxy + 2(012 + 2066)ow,xxyy 

+ 40250W,xyyy + 0220W,yyyy + Nxow,xx = 0 

subject to the simply supported edge boundary conditions 

x=O, a: 

y=O, b: 

OW=O 

ow=O 

(5.70) 

The presence of 0 16 and 026 in the governing differential equation 
and boundary conditions makes a closed-form solution impossible. That 
is, in analogy to bending of symmetric angle-ply laminated plates, the 
variation in lateral displacement, ow, cannot be separated into a function 
of x alone times a function of y alone such as in Equation (5.64). How
ever, again in analogy to bending of symmetrically laminated angle-ply 
plates, an approximate Rayleigh-Ritz solution was obtained by Ashton 
and Waddoups [5-16] (or equivalently a Galerkin solution as presented 
by Chamis [5-17]) by substituting the variation in lateral displacement 
expression 

00 00 

ow = ~ ~ A sin m1tx sin nny (5. 72) k.l k.l mn a b 
m=1 n=1 

in the expression for the second variation of the total potential energy 
and subsequently making it stationary relative to the Amn- Note that 
Equation (5. 72) satisfies the geometric boundary conditions of the prob
lem (ow= O on all edges), but not the natural boundary conditions 
(oMn = O on all edges) or the differential equations, so the results proba
bly converge slowly toward the actual solution. 

The actual solution procedure is only incidental to the present ob
jectives, so we are satisfied to report the results for several laminates of 
boron-epoxy with E1/E2 = 10, G12'E2 = .3, and v12 = .3. Normalized 
buckling loads for three laminates, 20 layers at +0, 20 layers alternating 
at± e, and the specially orthotropic approximation, are plotted in Figure 
5-24. The Rayleigh-Ritz curves are for 49 terms (m = 7 and n = 7). Ex
perimental results by Mandell [5-18] are also shown in Figure 5-24; ob
viously, the agreement between theory and experiment is very 
satisfactory. Apparently, bend-twist coupling is just as important for 
buckling problems as it is for bending problems. The principal influence 
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of bend-twist coupling is to lower the buckling load from what woul~ be 
obtained with the specially orthotropic ap~roxi~atio~. Thus, _the.specially 
orthotropic approximation is unconservat1ve in design apph~at1ons. To 
the author's knowledge, no skew plate analogy results exist for plate 
buckling in contrast to the bending problem. 
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Buckling Loads for Recta~gular Symmetric_ Angle-Ply Plates 
under Uniform Compression, Nx (After Whitney [5-1}) 

5.4.3 Antisymmetric Cross-Ply Laminated Plates 

Antisymmetric cross-ply laminates were found in Section 4.3.~ to 
have extensional stiffnesses A11 , A12, A22 = A11, and Aas: ~endi~g
extension coupling stiffnesses 8 11 and 822 = - 8 11 ; and . bend mg ~t1ff
nesses 0

11
, 0 12, 0

22 
= 0 11 , and 0 66. The new terms here m compans~n 

to a specially orthotropic laminate are 8 11_ and_ 8 22. _8ecausE: of this 
bending-extension coupling, the three buckling d1fferent1al equations are 

coupled: 
A

11
ou,xx+ A66ou,yy + (A12 + A66)ov,xy- 8 11 ow,xxx = 0 (5.73) 

(A
12

+ ~s}OU,xy+ A66ov,xx+ A11ov,yy+ 8 11ow,yyy= 0 (5.74) 

011(ow,xxxx+ ow,yyyy) + 2(012 + 20ss)ow,xxyy (5.75) 

- 811(0U,xxx- ov,yyy) + Nxow,xx = 0 

Jones solved the problem for simply supported edge boundary condition 

S2 [5-19]: 

x=O, a: ow=O oMx = B11 ou,x - 0 11 ow,xx - 0 12ow,yy = 0 (5.76) 

ov=O oNX = A110U,x + A120V,y- B110W,xx = 0 (5.77) 

y=O, b: ow=O oMy=- B11ov,y- 0 12ow,xx- 0110W,yy= 0 (5.78) 

ou=O oNy = A12ou,x + A11ov,y + B11ow,yy = 0 (5.79) 
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and verified that the variations in deflections 

Bu = u cos m1tx sin ney 
a b 

av = v sin m1tx cos n1ty (5.80) 
a b 

aw= w sin~ sin ney 
a b 

satisfy both the boundary conditions and the governing differential 
equations exactly if the buckling load is 

N =[~J2
[T 

2
T12T23T13-T22°G3-T11~3] 

X m1t 33 + -2 (5.81) 
T11T22- 112 

(5.82) 

Note that if 8 11 is zero, then T13 and T23 are also zero, so Equation 
(5.81) reduces to the specially orthotropic plate solution, Equation (5.65), 
if D1 1 =D22. Because T11 , T12, and T22 are functions of both m and n, 
no simple conclusion can be drawn about the value of n at buckling as 
could be done for specially orthotropic laminated plates where n was 
determined to be one. Instead, Equation (5.81) is a complicated function 
of both m and n. At this point, recall the discussion in Section 3.5.3 about 
the difference between finding a minimum of a function of discrete vari
ables versus a function of continuous variables. We have already seen 
that plates buckle with a small number of buckles. Consequently, the 
lowest buckling load must be found in Equation {5.81) by a searching 
procedure due to Jones involving integer values of m and n [5-20] and 
not by equating to zero the first partial derivatives of Nx with respect to 
m and n. 

One of the major complications in the plate buckling solution is the 
need to investigate the influence of buckle mode shape on the buckling 
load itself. That is, the plate buckling load in Equation (5.81) is a function 

( 
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of the buckling mode shape parameters m and n as well as the laminated 
plate stiffnesses. In contrast, the column buckling load can, of course, 
be expressed in terms of the buckle mode shape parameter m, i.e., 

P=m21t2 _§_ 
L2 

(5.83) 

However, because we are usually interested only in the lowest buckling 
load for a column, m is always one. For plates, both m and n enter the 
buckling equation as well as the plate aspect ratio, alb, so the lowest 
buckling load does not typically occur for m = 1 and n = 1. Th~. we must 
find the absolute minimum of the values of the buckling load, Nx, or more 
generally, 1, for a wide range of m and n values. 

First, the relative minima of ).. for a series of fixed values of m are 
found by varying n over a prescribed range, as in Figure 5-25a. The 
absolute minima of the 1 for each value of m are then compared to find 
the absolute minimum 1 for all m and n in Figure 5-25b. The aforemen
tioned procedure of searching for an absolute minimum 1 for discrete 
values of m and n is necessary because of the possibility of more than 
one relative minimum for plates as in Figure 5-25b. In such cases, the 
ordinary procedures of determining a stationary value of 1 by differen
tiating ).. with respect to m and n and equating the results to zero are both 
totally inadequate and misleading. Those procedures depend on the 
buckling load being a continuous function of m and n, and obviously that 
function is not continuous. Moreover, more than one minimum of 1 could 
occur. 
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Figure 5-25 Determination of the Absolute Minimum Buckling Load 

The sign of the second derivative of 1 with respect to m and n must 
be examined in order to determine whether a minimum, maximum, or 
inflection point is obtained by the stationary value procedure that many 
erroneously call 'minimization.' Actually, the determination of such de-
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rivatives and the associated logic for selection of the absolute minimum 
would result in noninteger values of m and n that are physically unreal
istic and indeed impossible. Moreover, that inappropriate procedure 
would take about the same computational effort as the present more
suitable procedure. 

The present search procedure obviates the need for determining 
any derivatives of ).., but is subject to the limitation that a sufficiently wide 
range of values of m and n must be prescribed before starting the sol
ution. Otherwise, the absolute minimum ).. can be missed, i.e., the pre
scribed range of values of m and n must include the values for the true 
absolute minimum and cannot be truncated below that range without 
overestimating the buckling load. Two factors ease the difficulty in de
ciding on the range of values of m and n to be investigated: (1) practical 
experience and (2) behavior such as a decreasing ).. as the end of a 
range of n (or m) is approached as in Figure 5-25a is noted by the 
computer program developed by Jones [5-21]. A message is printed that 
the range of n (or m) should be increased to see if a lower).. is found. 
Such a procedure is obviously not infallible. For example, if the range 
of n investigated stopped after C but before D in Figure 5-25a, no mes
sage would be printed, whereas the minimum after D could be lower than 
the minimum at C. Practical experience with this computational aid 
should lead to reasonable assurance that no relative minimum that might 
be the absolute minimum is missed. 

As for the deflection problem in Section 5.3.3, the effect of the 
number of layers on the buckling load is found by dividing a constant
thickness, equal-weight cross-ply laminate into more and more laminae 
as in Figure 5-12. Results for graphite-epoxy antisymmetric cross-ply 
laminated plates for which E1tE2 = 40, G1iE2 = .5, and v12 = .25 are 
shown in Figure 5-26. There, the buckling load is normalized with re
spect to the plate width b and plate stiffness 0 22 for various rectangular 
plate aspect ratios and for various numbers of layers. The solution for 
an infinite number of layers (a specially orthotropic laminated plate) is 
shown as a limiting case of no bending-extension coupling. The coupling 
is extremely significant for a small number of layers. For two layers at 
a plate aspect ratio of one, the overestimate of buckling resistance is 
183% if the orthotropic approximation is made. From another point of 
view, the actual resistance is 65% less than calculated by use of the 
specially orthotropic approximation. For four layers, the analogous 
numbers are 19% overestimate and 16% reduction, respectively. For six 
layers, the numbers drop to 8% overestimate and 7% reduction, respec
tively. Obviously, the effect of bending-extension coupling dies out very 
rapidly as the number of layers increases for an antisymmetric laminate. 
However, for fewer than six layers, the effect cannot be ignored. 
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Figure 5-26 Buckling Loads for Antisymmetric Cross-Ply Laminated Plates 
under Uniform Uniaxial Compression Nx (After Jones (5-19)) 

When other composite materials are considered, the effect of 
bending-extension coupling on the buckling load depends essentially on 
the orthotropic modulus ratio, E1tE2, as shown in Figure 5~27. There, th_e 
buckling load is normalized by the buckling load of a specially orthotrop1c 
square plate (B11 = O). Values of G1tE2 and v12 are fix~d becau_se they 
do not vary significantly and their influence on the buckling load 1s small 
compared to that of E1tE2. As the modulus rati? decreas~s from ~he 
graphite-epoxy value of 40, the influence of bendm~-e~ens1on ~ouphng 
decreases slowly. As noted previously, the reduction m buckling l?ad 
of a square two-layered graphite-epoxy plate from the specially 
orthotropic plate is about 65%. For a square boron-epoxy plate, the re
duction is about 43%. From the design-analysis point of view, the spe
cially orthotropic plate solution is too high by 183% for a graphite-epoxy 
plate and by 74% for an analogous boron-epoxy plate. Obviously, 
bending-extension coupling is extremely important ~hen the ~late ~as 
only two layers. However, the influence of coupling dies out quite ~ap1d!Y 
as the number of layers increases. For example, the reduction m 
buckling load for a six-layered graphite-epoxy plate is only about 7% and 
about 5% for a boron-epoxy plate. 
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Figure 5-27 Relative Uniaxial Buckling Loads of Square Antisymmetric 
Cross-Ply Laminated Plates (After Jones [5-19]) 

5.4.4 Antisymmetric Angle-Ply Laminated Plates 

Antisymmetric angle-ply laminates were found in Section 4.3.3 to 
have extensional stiffnesses A11 , A12, A22, and Aoo; bending-extension 
coupling stiffnesses B16 and B26; and bending stiffnesses 0 11 , 0 12, 022, 
and 066. Thus, this type of laminate exhibits a very different kind of 
bending-extension coupling than does the antisymmetric cross-ply lami
nate examined in Section 5.4.3. The coupled buckling differential 
equations are 

A11 ou,xx + A66ou,yy + (A12 + ~)ov,xy- 3B16ow,-xxy- B26ow,yyy = 0 (5.84) 

(A12 + A6a)ou,xy + A66ov,xx + ~ 2ov,yy- B16ow,xxx - 3B26ow,xyy = 0 (5.85) 

0 11 W,xxxx + 2(012 + 2D66)ow,xxyy + D22ow,yyyy 
- (5.86) 

- B16(3ou,-xxy+ ov,xxx)- B26(ou,yyy+ 3ov,xyy) + Nxow,xx = 0 

Whitney solved the problem for simply supported edge boundary condi
tion S3 [5-13 and 5-14) (note that this boundary condition differs signif
icantly from the S2 condition used for buckling of antisymmetric cross-ply 
laminated plates in Section 5.4.3)): 

X = 0, a: ow= 0 oMX = B15(ov,x + ou,y) - D110W,xx - D120W,yy = 0 (5.87) 

ou = 0 oNxy = A66(ov,x + ou,y) - B16ow,xx - B26ow,yy = 0 (5.88) 

y = 0, b: ow= 0 oMY = B26(ov,x + ou,y) - D12ow,xx - D22ow,yy = 0 (5.89) 

ov = 0 oNxy = A66(ov,x + ou,y) - B16ow,xx - B26ow,yy = 0 (5.90) 

He then observed that the variations in displacement 
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- . m1tx n1ty 
ou = u sin -a- cos -b-

ov - v cos m1tx sin n1ty (5.91) - a b 

ow= w sin m1tx sin nny 
a b 

satisfy the boundary conditions and also satisfy the governing differential 
equations exactly if the buckling load is 

- [ a ] 2 [ 2T12T23T13- T22~3- T11~3 ] N = - T33 + ~ (5.92) X m1t 
T11T22- 12 

where 

[ m1t ]
2 

[ n1t ]
2 

T11 =A11 ~ +Aas b 

T12=(A12+A66)[ ~1t ][ n;] 

T13 =-[ 3916[ ~1t ]
2 

+ B2a[ n; f ][ n; ] 

2 2 

T22 =A22[ n; ] + Aas[ ~1t ] 

(5.93) 

T 23 = -[ B1a[ ~1t J2 + 3B2a[ n; f ][ ~1t ] 

4 2 2 ]4 
T 33 = 0 11 [ ~1t ] + 2(012 + 2066)[ ~1t ] [ n; J + D22[ r:; 

Note that if B16 and B26 are zero, then T 13 and T 23 _are also zero,_ so 
Equation (5.92) reduces to the specially orthotrop1c plate solution, 
Equation (5.65). The character of Equation (5.92) is the same as that 
of Equation (5.81) for antisymmetric cross-ply laminated plates, so th~ 
remarks on finding the buckling load in Section 5.4.3 are equally appli-
cable here. 

As for the deflection problem in Section 5.3.4, the effect of the 
number of layers on the buckling load is found by dividing a cons~ant
thickness, equal-weight angle-ply laminate into more and more l~minae 
as in Figure 5-15. Numerical results for graphite-epoxy composite ma
terial with E1tE2 = 40, G1iE2 = .5, and v12 "." .25 in s~uare pl~tes. are 
shown in Figure 5-28. The influence of bending-extension coupling 1s to 
reduce the buckling load for two-layered plates from the many layered 
result (which is the specially orthotropic plate solution of Secti~n ~-_4.1 ). 
At 45° the reduction is by about a factor of 2/3; perhaps more s1grnf1cant 
is the tact that use of the specially orthotropic approximation leads to a 
predicted buckling load that is three times the actual buckling loadl <?b
viously, the specially orthotropic approximation is highly unconservat1ve 
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for antisymmetric_ angle-ply l~minates with less than six layers. For six 
layers,. the erro~ in the buckling load is about 7%. Thus, the bending
extension co_uplmg eff~ct ~ies out rapidly as the number of layers in
c~eases. T~1s conclusion 1s valid for other materials as represented in 
Figure 5-29 in the manner of Section 5.4.3. 
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Figure 5-28 Buckling ?f Squar~ ~ntisymmetric Angle-Ply Laminated Plates 
under Uniform Umax1al Compression, Nx 
(After Jones, Morgan, and Whitney [5-22)) 
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Figure 5-29 Relative Uniaxial Buckling Loads of 
Square Antisymmetric Angle-Ply Laminated Plates 
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Problem Set 5.4 

5.4.1 Derive Equation (5.55). 
5.4.2 Consider a symmetric cross-ply laminated plate and a unidirectionally reinforced 

plate as in Figure 5-23. Both plates have three graphite-epoxy layers each of 
thickness t, simple supports on all four edges, and Nx applied. Demonstrate that the 
bending stiffnesses have the inequalities: D11 uo > D22uo (UD = unidirectional), 
D11 uo > D11cp (CP = cross-ply), and D22ep > D22uo· Express all laminate bending 
stiffnesses in terms of that of a single 0° layer, i.e., E,t3i12(1 - v12v21 ). Use these 
stiffness results to calculate the buckling load in Equation (5.66) to explore the im
portance of D22 (as well as D12 and D66) in the calculation for alb= 2 and m = 1. 
Describe the importance of the second two terms in Equation (5.66) as (1) alb in
creases and (2) m increases. What happens to m as alb increases? 

5.4.3 Derive Equation (5.81). Hint: for a set of homogeneous equations to have a non
trivial solution, the determinant of the coefficients must be zero. 

5.4.4 Derive Equation (5.92). See hint in Problem 5.4.2. 

5.5 VIBRATION OF SIMPLY SUPPORTED LAMINATED PLATES 

Consider the general class of laminated rectangular plates that are 
simply supported along edges x = 0, x = a, y = 0, and y = b as shown in 
Figure 5-30. The nature of the free (not forced) vibrations of such a 
structural configuration about an equilibrium state will be addressed in 
this section according to the governing differential equations and 
boundary conditions discussed in Section 5.2. Other more complicated 
boundary conditions and the effect of an equilibrium stress state could 
be considered. However, in consonance with the restricted objectives 
of this book, those topics are left for further study. A more comprehen
sive treatment of laminated plate vibrations is provided by Whitney (5-1]. 

The free vibration frequencies and mode shapes will be determined 
for plates with various laminations: specially orthotropic, symmetric 
angle-ply, antisymmetric cross-ply, and antisymmetric angle-ply. The 
results for the different types of lamination will be compared to determine 
the influence of bend-twist coupling and bending-extension coupling on 
the vibration behavior. As with the deflection problems in Section 5.3 
and the buckling problems in Section 5.4, different simply supported 
edge boundary conditions will be used in the several problems pre
sented. 

5.5.1 Specially Orthotropic Laminated Plates 

A specially orthotropic laminate has either a single layer of a spe
cially orthotropic material or multiple specially orthotropic layers that are 
symmetrically arranged about the laminate middle surface. In both 

Figure 5-30 Vibration of a Simply Supported Laminated Rectangular Plate 
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cases, the laminate stiffnesses consist solely of A11 A A A D D D . . • 12, 22, 66• 
11, . 12, 22, and_ 0 66. That 1s, neither shear-extension or bend-twist 

coupling nor bending-extension coupling exists. Then, for plate prob
lems'. the vibration frequencies and mode shapes are determined from 
solution of a single vibration differential equation 

D116w,xxxx + 2(D12 + 2Dss)6w,xxyy + D226w,YY'IY + p6w,tt = O (5.94) 

subject to the simply supported edge boundary conditions 

x = O, a: 6w = O t,M D t, D t, u x=- 110W,xx- 120W,yy=O 
Y = 0, b: 6w = 0 6My = - D126w,xx - D226w,yy = O (

5
.
95

) 

The free vibration of an elastic continuum is harmonic in time so Whitney 
chose a harmonic solution ' 

ow(x,y,t} = (A cos rot+ B sin rot}Sw(x,y} (5.96} 

and _obse~e? that the problem has now been separated into time and 
spat,~! variations ~5-_1 ]. The resulting differential equation and boundary 
cond1t1ons are sat1sf1ed with the spatial variation of lateral displacement 

ow(x,y} = sin ":x sin n: (5.97} 

if the frequency is 

ol = ~
4 

[ D11 [ ~ r + 2(D12 + 2Dss)[ ~ ]2[ ~ J2 + D22[ ~ r ]<5.98) 

where the. various natural frequencies, ro, correspond to different mode 
s~apes (different values of m and n in Equation (5.97), so accordingly 
different shapes of w}. The fundamental natural frequency (lowest fre
quency} is obviously obtained when m and n are both one. 

. For a specially orthotropic square boron-epoxy plate with stiffness 
r~t1os D11l~22 = 10 and (012 + 2D66} = 1, the four lowest frequencies are 
~1spla~ed in Table 5-3 along with the four lowest frequencies of an 
1sotrop1c plate. There, the factor k is defined as 

(I) = lot 2 - fi5;; 
b2 "\./f 

Table 5-3 Normalized Vibration Frequencies for 

(5.99} 

Specially Orthotropic and Isotropic Simply Supported Square Plates 

Mode 
Specially Orthotropic isotropic 

m n k m n k 
1st 1 1 3.60555 1 1 2 
~ 1 2 5.84095 1 2 5 
3rd 1 3 10.44031 2 1 5 
4th 2 1 13 2 2 8 

( 
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where for an isotropic plate D22 = D. The corresponding mode shapes 
are shown in Figure 5-31, where the nodal lines (lines of zero deflection 
with time} are indicated with dashed lines. The significant observation is 
that the specially orthotropic plate has a different set of four lowest fre
quencies than does the isotropic plate. That is, a directional preference 
is exhibited by the specially orthotropic plate as evidenced by the m = 1 , 
n = 3 mode having a lower frequency than the m = 2, n = 1 mode. In 
contrast, the isotropic plate has the same frequency for both the m = 2, 
n = 1 mode and the m = 1, n = 2 mode. Similar information could be de
veloped for all the examples that follow. However, we will concentrate 
on the fundamental natural frequency to simplify the discussion. 

RHTMOM D D 
SECONDMODE ~ ~ 

THIRD MODE ~-----~ DJ 
FOURTH MODE [I] t-H 

Figure 5-31 Vibration Mode Shapes for 
Simply Supported Square Specially Orthotropic and Isotropic Plates 

5.5.2 Symmetric Angle-Ply Laminated Plates 

Symmetric angle-ply laminates were found in Section 4.3.2 to be 
characterized by a full matrix of extensional stiffnesses as well as bend
ing stiffnesses, but to have no bending-extension coupling. The principal 
difference between these laminates and specially orthotropic laminates 
is the introduction here of the bend-twist coupling stiffnesses 0 16 and 
D

26 
(the shear-extension coupling stiffnesses A16 and A26 are immaterial 

for transverse vibration of a symmetrically laminated plate because the 
governing differential equations are uncoupled}. Accordingly, the gov
erning vibration differential equation is 

D116w,xxxx + 4D166w,xxxy + 2(D12 + 2Dss)6w,xxyy 

+ 4026ow,xyyy+ 0 226w,YY'IY+ p6w,tt= 0 
(5.100} 
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subject to the simply supported edge boundary conditions at all time 

x = 0, a: ow= 0 oMx = - 0 11 ow,xx - 0 12ow,yy- 2016ow,xy = O 

Y = 0, b: OW= 0 OMY = - 0 12ow,xx - 022ow,yy - 2026ow,xy = O (5-101 ) 

The presence of 0 16 and 0 26 in the governing differential equation 
and t~e. boundary conditions renders a closed-form solution impossible. 
That 1~, in analogy to both bending and buckling of a symmetric angle-ply 
(or anisotropic) plate, the variation in lateral displacement, ow, cannot be 
separated into a function of x alone times a function of y alone. Again, 
however, the Rayleigh-Ritz approach is quite useful. The expression 

00 00 

ow= ~ ~ A sin mnx sin nny 
LJ LJ mn a b 

m=1n=1 
(5.102) 

satisfies the geometric boundary conditions (w = o on all edges), but not 
t~e nat~ral boun?ary conditions (Mn= O on all edges) or the governing 
d1ffer~nt1al equation. Therefore, the use of Equation (5.102) in the ap
propnate energy expression might result in rather slow convergence to
ward the exact solution. No numerical results for this laminate class are 
known to the author. 

5.5.3 Antisymmetric Cross-Ply Laminated Plates 

Antisymmetric cross-ply laminates were found in Section 4.3.3 to 
hav~ extensio_nal st(ffnesses A11 , A12, A22 = A11 , and Ass, bending-ex
tension coupling stiffnesses 8 11 and 822 = -811 , and bending stiff
nesses 011, 012, 022 = 01 1, and 0 66. The new terms here in comparison 
to a _specially ~rthotropic laminate are 811 and 822. Because of this 
bend1ng-extens1on coupling, the three vibration differential equations are 
coupled: 

A11ou,xx + A66ou,yy + (A12 + A66)ov,xy- 8 11 ow,xxx = 0 

(A12 + A55)0U,xy + A550V,xx + A110V,yy + B110W,yyy = 0 

0 11 (w,xxxx + ow,yyyy) + 2(012 + 2066)ow,xxyy 

- 811 (ou,xxx - ov,yyy) + pow,tt = 0 

Whitney observed that the variations in displacement 

ou(x,y,t) = u cos m;x sin n~y /"t 

ov(x,y,t) = v sin m;x cos n~y /•it 

ow(x,y,t) = w sin ":x sin n~y /"t 

(5.103) 

(5.104) 

(5.105) 

(5.106) 
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satisfy simply supported edge boundary condition S2 at all time 

x=O, a: 

y=O, b: 

OW= 0 

OV=O 

8w=O 

OU=O 

oMx= B11 ou,x- 0 11 ow,xx- 0 12ow,yy= 0 

oNx = A11 ou,x + A12ov,y- B11ow,xx = 0 

oMY = - B11 ov,y- 0 12ow,xx- 0 11 8w,yy = 0 

8Ny = A12ou,x + A11ov,y + B118w,yy = 0 

and the governing differential equations if frequency is 

2 n
4 

[ 2T12T23T13- T22~3- T11 °G3 l 
ro =p T33+ .....2 

T11T22- 112 

(5.107) 

(5.108) 

(5.109) 

where the Tii are defined in Equation (5.82) [5-12 and 5-13). Note that 
if 8 11 = 0, then T 13 and T 23 are also zero, so Equation (5.109) reduces 
to the specially orthotropic plate solution, Equation (5.98), if 0 11 = 0 22. 
Because T11 , T12, and T22 are functions of both m and n and appear in 
the denominator of Equation (5.109), no simple conclusion can be drawn 
about the values of m and n for the lowest frequency. Instead, Equation 
(5.109) must be treated as a function of the discrete variables m and n 
and minimized accordingly. As a matter of fact, for the results presented 
in the numerical example, the fundamental frequency does correspond 
to both m and n are one. Caution is urged against a general conclusion 
for the mode shape of the fundamental frequency. 

As for the deflection problem in Section 5.3.3, the effect of the 
number of layers on the vibrations is found by dividing a constant
thickness, equal-weight cross-ply laminate into more and more laminae 
as in Figure 5-12. Numerical results from Equation (5.109) are presented 
in Figure 5-32 for graphite-epoxy composite materials with E1tE2 = 40, 
GdE2 = .5, and v12 = .25. The effect of bending-extension coupling is 
to lower the vibration frequencies. For example, the fundamental fre
quency of a square plate is reduced by about 40% from the special!~ 
orthotropic plate solution to the exact solution for a two-layered plate. 
More importantly, the specially orthotropic plate approximation is too high 
by 60%! As the number of layers increases, the effect of bending
extension coupling decreases. For example, a six-layered plate has a 
fundamental frequency only 5% smaller than the specially orthotropic 
plate approximation. Nevertheless, it is readily apparent that bending
extension coupling must be considered in laminated plate vibrations. 
This conclusion is reinforced by observation of the vibration results for 
other composite materials in Figure 5-33. 

2Note that the vibration frequency reductions are far less than the buckling load reductions. 
That this conclusion must be reached is clear from the fact that Equation (5.109) involves 
the square of the natural frequency, whereas Equation (5.81) Involves the buckling load to 
the first power. Thus, the square root of the differences represented by the right-hand sides 
of Equations (5.81) and (5.109) is smaller than the differences themselves. 
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5.5.4 Antisymmetric Angle-Ply Laminated Plates 

Antisymmetric angle-ply laminates were found in Section 4.3.3 to 
have _exten~ional stiffnesses A11 , A12, A22, and As6; bending-extension 
coupling stiffnesses 819 and 826; and bending stiffnesses D11 , D12, 
D22, a~d D66. !hus, this laminate exhibits a different kind of bending
~xtens1~n coupling than the antisymmetric cross-ply laminate discussed 
in Section 5.5.3. The coupled vibration differential equations are 
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A11 ou,xx + A66ou,yy + (A12 + A66)ov,xy- 3B16ow,xxy - B26ow,yyy = 0(5.110) 

(A12 + A66)ou,xy + A66ov,xx + A22ov,yy - 8 16ow,xxx - 3B26ow,xyy = 0 (5.111) 

D11ow,xxxx + 2(012 + 2D66)ow,xxyy + D22ow,yyyy 

- 815(3ou,xxy + ov,xxx) - B26(ou,yyy + 3ov,xyy) + pow,tt = o (5-
112

) 

Whitney used the variations in displacements 

ou(x,y,t) = u sin m;x cos n:7 eirot 

ov(x,y,t) = v cos m1tx sin n1ty e"fA. (5.113) 
a b 

ow(x,y,t) = W sin m;x sin n:7 eirot 

that satisfy the simply supported edge boundary condition S3: 

X = 0, a: ow= 0 oMX = 815(0V,x + ou,y) - D110W,xx - D120W,yy = O 
OU= 0 ONxy = A66(ov,x + ou,y) - 816ow,xx - B26ow,yy = O (

5
· 1

14
) 

ow= 0 oMy = 826(ov,x + ou,y) - D12ow,xx - D22ow, = 0 
Y = 0, b: yy (5 115) 

ov = 0 oNxy = As6(ov,x + ou,y) - 816ow,xx - B16ow,yy = 0 . 

at all time and the governing differential equations if the frequency is 

2 _ 1t
4 

[T 2T12T23T13- T22T~3- T11 ~3 l ro - p 33 + (5.116) 
T11T22- ~2 

'."here the "!ii are defined in Equation (5.93) [5-12 and 5-13). Note that 
1f 8 16 and lj26 are zero, then T 13 and T 23 are also zero, so Equation 
(5.116) reduces to the specially orthotropic plate solution, Equation 
(5.65). The character of Equation (5.116) is the same as that of 
Equations (5.81 ), (5.92), and (5.109), so the remarks in Section 5.4.3 are 
equally valid here. 

As for the deflection problem in Section 5.3.4, the effect of the 
n~mber of layers on the vibrations is found by dividing a constant
th1ckness, equal-weight angle-ply laminate into more and more laminae 
as. in Fi~ure 5-15. Numerical results for graphite-epoxy composite ma
tenals with E1tE2 = 40, G1iE2 = .5, and v12 = .25 are given as a function 
of lamination angle in Figure 5-34. As with 8 11 in Section 5.5.3, the ef
fect of the bending-extension coupling stiffnesses B16 and B26 is to lower 
the fundamental vibration frequencies. For example, the fundamental 
natural frequency of a square plate with 0 = 45° and two layers is about 
40% less than the specially orthotropic plate solution which is valid when 
the number of layers is infinite. Put another way, the specially orthotropic 
plate solution is too high by about 80%1 Again, as the number of layers 
increases, the bending-extension coupling decreases rapidly. For a six
layered plate, the difference between the specially orthotropic plate sol
ution and the exact solution is about 4%. Obviously, bending-extension 
coupling can be quite important for antisymmetrically laminated plates. 
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This conclusion is unchanged when other composite materials are con
sidered as in Figure 5-35. 

Problem Set 5.5 

5.5.1 Derive Equation (5.98). 
5.5.2 Derive Equation (5.109). See hint in Problem 5.4.2. 
5.5.3 Derive Equation (5.116). See hint in Problem 5.4.2. 
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5.6 SUMMARY REMARKS ON EFFECTS OF STIFFNESSES 

The presence of bending-extension coupling in a laminated plate 
generally increases deflections. Hence, coupling decreases the effective 
bending stiffnesses of a laminate. At the same time, this coupling re
duces buckling loads and vibration frequencies significantly as would be 
expected for plates with effectively lower bending stiffnesses. 

Similarly, for laminated plates with bend-twist coupling, the de
flections are increased, the buckling loads decreased, and the vibration 
frequencies decreased. In both cases of bending-extension coupling and 
bend-twist coupling, the effect on deflections, buckling loads, and vi
bration frequencies for a fixed-thickness antisymmetric or symmetric 
laminate, respectively, dies out rapidly as the number of layers increases. 
For more general laminates, specific investigation is required. That is, 
there is simply no guarantee or even any reason to expect that conclu
sions reached for many layered antisymmetric laminated plates have any 
validity whatsoever for more general unsymmetrically laminated plates. 

A somewhat more general class of laminates, unsymmetric cross
ply laminates, was discussed by Jones [5-19] as well as Jones and 
Morgan [5-23]. All geometric and material property symmetry require
ments of the preceding sections are relaxed. Still, the restriction to 
cross-ply laminates (of arbitrary layer thickness and 0° and 90° stacking 
sequence) enables a simple exact solution to be obtained. However, 
because of the infinite complexity of this class of laminates, general re
sults are impossible. Instead, consider the cross sections of the con
trived, but representative unsymmetric laminate example in Figure 5-36. 
There, the fibers in the second layer from the bottom are always oriented 
at 90°, and the fibers in all other layers are oriented at 0° to the plate 
x-axis. Thus, for a constant-thickness laminate, the 90° layer gets 
thinner and moves toward the bottom of the laminate as the number of 
layers increases. This example is probably never encountered in engi
neering practice, but it is a simple, straightforward example of unsym
metric laminates that is amenable to comprehensive parametric study . 
The results obtained will serve as a very simple proof by contradiction 
that the structural effects of bending-extension coupling do not neces
sarily die out rapidly as the number of layers increases (contrary to the 

i···I 
3 LAYERS 4 LAYERS 5 LAYERS 

••• • •• II~ 
6 LAYERS 12 LAYERS ~ LAYERS 

Figure 5-36 Unsymmetric Cross-Ply Laminate Example (After Jones [5-19]) 
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results for antisymmetric cross-ply and angle-ply laminated plates). The 
applicable theory is already available in Sections 5.3-5.5. 

Normalized maximum deflections (at the center) for graphite-epoxy 
unsymmetrically cross-ply laminated rectangular plates with uniform 
transverse loading are shown in Figure 5-37. The results are obtained 
by summing exact deflection solutions, Equation (5.49), for each com
ponent of the Fourier sine series expansion for a uniform transverse load, 
Equation (5.26). The plate aspect ratio is 3, a value for which the results 
are the most strikingly different from the baseline results of a laminate 
with all 0° layers in the x-direction (in which a= 3b) and the unsymmetric 
laminate with bending-extension coupling ignored (Bil= 0): hence, an 
orthotropic laminate or a specially orthotropic laminate. The unsymmetric 
laminate is stiffer than the all-0°-layer laminate (i.e., less center deflection 
occurs for the unsymmetric laminate) and more flexible than the 
orthotropic laminate. 

We will see that the unsymmetric laminate has more bending 
stiffness in the y-direction than the all-0°-layer laminate and almost as 
much bending stiffness in the x-direction. Thus, the center deflection of 
the unsymmetrically laminated plate should exceed that of the all-0°-layer 
laminated plate. However, we are already aware that bending-extension 
coupling increases deflections, so the center deflection of the unsym
metric laminate should exceed that of the orthotropic laminated plate. 

The real point of this example is that the deflection effects just dis
cussed are very significant for numbers of layers that, in our studies of 
antisymmetric laminates earlier in this chapter, we concluded that 
bending-extension coupling had disappeared! Here, the exact solution 
exceeds the orthotropic solution by 165% at 6 layers, 165% at 1 O layers, 
90% at 20 layers, and 30% at 50 layers. Even at 100 layers, the dis
crepancy is still 11 %. These differences are well within the consideration 

lllllllllllll} All O" LAYERS 

.I I-- a= 3b ---1 p(x,y)= Po 

0 20 40 60 80 100 

NUMBER OF LAYERS 

Figure 5-37 Deflection under Uniform Transverse Loading of 
Unsymmetrlc Cross-Ply Laminated Graphite-Epoxy Plates 
(After Jones and Morgan [5-23]) 
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of usual engineering design practice. These discrepancies exist for 
many more layers than bending-extension coupling was believed to be 
important. That belief (by some, not all) was established on the basis 
of extrapolating antisymmetric cross-ply and antisymmetric angle-ply re
sults like those in Sections 5.2 through 5.4. Obviously, such extrapo
lation is invalid. However, truly no one had any better basis except to 
remain skeptical and try to find out what actually happens for unsym
metric laminates. 

As an aid to understanding the deflection behavior in Figure 5-36, 
the normalized extensional, bending-extension coupling, and bending 
stiffnesses are plotted versus the number of layers in Figure 5-3~. The 
stiffnesses in the x-direction (with which most fibers are aligned), A11 and 
511 , are nearly independent of the number of la_yers. Ho~ever, the 90° 
layer causes the stiffnesses in the y-direction, A22 and 0 22, to deviate 
by up to an order of magnitude from the values for the all-0°-layer lami
nate (which are the same as for an infinite number of layers). These 
discrepancies die out very, very slowly as the number of layers in
creases. Moreover, the normalized stiffness for bending-extension cou
pling, which can be shown to be 

811 1 [ E2 ] --=- 1-- (N-3) 
Q t2 2N2 E1 

11 

(5.117) 

(where N is the number of layers) and which appears in Equation (5.81) 
and thereby enables stiffnesses A22 and 022 to influence the buckling 
load, also dies out very slowly. The maximum bending-extension coupl
ing occurs for this unsymmetric laminate at N = 6. _ Do not attempt jo 
compare the magnitudes of, for example, the terms 0 22 and B11t(011f) 
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Figure 5-38 Normalized Stiffnesses of 
Example Unsymmetric Cross-Ply Graphite-Epoxy Laminate 
(After Jones [5-19]) 
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quantitatively. They do not have the same base for normalization (B 
cannot be normalized relative to its value for an all-0°-layer laminal~ 
because. in that case its value is zero). Thus, the effect of a single un
symmetncally placed 90° layer on the deflection dies out very slowly as 
the number of layers increases. 

N?rmalized buckling loads for graphite-epoxy unsymmetric cross
ply laminated rectangular plates are shown in Figure 5-39. The plate 
aspect ratio is 2, ~ value for which the results are the most strikingly dif
ferent from baseline results. One of the baseline comparison values is 
the b~ckling load for a _lamin~te with all 0° layers. The other comparison 
?a~e 1s an unsymmetnc laminate for which bending-extension coupling 
1s ~gnored (~ii =.0). R~sults for the actual unsymmetric laminate, for 
which coupling 1s considered, are labeled exact solution. The actual 
la!l'inate has, not surprisingly, less buckling resistance than a laminate 
wit~ Bii = 0. On the o~her ha~d, the actual lamina~e has more buckling 
resistance than a laminate with all 0° layers. This curious result is a 
conseq~enc~ of the relative values of the bending stiffnesses in the x
and y-direct1ons as well as the plate aspect ratio. As will be seen sub
sequently, D11 is decreased somewhat by the presence of a 90° layer 
b~t simultan~ously D22 is increased by factors of up to an order of mag: 
rntude. T~e influence of D22 is ,:nost easily examined for a three-layered 
plate that 1s, of course, symmetric. Thus, the exact solution corresponds 
to the specially orthotropic solution (Bii = O); for example, see the hori
zontal mark at three layers in Figure 5-39 where the two curves coincide. 
At that point, the specially orthotropic solution for a plate with an aspect 
ratio of 2 which buckles into the m = 1, n = 1 mode is 

- 2 2[ D11 ] NXL = 1t -4-+ 2(D12 + 2066) + 4D22 

0 o~~~20'--~~"--~~60~--180L-.___J100 

NUMBER OF LAYERS 

(5.118) 

Figure 5-39 Uniaxial Buckling Loads of Graphite-Epoxy 
Unsymmetric Cross-Ply Laminated Rectangular Plates 
{After Jones [5-19}) 
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which is readily 6btained from Equation (5.81 ). The term in Equation 
(5.118) involving D11 decreases by less than 4% when the actual lami
nate is considered as opposed to the all-0°-layer laminate. The net result 
is a normalized buckling load that is 33% bigger for the actual laminate 
than for the all-0°-layer laminate. 

The differences between the exact, specially orthotropic, and 
all-0°-layer predictions in Figure 5-39 range from 48% less than the 
specially orthotropic solution at 6 layers to 18% less at 40 layers to 6% 
less at 100 layers. In addition, the exact results range from about 30% 
more than the all-0°-layer laminate results at 30 layers to about 18% 
more at 100 layers. Again, such differences are well within the consid
eration of usual engineering design practice. 

Normalized fundamental natural frequencies for the example un
symmetrical cross-ply laminated graphite-epoxy plates are shown in 
Figure 5-40. The vibration results are analogous to the buckling results 
in the same manner as explained for antisymmetric laminates, namely, 
lesser differences for vibration frequencies because of the square-root 
factor. 

The approximation of a general laminate by a specially orthotropic 
laminate can result in errors as big as a factor of 3. Thus, use of the 
specially orthotropic approximation must be carefully proven to be justi
fied for each case under consideration. Always remember that the spe
cially orthotropic approximation yields unconservative results. Thus, the 
only general rule is that bending-extension coupling and bend-twist cou
pling should be included in every analysis of laminated plates unless 
such coupling is proven to be insignificant for the specific laminated plate 
under consideration. 
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Figure 5-40 Fundamental Natural Vibration Frequencies of 
Rectangular Unsymmetric Cross-Ply Graphite-Epoxy Plates 
(After Jones [5-19]) 

More Accurate Approach to Bend-Twist Coupling 

The effects of the bend-twist coupling stiffnesses on deflections, 
buckling loads, and vibration frequencies of laminated plates can be as-
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sessed more accurately than in this book by use of a procedure due to 
Whitney (5-24]. He uses a double Fourier series expansion of the un
known displacement to satisfy the natural boundary conditions and 
thereby speed convergence to precise results. Note that the Rayleigh
Ritz method described here does not satisfy the natural boundary con
ditions and therefore convergence is very slow and sometime5\not to the 
correct solution. As an example, consider a simply supported-square 
graphite-epoxy plate (E11E2 = 25, v12 = .25, and 0 661022 = .5) with prin
cipal material directions at 45° to the plaj_e sj_Qes. When the plate is 
subjected to biaxial in-plane compression, Nx = Ny, the buckling loads are 
given in Table 5-4 for Whitney's approach and the Rayleigh-Ritz ap
proach due to Ashton (5-25]. Obviously, Whitney's results converge 
rapidly although there is some oscillation. In contrast, the Rayleigh-Ritz 
results converge (?) slowly and to an incorrect value. Ashton showed 
that the rate of convergence of a Rayleigh-Ritz method for simply sup
ported anisotropic plates depends on the orthotropy ratio, E11E2 , when 
the natural boundary conditions are not satisfied (5-26]. Thus, his results 
in Table 5-4 are to be expected. 

Table 5-4 Buckling under Biaxial Compression of 
Simply Supported Square Graphite-Epoxy Anisotropic Plates* 
(After Whitney [5-241) 

Number of Nb21a22t3 

Terms in Series Whitney's Ashton's m = n Fourier Analysis Rayleigh-Ritz Analysis 

1 6.763 
3 8.115 
5 8.318 
7 8.418 
9 8.481 

11 8.521 
13 8.556 

·a, ,1022 = 25, a,2'022 = .25, 05ef022 = .5 with 
principal material directions at 45° to plate sides 

Reduced Bending Stiffness Approach 

21.438 
13.013 
11.565 
11.060 

-
-
-

In their pioneering paper on laminated plates, Reissner and 
Stavsky investigated an approximate approach (in addition to their exact 
approach) to calculate deflections and stresses for antisymmetric angle
ply laminated plates (5-27]. Much later, Ashton extended their approach 
to structural response of more general unsymmetrically laminated plates 
and called it the 'reduced stiffness matrix' method [5-28]. The attraction 
of what is now called the Reduced Bending Stiffness (RBS) method is 
that an unsymmetrically laminated plate can be treated as an orthotropic 
plate using only a modified D matrix in the solution, i.e., 

D*=D-BA-18 (5.119) 

or, at worst, an anisotropic plate if the D* matrix is full. Thus, analyses 
in which only bending stiflnesses occur can be used to treat unsymmetric 
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laminates that actually have all three stiffness matrices by replacing the 
various elements of the D matrix with the corresponding elements of the 
D* matrix. Note that physically this substitution makes sense, i.e., a 
lower D* than D would lead to higher deflections and lower buckling loads 
and vibratio~ frequencies, as we know h~ppens when bending-ex_t~nsion 
coupling exists. However, the term BA A must be proven pos1t1ve for 
D* to be less than D (and it has not been proven for other than anti
symmetric cross-ply and angle-ply laminated plates). In the one
dimensional case of cylindrical bending of a plate examined in Section 
6.5, the exact coefficient on the deflection is shown to be 

2 
• 811 D11 = D11 - p;- (5.120) 

11 

which is the one-dimensional equivalent of Equation (5.119} and, indeed, 
D* < D. Ashton obtained reasonably accurate approximations to 
Whitney's results for antisymmetric cross-ply and angle-ply laminated 
plates under uniform and sinusoidal transverse loading [5-14]. A disad
vantage of the RBS approximation is that in-plane boundary conditions 
are not included so there is no distinction between the four simply sup
ported edge boundary conditions in Equation (5.11) nor between the four 
clamped edge boundary conditions in Equation (5.12). Thus, it is not 
surprising that Whitney found significant differences between various 
clamped edge solutions and the RBS approximation for bending, 
buckling, and vibration of antisymmetric cross-ply and angle-ply lami
nated plates [5-29]. Ewing, Hinger, and Leissa found excellent agree
ment (error~ .25%) for bending, buckling, and vibration of antisymmetric 
cross-ply plates with S2 boundary conditions [5-30]. However, they 
found far less favorable results for antisymmetric angle-ply plates with 
S3 boundary conditions (up to 28% overestimate in maximum deflection, 
22% underestimate in buckling loads, and 12% underestimate in vi
bration frequencies in the worst-case situation of two-layered square 
plates with e = ± 10°). Unfortunately, the quality of the approximation has 
not been determined for truly unsymmetric laminates, such as the un
symmetric cross-ply at the beginning of Section 5.6 or more practically 
applicable laminates. 
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Chapter 6 

OTHER ANALYSIS 
AND BEHAVIOR TOPICS 

6.1 INTRODUCTION 

The objective of this chapter is to address introductory sketches of 
some fundamental behavior issues that affect the performance of com
posite materials and structures. The basic questions are, given the me
chanics of the problem (primarily the state of stress) and the materials 
basis of the problem (essentially the state of the material): (1) what are 
the stiffnesses, (2) what are the strengths, and (3) what is the life of the 
composite material or structure as influenced by the behavioral or envi
ronmental issues in Figure 6-1? 

MECHANICS 
(STATE OF STRESS) 

~ 
• FATIGUE? 

• FRACTURE? 

• HOLES IN LAMINATES? 

HOW STIFF? 

Cijkl =? 

HOW STRONG? 

X;i=? 

HOW LONG? 

L;; =? 

• TRANSVERSE SHEAR EFFECTS ? 

• POST-CURING LAMINATE SHAPE ? 

MATERIALS 
(STATE OF MATERIALS) 

JJ 
e ENVIRONMENT ? 

• TEMPERATURE ? 
•MOISTURE? 
• CORROSION ? 

• SHELL BEHAVIOR ? 

• NONLINEARITIES ? 

Figure 6-1 Basic Questions in Composite Materials and Structures 
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6.2 REVIEW OF CHAPTERS 1 THROUGH 5 

The basic nature of composite materials was introduced in Chapter 
1. An overall classification scheme was presented, and the mechanical 
behavior aspects of composite materials that differ from those of con
ventional materials were described in a qualitative fashion. Tl-l_e book 
was then restricted to laminated fiber-reinforced composite maW!als. 
The basic definitions and how such materials are made were then 
treated. Finally, the current and potential advantages of composite ma
terials were discussed along with some case histories that clearly reveal 
how composite materials are used in structures. 

The macromechanical behavior of a lamina was quantitatively de
scribed in Chapter 2. The basic three-dimensional stress-strain relations 
for elastic anisotropic and orthotropic materials were examined. Subse
quently, those relations were specialized for the plane-stress state 
normally found in a lamina. The plane-stress relations were then trans
formed in the plane of the lamina to enable treatment of composite lam
inates with different laminae at various angles. The various fundamental 
strengths of a lamina were identified, discussed, and subsequently used 
in biaxial strength criteria to predict the off-axis strength of a lamina. 

The micromechanical behavior of a lamina was treated in Chapter 
3. Both a mechanics of materials and an elasticity approach were used 
to predict the fundamental lamina stiffnesses that were compared to 
measured stiffnesses. Mechanics of materials approaches were used to 
predict some of the fundamental strengths of a lamina. 

A collection of the basic building block, a lamina, was bonded to
gether to form a laminate in Chapter 4. The behavior restrictions were 
covered in the section on classical lamination theory. Special cases of 
laminates were discussed to learn about laminate characteristics and 
behavior. Predicted and measured laminate stiffnesses were favorably 
compared to give credence to classical lamination theory. Then, the 
strength of laminates was discussed and found to be reasonably pre
dictable. Finally, interlaminar stresses were analyzed because of their 
apparent strong influence on laminate strength (and life). 

The influence of composite laminate characteristics on analysis of 
bending, buckling, and vibration of plates was examined in Chapter 5. 
First, the governing differential equations were introduced. Then, each 
of the basic structural problems was analyzed for orthotropic, anisotropic, 
antisymmetric cross-ply, and antisymmetric angle-ply laminated, simply 
supported, rectangular plates. Thus, the effects of bend-twist coupling 
and bending-extension coupling on structural response were evaluated 
with special attention paid to general laminates in which these effects 
could be important. 

Obviously, the foregoing description of problems in the mechanics 
of composite materials is incomplete. Some topics do not fit well within 
the logical framework just described. Other topics are too advanced for 
an introductory book, even at the graduate level. Thus, the rest of this 
chapter is devoted to a brief discussion of some basic lamina and lami
nate analysis and behavior characteristics that are not included in pre
ceding chapters. 
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6.3 FATIGUE 

Fatigue of a structural element may be a significant design param
eter in some applications. The aircraft crashes caused by fatigue failures 
are well known. Thus, the obvious question is: how do composite ma
terials fatigue characteristics compare to those of conventional metals? 
The answer is, in brief, much better! The material or internal damping in 
composite materials is high, yet the fatigue characteristics are quite 
good. One of the main reasons for this fortunate circumstance is sche
matically depicted in Figure 6-2 [6-1]. There, the initial imperfections in 
composite materials such as broken fibers, delamination, matrix cracking, 
fiber-matrix debonding, voids, etc., can be much larger than corre
sponding imperfections in conventional metals such as cracks. In con .. 
trast, the initial imperfection in a metal is simply a small crack. However, 
the growth of damage in a metal is typically much more abrupt, as evi
denced by Figure 6-2, and hence potentially more dangerous than in a 
composite material. 

DAMAGE 
SIZE 

COMPOSITES 

INSPECTION THRESHOLD 

FATIGUE CYCLES OR TIME 

Figure 6-2 Fatigue Damage Behavior of Composite Materials and Metals 
(After Sa/kind [6-1 ]) 

Composite materials undergo a variety of different damage modes 
during fatigue as in Figure 6-3. There, stage 1 is characterized by matrix 
cracking and fiber breaking. Stage 2 consists of coupling of cracks with 
interfacial debonding in addition to fiber breaking. Stage 3 includes de
lamination as well as fiber breaking. Stage 4 has delamination growth 
along with localized fiber breaking. Stage 5 is gross fracture of the entire 
material. This figure is the basis for the approach to damage mechanics 
used by Reifsnider, Henneke, Stinchcomb, and Duke [6-2]. 
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Figure 6-3 Damage Modes during Fatigue Life 
(After Reifsnider, Henneke, Stinchcomb, and Duke {6-2]) 

B~cause o! the many types of damage and damage rowth in 
com~os1te materials, _the initial state of the material is difficult ~f not im
possible, to characterize. Moreover, it is much more difficult t~ formulate 
a bto~nd

1 
ary-va~ue problem to describe crack propagation in composite 

ma eria s than m metals. 
Typical S-N (s~ress ver~us number of cycles) curves for various 

metals and compos1!e mater~als are shown in Figure 6-4 [6-3]. The 
boron-epoxy comp?s1te matenal curve is much flatter than the aluminum 
~~rve as well_ a.~ being flatter than the curves for any of the metals shown 

~ suscept1b1hty of composite materials to effects of stress concen~ 
trat1ons such as those. c~_used by notches, holes, etc., is much less than 
for metals. Thus, the 1rnt1al advantage of higher strength of boron-epoxy 
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Figure 6-4 Typical Tension-Tension Fatigue Data {After Pinckney {6-3]) 
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over aluminum in Figure 6-4 actually increases under fatigue conditions. 
This advantage of increased life as well as increased specific strength 
and stiffness over conventional metals is one of the principal reasons for 
the rapidly expanding use of composite materials. Salkind [6-4] reviewed 
fatigue characteristics of composite materials. Eisenmann, Kaminski, 
Reed, and Wilkins [6-5] used fatigue characteristics as a basis for a 
composite materials reliability procedure. Talreja characterizes the fa
tigue process, fatigue damage characterization, and fatigue reliability in 
a monograph on his work [6-6]. 

Fatigue has a strong effect on the stiffness of a composite material 
in addition to the strength effect just discussed. A typical metal such as 
steel is qualitatively contrasted with a composite material such as 
graphite-epoxy on the basis of measured stiffness versus life in Figure 
6-5. There, the metal typically retains most of its stiffness until a high 
percentage of its life is gone, and then the stiffness drops precipitously. 
In contrast, a composite material is more likely to lose stiffness gradually 
and significantly over its lifetime. Two implications of Figure 6-5 are 
clear. First, composite materials typically have longer fatigue lives than 
metals. Second, composite materials give a warning that the material is 
losing life in the sense that significantly lower stiffness is perceived. 
However, metals give virtually no warning that their life is over. These 
two characteristics can be used to advantage in two quite different 
structural applications, cables and springs. 
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METAL CABLE LIFE~ 

on" '"'c'""' I I 

COMPOSITE r- SPRING LIFE 

COMPOSITE 

COMPOSITE 

LOG TIME 

Figure 6-5 Metal versus Composite Material Stiffness Behavior in Fatigue 
(After Sa/kind [6-4]) 

For cables such as in elevators or cranes, the service life might be 
based on 95% of the fatigue life of the material. In such circumstances, 
a composite cable would clearly last far longer than a metal cable. 
Moreover, the composite cable length, if measured, would be found to 
be longer than originally as time passes (an elevator would have to be 
periodically adjusted to stop precisely at each floor). Such measure
ments when recorded would be an evidential record of the cable per-
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formance and a sign of what is to come. Metal cables have no such sign. 
Exceeding the service life by 5% would obviously result in cable 
breakage for both materials. 

For springs such as in cars or trucks, the service life would probably 
be based on a certain minimum level of stiffness. Otherwise, springs that 
are too flexible would permit the vehicle to sag so low that some parts 
of the vehicle might drag on the highway or otherwise not p~rfbrm cor
rectly. We can tell from Figure 6-5 that composite spring life significantly 
exceeds metal spring life. That result is a quantifiable economic advan
tage for composite springs. A perhaps more important advantage of 
composite springs over metal springs is that if composite springs are 
used beyond their service life based on required minimum stiffness, they 
will not fail by breaking, whereas metal springs will break without warn
ing. Composite springs will give clear warning by deforming excessively 
far before they fail by breaking! Thus, composite springs have a built-in 
stiffness reserve along with an automatic warning of impending difficulty. 

6.4 HOLES IN LAMINATES 

Laminates, as any structure, must have holes to serve various 
purposes. An obvious purpose is to accommodate a bolt. Another pur
pose is to provide access from one side of the laminate to the other. The 
analysis of the stresses around holes is quite difficult. 

One of the first solutions to the problem of stresses around an el
liptical hole in an infinite anisotropic plate was given by Lekhnitskii [6-7]. 
A more recent and comprehensive summary of the problem and many 
others is Savin's monograph [6-8]. Numerous results by Lekhnitskii are 
shown in his books [6-9 and 6-10]. Two special cases are of particular 
interest. 

First, stress is applied in one of the principal material directions on 
an orthotropic plate as in Figure 6-6. There, Greszczuk [6-11] plotted the 
circumferential stress around the hole for an isotropic material and se
veral unidirectional composite materials. Observe that the usual isotropic 
material stress concentration factor is 3; that is, a0 ta1 = 3 ate= 90°. For 
composite materials, the stress concentration factdr is much higher (4 for 
glass-epoxy, about 6 for boron-epoxy, and about 9 for graphite-epoxy). 
Moreover, the circumferential stress at e = 0° is reduced for composite 
materials relative to isotropic materials. Because the material properties 
are isotropic, the key factor in failure of isotropic plates with holes is the 
magnitude of the stress concentration factor from which the maximum 
(failure) stress is obtained. However, for orthotropic materials, a com
bined stress failure criterion instead of a maximum stress failure criterion 
must be used as noted in Section 2.9. Also, many isotropic engineering 
materials such as steel or aluminum are ductile enough to yield to ac
commodate stress concentrations locally in the vicinity of a stress con
centration. However, most composite materials are considerably less 
ductile than isotropic metals. Thus, composite materials have the dual 
disadvantage of higher stress concentrations and less ability to yield than 
isotropic metals. Accordingly, stress concentration factors alone, as in 
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Figure 6-6, are insufficient for failure prediction of orthotropic (and 
anisotropic) plates. Moreover, if the plates are laminated, the compar
ison of stress states with failure stress states must be done on a layer
by-layer basis. 

Figure 6-6 
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Effect of Material Properties on Circumferential Stress cr9 at 
the Edge of a Circular Hole in an Orthotropic Plate under cr1 

(After Greszczuk [6-11}) 

The second special case is an orthotropic lamina loaded at angle 
a to the fiber direction. Such a situation is effectively an anisotropic 
lamina under load. Stress concentration factors for boron-epoxy were 
obtained by Greszczuk [6-11] in Figure 6-7. There, the circumferential 
stress around the edge of the circular hole is plotted versus angular po
sition around the hole. The circumferential stress is normalized by a0 , 

the applied stress. The results for a= 0° are, of course, identical to those 
in Figure 6-6. As a approaches go0

, the peak stress concentration factor 
decreases and shifts location around the hole. However, as shown, the 
combined stress state at failure, upon application of a failure criterion, 
always occurs near e = go 0

• Thus, the analysis of failure due to stress 
concentrations around holes in a lamina is quite involved. 

The next obvious step is to extend the analysis to a laminate. 
Greszczuk considered a symmetric cross-ply laminate that is subjected 
to tension in a fiber direction [6-11]. The resulting stress concentration 
is shown in Figure 6-8. As before, the circumferential stress is normal
ized by the applied stress. However, the circumfere_ntial st~ess is not. a 
maximum lamina stress but a gross stress on the entire laminate; that 1s, 
it is actually Neft, where N0 is a circumferential force per unit width and 
t is the laminate thickness. The stresses in each lamina are then found 
by use of the concepts in Section 4.2, classical lamination theory. Failure 
is determined by application of a biaxial strength criterion to each layer. 
Thus the effect of holes on laminate behavior is much more complex 
than 'on lamina or plate behavior. The interlaminar stresses studied in 
Section 4.6 are ignored. Accordingly, the predicted stresses are not ac
curate within about one laminate thickness from the edge. 
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Figure 6-7 Stress Concentration at the Edge of a Circular Hole in 
a Generally Orthotropic Plate Subjected to Stress at Angle a 
to the Principal Material Direction (After Greszczuk [6-11 )} 
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Figure 6-8 Stress Concentration at the Edge of a Circular Hole in 
a Cross-Ply Laminate (After Greszczuk {6-11 )} 

The overall stress concentration effect around holes in composite 
laminates can be reduced in two different manners that are unique to 
composite materials and have no analog in metal structures practice. 
The first way is called the Stiffening Strip Concept that consists of placing 
strips of a stiffer composite material in a region away from the hole to 
attract load (away from the hole boundary), as in Figure 6-9. There, we 
know where the load will be taken in the laminate. In contrast, in the 
second way, the Softening Strip Concept, a strip of composite material 
that is less stiff (softer) is placed right beside each hole to slough the load 
that would ordinarily be concentrated near the hole to some other region 
of the laminate. However, we do not know where that load will be car
ried, just where it will not be carried. Both concepts are commonly used 
in design practice. 

. ( 
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Figure 6-9 Concepts for Stress Concentration Reduction around Holes 

6.5 FRACTURE MECHANICS 

The strength of any material is inherently related to the flaws that 
are always present. Specifically, the strengths of composite materi~ls 
are governed by their flaw-initiated characteristics: Thus, the mechan_1cs 
of fracture including crack propagation or extension are of extreme im
portance in the design analysis of composite structures. Fracture me
chanics criteria are now a part of every metal airplane design. This step 
was made by the Air Force as a result of fracture and fatigue problems 
on F-111, C5-A, Electra, etc. The prospect for composite materials ap
plications in the near future is that they, too, will have fracture mechanics 
design criteria imposed. 

The fracture process generally takes place in three stages. First, 
a microcrack is initiated (or a preexisting flaw or imperfection can be 
present). Second, the microcrack grows in a stable fashion and might 
link with other microcracks to attain macrocrack size. Third, the macro
crack propagates in an unstable fashion at a critical stress level. These 
three stages are found and clearly defined only in ductile materials. 
Some of the stages, for example, stage two, are not found in brittle ma
terials. A prominent characteristic of composite materials is their high 
resistance to crack propagation because of the matrix ductility and the 
crack-stopping ability of fibers at the fiber-matrix interface. 

Fracture is caused by higher stresses around flaws or cracks than 
in the surrounding material. However, fracture mechanics is much more 
than the study of stress concentration factors. Such factors are useful 
in determining the influence of relatively large holes in bodies (see Sec
tion 6.3, Holes in Laminates), but are not particularly helpful when the 
body has sharp notches or crack-like flaws. For composite ~aterial~, 
fracture has a new dimension as opposed to homogeneous 1sotrop1c 
materials because of the presence of two or more constituents. Fracture 
can be a fracture of the individual constituents or a separation of the 
interface between the constituents. 

The discussion of fracture mechanics will be divided in two parts. 
First, basic principles of fracture mechanics will be describ~d. Seco.nd, 
the application of fracture mechanics concepts to composite materials 
will be discussed. In both parts, the basic approach is that of Wu (6-12]. 
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6.5.1 Basic Principles of Fracture Mechanics 

The acknowledged father of fracture mechanics is A. A. Griffith 
[6-13]. His principal contribution is an analysis of crack stability based 
on energy equilibrium. If a crack is in equilibrium, the decrease of strain 
energy U must be equal to the increase of surface energy S due to crack 
extension, that is, ) 

au as 
aa = aa (5-1) 

where a is the crack length. The strain-energy-release rate, au,aa, is 
actually the crack-extension force. Prior to Griffith's approach, the ap
plication of classical elasticity concepts led to infinite stresses at the 
crack tip. 

Irwin [6-14] extended Griffith's theory to elastic-plastic materials and 
pointed out the three kinematically admissible crack-extension modes 
shown in Figure 6-10. These modes, opening, forward-shear, and 
parallel-shear, can be summed to obtain any crack. 

Attention will be restricted to the strain-energy-release rate for the 
opening mode. This mode occurs for the plate with a centrally located 
crack of length 2a under load P in Figure 6-11. 
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Figure 6-10 Crack-Extension Modes 
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Figure 6-11 Cracked Plate and Load-Deformation Diagram (After Wu (6-12]) 
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The strain energy in the plate is 

1 U=-Pe 
2 

(6.2) 

where e is the elongation between loading points separated by distance 
L. The spring constant of the plate is 

1 p 
-=- (6.3) 
m e 

The strain-energy-release rate due to crack extension 288. is the shaded 
area in Figure 6-11 if the loading-frame head does not move during crack 
extension, that is, 

~=0 
aa 

From Equation (6.2), 
au =j_e aP +j_ P~ 
aa 2 aa 2 aa 

but, because of Equation (6.4), 

au =__1._e aP 
aa 2 aa 

Then, from Equation (6.3), 

so that 

aP = 1 ae + e a [ 1 ] _ _ P am 
aa m aa aa m m aa 

au P
2 

am 
aa =-m aa 

Irwin [6-14] calls the strain-energy-release rate G, so 
2 

G =..!:_ am 
m aa 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

which can be measured because P and m can be measured. The same 
value of G results if the load is held constant during crack extension. 

The strain-energy-release rate was expressed in terms of stresses 
around a crack tip by Irwin. He considered a crack under a plane stress 
loading of cJ°0

, a symmetric stress relative to the crack, and 't
00 

a skew
symmetric stress relative to the crack in Figure 6-12. The stresses have 
a superscript 00 because they are applied an infinite distance from the 
crack. The stress distribution very near the crack can be shown by use 
of classical elasticity theory to be, for example, 

cr 
00 

-fa e [ . e . 30 ] cr = cos- 1 -sin-sm-
x °'12r 2 2 2 

't 

00 

-{a sin ! [2 + cos ! cos ~e ] 
°'12r 

(6.10) 
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Figure 6-12 Cracked Plate with 

) 

Symmetric and Skew-Symmetric Stresses at Infinity 

The stress singularity for this and the other stress components cr and 
'txy is of ?rder 11--r,:. Moreover, the terms cJ°0

~ and 't
00

~ are balled 
symmetric and skew-symmetric stress-intensity factors: 

(6.11) 

The symmetric stress-intensity factor k1 is associated with the opening 
mode of crack extension in Figure 6-10. The skew-symmetric stress
intensity factor k2 is associated with the forward-shear mode. These 
plane-stress-intensity factors must be supplemented by another stress
intensity factor to describe the parallel-shear mode. The stress-intensity 
factors depend on the applied loads, body geometry, and crack geom
etry. For plane loads, the stress distribution around the crack tip can 
always be separated into symmetric and skew-symmetric distributions. 

The stress-intensity factors are quite different from stress concen
tration factors. For the same circular hole, the stress concentration factor 
is 3 under uniaxial tension, 2 under biaxial tension, and 4 under pure 
shear. Thus, the stress concentration factor, which is a single scalar 
parameter, cannot characterize the stress state, a second-order tensor. 
However, the stress-intensity factor exists in all stress components so 
is a useful concept in stress-type fracture processes. For example, ' 

2 
1tk1 

G=
E (6.12) 

for an opening-mode crack that extends parallel to itself. Other such re
lations can be obtained for plane strain and the other crack modes. The 
point is that the stress-intensity factors appear in the strain-energy
release rate. 

Other Analysis and Behavior Topics 343 

6.5.2 Application of Fracture Mechanics to Composite Materials 

Composite materials have many distinctive characteristics relative 
to isotropic materials that render application of linear elastic fracture 
mechanics difficult. The anisotropy and heterogeneity, both from the 
standpoint of the fibers versus the matrix, and from the standpoint of 
multiple laminae of different orientations, are the principal problems. The 
extension to homogeneous anisotropic materials should be straightfor
ward because none of the basic principles used in fracture mechanics is 
then changed. Thus, the approximation of composite materials by ho
mogeneous anisotropic materials is often made. Then, stress-intensity 
factors for anisotropic materials are calculated by use of complex variable 
mapping techniques. 

Wu [6-12) derives the stress distribution around a crack tip in an 
anisotropic material. He finds the intensities of the stresses crx, cry, and 

'txy are controlled not only by the parameters cr
00

~ and 't
00

~ but also 
by functions of the anisotropic material properties and the orientation of 
the crack relative to the principal material directions. A simplification 
occurs when the crack maintains a constant orientation relative to the 
principal material directions (a likely circumstance if the flaws or possible 
paths of crack extension are, for example, all parallel to the fibers in a 
unidirectional lamina). However, unless the material is orthotropic and 
the crack is parallel to a principal material direction, the opening mode 
has both symmetric and skew-symmetric stresses in the stress distrib
ution around the crack tip. 

Wu [6-12) performed a series of experiments to determine the ap
plicability of linear elastic fracture mechanics to composite materials. 
He subjected unidirectionally reinforced fiberglass-epoxy plates with 
centrally located cracks in the fiber direction to tension, pure shear, and 
combined tension and shear as in Figure 6-13. He recorded the critical 
load and crack length at incipient rapid crack extension and noted that 
the cracks propagated colinear with the original crack. Moreover, the 
symmetric loads led to the crack-opening mode, and the skew-symmetric 
loads led to the forward-shear or sliding mode. This distinction is clearer 
than for isotropic materials! For load path 1, the stress-intensity factors 
are 

k1 =croo~ 

~=0 

and the critical stress-intensity factors are 

(6.13) 

(6.14) 
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Figure 6-13 Wu's Load Paths and Crack Orientations (After Wu {6-12)) 

where er~ is the critical stress and 8c the critical crack length at incipient 
rapid crack propagation. If k1 is truly a material constant, as we would 
hope it is, then the experimerltal data on a plot of log er~ versus log ac 
should be a straight line with slope -1/2 because Equation (6.14} can 
be written 

00 1 
log k1c = log <Jc + 2 log ac (6.15) 

Indeed, the slope of Figure 6-14 is actually -.49, so the theory is appar
ently applicable to an orthotropic lamina with cracks in the fiber direction. 
The contention is further substantiated by tests for the other loading 
paths shown in Figure 6-13. 
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Figure 6-14 Cracked Unidirectionally Reinforced Plate 
under Tension Perpendicular to Fibers (After Wu {6-121) 
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Other researchers have substantially advanced the state of the art 
of fracture mechanics applied to composite materials. Tetelman [6-15] 
and Corten [6-16] discuss fracture mechanics from the point of view of 
micromechanics. Sih and Chen [6-17] treat the mixed-mode fracture 
problem for noncollinear crack propagation. Waddoups, Eisenmann, and 
Kaminski [6-18] and Konish, Swedlow, and Cruse [6-19] extend the 
concepts of fracture mechanics to laminates. Impact resistance of 
unidirectional composites is discussed by Chamis, Hanson, and Serafini 
[6-20]. They use strain energy and fracture strength concepts along with 
micromechanics to assess impact resistance in longitudinal, transverse, 
and shear modes. 

All efforts to predict crack growth and fatigue in a composite lami
nate are affected by the unique and complex manner in which cracks can 
grow in a laminate. Cracks tend to grow in the matrix parallel to the fi
bers. Thus, if a crack is cut parallel to the fibers, as in Figure 6-15a, it 
will grow in a direction parallel to itself, i.e., in a self-similar manner. 
However, if a crack is cut at some angle to the fibers, then the crack will 
still grow parallel to the fibers and not parallel to itself, i.e., non-se/f
similar crack growth as in Figure 6-15b. Then, because a composite 
laminate has many layers at various orientations, a crack cut in a lami
nate results in crack growth that is locally sometimes self-similar and 
sometimes not. Globally, crack growth is non-self-similar, so predicting 
the effects of many kinds of damage growth is very difficult, if not im
possible. 

a Self-Similar Crack Growth b Non-Self-Similar Crack Growth 

Figure 6-15 Composite Laminate Crack Growth 

6.6 TRANSVERSE SHEAR EFFECTS 

Composite materials typically have a low matrix Young's modulus 
in comparison to the fiber modulus and even in comparison to the overall 
laminae moduli. Because the matrix material is the bonding agent be
tween laminae, the shearing effect on the entire laminate is built up by 
summation of the contributions of each interlaminar zone of matrix ma
terial. This summation effect cannot be ignored because laminates can 
have 100 or more layers! The point is that the composite material shear 
moduli Gxz and Gyz are much lower relative to the direct modulus Ex than 
for isotropic materials. Thus, the effect of transverse shearing stresses, 
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'txz and 'tyz• can be more important for laminated composite plates and 
shells than for isotropic plates and shells. 

. Study of transverse shearing stress effects is divided in two parts. 
First, SOf!Je exact elasticity solutions for composite laminates in cylindri
c~! bending ~re examined. These solutions are limited in their applica
bility to practical l?roblems but _are extrem~ly useful as checkpoints for 
!11or7 broadly applicable approximate theories. Second, varioJs approx-
1mat1ons for treatment of transverse shearing stresses in plate theory are 
discussed. 

6.6.1 Exact Solutions for Cylindrical Bending 

Pagano _studied cylindrical bending of symmetric cross-ply lami
nated _co~pos~te plat~s [6-21_]. Each layer is orthotropic and has principal 
material directions aligned with the plate axes. The plate is infinitely long 
in the y-direction (see Figure 6-16). When subjected to a transverse 
load, p(x}, that is, p is independent of y, the plate deforms into a cylinder: 

u = u(x} v = O w = w(x} (6.16} 

Thus, the plate is in a state of generalized plane strain in the x-z plane. 

Figure 6-16 Cylindrical Bending of an Infinitely Long Cross-Ply Strip 

Pagano's exact solution for the stresses and displacements is too 
complex to present here. The corresponding classical lamination theory 
result stems from the equilibrium equations, Equations (5.6} to (5.8), 
which simplify to 

D11w,xxxx- 811U,xxx = p 
(6.17} 

"'."h?n the ort~otropy and Equation (6.16} are accounted for. These equi
librium equations can be uncoupled by differentiating the first equation 
to get 

811 
u,xxx = A w,xxxx 

11 
and substituting it in the second equation to yield 

(6.18} 

( 
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(6.19} 

where 
2 D=A11D11 -811 (6.20} 

when p = p0 sin n~x , the solutions to Equations (6.18} and (6.19} are 

_ 811Pa [ L ] 3 n1tx A11P0 
[ L ]

4 
. n1tx 

U--0- rm cos-L- W=-o- n1t s1n-L- (6.21} 

whereupon the only strain is 

[ 
A11Z- 811 

Ex=U,x-ZW,xx= 0 (6.22} 

The stresses in each layer are 

Po0~1(A11z-811} [l]2 sin n1tx 
0 x.. = D n1t L 

k 
- Po012(A11Z - 811) [ _L ]2 . n7tX 

0 Yk - D n1t sin L 

(6.23} 

Even though in classical lamination theory by virtue of the Kirchhoff hy
pothesis we assume the stresses 'txz and cr2 are zero, we can still obtain 
these stresses approximately by integration of the stress equilibrium 
equations 

'txz,z = - 0 x,x (6.24} 

to obtain 
k 

k Po011 [ L ][ A11 2 ] n1tx 'txz = - --
0

- n1t 2 z - 8 11z + Hk cos -L-

k ~~ 

cr =---- --z ---z +H.7+Lk sin--k Po011 [ A11 3 811 2 ] . n1tx 
z D 6 2 ~ L 

where the constants Hk and Lk are determined from the surface and 
interlaminar boundary conditions on the stresses. 

Pagano presented numerical results for several laminates made of 
a high-modulus graphite-epoxy composite material with 

E1 = 25 x 106 psi (172 GPa} E2 = 1 x 10
6 

psi (6.90 GPa} 

G12 = .5 x 106 psi (3.45 GPa} G23 = .2 x 10
6 

psi (1.38 GPa} 

V12 =V23 = .25 

and loading p = p0 sin(1tXIL} on a symmetric three-layer laminate [6-21 ]. 
First, the normalized transverse deflection w is plotted versus the span
to-thickness ratio, S = Ut, in Figure 6-17. The deviation of the actual 
elasticity solution from the approximate classical lamination theory sol
ution is quite substantial at low span-to-thickness ratios. Even at 
S = 20, where classical plate theory is accurate for isotropic materials, the 
deviation is about 20%. 
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Figure 6-17 Normalized Deflection versus Span-to-Thickness Ratio 
{After Pagano [6-21]) 

For normal stress crx, the deviation of the classical lamination the
ory solution from the exact elasticity solution is quite drastic for S = 4, but 
not particularly large for S= 10 in Figures 6-18a and 6-18b, respectively. 
For transverse shearing stress 'txz, the differences between classical 
lamination theory and the exact solution are not large for S = 4 and are 
fairly small for S = 10 in Figures 6-19a and b, respectively. The in-plane 
displacement u varies almost linearly in each layer, but is certainly not 
linear through the laminate thickness when S = 4 in Figure 6-19a. When 
S = 10, the deviation from linearity through the laminate thickness is not 
great in Figure 6-19b. Thus, the Kirchhoff hypothesis of nondeformable 
normals is not appropriate for low values of S. Lastly, the elasticity sol
ution for the distribution of cr2 through the laminate thickness is not 
shown, but is very close to the distribution obtained from classical lami
nation theory by integrating 'txz,z from Equation (6.24}. 

Obviously, the classical lamination theory stresses in Pagano's ex
ample converge to the exact solution much more rapidly than do the 
displacements as the span-to-thickness ratio increases. The stress er
rors are on the order of 10% or less for S as low as 20. The displace
ments are severely underestimated for S between 4 and 30, which are 
common values for laboratory characterization specimens. Thus, a 
practical means of accounting for transverse shearing deformations is 
required. That objective is attacked in the next section. 

First, other work on the exact solutions to special problems will be 
reviewed. Pagano extended his theory to plates [6-22); that is, his strip 
was of finite length. Then, he included the effect of in-plane shear
extension coupling in order to treat angle-ply laminates [6-23]. Pagano 
and Wang extended the orthotropic laminate solution to more general 
loadings [6-24]. Finally, Pagano and Hatfield examined laminated plates 
with many layers [6-25]. 
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Figure 6-20 Variation of u through the Thickness (After Pagano [6-21]) 

6.6.2 Approximate Treatment of Transverse Shear Effects 

The preceding subsection was devoted to a comparison of a spe
cial exact elasticity solution with classical lamination theory results. The 
importance of transverse shear effects was clearly demonstrated. How
ever, that demonstration was for a special problem of rather narrow in
terest. The objective of this subsection is to display approaches and 
results for the approximate consideration of transverse shear effects for 
general laminated plates. 

The treatment of transverse shear stress effects in plates made of 
isotropic materials stems from the classical papers by Reissner (6-26] 
and Mindlin (6-27]. Extension of Reissner's theory to plates made of 
orthotropic materials is due to Girkmann and Beer (6-28]. Ambartsumyan 
[6-29] treated symmetrically laminated plates with orthotropic laminae 
having their principal material directions aligned with the plate axes. 
Whitney [6-30] extended Ambartsumyan's analysis to symmetrically 
laminated plates with orthotropic laminae of arbitrary orientation. 

The basic approaches as summarized by Ashton and Whitney 
[6-31] will now be discussed. First, a symmetric laminate with orthotropic 
laminae having principal material directions aligned with the plate axes 
will be treated. The transverse normal strain can be found from the 
orthotropic stress-strain relations, Equation (2.15), as 

1 Ez = C (crz - C13fx - C23Ey) (6.26) 
33 

which can be used to eliminate Ez from the stress-strain relations for the 
kth layer, leaving 
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crx 011 012 0 0 0 Ex 

cry 012 022 0 0 0 Ev 

'tyz = 0 0 044 0 0 Yyz (6.27) 

'txz 0 0 0 055 0 Yxz 

'txy 0 0 0 0 066 Yxy 
k k k 

where, if cr
2 

is neglected as in classical lamination theory, l c,c, I J "f.. 1 2 c1i- c , , 1,1= , (6.28) 
01j= 33 

c1i, if i,i = 4, s, 6 

The transverse shearing stress distribution is then approximated 

by 
k [ k k ] 'txz = 055f(z) + a55 «l>x(x,y) 

(6.29) 

k [ k k ] 'tyz = 0 44f(z) + a44 «l>yCx,y) 

where f(z) = f( -z) because of laminate symmetry. Also, a~ _and a~5 are 
determined from the equilibrium conditions that the sheanng stresses 
vanish at the top and bottom surfaces of the plate [f(t/2) = f( -t/2) = O] and 
are continuous at layer interfaces. The shearing strains are obtained 
from the stress-strain relation as 

y~ = [f(z) + a~
5 

]«l>x 
055 

(6.30) 

k a44 

[ 

k ] 
Yyz = f(z) + O~ «l>y 

Then, integration of the strain-displacement relation, Eq_uation (2.2), with 
respect to z (with w assumed to be independent of z) yields 

where 

J(z) = Jf(z)dz 

l = - zw,x + [J(z) + g~(z)]«l>x 

/ = - zw,y + [J(z) + g~(z)]«l>y 
(6.31) 
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The constants b~ and b~ are found from continuity conditions for u and 
v at layer interfaces and the symmetry condition that u and v vanish at 
the laminate middle surface. Obviously, because of the presence of <l>x 
and <l>y, u and v are not linear functions of z as in classical lamination 
theory. 

The moment relations are obtained from integration of the stress
strain relations, Equation (6.27), after the strain-displacem'ent relations, 
Equation (6.22), and the displacement relations, Equation (6.31), are 
substituted: 

Mx = - D11w,xx - D12W,yy + (F11 + H111)<l>x,x + (F12 + H122)<l>y,y 

My= - D12W,xx - D22W,yy + (F12 + H121)cl>x,x + <F22 + H222)<l>y,y 

Mxy = -2D55W,xy + <Fss + H661)<l>x,y + <Fss + Hss2)<l>y,x 

where the Dii are the usual bending stiffnesses and 

J
V2 k 

Fii = aiizJ(z)dz .. 
-V2 l,J = 1, 2, 6 

J
V2 k k 

Hiil = aiizg1 (z)dz 
-V2 

I= 1, 2 

The shear resultants are 

where 

J
V2 k k 

Ku= [ auf(z) + au]dz 
-V2 

i=4,5 

The large-deflection equilibrium equations are 

Mx,x + Mxy,y - ax= 0 

Mxy,x + My,y - ay = 0 

ax,x + ay,y + p + Nxw 'XX+ 2Nxyw •xy + Nyw 'YY = 0 

or, in terms of the present variables, 

D11W•xxx + (D12 + 2D55)w,xyy- (F11 + H111)<l>x,xx - (F55 + H551)cl>x,yy 

- (F12 + F66 + H122 + H662)<l>y,xy + K55cl>x = 0 

(D12 + 2Ds5)w,xxy + D22W,yyy + (F12 + F55 + H121 + H551)cl>x,xy 

+ (F 66 + H552)<l>y,xx + (F 22 + H222)<l>y,yy + K44cl>y = 0 

K55ct>x,x + K44<l>y,y + P + Nxw•xx + 2Nxyw•xy + NYw'YY = 0 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

The boundary conditions for these equilibrium equations are more com
plicated than for classical lamination theory. However, they are more 
logical because the Kirchhoff shear force or free-edge condition, in which 

( 
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a combination of shearing force and twisting moment (derivative) ap
pears, is replaced by that force and moment themselves. In summary, 
the new boundary conditions along each edge are 

an= O or w = 0 Mn= 0 or w,n = 0 Mnt = 0 or ut.zl 
2 

= 0 = 0 (6.39) 

where n and t are directions normal to and along the edge, respectively. 
For a simply supported laminated rectangular plate subjected to the 

distributed transverse load 

P = p sin m1tx sin ney 
o a b (6.40) 

the displacement and rotations 

w = A sin m1tx sin ney 
a b 

cl> = B cos m1tx sin ney 
X a b (6.41) 

cl> = C sin m1tx cos ney 
Y a b 

exactly satisfy the boundary conditions 

Mx=v,2 J
2

= 0 =w=O on x=O,a 

My=u,2 i
2
=0 =w=O on y=O,b 

(6.42) 

The shearing stresses are assumed on the basis of elasticity results 
(6-21] to vary approximately as a segment of a parabola in each layer, 
that is, 

2 

f(z) = 1 -4[ ~ ] (6.43) 

Then, the overall problem is determinate and reduces to the solution of 
the following set of simultaneous algebraic equations for A, B, and C: 

Paa 
K55mB + K44nRC = -1t-

in which A = alb and S = alt. 

(6.44) 
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Whitney solved Equations (6.44) for a square four-layered sym
metric cross-ply [0°/90°/90°/0°] laminated graphite-epoxy plate under the 
transverse load p = Po sin(mc/a) sin(xy/a) [6-30]. The material properties 
are typical of a high-modulus graphite-epoxy: 

~=40 GE12=.6 GE13=.5 v1d-2s 
E2 2 2 

The results shown in Figure 6-21 for the present shear-deformation ap
proach versus classical lamination theory are quite similar qualitatively 
to the comparison between the exact cylindrical bending solution and 
classical lamination theory in Figure 6-17. 

12 

7tX 7tY p(x,y) = p0 sln 8 sln 8 
10 

8 •ra 3 
WMAXE2t ~ 
Poa4x103 

6 

SHEAR-DEFORMATION 

4 THEORY 

2 CLASSICAL LAMINATION 
THEORY 

0 
0 10 20 30 40 50 

a 
T 

Figure 6-21 Deflection under Po sin(7tX/a) sin(xyta) of 
a Square Four-Layer Symmetric Cross-Ply Graphite-Epoxy Plate 
(After Whitney [6-30)) 

A more direct comparison of Whitney's shear-deformation solution 
for deflection of an antisymmetric cross-ply infinite strip [6-30] with the 
elasticity solution and the classical lamination theory solution is shown in 
Figure 6-22. Obviously, Whitney's shear-deformation theory solution is 
quite good for prediction of deflections. However, Whitney's shearing 
stress distribution through the thickness at the edge of the infinite strip 
in Figure 6-23 does not agree well with the elasticity solution. If, instead 
of an equation analogous to Equation (6.43), the shearing stresses are 
calculated from the stresses <rx, cry, and 'txy by the elasticity equations, 
then the better agreement in Figure 6-23 between the modified shear
deformation theory and the elasticity solution is obtained. 

Figure 6-22 

4 

3 
WMAX E2 t3 

Poa4 x 103 
2 
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SHEAR-DEFORMATION THEORY 

ELASTICITY SOLUTION 

p(x) = Po sin 1tax 
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Deflection of an Infinite Two-Layer Cross-Ply Graphite-Epoxy Strip 
under p0 sin(7tX/a) (After Whitney [6-30)) 
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Figure 6-23 Transverse Shear Stress Distribution along 
the Edges of an Infinite Two-Layer Graphite-Epoxy Strip 
under p0 sin(7tX/a) with alt= 4 {After Ashton and Whitney [6-31)) 

Whitney and Pagano [6-32] extended Yang, Norris, and Stavsky's 
work [6-33] to the treatment of coupling between bending and extension. 
Whitney uses a higher order stress theory to obta(n improv~d predicti~ns 
of cr , cr , and 'txy and displacements at low w1dth-to-th1ckness ratios 
[6-3•h Reissner used his variational theorem to derive a consistent s~t 
of equations for inclusion of transverse shearing deformation effects m 
symmetrically laminated plates [6-35]. Finally, Ambartsumyan extended 
his treatment of transverse shearing deformation effects from plates to 
shells [6-36]. 
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6.7 POSTCURING SHAPES OF UNSYMMETRIC LAMINATES 

How do unsymmetric laminates deform during cooldown after cur
ing? Note that we address merely laminates, not plates because there 
is no mechanical loading nor any support at the laminate edges. The 
motivation for such a question is that unsymmetric laminates deform in 
unusual ways relative to symmetric laminates, as seen fqr a variety of 
unsymmetric graphite-epoxy laminates in Figure 6-24. ;rhose unusual 
ways are often regarded as undesirable, but, in fact, they could be quite 
useful and even desirable in certain structural applications. That is, 
sometimes we might need a laminate that has a certain curvature or twist 
rather than a flat laminate. Thus, we must investigate the possible 
shapes of cured unsymmetric laminates. 

, 

• t, 
, ·\,,~, "'''h'.'-,,,', ,,Yr:,·,{,\\,\;'1,,"..i:'"';,· j'.!:~.J' 

Figure 6-24 Postcuring Shapes of Various Unsymmetric Laminates 
(After Hyer {6-37}) 

If an unsymmetric laminate is held flat, e.g., in a press, during the 
curing process (the usual situation), its shape is flat at the highest curing 
temperature as in Figure 6-25a. However, when the press force is re
moved after curing is done, an unsymmetric laminate is compelled to 
take on shapes other than flat because of the significant thermal forces 
and moments that develop during cooldown from the highest curing 
temperature (because of different thermal stresses in each layer caused 
by different thermal contractions). 

The first observation is that the cured shape of an unsymmetric 
cross-ply laminate is often cylindrical, whereas we would predict it to be 
a saddle shape (hyperbolic paraboloid) from classical lamination theory 
(the curvatures can be shown to be Kx = - Ky or - Kx = Ky). A thick lami
nate (length and width not large compared to the thickness) will leave the 
curing process with the saddle shape in Figure 6-25b. Note that curva
ture is defined in this section without the negative signs of Equation 
(4.15). Also, the deflection is measured positive upward in Figure 6-25 
(instead of positive downward as in Chapter 4). A thin laminate (length 
and width large compared to the thickness) will have a circular cylindrical 
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shape as in Figures 6-25c and 6-25d. If you try to force the circular cy
lindrical laminate to be flat, then a very audible snap-through buckling 
will occur from the configuration with ( + Kx, Ky= 0) to a configuration with 
{Kx = 0, - Ky) or vice versa. 

z 

a FLAT SHAPE AT MAXIMUM 
CURING TEMPERATURE 

c + Kx CYLINDRICAL SHAPE 
AT ROOM TEMPERATURE 

b SADDLE SHAPE 
AT ROOM TEMPERATURE 

d -Ky CYLINDRICAL SHAPE 
AT ROOM TEMPERATURE 

Figure 6-25 Unsymmetric Cross-Ply Laminate Shapes (After Hyer {6-38]) 

Hyer shows the conditions under which the cylindrical s~ape must 
exist and when the saddle shape must exist [6-38]. He approximates the 
transverse deflection of an unsymmetric cross-ply laminate as 

w(x,y) = ~ (ax2 + b/) (6.45) 

with corresponding approximate in-plane displacements 

2 3 2 
o ax abxy 

u (x,y) = ex - -
6

- - -
4
-

2 3 2 
o b y abx y 

V (x,y) = dy - -
6

- - -
4
-

(6.46) 

in which the second and third terms in each equation are for large def
ormations. These deformations are an approximation to the large
deflection values that would exist for such laminates. Hyer uses these 
deformations with their implied strains to formulate the total potential 
energy of a laminate. He solves th: resul~i~g equ_ations_ !1umerically to 
find the equilibrium states and their stability o~ mstab1hty for square 
T300-5208 graphite-epoxy laminates with properties: 

E
1 
= 26.2 x 106 psi (181 GPa) E2 = 1.49 x 10

6 
psi (10.3 GPa) 

v
12 

= .28 G12 = 1.04 x 10
6 

psi (7.2 GPa) 
-6 -6 

a
1 

= -.059 x 10 /°F ( -.106 x 10 /°C) 

~ = 14.2 X 10-6/°F {25.6 X 10-6/°C) 

The laminates were cured at 350°F (177°C) and then cooled to room 
temperature of 70°F (21 °C). 
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. Hyer's results for ~arious square laminate side lengths (length = 
width) for a [02/902h laminate are shown in Figure 6-26. Three important 
cases exist: 

(1) If the side lengths are zero, i.e., for a very thick laminate, then a 
saddle shape exists at point S (saddle) with K = a and K = -b 
where a = b. As the side lengths increase, i.e., asxt~e lamina1e be~ 
comes thinner, the saddle shape still exists, but t~ curvature de
creases in amplitude, i.e., the saddle gets more shallow. 

(2) If the side lengths are small enough, i.e., if the laminate is thick 
enough, then o~ly a saddle shape exists, as seen in Figure 6-26 as 
segment ST with equal and opposite curvatures that decrease in 
magnitude as the side length increases. 

(3) At a critical length that depends on relative laminate thickness the 
deformation solution trifurcates at point T, i.e., above the crltical 
length, three possible room-temperature shapes exist: (1) a saddle 
~ha~e. (2) a cyli~drical shape with Kx = + K and Ky= O, and (3) a cy
lindrical shape with Kx = 0 and Ky= - K. For this 102t902Jr laminate 
the critical length is 35 mm. ' 

8 

LAMINATE SIDE LENGTH, L, mm 

0or __ 3so==-~=iao:""_-_-_-_.;..:1~0J __ ~ 

T/&--2 

-4 
Ky, b 
m-1 

-8 

,/ ______ f3E:: ~ 
CYLINDRICAL CYLINDRICAL 

SPECIMEN SPECIMENS 

Figure 6-26 Room Temperature Shapes of 
Square Graphite-Epoxy Laminates (After Hyer {6-381) 

The three branches of the equilibrium configurations after point T 
are labeled T1, T2, and T3 in Figure 6-26. Branch T2 is a continuation 
of the saddle shape of solution ST, but this branch is unstable, so the 
other branches are the real, physical solution because they are stable. 
Branch T1 has a larger Kx than Ky· If L is about 50% bigger than the 
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critical L, the laminate of branch T1 has a large Kx and nearly zero Ky, 
so the shape is approximately cylindrical. In contrast, branch T3 has a 
cylindrical shape with a large Ky and nearly zero Kx if the laminate length 
is about 50% greater than the critical L. In fact, a laminate can be made 
to snap-through from branch T1 to branch T3 simply by applying a small 
amount of bending moment in the large-curvature direction, i.e., apply 
- Mx to the + Kx cylindrical shape (with your fingers!). The converse is 
true for snap-through from branch T3 to branch T1. 

Measured curvatures for a 100-mm laminate (a single closed circle 
on each curve) and eleven 150-mm laminates (a closed circle for the 
mean with a range for all other values shown) are shown in Figure 6-26. 
The quantitative comparison is only fair as might be expected for an ap
proximate approach. However, the qualitative agreement as to mode of 
deformation is correct. 

For a thicker laminate than in Figure 6-26, the critical length is 
longer and the curvatures are smaller. For example, for a (04/904Jr 
laminate, the critical L is 71 mm. Moreover, what was a circular cylin
drical specimen at 50 mm for a [02/902Jr laminate becomes a saddle
shaped specimen (6-38]. 

A workable theory behind why unsymmetric cross-ply laminates 
deform as they do has been developed by Hyer (who has extended these 
papers). Thus, a reasonable understanding of the deformation me
chanics exists and can be used to design laminates with specified cur
vatures. 

6.8 ENVIRONMENTAL EFFECTS 

Composite materials must survive in the environment to which they 
are subjected at least as well as the conventional materials they replace. 
Some of the harmful environments encountered include exposure to hu
midity, water immersion, salt spray, jet fuel, hydraulic fluid, stack gas 
(includes sulfur dioxide), fire, lightning, and gunfire as well as the com
bined effects of the space environment. 

Humidity or water immersion can lead to degraded stiffnesses and 
strengths as shown by Fried (6-39]. However, after dehydration, the or
iginal properties are recovered. Some of the same but irreversible effects 
are found for salt spray (although it is somewhat corrosive), jet fuel, hy
draulic fluid, and stack gas. Fire is, of course, an extreme environment, 
and its damage is obvious. Aircraft are subjected to lightning strikes, so 
must be protected and certainly not built of materials that are particularly 
susceptible to lightning damage. Lightning tests were performed on 
aluminum, fiberglass, boron-epoxy, and graphite-epoxy. The aluminum 
sustained little damage; the fiberglass had minor surface marks; the 
boron-epoxy had some cracks and bubble delaminations; and the 
graphite-epoxy had the resin stripped and a hole burned in another place. 
This range of effects is triggered by the inherent electrical conductivity 
of each material ranging from high to low. Surface coatings such as 
aluminum foil or embedded wire grids could reduce these effects sub
stantially by increasing electrical conductivity. 
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Tsai listed and quantitatively discussed specific degradation mech
anisms for environmental exposure [6-40]: 

"A. Loss of strength of the reinforcing fibers by a stress-corrosion mech
anism. 

B. Degradation of the fiber-matrix interface resulting in loss of adhesion 
and interfacial bond strength. 

C. Permeability of the matrix material to corrosive agents such as water 
vapor which affects both A and B above. / 

D. Normal viscoelastic dependence of matrix modulus and strength on 
time and temperature. 

E. Combined action of temperature and moisture accelerated degra
dation." 

A series of papers on environmental effects work prior to 1988 was col
lected by Springer and published in three volumes [6-41 ]. 
. Elevated moisture and temperature effects on epoxy-matrix mate-

rials ~nd on epoxy-matrix . composite materials were addressed by 
Browning, Husm~n, and Whitney [6-42]. Moisture absorption for many, 
but not all epoxies causes swelling, plasticization, and decrease in 
glass-transition temperature. Plasticization is the increase in spacing 
between molecules so molecular mobility increases, and is a reversible 
process (~ence, n:oi~ture causes reduced brittleness at room temper
ature). F1ber-matnx interface damage is only partially reversible by re
moval of moisture by 'bake-out' procedures. The glass-transition 
temperature, T 9.'. is the temperature at which a polymer changes from a 
hard, glassy solld to a soft, rubbery solid with associated decreases in 
s!i!fness and strength. Actually, this transition takes place not at a spe
c1f1c temper~ture, but over a temperature range. Such physical changes 
for the matnx of a polymer-matrix composite material cause the matrix
dominated properties to be most affected (degraded) and the fiber
dominated properties to be least affected. Browning, Husman, and 
Whitney present absorbed moisture profiles through the thickness of 
AS-3501-5 graphite-epoxy composite laminates with associated me
chanical properties as a function of moisture and temperature. 

For laminated plate deflections, buckling, and vibrations, Whitney 
and Ashton studied the effects of environmental factors that cause ex
pansional strains [6-43). Such factors include temperature rise and ma
trix swelling due to water vapor or sudden expansion of absorbed gases. 
Te~perature_ rises and matrix expansion can cause degradation of ma
terial properties. However, Whitney and Ashton held the material prop
erties constant and treated only the effects of temperature and swelling 
on structural response. Both phenomena cause buckling; thus, buckling 
caused by thermal expansion was assessed directly. They also analyzed 
the ~ffect of .m~!rix swelling on vibration frequencies and bending de
flect1~>ns. A_ limiting c~se of the vibration problem is buckling caused by 
matnx swelling. Swelling resulted in reduced buckling loads and vibration 
frequencies and increased bending deflections. These effects are all 
significant enough to warrant attention in composite structures design
analysis. 

( 
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Galvanic corrosion is most commonly found for composite materials 
as the interaction of graphite in graphite-epoxy with aluminum (or other 
less noble metals such as steel, magnesium, and even cadmium-plated 
steels) in the presence of most electrolytes (sodium chloride, etc.) in 
moisture. The aluminum corrodes rather quickly (the graphite is unaf
fected), so aluminum fasteners in a graphite-epoxy structure would soon 
fail. To avoid galvanic corrosion, the simplest, but not always most 
practical solution is to not use graphite and aluminum in the same 
structure. If both graphite and aluminum are needed, then all direct 
contact must be avoided (including any path through salt water!). Con
tact can be avoided by placing intervening nonconductive layers between 
the graphite and aluminum. Moreover, mechanical fasteners must be 
titanium and perhaps stainless steel, both of which are more expensive 
than aluminum or cadmium-plated steel fasteners. The F-16 horizontal 
stabilizer is an example of a mixed graphite-epoxy and aluminum struc
ture. The upper and lower graphite-epoxy skins are separated from a 
full-depth corrugated aluminum truss core by multiple layers: anodizing 
on the aluminum, epoxy primer, liquid skrim (chopped glass in epoxy), 
sealant, and finally glass-epoxy cloth is in contact with the graphite-epoxy 
skin. The assembly is then put together with corrosion-resistant steel 
fasteners dipped in a sealant. 

Composite materials in space, such as in orbiting space stations, 
are subject to an environment of hard vacuum, thermal cycling because 
of passing in and out of the sun's rays, as well as ultraviolet, electron, 
and proton radiation. The effects of those environmental factors include: 
(1) vacuum causes outgassing and migration of low-molecular-weight 
components from matrix materials such as polymers, (2) thermal cycling 
can cause significant dimensional changes in such dimension-sensitive 
instruments as space telescopes, and (3) radiation causes damage be
cause of competing effects of polymer chain-cutting and enhanced 
cross-linking. The latter effects change the melting point, hardness, 
strength, and stiffness as well as the dimensional stability of polymers. 

6.9 SHELLS 

Work on analysis of the common structural shell element made of 
composite materials is very extensive. Contributions will be mentioned 
that parallel the developments in Chapter 5 on plates. Some of the first 
analyses of laminated shells are by Dong, Pister, and Taylor [6-44] and 
the monograph by Ambartsumyan [6-36]. Further efforts include the 
buckling work on laminated shells by Cheng and Ho [6-45] and on ec
centrically stiffened laminated shells by Jones [6-46]. 

Classical solutions to laminated shell buckling and vibration prob
lems in the manner of Chapter 5 were obtained by Jones and Morgan 
[6-47]. Their results are presented as normalized buckling loads or fun
damental natural frequency versus the Batdorf shell curvature parameter. 
They showed that, for antisymmetrically laminated cross-ply shells as for 
plates, the effect of coupling between bending and extension on buckling 
loads and vibration frequencies dies out rapidly as the number of layers 
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increases. However, for unsymmetrically laminated cross-ply shells, the 
effect of coupling dies out very, very slowly. Thus, analyses of all un
symmetrically laminated plates and shells should include the effects of 
coupling between bending and extension. Otherwise, serious over
estimates of buckling loads and vibration frequencies can be obtained. 
Similarly, serious underestimates of plate and shell deflections, and 
hence stresses, can occur if coupling between bending and extension is 
ignored. ) 

6.10 MISCELLANEOUS TOPICS 

Some basic lamina and laminate behavioral characteristics were 
deliberately overlooked in the preceding discussion. Among them are 
plastic or nonlinear deformations, viscoelastic behavior, and wave prop
agation. 

. Shear-s!ress-s~ear-strain curves typical of fiber-reinforced epoxy 
resins are quite nonlinear, but all other stress-strain curves are essen
tially linear. Hahn and Tsai [6-48) analyzed lamina behavior with this 
non!inear deformation behavior. Hahn [6-49) extended the analysis to 
laminate behavior. Inelastic effects in micromechanics analyses were 
examined by Adams [6-50). Jones and Morgan [6-51) developed an 
approach to treat nonlinearities in all stress-strain curves for a lamina of 
a metal-matrix or carbon-carbon composite material. Morgan and Jones 
extended the lamina analysis to laminate deformation analysis [6-52) and 
then to buckling of laminated plates [6-53). 

Viscoelastic characteristics of composite materials usually result 
from a viscoelastic-matrix material such as epoxy resin. General stress 
analysis of viscoelastic composites was discussed by Schapery [6-54). 
An important application to laminated plates was made by Sims [6-55). 

Wave propagation in an inhomogeneous anisotropic material such 
as a fiber-reinforced composite material is a very complex subject. 
However, its study is motivated by many important applications such as 
the use of fiber-reinforced composites in reentry vehicle nosetips, 
heat~hields, and other protective systems. Chou [6-56) gives an intro
duction to analysis of wave propagation in composite materials. Others 
have applied wave propagation theory to shell stress problems. 
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Chapter 7 

INTRODUCTION TO 
DESIGN OF COMPOSITE STRUCTURES 

In this chapter, we begin the study of design of composite struc
tures. First, the basic structural design process is reviewed. Then, the 
important topics of materials selection, configuration selection, and joints 
are addressed in their special composites materials and structures con
text. Next, design requirements are posed along with design failure cri
teria. Then, we introduce laminate design and optimization. Finally, a 
simplified design philosophy is presented. All these topics are part of the 
basic questions of laminated plate design as expressed in Figure 7-1, 
as well as part of the larger picture of composite structures design. 

{ 

TRANSVERSE LOADS } 

GIVEN: LOADS IN-PLANE LOADS 

EXCITATION FREQUENCIES 

REQUIRED: FIND THE LAMINATE STRUCTURAL CONFIGURATION 
NECESSARY TO CARRY THOSE LOADS 

• THICKNESS OF LAMINAE? 

• NUMBER OF LAMINAE? 

• ORIENTATION OF LAMINAE? 

• LAMINATE STACKING SEQUENCE? 

Figure 7-1 Basic Questions of Laminated Plate Design 
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7.1 INTRODUCTION 

7 .1.1 Objectives 

The objectives of this chapter are listed in Figure 7-2. Each ob
jective will be described in the following subsections. 

• REVIEW THE STRUCTURAL DESIGN PROCESS 

• LEARN THE NEW AND DIFFERENT USES OF COMPOSITE MATERIALS 

• BECOME ACQUAINTED WITH MANUFACTURING PROCESSES 

BE ABLE TO RATIONALLY COMPARE ONE MATERIAL TOOTH~ 

KNOW THE ALTERNATIVE STRUCTURAL CONFIGURATIONS 

• BE FAMILIAR WITH VARIOUS JOINT CONCEPTS 

• UNDERSTAND DESIGN REQUIREMENTS AND FAILURE CRITERIA 

• DETERMINE THE IMPORTANCE OF OPTIMIZATION CONCEPTS 

• ESTABLISH A DESIGN PHILOSOPHY FOR COMPOSITE STRUCTURES 

Figure 7-2 Objectives of the Introduction to Design Chapter 

7.1.2 Introduction to Structural Design 

We review the basic processes involved in structural design. You 
might not have background in structural design as a logic process, so 
some of the main aspects will be briefly described. That process is es
sentially independent of the material used (unless you focus on small 
details of the process). The structural design process is addressed in 
Section 7.2, which is a review of the basic design concepts that must be 
considered throughout the chapter. Pertinent design terms and proce
dures in the structural design process must be carefully defined. 

7.1.3 New Uses of Composite Materials 

You should learn and digest the very new and different character
istics of composite materials as actually used in structures as compared 
to what you are familiar with in metal structures. You must know the 
reasons why composite materials are used. 

We all hear that composite materials are very expensive, but you 
have seen in Chapter 1 that, one, material cost is coming down, and, two, 
composite structures can be less expensive to manufacture than metal 
structures. An effective structure can be created with an even more
expensive raw material than metals by using less-expensive manufac
turing processes. The bottom line is that the initial cost of the structure 
can in some cases be lower for a composite material than for a metal. 
Generally, the life-cycle cost of a composite structure is lower than that 
of a metal structure. 

7 .1.4 Manufacturing Processes 

You should become acquainted with the various manufacturing 
processes for composite structures. That large body of processes for 
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composite structures is very different from what most engineers are fa
miliar with for metals. Manufacturing is one of the significant areas where 
composite materials hold tremendous advantages over metals. Manu
facturing processes were addressed in Chapter 1 and will not b~ _treated 
further here. Effective manufacturing is the key to cost compet1t1veness 
for a composite structure and, hence, the key to the success of a com
posite structure. Thus, the many alternative manufacturing pr?c~sses 
unique to composite materials and structures must be explored within the 
design process itself. 

7 .1.5 Material Selection 

You should be able to rationally compare one material to another 
material to select the best material for the structure you are designing. 
That comparison and selection activity is a very involved process be
cause individual materials have their unique physical characteristics with 
virtues as well as faults. You try to find a material with a package of the 
best virtues with the least faults for your particular application. Your ap
plication is different from someone els~·s! so you will look for a mater!al 
with a different package of characteristics than someone else. With 
composite materials, we have the inherent ability to construct many dif
ferent combinations of materials. More than the ability is the fact that 
we actually have many different composite materials in practice that 
constitute many different members of a family of, for example, graphite
epoxies. Each member of the graphite-epoxy family has its own virt~es 
for certain applications and would not be used for others. You must pick 
the right graphite-epoxy for the functional demands of your particular 
application. That material selection process is. one of th~ keys to ~he 
success of any structural design. Section 7.3 1s on materials selection 
where we will examine different materials as well as different forms of 
materials, and determine where and how they can be useful. 

7 .1.6 Configuration Selection 

You should appreciate some of the various structural configurations 
or shapes that can be achieved with composite materials that .are di~icult, 
if not impossible, to achieve with metals. A broad, new ~1men~1on ?f 
flexibility exists with composite materials in structural conf1gurat1ons m 
general, and in stiffener configurations in particular, as com~ared to 
metals. Some configurations can be achieved very naturally with com
posite materials but simply cannot be done with ~etals. In Section ?.4, 
we address concepts in the process of selection of the appropriate 
structural configuration or shape to meet the d~sign_ requirements. 
Among other things, we will examine how compos1~e stiffeners can be 
made to be significantly more effective than metal stiffeners. 

7.1.7 Joints 

You should be familiar with some of the various concepts for how 
to analyze and design a joint between members of com~osite structures 
or between a composite structural element and a metallic structural ele-
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ment. Transmitting loads between structural elements is a h:ey problem 
area in the design process. We will consider joints, both bolted and 
bonded, in Section 7.5. Some of the difficulties in making a joint of 
composite materials will be examined as well as some of the successes 
that have been achieved. 

7.1.8 Design Requirements 

You should understand what design requirements are and what 
failure criteria mean in terms of design requirements. Satisfa~ti n of a 
failure criterion for a structure does not necessarily mean that th struc
ture has broken into two or more pieces. Failure in the conte of a de
sign simply means that object cannot perform its assigned function. That 
function could involve a deflection constraint instead of a stress con
straint. Perhaps we are designing a piece of rotating machinery with an 
arm that cannot deflect downward too much or else the arm runs into 
another piece of the machine and jams the entire machine. Then, obvi
ously, deflection is the governing design failure criterion, and our design's 
capability must be judged against that particular criterion. Many other 
examples exist to demonstrate how designs are measured in terms of 
their functional effectiveness. 

In Section 7.6, we will discuss design failure criteria and how design 
requirements relate to an assessment of whether the design at hand 
satisfies those requirements. Many analysis results must be obtained 
before we can judge whether a design satisfies the pertinent design fail
ure criteria. For example, a deflection-limiting condition was mentioned 
earlier for a particular piece of rotating machinery. We have analyzed for 
that circumstance what the deflections will be. Very obviously, we also 
must make certain that the part in question does not fail before that lim
iting deflection has been reached where failure means breaking into two 
parts, i.e., fracture. Therefore, we must look at the fracture requirements 
as well as the stiffness requirements. If the structure is a piece of rotat
ing equipment, we usually have fatigue requirements as well. Thus, a 
multiplicity of conditions must be examined, and the totality of all those 
conditions is the set of design failure criteria that must be satisfied. 

7 .1.9 Optimization 

You should determine the importance of various optimization con
cepts in design of composite structures. Actually, the structural design 
process i§. optimization, i.e., you are always seeking the best design 
where 'best' is measured in a variety of ways depending on the applica
tion. We must deal with many design variables such as plate thickness, 
stiffener spacing, etc. Thus, to believe that optimization concepts are the 
ideal approach to structural design is very tempting. It would be nice if 
we could say that mathematical optimization is a practical way for us to 
design a large structure right now, because that's what we would like 
very much to do. However, some practical limitations on optimization do 
exist that involve computer size, speed, and cost, as well as an ability to 
treat all the design variables. 
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We will consider optimization concepts in Section 7.7 to try to un
derstand how we can take the many design variables that exist for a 
composite structure and try to answer the fundamental question in de
sign: what is the combination of the design variables that leads to the 
best composite structure? The process flows from the design variables 
to 'a' structure via crude design and then to the 'best' structure via opti
mization techniques as in Figure 7-3. Some designers stop with 'a' 
structure having achieved their (limited) goals. However, optimization 
techniques enable us to go far beyond merely 'a' design, which is pre
sumably inefficient, to a design which is optimum in some sense or 
senses. That second step is far more complex and rewarding than the 
trial and error techniques of the past. In fact, that second step is firmly 
based on mechanistic relationships between properties and performance 
that are used in contemporary design sensitivity studies. 

THICKNESSES THE 

SHAPES - 'A' - 'BEST 

MATERIALS STRUCTURE STRUCTURE 

SPACINGS 

CRUDE OPTIMUM l 
DESIGN DESIGN 

Figure 7-3 How to Get the 'Best' Structure 

The 'best' structure could be interpreted in various ways. For air
planes, typically the most-desired situation is lowest weight. If the driving 
issue is performance, as in a military fighter, then the 'best' situation 
might be both highest performance and some combination of weight and 
cost. For commercial transport planes, the 'best' structure might be some 
combination of performance and cost. Thus, the question of how we 
optimize depends on what kind of structure we are building as well as 
on the overall optimization requirements. In the optimization concepts 
area in Section 7.7, we will examine a few techniques that are used, as 
well as some of the problems that are encountered for composite struc-
tures. 

7.1.10 Design Philosophy 

The final area of concern is to develop a practical design philoso
phy for composite structures. Is there a philosophy that will enable us 
to account for and accommodate all the essential behavioral character
istics of composite materials? Can we do it without getting bogged down 
in overly complicated issues? 

Section 7.8 is on design philosophy for composite structures to 
explore some relatively simple and practical approaches to achieve an 
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effective composite design without stumbling over many pmblem areas. 
Those problem areas include micromechanics, optimization, nonlinear 
characteristics, free-edge effects, and all those behavioral aspects that 
you have heard of that could be significant problems with composite 
structures. The basic question is: how can we get around all those 
problems and design a composite structure that does all that we want it 
to do, yet suffers none of those problems? 

7.1.11 Summary 

. Each of the preceding topics is addressed in the follow~ections 
of this chapter. Remember, this is only a brief introduction to the amaz
ing and complex area of design of composite structures. Thus, detail 
must be kept subservient to the overall concepts. 

7.2 INTRODUCTION TO STRUCTURAL DESIGN 

7.2.1 Introduction 

The general structural design process, irrespective of material 
used, is described as an introductory exercise in preparation for design 
with composite materials as in the outline in Figure 7-4. Then, design 
objectives and design drivers are defined to aid in the development of a 
design methodology. Next, the three basic design-analysis stages are 
described. The importance of testing parts of the structure at each stage 
of design is emphasized because the design process is not just a paper 
exercise, but must have practical applicability, and therefore must be 
validated. 

• WHAT IS DESIGN? 

• ELEMENTS OF DESIGN 

• STEPS IN THE STRUCTURAL DESIGN PROCESS 

• DESIGN OBJECTIVES AND DESIGN DRIVERS 

• DESIGN-ANALYSIS STAGES 

Figure 7-4 Outline of Structural Design 

7.2.2 What is Design? 

Let's begin with an introduction to the area of design of structures. 
w_~ will first contrast analysis, with which you are presumably quite fa
miliar, and design. Analysis is viewed in Figure 7-5 in this manner: 
analysis is the determination of the behavior that a specific structural 
configuration exhibits under specific loads. That is, what load does the 
structure take? Or, how much does the structure deflect at a certain 
crucial point? Analysis is a one-way street. We start with a specific 
structure, and ask: how good is this structure, how much stress can it 
take, or how much overall load can it take without violating any stress 
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limitations, deflection limitations, or any other performance limitations? 
What is the load at which the structure buckles? What are its vibration 
frequencies? Thus, analysis is an overall assessment of the response 
and capabilities of the structure. We start with one structural configura
tion and uniquely determine all the pertinent response characteristics. 
This process is generally a collection of either boundary-value problems 
or eigenvalue problems. Thus, analysis is a deterministic approach to 
solving a very narrow set of problems. We think of analysis as a very 
broad process of various features, but, relative to design, analysis is ac
tually a quite narrow and restricted process . 

• ANALYSIS 

THE DETERMINATION OF THE BEHAVIORAL RESPONSE EXHIBITED BY 

A PARTICULAR STRUCTURAL CONFIGURATION UNDER SPECIFIC LOADS 

(WHAT LOAD DOES THE STRUCTURE TAKE?) 

• DESIGN 

THE PROCESS OF ALTERING DIMENSIONS, SHAPES, AND MATERIALS 

TO FIND THE BEST (OPTIMUM) STRUCTURAL CONFIGURATION 

TO CARRY SPECIFIC LOADS AND PERFORM SPECIFIC TASKS 

(WHAT IS THE 'BESr STRUCTURE TO TAKE THE LOAD?) 

Figure 7-5 Analysis versus Design 

Many analysts tend to believe that design is merely a sequence of 
analyses. They also tend to think that finite element analysis is. t~e 
foremost design tool in the world. Some people know me best as a finite 
element specialist, and yes, I did imply that finite elements are not the 'be 
all and end all'! Certainly finite element analysis is an indispensable part 
of most design practice for complicated structures. Howeve~, the ~riving 
soul behind design is the logic for how to change the design vanables 
in the configuration to meet the design requirements. . . 

In contrast to analysis, design is the process of altermg all the di
mensions, the shapes, and perhaps the materials that are involved in a 
structural configuration to enable that configuration to carry specific 
loads, perform specific tasks, cost the least, weigh the least, or satisfy 
some other criterion for 'goodness'. That is, we tum the problem around 
from analysis in one respect. We are saying: we do not know th~ struc
tural configuration, but we know only the loads .. What structure will c~rry 
these loads? This problem does not have a unique answer! We can find 
many different structures that will carry the desired l?ading. T_he frocess 
of design is trying to determine, under the constraints or guidelines for 
the particular object we want to design, what is the best structure to carry 
those loads. Therefore, design is not a deterministic process. Instead, 
design is an iterative procedure of selecting a co~figurati~n and seeing 
how close its capabilities are to satisfying the design requirements, and 
then making changes that we hope will lead toward satisfactio~ of all the 
design requirements. Typically included in the design process 1s a state-
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ment that cost must be as low as possible and that weight must be as low 
as possible, if in fact those factors are considerations. 

The key to a rational design process is establishing a set of 
mechanistic relationships that relate the configuration to its performance. 
Use of those mechanistic relationships is what distinguishes the struc
tural designer from a dress designer. 

Philosophically, design is much more than just the inverse of anal
ysis. Analysis versus design is not a mathematical inverse problem. 
We have changed from a deterministic analysis problem to a 
nondeterministic design problem. The design problem has malJIY deci
sions that must be made, and those decisions make design-very com
plicated as well as nondeterministic. Moreover, the end result of the 
design process is not a unique solution to the design specifications! That 
is, many possible configurations might meet the design performance re
quirements. The question then becomes: which of the possible config
urations is the 'best'? 

As an example of the contrast between analysis and design, con
sider the column buckling problem. To analyze the buckling resistance 
of a simply supported, axially loaded column, we use the Euler-Bernoulli 
equation, 

(7.1) 

usually derived in basic mechanics of materials, where P is the buckling 
load, E is the modulus of elasticity of the material, I is the moment of in
ertia of the column cross section, and L is the unsupported length of the 
column. A typical analysis problem consists of finding the buckling load 
for a specific column. Hence, E, I, and L are known, so the problem 
obviously is deterministic. That is, all the variables on the right-hand side 
of the single governing equation are known, so the equation can readily 
be evaluated. 

In contrast to the analysis problem, suppose we must design a 
column to resist buckling under a prescribed load. Therefore, we seek 
the column properties E, I, and L knowing only the buckling load P, i.e., 
the load that must be carried without buckling. However, we have three 
unknowns, one known, and only one governing equation, so the problem 
obviously is not deterministic. Even if we know the column length as in 
a typical column design problem, we still do not have a tractable problem. 
We make the problem tractable by selecting the column from a specified 
set of possible materials, say steel, concrete, wood, or aluminum for an 
ordinary building column. That is, if we know L and E for a desired load 
P, we can solve for I from Equation (7.1): 

PL
2 

I=- (7.2) 
iE 

However, four different moments of inertia for each of the four different 
materials (hence different moduli of elasticity) are obtained from Equation 
(7.2). Moreover, knowing the moment of inertia of a column does not tell 
us the shape or dimensions of a column! We usually select a column 
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that has a moment of inertia at least as great as that determined from 
Equation (7.2). However, that selection process usually results in con
sidering quite a few columns that meet the design requirements. Thus, 
we must exercise some other criterion besides buckling in order to select 
the actual column. That is, many columns can have the same required 
moment of inertia, so how do we decide which column is 'best'? Perhaps 
cost is an appropriate basis on which to compare the various columns, 
so we would select the material and cross section that correspond to the 
least-cost column. Or, perhaps weight is the design driver, so we would 
select the least-weight column. At any rate, the complexity of the design 
problem as opposed to the analysis problem is suitably illustrated in this 
example as summarized in Figure 7-6. 

• BUCKLING LOAD ANALYSIS 

P=1t2 ~ E, I, L ~ P 
L2 

• DESIGN AGAINST BUCKLING 

• P DESIRED -h E, I, L 

• IF L KNOWN, P, L -h E, I 

• IF L KNOWN AND MATERIAL SELECTED, P, L, E ~ I 

• OR IF L KNOWN AND MATERIAL SELECTED FROM 
STEEL, CONCRETE, WOOD, AND ALUMINUM, 

P, L, Es, Ee, Ew, E,. -h Is, le, lw, 1,. 

Figure 7-6 Buckling Design versus Analysis Example 

An even more difficult problem occurs if the bar is not prismatic, i.e., 
if the moment of inertia is not constant along the length. We must then 
solve for l(x) where x is the axial coordinate of the bar. This optimization 
of cross-section distribution has been addressed only for problems with 
fixed E and L, not the general column design problem. 

The term trade-off arises frequently in discussions of the design 
process. When conflicting objectives are encountered, some compro
mise must be achieved between the conflicts. To trade-off means to 
exchange (or trade) one achievement for another. For example, aircraft 
weight increases can be accommodated by shortening the range, de
creasing the payload, increasing the fuel consumption, or some combi
nation of all three possibilities. The appropriate trade-off of these 
consequences can be arrived at only by examining the requirements for 
successful operation of the aircraft and deciding what combination of 
factors is the most meaningful. Trade-offs are confined to the nonunique 
design process because of the existence of many possible solutions to 
the design problem. Trade-offs do not exist in analysis because there 
we deal with an already-defined configuration, so no changes are even 
possible. 
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7.2.3 Elements of Design 

Let's investigate the fundamental elements of design. Some ele
ments you will surely recognize, but others might not be so familiar. Still, 
in order to start out properly, let's begin with the basics so you under
stand the terms and the concepts addressed in this chapter. The fol
lowing paragraphs are an explanation of the design elements displayed 
in Figure 7-7. 

• ANALYSIS POSSIBILITIES 

IF WE CAN'T ANALYZE IT, WE CAN'T DESIGN IT J 
• MANUFACTURING ALTERNATIVES 

IF WE CAN'T MAKE IT, THE 'DESIGN' IS WASTED 

• MATERIALS SELECTION 

DID WE CHOOSE THE 'BEST' MATERIAL? 

• CONFIGURATION SELECTION 

WHAT ALTERNATIVE CONFIGURATIONS WOULD BE BETTER? 

• JOINING TECHNIQUES 

WE MUST BE ABLE TO PUT IT TOGETHER 

• OPTIMIZATION 

DO WE HAVE THE 'BEST' DESIGN? 

Figure 7-7 Elements of Design 

As the first element, we must determine whether we can analyze 
the object. We must consider and evaluate the analysis possibilities 
because if we cannot analyze the object, then we cannot possibly design 
it in a rational way. If design means putting together a collection of parts 
that we are certain will do the job, then, admittedly, analysis is not es
sential. Presumably, we are trying to rationally design something where 
we ask: what size and shape must each part be in order to do its job in 
the overall structure? Answering that fundamental question requires us 
to be able to perform a collection of definitive analyses to evaluate the 
capability of each part of the structure as well as that of the overall 
structure. Accordingly, analysis in the form of mechanistic relations is 
absolutely essential. 

The second major element of design is the collection of manufac
turing alternatives because if we cannot make the object, then the design 
is virtually useless. We might seemingly have a nice idea for a structure, 
but if nobody can build the structure, then the idea is a waste of time. 

Next, the material selection element: did we choose the 'best' pos
sible material for each part of the structure? For the overall structure, the 
question is more general: did we choose the right set of materials to be 
able to make the structure in the 'best' possible way? 

Configuration selection is: have we found among all the alternative 
configurations the one that 'best' satisfies our objectives? Is there 
something about a composite structure that involves different freedoms 
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than we customarily consider for metals? Will those new freedoms en
able us to select the 'best' possible configuration for our particular struc
ture? 

Joining techniques is the next element of design. It does no good 
whatsoever to have a collection of structural elements that cannot be 
fastened together. Thus, joining techniques are fundamental to our ap
preciation of how to design an entire structure. Without them, the struc
ture has no meaning, but is just a collection of pieces that do not work 
together. Some areas in joining techniques bear some similarities to 
those for metal structures, although there are some very significant dif
ferences. 

The next element of optimization is really the fundamental question 
in design. To many people, design is optimization. How successfully 
we are able to optimize a structure depends upon the number of design 
variables and the mathematical techniques available to perform that op
timization. However, optimization means we must consider all the many 
design variables and find the 'best', i.e., the optimum, combination of 
values of design variables. Stating that objective or goal is easy. Our 
inability to actually accomplish that goal is related to limitations on our 
computational and theoretical techniques as well as to lack of effective 
strategies for optimization. When we try to automate the design proce
dure, we find that we must, in some respects, simulate the complex 
workings of the human mind. We often think of design as a task that 
we can do in our heads, and, in fact, with simple designs that is exactly 
what we do. However, for a composite structure with all of its design 
variables (many more than for a metal structure), a very wide range of 
actions must be taken that, right now, our computer technology does not 
permit us to take. We cannot, at present, totally automate the design of 
a Boeing 747 jumbo jet. However, we can make progress here and there 
toward that goal. We can do certain pieces of the overall project. But 
if you have ever seen a drawing of the structural framework in a Boeing 
747, you would very easily recognize that the number of decisions that 
must be made is extremely high and hence would involve an enormously 
complex automated design procedure. Note that I addressed the use 
of finite elements in design, not analysis! The Boeing 747 was analyzed 
with the finite element method (which was largely developed by Boeing 
personnel in the 1950s). 

The acceptability of a design in an optimization procedure depends 
on the nature of the behavior aspect that we want to optimize (often 
called the merit function) in the vicinity of the optimum. For example, if 
weight is the merit function, then we want to find the least-weight struc
ture that will fulfill the design requirements. To simplify the example, we 
consider a structure with only a single design variable, x. If the optimum 
weight is very different from the surrounding weights in design space as 
in Figure 7-8, then only the optimum design is acceptable. That is, a big 
weight penalty exists for small variations of the design variable away from 
the optimum value. However, if the optimum weight is only slightly lower 
than the weight of many designs adjacent in design space as in Figure 
7-9, then many acceptable designs exist. That is, a very small weight 
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penalty exis~s for rather sizeable variations of the design variable away 
from the optimum value. Achieving the optimum design in the latter case 
might not be very worthwhile. That is, the payoff in weight saved by us
ing the optimum design might not be worth the cost of finding the opti
mum design in this case. That situation would surely exist if some part 
of the Boeing 747 had an optimization curve like Figure 7-9. In that 
example, the cost of finding the optimum design would be many times 
higher than simply finding a design somewhere in the broad more or less 
trough-like region. Sensitivity studies for various design variables must 
be performed to determine whether a design is strongly affected by a 
particular variable as in Figure 7-8 or weakly affected by anoth~r variable 
as in Figure 7-9. The strength of the effect depends oll__Wt1ether the 
derivative dW/dx in Figures 7-8 and 7-9 is high or low near the optimum 
design. 

w w 
OPTIMUM} 

X X 

ONLY THE OPTIMUM DESIGN MANY DESIGNS ARE NEARLY OPTIMUM 
IS ACCEPT ABLE 

Figure 7-8 Narrow Optimum Design Figure 7-9 Wide Optimum Design 

Each design is actually a function of many design variables, e.g. 
lamina orientations, stiffener spacings, stiffener web heights, etc. Th~ 
dependence of the merit function on a single design variable at a time is 
depicted in Figures 7-8 and 7-9 instead of a difficult-to-visualize function 
of many variables that cannot be depicted in three dimensions. Some 
design variables are strong design drivers as in Figure 7-8, whereas 
other design drivers are weak design drivers as in Figure 7-9. Thus, the 
notion of strong design drivers being associated with critical derivatives 
in different directions in design space must be considered. One of the 
main problems in design is determining which variables are strong driv
ers, which variables are weak drivers, and which variables do not matter 
in the specific design being considered. That is, what are the critical 
derivatives for the design? 
. On~. of the ~ey elem_ents in la~inate_d composite structures design 
1s the ability to tailor a laminate to suit the Job at hand. Tailoring consists 
of the following steps. We want to design the constituents of the lami
nate, and those constituents include the basic building blocks of the in
dividual laminae and as well how they are oriented within the laminate. 
We design those constituents to just barely meet (with an appropriate 
factor of safety) the specific requirements for, say, strength and stiffness, 

Introduction to Design of Composite Structures 379 

although there could be many other design factors as well. Therefore, 
at the very least, we must evaluate elements of strength and stiffness. 
One of the elements is how big can the load be, and that is a problem 
which we have previously addressed for a metal structure. We size the 
structure to take a certain magnitude of load. Now we are able to include 
with a composite laminate a very different characteristic, namely the di
rection from which the load comes. 

We could in fact prejudice a metal structure to be able to take 
higher loads from one direction than from another by using stiffeners. 
But, for the basic metallic monocoque plate structural element used for 
example in an aircraft wing, the same capabilities for carrying load exist 
in all directions of that wing skin. The metal wing's load-carrying capa
bilities are prejudiced by putting stiffeners in various directions. Then, the 
wing is able to resist a different bending moment Mx along the axis of the 
wing in Figure 7-10 than twisting moment My about the axis of the wing. 
We make those changes in capability by using different stiffeners in dif
ferent directions with a metal structure. 

z 

X 

y 

" ~-, e-.y 
x Note: Mx is about x-axis 

My is about y-axis 

Figure 7-10 Aircraft Wing Loadings 

In contrast, for composite structures, we have two methods of 
achieving different load-carrying capabilities in different directions. One 
method is at the laminate level where the laminate's capabilities can be 
directionally prejudiced without changing its thickness simply by changing 
the laminate stacking sequence. Changing the stacking sequence of a 
composite laminate has no analog for a metal structure. The other 
method of achieving different load-carrying capability in different di
rections for a composite structure is that we can, of course, use stiffeners 
just as we do for metallic structures. However, with composite structures 
we can go one step further than for a metallic structure in the sense that 
we can have much more efficient stiffeners. If the stiffeners are made 
of composite materials, then we can make them of different kinds of 
composite materials in different regions of the stiffeners. We can take 
advantage of the best possible performance of a very high-modulus fiber 
by putting it in the flange of an I-section and letting the web be a less-
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capable material because the web is not where most of the structural 
action takes pl8:ce. If we can transfer the shear loading to that web, we 
h~ve do~e the Job we must do. Often that shear loading can be trans
mitted with a glass-epoxy web, whereas the flange might be graphite
epoxy or boron-epoxy. Thus, we can tailor portions of the structural 
elements as well as the overall laminate to take directionally different 
loads in a composite structure. 

7 .2.4 Steps in the Structural Design Process 

In structural design, we start with a set of design requirements in 
order to define our objectives. The design requirements are merely a 
sta!e~ent ~f what we want the structure to do. T~verly simplistic 
def1nit1on will be expanded upon throughout the book, especially in Sec
tion 7_.2.5 and in Section 7.6. With that objective in mind, we will now 
examine the steps we must take to attack the objective. 

The structural design process is depicted by means of a schematic 
flow chart in Figure 7-11. That is, the flow chart is not a precisely defined 
computer program flow chart, but is instead a flow chart of ideas, con
cepts, and procedures. We start presumably knowing the loads that 
must be carried and what materials might possibly be considered for our 
design. Through some process, we then choose an initial configuration 
for our structure. That configuration might be very crude, but constitutes 
a start to the necessarily iterative design process. At this point, we might 
have a significant problem because if our structure is an airplane, we do 
not know the precise aerodynamic loads without knowing the actual 
structural configuration. Thus, sometimes there is a lot of interplay be
tween choosing the initial configuration and determining the loads used 
in design. Accordingly, the design process is often not as simple as 
portrayed here. However, once we have the initial configuration, some 
knowledge of the loads, and some idea of what materials we might like 
to use, then we can begin the actual structural design process. 

INPUT LOADS AND POSSIBLE MATERIALS 

CHOOSE INITIAL CONFIGURATION 

ANALYSIS AND FAILURE ANALYSIS 
(STRESSES, DEFLECTIONS, BUCKLING, AND VIBRATION) 

NO FAILURE 

RECONFIGURE STRUCTURE 
TO SAVE WEIGHT 

FAILURE 

RECONFIGURE STRUCTURE 
TO INCREASE CAPABILITY 

ACCEPT DESIGN IF WEIGHT ACCEPTABLE 

Figure 7 -11 The Structural Design Process 
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7.2.4.1 Structural Analysis 

We go next to the analysis and failure analysis block in Figure 7 -11. 
That is, we consider the initial configuration with a particular material or 
materials. Then, for the prescribed loads, we perform a set of structural 
analyses to get the various structural response parameters like stresses, 
displacements, buckling loads, natural frequencies, etc. Those analyses 
are all deterministic processes. That is, within the limits of accuracy of 
the available analysis techniques, we are able to predict a specific set 
of responses for a particular structural configuration. We must know how 
a particular structural configuration behaves so we can compare the ac
tual behavior with the desired behavior, i.e., with the design require
ments. 

7.2.4.2 Elements of Analysis in Design 

Let's examine the elements of analysis that occur in the overall 
design process. The objective of analysis is to determine the pertinent 
structural response parameters in Figure 7-12. Then, we must assess 
various modes of failure, and the failure modes will be described by re
lating them to the structural response characteristics. Stiffness, for ex
ample, is related to the common requirement that we cannot have too 
much deflection in various critical parts of the structure. Buckling will 
occur if the load is so high that this structure cannot actually carry the 
desired level of load without the added deflections and decreased stiff
ness that constitute the structural response behavior typical of a buckled 
structure. We must be able to predict the vibration modes and frequen
cies so that we know how to avoid resonance or, alternatively, what the 
dynamic response will be. We must evaluate the strength by predicting 
various stresses in preparation for comparing them to appropriate failure 
criteria. Those stresses include membrane stresses, bending stresses, 
stresses between layers, stresses around holes and cutouts, stresses 
around defects, etc. Moreover, we must be able to analyze joints so we 
are assured that loads can be transmitted between structural elements. 

• DETERMINE PERTINENT STRUCTURAL RESPONSE PARAMETERS 

• DEFLECTIONS 

• BUCKLING LOADS 

• VIBRATION FREQUENCIES 

• STRESSES 

• FULL-FIELD STRESSES 

• STRESSES AROUND CUTOUTS 

• STRESSES AROUND DEFECTS 

Figure 7-12 Elements of Analysis in Design 
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7.2.4.3 Failure Analysis 

Next, we perform a failure analysis in which the various structural 
response parameters just obtained are compared with their allowable or 
required values as in Figure 7-13 to determine whether the current de
sign is satisfactory. If all response parameters are in acceptable ranges, 
then that fact is acknowledged on the left-hand side of Figure 7-11 by 
exiting the failure analysis box to a box labeled 'no failure'. If the current 
design does not violate any of the design requirements, then that fact 
signifies there is no failure. However, just because there is no failure 
does not mean we have the best structure or even an acceptable struc
ture. If weight is the driving factor in the structural d~sign, for example, 
then the structure must have the least weight. Then', if there has been 
no failure, we can conclude that the structure is overdesigned to some 
degree. We will, of course, include in all failure analyses appropriate 
factors of safety. Factors of safety must be applied against too much 
stress, against too much deflection, against approaching a buckling load, 
against approaching a natural frequency to avoid resonance, etc. 

• ARE THE STRUCTURAL RESPONSE PARAMETERS WITHIN DESIGN BOUNDS? 

• DEFLECTIONS TOO HIGH? 

• BUCKLING LOADS TOO CLOSE? 

• VIBRATION FREQUENCIES NEAR RESONANCE? 

• STRESSES TOO HIGH? LESS THAN STRENGTH? 

• FULL-FIELD STRESSES 

• STRESSES AROUND CUTOUTS 

• STRESSES AROUND DEFECTS 

Figure 7-13 Failure Analysis in Design 

Those factors of safety for various types of failure can be very dif
ferent from one another depending on whether we are designing against 
a catastrophic failure event or against a benign failure event. Obviously, 
factors of safety against catastrophic failure events must be considerably 
higher that those against benign failure events. For example, the factor 
of safety against buckling of a column must be higher than the factor of 
safety against buckling of a plate. The reason for that relationship is the 
basic physical response characteristic that a column cannot carry any 
higher load than the buckling load (see Section 5.4). In contrast, a plate 
can carry considerably more load after buckling, but does so with a re
duced stiffness. Thus, column buckling is a much more limiting and 
drastic event than is plate buckling. That nature of failure is accordingly 
reflected in the value of the factor of safety, i.e., how far away we must 
stay from that event. Also, factors of safety for a manned structure are 
higher than for an unmanned structure. 

In practice, factors of safety are, for various reasons, different for 
composite structures than for metal structures. A factor of safety is 
usually a legislated number that is arrived at 'in committee' by evaluation 
of the various consequences of a specific kind of failure in a particular 
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type of structure. Such a committee can have representatives from en
gineering societies, industry associations, governments, and universities. 
A different factor of safety might result for the load-carrying capacity of 
a fastener in a composite bolted joint than for a metal bolted joint be
cause of issues such as the following. With a composite bolted joint, 
bearing capability is typically lower than for metals. Also, at a hole, a 
higher stress concentration factor exists for a composite material than for 
a metal. If the metal were aluminum, certain yielding capabilities exist 
around that stress concentration area that do not exist with a more brittle 
(i.e., nonyielding) composite material. Thus, a factor of safety for a 
fastener in a metal joint is quite different than that for a composite ma
terial joint because of the many factors that affect the level of stress 
versus the potential failure. Other examples of a similar nature exist 
because of the unique behavioral characteristics of composite materials 
as compared to metals. We must evaluate the failure of composite ma
terials in a different manner than we do metals, so different factors of 
safety are appropriate. 

Finally, failure analysis is the process of comparing actual per
formance with the desired performance. Thus, failure analysis is a non
trivial part of the structural design process. Facets of failure analysis 
including what failure means for a structure are addressed in Section 7.6 
on Design Requirements and Design Failure Criteria. 

7 .2.4.4 Structural Reconfiguration 

Reconfiguration of a structure simply means to change some or all 
of the design variables such as thicknesses, fiber directions, stiffener 
sizes, etc. to achieve a more suitable structure than the current config
uration. Note that the term 'more suitable' has two possible meanings. 
If the structure has too little capability relative to the loads and conditions 
we place on it, then the structure is underdesigned, and we must recon
figure the structure to increase its capability. However, if the structure 
has too much capability, then it is overdesigned, and we must reconfigure 
the structure to actually decrease its capability. Both alternatives will be 
discussed. Recognize that structural reconfiguration is the very heart of 
structural design. 

Suppose we perform the failure evaluation for the structural con
figuration and find some kind of a failure, i.e., a violation of one or more 
of the design requirements. Thus, the structure is underdesigned, so its 
capacity must be increased. Accordingly, we must move to the next box 
labeled reconfigure the structure to increase capability. The word capa
bility is used here in a very broad sense. Increasing the capability could 
actually mean increasing the stiffness to change the deflection condi
tions. That is, increasing capability could mean decreasing deflections 
if that was the violated design requirement. Increasing capability could 
also mean increasing buckling loads or increasing vibration frequencies. 
That is, somehow we must reconfigure the structure to increase the basic 
structural capabilities. Under some circumstances, we might actually 
want to decrease the stiffness to avoid an exciting frequency driving the 
structure into resonance. 
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If the current design in the iterative design process depicted in 
Figure 7-11 did not fail, then the structure is overdesigned. Accordingly, 
we must change the structure, i.e., reconfigure the structure, so that it 
will carry the same load but at a lower weight. And at that lower weight 
we must reevaluate the structural performance. Thus, we must go 
through some process to reconfigure the structure to save weight. After 
reconfiguration, we proceed back up on the flow chart in Figure 7-11 to 
the analysis and failure analysis box because we now have a new con
figuration to evaluate. We must go through the process all over again 
of determining the structural response parameters and comparing them 
with their allowable values. 

With the newly reconfigured structure, we go ba~ the analysis 
and failure analysis block in Figure 7-11 and evaluate the new config
uration. We keep cycling around the diagram (figuratively speaking) be
tween failures and no failures until the design is refined to the point 
where it has the least weight and satisfies all the design functional re
quirements, i.e., does not fail in any of the possible ways. Those condi
tions are what is meant by the design not violating any of the design 
requirements in general. Then, we would accept that design if the weight 
is acceptable. Perhaps, from other analyses, we have determined that 
the airplane being designed cannot weigh more than a certain amount. 
Otherwise, for various propulsion requirements, we cannot make the 
plane travel at the required speed or have the required range and so on 
(those issues are design requirements, too). After all the design re
quirements are satisfied and the weight is as small as possible, then the 
design is declared to be satisfactory. The same kind of overall design 
process can be performed with a governing parameter other than weight. 
The other design parameter could be cost, or it could be various perfor
mance-related objectives, or some combination thereof. 

We have examined one view of structural design, and we will focus 
our attention later on in Section 7.4 how to reconfigure a composite 
structure as opposed to a metal structure. That reconfiguration process 
will be our principal interest. In this section, we simply address the basic 
structural design process irrespective of the materials used. 

7 .2.4.5 Iterative Nature of Structural Design 

The characteristic iterative nature of the structural design process 
is illustrated along with the obvious analysis content of design in Figure 
7-14, which is a simplification of the more comprehensive Figure 7-11. 
In the simplified design-analysis iterations, we have three kinds of anal
ysis: loads, stress and displacement, plus failure. When a specific con
figuration does not satisfy the design requirements imposed in the failure 
analysis, the design must be modified. Those modifications typically 
consist of either (1) geometrical parameters such as thicknesses or 
stiffener spacings or (2) material properties such as substituting a differ
ent material or (3) both geometrical parameters and material properties. 
The modifications and analysis are repeated in the design process in an 
iterative fashion until all the design requirements are satisfied. 
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DESIGN MODIFICATIONS 
•GEOMETRY 
•MATERIALS 

INTERNAL LOADS 
ANALYSIS 

I FAILURE ANALYSIS I 

STRESS AND 
DISPLACEMENT 

ANALYSIS 

Figure 7-14 Simplified Design-Analysis Iterations 

7.2.5 Design Objectives and Design Drivers 

A design objective is a statement of what we want the structure to 
do and/or to be. The three principal design objectives are expressed in 
terms of function, cost, and weight. Function is the set of performance 
requirements or design requirements that the structure must meet or be 
able to do. Cost is the life-cycle cost of the structure, i.e., the initial 
purchase price plus the operating and maintenance costs over the life 
of the structure less any scrap value at the end of the structure's life as 
defined in Section 1.3.2. Weight is obviously the structural weight and 
might or might not be important. For aircraft, low weight is obviously 
crucial. For spacecraft, low weight is all-important. For buildings, weight 
is not usually a significant factor. Note that function often has many ob
jectives, whereas cost and weight are each single objectives. 

The structure can be optimized, i.e., designed, for any one, two, 
or all three design objectives. That is, the design objectives might be to 
have the lowest weight aircraft for a specified set of functions that must 
be performed. Or, the highest speed aircraft might be the most important 
objective with cost being allowed to rise in order to achieve the desired 
speed. Perhaps the cost might be minimized with certain compromises 
made for performance or weight. At any rate, every design must be 
measured against fundamental design objectives expressed in terms of 
function, cost, and weight. 

A design driver is a design variable that, when changed, strongly 
influences the performance of the design as in Figure 7-8. A design 
driver can also be a design condition that strongly influences which de
sign variables govern the design. One of the early objectives in the de
sign process is to identify the design drivers and concentrate on 
manipulating them as opposed to changing variables that do not strongly 
influence the design. Thus, for aircraft, we would make many decisions 
based on how we can get each part of the structural job done with the 
least amount of weight because of its strong influence on range, econ-
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omy, and performance. Similarly, spacecraft have a least-weight objec
tive because of the design driver of high cost to boost the spacecraft into 
space. Accordingly, it is not at all surprising that we use high-stiffness
low-weight materials such as composite materials to achieve the design 
objective of least weight. Cars are also weight-sensitive, in general, but 
some parts are especially sensitive to strength and stiffness. Trusses 
are stiffness-sensitive because of the tendency of compression members 
to buckle. 

A specific example of strong and weak design drivers is developed 
by examining the bending resistance of the stiffened panel in Figure 7-15. 
There, the stiffener web height is a strong influence on ~anel bending 
resistance because the stiffener moment of inertia is strongly affected 
and, in turn, has a large influence on the bending resistance. (Refer to 
the discussion of the second moment of the area of a stiffener in Section 
7.4.2.) However, stiffener web thickness is not a strong design driver 
because web thickness has little influence on bending resistance. We 
conclude through similar reasoning that flange thickness, flange width, 
and stiffener spacing are strong design drivers in Figure 7-15 and that 
skin thickness is a weak design driver. We must be conscious of the type 
of design drivers at each of the three stages of design-analysis. 

FLANGE WIDTH 

14 

WEB THICKNESS =1 WEB HEIGHT 

I. STIFFENER SPACING • I SKIN THICKNESS 

ALL FACTORS AFFECT PANEL BENDING RESISTANCE, BUT 

e STRONG DESIGN DRIVERS e WEAK DESIGN DRIVERS 
e FLANGE THICKNESS 

e STIFFENER SPACING 

e FLANGE WIDTH 

e WEB HEIGHT 

e WEB THICKNESS 

e SKIN THICKNESS 

Figure 7-15 Anatomy of a Stiffened Panel 

7.2.6 Design-Analysis Stages 

The term design-analysis is used to emphasize the essential, but 
not dominant, role of analysis in the overall structural design process. 
Analysis plays no role whatsoever in dress design (with the possible ex
ception of the now-classical analysis of a strapless evening gown). 
However, engineering design of a structure must involve analysis in the 
form of mechanistic relationships. Those mechanistic relationships must 
be used to quantitatively determine how to create the structural capabil
ities and then to match them to the structural requirements. The dis-
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tinction between design and design-analysis is perhaps not quite so 
important for metal structures as for composite structures. For metal 
structures, designers can rely to a large extent on rules of thumb. Often, 
such designers were not educated as engineers, but were trained 'on the 
(drawing) boards'. However, composite structures designers do not have 
such simple and convenient rules of thumb because the configuration 
and behavior of composite structures are far more complex than those 
of metal structures. And, those behavioral complications and configura
tional options require the designer to use mechanistic relationships to 
provide the rationale to size the various parts of the structure. The word 
design should bring to mind the picture of an engineer putting to use the 
mechanistic relationships along with ingenuity to design a structure. 
However, the usual concept is more on the order of imagining a designer 
who is not necessarily an engineer using only a collection of rules of 
thumb to create a design. Accordingly, the essential role of analysis in 
the structural design process is emphasized in this book by using the 
term design-analysis. 

The design-analysis stages that we address here are surely both 
logical and familiar: preliminary design-analysis, intermediate design
analysis, and final design-analysis as indicated in Figure 7-16. The dif
ferences between the three stages will now be defined. They are nearly 
self-explanatory, but let's examine the specific meanings. 

PRELIMINARY DESIGN-ANALYSIS 

INTERMEDIATE DESIGN-ANALYSIS 

FINAL DESIGN-ANALYSIS 

Figure 7-16 Design-Analysis Stages 

7.2.6.1 Preliminary Design-Analysis 

At the preliminary design-analysis stage of a structure, we make 
an initial attempt, i.e., take some kind of a first cut or approximation, at 
achieving a structural configuration to help define the weight. We also 
take a first cut at satisfying the various system requirements which relate 
to function, as suggested in Figure 7-17. And we also consider at this 
stage some kind of a first cut at determining the manufacturing feasibility, 
which has a big impact on what the structure will cost. Because we are 
dealing with a relatively simple structure at this stage, we must have an 
easy-to-use computer program for analysis. For some structures, per
haps only a one-dimensional treatment of the structural configuration is 
needed, e.g., a beam model. 
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• FIRST CUT AT STRUCTURAL CONFIGURATION {WEIGHT) 

• IDENTIFY DESIGN DRIVERS 

• PERHAPS USE ONE-DIMENSIONAL ANALYSIS 

• FIRST CUT AT SYSTEM REQUIREMENTS (FUNCTION) 

• FIRST CUT AT MANUFACTURING (COST) 

• USE A SIMPLE COMPUTER PROGRAM 

Figure 7-17 Preliminary Design-Analysis 

7.2.6.2 Intermediate Design-Analysis 

The intermediate design-analysis staga,,is sometimes called 
trade studies. The actual terminology depends on the industry or com
pany where you work. Basically, we address analysis of the various 
design concepts that we are considering for use in our structure in a 
more sophisticated manner than was done at the preliminary design
analysis stage. Typically, at this stage, as in Figure 7-18, we would use 
a more sophisticated and capable analysis computer program than in the 
preliminary design-analysis stage. In the process of using this sort of 
program and evaluating the various design concepts, we determine the 
impact of all of those competing concepts on the three fundamental ob
jectives of weight, cost, and function for our design. At this stage, we 
would expect to fabricate and test some simple models of the critical 
components in this structure to make sure that the design calculations 
are realistic instead of strictly a paper exercise that might not lead to an 
effective structure. 

• MORE SOPHISTICATED ANALYSIS OF COMPETING DESIGN CONCEPTS 

• EXERCISE DESIGN DRIVERS 

• PERHAPS USE TWO-DIMENSIONAL ANALYSIS 

• ASSESS IMPACT OF ALL CONCEPTS ON WEIGHT, COST, AND FUNCTION 

• USE AN INTERMEDIATE-LEVEL COMPUTER PROGRAM 

• FABRICATE AND TEST SIMPLE MODELS OF CRITICAL COMPONENTS 

Figure 7-18 Intermediate Design-Analysis 

7.2.6.3 Final Design-Analysis 

In the last stage of final design-analysis, which is sometimes 
called detailed design, we must study all the final details of the shape, 
the joints, perhaps cutouts and stiffeners, especially stiffeners around 
cutouts and so on, and all the system interactions in a very sophisticated 
model of the structure as listed in Figure 7-19. A sophisticated model is 
necessary to incorporate those kinds of details. Typically, we would use 
a super-sophisticated general-purpose computer program such as 
NASTRAN. In this final design-analysis stage, we must assess the im
pact of all the details of the competing structural concepts on the weight, 
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cost, and function of the structure that we are trying to design. Naturally, 
we will have only one structural concept to address at this design
analysis stage because we will have eliminated all of the other concepts 
in earlier design-analysis stages. 

• STUDY FINAL DETAILS OF JOINTS, CUTOUTS, STIFFENERS, AND 

SYSTEM INTERACTIONS IN A SOPHISTICATED MODEL 

• REFINE DESIGN DRIVERS 

• PERHAPS USE THREE-DIMENSIONAL ANALYSIS 

• USE A SUPER-SOPHISTICATED COMPUTER PROGRAM SUCH AS NASTRAN 

• ASSESS IMPACT OF ALL DETAILS ON WEIGHT, COST, AND FUNCTION 

• FABRICATE AND TEST GOOD SIMULATIONS OF CRITICAL COMPONENTS 

Figure 7-19 Final Design-Analysis 

At this stage, we typically fabricate and test some good simulations 
of critical components of the structure. These tests are not necessarily 
subscale tests, although we could still have some of them, but we prob
ably go all the way up to full-scale tests. When do we regard the struc
ture as having been designed? The structure is designed when we can 
demonstrate that it meets all the design requirements, and, more often 
than not, that demonstration takes a full-scale structural test, as well as 
many time-consuming flight tests for an aircraft. 

7.2.7 Summary 

In this section, the structural design process was briefly described 
with emphasis on analysis, failure analysis, and structural reconfigura
tion. The three fundamental design-analysis stages, preliminary, inter
mediate, and final, were defined and illustrated. At each stage of 
design-analysis, testing representative components of the structure or 
subassembly of the structure is essential in order to be reasonably as
sured that nothing has gone wrong or has been overlooked in the design 
process. 

7.3 MATERIALS SELECTION 

7 .3.1 Introduction 

The fundamental objective in this section is to describe the factors 
and procedures to select the right material for a specific structural appli
cation. The 'right stuff' for a material, as for a fighter pilot or an astronaut, 
is a complex combination of characteristics. To select the proper mate
rial requires being able to characterize and evaluate various composite 
materials (or metals!) and to compare their attractive characteristics with 
the behavioral features required for a particular structure. Finally, a ma
terials selection example of a space truss design problem will be ad
dressed. 
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7.3.2 Materials Selection Factors 

The discussion of materials selection factors is naturally divided 
into three parts: (1) overall factors pertinent to selection of the composite 
material itself, (2) factors governing the selection of the fibers, and (3) 
factors essential to selection of the matrix system. Those three types of 
selection trade-offs will be described, followed by summary remarks on 
the process of selecting a suitable composite material. 

The materials selection factors that might be considered are fairly 
obvious and are displayed in Figure 7-20. These factors are actually the 
same ones that would be used when choosing

1 

a composite material as 
opposed to a metal. ..__/ 

• STRENGTH 
• STIFFNESS 
• FATIGUE LIFE 
• DENSITY 
• TOUGHNESS 
• COST 
• TEMPERATURE DEPENDENCE 
• THERMAL EXPANSION 

• WEAR RESISTANCE 
• CORROSION RESISTANCE 
• CONDUCTIVITY 

• ELECTRICAL 
• THERMAL 

• INSULATION 
• ACOUSTICAL 
•THERMAL 

Figure 7-20 Materials Selection Factors 

The factors that might be generally considered first and foremost 
are stiffness and strength for structural applications. Much of the devel
opmental and applications work for composite materials has been fo
cused on weight-sensitive structures such as aircraft. There, the high 
strength-to-weight and high stiffness-to-weight characteristics of com
posite materials are the primary design drivers. However, for many ap
plications, other factors or drivers are more important than stiffness and 
strength. 

The toughness of a material is a design driver in many structures 
subjected to impact loading. For those materials that must function under 
a wide range of temperatures, the temperature dependence of the vari
ous material properties is often of primary concern. Other structures are 
subjected to wear or corrosion, so the resistance of a material to those 
attacks is an important part of the material choice. Thermal and electrical 
conductivity can be design drivers for some applications, so materials 
with 'proper' ranges of behavior for those factors must be chosen. Sim
ilarly, the acoustical and thermal insulation characteristics of materials 
often dictate the choice of materials. 

For a space structure of any kind, the main concern will probably 
be with the coefficients of thermal expansion and the various stiffnesses. 
Most readers are probably aware from various Space Shuttle problems 
that the Shuttle gets heated more on one side than the other if it does 
not keep turning around relative to the sun. During one mission, the 
payload-bay doors were opened, but could not be closed again. The 
television commentator said that the doors had expanded and were 
warped so much that they would not fit back into the opening to be locked 
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shut. However, door expansion was not the problem at all because the 
graphite-epoxy cloth in the doors has, at worst, coefficients of thermal 
expansion in various directions that more or less match the surrounding 
metallic structure. Actually, the underside of the Shuttle had been over
exposed to the Sun and therefore expanded to cause the Shuttle to bend 
into a banana shape. Thus, the opening into which the graphite-epoxy 
doors must fit was made smaller. The only way that problem can be 
solved is by rotisarizing the Space Shuttle, and that is just what NASA 
did. The astronauts rolled the Shuttle over to keep the lower body away 
from the sun for a while, and then they could shut the doors. 

For a space telescope, the pointing accuracy required is quite high 
and can be thought of in the following manner. If the telescope is in New 
York and pointed at San Francisco, the accuracy with which it must be 
pointed is within the diameter of an orange nearly three thousand miles 
away! Thus, not much deformation of the telescope or its supporting 
structure can be tolerated. The overall objective is to be able to point the 
telescope within that accuracy, and we must then do what is necessary 
in order to achieve that required accuracy. In the scope of a project like 
the Hubble Space Telescope with the overall project cost exceeding $1 
billion, there is considerable latitude to find materials that will do the job. 
If there is a job to be done, then the material must be found that will do 
it. Cost is therefore not the most pressing issue. Function is the most 
pressing issue! 

Other examples exist where different factors on the list of material 
selection factors in Figure 7-20 are the design drivers. However, at the 
time of the initial applications of advanced composite materials, the main 
issues were simply strength and stiffness. Perhaps a fatigue-life issue 
could be more important in some applications. Some applications are 
made despite some disadvantages for composite materials in some of 
these material selection factors. For example, the electrical conductivity 
of graphite-epoxy is not sufficient when designing an aircraft subject to 
a lightning strike (as are all aircraft). All parts of an aircraft must be able 
to dissipate the electrical charges of lightning strikes. Thus, some sup
plementary material or electrically conductive material systems must be 
added to the graphite-epoxy in order to provide the aircraft with appro
priate lightning-resistant characteristics. 

7.3.3 Fiber Selection Factors 

Fibers are often regarded as the dominant constituents in a fiber
reinforced composite material. However, simple micromechanics analy
sis described in Section 7.3.5, Importance of Constituents, leads to the 
conclusion that fibers dominate only the fiber-direction modulus of a 
unidirectionally reinforced lamina. Of course, lamina properties in that 
direction have the potential to contribute the most to the strength and 
stiffness of a laminate. Thus, the fibers do play the dominant role in a 
properly designed laminate. Such a laminate must have fibers oriented 
in the various directions necessary to resist all possible loads. 

Fiber selection is usually based primarily on the required strength 
or stiffness. That selection process is relatively straightforward, but other 
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selection factors such as those listed in Figure 7-20 require more con
sideration. In space structures that must be dimensionally stable, e.g., 
telescopes or antennae, carbon fibers have a negative co~~icient of 
thermal expansion that can be used to offset the u~ually pos1t1ve valu~ 
for matrix materials, resulting in an extremely attractive near-zero coeffi
cient of thermal expansion structural material. In all applications, a 
fiber-matrix bond is essential, so a fiber surface treatment or coating of
ten must be used. 

7.3.4 Matrix Selection Factors _) 

The selection of a suitable matrix for a composite material involves 
many factors, and is especially important because the matrix is usua_lly 
the weak and flexible link in all properties of a two-phase composite 
material. The matrix selection factors include ability of the matrix to wet 
the fiber (which affects the fiber-matrix interface strengt~)._ ease o_f proc
essing, resulting laminate quality, and the temperature limit to wh_1ch the 
matrix can be subjected. Other performance-related factors include 
strain-to-failure, environmental resistance, density, and cost. 

Those basic matrix selection factors are used as bases for com
paring the four principal types of matrix materials, n~mely polyr:1ers, 
metals, carbons, and ceramics, listed in Table 7-1. Obviously, no single 
matrix material is best for all selection factors. However, if high temper
atures and other extreme environmental conditions are not an issue, 
polymer-matrix materials are the most suitable constituen!s, and that is 
why so many current applications involve pol_ymer matrices. In fa~t, 
those applications are the easiest and most stra1gh~orward for compos,~e 
materials. Ceramic-matrix or carbon-matrix materials must be used m 
high-temperature applications or under severe ~nvironmental conditions. 
Metal-matrix materials are generally more suitable than polymers for 
moderately high-temperature applications or for modest environmental 
conditions other than elevated temperature. 

Historically, polymer-matrix composite materials such as boron
epoxy and graphite-epoxy first found favor _in applications_. follo~ed by 
metal-matrix materials such as boron-aluminum. Ceram1c-matnx and 
carbon-matrix materials are still under development at this writing, but 
carbon-matrix materials have been applied in the relatively limited areas 
of reentry vehicle nosetips, rocket nozzles, and the Space Shuttle since 
the early 1970s. 

Table 7-1 Matrix Selection Factors 

SELECTION FACTOR RANKING OF MATRIX MATERIALS 
POOR GOOD 

FIBER WETIING CERAMIC METAL CARBON POLYMER 
PROCESSING EASE CERAMIC METAL CARBON POLYMER 
LAMINATE QUALITY CERAMIC CARBON METAL POLYMER 
STRAIN-TO-FAILURE CERAMIC CARBON METAL POLYMER 
ENVIRONMENTAL RESISTANCE POLYMER METAL CARBON CERAMIC 
DENSITY METAL CERAMIC CARBON POLYMER 
COST METAL CARBON CERAMIC POLYMER 
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Polymer-matrix materials include a wide range of specific materials. 
Perhaps the most commonly used polymer is epoxy. Other polymers 
include vinyl ester and polyester. Polymers can be either of the 
thermoset type, where cross-linking of polymer chains is irreversible, or 
of the thermoplastic type, where cross-linking does not take place but the 
matrix only hardens and can be softened and hardened repeatedly. For 
example, thermoplastics can be heated and reheated, as is essential to 
any injection-molding process. In contrast, thermosets do not melt upon 
reheating, so they cannot be injection molded. Polyimides have a higher 
temperature limit than epoxies (650°F versus 250°F or 350°F) (343°C 
versus 121 °c or 177°C), but are much more brittle and considerably 
harder to process. 

7.3.5 Importance of Constituents 

The process of selecting the appropriate combination of fibers and 
matrix material for a particular application is rather involved. The im
posed design requirements will aid in eliminating from consideration 
certain matrix materials or fibers or combinations thereof. However, 
some combinations of constituent materials are not so obviously evalu
ated. 

A simplified performance index for stiffness is readily obtained from 
the essentials of micromechanics theory (see, for example, Chapter 3). 
The fundamental engineering constants for a unidirectionally reinforced 
lamina, E1, E2, v12, and G12, are easily analyzed with simple back-of
the-envelope calculations that reveal which engineering constants are 
dominated by the fiber properties, which by the matrix properties, and 
which are not dominated by either fiber or matrix properties. Recall that 
the fiber-direction modulus, E1 is fiber-dominated. Moreover, both the 
modulus transverse to the fibe'rs, E2, and the shear modulus, G12, are 
matrix-dominated. Finally, the Poisson's ratio, v12, is neither fiber
dominated nor matrix-dominated. Accordingly, if for design purposes the 
matrix has been selected but the value of E1 is insufficient, then another 
more-capable fiber system is necessary. However, if E2 and/or G12 are 
insufficient, then selection of a different fiber system will do no practical 
good. The actual problem is the matrix system! The same arguments 
apply to variations in the relative percentages of fiber and matrix for a 
fixed material system. 

The micromechanics analysis alluded to in the previous paragraph 
can also be applied to thermophysical properties such as thermal ex
pansion, moisture expansion, thermal conductivity, etc. However, be 
aware that micromechanics analysis is generally much more valuable as 
a qualitative guide to the design of a material than it is to any quantitative 
considerations. That is, the accuracy of the micromechanical predictions 
of the matrix-dominated properties is quite low. Accordingly, reliable 
quantitative performance predictions are not possible. In other words, 
using constituent properties to predict the behavior of a composite ma
terial is not feasible at this time in the structural design environment. 
Micromechanics is best suited for understanding and designing the ma-
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terial itself. Actual property measurements for a composite material 
cannot be avoided. 

When some of the possible combinations of fibers and matrix sys
tems are examined, a picture of the usefulness of composite materials 
begins to form. That usefulness is measured from only the standpoint 
of operating temperature range in Table 7-2. There, both with some 
thermoset-matrix materials as well as some thermoplastic-matrix materi
als, the matrix controls the operating temperature of the composite ma
terial. The only exceptions in; Table 7-2 are the incompatibilities of 
phenolics and polyimides with-Kevlar. The carbon-matrix system also 
controls the operating temperature and, because of processing reasons 
(both glass and Kevlar fibers would be melted at the processing tem
peratures of the carbon matrix), is compatible only with carbon fibers. 
That is, only carbon fibers can withstand the high temperatures required 
to create the carbon matrix around the fibers. An encyclopedia of com
posite materials will not be attempted. For such an objective, consult the 
excellent handbooks by Lubin (7-1] and Schwartz (7-2]. 

Table 7-2 Operating Temperatures of Some Composite Material Systems 

Constituent Materials 
Operating Temperature 

Fiber 

Matrix Glass Kevlar Carbon -70 RT 250 500 7501000 2000°F 
' ' I ' ' . ' 

Thermosets ' 
Epoxy (250°F cure)* ok ok ok -Epoxy (350°F cure)** ok ok ok 

Phenolics ok no ok 

Bismaleimides ok ok ok 

Polyimides ok no ok 

Thermoplastics 
Polysulfone ok ok ok 

Peek ok ok ok 

Carbon no no Ok . 
*(121 °C cure) **(177°C cure) 

I I I I I f • I 

·60 RT 200 400 600 1100°c 

7 .3.6 Space Truss Material Selection Example 

Let's design a space truss with the primary objective being se
lection of the proper material. The truss will be used to construct a space 
station or large antenna. Suppose a truss is being assembled from var
ious kinds of struts stored in the Space Shuttle payload bay as in Figure 
7-21. Those struts are conical and can be nested in one another, just 
as ice cream cones are nested in a store before they are used. The large 
ends of two of the struts are fastened together as in Figure 7-21. The 
small ends of the struts are fastened to joints. Collections of these 
nested half struts are stored in canisters on the Shuttle, and the joints 
are also stored in canisters. This space truss is very large in volume, 
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but low in weight, so it cannot be carried into space in a preassembled 
state. Thus, the truss must be assembled in space. The problem here 
is selecting the material out of which this truss will be made. The answer 
is given in Figure 7-21, namely that the columns are made of graphite
epoxy, but you probably suspected that solution. The question is: why? 
And which of several graphite-epoxies should be used? 

HALF-COLUMN 
CANISTERS 

NODE JOINT CANISTER 

GIMBAL JOINT 

ORBITER CARGO BAY 

Figure 7-21 Space Shuttle with a Truss Being Erected 

The problem must be simplified considerably to permit solution in 
the context of this book. Suppose an equilateral triangle is subjected to 
some loads in the vertical direction as in Figure 7-22. A load P of 100 
lb (445 N) is applied to the top joint, and that load can go in either the 
downward or upward direction (in the diagram, not in space!). This truss 
must take its reversible load with, say, a factor of safety of two against 
whatever event would cause it to fail. What material, size, and weight 
of truss element would you select to satisfy the design requirements that 
include building the structure for the lowest cost? 

V\/\/\7 

d 
P = 100 lb (REVERSIBLE LOAD) 

FACTOR OF SAFETY IS TWO 

30 It 

Figure 7-22 Space Truss Idealization 

In order to evaluate one of the issues that is very pertinent to this 
material selection, the cost to get the truss elements up into space must 
be known. In 1985, a Shuttle flight cost $90 million. If the Shuttle is 
capable of carrying a payload of 60,000 lb (27,000 kg), then for every 
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pound taken up in the Shuttle, the transportation charges are $1500. 
That cost is quite a bit higher than the original projected cost of a Shuttle 
flight. That is, NASA used to think a flight would cost $15 million, and 
that would correspond to a transportation cost of several hundred dollars 
per pound ($700/kg). The reality is that even more than 1500 Dollars 
per pound ($3300/kg)~· now required to get an object up into space. 
The boost cost is inde ndent of the material involved. Thus, you are 
clearly motivated to s ect the least-dense material that will satisfy the 
functional requirements. 

Other factors that enter into this material selection process include 
the cost to make parts with various materials. Consider four different 
candidate materials: an ordinary steel that as a raw material might cost 
perhaps a dollar per pound ($2/kg), aluminum that might cost $5 per 
pound ($11/kg), a high-strength graphite-epoxy AS-3501 that might cost 
about $20 per pound ($44/kg), and a high-stiffness graphite-epoxy 
GY-70-HYE1534 that costs $200 per pound ($440/kg) (GY-70 can no 
longer be purchased for that low a price). Also shown in Table 7-3 are 
various costs for fabrication and assembly. Both graphite-epoxies are 
lower in fabrication and assembly cost than steel and aluminum. Your 
eye is drawn to the highest cost: GY-70-HYE1534 costs $200 per pound 
($440/kg)I Assembly cost includes assembly in space, assembly of fix
tures at the ends of the graphite-epoxy columns that will permit locking 
one column into another and at the smaller end that permit locking a 
column into a joint. The numbers in the table are representative, but not 
necessarily accurate; however, they will suffice for this example. 

Table 7-3 Fabrication and Assembly Costs 

MANUFACTURING PHASE 
MATERIAL 

RAW MATERIAL FABRICATION ASSEMBLY 

STEEL $1Ab ($2.2/kg) $4/lb ($8.8/kg) $3/lb ($6.6/kg) 

ALUMINUM $5/lb ($11/kg) $4/lb ($8.8/kg) $3/lb ($6.6/kg) 

GRAPHITE-EPOXY $200/lb ($440/kg) 
GY-70-HYE1534 

$3/lb ($6.6/kg) $2/lb ($4.4/kg) 

GRAPHITE-EPOXY $20/lb ($44/kg) $3/lb ($6.6/kg) $2/lb ($4.4/kg) 
AS-3501 

The real question is: which of the graphite-epoxies should be used? 
Two cost factors exist: (1) the cost of the material itself and what is done 
with it in the way of manufacturing, fabrication, and subsequently its as
sembly and (2) the cost of boost into space. A set of properties including 
stiffnesses and strengths is listed in Table 7-4 along with coefficients of 
thermal expansion and densities for the various materials. Steel has the 
highest density, and GY-70-HYE1534 graphite-epoxy has the second 
lowest density. The high-strength graphite-epoxy has the lowest density. 
The highest strengths on an absolute basis exist for the high-strength 
graphite-epoxy with the highest strength in the fiber direction, but not 
perpendicular to the fiber direction. For stiffness, high-modulus graphite-
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epoxy has the highest absolute stiffness. Some highs and lows exist in 
properties and costs. What is the balance? What is important for this 
particular problem? 

Table 7-4a Properties of Candidate Materials (U. S. Standard Units) 

THERMAL DENSITY 
MATERIAL STIFFNESS STRENGTH EXPANSION 

lb/in3 
10~in/in/"F 

STEEL E = 30x 106 psi O'max = 30 ksi a=6.5 .282 
V=.3 

ALUMINUM E=10x106 psi O'max = 55 ksl a= 12 .097 
v=.25 

E1 = 42 X 106 psi 
Xi=90 ksi 

HIGH-MODULUS Xe= 90 ksl <X1 =-.58 
GRAPHITE-EPOXY E2 = 1 x 106 psi Y1=2 ksl .061 
(GY-70-HYE1534) v12 =.25 Ye=28 ksi ~= 16.5 

G12 = .7 x 106 psi S=4 ksl 

E1 = 18.5 x 106 psi 
Xi= 169 ksi 

HIGH-STRENGTH Xe= 162 ksl a1 = .25 
GRAPHITE-EPOXY E2 = 1.6 x 106 psi Y1=6 ksl .055 

(AS-3501) V12= .25 Y0 =25 ksl ~=15.2 
G12 = .65 x 106 psi S=7 ksl 

Table 7-4b Properties of Candidate Materials (SI Units) 

THERMAL DENSITY 
MATERIAL STIFFNESS STRENGTH EXPANSION N/m3 

1 O~m/rn/"C 

STEEL E=207 GPa O'max = 207 MPa a=3.6 49.4 
V=.3 

ALUMINUM E=69 GPa O'max = 380 MPa a=6.67 17 
v=.25 

HIGH-MODULUS E1 =290 GPa 
Xi=621 MPa 
Xe=621 MPa <l1 =-.32 

GRAPHITE-EPOXY E2=6.9 GPa Y1= 13.8 MPa 10.7 
(GY-70-HYE1534) V12 = .25 Ye= 193 MPa ~=9.17 

G12=4.8 GPa S=27.6 MPa 

HIGH-STRENGTH E1 =128 GPa 
Xi= 1170 MPa 
Xe= 1120 MPa a1 = .14 

GRAPHITE-EPOXY E2= 11 GPa Y1=41 MPa 9.63 
(AS-3501) V12 = .25 Y0 = 170 MPa ~=8.44 

G,2=4.5 GPa S=48 MPa 

What is important for this space truss problem depends on which 
of the various technical issues influence the design. Is stiffness an is
sue? Is strength an issue? If so, why? Is buckling an issue? Can fa
tigue be a problem? Or corrosion? Thermal expansion or joints? Those 
factors are listed in Figure 7-23. 
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• STIFFNESS 
• STRENGTH 
• BUCKLING 
• )FATIGUE 
_,) CORROSION 
• THERMAL EXPANSION 
• JOINTS 

Figure 7-23 Possible Pertinent Technical Factors 

The problem statement is that you are asked to compare the use 
of four different materials for this space truss by using a simplified 
method for how the struts themselves might be made. The problem is 
enormously simplified compared to the overall problem seen in Figure 
7-21. The present columns are required to be of the same diameter 
throughout their length. There is no concern about connecting them at 
the middle of the strut or about how they are connected to each other 
at the joints. Examine the basic structural design-see if you can de
termine which of the materials does the best job, and why, relative to the 
possible pertinent technical issues listed in Figure 7-23. 

There are at least two ways to make the struts. They could be solid 
members, or they could be hollow members. You could well imagine 
that, under certain circumstances, solid members would be perhaps 
preferable to hollow members, and for other reasons just the opposite 
would be true. It is up to you to figure out which of those two choices is 
best for this application. Look at both choices, or you can, alternatively, 
give a compelling argument as to which configuration, solid cross section, 
or hollow cross section, you use, with an emphasis on why. Then, you 
will not have to do the other calculations. 

You must consider the technical factors in Figure 7-23 and figure 
out which one(s) governs for this particular kind of problem. You can 
probably imagine that fatigue and corrosion might not be issues because 
you were not given any data on those situations. And joints have been 
ignored, so you suspect they are not an issue. Thus, the critical issue 
must lie elsewhere on that list of technical issues. 

Degradation of materials in space has not yet been considered. 
Not enough is known about that effect yet, so it cannot be considered in 
this design problem. If you are faced with designing something and you 
don't know the effects of the environment, then perhaps you would have 
to recommend that the design is premised on there being no degradation. 
In fact, if there were any degradation, then the design would have to be 
strengthened or stiffened in some fashion to account for the degradation. 
Or perhaps degradation would dictate use of a different material. Thus, 
all of those factors are issues for which you don't know the answer. 
However, you must at least put some disclaimers on the design. That is, 
state that there are certain risks involved with using the design in the way 
you have described it because the influence of certain factors on the 
performance of the structure that you designed is not known. 

You are to address several questions. Basic questions such as: 
given the parameters, which of those four materials leads to the most 
cost-effective design? Which leads to the least-weight solution for this 
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problem? And then co~ider another problem: suppose you had to make 
~n eme~gency trip with he Shuttle to take a certain number of trusses 
into orbit. Suppose y had to get 5000 truss bays, those three units 
shown in Figure 7-22, up on one Shuttle flight. Moreover, suppose, for 
example, that either the frames were available made from the material 
that you select or they could be made in two days with people working 
day and night. Which of the materials would you choose under that cir
cumstance? The third question is: suppose the space truss is either a 
buckling-critical design or a strength-critical design-which one is it? If 
you say it is stiffness-critical instead of strength-critical, then what if it 
were actually strength-critical? Which material would you choose under 
those circumstances? And finally the last question is one that does not 
relate directly to those evaluations but to the other kind of issue which is 
why you were given the thermal-expansion data. The space truss is not 
permitted to change size as it passes in and out of the sun. In effect, 
zero thermal expansion is desired, or zero thermal contraction. Both 
expansion and contraction are bad because they cause change in di
mensions. Under those circumstances, which material of the four would 
you use, and in what general way would you use it to accomplish those 
objectives? That is, describe a concept, but calculations are not re
quired. 

To solve this problem, you will appeal to relatively simple equations. 
Nothing is complicated in the overall problem as simplified herein. Think 
about what you are doing, and make sure that you are taking into con
sideration all the pertinent factors. You will need no more than a pro
grammable calculator to evaluate the expressions repetitively for the 
different materials. A spreadsheet or a brief computer program might be 
more convenient. In order to find a truss that meets the requirements 
of certain size, you will have to state how big a diameter the rod must 
have if it is solid. Or its outer diameter, inner diameter, and thickness if 
the strut has a hollow cross section. Then, based on those dimensions 
and the densities, you can determine how much the truss weighs, and 
that is how you get to the issue of cost in orbit. Money must be spent 
for every pound sent up into orbit, so you must know the weight. That 
is an inescapable problem in this particular kind of design circumstance. 
Other issues in materials selection involve what you can do with the 
material, which often depends on how it was made to begin with, espe
cially with composite materials. 

The following hints and reminders might be helpful. For a column 
that is simply supported (pinned) at both ends, the Euler-Bernoulli 
buckling equation is 

P=i_§_ 
L2 

Moreover, the moment of inertia of a solid circular cross section is 

1td4 
1solid = 64 

(7.3) 

(7.4) 

where d is the diameter. Finally, the moment of inertia of a thin hollow 
circular cross section can be approximated with 
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1td
3
t 

lhollow = -
8

- (7.5) 

where t is the thickness of the tube. 
This space truss is seemingly an unusual example, but space is 

now a part of our everyday lives. Thus, there are many space examples 
in which you must expect to use composite materials because they are 
the least-expensive design solution. The raw material cost is not even 
close to the bottom-line cost. The raw material cost has something to 
do with the bottom line, but the ordering of material choices that you get 
based on raw material cost does not mean anything in comparison to the 
ordering of the actual bottom-line costs. 

7.3.7 Summary 

Familiarity with an enormous amount of detailed information about 
a wide variety of materials is essential to be able to rationally select 
suitable materials for a specific application. Remember, even a metal 
might be the correct material to use! 

7.4 CONFIGURATION SELECTION 

7.4.1 Introduction 

Configuration selection is the process of choosing the proper com
bination of structural elements that make up the structure being de
signed. Those structural elements could be the usual beams, plates, and 
shells or more complex structural elements such as stiffened shells with 
a honeycomb core. The more unusual aspects of composite structures 
include the details and the breadth of stiffener types as well as various 
reinforcements around cutouts and holes, etc. The global configuration 
elements of plates and shells are the easy part of the design problem. 
The more difficult part is designing the local details so that the global el
ements have the opportunity to do their job. Configuration selection must 
be done in close conjunction with materials selection as well as selection 
of a suitable manufacturing process. We will primarily address stiffened 
structures, a topic that contributes to the objective of being able to ra
tionally select the specific configuration for a structure. In this section, 
some of the differences between metal and composite structures are re
vealed. 

7.4.2 Stiffened Structures 

We usually must go beyond the simple concept of a monocoque 
or single-thickness skin for whatever structure we design. That is, we 
must usually consider the bending stiffness, and, to achieve structural 
efficiency, we often must stiffen a structure in some manner. We will first 
address the terminology of stiffening and how it is used. Then, we will 
consider the types of stiffeners that could be used. Next, an important 
issue that arises in the design of stiffeners is whether the stiffener has 
an open- or a closed-cross section. Then, we will address some of the 
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stiffener design parameters and some design considerations for stiff
eners. Finally, we will examine a new concept for stiffening composite 
structures, namely orthogrid. 

Certain terms are com~only used to describe stiffened aerospace 
structures. The relatively S9mmon eccentrically sti~ened ~ircular cylin
drical shell configuration is used as an example for d1scuss1on purposes. 
A panel is the unstiffened flat or curved sheet between stiffeners. For 
example, a panel occupies the space a by b in the shell in Figure 7-24. 
Stiffeners have different names depending on their direction and often 
on the type of structure (e.g., aircraft versus ships). Rings are circum
ferential stiffeners as shown on the inside of the shell in Figure 7-24. 
The ring stiffeners could be on the outside of the shell, unless not per
mitted for aerodynamic or hydrodynamic reasons. Rings are sometimes 
called frames or ribs. Stringers are axial stiffeners as shown on the 
outside of the shell in Figure 7-24. Of course, the stringers could be 
placed on the inside of the shell. Stringers are also known as longerons 
or spars in the aircraft industry. Often, both rings and stringers are 
placed on the same side of the shell, resulting in intersecting stiffeners. 
For example, in aircraft, submarine, and missile fuselage applications, 
all stiffeners must be placed on the inside to maintain an aerodynamically 
or hydrodynamically clean exterior. Then, quite oft~n the rings_ are con
tinuous, and the stringers are only long enough to fit between nngs. 

z 
A-A ra:o_j_ 

x-i------ir-H 
z 

y 

Figure 7-24 Eccentrically Stiffened Circular Cylindrical Shell 

7.4.2.1 Advantages of Composite Materials in Stiffened Structures 

Many metal stiffener shapes are rather regular and usually have 
constant thickness unless they are machined (which adds enormously to 
the cost). However, with composite materials, such regul~rity is ~ot 
necessary. In fact, individual stiffener elements can be tailored with 
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composite materials to a more nearly optimum effectiveness than with 
metals. Accordingly, different stiffener elements have both different 
thicknesses and different materials in different regions as in Figure 7-25. 
That is, with metals, the stiffener wall must have both constant thickness 
and uniform material unless expensive machining is to be done and/or 
stiffener elements of different materials are mechanically fastened. In 
contrast, with composite materials, the stiffener wall can have different 
thicknesses and different laminate layups with more or less no essential 
change, including cost, in the manufacturing process. That is, different 
thicknesses and different layups are a natural feature of composite 
structures fabrication. 

I I ............ il ____ ~ VERSUS ~SUS ~ 

METAL COMPOSITE METAL COMPOSITE 

Figure 7-25 Shapes of Metal versus Composite Stiffeners 

Further contrast between metal and composite stiffeners is re
vealed when we examine the objectives and characteristics of stiffener 
design. For a metal stiffener of uniform or even nonuniform thickness, 
we attempt to maximize the moment of inertia of the stiffener in order to 
maximize the bending stiffness of the stiffener. Those two factors are 
proportional to one another when we realize that the bending stiffness 
of metal stiffeners about the middle surface of the plate or shell to which 
they are attached is 

(7.6) 

and that, because of a uniform (homogeneous) material throughout the 
metal stiffener, the modulus of elasticity can be brought outside the in
tegral. Of course, the integral in Equation (7.6) reduces to the familiar 
parallel-axis theorem result: 

2 
!middle surface = le + Ad (7. 7) 

where le is the second moment of the area about the stiffener centroidal 
axis parallel to the panel middle surface; A is the stiffener area; and d is 
the distance between the middle surface and the stiffener centroid. Thus, 
the bending stiffness can be increased by making the stiffener taller 
without increasing A, but increasing le and d. 

In contrast, because of the spatially variable (inhomogeneous) na
ture of material in a composite stiffener, the bending stiffness cannot be 
separated into a material factor times a geometric term as in Equation 
(7.6). Instead, the composite stiffener bending stiffness is 

El= JJE(x,y) y2dx dy (7.8) 
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where the heterogeneous nature of the material distribution, E(x,y), can
not be taken outside the integral. That is, the geometric character of the 
bending stiffness cannot be separated from the material character. Thus, 
proper design of a stiffener does not necessarily involve maximizing the 
moment of inertia of the stiffener. In fact, the moment of inertia no longer 
has meaning by itself wHen we shift from metal_ to compos!te stiffener~. 
We must tailor the stiffeher components to achieve a maximum combi
nation property (bending stiffness) El in the sense of an integral. 

For distributions of laminae such as in Figure 7-26, the moment of 
inertia itself is of no consequence. We must put materials with high E as 
far away from the plate or shell bending axis as possible so that they 
have the greatest effect or do the most good (i.e., make the largest 
contribution to the bending stiffness). We tailor the stiffener components 
in fiber direction, area, and position of area to achieve the necessary high 
bending stiffness. Thus, laminae are placed with fibers in the axial di
rection of the stiffener in the top of the hat section in Figure 7-26 to 
maximize their contribution to the bending stiffness. Other laminae are 
placed with fibers at ±45° in the web to carry the shear stresses from the 
top of the hat section to the underlying panel. Those ±45° laminae do 
not make a large contribution to the bending stiffness for two reasons: 
(1) they have a low E in the axial direction of the stiffener, and (2) they 
have a small area not very far from the bottom of the stiffener. 

COMPOSITES 
METALS 

• UNIFORM THICKNESS • NONUNIFORM THICKNESS 
• HOMOGENEOUS PROPERTIES • HETEROGENEOUS PROPERTIES 
• STIFFNESS: El = EJJy2dxdy • STIFFNESS: El = fJE(x,y)y2dxdy 
• OBJECTIVE: HIGH El • OBJECTIVE: HIGH El 

(TAILOR STIFFENER COMPONENTS) 

Figure 7-26 Metal Versus Composite Stiffener Characteristics 

7 .4.2.2 Types of Stiffeners 

The rings and stringers can have a wide variety of cross-sectional 
shapes, some of which are shown in Figure 7-27. For metal stiffeners, 
some of the shapes are typically rolled sections that are then fastened 
to the panel, e.g., tee, I, z, hat, or channel shapes. Fastening could be 
mechanical, bonding, or welding. Other more unusual shapes or thick
ness distributions over the cross section are typically machined integrally 
with the panel from material that is at least as thick as the stiffener height 
plus the panel thickness, e.g., inverted tee, blade, or J shapes. That 
machining is either mechanical, i.e., chip producing, or chemical, known 
as chem milling. Both machining processes are quite expensive. 
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Figure 7-27 Nominal Stiffener Cross-Sectional Shapes 

For composite stiffeners, all shapes are builtup from individual lay
ers of material. Of course, some stiffener shapes can be produced by 
roll forming or pultrusion, for example, and then fastened to panels. Or, 
the stiffened panel could be made in a single operation involving the 
placement, usually by hand, of individual laminae of various dimensions 
in positions such that a builtup structure results. Stiffeners can be fas
tened to panels by bonding, stitching, or mechanical fastening. 

Standard shapes for composite stiffeners are not likely to occur for 
most aerospace applications. There, the value and function of the struc
ture warrant optimizing the stiffener design. In contrast, for more every
day applications such as scaffolding, stairways, and walkways in chemi
cal plants, competitive pressures lead to a situation where compromises 
in stiffener efficiency are readily accepted (overdesign) in order to 
achieve lower cost than would be associated with optimum design. 

The embedded stiffening strap is an interesting concept that is easy 
to apply with composite materials. The panel skin is made of material 
that, because it is made in layers, we are able to separate at the specific 
level where we would like to embed a stiffening strap as in Figure 7-28. 
More accurately, we simply stop laying up laminae on the panel long 
enough to lay down a strap, and then continue with the panel layup and 
drape material of the panel over the strap. In the process, we have 
embedded a strap in the panel. Then, we can put another stiffener on 
top of that strap if we choose. The strap could consist of all 0° fibers to 
get the maximum stiffening effect in one direction as opposed to the 
multidirectional stiffening effect of the surrounding laminate. The main 
purpose of the stiffening strap is to stiffen the underlying panel so the 
stiffener flange can more easily adhere to the deforming panel (which 
now has smaller deformations). The only difficulty with this stiffening 
concept is the possible presence of resin-rich areas near the ends of the 
embedded strap. Those resin-rich areas are weak and hence a possible 
origin of delamination. 
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.J ADHESIVELY BONDED STIFFENER 

Figure 7-28 Embedded Stiffening Strap 

Simply bonding a stiffener to a panel with adhesive is certainly a 
very feasible and natural procedure with typical composite structure 
construction. We have not discussed any procedure for joining parts 
except co-curing. Alternatively, to use film adhesive for bonding parts 
together, we simply cut a sheet or film of adhesive to the proper size, 
place it between the two parts that we wish to bond together, and then 
go through a cure cycle that causes the adhesive to adhere to both the 
stiffener and to the panel itself. We can also mechanically fasten any 
stiffener we like to a panel. 

7 .4.2.3 Open- versus Closed-Section Stiffeners 

The open- versus closed-section stiffener issue essentially revolves 
around the question of the torsional stiffness of the stiffener. You might 
not think torsional stiffness is terribly important for a stiffener, but in fact 
it can be because the stiffener often twists as the stiffened panel buckles. 
In calculations to evaluate the buckling resistance of a stiffened skin 
panel, the torsional resistance of the stiffener exerts a significant influ
ence. That is, the torsional stiffness aids the stiffened panel in resisting 
the buckling deformations that can be rather unusual. Those buckling 
deformations are not simply a pure bending; sometimes they are some 
sort of a twisting. And even if they are pure bending in one plane, if a 
stiffener crosses that plane at a certain angle, then we ask that stiffener 
to twist. Therefore, the stiffener twisting resistance is quite important in 
resisting those bending and buckling deformations. An open-section 
stiffener, by definition, does not have all parts of its periphery connected 
to one another. That is, for the sandwich-blade stiffener on the left in 
Figure 7-29, part of the blade sticks up in the air and the portion at the 
very top is not connected to the flanges on the side. Naturally, that kind 
of a structure has much lower torsional resistance than does the 
closed-section stiffener on the right in Figure 7-29, where all parts of the 
stiffener periphery are connected to one another. The flange on the left 
of the hat-section stiffener is certainly not connected to the flange on the 
right by means of the stiffener, but the flanges are connected by means 
of the panel, so effectively the section is closed. 
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Figure 7-29 Open- versus Closed-Section Stiffeners 

Let's contrast the sandwich-blade stiffener with the hat stiffener by 
addressing several performance issues. For example, from the stand
point of fabrication, it is relatively easy to make a sandwich-blade 
stiffener even though there is a honeycomb insert in the middle. This 
building up of the stiffener in the blade form is easy and natural when 
we make a composite stiffener, simply because we are already in the 
business of building up a geometric and/or material shape. Rather than 
applying layers of graphite-epoxy, instead put in some honeycomb. The 
hat-shaped stiffener is more difficult to make than the sandwich blade 
because of more complex geometry (and some internal support is re
quired until the stiffener is cured). 

From the standpoint of inspection to see if the stiffener is properly 
made, it is relatively easy to inspect the sandwich-blade stiffener, but the 
hat-shaped stiffener is difficult to inspect on the inside. We must get 
some kind of device to peer inside. If we were going to try to inspect from 
the outside, about all we can tell from ultrasonics is how well the flanges 
are bonded to the base of the panel. Typically, we must have some kind 
of a mold around the stiffener, and we must remove that mold. A mold 
is necessary so that during the cure process when the stiffener is under 
pressure it does not collapse. As a matter of fact, there might be in
stances in which, for the sake of simplified manufacturing process, we 
might want to leave a core or mold of some kind inside the stiffener 
simply because it is too difficult to get out. That situation is especially 
true for intersecting stiffeners at 90° or some other angle to one another 
where there is an intersection region where webs of one stiffener pass 
through and intersect webs of another stiffener. We do not have the 
freedom to cut the stiffener sides and remove whatever core exists inside 
to prevent the stiffener from collapsing during curing. If we do leave the 
core inside, we cannot inspect the stiffener from the inside. Thus, in
spection is a much more involved operation for the hat-section stiffener 
than for the sandwich-blade stiffener. 

The relative efficiency of the two stiffeners is compared principally 
on the basis of the torsional resistance. The reason for the lower effi
ciency rating of the sandwich-blade stiffener is its low torsional resistance 
(and the bending stiffness is not high) and for the high efficiency of the 
hat stiffener is its high torsional resistance because of the basic open
versus closed-section stiffener issue. Stiffener torsional resistance af
fects the buckling load of a stiffened panel or shell as shown by Card and 
Jones [7-3]. 
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Suppose we want to analyze the stresses in the two stiffeners. The 
geometry of the sandwich-blade stiffener is actually more complicated 
and less amenable to analysis than is the hat-shaped stiffener. Issues 
that arise in the analysis to determine the influence of the various 
portions of the stiffeners include the in-plane shear stiffness. In the plane 
of the vertical blade is a certain amount of shear stiffness. That is, the 
shear stiffness is necessary to transfer load from the 0° fibers at the top 
of the stiffener down' to the panel. In hat-shaped stiffeners, that shear 
stiffness is the only way that load is transferred from the 0° fibers at the 
top of the stiffener down to the panel. Thus, shear stiffness is the dom
inant issue in the design. And that is why we typically put ±45° fibers in 
the web of the hat-shaped stiffener. 

Another issue that turns out to be very important for the sandwich
blade stiffener, but not at all important for the hat-shaped stiffener, is 
shear in the vertical web. Not shear in the plane of the web, but shear 
in the plane perpendicular to the web. This transverse shear stiffness 
turns out to dominate the behavior or be very important in the behavior 
of the sandwich blade, but simply is not addressed at all in the hat
shaped stiffener. You can imagine that the transverse shearing stiffness 
would be more important in the sandwich blade when you consider the 
observation that the sandwich blade is a thick element and the hat
shaped stiffener is a thin element. That is, bending and in-plane shear 
would dominate this response, whereas transverse shear, because the 
sandwich blade is thick, can very easily be an important factor in the 
sandwich blade. For both stiffeners, appropriate analyses and design 
rationale have been developed to be able to make an optimally shaped 
stiffener. 

7.4.2.4 Stiffener Design 

The stiffener design parameters that are of interest include some 
obvious factors and some less obvious ones as listed in Figure 7-30. 
The bending stiffness (not moment of inertia) of a stiffener is what we 
probably think of first as being the most important factor. Not only do 
we need to know the bending stiffnesses about each of the axes, but 
we probably need to know the polar bending stiffness in some analyses. 
The torsional stiffness for the stiffener, as already mentioned, is an im
portant issue as well. That factor is the principal difference between the 
sandwich-blade stiffener and the hat-shaped stiffener that we just con
sidered. To a lesser extent, the warping constant or the way the cross 
section warps out of its original plane when being twisted can be impor
tant for some stiffeners. Of course, we always want to address a stiffener 
not just as a complete stiffener, but as components of the elements that 
make it up, i.e., flanges, webs, and how they connect to one another. 
Thus, we want to know, in the context of the design of a composite 
stiffener, what are the stiffnesses of the individual laminates that make 
up each of those components of the stiffener. For a web-like object, we 
will be very interested in its in-plane shear stiffness as already pointed 
out. Moreover, the transverse shear stiffness of the web is important for 
honeycomb-stiffened webs. 
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Figure 7-30 Stiffener Design Parameters 

The importance of stiffener eccentricity is an issue that you might 
not be aware of. That eccentricity, z, is simply the distance from the 
stiffener centroid to the reference surface of the panel to which the 
stiffener is attached as in Figure 7-24. For example, with an aircraft 
fuselage panel, we do not have total freedom to put the stiffeners on the 
inside or on the outside with equal favor. However, it can make a very 
big difference whether we put them on the inside or the outside in terms 
of, for example, the buckling resistance of that stiffened panel. Under 
some circumstances, merely changing the location of the stiffeners from 
the inside to the outside of a circular cylindrical shell can result in a factor 
of two or three difference in buckling load [7-3]1 Obviously, any analysis 
in which that eccentricity is ignored could be seriously deficient. The 
same type of behavior exists for composite structures, as is very easy to 
understand. That stiffener eccentricity effect is inherently related to 
bending-extension coupling, not of lamina in a laminate, but of a stiffen
ing element that is not unlike layers relative to other layers, or other ele
ments. That coupling between bending and extension can be very 
important and must be considered in any stiffened structure analysis, 
except those that involve a flat plate, because there we cannot tell the 
difference whether the stiffener is on the top or on the bottom of the plate. 
Coupling between bending and extension will influence the behavior to 
some extent, but it will not matter whether the stiffeners are on the top 
or on the bottom of a flat laminate except to influence which way the 
panel bends under axial force. 

Most of what has been described so far for stiffener design involves 
shape and size of the stiffener. Those issues involve selection of the 
type of stiffener, H-shaped cross section, blade, hat-shaped, etc. as well 
as the specific dimensions and material makeup of each stiffener ele
ment. Other obvious factors in the design of a stiffener include how far 
apart we space them, at what orientation we place them, and, perhaps 
most obviously in connection with what we addressed in Section 7.3, out 
of what material we make the elements. As you saw in some of the 
previous sketches for stiffeners, we are able with a composite stiffener 
to use different materials in different places very easily and to essentially 
optimize our materials usage so that the stiffening comes out to be as 
good as we can possibly make it. 
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Some of the design considerations for stiffeners include issues that 
relate to the sizing of a panel, and the panel can mean two issues. We 
can consider the planform area or the thickness of the panel. That is, 
we address three different dimensions: how thick, how long, and how 
wide? Those issues must generally be integrated in some fashion with 
the kinds of stiffenersifnat we deal with. For example, in order to take 
advantage of large stiff ers, we might require a thick panel. Otherwise, 
bulky stiffeners on a m panel would simply overpower the panel. On 
the other hand, we might be able to have some very small stiffeners 
rather closely spaced on a thin panel. Thus, interaction of relative sizes 
of stiffeners and panels must be taken into account. 

The unstiffened panel is generally designed by sizing the maximum 
in-plane dimensions of the panel and its minimum thickness to resist 
buckling. Then, the panel area dimensions can be reduced, and the 
thickness can be increased in the stiffened panel optimization process. 

To decrease the thickness of a laminate, some of the laminae must 
be selectively stopped, dropped, or terminated. Moreover, the stopped 
laminae are covered with at least one continuous lamina as in Figure 
7-31. There, resin-rich zones occur naturally in the vicinity of the ply 
drop. Such regions are also local stress-concentration sites. However, 
the tapered laminate creates a globally lessened stress concentration. 

! 
Figure 7-31 Ply Drops 

In contrast to ply drops decreasing the laminate thickness, padding 
up is a local thickness increase created by adding layers (pads). Such 
added composite layers are typically compressed and molded into a dif
ferent shape as in Figure 7-32. However, if the added layers are es
sentially rigid as a metal layer would be, then voids or resin-rich regions 
are created. Padding up is used to (a) provide a firmer foundation for 
applying stiffeners to panels, {b) increase the local bearing capacity, and 
(c) provide a stiffer and stronger attachment zone in Figure 7-33. 

• COMPRESSES AND MOLDS 

IF A COMPOSITE LAYER 

• ESSENTIALLY RIGID 

IF A METAL LAYER 

(LEAVES VOIDS OR 

RESIN-RICH AREAS) 

Figure 7-32 Padding Up 
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• PROVIOE A FIRMER FOUNDATION g, i , 
FOR STIFFENERS ON PANELS trJ 

• INCREASE BEARING CAPACITY 

• PROVIDE ATTACHMENT ZONE 

Figure 7-33 Padding Up Applications 

7 .4.2.5 Orthogrid 

Orthogrid is an interesting stiffening concept that is a special mod
ification of the stiffening concepts we have examined so far. This con
cept consists of building up an intersecting blade-type stiffener in a 
waffle-grid type of configuration. That is, the stiffened panel itself looks 
somewhat like a waffle perhaps with bigger spacing between the vertical 
blades, but the main idea is that we can actually construct the intersect
ing blade-type stiffeners in a very special automated way. For example, 
suppose we create the skin of the panel and then wind or wrap strips of 
unidirectional fibers preimpregnated with epoxy around the skin in certain 
trajectories so we build up in areas that can be geometrically called a 
blade stiffener. We do this building up in a criss-crossing fashion so that 
the various blades interlock. That is, alternating directions of fibers can 
be seen in Figure 7-34 so that the two intersecting blades are interlocked 
with one another just as if you can interlock your fingers with each an
other. Actually, the stiffeners are laminated bars built up with alternating 
layers of fiber-reinforced epoxy tape and then syntactic-resin tape. The 
fiber-epoxy strips are thinner and more dense than the syntactic-resin 
strips. The compressible syntactic-resin tape is used to vertically space 
the fiber layers so there is little build-up of overlapping layers at the 
stiffener intersections. The principal merit of this orthogrid approach is 
its automatic production via filament-winding or some variation thereof. 

This structural configuration, orthogrid, has the potential for efficient 
manufacture of large fuselage panels, essentially one of the reasons that 
manufacturers are very interested in it. Stiffened structures are used 
when structures are heavily loaded in which case stiffened structures are 
more efficient than single-layer structures. Orthogrid structures are being 
considered for large transport aircraft that are built in more or less cylin
drical segments, so that the filament-winding mandrel can be easily re
moved from the inside and reused. 
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UNIDIRECTIONAL 
FIBER-EPOXY STRIP 

Figure 7-34 Orthogrid 

As a structural concept, orthogrid is not new, but was used in the 
1960s with metals (the Saturn 48 rocket stage that was made to carry 
astronauts to the moon had a waffle-like pattern). Metal orthogrid began 
with a thick sheet of aluminum that was milled between where stiffeners 
were desired down to the panel thickness so as to leave the stiffeners 
protruding. Chemical milling was found to be less expensive than simply 
brute-force machining all the interior material out of the structure. 
Orthogrid is just a modern way of achieving that same structural shape, 
and it is a less expensive way because we are building the composite 
structure up instead of tearing metal down. Chemical milling is a very 
expensive process, and obviously the process of simply brute-force ma
chining all that material away is particularly expensive as well. The angle 
of intersection of each pair of stiffeners need not be 90°, i.e., the 'ortho' 
in orthogrid is too restrictive. In fact, if the angle between stiffeners is 
60° so that the stiffeners form equilateral triangles, then the stiffening 
effect is essentially isotropic, so these stiffeners are called isogrid. 

7.4.3 Configuration in Design Cost 

Let's look at some of the cost drivers for a specific industry, namely 
the aerospace industry. First, let's lead up to that situation by looking 
at what happens with other industries. Generally, in any industry, we 
must consider the cost of energy, whatever material goes into the proc
ess we are dealing with, and the equipment necessary to process energy 
and material. Specifically, in the aerospace industry, metal-removal op
erations are strong cost drivers, and composite materials are just the 
opposite because with them there is virtually no such thing as material 
removal. High part count is also a big cost driver, and composite struc
tures counter that problem by naturally and inexpensively combining 
segments of structures or structural elements. Fewer parts mean fewer 
fasteners, another very significant cost driver both in purchase price and 
installation cost (think of the cost of drilling thousands of carefully aligned 
holes in a structure!). Material utilization is another high cost driver, and 
composite materials are countering that in two different ways: (1) in terms 
of the types of efficient manufacturing operations of composites buildup 
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instead of metal removal and (2) in replacing some scarce strategic ma
terials with other materials whose sources we control. 

Specifically, within the aerospace industry, for aircraft, the airframe 
manufacture itself is one of the major cost drivers, using the factors al
ready addressed. Let's look at the character of how we would build an 
aerospace vehicle. There is typically a lot of manpower dependence. 
The industry itself is cyclic because the demands ebb and flow. There 
is typically little automation simply because of relatively low production 
rates, and there are very few customers. But, despite all those charac
teristics, there is typically also a large capacity that is founded on many 
highly skilled personnel, and the orientation is much more high tech than 
that of most other industries. Without product excellence as a driving 
factor, the whole industry would be an unworkable mess. 

Let's look at the nature of a configuration trade-off study by trying 
to apply some of those factors that we were just examining for an aircraft 
fuselage panel. Basically, our objective is to obtain the lowest-cost 
structural configuration that meets the design requirements expressed in 
terms of stiffness and strength, our old friends, as well as minimum 
weight. For high-speed aircraft, we need elevated-temperature perform
ance. We need certain fatigue resistance. We do not want to spend a 
lot of money on maintenance. We would like the aircraft to be extremely 
crashworthy, corrosion resistant, damage tolerant, and, if a minor acci
dent does happen, easy to repair. 

Suppose then we start thinking about some different structural 
concepts as alternatives to the usual approaches. Let's look into those 
alternative concepts from the standpoint of what materials we use, what 
sizing there is of the skin panel, what shape of frames are needed, what 
spacing they might have, and ask the same kind of questions for the 
longitudinal stiffeners or stringers. How do we put all of this structure 
together? Do we bond everything, do we stitch it, or do we use me
chanical fasteners? In general, what kind of manufacturing methods 
must we be concerned with? Given all of those factors, we are then 
charged with evaluating the cost of each of the alternative concepts from 
the standpoint of manufacturing, assembly, testing, inspection, kind of 
materials, and tooling expenses. 

Consider a study of a fuselage panel for the F-16 reported by Noton 
[7-4]. The panel that is being addressed is located in the bottom of the 
fuselage as in Figure 7-35. The various candidate concepts would be 
an unstiffened skin (i.e., a monocoque fuselage), stringers only, one 
stringer and a variety of frames, three frames, some frames with cutouts 
in the web and stringer, and two frames of double curvature. Those are 
the kinds of trade-off configurations that we must examine. With com
posite materials, we have the additional complexity of asking how these 
structural elements are fastened to one another. Is there a special way 
that we might want to construct each of those stiffeners? Should we 
make them with some selective reinforcement in the flanges? Is that 
reinforcement worthwhile? If in fact selective reinforcement might be of 
lower cost in general, would it be of lower cost for this specific applica
tion? That is, is there enough in the context of this study to learn how 
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to provide those kinds of selective reinforcements and make that a 
cost-effective trade-off for this single fuselage panel? Or is that a 
trade-off that can be done only if we were going to redesign the whole 
aircraft? The situation might very well be the latter case, i.e., total rede
sign is the only situation in which selective reinforcement might work. 
Some pretty severe constraints exist if we are going to try to make some 
changes in a very restricted area on just one panel. 

Figure 7-35 F-16 Fuselage Panel Trade-off Study 

7.4.4 Configuration versus Structure Size 

Large fuselage panels for aircraft, particularly large transport air
craft, must have a stiffened skin to enable them to carry very large 
bending loads. The point is that a large transport aircraft has a very 
heavy loading on the fuselage, much more so than a small business 
aircraft of six passengers or so. Thus, we will see drastically different 
fuselage configurations for the two sizes of aircraft. Small-diameter 
fuselage business aircraft will likely have honeycomb sandwich struc
tures as fuselage because their cost is lower than a stiffened structure. 
And the higher the load that we want to achieve, the more likely it is that 
we will use a discretely stiffened structure as for large-fuselage-diameter 
transport aircraft. 

Insofar as configurations go, we might see a Kevlar skin over a 
Nomex honeycomb core as the primary fuselage for a relatively small 
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aircraft, but not for any large aircraft. The relative cost of honeycomb
core construction and stiffened construction is plotted versus the 
fuselage diameter with an indication for relatively small-diameter 
fuselages in Figure 7-36 that the sandwich-core approach to a fuselage 
is probably a lower-cost option than using skins with various kinds of 
stiffeners on them. In contrast, for a very large-diameter fuselage, the 
skin-stringer configuration would be the least expensive of the two alter
natives. And this is, simply put, the difference between small aircraft 
such as the Learfan and the Beech Starship anq;so on as opposed to 
larger aircraft such as the 747, 777, or C-5A. Thu\s, the approaches that 
we see used for small aircraft do not usually scale up to large aircraft. 
The configuration trade-off is totally different for large-diameter fuselage 
aircraft. 

COST 
/ 

/ 
/ 

// 

/ 
/ 

// 
/ 

,-:: / SKIN-STRINGER 

FUSELAGE DIAMETER 

Figure 7-36 Configuration Trade-offs 

7 .4.5 Reconfiguration of Composite Structures 

Recall from discussion of the structural design process in Section 
7.2 that reconfiguration of the structure is an essential step. Reconfig
uration occurs either to increase the capability or to decrease the weight 
because the structure has more than adequate capability. The term ca
pability is meant to include margin of safety relative to fracture, adequate 
resistance to buckling, sufficient difference of excitation frequency from 
resonant frequencies, etc. 

How specifically do we change or reconfigure a composite struc
ture? First, with a laminate fiber-reinforced composite structure, we will 
reorient the various layers. That procedure will change the direction
dependent characteristics of strength and stiffness of the composite 
structure. Importantly, that reorientation of laminae will not cause a 
weight penalty! By simply changing the orientations of the layers, we 
have not added any material nor have we subtracted any, so there is no 
change in weight. No analogous design reconfiguration approach exists 
for a metal structure without changing its weight. There is nothing we 
can do for a metal structure aside from changing the materials such as 
changing to an aluminum-lithium alloy from aluminum. That material 
change will change the structure and its performance because of better 
weight efficiency. That material change is the only kind of situation that 

( 
Introduction to Design of Composite Struc,~.es 415 

is in any way analogous to reorienting composite laminae. That material 
substitution would be an obvious weight-saving approach. With com
posite structures, we are saying 'we're going to fix the material', and all 
we have to do is reorient the various layers to change the structural ca
pabilities drastically. 

A second major reconfiguration option is to reorder the individual 
laminae or layers within the laminate without changing their orientations. 
The resulting extensional stiffnesses are no different from before the re
ordering. However, the bending-extension coupling stiffnesses and, 
usually more importantly, the bending stiffnesses can be quite different. 
The major point is that reordering the laminae does not change the 
laminate weight. This design approach has no analog in metal structures 
design. 

Another reconfiguration option is to add layers to the laminate, but 
then a weight penalty is involved. The analogy with a metal structure is 
obviously to make the metal thicker. However, a metal structure, if ma
chined, has a much finer possible variation in thickness than a composite 
laminate. A laminate must have an integer number of layers unless you 
are willing to machine away part of the thickness of a layer. However, 
most manufacturers are not willing to risk degradation of fibers by ma
chining a layer. 

For a bending-dominated structure, we can add stiffeners that are, 
by definition, a weight-saving aid. Stiffeners do not, of course, offer any 
advantage in an extension-dominated structural element. Stiffeners al
low us to prejudice the bending stiffness of the structure more in one di
rection, where the stiffeners go, than in the other directions. Or perhaps 
we can install stiffeners in two different directions (often, but not neces
sarily, perpendicular to one another). For both metal structures and 
composite structures, adding stiffeners saves weight as compared to a 
monocoque (unstiffened) structure. However, composite stiffeners can 
be much more efficient than metal stiffeners, so stiffening can be even 
more of a weight-saving approach for composite structures than it is for 
metal structures. 

Next, we can, of course, make a material substitution. We can of
ten substitute one specific graphite-epoxy for another member of the 
graphite-epoxy family. We can obviously substitute one metal for an
other metal. We can also substitute a composite material for a metal. 
All those approaches are taken in the interest of weight savings or cost 
savings, although the substitutions could also be made solely to achieve 
the required function of the structure. 

Using a honeycomb laminate, i.e., having some kind of a light
weight core like the honeycomb in a bees' nest inside the outer layers 
of the laminate, is typically a way of increasing the bending stiffness of 
a structure with very little increase in weight. That is, we could use a very 
thick laminate, which is heavy, to do the job, or we could get the same 
bending stiffnesses with a laminate that has two sets of thin laminates, 
one at the top and one at the bottom, with a shear-deformable core 
bonded in the middle of the two laminates. Such a structural element 
has very high bending stiffness. The honeycomb-core laminate is, of 
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course, thicker, but lighter than the monocoque laminate with equal 
bending stiffness. We also can use honeycomb cores with metal struc
tures, in which case we have actually created another form of CQmposite 
structure! Honeycomb is often placed inside many aluminum structures, 
so that approach is quite common. 

Let's review six different ways to reconfigure composite structures. 
Some have an analog with metal structures, and some do not. The first, 
layer reorientation in Figure 7-37, is unique to cof."posite structures. 
Changing the order of the layers, like layer reorient~tion, is both unique 
to composite structures and offers a myriad of possibilities for controlling 
strength and stiffness. Because of the inherent higher stiffness-to-weight 
and strength-to-weight capabilities of a composite material, adding layers 
is a more efficient way of adding stiffness and strength than can be done 
with metals. We can do a better job of stiffening with composite struc
tures than with metal structures. The material substitution process has 
far more possibilities with various composite materials than with metals. 
With honeycomb-core laminates, we can do a more efficient job with 
composite materials than we can with metals. Thus, reconfiguration of 
a structure has a new set of dimensions for a composite structure relative 
to a metal structure. 

• REORIENT LA YEAS (NO WEIGHT PENAL TY} 

• REORDER LAYERS (NO WEIGHT PENALTY} 

• ADD LA YEAS (WEIGHT PENAL TY} 

• ADD STIFFENERS (SAVE WEIGHT) 

• CHANGE MATERIAL (SAVE WEIGHT) 

• USE HONEYCOMB-CORE LAMINATE (SAVE WEIGHT) 

Figure 7-37 Reconfiguration of Composite Structures 

What kinds of configurations are possible for composite structures? 
The most obvious is that of a fiber-reinforced laminate. With a laminate, 
we can change laminae orientations, stacking sequence, and laminae 
materials to arrive at a suitable structure. We can stiffen the laminate, 
or we can put a sandwich core in the middle of those laminae. We can 
do all of those possibilities, but recognize that we will also have, in vir
tually any structure, some kind of hole or a cutout for some reason. 
Thus, we must have a procedure to place an appropriate amount of re
inforcement around those cutouts so that load can be transferred around 
them. Without that reinforcement, the structure cannot do the job it is 
required to do. These various possible configurations are shown in Fig
ure 7-38. 

( 
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FIBER-REINFORCED 
LAMINATE 

SANDWICH-CORE LAMINATE 
WITH HAT STIFFENERS 

LAMINATE WITH 
HAT STIFFENERS 

LAMINATE WITH 
REINFORCED CUTOUT 

Figure 7-38 Possible Structural Configurations 

7.4.6 Summary 

Unique and unusual stiffening concepts can make composite 
structures far more effective and efficient than metal structures. We have 
introduced some of these stiffening concepts, but more are being devel
oped. We should look forward to even more innovative unique-to
composites stiffening concepts in the future. 

7.5 LAMINATE JOINTS 

7 .5.1 Introduction 

High stiffnesses and strengths can be attained for composite lami
nates. However, these characteristics are quite different from those of 
ordinary materials to which we often need to fasten composite laminates. 
Often, the full strength and stiffness characteristics of the laminate can
not be transferred through the joint without a significant weight penalty. 
Thus, the topic of joints or other fastening devices is critical to the suc
cessful use of composite materials. 

The purpose of this subsection is to familiarize the reader with 
some of the basic characteristics and problems of composite laminate 
joints. The specific design of a joint is much too complex for an intro
ductory textbook such as this. The published state-of-the-art of laminate 
joint design is summarized in the Structural Design Guide for Advanced 
Composite Applications [7-5] and Military Handbook 17A, Plastics for 
Aerospace Vehicles, Part 1, Reinforced Plastics [7-6]. Further develop
ments can be found in the technical literature and revisions of the two 
preceding references. 

The two major classes of laminate joints are bonded joints as in 
Figure 7-39 and bolted joints as in Figure 7-40. Often, the two classes 
are combined, for example, as in the bonded-bolted joint of Figure 7-41. 
Joints involving composite materials are often bonded because of the 
natural presence of resin in the composite and are often also bolted for 
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reasons discussed later. Several characteristics of fiber-reinforced 
composite materials render them more susceptible to joint problems than 
conventional metals. These characteristics are we1akness in in-plane 
shear, transverse tension, interlaminar shear, and bearing strength rela
tive to the primary assets of a lamina, the strength and stiffness in the 
fiber direction. 

SINGLE-LAP JOINT DOUBLE-LAP JOINT 

STEPPED-LAP JOINT SCARF JOINT 

Figure 7-39 Bonded Joints 

SINGLE-LAP JOINT DOUBLE-LAP JOINT 

REINFORCED-EDGE JOINT SHIMMED JOINT 

Figure 7-40 Bolted Joints 

Figure 7-41 Bonded-Bolled Double-Lap Joint 
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7.5.2 Bonded Joints 

Goland and Reissner studied the stresses in bonded single-lap 
joints for two important limiting cases: (1) a bond layer so thin that it has 
no contribution to the joint flexibility (inverse of stiffness), and (2) a bond 
layer so thick that it is the primary contributor to the joint flexibility [7-7] 
(this classic paper is referred to by nearly every researcher in bonded 
joints). They considered the shearing and normal stresses in the bond 
layer as well as those in the joined plates. For fiber-reinforced composite 
materials, the thick-bond-layer approach of Goland and Reissner is more 
appropriate than the thin-bond-layer approach because of the presence 
of epoxy resin in the composite material and the effective thickness of the 
bond relative to the joined pieces. They found, for equal-thickness 
isotropic plates, that the bond layer shear stress has nearly uniform dis
tribution except for a large concentration near the end of the joint.1 The 
bond stress perpendicular to the bond layer also has high values near 
the joint edge, although not nearly as high as the inflexible bond case. 
Berg analyzed a bonded double-lap joint and suggested interleaving the 
materials of a lap joint to reduce the high stresses that otherwise occur 
where layers meet [7-8]. 

The fundamental design problem in bonded joints is to get enough 
bond area in shear to carry the load through the joint. Bond area in 
tension is of little value because of the typically low strength of bonding 
materials compared to the far higher strength of the metals or composite 
materials being joined. The contrast between the two types of bonding 
area is shown in Figure 7-42. The extension of these concepts to many 
types of bonded joints is illustrated in Figure 7-43 along with their types 
of failure. There, an increase in adherend thickness does not always 
lead to a stronger joint! 

BAD: 

GOOD: 

TOO LITTLE AREA 
TO CARRY TENSILE LOAD 
(CAN'T CHANGE THICKNESS) 

---{~~-,.----------IIIIIIIL~--,. i r--
1. -1 

VARY OVERLAP LENGTH 
TO GET SUFFICIENT AREA IN SHEAR 

Figure 7-42 Good and Bad Load Transfer in Bonded Joints 

1The geometry and material discontinuities at the ends of the bond material in the single-lap 
joint in Figure 7-42 naturally lead to high stresses. That is, the classical bi-material problem 
necessarily leads to singularities (infinite stresses) at the end of the interface between the 
materials in the usual elasticity approaches to the problem. Thus, we must always exercise 
considerable judgement when Interpreting bonded-joint analysis results. 
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JOINT STRENGTH 

iL-=::=::=--.J 
SCARF JOIKT 

SINGLE-LAP JOtKT 

PEEL FAILURES 

BENDING OF ADHERENDS 
DUE TO ECCENTRIC LOAD 
PATH 

ADHEREND THICKNESS 

Figure 7-43 Types of Bonded Joints and Their Failures 
(After Hart-Smith [7-9]) 

7.5.3 Bolted Joints 

The principal failure modes of bolted joints are (1) bearing failure 
of the material as in the elongated bolt hole of Figure 7-44, (2) tension 
failure of the material in the reduced cross section through the bolt hole, 
(3) shear-out or cleavage failure of the material (actually transverse ten
sion failure of the material), and (4) bolt failures (mainly shear failures). 
Of course, combinations of these failures do occur. 

~ 

SHEAR:~= 
FAILURE BOLT PULLING 

THROUGH LAMINATE 

BEARING FAILURE BOLT FAILURE 

Figure 7-44 Bolted Joint Failures (After Hart-Smith {7-10]) 
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One of the ways to increase the bearing strength of a joint is to use 
metal inserts as in the shimmed joint of Figure 7-40. Another way is to 
thicken a section of the composite laminate as in the reinforced-edge 
joint in Figure 7-40. 

Net-tension failures can be avoided or delayed by increased joint 
flexibility to spread the load transfer over several lines of bolts. Com
posite materials are generally more brittle than conventional metals, so 
loads are not easily redistributed around a stress concentration such as 
a bolt hole. Simultaneously, shear-lag effects caused by discontinuous 
fibers lead to difficult design problems around bolt holes. A possible 
solution is to put a relatively ductile composite material such as S-glass
epoxy in a strip of several times the bolt diameter in line with the bolt 
rows. This approach is called the softening-strip concept, and was ad
dressed in Section 6.4. 

7.5.4 Bonded-Bolted Joints 

Bonded-bolted joints generally have better performance than either 
bonded or bolted joints. The bonding results in reduction of the usual 
tendency of a bolted joint to shear out. The bolting decreases the likeli
hood of a bonded joint debonding in an interfacial shear mode. The 
usual mode of failure for a bonded-bolted joint is either a tension failure 
through a section including a fastener or an interlaminar shear failure in 
the composite material or a combination of both. 

Bonded-bolted joints have good load distribution and are generally 
designed so that the bolts take all the load. Then, the bolts would take 
all the load after the bond breaks (because the bolts do not receive load 
until the bond slips). The bond provides a change in failure mode and 
a sizable margin against fatigue failure. 

An example of a complex bonded-bolted joint used in the box beam 
of a folding aircraft wing is shown in Figure 7-45. There, a basic structure 
of graphite-epoxy and boron-epoxy layers over honeycomb is attached 
to an aluminum forging. The honeycomb is gradually replaced by 
graphite-epoxy as the joint is approached from the wing direction (the 

Figure 7-45 Complex Bonded-Bolted Joint (Courtesy of 
Vought Systems Division, LTV Aerospace Corporation) 
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right in Figure 7-45). Then, titanium sheaves are successively introduced 
to increase the bearing strength of the joint. Finally, the combined 
graphite-epoxy and titanium composite material is stair-stepped over the 
Christmas-tree-like aluminum forging. The titanium sheaves are bonded 
to the graphite-epoxy with a film adhesive. The graphite-epoxy is bonded 
to the aluminum forging with a paste adhesive. The entire joint is then 
bolted together. 

7.5.5 Summary 

Bolted, bon,_ded,_ and bonded-bolted joints have barely been intro
duced. Further behavioral and design information is available in the book 
Joining Fibre-Reinforced Plastics edited by F. L. Mathews (7-11], which 
has chapters written by various authors including two chapters on design 
by L. J. Hart-Smith. 

7.6 DESIGN REQUIREMENTS AND DESIGN FAILURE CRITERIA 

7.6.1 Introduction 

Establishing suitable design failure criteria is a difficult task, yet 
fundamental to the design process. The concept of design failure criteria 
is much more complicated and involved than just the issue of gross fail
ure of a lamina or even gross failure of a laminate as treated in traditional 
composite materials analysis. Thus, the term design failure criteria does 
not mean the application of the Tsai-Hill failure criterion or the Hoffman 
failure criterion or anything like them for a single lamina. Establishing 
design failure criteria is a much more complicated issue than establishing 
lamina failure because we must ask how the structure itself fails. What 
does failure mean in the context of that specific design? Failure simply 
means that the structure cannot fulfill some design requirement(s). All 
failure really means then is that we have designed a structure or object 
to do a particular job, and that structure cannot do its job. Obviously, 
nothing was mentioned about the structure breaking or falling down. 
That is, failure means far more than just fracture. 

7 .6.2 Design Requirements 

Design requirements are simply a collection of statements of what 
we ask the structure being designed to do. What is its required per
formance? Those requirements can be expressed in terms of structural 
response or, alternatively, in terms of system perform~ 

Consider an example involving several design requirements. For 
a beam overhead above a ceiling, the most important thing we want the 
beam to do is to hold up the ceiling so it does not fall on our heads. That 
requirement is a strength issue. We also do not want that ceiling beam 
to deflect very much, and deflection is a stiffness issue. One of the 
problems with a ceiling beam deflecting too much is if the ceiling is 
plaster, then the plaster will crack as in Figure 7-46, and that is obviously 
unsightly. If you were paying for a building, you certainly would not want 
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cracked plaster, so obviously a stiffness requirement exists. There is 
also a stiffness requirement because we do not want people who are in 
the building to perceive that the floor above them is sagging so much that 
they get scared. Thus, we are faced with two very clear issues, i.e., 
strength and stiffness. Another issue is that the ceiling beam must 
withstand whatever loads are imposed on it over the lifetime of the 
structure such as intermittent snow loads, a lot of walking around, or 
moving equipment around, or whatever. That collection of circumstances 
is a life issue. Thus, we have identified three different structural issues 
in the design of a ceiling beam, namely strength, stiffness, and life. 
Failure of the beam is not failure from the standpoint of simply breaking 
apart, although obviously that is the essence of the first issue, strength. 
After that simplistic concern, other significant issues must be addressed, 
namely stiffness and life, just to list two such issues. 

FRACTURE (STRENGTH) DEFLECTION (STIFFNESS) 

~ 
t~ 

~ 
FATIGUE (LIFE) 

Figure 7-46 Ceiling Beam Design Requirements 

We could go through that same kind of problem analysis for many 
different structures, and, in the process, design requirements could be 
expressed Jor each of them. The most common design requirements 
would be expressed in some manner in terms of strength, stiffness, and 
life, but there are many other issues as well. Whether the material will 
corrode, for example. Whether it will provide the proper insulation or just 
the opposite, sufficient conductivity, and so on. There are many, many 
different types of tasks that we ask a structure to perform. 

Failure has many meanings or interpretations in the context of the 
structural design process. The main meaning is that failure is the inability 
of the structure to perform up to its design requirements. Those re
quirements can be expressed simplistically in terms of the following 
functional ways: 

(1) strength - the material will have limits of stress or strain that 
cannot be exceeded without fracture 

(2) stiffness - the structure will be designed to deform a specific 
amount or perhaps be limited to a specific deformation without 
vibrating excessively or buckling. 
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(3) life - the structure might have a specified life span 
(4) energy - the structure might have to absorb specified amounts 

of energy and still remain functional 
(5) weight - the structure might have to weigh less than a specified 

amount for the configuration to be a feasible design 
(6) cost - the structure might have to cost less than a specified 

amount or else a configuration that works in every other respect 
must be redesigned 

(7) manufacturing - if the structure cannot be built, then the con-
figuration is unacceptable 

If these or other specific design criteria cannot be met, then the design 
is a failure, and the structure must be redesigned to meet the require
ments. Thus, design is an iterative process coupled with analysis and 
testing activities to assess the success or failure of a composite structure. 
All design activities must be accompanied by an evaluation program to 
assess each of the goals and the progress toward satisfaction of the 
goals. Accordingly, each of the goals or design criteria must be clearly 
definable and readily measurable, or else they are too vague to be of use 
in the design process. 

7.6.3 Design Load Definitions 

In aircraft, as well as spacecraft, certain design load definitions are 
common. Design limit load is the largest load on a structural element that 
is expected during normal service. Thus, design limit loading includes 
drastic maneuvers and high wing loadings that would be encountered, 
for example, in gusty winds during a severe Texas thunderstorm. Of 
course, most flights have loadings well under the design limit load. De
sign ultimate load is some factor greater than one times the limit load. 
That factor depends on the type of failure (benign or catastrophic), on the 
type of usage (man-rated or unmanned structures), and on whether ac
tual structural loading tests are performed to verify the design. Obvi
ously, the factor must be high for a structural element that fails cata
strophically, is used for a man-rated structure, and is not load-tested prior 
to use. On the other hand, the factor could be low for a structural ele
ment that fails in a benign manner, is used on an unmanned structure, 
and is load-tested prior to use. Of course, neither set of circumstance 
constitutes responsible design! Because the multiplying factor is arbi
trary, the actual failure load might well exceed the design ultimate load. 
Unfortunately, some engineers refer to the design ultiQ,at~ load as the 
'ultimate load'. Of course, the term ultimate load is properly used only 
for the load at which the structural element actually fails, i.e., receives its 
ultimate loading. These critical design loads are displayed in the context 
of a load-deflection curve in Figure 7-47. Note that first-ply failure might 
not be allowed below the design limit load. Moreover, the design limit 
load might be cyclically applied, which is all the more reason to avoid a 
first-ply failure in a cyclic-loading environment. 

p 

7.6.4 Summary 
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_ --7' - ULTIMATE LOAD 

~ OTHER LAMINAE FAILURE 
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:1.7 • DESIGN LIMIT LOAD 

Figure 7-47 Critical Design Loads 

We have considered example design requirements in general 
terms, and the main issue to emphasize is that strength is not the sole 
concern. There is much more to design requirements than simply 
whether the object is strong enough to avoid fracture. We must go far 
beyond that overly simplistic viewpoint to issues of stiffness, life, corro
sion, permeability, etc. 

The area of design failure criteria impacts, and is a quantitative 
measure of, the success of a design. Fundamentally, design failure cri
teria are the statement of the design requirements. The manner in which 
individual laminae as well as laminates fail is but a part of design failure 
criteria. Failure of laminae and laminates, as in Chapters 2 and 4, is a 
fundamental portion of all strength-related failure criteria, but those fail
ures are also determining factors in stiffness-related failure criteria. 

7.7 OPTIMIZATION CONCEPTS 

7.7.1 lntr~duction 

The fundamental objective in design is to achieve the best struc
tural configuration that will do the job intended. The concept of 'best' 
implies that a measure of design quality is available. For example, in 
aircraft structures, the lowest-weight design often is regarded as the 
'best' design because of positive implications for range, economy, and 
performance. For other structures, the least-cost design might be judged 
the 'best'. The answer to any design problem is not unique, so some 
means must be established to define and determine the 'best' config
uration. The functional requirements of strength, stiffness, and life as 
discussed in Section 7.6 are the basis for defining the 'best' configuration. 
Optimization is the more or less mathematical procedure by which that 
'best' configuration is obtained in a direct, rational way. In this section, 
we will first examine some fundamental concepts of optimization as in 
Figure 7-48. Next, we will address analysis and optimization for strength, 
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one of the five principal structural response areas of stiffness, strength, 
buckling, vibration, and life prediction. Analysis and optimization could 
be performed for other structural response phenomena if mechanistic 
relationships between those phenomena and structural configuration are 
available. Then, we will investigate invariant laminate concepts that 
could be used in design. Finally, we will consider several issues that are 
crucial to laminate design. 

• FUNDAMENTALS OF OPTIMIZATION 
• ANALYSIS AND OPTIMIZATION 
• INVARIANT LAMINATE CONCEPTS 

• DESIGN OF LAMINATES 

Figure 7-48 Outline of Optimization Concepts 

7.7.2 Fundamentals of Optimization 

The criteria used for any type of an optimization scheme can be 
varied. The criteria depend on what is most important in your structure. 
Do you need a structure that must be of least weight? If that is your 
primary objective, then least weight is the characteristic of the structure 
for which you would optimize. Design of a weight-sensitive structure is 
probably the most common aerospace structural optimization problem. 
Cost is also an appropriate criterion for some optimization problems, 
whether cost be initial cost or life-cycle cost. Sometimes you want the 
longest range or the highest speed if you are designing a high
performance airplane. Or, another possibility is the longest life of a sat
ellite. Those factors are all valid optimization criteria usually called merit 
functions or objective functions. Perhaps you would like to optimize for 
more than one merit function at the same time. You cannot expect both 
of two merit functions to necessarily be maximized (or minimized, if ap
propriate) in the absolute sense. However, two merit functions can be 
maximized in the sense that both can be forced to be an approximate 
optimum. When more than one merit function is addressed, a very diffi
cult mathematical problem results. 

7. 7 .2.1 Structural Optimization 

Let's try to define in a practical sense the structural optimization 
problem. To do so, let's work our way through the complete definition 
by examining a sequence of useful lesser definitions. 

First, we must realize that many variables exist in any structural 
design. We can make a list of structural variables such clS si~es, lengths 
of objects, materials, laminae orientations, and so on. Those variables 
all have influence just as column length, moment of inertia, and Young's 
modulus influence column-buckling loads. The complete list of design 
variables will be called the vector xi, and that vector will have N compo
nents. That list constitutes the definition of the structural configuration. 

Then, we ask: how does this structure behave? The structure de
flects and has stresses, buckling loads, and vibration frequencies, and 
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these response characteristics are evaluations of the structural perform
ance. That behavior can be represented by some other function, say 
Cii• of the design variables, i.e., Cii(xi). That symbolism or notation is 
really an equation that we write in some way, and it could be as simple 
as the Euler buckling-load equation for a column. The Euler buckling 
load then is the Cii value. The Euler buckling-load equation has length, 
Young's modulus, and moment of inertia as the design variables. 

Next, certain conditions or constraints must be placed on the 
problem. We ask, for example, that the strength of the object be greater 
than a certain amount of load because we want the object to carry that 
amount of load safely. Calling that minimum strength a constraint might 
be a different philosophy than you are used to. Let's just view the con
straint as a design requirement. Go back to design failure criteria in 
Section 7.6 - certain design requirements exist and can be stated in the 
form of a mathematical constraint equation, e.g., cr1 < X, which is a 
statement that the maximum allowed fiber-direction stf"ess must be lower 
than the strength in that direction. For example, the response must be 
greater than zero in a particular response mode. That is, the real load
carrying ability minus the desired load-carrying capability must be greater 
than zero. We can always work the equation into an inequality with zero 
on one side simply by subtracting a constant. That constant is the design 
load requirement including a factor of safety. Or, as another example, 
a certain frequency of excitation must exist for the object. We must make 
certain that all the natural frequencies are above (or below) that particular 
frequency so that resonance is avoided. Thus, we simply write a fre
quency evaluation equation, subtract from that frequency the frequency 
of driving, and say that that result must be greater (or less) than zero. 
Then, when the structure satisfies that constraint, the frequency require
ment is satisfied, i.e., the structure will not resonate. 

Finally, we must address some merit function, M, that is a function 
of the design variables, i.e., M(xi) If that merit function or objective 
function is the structural weight to be minimized, then the equation for the 
weight of the structure is some function of its design variables. All we 
must do is use all the dimensions to calculate the volumes of various 
parts of the structure and multiply by the appropriate densities to get the 
weig~t. We then minimize that weight. Or, we could address some merit 
function other than weight, e.g., the range of an airplane. 

You have been presented with a collection of equations and defi
nitions in the past few paragraphs. The way to put them all together is 
to simply say that the structural optimization problem is the minimization 
of an inequality-constrained function of N design variables. If I had 
started out with that statement as a sentence, you might have been un
happy because too many undefined terms are used. However, when 
we break down the sentence with the preceding definitions, a fairly 
straightforward explanation of a design optimization problem results. The 
design variables used to express the structure's weight can be put into 
another form with which we evaluate the behavior and compare it to the 
design requirements. Once we put all those steps together for the 
least-weight structure, we have the answer to our design problem. 
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Structural synthesis or optimization is a method of direct and ra
tional solution of the problem just expressed, i.e., the inequality
constrained minimization problem. 'Direct rational solution' - that 
means mathematics. Design can be done in two different ways. One 
way in which design is approached is a rational fashion in which we have 
equations for the performance, we compare the actual performance with 
the requirements, and we make appropriate adjustments to the design 
until the performance meets the requirements. The other way to design 
is to put something on paper, i.e., select a trial design in some manner, 
and make certain evaluations to assess performance. If the structural 
configuration will do the job, i.e., meet the performance requirements, 
then that is our design. The latter approach is not optimization unless 
we iterate that design to try to answer the question: can we make some 
design variable changes that will lead us to a lower-weight structure, or 
higher-speed structure if speed is the issue, or whatever? But if we 
simply draw designs on paper and evaluate them, that is not a direct and 
rational solution. That approach is just trying many solutions and seeing 
if by chance one of them is better than any of the others. That approach 
does not satisfy any rational definition of design because only a delib
erately restricted number of possible designs has been examined. Ob
viously, the real optimum design just might not be within that restricted 
number. However, precisely that approach is the most common in in
dustry today. 

Various rational approaches to design do exist. We can exercise 
what really amounts to a brute-force approach, which is not a particularly 
good approach, but there is a way of making that approach almost ra
tional. That is, we can try all the possible solutions for certain problems. 
We can sometimes define all the solutions, and then pick the 'best' sol
ution. Then, we know we have the optimum design because we have 
examined all possible designs. We will study an instance in which that 
brute-force approach is possible and even quite useful. Obviously, other 
instances exist in which we could not even imagine knowing all the sol
utions. For example, if we want to design a 150-passenger airplane to 
fly from New York to Los Angeles, then we must realize that an infinite 
number of solutions exists, and we cannot possibly try them all. But if 
we want a laminate that will carry a certain load, there is a finite number 
of solutions to that problem (if we ignore obviously inappropriate lami
nates such as all laminates thicker than necessary), and we actually can 
try them all. More rational optimization approaches involve more refined 
mathematical procedures, such as Monte Carlo techniques, dynamic 
programming, or nonlinear programming. Some very complicated issues 
arise with using those techniques for structures. 

For structures, especially composite structures, the)mfuber of de
sign variables is very large, and we must also perform a large number 
of response evaluations. Thus, we are automatically pushing very hard 
against our computer limitations. As a matter of fact, we exceed usual 
computer capabilities for all structural design problems that are really 
practical except for nonlinear programming. Monte Carlo and dynamic 
programming techniques are useful for some physical problems that 
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have fewer design variables than are typical for structures. Thus, you 
might hear about those techniques being used in other engineering 
areas, but not in structures design. 

The term nonlinear in nonlinear programming does not refer to a 
material or geometric nonlinearity but instead refers to the nonlinearity in 
the mathematical optimization problem itself. The first step in the opti
mization process involves answering questions such as: what is the 
buckling response, what is the vibration response, what is the deflection 
response, and what is the stress response? Requirements usually exist 
for every one of those response variables. Putting those response 
characteristics and constraints together leads to an equation set that is 
inherently nonlinear, irrespective of whether the material properties 
themselves are linear or nonlinear, and that nonlinear equation set is 
where the term nonlinear programming comes from. 

How many organizations do what we could really call direct rational 
solution of the composite structure design problem? - very, very few. 
Perhaps only in some very restricted design areas do people feel that 
they can use a mathematically oriented optimization approach. That sit
uation is unfortunate, but changing. 

7.7.2.2 Mathematics of Optimization 

Let us contrast two approaches to optimization. One approach is 
searching, and the other one is mathematical optimization. 

Searching is an approach in which we either try all of the possible 
solutions or look at a few solutions and try to infer from them what we 
must do to obtain other, more appropriate solutions. As an example, 
suppose we are faced with an equation that we must solve, e.g., some 
function f(x) must be zero. We could plot discrete values of that function 
as in Figure 7-49. The values of the function are plotted as a sequence 
of dots, i.e., the function is evaluated at specific values of x. The objec
tive is to find where that function is zero. You could look at Figure 7-49 
and imagine connecting all the dots to see where the curve crosses the 
axis. There are three crossings, and that fact gives us some feeling for 
the solutions to the equation. That is, simply look at discrete values of 
x, find what f is, and then visually make a comparison with the desired 
zero value of the function and ask: what value, or values, of x correspond 
to a zero value of the function? Obviously, the objective function must 
be evaluated a large number of times in this search procedure. 

f 

. . 
• 

. . 
Figure 7-49 Search Procedure 
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Mathema~ical o~timization, in contrast to searching, is a way of not 
even. necessanly having to look at a collection of specific values of the 
function. We_ do not eve~ n~d to plot the function, although for various 
reasons plotting the function 1s very desirable. You probably have used 
Newton's method to solve an equation such as f(x) = o. The equation for 
Newton's method is fair1y simple, and is related to the geometry of the 
?urve. For some approximate solution Xj. we calculate a value of f which 
1s not zero. We look at the slope of the curve in Figure 7-50 at that point 
(Xj) and proj~ ~ line with the slope at xi down to the horizontal axis. 
Where tha~ line intersects the_ horizontal axis is the new approximation 
to the solution of the problem, 1.e., the best estimate of the solution based 
on a linear_extr~polation. That new approximation, Xj+ 1, is related to the 
?Id approx1mat1on by the geometry of the triangle in Figure 7-50, which 
involves the value of the function, its slope, and the base of the triangle. 
The s1ope (the function derivative) multiplied by the horizontal distance 
(the tnangle base) is the vertical distance (the function value), 

f'(XiHXi + 1 -Xi>= f(xi) (7.9) 
and that relation can be rearranged as 

x. - X + f(Xi) ( 
"1+1- i f'(Xi) 7.10) 

Our. next guess. for the solution of the equation is xi+ 1. The approxi
mation process 1s repeated until the function is close enough to zero to 
satisfy us. 

f 

XI X1+1 

Figure 7-50 Mathematical Optimization 

This mathematical optimization procedure is a rational process be
cause the slope (or derivative) enables us to know which way to go and 
how far to go. In contrast, in the search procedure, we just arbitrarily 
choose some values of x at which to evaluate the function. Those arbi
trary choices are much like what people do in most design situations. 
They are simply searching in a rather crude manneNouhe solution to 
the probl~m, an? !he~ will not achieve the solution precisely. With 
mathematical opt1m1zat1on, our hope is both to speed up that process and 
to get a more precisely optimum solution. 

The mathematical procedure for a single merit function optimization 
for many design variables involves derivatives of the merit function with 
respect to each of the design variables (as a generalization to multiple 

\ 
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variables of the single-variable Newton's method just illustrated). Thus, 
the usual structural optimization procedure cannot be visualized in two 
or three dimensions, so typically conventional visualization concepts are 
not part of optimization. However, more recently developed visualization 
concepts might be quite useful. Mathematical optimization has been 
used for structural optimization starting with Schmit [7-12). 

7.7.2.3 Optimization of a Composite Laminate 

Let's consider one rather restricted structural optimization problem, 
that of a composite laminate. You have seen claimed as attractive ad
vantages of composite structures the fact that we can orient the laminae 
in a laminate to our heart's content to try to get the most efficient struc
ture. This characteristic is totally unlike what is possible with metal 
structures. This laminate orientation flexibility is certainly an advantage, 
but how do we use it? 

Let's start by reviewing quantitatively the analysis and design 
process for metal plates. For an isotropic metal plate under extensional 
loading, Nx only, the load is related to the strains by 

Nx= E \ (~ +v~) 
(1 -v ) 

Ny= E\ (~+v~)=O 
(1 -v ) 

(7.11) 

Then, from the lateral force condition that Ny= 0, 

0 0 
Ey =-Vtx (7.12} 

the applied force becomes 

Nx=Et~ (7.13} 

Thus, for a prescribed allowable strain, we can solve for the plate thick
ness necessary to avoid failure (without consideration of a factor of 
safety): 

Nx 1 (7.14) 
trequired = E Eauowable 

Note that different thicknesses result from Equation (7.14} for different 
materials with their characteristic values of E and Eatiowable· That is, the 
design problem has only one answer if the material is specified, but many 
answers exist if the material is not specified. 

In a similar manner, if a bending moment, Mx only, is applied, 

E t3 

Mx = 2 (1Cx + VKy) 
12(1 -v} 

3 

My= Et 2 (Ky+VKx}=O 
12(1 -v) 

(7.15) 

Then, from the lateral moment condition (My= 0), 
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"), = - VKX 

Thus, the applied moment becomes 

E t
3 

Mx=~Kx 

(7.16) 

(7.17) 

However, from the linear strain distribution through the plate thickness, 

0 

£x=fx+ZKX 

For pure bending (£~ = 0), the largest strain is at z = ± t/2, so 

1( _2£,c 
><max - T max 

Accordingly, the required thickness is 

(7.18) 

(7.19) 

trequired = [ E 
6 

Mx )

112 

(7.20) 
£allowable 

Thus, for both extensional loading and pure bending of isotropic metal 
plates, the required thickness to support a specific loading can be de
termined directly by an inverse of the analysis equations, i.e., the design 
process is deterministic. 

For a simple symmetric cross-ply laminated plate subjected to in
plane force Nx, the force-strain relations are 

[ ~} [ ::: :::][ :] = [~'] 

From the lateral force condition (Ny= O), 

or 

O = A12~ + A22~ 

o A12 o Ey=--£ 
A22 X 

Thus, the applied force becomes 
2 

A12 o 
Nx=(A11--)£,c 

A22 
However, recall that the extensional stiffnesses are 

N 

(7.21) 

(7.22) 

(7.23) 

(7.24) 

Aij = L (Qij)ktk (7.25) 

k = 1 ".___,/ 

where th~ Qii ar~ kno:,vn complicat~d functions of 0 11 , 0 12, 0 22, 0 66, and 
ak, the fiber orientation of the k layer, as well as the laminae thick
nesses, tk. Obviously, the 0 11 , 0 12, and 0 22 are known in terms of E1, 
E2, and v12. However, we cannot solve for the laminae thicknesses, 
number of layers, and laminae angles from a single (force-strain) 
equation. Thus, even the simplest laminate design problem is indeter-
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minate or nondeterministic That fact creates a particularly big problem 
when we would actually like to optimize the laminate design, and we 
have trouble determining a single laminate design, much less the best 
design. 

For more general laminated fiber-reinforced composite plates, the 
relations between forces, moments, middle-surface strains, and middle
surface curvatures, 

Nx A11 A12 A15 B11 B12 B15 Ex 
Ny A12 A22 A26 B12 822 826 Ey 

Nxy A15 A25 A66 B15 B25 8 66 Yxy 
(7.26) 

MX B11 B12 B16 011 012 016 ~ 

My B12 B22 B25 012 022 025 "), 

Mxy B16 B25 855 016 025 055 Kxy 

are such complicated functions of the number of layers and the stacking 
sequence that no direct solution exists in the same manner as for 
isotropic metal plates. That is, there are no solutions for the required 
thickness of a laminated plate that are analogous to Equations (7.14) and 
(7.20). The problem is that we seek more than one unknown, i.e., the 
thickness and the laminae orientations, but we have only one equation! 
Or, at most, six equations from Equation (7.26). 

The solution to this laminate design problem with more design 
variables than loading parameters is nontrivial. Without a direct solution, 
we must appeal to an indirect solution approach. One such indirect ap
proach is described in Section 7.7.2.4 on optimization methods. There, 
a brute-force, try-many-possible-combinations scheme is used to find a 
laminate that satisfies the design requirements. Another approach is 
Tsai's laminate-ranking procedure [7-13], which is not a true design ap
proach, but instead is a sequence of evaluations of different predeter
mined laminates under specified loading with subsequent ordering of the 
chosen set of laminates with respect to their ability to bear the prescribed 
load. The best laminate is chosen from those examined, so the actual 
best laminate could be missed. However, Tsai's method has the ad
vantage that searching can be limited to those laminates or laminate 
families that are of interest. For example, attention might be restricted 
to laminates for which fatigue data are available. 

The fundamental laminate problem is: given the overall loading and 
a rough idea of the shape that we want, what is the optimum set of 
laminae orientations that constitute this laminate? Here, we must get 
quantitative and outline a specific approach to laminate design. First, 
we do not even know how many laminae we need! Our basic objective 
is that we want to carry a certain set of loads. The design process is not 
simply finding a thickness as with a metal plate, it is finding a thickness 
and what goes into that thickness, namely the number and orientation 
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of the laminae as in Figure 7-51. That basic process for composite 
laminates is much more complicated than that for metal structures where 
we must determine only one variable - the thickness. 

GIVEN: Nx, Ny, and Nxy 

Figure 7-51 The Fundamental Laminate Design Problem 

The evaluation of the load-carrying capacity of a specific laminate 
(including the load-deformation behavior) is a straightforward deter
ministic process and is described in Section 4.5. For example, a 
20-layered laminate has a certain load-carrying capacity for one type of 
loading (and a different capacity for a different type of loading). 

In contrast, the same specified load-carrying capacity can be 
achieved with perhaps a 20-, 30-, 40-, or 50-layered laminate or with 
many other laminates. All those laminates meet the load-carrying re
quirement, so the process of laminate design is nondeterministic. If each 
lamina is of the same material, then the laminate weight is directly pro
portional to the number of laminae. Obviously, then the 20-layered 
laminate weighs the least of the several just mentioned. When laminate 
weight is considered, we have a quantifiable means of distinguishing 
between the various possible answers to the laminate design question. 
That is, with a merit function such as weight, we can rank the laminates 
as to how well they satisfy the design requirements. Note that strength 
is not such a merit function because strength is a constraint on the lam
inate design problem, so it cannot possibly be a merit function also. 

In general, we might like to consider all possible laminae orien
tations for the laminate, but that approach is rather tedious. That is, if 
we were to try to evaluate all the corresponding laminates, an infinite 
number of solutions is possible, so that approach is obvi~y not realis
tic. Considering a totally arbitrary set of orientations for most laminates 
is also unrealistic simply because for manufacturing reasons you do not 
want to specify that one layer must be at 67.3° and the next at 52.7°. 
Such refined specification of laminae angles cannot be easily achieved 
in manufacturing, nor is it necessary or desirable. A much more practical 
approach is to think in terms, at the most refined stage, of allowing the 
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laminae to be oriented at various 5° increments. That restriction on 
laminae angular orientation drastically cuts down the number of possible 
laminates. That restriction, however, still leaves a very large number of 
possibilities for laminae orientation in a laminate as you will soon see .. 

An even more practical approach for various reasons is to restrict 
the acceptable laminae angles to certain combinations, such as 0° 
laminae, 90° laminae, and ±45° laminae. I am not suggesting that we 
build only quasi-isotropic laminates because I did not say that you must 
have the same number of go0 laminae as 0° laminae as +45° laminae 
as --45° laminae. Let the numbers of laminae, the proportions of those 
various types of layers, change. We are dealing with a family of 0°, go0

, 

and ±45° laminae. The design parameters that we then search for are 
the values of three parameters, L, Mand N, the numbers of 0°, go0

, and 
±45° laminae, respectively. We are searching for three numbers in this 
case (the number of layers in each respective angular orientation group), 
but we are searching for many more numbers if we drop back one stage 
and let the layers be oriented at 5° increments as possible orientations. 
The mathematical nature of the design optimization problem is changed 
very drastically when we cut down the number of design variables or re
strict the possible values of the design variables. Those two approaches 
to laminate design will be contrasted in the next section. 

7.7.2.4 Strength Optimization Programs 

We will discuss, to various degrees and for various reasons, com
monly used strength optimization programs such as RC7 and OPLAM. 
Each program has a particularly attractive feature in the design sense. 
Of course, new programs are always being developed, so this discussion 
is out-of-date even before publication. However, the discussion has 
some lasting general educational value. 

The RC7 program was developed by Waddoups, McCullers, Olsen, 
and Ashton to address a configuration with at most 20 laminae in a 
laminate (7-14]. Each of the laminae can be oriented in increments of 
5°. That simple laminate is the total configuration, i.e., no stiffeners or 
honeycomb core are considered. The only design condition that is 
evaluated is the laminate strength through the means of two alternative 
failure criteria for individual laminae: the Tsai-Hill failure criterion and the 
maximum strain failure criterion. The only kind of loading is uniform in
plane loading, i.e., no bending moments can be applied. Stiffness is not 
considered (although it could readily be evaluated), and thus there can 
be no evaluation of buckling or vibration capabilities. Thus, RC7 is a 
point-stress analysis embedded in a strength optimization program. 

The method of optimization is a brute-force search technique. All 
the possible laminates that can be obtained by changing the individual 
laminae orientations by 5° increments are candidates for the optimization 
process. We consider RC? because this program is widely used and 
because it is representative of the brute-force search technique. The 
basic question is: because we must carry a certain load, what laminate 
do we need? We have no idea how many layers are required, much less 
their orientation, but we must start someplace. 
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. Start with a 'laminate' of only one layer, and place that 
unidirectional layer or lamina in various orientations at 5° increments. 
H~w many orientations are possible? Divide 180° by 5° to get 36 orien
tations (after a unidirectional lamina has been rotated more than 180° 
previous orientations are simply repeated). That is, by the time we hav~ 
reoriented the unidirectionally reinforced lamina around 180° the fiber 
direction of the lamina is in the position where it started. For that single 
layer, we ask the question: which of those 36 possible orientations has 
the hig~est load-carrying capability? To answer that question requires 
a selection procedure among the various possible laminates to find which 
is the str~>ngest. '.hat proc~ss leads_ to some angle that we will call a1. 
The pertinent design question now 1s: does the load-carrying capacity 
repr~sented by one l~mi~a w!th orientation cx1 meet the load-carrying 
requirements? If the laminate does not have enough capability (as we 
surely must suspect), even though the lamina is in its best orientation, 
then we must add at least one more layer. 

When we add the second layer, we arbitrarily fix the orientation of 
the first layer at the previously determined a 1 to begin the procedure. 
V-:e now determine the orientation of the second layer to give the best 
(1.e., the strongest) response. Let the second layer float around in value 
at 5° increments in orientation with 36 possible choices until the combi
nation of the new_ angle with the first layer being fixed in orientation gives 
the strongest laminate. The resulting laminate is not necessarily the best 
two-layered laminate. However, the point is that we are revealing the 
~trategy for making changes in all the design variables. That strategy 
involves a brute-force search approach. We are not using a more direct 
mathematical optimization approach in which we somehow mathemat
ically find the optimum number of laminae and their orientations. We are 
helped by a computer in performing many repetitive calculations but we 
are over1aying those repetitive calculations with a rather simple ~trategy 
for keeping track of the orientations with which we deal. Now that we 
have examined those 36 possible orientations of layer two and found the 
strongest combination, we have effectively chosen another laminate that 
can be specified as [cx1/~]. 

Now, release the constraint of having the first layer still oriented at 
a1. That constraint must surely seem quite arbitrary and not at all 
physically reasonable. Also, we must admit that the second layer prob
ably is not in its proper orientation either. Thus, we will allow the two 
laminae orientations to float from [a1/~] to something else. And we will 
call that procedure for changing the laminae lamina reorientation. There 
~re two _stage_s of lamina reorientation: (1) coarse reorientation and (2) 
fine reonentat1on. 

In coars:. laminae reorient~tion, we allow the lq_min9e angles to 
change by 15 increments. That 1s, a1 changes to a1 +~where ~a is 
0°, ± 15°, or ± 30°. We will also change cx2 in the same manner. As all 
those changes are made, the laminate strength is simultaneously evalu
ated, and, of all those combinations, the laminate that is the strongest is 
the desir_ed result. Tpat l~minate will be called [~1t~2]. To determine the 
new laminate took 5 choices. Coarse reorientation is performed a sec-

( 
Introduction to Design of Composite Structures 437 

and time with 25 additional choices leading to the best laminate of those 
choices with specification [ffi1/~]. 

Next, address fine reorientation, where we reconsider the laminate 
defined as [ro1/~]. and let those two angles change by some amount 
~ro. In fine reorientation, ~ro is 5° increments over a range of 20°, so the 
angles are changed by 0°, ± 5°, ± 10°. These five ~ffi choices per layer 
lead to another 25 combinations of laminae to examine. The laminate 
of those laminae that is the strongest is designated as [<1> 11<1>2]. Do the 
fine lamina reorientation again, and the result of those additional 25 cal
culations is the laminate [81182]. 

During all those laminate calculations, obviously many calculations 
were repeated. For example, when ~ex was 0° for the first layer and 0° 
for the second layer, we already knew the answer, but we did the calcu
lation over again anyway. If the calculation that we perform is very sim
ple, then we would rather perform the calculation over again than to 
establish strategies for both remembering all the results that we previ
ously calculated and recalling whether we had calculated them before. 
Our strength calculations turn out to be in that short and simple category. 
Individual calculations are simple, so it is much easier to recalculate them 
than to store and remember them. Providing the storage capacity for all 
previous calculations and the logic for deciding whether we had ever 
previously calculated the strength of a particular laminate requires sig
nificant additional computer program space and logic, hence time. 

This brute-force search strategy is followed as more layers are 
added because we do not know how many layers we need for the pre
scribed load. If the load is very high, perhaps we will need 19 layers, 
and we will work our way up to that laminate by adding one layer at a 
time and finding the best laminate of that number of laminae. 

The lamina coarse and fine reorientations are essential because 
the process of fixing the fiber direction of one lamina while varying the 
fiber direction of another lamina introduces an artificial constraint on the 
optimization problem. There is at least one laminate optimization prob
lem for which we know the correct answer (i.e., the correct laminae ori
entations), and if we had not done the laminae reorientation, we would 
have gotten the wrong answer for that problem. The test problem for 
which we know the answer is equal biaxial loading. Loads are applied 
equally in the x-direction and the y-direction. If we ask for that loading 
to be carried by a single layer, we know the answer would be an orien
tation of either +45° or -45° as in Figure 7-52. If we add another layer 
to the first layer, but fix the orientation of the first layer, then the answer 
for the orientation of the second layer is either -45° or +45°, respectively. 
If we stop there, then we know we do not have the right laminate be
cause the correct answer is a laminate with one set of fibers in the x
direction and one set of fibers in the y-direction. If you think about it, the 
coarse and fine reorientation allows the right answer to appear some
where within the (large) number of cases we examine. That is, the 
number of cases is expanded by relaxing the artificial constraint of one 
or more fixed-direction laminae. We do not calculate the right answer 
directly, but instead we search in a restricted field. If the restricted field 



438 Mecha111cs of Composite Materials 

in which we search does not include the right answer, then we get the 
answer that is best only in the restricted field, but not the best overall 
answer. Thus, removing that arbitrary restriction is the motivation for 
lamina reorientation. Whether two coarse or two fine reorientations are 
performed, or what angle change is chosen must be resolved by con
sidering some specific laminate problems for which we know the answer. 
In the process, we must determine whether one approach leads to the 
answer more rapidly than does another approach and, moreover, that the 
correct answer is obtained to the equal-biaxial-loading problem (or some 
other problem for which the optimum solution is known). 

BEST SINGLE-LAMINA BEST SECOND-LAMINA 
ORIENTATION ORIENTATION 

IF FIRST LAMINA FIXED 

ACTUAL 
OPTIMUM 

ORIENTATIONS 

Figure 7-52 Equal Biaxial Loading 

For the equal-biaxial-loading example, two coarse reorientations 
suffice to extend the search field from ± 45° to 0° and go0

• However, 
more complicated loadings than equal biaxial loading must be provided 
for. If, for example, instead of biaxial loading for which Nx = Ny, the 
loading were of the proportion Nx = 1.1 Ny, then the 15° adjustments of 
coarse reorientation would obviously not suffice to calculate a laminate 
optimum to 5° laminae orientations. That is, coarse reorientation is not 
sensitive enough to enable optimization under general loading. Thus, 
some form of fine lamina reorientation is essential. 

In the laminate selection process, the number of calculations is 
quite large. For only one layer, no reorientation is needed. We just have 
those 36 choices, so 36 total laminate strength calculations are made. 
For a two-layered laminate, two coarse reorientations of the laminae 
must be performed as well as two fine reorientations. Thus, 100 calcu
lations are added to the 36 for originally orienting that second layer 
added to the 36 already done for the first lamina, so the total number of 
calculations for a two-layered laminate is 172 as in Table 7-5. By the 
time we get to four layers, more than 3000 calculations have been per
formed, but they are very simple calculations. Those 3244 calculations 
take about a minute on an IBM 360/65 computer, a very out-of-date 
mainframe computer. This laminate strength analys~he kind of cal
culation that can easily be done now on a personal computer. For n 
layers, 5n calculations are necessary. That number is big, so a 10-lay
ered lamin.ate requires a huge number of calculations. But, again, the 
calculations are trivial, so we do not actually need to calculate for a long 
time, even on a personal computer. 

\ 
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Table 7-5 Number of Calculations in RC7 

NUMBER NUMBER TOTAL CUMULATIVE 
OF OF NUMBER OF NUMBER OF 

LAYERS REORIENTATIONS CALCULATIONS CALCULATIONS 

1 0 36 36 

2 25 X 2 X 2 136 172 

3 125 X 2 X 2 536 708 

4 625x2x2 2536 3244 . . . . . . . . . . . . 
N 5N X 2 X 2 BIG BIGGER 

One procedure that could be used to speed up the optimization 
process is to restrict attention to symmetric laminates. Symmetric lami
nates are often required in order to eliminate warping upon release from 
a mold after curing. And laminate symmetry is also often required to 
eliminate bending-extension coupling under mechanical loading (the 
curing-related coupling involves thermal loading). To retain laminate 
symmetry, nothing need be done, obviously, for a single layer. Moreover, 
two-layered laminates must have the same angle in both layers (effec
tively a single-layered laminate). Only for three-layered laminates do we 
begin to consider more usual laminates. For three layers, the two outer 
layers must have the same angle whereas the inner layer can be at any 
angle (unless shear-extension coupling and/or bend-twist coupling must 
be avoided). Note that the one-, two-, and three-layered laminates can 
have shear-extension coupling. For four layers, the two outer layers 
must have the same angle 0, and the two inner layers must have the 
same angle ~ to achieve symmetry (effectively a three-layered laminate 
with unequal-thickness layers). Moreover, 0 must equal -~ to avoid 
shear-extension coupling. Perhaps we might be more interested in 
achieving laminate symmetry than in eliminating shear-extension coupl
ing. 

The next program to consider is OPLAM [7-15], which is for the 
optimization of a laminate. The program was developed by Hadcock et 
al. for the very special laminate configuration mentioned earlier with only 
0°, ± 45°, and go0 laminae, i.e., [oi'._!goM I± 45;:.i). However, different 
proportions of those laminae would exist than would be necessary to 
have a quasi-isotropic laminate. The design question is: what are L, M, 
and N, i.e., the number of 0°, ± 45°, and go0 laminae, respectively? The 
± 45° laminae must occur in pairs to avoid shear-extension coupling. 
No stiffeners or honeycomb core are addressed in this program. The 
laminate strength is evaluated with the Tsai-Hill failure criterion under 
conditions of only in-plane loads, so the analysis is for strictly a mem
brane stress state. Neither buckling loads nor vibration frequencies are 
calculated. The point in describing this program is that a simplified de
sign space is addressed by not worrying about at what angle each lamina 
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might be placed, but just how many of these specified-angle laminae are 
necessary to provide the required load-carrying capability. 

Knowledge of fatigue behavior is usually required for any laminate 
expected to be used in a structure. If the optimum laminate for a struc
ture is quite different from any laminate for which fatigue information is 
available, then we must perform new fatigue tests. However, if the opti
mum laminate is a member of a family for which we have at least some 
scattered fatigue information, then we might not be required to obtain 
fatigue results for a new laminate being considered. For example, sup
pose we have fatigue information on some of the [Oi'./90M I± 45N] family 
where L = 7 and L = 11 with M and N the same as our optimum laminate. 
Moreover, suppose that the behavior of the L = 7 laminate is quite similar 
to that of the L = 11 laminate. Then, if our optimium laminate turns out 
to be L = 9, we might not expect to be required to run anything but 
nominal fatigue tests, if any at all. That is, we might be able to interpolate 
the already available information. However, if the behavior of the L = 7 
laminate were quite different from that of the L = 11 laminate and one 
of the two laminates were not acceptable, then fatigue data are needed 
for the optimum laminate with L = 9. The same conclusion follows for L 
values quite different from L values for available fatigue data. 

7.7.3 Invariant Laminate Stiffness Concepts 

Invariant stiffness concepts as developed by Tsai and Pagano 
[7-16 and 7-17] can be used as an aid to understanding the stiffnesses 
of laminates of arbitrary orientation and how those stiffnesses can be 
varied. The concepts and their use are discussed in Sections 7.7.3.1 
through 7.7.3.3. 

7.7.3.1 Invariant Laminate Stiffnesses 

The topic of invariant transformed reduced stiffnesses of orthotropic 
and anisotropic laminae was introduced in Section 2.7. There, the rear
rangement of stiffness transformation equations by Tsai and Pagano 
[7-16 and 7-17] was shown to be quite advantageous. In particular, 
certain invariant components of the lamina stiffnesses become apparent 
and are helpful in determining how the lamina stiffnesses change with 
transformation to non-principal material directions that are essential for 
a laminate. 

The invariant stiffness concepts for a lamina will now be extended 
to a laminate. All results in this and succeeding subsections on invariant 
laminate stiffnesses were obtained by Tsai and Pagano [7-16 and 7-17]. 
The laminate is composed of orthotropic laminae with arbitrary orien
tations and thicknesses. The stiffnesses of the laminate in the x-y plane 
can be written in the usual manner as 

I- 2 '--..__I 
(Aij• Bij• D1i) = 0 11(1, z, z )dz (7.27) 

where the Oii are constant in each layer, but vary from layer to layer. 
The values of the 0 11 are given in Table 2-2 when U6 and U7 are zero. 
For example, 

\ 
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(7.28) 

When all orthotropic laminae are of the same material, the constants 
U1, U2, and U3 can be brought outside the integrals: 

(A11, B11, D11) = u1[t, 0, ~: ] + u2J cos 20 (1, Z, z2) dz 
(7.29) 

+ u 3J cos 40 (1, z, z2) dz 

The final result is given in Table 7-6 along with the values for all the 
stiffnesses. There, the V1(A, 8 , D) are 

VO(A, B, D) = [t, 0, ~: ] 

V1(A,B,o)= J cos20(1,z,z2)dz 

V2(A, 8 , D) = J sin 20 (1, z, z2) dz 

V3cA. 8 , D) = J cos 40 (1, z, z2) dz 

V 4(A, e. D) = J sin 40 (1, z, z2) dz 

(7.30) 

Because each layer is macroscopically homogeneous in its own region 
of space, the integrals in Equation (7.30) further simplify to summations: 

N 

viA= Iwk(2k+1-zk) 
k=1 

N 
1 ~ 2 2 

Vie= 2 "'-' Wk(zk + 1 - zk) 
k=1 

N 
1 ~ 3 3 

ViD = 3 "'-' Wk(zk + 1 - zk) 
k=1 

(7.31) 

Table 7-6 Laminate Stiffnesses as a Function of Lamina Properties 
(After Tsai and Pagano [7-17]) 

Stiffnesses Vo(A. 8, D) V1(A,8,D) V2(A,8,D) Va(A. 8,D) V4(A.8, D) 

(A,,.011 ,o,1) u, U2 0 U3 0 
(~.822, D22) u, -U2 0 U3 0 
(A12,B12, D,2) U4 0 0 -U3 0 
(~.Bee, Dee) Us 0 0 -Ua 0 
2(A16,B,6, D16) 0 0 -U2 0 -2U3 
2(~8.B2e, D2e) 0 0 -U2 0 2U3 
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in which the zi are defined in Figure 4-8, N is the number of layers, and 

W = sin 20k, ! = 2 

[

cos 20k, i = 1 ] 

k COS 40k, I = 3 
sin 40k, i=4 

(7.32) 

wherein 0k is the orientation of the 1-direction in the kth lamina from the 
laminate x-axis. The stiffnesses in Table 7-6 are for a laminate with N 
layers of a single orthotropic material with various laminae principal ma
terial property orientations relative to the laminate axes. 

The stiffnesses in Table 7-6 are not transformed stiffnesses in 
analogy to Table 2-2. That is, the x-axis of the laminate is fixed relative 
to the 0k of each lamina. However, the transformed stiffnesses can be 
obtained by rotating the entire laminate through angle q,, that is, by sub
stituting (0 - q,) for 0 in Equation (7.29). For example, 

A11 =U1t+u2J cos2(0-1>)dz+u3J cos4(0-q,)dz (7.33) 

Then, by use of the trigonometric identity for subtraction of two angles, 

cos(a.- ~)=cos a. cos ~+sin a. sin ~ (7.34) 

and the fact that q,, and hence its trigonometric functions, are independ
ent of z, we see that 

A11 = U1t+ U2V1A cos 2q, + U2V2A sin 2q,+ U3V3A cos 4++ U3V4A sin 4+ 

(7.35) 

where V1A a~ defined in Equation (7.31). The transformed extensional 
stiffnesses, A11 , are given in T~ble 7-7. The transformed bending
extensio!l_ coupling stiffnesses, Bii• and the transformed bending stiff
nesses, Du,. have the same form as in Table 7-7 except the V1A are re
placed by v18 and V10, respectively. The form of the transformation re
lations for the A.ii, B11 , and Oil in Table 7-7 is identical to that for the 
anisotropic Qii in Taole 2-2. Exercises in which additional points are 
made about tlie invariants are given at the end of the subsection. 

Table 7-7 Transformation Equations for Aii (After Tsai and Pagano [7-17]) 

Transformed 
Extensional Constant cos29 sin29 cos49 sin49 

Stiffness 

A11 u,voA U2V1A U2V2A ~v3A U3V4A 
~ u,voA -U2V1A -U2V2A aV3A U3V4A 
A,2 U4VoA 0 0 - U3V3A -U3V4A 
~ Us VOA 0 0 - U3V3A -U3V4A 

2A15 0 U2V2A -U2V1A 2U3V4A -2U3V3A 
2"26 0 U2V2A -U2V1A -2U3V4A 2U3V3A 
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7.7.3.2 Special Results for Invariant Laminate Stiffnesses 

Several_§pecial laminates will be examined t? help understand t_he 
summations Vi(A,B,D) in Equation (7.31). Recall first from mathematics 
that 

+z J (odd function) dz= 0 
-z 

+z f (even function) dz= finite 
-z 

(7.36) 

where z is the coordinate perpendicular to the plane of the laminate (in 
the thickness direction). We will consider laminates with laminae orien
tations that are (1) odd functions of z, (2) even function~ of z, (3) random 
functions of z, and (4) increments of 1t/N, wh~re N 1s the num~er _of 
equal-thickness layers. Examples of these laminates are shown m Fig-
ure 7-53. . f 

First for laminae orientations with 0k that are an odd function o z, 
as illustrated with the 2-layer angle-ply laminate with ± ~ orientation in 
Figure 7-53a, the following integrands in Vl(A, 8 , D)• Equation (7.30), are 
odd: 

cos p0 (z) sin p0 (1, z2) 
and the following integrands are even: 

cos p0 (1, z2) sin p0 (z) 

where p is 2 or 4. Thus, the following summations vanish: 

V 2A = V 4A = V 1B = V 3B = V 2D = V 4D = 0 (7.37) 

z z 

t f 
Z=+ t/2-~---

~ -8 
z=- t/2--a +a 

-8 

-a +a 

a ANTISYMMETRIC b SYMMETRIC 

z z z 

t t f -----

~-9 ~~~~9 
-11'/3 ·+-TT/3 -11'/4 +11'/2 

c RANDOM d I::,. 8 = 11/3 • 1::,.8: 11'/4 

Figure 7-53 Laminate Examples (After Tsai and Pagano [7-17)) 
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Accordingly, the following stiffnesses in Table 7-6 are zero: 

A15 =A2s= B11 = 822= 812 = 855 = D15= D25 = 0 (7.38) 

Th~ extensional and bending stiffnesses are those of an orthotropic ma
terial, but the bending-extension coupling stiffnesses are not all zero 
(816 and 826 remain). 

Next, for laminae orientations with ek that are an even function of 
z (symmetric), ~s i!lustrated ~y the three-layered laminate in Figure 
7-53b, the following integrands m Vl(A,B,D)• Equation (7.30), are odd: 

cos p0 (z) sin pe (z) 

and the following integrands are even 

cos p0 (1, z2) sin p0 (1, z2) 

Thus, the following summations vanish: 

V1s =V2s = V3s = V4s = O (7.39) 

Accordi~gly, all the bending-extension coupling stiffnesses, 8n, in Table 
7-6 vanish. Th_e ~J a~d D11 ~re ~hose of an anisotropic matenal. 

If th~ larrunae onenta~1on 1s a random function of z as in Figure 
7-53c, define V1 as the spatial average of the individual V.(A 8 D) (they all 
will be treated alike): 

1 
• • 

v, = 1t v, d0 = 7f I -f . (1, Z, z ) dz d0 
_ 1 J1r12 1 w2 v2 [cos p0] 2 

-'/t/2 -'ltl~-V2 Sin p0 
(7.40) 

where p is even. Interchange the order of integration to get 

1 v2 w2 [cos p0] v,=x J J . d0(1.z.z2)dz 
- V -'lt/2 Sin p0 

(7.41) 

whic~ is. zero. ~hen all the V1(A,B,D) are zero, only the constant terms 
remain m the stiffnesses. Moreover, the laminate is macroscopically 
isotropic because now 

(7.42) 

and A11 -A12 = 2Aaa, Although the laminate is ~scopically isotropic 
it. is stil! inhomogen~ous from layer to layer, so the stress distribution i~ 
discontinuous a_nd different from th.at of a material that is isotropic. 

Fo~ a l~mmate of N _equ_al-thickness layers (N > 2) with orientation 
angles differing by 1t/N as m Figures 7-53d and 7-53e the summation for 
V1Ais ' 

\ 
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V [ 
27t 41t ] t 

1A= cos-+cos-+ .. ·+cos21t -
N N N 

but 

sin[ n +j_} 
cos x + cos 2x + .. · + cos nx = 

2 

2sin ~ 
1 
2 

which for x = 27t/N is zero. Also 

V [ 
. 21t . 47t . ] t 

3A= sm-+sm-+ .. ·+sm21t -
N N N 

and 

sin x + sin 2x + .. · + sin nx 
sin 1 + n x sin Jl. x 

2 2 
sin~ 

2 

(7.43) 

(7.44) 

(7.45) 

(7.46) 

which for x = 21t/N is zero. Similarly, V 2A = 0 because the expression in 
Equation (7.44) vanishes for x = 47t/N and, as well, V 4A = 0. Thus, be
cause the variable terms are zero, the ~- are isotropic and are given in 
Equation (7.42). However, the 8 11 are no\ zero, so the laminates in this 
class are not isotropic, but are called quasi-isotropic (see Section 4.3). 
This class of laminates occurs for laminate stacking sequences of 
[0/ ± 7t/3], [rt/2ht/4/0/ -1t/4], etc. Other more complicated lamination se
quences have isotropic 8 11 or isotropic D11• 

A final result of interest is the integral of the area under the trans
formed stiffness versus angle of rotation curve from qi = o to qi = 21t, that 
is, one complete revolution of the laminate: 

(7.47) 

The integral 

1x [cos p(j>] 
o sin pqi dqi 

(7.48) 

is zero when p is an integer, so only the constant terms contribute to 
Equation (7.33) which is then independent of qi. The average values of 
the integral are the isotropic ~l in Equation (7.42) obtained for randomly 
oriented laminates and extensionally quasi-isotropic laminates. Those 
A11 contain U1, U4, and U5, but we showed in Problem 2.7.3 that u4 is 
dependent on U1 and U5. Thus, U1 and U5 appear to be a measure of 
orthotropic laminates ~ well as of orthotropic materials. That is, be
cause the integral of A11 is constant irrespective of the lamination se
quence of laminae orientations, there are constant measures of the 
laminate, namely U1 and UQ, which are related.Jo the area under the A11 
versus qi curve. Similarly, the area und~ the 8 11 versus qi curve can be 
shown to be zero and that under the D11 versus qi curve is constant. 
These results will be put to use in the next subsubsection. 
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7.7.3.3 Use of Invariant Laminate Stiffnesses in Design 

Two simple invariants, U1 and U5, were shown in the previous 
subsubsection to be the basic indicators of average laminate stiffnesses. 
For isotropic materials, these invariants reduce to U1 = 0 11 and 
U5 = 0 66, the extensional stiffness and shear stiffness. Accordingly, Tsai 
and Pagano suggested the orthotopic invariants U1 and U5 be called the 
isotropic stiffness and isotropic shear rigidity, respectively [7-16 and 
7-17]. They observed that these 'isotropic properties' are a realistic 
measure of the minimum stiffness capability of composite laminates. 
These isotropic properties can be compared directly to properties of 
isotropic materials as well as to properties of other orthotropic laminates. 
Obviously, the comparison criterion is more complex than for isotropic 
materials because now we have two measures, U1 and U5, instead of the 
usual isotropic stiffness U1 or E. Comparison of values of U1 alone is 
not fair because of the degrading influence of the usually low values of 
U5 for composite materials. 

The optimization or design of a laminate can be performed with the 
aid of the isotropic stiffnesses. Start with a laminate of unidirectional 
layers for which ~i = Oiit. If some of the laminae orientations are 
changed from 0°, then the _Dew values of Aii will be given by the relations 
of Table 7-6. The actual A11 will vary with rotation cj> in accordance with 
Table 7-7. However, that variation is always about the isotropic values. 
For example, variation of A11 and A66 with cp for boron-epoxy (properties 
are given in Table 2-3) is shown in Figure 7-54. The unidirectional and 
isotropic laminate values are both shown in addition to results for two 
cross-ply and two angle-ply laminates. The areas under all curves in 
Figure 7-54 are obviously all the same. Thus, if the cross-ply laminate 
with M = 1 and the angle-ply laminate of the same thickness with 
ex= 45° are combined, the resulting laminate is extensionally isotropic 
(this is the case of the four-layered quasi-isotropic laminate with differ
ence in orientation of 45°). Note, however, even though A11 and A66 are 
constant irrespective of rotation, they are not related in the same manner 
as true isotropic material properties E and G. 

An 106 . -t-' psi 

30 60 90 0 30 60 30 

TRANSFORMATION ANGLE, 'P, DEGREES 

60 90 

Figure 7-54 Transformed Laminate Stiffnesses (After Tsai and Pagano {7-17]) 
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Tsai and Pagano further defined the isotropic stiffness and shear 
rigidity [7-16] to be 

(7.49) 

and show for highly orthotropic composite materials such as boron-epoxy 
and graphite-epoxy that 

- 3 5 
E::aE1+aE2 
- 1 1 
G::aE1+4E2 

(7.50} 

Thus, the usual emphasis on the value of E1 is badly misplaced. Obvi
ously, the value of E2 enters the representative average· properties quite 
strongly. These approximations are quite accurate as can be verified by 
simple calculations. 

Problem Set 7.7.3 

7.7.3.1 Show that A11 + "22 + A12 is invariant under rotation about the z-axis, that is, that 

A,, +~+2A,2=A,, +~+2A,2 

irrespective of angle of rotation, cp. Also, relate this invariant to the reduced 
stiffness invariant 0 11 + 0 22 + 2012. 

7. 7 .3.2 Show that Aas - A12 is invariant under rotation about the z-axis, that is, that 

As6 -A,2 = Aas- A12 

Also, relate this invariant to the reduced stiffness invariant 0 66 - 0 12. 

7.7.3.3 What_js th~ value _of tl]_e bending-extension coupling stiffness invariants 
B11 + B22 +2B12 and B66-B12? 

7.7.3.4 Relate the bending stiffness invariants 0 11 + 0 22 + 2012 and 0 66 - 0 12 to the re
duced stiffness invariants and the extensional stiffness invariants. 

7.7.4 Design of Laminates 

The analytical tools to accomplish laminate design are at least 
twofold. First, the invariant laminate stiffness concepts developed by 
Tsai and Pagano [7-16 and 7-17] used to vary laminate stiffnesses. 
Second, structural optimization techniques as described by Schmit [7-12] 
can be used to provide a decision-making process for variation of lami
nate design parameters. This duo of techniques is particularly well suited 
to composite structures design because the simultaneous possibility and 
necessity to tailor the material to meet structural requirements exists to 
a degree not seen in isotropic materials. 

The key to the design of efficient laminates is to resist both the 
magnitude and the directional nature of the loads without overdesign in 
either respect. That is, the laminate is tailored to just meet specific re
quirements. Structures made of isotropic materials are usually inefficient, 
i.e., overdesigned because excess strength and stiffness are inevitably 
available in some direction. By appropriate consideration of the loads 
and their directions, a laminate can be constructed of individual laminae 
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in such a manner as to just resist those loads and no more (with, of 
course, an appropriate factor of safety). For example, a cross-ply lami
nate can be used to resist loads in the principal directions 1 and 2 where 
N1 and M1 are resisted by A11 , A12, D11 , and D12 and N2 and M2 are 
resisted by A12, A22, D12, and D22 if the laminate is symmetric. In more 
complex situations where shearing forces and twisting moments are ap
plied, angle-ply laminates might be required in order to obtain the nec
essary shearing and twisting stiffnesses. Other design factors become 
evident when the strength characteristics of laminates are considered. 

Laminate design is a much more complex process than metal plate 
design. Under a specified loading for a metal plate, the only design 
variable is the thickness of the plate (unless the plate material is not 
specified). Even for a simple loading, laminate design involves finding 
the number of laminae and the orientations of each lamina (even if the 
material is specified). Thus, many more design variables must be de
termined for a laminate that for a plate. Moreover, laminate design in
volves issues of stiffness, strength, and energy absorption (the area 
under the load-deformation curve) as depicted implicitly in Figure 7-55 
along with fatigue life that cannot be depicted. Also depicted is the po
tentially large number of failure events that occur during laminate loading 
and influence the suitability of a particular laminate for a specific set of 
design requirements. 

In this section, a generic concept for laminate design will be out
lined. That is, the general nature of laminate design and how to alter a 
laminate to better achieve the design objectives expressed in terms of 
stiffness, strength, energy absorption, and fatigue life will be addressed. 
The generic approach is based on obtaining a laminate with a load
deformation curve (or curves) to failure that satisfies the fundamental 
laminate design requirements expressed in terms of stiffness, strength, 
energy absorption, and fatigue life. This fourfold requirement is naturally 
far more complex than the situation for many laminates with simple de
sign requirements. However, we will address this general case to 
achieve a completeness of overview of the laminate design process. 

LAMINATE 
LOAD FIBERS FAIL IN 

ONE LAMINA 

CRACKING 

LAMINATE DEFORMATION 

Figure 7-55 Events during Laminate Loading 

\ 
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The nature of laminate behavior can range from very brittle to very 
ductile. A typical brittle behavior to a particular uniaxial failure load is 
shown as curve A (laminate A) in Figure 7-56. More ductile behaviors 
in the sense of larger deformations (and strains) to failure are shown as 
laminates B, C, and D in Figure 7-56. There, the principal difference 
between the four behaviors to the same failure load is the amount of 
energy absorbed. In addition, the initial slope of each load-deflection 
curve varies. The combination of the highest initial slope and highest 
energy absorption is laminate B. Laminate C has a significant energy 
absorption but also a very low first-ply failure load. Thus, under fatigue 
loading, laminate C would not be a good choice because the operating 
load must likely be less than the relatively low first-ply failure load. The 
presence of these different laminate behaviors is an additional compli
cation in design over and above the nature of metal structures. However, 
the different behaviors also present additional opportunity for latitude in 
design. 

N"uLT 
A B C D 

.¥ 
e LAMINA FAILURE EVENT 

X LAMINATE FAILURE 

Figure 7-56 Possible Laminate Behaviors 

The different laminate behaviors can be changed by changing the 
laminate stacking sequence. The aspects of behavior that are affected 
include stiffness, strength, energy absorption, and fatigue life. Discus
sion of these behavioral aspects is simplified by considering only a sim
ple uniaxial loading Nx as in Figure 7-57 as opposed to a more general 

e LAMINA FAILURE EVENT 

X LAMINATE FAILURE 

Figure 7-57 Effect of Changing Laminate Stacking Sequence 
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loading that includes all forces and moments. The stiffness is principally 
dependent on the stacking sequence, i.e., the individual laminae orien
tations, with some dependence on the number of layers. The strength 
is principally dependent on the number of layers, although the stacking 
sequence is also important. The energy absorption and fatigue life are 
dependent on both the stacking sequence and the number of laminae. 
Along with changing those variables, we can change the first-ply failure 
load. 

The laminate design problem is to find a laminate that will meet the 
design performance goals expressed in terms of strength, stiffness, en
ergy absorption, fatigue life, plus other structural response measures as 
in Figure 7-58. Those goals are attained by changing the stacking se
quence and/or the number of layers to change the laminate behavior until 
the desired structural response is obtained. 

OBJECTIVE: FIND A LAMINATE THAT WILL MEET 
THE DESIGN PERFORMANCE GOALS 
EXPRESSED IN TERMS OF, E.G., 

• STRENGTH • ENERGY ABSORPTION 
• STIFFNESS • FATIGUE LIFE 

APPROACH: CHANGE THE STACKING SEQUENCE AND/OR 
THE THICKNESS TO CHANGE THE BEHAVIOR 
UNTIL THE DESIRED RESPONSE IS OBTAINED 

Figure 7-58 The Laminate Design Problem 

That is, the fundamental laminate design problem can be ex
pressed as: given the loading Nx, Ny, and Nxy, find the laminate stacking 
sequence in Figure 7-51. That is, what are the laminae orientations 
01, 02, 03, ... , and how many of each orientation are needed, i.e., what 
are n1, n2, n3, ... ? 

From a practical standpoint, the layers that are added in the proc
ess of designing a laminate cannot have purely arbitrary fiber orientation. 
If the fiber orientations were unlimited, then the design process would 
sometimes lead to laminates quite unlike any previously built. Thus, the 
strength, and especially the fatigue life, would not be predictable or 
known with the necessary confidence. That is, considerable risk is in
volved in proposing a totally new laminate. Moreover, the cost of evalu
ating the strength and fatigue life for a new laminate is certainly not trivial. 
Thus, the addition of layers with often-used fiber orientations keeps de
sign practice in the familiar territory of families of often-used laminates 
whose characteristics are relatively well-known so we can design with 
confidence and low cost in money and time. 

The manner in which the laminate design is approached can be 
expressed in flow-chart form as in Figure 7-59. There, some initial lam
inate is arbitrarily selected to start the procedure. Then, the laminate 
load-deflection behavior is evaluated by use of the laminate strength 
analysis procedure described in Section 4.5. That evaluation is theore
tical in nature. The next step is to evaluate the laminate fatigue life, and 
that evaluation can only be done experimentally, although progress is 
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being made with laminate life-prediction techniques. At this stage, we 
examine the strength, stiffness, fatigue life, and energy absorption of the 
candidate laminate. If they are either too high or too low, then we must 
change the stacking sequence and/or the number of layers until the re
sponse meets the required goals. 

SELECT INITIAL LAMINATE 
FOR LOAD REQUIREMENTS 

~----.-J LAMINATE STRENGTH 
ANALYSIS PROCEDURE 

DETERMINE FATIGUE LIFE 

IF 
• STRENGTH 
• STIFFNESS 
• FATIGUE LIFE 
• ENERGY ABSORPTION 

TOO LOW OR TOO HIGH, 
CHANGE STACKING SEQUENCE 
ANO/OR NUMBER OF LAMINAE 

ACCEPTABLE, 
FIX DESIGN 

Figure 7-59 Laminate Design Procedure 

Under the best of circumstances, the laminate at this iteration of the 
design process has known fatigue behavior. Under slightly less desirable 
circumstances, the laminate is close in stacking sequence to laminates 
with known fatigue behavior. Finally, under awkward, at best, circum
stances, the laminate's fatigue behavior is totally unknown. In such a 
case, that laminate must either (1) be rejected from the design process 
as being an unknown entity or (2) have its fatigue behavior assessed. 
Obviously, the first choice is disappointing and the second choice is ex
pensive and time-consuming, unlike the situation for the design of metal 
structures. The only helpful aspect is the fact that composite structures 
typically have longer fatigue lives than metal structures. 

Let's consider an example to illustrate the foregoing concepts. 
Suppose the initial laminate choice is [0°/90°5]s with the load-deflection 
behavior as in Figure 7-60. This laminate would appear to be obviously 
unsuited to the loading because most of the laminae have fibers in the 
wrong direction. However, we treat this example as being representative 
of the usual design circumstance in which each structural element is 
subjected to many different loadings. Some of those loadings are not 
critical or design-limiting for each structural element. That is, some 
loadings are easily accepted by the structural element. This laminate 
would obviously accept more load in the y-direction, but we investigate 
its capability in the x-direction. The 90° layers fail by cracking parallel to 
the fibers (perpendicular to the predominant loading). Simultaneously 
with, or immediately after, matrix cracking in the 90° layers, the 0° layers 
also fail by cracking parallel to the fibers, as shown by Tsai [7-18] and 
as summarized in Section 4.5. However, the 0° layers are still capable 
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of carrying significant load in the x-direction. In fact, the ultimate load is 
several times the first-ply failure load. Note that this laminate also is 
capable of carrying significant load in the y-direction, but that issue is not 
addressed. 

START WITH [01902]5 

Figure 7-60 Initial Laminate Choice 

Suppose we replace the go0 layers with ±a: laminae in an attempt 
to increase the axial stiffness and to increase the first-ply failure load as 
in Figure 7-61. The load-deflection cuive slope after first-ply failure also 
increases when ±a: laminae replace the go0 layers. However, the energy 
absorption decreases with such a stacking sequence change. The as
sociated fatigue lives are not known unless both laminates are made and 
subjected to fatigue loading. 

REPLACE 90° LAMINAE WITH 
± a LAMINAE TO INCREASE 

• AXIAL STIFFNESS 
• FIRST-PLY FAILURE LOAD 
• FATIGUE LIFE (PERHAPS) 

I 
I 

...... ... ... ... 

... ... 
... ... * ... 

•",.,. \_ [0/90,.IOJs 
I 

I 

Figure 7-61 Second Laminate Choice 

_The general laminate design procedure is to continue to change the 
stacking sequence and/or the number of laminae to obtain required lev
els of strength, stiffness, fatigue life, and energy absorption. However, 
we must recognize that the design procedure has a very important 
limitation-the fatigue life can be determined only by measurement, not 
by prediction. 
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A possible adjunct to the laminate design procedure is a specific 
laminate failure criterion that is based on the maximum strain criterion. 
In such a criterion, all lamina failure modes are ignored except for fiber 
failure. That is, matrix cracking is regarded as unimportant. The criterion 
is exercised by ~inding the strains in the fiber directions of each layer. 
When these strains exceed the fiber failure strain in a particular type of 
layer, then that layer is deemed to have failed. Obviously, more laminae 
of that fiber orientation are needed to successfully resist the applied load. 
That is, this criterion allows us to preseive the identity of the failing 
lamina or laminae so that more laminae of that type (fiber orientation) can 
be added to the laminate to achieve a positive margin of safety. 

The allowable stresses and/or strains in the design process are 
affected by many factors: 

• stress concentrations due to holes 
• hot, wet conditions 
• notches 
• free edges 
• required factor of safety 

That is, prudent structural design must address the 'what ifs'. 

7.7.5 Summary 

Some of the essential attributes of the laminate design process with 
optimization concepts were described in general terms. The process is 
indeterminate, unlike that for a metal plate. An iterative procedure must 
be used to guide a design toward satisfaction of the design requirements. 

7.8 DESIGN-ANALYSIS PHILOSOPHY 
FOR COMPOSITE STRUCTURES 

7 .8.1 Introduction 

We have seen in this and other books many complicated analysis 
methods as well as some involved design methods for composite struc
tures. An immediate reaction might be that those analysis and design 
methods are overly involved and indeed intimidating. Some of the 
methods are so complicated, and there are so many behavioral aspects 
to take into consideration, that we have a difficult time trying to take ac
count of all pertinent factors. We have, though, some very fundamental 
objectives in structural design. We know that we have some very at
tractive properties to deal with when we intend to use or consider com
posite materials for structural applications. We know that if we use those 
properties correctly, we can build structures which, with composite ma
terials, have lower weight, or higher strength and stiffness, and generally 
higher performance indexes than with metals. We want to achieve those 
objectives, yet some significant problem areas or concerns exist. We 
will address those problem areas one-by-one and offer some recomm
endations for effective composite structures design. Much of the dis
cussion in this section is patterned after the theme of a very insightful 



454 Mechanics of Composite Materials 

and inspiring Structures Design Lecture by James E. Ashton at the 1975 
AIANASME/SAE Structures, Structural Dynamics, and Materials Con
ference (7-19]. 

7.8.2 Problem Areas 

The problem areas in composite structures design are related to 
some of the following observations. One, the behavioral characteristics 
of composite materials are much more complicated than those of metals. 
Bending-extension coupling, shear-extension coupling, and bend-twist 
coupling are all responses that are typically not encountered in a metal 
structure but are in a composite structure, so you must know how to deal 
with them. However, that circumstance is a somewhat intimidating situ
ation. 

Some of the problem areas mentioned are sometimes overblown 
by many analysts. That is, they sometimes overemphasize the impor
tance of a particular behavioral characteristic. That characteristic might 
be important only in one small regime of structural response, and you 
must know that limitation on the validity of the characteristic. The de
signer's job, on the other hand, is to either avoid all those problem areas 
or to in some way overcome them. The situation is somewhat like having 
a mountain in front of you, and you must get to the other side. You either 
climb over that mountain, in which case you definitely recognize that it is 
there and solve the problem, or go around it, in which case you have 
simply avoided the mountain. In both cases, you must recognize that the 
mountain exists in order to properly deal with it. 

Given that we face some problem areas in the analysis and design 
of composite structures, we must either avoid them or deal with them 
directly. Otherwise, the structure is not going to do what we expect. If 
we do not recognize that bending-extension coupling is a possibility and 
we do not make certain we avoid it, then we could get a structure with 
significant bending-extension coupling response and have a wing that 
behaves entirely wrong for the proposed application. 

A general observation about all the various problem areas we could 
think of is that they do not generally occur or govern all at the same time. 
In accordance with Murphy's law, if all factors would govern simultane
ously, then we would be in bad shape. But they do not. 

Let's consider a list of the specific problem areas. Bending
extension coupling was already mentioned. Also, anisotropy is a concern 
for a laminate, namely shear-extension coupling, and there is also 
bend-twist coupling. However, I would rather not call those laminate 
characteristics anisotropy because that word should be reserved for 
material behavior. Micromechanics can be used to predict the combined 
performance of the matrix and the fibers. The stress-strain behavior and 
even the structural behavior could in fact be nonlinear, in which case we 
must have some form of nonlinear analysis. Various optimization 
schemes exist as we just discussed in the preceding section. The lami
nate free-edge effect must be controlled in some laminates. Moreover, 
the importance of transverse shearing stresses in composite laminates 
arises at a much higher span-to-thickness ratio than for isotropic plates. 
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All these problem areas listed in Figure 7-62 are rather perplexing, and 
we must deal with them. 

• SHEAR-EXTENSION COUPLING AND BEND-TWIST COUPLING 
• BENDING-EXTENSION COUPLING 
• MICROMECHANICS 
• NONLINEAR MATERIAL BEHAVIOR 
• INTERLAMINAR STRESSES 
• TRANSVERSE SHEAR STRESSES 
• LAMINATE OPTIMIZATION 

Figure 7-62 Problem Areas in Analysis and Design 

7 .8.3 Design Philosophy 

One way of perhaps beginning to cope with all those problems is 
to exercise a rather restrictive design philosophy in which only certain 
classes of laminates are allowed in design. That is, suppose we restrict 
the laminate stacking sequences to one of three different categories: 
[±8]8 , [ ± 8/0°)8 , and [±8/0°/90°]5. In all three cases, the value of 8 
ranges between 30° and 60°. What behavioral characteristics do those 
laminates exhibit? First, they are all symmetric, so we have immediately 
eliminated bending-extension coupling response. That response does 
not exist because we have 'designed it away'. Also, by virtue of the fact 
that we have the same number of + e as - e layers, no shear-extension 
coupling exists. That type of laminate we would characterize then as 
having extensional stiffnesses that are so-called orthotropic. I prefer to 
simply say that the A16 and A26 extensional stiffnesses are zero. How
ever, that laminate specification does not mean that bend-twist coupling 
does not occur. In fact, bend-twist coupling does exist with the only 
question being the degree or strength of that coupling. That set of lam
inate specifications is one possible design philosophy. Let's examine the 
problem areas in composite structures in relationship to that proposed 
design philosophy. 

7.8.4 'Anisotropic' Analysis 

The first problem area of the so-called anisotropic analysis will be 
broken down into two subareas: shear-extension coupling and bend-twist 
coupling. We have already observed for the most complicated laminate 
in the design philosophy proposed earlier that the A11i and A26 stiffnesses 
are both zero. There is no shear-extension coupling in the context of that 
philosophy. However, in contemporary composite structures analyses, 
it is relatively easy to include the treatment of shear-extension coupling, 
so you should not be overwhelmed by that behavioral aspect or by the 
calculation of its influence. 

Bend-twist coupling is a totally different animal. The governing 
stiffnesses, 0 16 and 0 26, simply are never zero for any laminate that is 
more complicated than a cross-ply laminate. You cannot force those 
stiffnesses to go to zero unless you do something else to the laminate. 
You can make them go to zero if you let the laminate be unsymmetric, 
but that is robbing Peter to pay Paul. In fact, it is not very difficult in most 
contemporary analyses to include the influence of those bend-twist cou-
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piing stiffnesses, so I urge you not to be afraid of them. Another obser
vation is that if some ±8 layers exist in a laminate and if the number of 
pairs of ±8 layers is increased, then the bend-twist coupling stiffnesses 
will tend toward zero as that number of pairs increases. For a more or 
less general laminate, both the shear-extension coupling phenomenon 
and the bend-twist coupling phenomenon are negligibly small if a high 
enough number of those pairs of+ 8 and - 8 layers exists in the laminate. 
That is a general observation, but you can find circumstances where that 
conclusion might not be true. 

7.8.5 Bending-Extension Coupling 

We would generally like to avoid bending-extension coupling re
sponse in most circumstances because if bending-extension coupling 
exists, then the laminate warps when it comes out of the hot press or 
autoclave or whatever curing device is being used. And that situation is 
generally not desirable. There are circumstances in which that kind of 
shape change is very desirable, but generally it is not. Grumman created 
a wing skin with curvature by using an unsymmetric laminate. The 
number of layers and their stacking sequence were carefully designed to 
obtain the correct curvature. The usual method of constructing curved 
wing panels is to drape uncured laminates that have been tape-laid on 
a flat-bed machine over curved forms for curing. 

The effect of the specific values of the Bii can be readily calculated 
for some simple laminates and can be calculated without significant dif
ficulty for many more complex laminates. The influence of bending
extension coupling can be evaluated by use of the reduced bending 
stiffness approximation suggested by Ashton [7-20]. If you examine the 
matrix manipulations for the inversion of the force-strain-curvature and 
moment-strain-curvature relations (see Section 4.4), you will find a defi
nition that relates to the reduced bending stiffness approximation. You 
will find that you could use as the bending stiffness of the entire structure, 

D=D-BA-18 (7.51) 

The significance of the expression for reduced bending stiffness is 
that whatever bending stiffness exists is effectively smaller by virtue of 
the presence of the bending-extension coupling. In Equation (7.51), if the 
bending-extension coupling is zero, then there is no reduction of the ef
fective bending stiffness. And that result can be interpreted very clearly. 
If bending-extension coupling exists, B A-1 B is always positive, and 
therefore bending stiffness is reduced, you would expect larger bending 
deflections, lower buckling loads, and lower natural frequencies (see 
Chapter 5). 

Even if you do not use the reduced bending stiffness approxi
mation, there are other ways of evaluating the influence of the bending
extension coupling. They can be, and are, incorporated in many 
computer analyses. Therefore, bending-extension coupling, if present, 
should not be a serious stumbling block in a design-analysis situation. 
However, it is not common in many design situations simply because of 
the warping that would necessarily take place for a laminate after the 
curing process. 
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_One overriding observation about bending-extension coupling is 
very important. Suppose you have a laminate that you could classify as 
a general laminate, i.e., it is not any one of the very special (and often 
impractical) laminates that you are accustomed to addressing, such as 
an antisymmetric cross-ply or an antisymmetric angle-ply laminate. If 
that laminate is asymmetric, which is implied in the word general, the 
number of layers does not matter - you can get a significant amount 
of bending-extension coupling. I am not saying you will get, but you can 
get. You simply cannot guarantee that you will have a small amount of 
bending-extension coupling simply by having a large number of layers. 
That coupling can, for any antisymmetric laminates, be shown to die out 
very rapidly. However, for more general laminates, that bending
extension coupling dies out very slowly (see [7-21] and [7-22] as well as 
Section 5.6), and therefore it is a factor to be concerned about if, in fact, 
you do have a general laminate. 

7.8.6 Micromechanics 

The next problem area of micromechanics is initially very attractive 
in some respects. We look to the fundamental definition of a composite 
material made up in this case of, say, a fiber and a matrix and attempt 
to actually design that material. Let us change the proportions of fibers 
and matrix so that we get the kind of material behavior characteristics 
we want. That objective is admirable, but achieving that objective in all 
cases is not entirely realistic. 

The rule of mixtures is a very satisfactory approach to predicting the 
stiffness behavior of the composite material in the fiber direction. How
ever, the analytical tools for prediction of the behavior transverse to the 
fiber direction simply do not work out well. The other analyses are not 
accurate enough to claim that micromechanics is a valid and effective 
design-analysis tool. Moreover, since the 1960s, we have changed from 
large-diameter, regular-array composite materials, such as boron-epoxy, 
when micromechanics was developed to small-diameter, irregular-array 
composite materials such as graphite-epoxy and Kevlar-epoxy. Thus, 
we simply cannot even begin to claim that the analyses that we formerly 
used for boron-epoxy, which were not very good then, are at all appli
cable to graphite-epoxy. 

Not only are the micromechanical analyses not appropriate or ef
fective, but, more importantly, we simply cannot afford to change the 
properties of a composite material for every structure we want to design. 
The principal reason for this statement is that we must have a funda
mental material property data base on each of those composite materials 
if we expect to design structures with them. If we change the composite 
material just a small amount, then we must go through the whole range 
of characterization tests all over again as a function of sensitivity to 
moisture, temperature, fatigue, and so on. However, we simply cannot 
afford to characterize every possible combination of fiber and matrix. 
Therefore, we must have some restricted number of composite materials 
that we can afford to characterize, and that restricted number constitutes 
a set of more or less standard composite materials. 
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The basic idea of actually designing a material with micromechan
ics is nice, but the limitations of the analysis are so severe that it simply 
is not a practical tool, and most designers are really not forced to appeal 
to micromechanics anyway. You will not likely find anyone who will use 
micromechanical analysis to predict lamina properties, then use those 
lamina properties in the design, and finally build a structure based solely 
on that sequence of events. At some time in the de~ign process, the 
predicted properties of a lamina must be compared with_ the measurt?d 
properties to verify that those properties are actually ach1e~ed. That. 1s, 
the only rational basis for design is the real or actual matenal propert,~s, 
not the predicted or imaginary properties. You cannot put enough faith 
in the micromechanics analysis to give good, dependable results. Most 
structures designers probably do not design the materials anyway. They 
will consider certain more or less standard materials, and will pick from 
among them the best combination.for th~ir particular application. Fo_r one 
application, the selected material might be graph1te-epoxx w_1th ~ 
manufacturer-specified fiber-volume fraction. For another application, 1t 
might be Kevlar-epoxy with yet another fiber-volume fraction. 

7.8.7 Nonlinear Behavior 

Let's address the issue of nonlinear material behavior, i.e., nonlin
ear stress-strain behavior. Where does this nonlinear material behavior 
come from? Generally, any of the mat~x-dominated prop~rties wil_l e~
hibit some degree of material nonlineanty_ because a matrix _material 1s 
generally a plastic material, such as a resin or ev~n a metal in. a metal
matrix composite. For example, in a b!)r~n-aluminum ~ompo~1te mate
rial, recognize that the aluminum matnx 1s !3- met~I with an inh~rently 
nonlinear stress-strain curve. Thus, the matrix-dominated properties, E2 
and GJ2, generally have some level of nonlinear stress-strain curve. . 

on the other hand, for aircraft and spacecraft structures, real lami
nate behavior is pretty typically linear. Laminate behavior is reaso~ably 
linear even with some ±45° layers which you would expect to cont~bute 
their nonlinear shear deformation characteristic to the overall laminate 
and degrade its relative performance. If you go beyond the behavior of 
a laminate and look at a large structure, typically the load-response 
characteristics are linear. Even around a cutout, linear behavior exists. 
Beyond that apparent linear performance of many laminates, you might 
not like to operate in some kind of a nonlinear response reg_1me. Cer
tainly not when in a fatigue environment and probably not in a cre~p 
environment either would you like to operate in a nonlinear behavior 
range. . . . .. 

As a summary of nonlinear behavior, 1t appears possible to elimi-
nate the nonlinear behavior, and at the same time, you typically do not 
want to operate in that nonlinear behavior regime anyway, so you are 
both able to, and want to, 'design out' nonlinear behavior. That obser
vation is true generally in aircraft structures, but there a~e other ~truc
tures, which are subjected to higher temperatures, for which you simply 
cannot avoid some of the nonlinear behavior aspects, so you must take 
them into account in any rational design analysis. 
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7.8.8 lnterlaminar Stresses 

The next problem area is interlaminar stresses or, actually, stresses 
near the free edge of a laminate. Early in the development of advanced 
composite materials, some people felt that a phenomenon called 
scissoring was the operative mechanism for failure near a free edge. 
That scissoring can be described on the basis of having two adjacent 
laminae of+ 8 and - 8 orientation, respectively. If those two laminae are 
subjected independently to an in-plane tension load, they will distort into 
parallelograms of opposite orientation as in Figure 7-63. Now to prepare 
to bond those two laminae together, first apply a shear loading around 
the outsides of those parallelograms in opposite directions. That shear 
loading will bring the two oppositely oriented parallelograms back to the 
same size rectangles, so that there is no shear deformation. Suppose 
that, at this stage, those two rectangles look the same, and we bond 
them together as a laminate. We now have a laminate wit~ two 
deformation-compatible laminae, and we have been able to predict the 
stresses in each of the laminae from classical lamination theory. How
ever, as we look at that laminate in the lower right-hand corner of Figure 
7-63, we see some stresses that are implied to be on the edges of that 
laminate which cannot possibly be there because those are unloaded 
edges. Therefore, a contradiction exists in the analysis. Basically, the 
physical accommodation of this deformation mechanism and the im
posed boundary condition of no load leads us a stress state near the f~ee 
edge which causes delamination. The problem is not the overall action 
like those layers trying to scissor into two oppositely oriented 
parallelograms. The response does not take place between the two 
layers as they try to move. Instead, the response takes place near the 
free edges in a very narrow boundary layer. 

LAMINAE ~ 
UNDER 

TENSION 

t t t LAMINAE t t t 
-- UNDER - -

t~+ TENSION +~t 
t + AND SHEAR + t 
t + (NO SHEAR + t 

t -. -. DEFORMATION) .-.-t 

DEFORMATION-COMPATIBLE LAMINATE 
WITH STRESSES FROM CLT 

Figure 7-63 Laminate Free-Edge Stress State 

Thus, we reject the mechanism of scissoring and try to look near 
the free edges in the boundary layer to evaluate the stresses. Then, in 
Section 4.6, we predict very large stresses that in practical situations 
cause premature static failure and adversely influence the fatigue life of 
a laminate as well. Our problem is the quantitative prediction of those 
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stresses. With linear analyses, Pipes and Pagano predicted the stresses 
to be singular, i.e., infinite at a point which in this case is at the inter
section of the layer boundaries with the free edge [7-23]. The stresses 
cannot, in fact, be singular because the material will simply not support 
infinite stresses at loads that are infinitesimally small. Real material be
havior is affected by local nonlinearities in the matrix material which are 
not reflected in a linear macroscopic analysis. Thus, the prediction of 
singular stresses is a basic contradiction, but, that situation aside, the 
real problem is to try to reduce those stresses in some way. 

For a very thick laminate that has adjacent layers at the same ori
entation, such as a group of + 0 layers in one stacking sequence, the 
interlaminar stresses build up to unacceptable values. If some + 0 and 
- 0 layers are alternated, those interlaminar stresses will not build up to 
as high a magnitude. Both of the laminates have large interlaminar 
stresses, but one profile of stresses looks better than the other. Thus, 
basically we will, in order to reduce some of those interlaminar stresses, 
alternate the various laminae and disperse them among one another so 
that like-angled laminae are not next to one another. That is, we try to 
avoid any thick laminae at all, or effectively thick laminae, because they 
generally cause free-edge stress problems as is discussed in Section 4.6 
along with some other solutions to free-edge delamination. 

7.8.9 Transverse Shearing Effects 

The next problem area is transverse shearing effects. There are 
some distinct characteristics of composite materials that bear very 
strongly on this situation because for a composite material the transverse 
shearing stiffness, i.e., perpendicular to the plane of the fibers, is con
siderably less than the shear stiffness in the plane of the fibers. There 
is a shear stiffness for a composite material in a plane that involves one 
fiber direction. Shear involves two directions always, and one of the di
rections in the plane is a fiber direction. That shear stiffness is quite a 
bit bigger than the shear stiffness in a plane which is perpendicular to the 
axis of the fibers. The shear stiffness in a plane which is perpendicular 
to the axis of the fibers is matrix-dominated and hardly fiber-influenced. 
Therefore, that shear stiffness is much closer to that of the matrix mate
rial itself (a low value compared to the in-plane shear stiffness). 

That low shear stiffness can influence the deformations of the ma
terial that we are idealizing as a continuum. Moreover, the shearing 
stiffness in any of the three principal material planes is considerably less 
than the fiber-direction Young's modulus. In most bending situations, 
we would tend to look at the fiber-direction Young's modulus if we didn't 
know any better and say that that is the governing factor. For a metal, 
there is only one Young's modulus, and the shearing modulus is ap
proximately four-tenths of that modulus. For a composite material, the 
largest shearing modulus, which is in the plane of the fibers, is usually 
about an order of magnitude less than the value of the fiber-direction 
Young's modulus. That observation means that shear must play a dif
ferent role, and in fact a more important role, in bending for composite 
materials than it does for a metal. 
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Because the shear stiffness is generally so much lower for com
posite materials than for metals, normals to the middle surface do not 
remain normal after deformation. That observation means that the fun
damental analysis in the form of classical lamination theory, which par
allels that of metals, is not as applicable to composite materials as it is 
to metals. The fundamental conclusion we reach is that the influence 
of transverse shear on deflections, for example, is important for com
posite plates that are much slimmer than metal plates. For example, a 
metal plate might require a span-to-thickness ratio of 10 or more before 
there is no concern about the influence of shear deformations. However, 
a composite laminate might require a span-to-thickness ratio of 30 or 
more before we can stop being concerned about transverse shear ef
fects. That is, we are accustomed to thinking that an isotropic plate really 
must be very thick before we need ever worry about transverse shearing 
effects. We must change our way of thinking for composite materials 
because the geometric boundary between the span-to-thickness ratios 
for which shear deformations are important and not important has 
changed. That boundary has gone further out into the range where we 
would expect to find real structural designs. 

The transverse shear problem exists, but what do we do about it? 
Some rather simple correction factors are available that can be used to 
adjust the stresses and the deflections obtained from a classical lami
nation theory analysis. Thus, you need not necessarily perform a precise 
analysis including transverse shearing effects for every composite lami
nate that you deal with. There is another issue: typically, a composite 
laminate is thinner than an equivalent metal element, and that means that 
you have automatically increased its span-to-thickness ratio. Thus, there 
is a natural tendency to drive actual composite laminates away from the 
region of importance of transverse shearing effects. Thus, although we 
hear about this problem, there are many instances in which we need not 
worry ':'-bout it. Correction factors are available, as well as an analysis 
by Whitney and Pagano [7-24] (see also Chapter 6) for calculation of 
transverse shearing effects. Moreover, many contemporary composite 
laminate computer programs include the effect of transverse shear. 

7.8.10 Laminate Optimization 

For laminate optimization, which we examined in Section 7.7, we 
have some strong temptations. We could include many design variables. 
We could talk about which fibers we would deal with out of a collection 
of those offered by various manufacturers. In addition, we could consider 
which matrix materials, what percentage of fibers and matrix that we deal 
with, what orientation of each of the fiber directions, and the thicknesses 
of the various laminae. All of those various factors are potential design 
variables, and, in order to treat them, you must have a fairly complicated 
optimization scheme to be able to achieve the objective of actually tai
loring a laminate for specific design requirements. 

. _However, there are some significant problems with using an opti
m1zat1on scheme because you can end up with a design that simply is 
not practical to make. We might judge that a laminate would need a 
certain minimum number of layers for various reasons. One of those 
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reasons might be so that we keep the laminate symmetric. We cannot 
just simply say we are only going to use two layers, and one is a 0° and 
the other is a 90° layer, because the resulting laminate is not symmetric. 
We might then have to increase that laminate in thickness by one layer 
in order to get away from the asymmetry problem. That situation is quite 
different from that of a metal. There, typically, a minimum thickness ex
ists for a metal layer, i.e., a minimum amount that can be machined or 
chem-milled. We will use only the minimum thickness that is available, 
and if the optimum design turns out to be thinner than that minimum 
thickness, then we reject the optimum and drop back to the one that is 
a little thicker because it is easier to make and more suitable in practice. 

Various metallic materials are available in specified thicknesses, 
and composite laminae are available in specified thicknesses. A pre
pregger is not going to change his whole way of doing business just be
cause you want a layer that is three-quarters as thick as the one which 
he is ~ccustomed to producing. That change would cost a lot of money. 
Nor will a prepregger change the volume fraction of fibers just to suit you, 
unless you have a tremendously big order. Thus, some standardized 
available elements must be used in any optimization scheme, and that 
defeats some of the purpose of the optimization. Or at least it somewhat 
restricts the answers that can be obtained from the optimization scheme. 

Probably the most important aspect that leads to the conclusion 
that the so-called optimum laminate cannot always be used is that, 
whatever laminate you come up with, you must have some kind of be
havior data based on it. Otherwise, people will not let you use it in design 
for various safety and experience reasons. You must be able to dem
onstrate that you know the strength and fatigue behavior of the laminate 
that you want to use in a design. If the optimum laminate turns out to 
be one that is very different from anything that has ever been produced, 
then you must embark upon a fairly expensive property-characterization 
program to qualify that laminate for use in a composite structure. The 
idea of tailoring the various design variables so that the laminate turns 
out to be the very best is a nice idea, and it can be beneficial within limits. 
However, those limits must be dictated to us by the practicality of the 
various reasons just mentioned. 

7.8.11 Summary 

As a summary to the design philosophy section, some comments 
are in order. The properties of composite materials are, in general, 
enough better than those of an isotropic metal that, if you put your mind 
to it, you can save weight. If you are creative enough, you can do it. 
You can make it work. The behavioral aspects of composite materials 
are indeed more complicated than those of isotropic metals, but they can 
be modeled in relatively simple ways. That modeling requires some 
fundamental understanding of the mechanics involved. It is not always 
~ecessary to go through some kind of a sophisticated analysis that might 
involve transverse shear. Instead, you might look at some guidelines for 
where transverse shear could be important, and if it is not important in 
your particular application, skip that step. The point is that you must in-
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vestigate whether a potential problem area is important in order to have 
a responsible design. 

In the design of a composite structure, the job of an analyst is to 
identify and understand what problem areas might possibly arise (not that 
they necessarily will, but that they might possibly arise) and to be able 
to deal with them. Sometimes analysts are more than self-serving in that 
they try to justify their own work. If they were, for example, working on 
transverse shear or coupling between bending and extension, they might 
show you all the cases where those effects are important behavioral 
phenomena. You must ask the question in a design: is that phenomenon 
important in my particular design? That is, you must identify the design 
drivers for your design. 

A designer, in contrast to an analyst, has one responsibility, and 
that is to create a structure that meets the design requirements. In doing 
so, the designer must make certain that all the possible problem areas 
are either avoided, which is like walking around a mountain, or he must 
go climb the mountain and deal with each of those problems directly, i.e., 
take them into account. In order to use either approach, the designer 
must know quite a bit about the behavior of composite materials and 
structures. He must know the significance of each of those problem 
areas, so that he can recognize whether they are, or are not, important 
in his design. Unless the designer knows the essential behavioral char
acteristics of a composite material or structure, he cannot possibly design 
an adequate composite material or structure, but he can design a dan
gerous one very easily. 

7.9 SUMMARY 

Two keys to the future use of composite materials are (1) achieving 
lower raw material cost and (2) developing innovative fabrication tech
niques that are uniquely suited to the characteristics of composite mate
rials. This duality of approaches is leading to considerable success with 
composite structures right now, but they also hold the key to the even 
wider use of composite materials in the future. Let's address the two 
keys individually. 

First, achieving lower raw material cost than at present is always 
an important economic factor. When the price for one material comes 
down relative to another, the point at which we trade-off between the two 
materials changes because cost is a factor in most designs. That state
ment is not meant to imply that engineers are not concerned about cost 
in some designs, but we must emphasize that some particular structures 
have functional requirements as the most important issue. Can they or 
can they not do the job? Cost is not the primary issue in that case. We 
would naturally like to have a less-expensive Space Shuttle, but can we 
do the job that the Space Shuttle is now doing with a lower-cost struc
ture? We could use less-expensive materials, but would they be able to 
hold up, would they survive reentry, and would the astronauts be able to 
survive? If the astronauts would not be able to survive, then clearly you 
would acknowledge that we must pay the added cost to get the job done, 
i.e., to ensure their safety. 
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Suppose we change our attention from structures in which the 
driver is functional consideration alone to something like an automobile 
where cost is also extremely important. We can get the functional job 
done with other materials, like steel and aluminum and fiberglass in cer
tain places and unreinforced plastic in others. Then, the question be
comes: can we make a material substitution that will enable us to 
compete with the cost of these other materials to do a job that with all the 
other materials we cannot accomplish? That is a different kind of ques
tion, and then cost becomes an extremely important driver. And, as cost 
of advanced composite structures goes down, we can expect to see 
more and more utilization of advanced composite materials. 

The second key element of innovative fabrication concepts is ex
tremely important for composite structures because composite materials 
have unique capabilities of being formed into various parts. One funda
mental aspect of those unique characteristics is that with a composite 
material we tend to build up the structure, actually build up the structural 
material, in layers as opposed to metal structure fabrication where we 
often take a big chunk of material and cut it down to the size and shape 
of the structure as in Figure 7-64. Thus, we are going in two funda
mentally opposite directions when we consider metals versus composite 
materials. Machining away vast portions of a metallic block to achieve 
a smaller part that is useful or forging a metallic block into some desired 
shape are both very expensive and time-consuming processes. In con
trast, with composite materials, we can build up the same shape with 
both less usage of materials, in terms of weight or volume, and less 
manufacturing operations like machining. 

e METALS 

CUT DOWN A BIG CHUNK OF MATERIAL TO FINAL SIZE 

&~ 
e COMPOSITES ~ 

BUILD UP MATERIAL TO FINAL SIZE ~ 

~ c:3} 
Figure 7-64 Fundamental Fabrication Difference 

between Composite and Metal Structures 

. Composite structures fabrication requires levels and types of ex
pertise for layup and curing that are not typically found in metals fabri
cation industries. Therefore, a composite structure is more of a 
specialist-produced structure than is a metallic structure. Layup is a 
totally different process that is absolutely foreign to metals production 
technologists. We must somehow get those people into the mainstream 
of composite structures manufacturing before we will see widespread 
composite structures production. 
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This process of conversion from a metals production environment 
to a composite materials production environment is much more involved 
than just laminate layup and curing. Issues of inspection arise to make 
certain that the composite product is put together properly. Some of 
those inspection techniques are much more complicated than they were 
for a metallic structure. Truly, the picture is not totally rosy for composite 
materials. It would be quite unrealistic to say: (1) there are no problems 
and (2) composite materials are absolutely the best way to go. 

Composite materials are now used primarily in so-called high-tech 
areas. Then, in regard to keys to the future of composites, when will we 
go beyond high-tech applications and go to low-tech applications? When 
will we build a composite washing machine? Maybe never; perhaps a 
favorable manufacturing trade-off will never be there; it certainly is not 
there right now. The key as to whether consumer products will be made 
of composite materials relates to manufacturing technologies. More and 
more people will manufacture composite structures simply because they 
are able to, for their particular structure, put together all the operations 
that must be performed for a composite structure, which may in fact not 
have any analog for a metal structure. 

When the manufacturing folks can put all those operations together, 
they will be in the composite structures business, and that will be a dra
matically expanding situation for a long time to come. We have already 
seen it in aircraft and spacecraft. We see it developing now for ships and 
submarines. We have seen it in golf clubs and tennis rackets. Com
petitive sports are a very special situation: a golfer typically wants to have 
an edge either on his previous scores or on his competitors, and he will 
pay quite a price to gain that edge. That a composite tennis racket might 
cost twice as much as a wooden tennis racket is not a concern. Golfers 
or tennis players would gladly pay twice as much for their golf clubs or 
their tennis rackets if in fact they thought they would get that edge over 
their competitor that they felt that they needed to have. 

We just cannot expect situations like golf clubs and tennis rackets 
for all consumer products because all products do not have those same 
built-in characteristics of the competitive edge. When we consider a car, 
we must be realistic and acknowledge that the car must have a price low 
enough for people to afford. Think back to the days of Henry Ford: he 
made a car that could be sold for about $250, so that everyone could 
afford to have one. This affordability was the real beauty of his mass
production techniques. Everyone could afford to have a car, and then 
almost everyone did have one. In contrast, before Henry Ford, only the 
rich could afford an automobile. As soon as we get to the trade-off where 
composite materials will effectively compete in the automotive market 
place, we will see tremendously broader applications, but there are 
problems along the way. The manufacturing cost must be improved in 
order for those applications to ever come about. 
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Appendix A 

MATRICES 
AND TENSORS 

Matrix and tensor notation is useful when dealing with systems of 
equations. Matrix theory is a straightforward set of operations for linear 
algebra and is covered in Section A.1. Tensor notation, treated in Sec
tion A.2, is a classification scheme in which the complexity ranges up
ward from scalars (zero-order tensors) and vectors (first-order tensors) 
through second-order tensors and beyond. 

The mathematical operations in the study of mechanics of com
posite materials are strongly dependent on use of matrix theory. Tensor 
theory is often a convenient tool, although such formal notation can be 
avoided without great loss. However, some of the properties of com
posite materials are more readily apparent and appreciated if the reader 
is conversant with tensor theory. 

A.1 MATRIX ALGEBRA 

A.1.1 Matrix Definitions 

A matrix is a rectangular array of elements. The array has m rows 
and n columns and is called a rectangular matrix of order (m,n). If 
m = n, the array is called a square matrix of order fi'.- The elegients of 
an array [A] are called Aii• that is, the element in the i row and j column 
of [A]. Thus, a matrix is an array: 

A11 A12 A1n 

A21 A22 
[A]= 

Am1 Am2 ···Arnn 

(A.1) 

Two arrays [A] and [B] are equal only if they have the same number of 
rows and columns and all their corresponding elements are equal, that 
is, 

i=1,m j = 1,n (A.2) 

467 



468 Meck. ~• of Composite Materials 

A row matrix consists of a single row and has order (1,n): 

[A] = [A1~ •.. A,J 
A column matrix has a single column and has order (n, 1 ): 

[A] ={A}= 

(A.3) 

(A.4) 

where the braces are ordinarily used to distinguish a column matrix from 
a general matrix (although not in this book). 

The transpose of a matrix is denoted by a superscript T: 

A11 ~1 · · · ~1 

[A{= A12 ~ ... ~ 

A1n ~n · · · ~n 

(A.5) 

and is obtained by interchanging rows and columns of Equation (A.1 ). 
For a square matrix, the principal or main diagonal goes from the 

upper left-hand comer to the lower right-hand comer of the matrix. Thus, 
the principal diagonal has elements Au. A symmetric (square) matrix has 
elements that are symmetric about the principal diagonal, that is 

Aii = ~i (A.6) 

Another way of saying the same thing is [A] = [Af 
A diagonal matrix is a square matrix with zero elements everywhere 

except on the principal diagonal (that is, all off-diagonal elements are 
zero): 

A11 0 . . . 0 

0 A22 ... 0 

0 0 ... ~n 

(A.7) 

If all the elements along the principal diagonal of a diagonal matrix are 
equal, the matrix is called a scalar matrix. One important scalar matrix 
has all ones on the principal diagonal and is called the identity or unit 
matrix: 
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1 0 0 

0 1 0 
[I]= (A.8) 

0 0 1 

The determinant of a square matrix of order two is called a deter
minant of order two and is defined as 

A11 A12 
D= =A11A22-A1~21 
~1~ 

whereas for a determinant of order three, 

~1 ~2 
+A13 

A31 ~2 

(A.9) 

(A.10) 

and, by mathematical induction, for a determinant of order n, if D,11i is the 
determinant of order n - 1 formed by deleting the first row and i column 
of D, 

A11 A12 · · · A1n 

~1 ~ ••• ~n 1+n D= =A11 M11 -A12M12 +···+(-1) A1nM1n (A.11) 

An1 An2 · · · Ann 

That is, a determinant of order n is obviously defined in terms of deter
minants of order n - 1. In Equation (A.11 ), the detenT)inant M11 is called 
the minor of element A11, and the quantity ( -1) 1 + 1 M11 is called the 
cofactor of A11, i.e., 

(A.12) 

A determinant can be evaluated by expansion along any row or column, 
i.e., 

n n 

D = Ll118i1 ~ L/11a11 (A.13) 

I =1 J= 1 

where the free index is not summed. 
Some elementary properties of determinants include: 

(a) If each element in a row or column is multiplied by k, the determinant 
is multiplied by k. 

(b) If two rows or two columns are proportional, the determinant is zero. 
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(c) If two rows or two columns are interchanged, the determinant 
changes sign. 

(d) If rows and columns are interchanged, the determinant is not 
changed. 

The cofactor matrix of a square matrix is the matrix of cofactors of 
each element, i.e., 

a= 

A.1.2 Matrix Operations 

Addition 

a11 

a21 

an1 

a12 · · · a1n 

a22 .. · a2n 
(A.14) 

an2 · · · ann 

Two matrices, [A] and [B], can be added only if they have the same 
number of rows and columns, respectively. Then, the sum (C] is ob
tained by adding the corresponding elements of (A] and [B]: 

Cii = Aii + Bii (A.15) 

For example, 

Obviously, addition is both commutative, that is, 

[A]+ [B] = [B] + [A] 
and associative, that is, 

[[A]+ [Bl] + [C] =[A]+ [[B] + [C]J 

Subtraction 

(A.17) 

(A.18) 

The difference of two matrices is obtained by subtraction of the 
corresponding elements of (A] and [B]: 

Cii = Aii - Bii (A.19) 

and is subject to the requirement that the number of rows and columns 
be the same for [A] and [B]. Subtraction is neither commutative nor as
sociative. 

Multiplication 

The simplest form of matrix multiplication is the product of a scalar, 
s, and a matrix, [A], wherein all elements of (A] are multiplied by s: 

( 
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[
A11 A12]--[sA11 sA12] s [A]= s 
A21 A22 sA21 sA22 

(A.20) 

The product, [A][B], of two matrices is defined only when the number of 
rows in (B] equals the number of columns in [A]. Here, [B] is said to be 
premultiplied by [A] or, alternatively, [A] is said to be postmultiplied by 
[B]. The product, [A][B], is obtained by first multiplying Thach element of 
the i1h row of [A] by the corresponding element of the j1 column of [B] 
and then adding those results: 

[C] = [A][B] = [AikBki] (A.21) 

where the summation on k goes from 1 to the number of columns in (A]. 
For example, 

[
::: ~ ~][:::]=[~:::::~::::~:::]=[:::] (A.22) 

A31 A32 A33 831 A31B11 +A32B21 +A33B31 C31 

For a more complicated (B] matrix that has, say, n columns whereas (A] 
has m rows (remember (A] must have p columns and [B] must have p 
rows), the (C] matrix will have m rows and n columns. That is, the mul
tiplication in Equations (A.21) and (A.22) is repeated as many times as 
there are columns in [B]. Note that, although the product [A][B] can be 
found as in Equation (A.21 ), the product [B][A] is not simultaneously de
fined unless [B] and [A] have the same number of rows and columns. 
Thus, (A] cannot be premultiplied by [B] if [A][B] is defined unless [B] and 
[A] are square. Moreover, even if both [A][B] and [B][A] are defined, 
there is no guarantee that (A][B] = [B][A]. That is, matrix multiplication is 
not necessarily commutative. 

Inversion 

The inverse of a square matrix is denoted by a superscript -1 and 
is defined as 

(A.23) 

(the transpose of the cofactor matrix is called the adjoint matrix) and has 
the property 

[A][Af
1 

= [Af
1
[A] = [I] (A.24) 

The determinant of [A] in Equation (A.23) cannot vanish; otherwise 
Equation (A.23) is not defined and [A] is said to be a singular matrix. 

Solution of Linear Equations 

The principal use of the inverse matrix is in solution of linear 
equations or the application of transformations. If 
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{Y} = [A]{X} 

where {Y} and {X} are column matrices, then 

[Ar
1 
{Y} = [Ar

1
[A]{X} = {X} 

(A.25) 

(A.26) 

The foregoing result along with Equation (A.23) is known as Cramer's 
rule. If {Y} in Equation (A.25) is zero, then the system of equations 

[A]{X} = 0 (A.27) 

is ~id to be homogeneous. If matrix [A] is nonsingular (so its inverse 
[Af exists), then 

{X} = [Ar
1 

{O} = {O} (A.28) 
This solution for {X} in which all the unknowns are zero is called the trivial 
solution. A nontrivial solution to Equation (A.27) exists, therefore, only 
when matrix [A] is singular, that is, when I A I = 0. 

Miscellaneous 

Some other matrix operations of interest include 
T -1 

[[Ar
1

] = [[A]T] (A.29) 

that is, the transpose of the inverse of a matrix is equal to the inverse 
of the transpose. Also, 

([A][B][C])T = [C{[B]T[A]T (A.30) 

([A][B][C]f
1 

= [Cr
1
[Br

1
[Ar

1 
(A.31) 

which are known as the reversal laws of transposition and inversion, re
spectively. 

A.2 TENSORS 

Vectors are commonly used for description of many physical 
quantities such as force, displacement, velocity, etc. However, vectors 
alone are not sufficient to represent all physical quantities of interest. 
For example, stress, strain, and the stress-strain laws cannot be repres
ented by vectors, but can be represented with tensors. Tensors are an 
especially useful generalization of vectors. The key feature of tensors is 
that they transform, on rotation of coordinates, in special manners. Tsai 
[A-1] gives a complete treatment of the tensor theory useful in composite 
materials analysis. What follows are the essential fundamentals. 

Cartesian tensors, i.e., tensors in a Cartesian coordinate system, 
will be discussed. Three independent quantities are required to describe 
the position of a point in Cartesian coordinates. This set of quantities is 
x1 where x1 is (x1, x2, x3). The index i in Xi has values 1, 2, and 3 because 
of the three coordinates in three-dimensional space. The indices i and j 
in 81J mean, therefore, that 81J has nine components. Similarly, bilk has 
27 components, c11kl has 81 components, etc. The indices are part of 
what is called index notation. The number of subscripts on the symbol 
denotes the order of the tensor. For example, a is a zero-order tensor 
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(a scalar}, 81 a first-order tensor (vector), a11 a second-order tensor, a11 1c1 
a fourth-order tensor, etc. The number of components, N, necessary for 
description of a tensor of order k in n-dimensional space is 

N= nk (A.32) 
The range convention and the summation convention will be used. The 
range convention is any subscript that appears only once on one side 
of an expression takes on values 1, 2, and 3. The summation convention 
is any subscript that appears twice on one side of an expression is 
summed from 1 to 3. The repeated index is called the dummy index. 

A.2.1 Transformation of Coordinates 

Consider the behavior of various tensors under the transformation 
of coordinates in Figure A-1 where a rotation about the z-axis is made. 
That is, the x, y, z coordinates are transformed to the x', y', z' coordinates 
where the z-direction coincides with the z'-direction. The direction 
cosines for this transformation are 

cos a sin a o 

[exi1] = [T] = - sine cos e o (A.33) 

0 0 1 

z,z' 

X 

x' 

Figure A-1 Rotation of Coordinates in x-y Plane 

where a;1 is the cosili\e of the angle between the ith direction in the x', y', 
z' systems and the j direction in the x, y, z system, that is, for all trans
formations (not just the foregoing special rotation}, 

<Xii= cos(~. x1} (A.34) 

Thus, the transformation of coordinates can be written in index notation 
as 

(A.35} 
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or 

or in matrix form as 

X~ = <X11X1 + <X1:r2 + <X13X3 

X~ = ~1X1 + ~:r2 + ~3X3 

X~ = <Xs1X1 + <Xs2X2 + <Xs3X3 

~ = [=: :: ::J[::J 
X~ <Xs1 <Xs2 <Xs3 X3 

(A.36) 

(A.37) 

This type of transformation will be used to assist in the definition of vari
ous orders of tensors. Each tensor will be defined on the basis of the 
type of transformation it satisfies. Tensors transform according to the 
relations 

(A.38) 

A.2.2 Definition of Various Tensor Orders 

A scalar is a tensor of order zero and has 3° = 1 component. Be
cause it has only magnitude and not direction, no transformation relations 
are needed. Examples of scalars include speed (but not velocity), work, 
and energy. 

A vector is a tensor of first order and has 31 = 3 components. 
Vectors transform according to 

A; = cxiiAi (A.39) 

where _A1 is the transfom:ie_d vector, <Xji the direction cosines of the trans
formation, and Ai the ongmal vector. Examples of vectors include dis
placements, coordinates, velocity, forc~s, and moments. 

A tensor of second order has 3 = 9 components and transforms 
as 

(A.40) 

Stress and strain are both second-or~er tensors. 
A tensor of fourth order has 3 = 81 components and transforms 

as 

(A.41) 

The stiffness and compliances in stress-strain and strain-stress relations 
are fourth-order tensors because they relate two second-order tensors: 

c:r,1 = ciJkl 9(1 

£ii = s,ikl erk, 

(A.42) 

(A.43) 
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A.2.3 Contracted Notation 

Contracted notation is a rearrangement of terms such that the 
number of indices is reduced although their range increases. For 
second-order tensors, the number of indices is reduced from 2 to 1 and 
the range increased from 3 to 9. The stresses and strains, for example, 
are contracted as in Table A-1. Similarly, the fourth-order tensors for 
stiffnesses and compliances in Equations (A.42) and (A.43) have 2 in
stead of 4 free indifes ~ith a new range of 9. The number of compo
nents remains 81 (3 = 9 ). 

Table A-1 Tensor versus Contracted Notation for Stresses and Strains 

Stresses Strains 

Tensor Contracted Tensor Contracted 
Notation Notation Notation Notation 

0'11 0'1 £11 £1 

0'22 0'2 ~ ~ 
0'33 0'3 ~ £3 

0'23 ='t32 0'4 ~3='Y23 £4 

0'31 ='t31 0'5 ~1 =Y31 £5 

0'12 = 't12 0'5 2£12 =r12 Es 
0'32 ='t32 0'7 ~=y32 £7 

0'13 = 't13 cre 2E13='Y13 Ee 
0'21 = ~1 0'9 ~1 =r21 Eg 

In contracted notation, the stress-strain and strain-stress relations, 
Equations (A.42) and (A.43), are written as 

(A.44) 

ei = Siic:ri (A.45) 

Obviously, the number of free indices no longer denotes the order of the 
tensor. Also, the range on the indices no longer denotes the number of 
spatial dimensions. If the stress and strain tensors are symmetric (they 
are if no body couples act on an element), then 

9i=9i (A.46) 

and, therefore, the number of independent stresses and strains is re
duced to six each as in Table 2-1. This type of symmetry leads to a re
duction of the number of independent components of Cii and Sii from 81 
to 36 in 3-space. The Cii and S11 can further be shown to be symmetric 
(see Section 2.2), that is, 

ci1 = c 1i s 11 = sii (A.47) 

whereupon the number of independent components of Cy and Sii is fur
ther reduced from 36 to 21 in 3-space. The stiffness matrix is then (the 
compliance matrix is similar) 
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C11 =[CJ= 

C11 C12 C13 C14 C15 C15 

C12 C22 C23 C24 C25 C2a 

C13 C23 C33 C34 C35 C35 

C14 C24 C34 C44 C45 C45 

C15 C25 C35 C45 C55 C55 

C15 C25 C35 C45 C55 C55 

(A.48) 

wherein the relation of a component of Cii to that of Ciild is rather com
plex. 

A.2.4 Matrix Form of Tensor Transformations 

Tensors can easily be written in matrix form. For example, a vector 
a1 can be represented with a column matrix: 

~~[A]~[~] 
or a row matrix 

ai =[A]= [A1 A2 As) 

Also, a second-order tensor can be written 

aii =[A]=[~: ~ ~:] 

A31 A32 A33 

or in contracted notation as a column (or row) matrix: 

(A.49) 

(A.50) 

(A.51) 

(A.52) 

A fourth-order tensor can be written as a 9 x 9 array in analogy to 
Equation (A.51) but, by use of contracted notation, is sometimes dras
tically simplified to a 6 x 6 symmetric array. 
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The stress-strain relations in this book are typically expressed in 
matrix form by use of contracted notation. Both the stresses and strains 
as well as the stress-strain relations must be transformed. First, the 
stresses transform for a rotation about the z-axis as in Figure A-1 ac
cording to 

{cr'} = [T]{cr} (A.53) 
or 

' 2 . 2e 0 0 0 2 cos e sine 0'1 cos e sm 0'1 

' . 2e cos2e 0'2 sm 0 0 0 -2 case sine 0'2 

' 0 0'3 0 1 0 0 0 0'3 
I 

0 0 o cos e -sine 0 0'4 0'4 
I 

0 0 0 0'5 sine cos e 0 0'5 
I 

0'5 -cos e sine cos e sine o 0 0 2e . 2e cos -sm 0'5 

(A.54) 
In two dimensions, this rotation simplifies to 

cos2e sin
2
e 2 cos e sin e 

sin
2
e cos2e -2 cos e sin e (A.55) 

- cos e sin e cos e sin e cos2e - sin
2
e 

which in graphical form is the well-known Mohr's circle. The strains 
transform in a similar manner as shown in Section 2.6 for a case of plane 
stress. The stiffness and compliance transformations are very complex 
even for a simple rotation about an axis as in Equation (A.33). The 
complete expressions are given by Tsai [A-1). For plane stress states, 
the transformations of the reduced stiffnesses are given in Section 2.6. 

REFERENCE 
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Appendix B 

MAXIMA AND MINIMA 
OF FUNCTIONS OF 

A SINGLE VARIABLE 

Most engineering students are well aware that the first derivative 
of a continuous function is zero at a maximum or minimum of the func
tion. Fewer recall that the sign of the second derivative signifies whether 
the stationary value determined by a zero first derivative is a maximum 
or a minimum. Even fewer are aware of what to do if the second deriv
ative happens to be zero. Thus, this appendix is presented to put finding 
relative maxima and minima of a function on a firm foundation. 

Consider a function V of a single variable x, V(x), for which a sta
tionary value occurs at x = x1, i.e., 

dV I =0 (B.1) 
dx 

X=X1 

Such a stationary value of V can be a relative maximum, a relative min
imum, a neutral point, or an inflection point as shown in Figure B-1. 
There, Equation (B.1) is satisfied at points 1, 2, 3, 4, and 5. By in
spection, the function V(x) has a relative minimum at points 1 and 4, a 
relative maximum at point 3, and an inflection point at point 2. Also 
shown in Figure B-1 at position 5 is a succession of neutral points for 
which all derivatives of V(x) vanish. A simple physical example of such 
stationary values is a bead on a wire shaped as in Figure B-1. That is, 
a minimum of V(x) (the total potential energy of the bead) corresponds 
to stable equilibrium, a maximum or inflection point to unstable equilib
rium, and a neutral point to neutral equilibrium. 

Figure 8-1 Stationary Values of V(x) 

479 
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To determine the specific character of a stationary point, first ex
pand V(x) in a Taylor series about the stationary point x = x1: 

V(x + h) = V(x ) + h dV I +_h_ d V +_h_ d V 
1 1 dx 21 d 2 3! d 3 

+"· 2 2 I 3 3 I 
X=x1 X X 

x = x, x = x, (B.2) 

where h is the expansion parameter about x1, as shown in Figure B-2. 

V 

X 

Figure B-2 Taylor Series Expansion of V(x) about x = x1 

Then, the change in V, IN, is 

I 
2 2 

~ V = h dV + _h_ d V 
dx 2! d 2 X=x1 X 

h
3 

iv I +-3, -3- +"· 
· dx 

x=x1 x=x1 

(B.3) 

However, in accordance with the definition of a stationary point, Equation 
(B.1 ), the first term in Equation (B.3) for~ V vanishes irrespective of the 
value or size of h so that 

h
3 

d
3
V I h

4 iv +-3, -3- +-4, -4-
. dx · dx 

X=~ X=~ X=~ 

+"· (B.4) 

The character of ~ V will determine the type of stationary value at x = x1. 
Specifically, the dominant term in the Taylor series for ~V must be ex
amined in order to determine whether ~ V is always positive (a relative 
minimum), always negative (a relative maximum), sometimes negative 
and sometimes positive (an inflection point), or always zero (a neutral 
point). For ~ V to be positive, the leading term in the Taylor series, 
Equation (B.4), which is by inspection the largest term because h is a 
very small number, must be positive, i.e., 

h2 iv ---
21 di >0 (B.5) 

x=x1 
But, even though h can have positive or negative values, because h is 
squared, 
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>0 (B.6) 

X=X1 

is sufficient for a minimum of V(x) at x = x1. Similar reasoning leads to 

d
2
V <0 (8.7) 

X=X1 

as sufficient for a maximum of V(x) at x = x1. However, if 

d2V I --0 (8.8) 
di 

X=X1 

then the second-derivative term in the Taylor series is no longer the 
dominant term. 

Accordingly, the next term in the Taylor series 

h
3 

d
3
V _ __ (8.9) 

31 dx3 
X=X1 

must be examined. Obviously, because h can have positive or negative 
values and is cubed, the term in Equation (8.9) can be positive or neg
ative irrespective of the (nonzero) value of the third derivative. Thus, a 
nonzero third derivative of V(x) at x = x1 corresponds to an inflection point 
of V(x) because ~V can be either positive or negative. 

If the term involving the third derivative, Equation (8.9) in the Taylor 
series, is zero, then the next higher term 

h
4 

d
4
V 

41 dx4 
X=X1 

(8.10) 

is the dominant term. Of course, the second derivative must also be zero 
in order for us to need to consider the third-derivative term at all. Obvi
ously, the conclusions reached for the second-derivative term are also 
valid for the fourth-derivative term, Equation (8.10). 

Thus, by mathematical induction, the rules for determining the 
character of a stationary value of V(x) at x = x1 are 

(1) If the first nonzero derivative evaluated at x = x1 is even and greater 
than zero, then V(x1) is a relative minimum. 

(2) If the first nonzero derivative evaluated at x = x1 is even and less 
than zero, then V(x1) is a relative maximum. 

(3) If the first nonzero derivative evaluated at x = x1 is odd, then V(x1) 

is an inflection point. 
(4) If all derivatives are zero, then V(x1) is a neutral point. 

These rules are schematically depicted in Figure 8-3. 
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INFLECTION POINT--~ 

v"(x1) # 0, n odd 

-MINIMUM 

v"(xi) > 0, n even 

MAXIMUM 

V"(x1) < 0, n even 

Figure B-3 Maxima, Minima, and Inflection Points 
of a Function of a Single Variable 

The following simple examples are useful aids to understanding the 
foregoing rules. 

(1) V = x2 (plotted in Figure B-4) 

V,=2X 

V,=0 at X=O 

v .. l =2 
X=O 

V(O) is a relative minimum 

(2) V = x3 (plotted in Figure 8-5) 

2 
V,=3X 

V,=0 at X=O 

v .. l =6xl =O 
X=O X=O 

v ... l =6 
X=O 

:. V(O) is an inflection point 

V 

Figure B-4 V = x2 

V 

Figure B-5 V = x3 

Maxima and Minima of Functions of a Single Va~.. .e 

(3) V = x 
4 

(plotted in Figure 8-6) 

3 V,=4X 

V, =0 at X=O 

v .. I = 12x21 = o 
X=O X=O 

V .. ,! =24xl =0 
'X=O 'X=O 

VA I =24 
1111 X=O 

V(O) is a minimum 

(4) V=x
10 

(Plotted in Figure 8-7) 

V• = 10x9 

V• =0 at x=O 

By mathematical induction, 

v .. l =O 
X=O 

v1xl =O 
X=O 

vxl = 10! 
X=O 

:. V(O) is a minimum 

V 

Figure 8-6 V = x4 

V 

Figure 8-7 V = x
10 
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If V is a function of more than one variable, then more complex 
criteria for determining maxima and minima are obtained. Generally, but 
not always, the second partial derivatives of the function with respect to 
all its variables are sufficient to determine the character of a stationary 
value of V. For such functions, the theory of quadratic forms as de
scribed by Langhaar [B-1] should be examined. 

REFERENCE 
(B-1) Henry L. Langhaar, Energy Methods in Applied Mechanics, Wiley, New York, 1962, 

pp. 308-328. (Also Krieger Publishing, Malabar, Florida, 1982.) 



Appendix C 

TYPICAL 
STRESS-STRAIN CURVES 

Typical stress-strain curves are shown for the commonly used 
fiber-reinforced materials fiberglass-epoxy, boron-epoxy, and a repre
sentative graphite-epoxy. These curves are not accurate enough for 
design use! 

C.1 FIBERGLASS-EPOXY STRESS-STRAIN CURVES 

The curves for 3M XP251S fiberglass-epoxy are shown in Figures 
C-1 through C-5 [C-1]. Curves are given for both tensile and 
compressive behavior of the direct stresses. Note that the behavior in 
the fiber direction is essentially linear in both tension and compression. 
Transverse to the fiber direction, the behavior is nearly linear in tension, 
but very nonlinear in compression. The shear stress-strain curve is 
highly nonlinear. The Poisson's ratios (not shown) are essentially con
stant with values v12 = .25 and v21 = .09. 

C.2 BORON-EPOXY STRESS-STRAIN CURVES 

The curves for boron-epoxy are shown in Figures C-6 through C-11 
[C-2]. As with fiberglass-epoxy, the behavior in the fiber direction is es
sentially linear in both tension and compression. In the direction trans
verse to the fibers, the behavior is nearly linear in tension and fairly 
nonlinear in compression. Finally, the behavior is highly nonlinear in 
shear. The Poisson's ratio, v12, decreases in tension and increases in 
compression. 

C.3 GRAPHITE-EPOXY STRESS-STRAIN CURVES 

The curves for Narmco 5605 graphite-epoxy shown in Figures C-12 
through C-17 [C-2] are analogous in form to the boron-epoxy curves. 

485 
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Figure C-1 Tensile cr1 -£1 Curve for 3M XP251S Fiberglass-Epoxy 
{Adapted from [C-1]) 
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Figure C-2 Compressive cr1 - i:1 Curve for 3M XP251 S Fiberglass-Epoxy 
(Adapted from [C-1}) 
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.001 .003 .004 

Figure C-3 Tensile cr2 - i:2 Curve for 3M XP251 S Fiberglass-Epoxy 
{Adapted from [C-1]) 
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Figure C-4 Compressive cr2 - t:2 Curve for 3M XP251S Fiberglass-Epoxy 
{Adapted from [C-1]) 
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Figure C-5 Shear Stress-Strain Curve for 3M XP251 S Fiberglass-Epoxy 
(Adapted from [C-1 ]) 
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Figure C-6 Tensile a1 - e1 Curve for Boron-Epoxy (Adapted from [C-2]) 
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Figure C-7 Compressive a1 - e1 Curve for Boron-Epoxy (Adapted from [C-2]) 
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Figure C-8 Tensile o2 - ~ Curve for Boron-Epoxy (Adapted from [C-2]) 
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Figure C-9 Compressive cr2 - e2 Curve for Boron-Epoxy (Adapted from {C-2]) 
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Figure C-10 Shear Stress-Strain Curve for Boron-Epoxy (Adapted from [C-2]) 
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TENSION 

4 8 12 16 

Figure C-11 Poisson's Ratio Curves for Boron-Epoxy (Adapted from [C-2}) 

120 

100 

a;- 80 

103psi 60 

40 

20 E1118.Sx106psi 

00 1 2 3 4 5 6 7 

E1x 
10-3 

Figure C-12 Tensile cr1 -£1 Curve for Narmco 5605 Graphite-Epoxy 
(Adapted from {C-2}) 
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Figure C-13 Compressive a1 - E1 Curve for Narmco 5605 Graphite-Epoxy 
(Adapted from [C-2]) 
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Figure C-14 Tensile o-2 - ~ Curve for Narmco 5605 Graphite-Epoxy 
(Adapted from [C-2]) 
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Figure C-15 Compressive o-2 - ~ Curve for Narmco 5605 Graphite-Epoxy 
(Adapted from [C-2]) 
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Figure C-16 Shear Stress-Strain Curve for Narmco 5605 Graphite-Epoxy 
(Adapted from [C-2]) 
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Appendix D 

GOVERNING EQUATIONS FOR 
BEAM EQUILIBRIUM AND 

PLATE EQUILIBRIUM, 
BUCKLING, AND VIBRATION 

0.1 INTRODUCTION 

The equilibrium equations for a beam are derived to illustrate the 
derivation process and to serve as a review in preparation for addressing 
plates. Then, the plate equilibrium equations are derived for use in 
Chapter 5. Next, the plate buckling equations are discussed. Finally, the 
plate vibration equations are addressed. In each case, the pertinent 
boundary conditions are displayed. Nowhere in this appendix is refer
ence needed to laminated beams or plates. All that is derived herein is 
applicable to any kind of beam or plate because only fundamental equi
librium, buckling, or vibration concepts are used. 

D.2 DERIVATION OF BEAM EQUILIBRIUM EQUATIONS 

Consider the differential element of a laterally and axially loaded 
beam as in Figure D-1. There, the axial force, shear force, moment, and 
lateral load are depicted along with the pertinent changes that occur 
along the length of the differential element. 

Figure 0-1 Free-Body Diagram of a Beam Element 
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From force equilibrium in the x-direction, 

- N + (N + dN ) = O 
dx (0.1) 

which simplifies to 

~~ =0 (0.2) 

ThereJore, unless axial loads are introduced along the beam, the axial 
force 1s constant. 

From force equilibrium in the z-direction, 

V-pdx-(V + ~~ dx) =0 (0.3) 

which simplifies to 

p=- ~~ (0.4) 

Thus, the lateral loading causes a change in the shear force from point 
to point along the beam. 

From moment equilibrium about point b in Figure 0-1, 

M + (pdx) d
2
x + (V + ddV dx)dx - (M + dM dx) = o (0.5) 

X dx 
Upon neglect of higher order terms in (dx)2, 

Vdx - ( ~~ )dx = O (0.6) 

whereupon 

V= dM 
dx (0.7) 

Thus, a shear force causes a change in the moment from point to point 
along the beam. 

The boundary conditions on the ends of the beam are 

N=N 
M=M 

or 

or 

U=U 
W'=W' 

V=V or w=W 

(0.8) 

where u and w are displacements in the x- and z-directions, respectively, 
and the prime denotes a derivative with respect to x. The boundary 
conditions in the left-hand column are prescribed force (or moment) 
quantities, and the boundary conditions in the right-hand column are 
prescribed displacements or slopes. Only one of either the forces (or 
moment) or displacements can be prescribed. Thus, there are three 
boundary conditions at each end of the beam. For example, for the 
beam with a simply supported end in Figure 0-2, there is no transverse 
deflection and no moment (free rotation), but two axial boundary condi
tions are possible. . l 

W=O 

Mx=O 
u:O 

I-x 
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w=O 

Mx=O 
Nx=O 

I-x 
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Figure D-2 Boundary Conditions for a Simply Supported End Beam 

Alternatively, the beam end could have complete rotational restraint 
and no transverse displacement, i.e., clamped. However, a third 
boundary condition exists in Figure 0-3 just as in Figure 0-2. That is, 
an axial condition on displacement or force must exist in addition to the 
conditions usually thought of as comprising a clamped-end condition. 
Note that the block-like device at the end of the beam prevents rotation 
and transverse deflection. A similar device will be used later for plates. 
Whether all of the three boundary conditions can actually be enforced 
depends on the order of the differential equation set when (necessarily 
approximate) force-strain and moment-curvature relations are substituted 
in Equations (0.2), (0.4), and (0.7). 

W=O 

W,x =0 

U=O 

W=O 

W,x =0 

Nx =0 

Figure D-3 Boundary Conditions for a Clamped-End Beam 

Note that the shear equation, Equation (0.6), can be substituted in 
the transverse load equation, Equation (0.4), to get 

p=- dV =-_g_( dM )=- lM (0.9) 
dx dx dx dx2 

or, upon substitution of the approximate moment-curvature relation, 

M=-Elw" (0.10) 
we get 

p=Elw"" (0.11) 
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Thus, a fourth-order differential equation such as Equation (0.11} has 
four boundary conditions which are the second and third of the conditions 
in Equation (0.8} at each end of the beam. The first boundary condition 
in Equation (0.8) applies to the axial force equilibrium equation, Equation 
(0.2), or its equivalent in terms of displacement (u}. 

This review of the foregoing simple derivation will help you to un
derstand the following derivation of the plate equilibrium equations. The 
major difference between plate and beam problems is that beams are 
one-dimensional and plates are two-dimensional. Therefore, beams 
have ordinary differential equations as governing equations whereas 
plates have partial differential equations. Moreover, in the derivation of 
the governing differential equations, there will necessarily be more force 
equilibrium and moment equilibrium equations for plates than for beams. 

0.3 DERIVATION OF PLATE EQUILIBRIUM EQUATIONS 

Consider the differential element of a plate with accompanying in
plane forces per unit width, Nx, Ny, and Nxy, and moments per unit width, 
Mx, My, and Mxy, plus the shear forces per unit width, Ox and Oy, sub
jected to the lateral pressure p(x,y}. For emphasis, all force and moment 
quantities are expressed per unit of width of the plate element, i.e., they 
are all local intensities. The differential element is shown in Figure 0-4 
without the restraining forces and moments, i.e., the differential element 
in Figure 0-4 is not a free-body diagram! Each of the three restraining 
systems, in-plane forces, lateral forces, and moments per unit width, is 
shown on a separate figure for the sake of clarity even though all act si
multaneously. In Figures 0-5, 0-6, and 0-7, respectively, the changes 
in forces and moments are expressed as partial derivatives times the 
pertinent differential element dimension. 

y X 

~,y) 

~ 
Figure D-4 Plate under Lateral Load 
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Figure D-5 In-Plane Forces on a Differential Element 

~x 

Figure D-6 Lateral Forces on a Differential Element 

clMxy 
Mxy+aydy 

clMxy 
Mxy+axdx 

~x 

Figure D-7 Moments on a Differential Element 
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From Figure D-5 for in-plane forces, force equilibrium in the x
direction yields 

aN aN 
- NxdY- Nxydx + (Nxy + ay xy dy}dx + (Nx + ax x dx}dy = O (D.12} 

Upon cancellation of like terms and division by dxdy, 

aNx aNxy 
ax+ay°=O (D.13} 

Similarly, force equilibrium in the y-direction yields 

aN aN 
-NxydY-Nydx+(Ny+ a: dy}dx+(Nxy+ a: dx}dy=O (D.14} 

Upon cancellation of like terms and division by dxdy, 

aNxy aNY 
--+--=0 

ax ay (D.15} 

From Figure D-6 for lateral forces, force equilibrium in the z
direction yields 

-OxdY-Oydx 

aaY aa 
+ (Oy + 7iy dy}dx + (Ox+ a/ dx}dy + p dx dy = o (D.16} 

Upon cancellation of like terms and division by dxdy, 

aax aay 
ax+7iy+p=O (D.17} 

From moment equilibrium about the x-axis to which the moments 
?f Figure D-7 and t~e lateral forces of Figure D-6 contribute (but not the 
in-plane forces of Figure D-5 because they are either parallel to or per-
pendicular to the x-axis}, , 

aM aM 
MxydY + Mydx - (My+ ayy dy}dx - (Mxy + ax xy dx}dy 

dy aa aa d 
- OxdY-2 + (Oy + :-...,Y dy}dxdy + (Ox +--x dx}dy _L 

v7 ax 2 
(D.18} 

dy 
+pdxdy-=O 

2 
Upon cancellation of like terms, neglect of higher order terms in dx(dy)2 

and division by dxdy, ' 

aMxy aMY o =--+--
Y dX c)y (D.19} 

Similarly, moment equilibrium about the y-axis yields 
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aM aMxy 
0 =--x+--

x ax ay (D.20} 

The equations for the shear forces, Ox and Oy, Equations (D.20} 
and (D.19}, can be substit\Jted in the z-direction force-equilibrium 
equation, Equation (D.17}, to get 

or 

aM aM aM aM 
___Q_( __ x +~}+___Q_(~+--y )+p=O (D.21} 
ax ax ay ay ax ay 

2 2 2 
aMx aMxy aMy_ 
--+2--+----p 

ax2 axay ay2 
The boundary conditions for a plate would appear to be 

on edges x = constant: 

Nx=Nx 

Nxy=Nxy 

Mx=Mx 

Mxy= Mxy 

Ox=Ox 

on edges y = constant: 

Ny=Ny 

Nxy=Nxy 

My=My 

Mxy=Mxy 

Oy=Oy 

or 

or 

or 

or 

or 

or 

or 

or 

or 

or 

U=U 

V=V 

aw aw -=-
ax ax 

W,xy=W,xy 

W=W 

V=V 

U=U 

aw aw ay=ay 
W,xy=W,xy 

W=W 

(D.22} 

(D.23} 

(D.24} 

In plate theory, the problem is reduced from the deformation of a 
solid body to the deformation of a surface by use of the Kirchhoff hy
pothesis (normals to the undeformed middle surface remain straight and 
normal after deformation, etc., as discussed in Chapter 4}. Then, we 
attempt to apply boundary conditions to that surface which is usually the 
middle surface of the plate. There should be no surprise that the 
boundary conditions for the unapproximated solid body are not the same 
as those for the solid approximated with a surface. The problem arises 
when these boundary conditions are applied to an approximate set of 
equilibrium equations that result when force-strain and moment-curvature 
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relations are substituted in Equations (0.13), (0.15), and (0.22). 
example, if we substitute approximate moment-curvature relations, 

For 

M = X 

3 

Et 2 (Kx + VKy) 
12(1 -v ) 

Et3 

My= 2 (Ky+ VKx) 
12(1 -v ) 

Et3 

and approximate curvature expressions, 

a2w 
1( =---
x ax2 

a2w 
1<y=- al 

a2w 
Kxy=- axay 

then Equation (0.22) becomes 

4 4 4 
aw+2 aw +aw=..E.._ 
ax 

4 
ax2ay2 ay 4 0 

(0.25) 

(0.26) 

(0.27) 

This fourth-order partial differential equation can have only two boundary 
conditions on each edge for a total of eight boundary conditions. Thus, 
some step in the approximations leading to Equation (0.27) must limit the 
boundary conditions from those displayed in Equations (0.23) and (0.24) 
because there three boundary conditions occur for each edge for a total 
of twelve boundary conditions. This dilemma has been resolved histor
ically by Kirchhoff who proved that the boundary conditions consistent 
with the approximate differential equation, Equation (0.27), are 

aMxy _ 
~=Qx-ay=Kx or W=W 

Mx=Mx or W,x=W,x 
(0.28) 

aMxy _ 
W=W Ky=Oy-ax=Ky or 

My=My or w,y=w,y 

where Kx and K are called the Kirchhoff shear forces. 
Note that the in-plane boundary conditions do not present such a 

dilemma. For example, if approximate force-strain relations 
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Et Nx=--2 (u,x+vv,y) 
1-v 

Et NY= --2 (v,y + vu,x) 
1-v 

(0.29) 

Et 
Nxy = 2(1 + v) (u,y + v,x> 

are substituted in the in-plane equilibrium equations, Equations (0.13) 
and (0.15), then 

u,xx + vv,xy + (1 -v)(u,yy + v,xy) = 0 

(1 - v)(u,yx + v,xx) + v,yy + vu,xy = 0 
(0.30) 

This set of partial differential equations has two boundary conditions at 
each edge which are represented by the first two choices in Equations 
(0.23) and (0.24). When the geometric bou~dary condition of ed~e re
straint in the z-direction is considered, the Kirchhoff shear force 1s not 
active as a boundary condition. 

The types of boundary conditions that the~ exi_st for a simply sup
ported edge with constant value~ o~ x are shown .1~ Figure 0-8 alonQ with 
a geometric interpretation of their in-plane cond1t1ons. In all four simply 
supported edge boundary conditions, the knife-ed~e support prevents 
transverse displacement, w, and allows free rotation (abo~t the p~ate 
middle surface which is difficult to visualize), so the moment 1s zero, 1.e., 
Mx = o. For S1 conditions, the base of the knife-edge support cannot 
move, so the in-plane displacements, u an~ v, must _be zero: For S2 
conditions, the knife-edge support rolls without resistance in the x
direction but cannot move in the y-direction, so Nx = 0 (u * O) and v = 
o. For S3 conditions, the knife-edge support rolls without resistance in 
the y-direction, but cannot move in the x-direction, so Nxy = 0 (v * ~) and 
u = o. Finally, for S4 conditions, the knife-edge support can roll without 
resistance in both the x- and y-directions, so Nx = 0 (u * 0) and 
Nxy = 0 (v * 0). 

W=O 

Mx=O 

U=O 

@ 
w=O 

Mx= 0 

Nx=O 

@ @ 
W=O w=O 

Mx=O Mx=O 

U=O Nx = 0 

v = O V = 0 Nxy = 0 Nxy = 0 

Figure D-8 Simply Supported Edge Boundary Conditions for a Plate 
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The analogous four boundary conditions for clamped edges are 
more difficult to perceive. The first impression for what constitutes a 
clamped edge might be the C1 condition of no displacements, u, v, and 
w, and no rotation, awiax. However, a clamped edge is commonly in
terpreted to mean only that the transverse displacement, w, and the edge 
rotation, aw1ax, are both zero without specifying any in-plane displace
ment conditions. Accordingly, the clamping fixture in Figures D-3 and 
D-9 restrains both transverse displacement, w, and edge rotation, 
awiax. The way the clamping fixture is itself supported determines the 
in-plane boundary conditions. Thus, if the clamping fixture cannot move 
in the x-y plane, then u = 0 and v = O for the C1 boundary condition. 
Or, if the clamping fixture can roll in the x-direction, then N = 0, but v = 
0 because no displacement occurs in the y-direction for the t2 boundary 
condition. Next, if the clamping fixture can roll in the y-direction but not 
in the x-direction, then Nl<Y = O and u = 0. Finally, if the clamping fixture 
can roll in both the x- and y-directions as if supported on frictionless balls, 
then the in-plane forces must be zero, i.e., Nx = 0 and Nl<Y = 0. 

@) @ @) @ 
W=O W=O W=O W=O 

W,x W,x W,x w,x 

U=O Nx=O U=O Nx= 0 

V=O V=O Nxy = 0 Nxy=O 

Figure D-9 Clamped-Edge Boundary Conditions for a Plate 

Now recognize an apparent contradiction in classical plate theory. 
First, from force equilibrium in the z-direction, we saw transverse shear 
forces ax and ay must exist to equilibrate the lateral pressure, p. How
ever, these shear forces can only be the resultant of certain transverse 
shearing stresses, i.e., 

ax= Jcxzdz ay = Jcy2dz (D.31) 

However, these transverse shearing stresses were neglected implicitly 
when we adopted the Kirchhoff hypothesis of lines that were normal to 
the undeformed middle surface remaining normal after deformation in 
Section 4.2.2 on classical lamination theory. That hypothesis is inter
preted to mean that transverse shearing strains are zero, and, hence, 
by the stress-strain relations, the transverse shearing stresses are zero. 
The Kirchhoff hypothesis was also adopted as part of classical plate 
theory in Section 5.2.1. 
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The contradiction is that the transverse shearing stresses 'txz and 
't must be nonzero as demonstrated with the equilibrium equations, yet 
J~ assume these stresses to be zero by virtue of the Kirchhoff hypoth
esis. Where does the truth lie? Of course, the equilibrium equations are 
fundamental to all our deliberations, so the transverse shearing stresses 
must exist. Accordingly, even though we have supposedly ignored the 
transverse shearing stresses, we can actually calculate their resultants 
by use of the equilibrium relations in Equations (D.19) and (D.20). 
However, we have no information on the distribution of the transverse 
shearing stresses through the thickness of the plate. . . . . 

we can reexamine the beam problem to determine the d1stnbut1on 
of the transverse shearing stress 'txz· We know that the resultant of 'txz 
is V which we obtain from Equation (D.7), i.e., 

V= dM (D.32) 
dx 

The distribution of 't for an isotropic beam of rectangular cross section 
comes from integrat~n of the the stress-equilibrium equation 

'txz,z = - crx,x (D.33) 

to obtain 

't = _:j_ [ _f_ _ z2] (D.34) 
xz 21 4 

which is the usual parabolic shear stress distribution. 
However, the foregoing derivation is valid only for isotropic be~ms 

of rectangular cross section. For beams of nonrectangular _cross section, 
the parabolic stress distribution is not correct. Also, for laminated beams, 
the parabolic distribution is most assuredly incorrect because o_f layer 
inhomogeneity. In fact, for laminated beams, we must expect d1ffer~nt 
shapes of stress distribution in each l_ayer as s~en in Figure 6-1~ fo~ wide 
beams (there interpreted as cylindrical bending of a long stnp, 1.e., a 
special plate). 

Accordingly, we find it difficult to determine the distribution of the 
transverse shearing stress in a beam, much less in a plate. Procedures 
for determining the approximate transverse shear stress distribution in 
plates are described in Section 6.5.2. 

We have observed that the kinematics and the kinetics of the plate 
(and beam) problem are not c~nsistent. H_oweve~. such inconsi~tencies 
are an inherent part of mechanics of materials which must contain some 
inconsistencies; otherwise, mechanics of materials would be elasticity! 

D.4 PLATE BUCKLING EQUATIONS 

The plate buckling equations inherently cannot be derived from the 
equilibrium of a differential element. Instead, the buckling problem re
presents the departure from the equilibrium state when that state be
comes unstable because the in-plane load is too high. The departure 
from the equilibrium state is accompanied by waves or buckles in the 
surface of the plate. That is, the plate cannot remain flat when the 
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buckling load is exceeded. Description of the process necessary to 
derive the buckling equations is far too lengthy to present here. Instead, 
see Jones [D-1], Timoshenko and Gere (D-2], or Brush and Almroth 
[D-3]. 

Instead of displacements, forces, and moments as in the equilib
rium or bending problem, the buckling problem is formulated in terms of 
variations or changes in the displacements, forces, and moments from 
their values in the prebuckling equilibrium state. Thus, instead of u, v, 
w as displacements, we have 6u, 6v, 6w as buckling displacements (in 
addition to the displacements that occurred in the equilibrium state prior 
to buckling). Such displacements might only consist of end shortening 
of a column, but no transverse displacement. Also, instead of Nx, Ny, 
Nxy, Mx, My, Mxy, we have 6Nx, 6Ny, 6Nxy, 6Mx, 6My, 6Mxy. The graphical 
depiction of the buckling boundary conditions is the same as for the 
equilibrium boundary conditions in Figures D-8 and D-9. 

The buckling problem is separate from the equilibrium problem. 
Thus, the buckling boundary conditions are formulated somewhat differ
ently from those of the equilibrium problem. For instance, all buckling 
boundary conditions are homogeneous, i.e., the right-hand sides of all 
the variable equations are zero. For example, along an edge x = con
stant: 

6Nx=O or 6U=0 

6Mx=O or c)(6w)/dX=0 

6Kx=O or 6w=O 
(D.35) 

6Nxy=O or 6v=O 

The load in the buckling problem is introduced in the prebuckling equi
librium state, and the value of the load is the objective of the eigenvalue 
or proper value or characteristic value problem. That is, the buckling load 
is the eigenvalue, proper value or characteristic value of the buckling 
problem. The eigenvalue appears in the governing differential equations, 
but not in the boundary conditions. 

D.5 PLATE VIBRATION EQUATIONS 

The vibration problem is strictly analogous to the buckling problem. 
Accordingly, because of similar complexity, the derivation of the vibration 
equations is not attempted. The vibration boundary conditions are iden
tical to the buckling boundary conditions. 
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unsymmetric 323-327 
vibration 315-320, 327-328 

Cross-ply ratio 224 
Cruse, T. A. 345 
Curing 23-26 
Cylindrical bending 346-350 

-D-

Damage 
fatigue 333-336 
growth 333-336 
mechanics 333 

Daniel, I. M. 269-270 
Davies, G. J. 165, 167 
Davis, J. G. 364 

Index 

de Malherbe, M. C. 152, 156 
Debonding 261 

See also Delamination 
Deflection 382 
Deflection of plates 

See Bending of laminated plates 
Delamination 260, 271-272, 333 
De lamination-suppression 

concepts 274-275 
Design 373, 431 

buckling-critical 399 
constraints 434 
cost-effective 398 
isotropic plate 431 
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laminate 431-440, 446-453, 461-462 
least-weight 398 
merit function 434 
simplified design space 439 
stiffness-critical 399 
strength-critical 399 
testing during 388, 389 

Design drivers 372, 378, 382, 385-386, 
390,463 

Design elements 376-380 
Design failure criteria 370, 422-425 
Design load definitions 424-425 

design load limit 424 
design ultimate load 424 
ultimate load 424 

Design modification 
See Design reconfiguration 

Design objectives 372, 385, 448 
Design parameters 

See Design variables 
Design philosophy 371,374 
Design requirements 370, 373, 380-381, 

384,389, 422-425,427 
Design space 377 
Design variables 370-371, 373, 377-378, 

383,426 
Design-analysis 386 

final 387-389 
intennediate 387-388 
iterations 384-385 
philosophy 453-463 
preliminary 387-388 
stages 386-389 

Design-analysis iterations 384-385 
Design-analysis philosophy 453-463 
Design-analysis stages 386-389 
Detailed design 388 
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Deterministic 373-37 4, 381, 432, 434 
Dickerson, E. O. 69 
Dietz, A. G. H. . 3 
Diffusion coefficient 245 
DiMartino, B. 69 
Dispersion-stiffened composite 

material 135, 137-143, 158-159 
Doner, D. A. 152,156,254 
Dong, S. B. 191, 361 
Dow, N. F. 169-172, 1n, 181-182 
Duke, J. C. 333 

-E-

Eccentrically stiffened plates and 
shells 221 

See also Coupling 
Eisenmann, J. A. 335, 345 
Ekvall, J.C. 47, 135 
Elastic constants 

See also Compliances, Engineering 
constants, Stiffnesses 

definition 118 
restrictions on 67 

Elasticity 264-268, 340-341, 343, 
346-348, 350, 353-354 

Elasticity approach to 
micromechanics 122, 126, 137-163 

bounding techniques 137-144 
contiguity 147-151 
discrete element approaches 125, 

137,145 
exact solutions 137, 145-147 
Halpin-Tsai equations 151-158 
microstructure theories 137, 158 
self-consistent models 137, 147 
statistical approaches 137 
variational techniques 137 

Electrical conductivity 359 
Energy 424 
Engineering constants 63-64, 118, 191 

apparent for orthotropic lamina 80 
restrictions on 67 

Environmental effects 359-361 
Epoxy 5, 393-394 
Eudaily, A. R. 47-48 
Euler 374, 399 
Ewing, M. S. 329 
Expansional strains 242-246, 360 
Extrema of material properties 81-85 

118 ' 

-F-

Factor of safety 382-383, 448 
Failure 370 

benign 382 
catastrophic 382 
modes 381 

Failure analysis 382-383 
Failure criteria 370 

for a lamina 102-118 
for a laminate 237-260 
Hoff:nan criterion 105, 112-114, 422 
maximum strain criterion 105 

10?-109, 112, 435, 453 ' 
maximum stress criterion 105-107 

112 ' 
Tsai-Hill criterion 105, 109-112, 

115-116, 241, 246, 249-250 
256-258 ' 

. Tsai-Wu criterion 105, 114-118 
Failure envelopes 102-105 
Fatigue 2, 7, 272, 333-336 339 370 
398,440 ' ' ' 

Fatigue life 390 
Fatigue strength 272, 333-336, 339 Fem, P. 363 
Fiber buckling 171-183 

extensional mode 171-178, 180-183 
shear mode 171-174, 179-183 
transverse mode 171-178 180-1B3 

Fiber misalignment factor 149' 160 
Fiber selection factors 391 ' 
Fiber-matrix interface 339 360 
Fib~r-reinforced laminated ~omposite ma-
tenals 

advantages of 11 
applications of 37-52 
constituents of 15-18 
curing of 23-26 
current and potential uses of 37_38 
definition of 11 
lay-up of 19-23 
manufacturing of 18-26 
molding of 20-23 
quality control factors 26 
tailoring of 12 18 

Fiber-volume fracti~n 123 
Fiberglass-epoxy 1 o 
Fibers 

boron 4 
carbon 4 
contiguity factor 147, 149-151, 

160-163 
definition of 3 
diamond array 145-146 
function of 15 
glass 3 
graphite 4 
hexagonal array 146 
initial form 18 

misalignment factor 149, 160 
properties of 3-4, 16 
random arrangement 147 
restrictions on micromechanical be-

havior 124 
square array 146 
staggered square array 145-146 

Fibrous composite materials 
definition of 2 

Filament winding 19-20, 74,119,410 
Final design-analysis 388-389 
Finite difference approach 145, 266-267, 

289 
Finite element approach 125, 145, 289 
First-ply failure load 452 
Flaws 339, 343 
Flom, D. G. 4 
Fourier series 289, 291-292, 296,328 
Foye, R. L. 152, 154, 272 
Fracture mechanics 339-345 

application to composite 
materials 343-345 

basic principles of 340-342 
crack extension modes 340 
fracture process 339 
strain-energy-release rate 340-341 
stress-intensity factors 342-344 

Free thermal strain 242 
Fried, N. 359 

-G-

Galerkin method 289, 306 
Galvanic corrosion 361 
General Dynamics F-111 wing-pivot 

fitting 38-40 
Generally orthotropic lamina 77-79 

See also Orthotropic lamina 
Generally orthotropic laminate 214 
Gere, J.M. 174-175, 301, 506 
Girkmann, K. 350 
Glass fibers 3 
Glass-epoxy 22, 30-31, 74, 81-82, 91, 

100-101, 105-107, 109, 111-113, 118, 
143, 149, 152-155, 160, 162, 164, 
171-172, 180-182, 334,336,343, 359, 
361, 380, 485-488 

Glass-transition temperature 360 
Goland, M. 419 
Graphite fibers 4 
Graphite-epoxy 17, 29-30, 33, 35, 38, 41, 

43-44, 47-48, 50, 52, 84, 98, 100-101, 
113-114, 147, 152, 184, 221, 245, 267, 
269, 297-298, 300, 310-313, 319,321, 
325-328, 336, 347, 354-361, 369, 380, 
391-392, 395-397, 415, 421, 457-458, 
485, 491-494 

Greszczuk, L.B. 171, 182, 336-338 

Griffith, A. A. 340 
Grumman X-29A 45 
Gurland, J. 158 

-H-

Hadcock, A. N. 439 
Hahn,H.T. 99,362 
Halpin-Tsai equations 123, 126, 137, 

151-157 
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Halpin, J.C. 97-98, 119-120, 123, 126, 
151-155, 199,363,365,466,485, 
489-494 

Hansen, M. P. 345 
Han, B. 269 
Hart-Smith, L. J. 103, 420, 422 
Hashin, 2. 143-144, 147, 159, 163, 170, 

362 
Hatfield, S. J. 348 
Henkel, J. 48 
Henneke, E. G. 333 
Hennemann,J.C.F. 286 
Herakovich, C. T. 362 
Hermans, J. J. 147, 151-152 
Herrmann, L. A. 145 
Heterogeneity 11, 122 
Hewitt, R. L. 152, 156 
High-speed civil transport 49-50 
Hill, A. 105, 109, 111-112, 115-116, 147, 

151,241,246,249,256,258,422 
Hinger, R. J. 329 
Hoffman failure criterion 105, 112-114, 

422 
Hoffman, o. 112,422 
Holes in laminates 336-339 
Hollister, G. S. 362 
Homogeneity 11, 122 
Hooke's law 118 
Howell, H. B. 100 
Ho, P. B. C. 361 
Humidity 359 
Husman, G. E. 246, 360 
Hyer, M. W. 356-359 
Hygroscopic stresses 245-246 

-1-

lfju, P. 269 
Impact resistance 345 
Inhomogeneity 11-12 

definition of 11 
Innovative fabrication 463-464 
Interaction strength 114-118 
lnterlaminar stresses 260-275, 459-460 

angle-ply laminates 260-275 
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boundary layer effect 267 
cross-ply laminates 271, 273 
delamination-suppression 

concepts 274-275 
elasticity solution 264-268 
experimental confirmation 269-270 
implications 272-274 

Intermediate design-analysis 388 
Invariant properties 85-87 
Invariant stiffness concepts 85-87, 

440-447 
Irwin, G. R. 340-341 
Isotropic material 

See also Isotropy 
definition of 11 
isotropic behavior 12-14 
plane stress state 70 
strain-stress relations 62 
stress-strain relations 60 

Iteration 373, 380, 384, 424 

-J-

Jackson, A. C. 47-48 
Johnson, R. 48 
Joints 369, 376-377, 383, 417-422 

bolted 417, 420-421 
bonded 417-420 
bonded-bolted 417, 421 
failures in bolted joints 420-421 
failures in bonded joints 420 
shimmed 421 

Jones, R. M. 81, 91, 99, 221, 275, 286, 
307-308, 310-312, 314, 320, 322-327, 
361-362, 364,406,408,457,506 

Judge, J. F. 26 
June, R. R. 182-183 

-K-

Kaminski, B. E. 335, 345 
Keiffer, R. 158 
Kelly, A. 165, 167 
Kevlar 49@-epoxy 100-101 
Kevlar-epoxy 30, 413, 457-458 
Kim, R. Y. 113-114 
Kirchhoff free-edge condition 283, 352 
Kirchhoff hypothesis 192-195, 281, 

347-348, 504 
Kirchhoff shear force 502 
Kirchhoff-Love hypothesis 192-195 
Konish, H.J., Jr. 345 
Krock, R. H. 363 

-L-

Lager, J. R. 182-183 
Lamina 

definition of 15, 55 
design 85 
invariant properties of 85-87 
restrictions on micromechanical be-

havior 124 
strength 88-118 
stress-strain behavior 191 
unidirectionally reinforced 15, 27-28 

Lamina stiffness 
in fiber direction 88, 91, 93-95 
shear 88,91,96-101,115 
transverse to fiber direction 88, 91, 

95-96 
Lamina strength 

in fiber direction 88, 91, 93-95 
shear 88, 91, 96-101, 115 
transverse to fiber direction 88, 91, 

95-96 
Laminate 435 

See also Angle-ply laminate 
See also Cross-ply laminate 
antisymmetric 214-222 
balanced 220-221 
curing 206,239 
cylindrical bending 346-350 
definition of 6, 17, 187 
design 431-440, 446-453, 461-462 
displacements 192-193 
environmental effects 359-361 
forces and moments 195-199 
fracture mechanics 339-345 
holes in 336-339 
hybrid 221 
interlaminar stresses 260-275 
Invariant stiffness concepts 440-447 
joints 417-422 
macromechanical behavior 

of 187-275 
manufacturing 18-26 
notation 219 
postcuring shapes 356-359 
purpose of 18 
quasi-isotropic 219-220, 435, 445 
regular 210-212, 216-217, 219 
stacking sequence 219, 240, 272, 

379,449 
stiffnesses 198-237 
strain and stress variation 191-195 
strength 237-260 

analogy to plate buckling 237 
analysis procedure 240-242 
fatigue 272, 333-336, 339 

symmetric 206-214, 354 
symmetry 439 
tailoring 378 

temperature-dependent properties 
of 197 

unsymmetric 206,214, 218-219, 
356-359 

Laminate behavior 
brittle 449 
ductile 449 
energy absorption 449 
fatigue 449 
load-deflection behavior 449 

Laminate design 431-440, 446-453, 
461-462 

laminae reorientation 436 
Laminate design problem 434, 450 
Laminate life-prediction techniques 451 
Laminate optimization 431-440, 446-453, 

461-462 
Laminate stacking sequence 379, 449 
Laminate strength analysis 

procedure 450 
Laminate tailoring 378 
Laminated composite materials 

See also Laminate 
definition of 2, 6 
types of 6-8 

Laminated glass 7-8 
Laminated plates 277-329 

behavioral restrictions and assump
tions 279-282 

bending 277-279, 282-285, 289-301, 
323-325 

boundary conditions 283-285, 
287-288 

buckling 277-279, 285-288, 301-315, 
323-329 

governing equations 279-289 
initial Imperfections 303 
Kirchhoff hypothesis 281 
stiffnesses 325-326 
vibration 277-279, 288, 315-322, 327 

Laminated shells 361 
Langhaar, H. L. 292, 483 
Latour, R. A. 183 
Law of Mixtures 

See Rule of Mixtures 
Least-cost structures 368-369, 375,412, 

425 
Least-weight structures 375,377,425, 

427 
Leissa, A. W. 295,298,329 
Lekhnitskii, S. G. 79, 336 
Lempriere, B. M. 68 
Liebowitz, H. 364, 466 
Life 424 
Life-cycle cost 32, 368, 385 
Lightning 359 
Linear stress-strain behavior 16-17, 

91-99, 102 
Lockheed L-1011 vertical fin 47-48 
Lockheed Martin F-22 46 
Longitudinal stiffness 101, 127-128, 149 
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Longitudinal strength 88, 91-95, 101 
Lubin, G. 394 

-M-

MacDonald, D. 118 
Macromechanics 

definition of 12, 55, 122 
Major Poisson's ratio 132 
Mandell, J. F. 306 
Manufacturing 18-26, 376, 424 

filament winding 19-20 
molding 20-23 
pultrusion 22-23 
resin-transfer molding 20-21 
roll forming 22 
sheet molding 22 
tape laying 19-20 

Manufacturing processes 368 
contrast between metals and compos

ites 464 
Materials selection 369, 376, 389-400 

factors 390 
Materials utilization factor 33 
Mathews, F. L. 422, 466 
Matrix selection factors 392 
Matrix (material) 15, 55 

bismaleimides 394 
carbon 394 
definition of 5 
epoxy 393-394 
function of 15 
peek 394 
phenolics 394 
polyester 393 
polyimide 393-394 
polysulfone 394 
properties of 5-6 
restrictions on micromechanical be-

havior 124 
thermoplastic 393-394 
thermoset 393-394 
vinyl ester 393 
volume fraction 123 

Matrix (mathematical) 56-63 
addition 470 
adjoint 471 
algebra 467-472 
cofactor 469 
column 468 
compliance 58 
Cramer's rule 472 
definition of 467 
determinant of 469 
diagonal 468 
identity 468 
Inverse 471 
inversion 471 
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multiplication 470 
nonsingular 472 
principal or main diagonal of 468 
reversal laws for 472 
row 468 
scalar 468 
singular 471 
solution of linear equations 471 
square 467 
stiffness 56, 57 
subtraction 4 70 
symmetric 468 
transpose 468 
unit 468 

Maxima and minima of functions of a sin
gle variable 479-483 

Maximum strain failure criterion 105, 
107-109, 112,435,453 

Maximum stress failure 
criterion 105-107, 112 

McCullers, L. A. 435 
Measurement of stiffness 

cross-beam test 99-100 
for a lamina 91-102 
rail sheartest 1 00 
torsion-tube test 99 
uniaxial tension test 93-98 

Measurement of strength 
cross-beam test 99-100 
for a lamina 91-102 
rail shear test 1 00 
torsion-tube test 99 
uniaxial tension test 93-98 

Mechanical behavior of composite materi
als 11-14 

Mechanical properties 100-101 
Mechanics of materials approach to 

micromechanics 
of stiffness 123, 126-137, 158-164 
of strength 126, 163-183 

Mechanistic relationships 371, 374, 376, 
386 

Merit function 377-378, 427, 434 
Metal matrix materials 23, 392 
Microcrack 

See Cracks _ 
Micromechanics 393, 454, 457-458 

definition of 12, 122 
elasticity approach 122, 137-163 
mechanics of materials 

approach 122, 126-136 
of stiffness 123 
of strength 123 
representative volume element 124 
restrictions on theory 123 
strain assumptions 126 

Mindlin, R. D. 350 
Minimum complementary energy 138 
Minimum potential energy 140,479 
Modes of failure 381 
Mohr's circle 477 

Moire technique 269 
Moisture 359-360 
Moisture absorption 245-246, 360 
Molding 20-23 
Monoclinic material 59 

plane stress state 70 
strain-stress relations 61 
stress-strain relations 59 

Morgan, H. S. 99, 314, 322-324, 
361-362, 457 

Mosesian, B. 47-48 
Muskhelishvili, N. I. 145 

-N-

Nanyaro, A. P. 118 
Narayanaswami, R. 117 
Narrow optimum design 378 
NASTRAN 388-389 
Netting analysis 137, 253 
Newton's method 430 
Nishimatsu, C. 158 
Nodal line 302 
Nomex 413 
Nondeterministic 37 4, 433-434 
Nonlinear behavior 458 
Nonlinear stress-strain behavior 362 
Nonsymmetric laminate 

See Unsymmetric laminate 
Norris, C. H. 355 
Northrop Grumman B-2 45-46 
Noton, B. R. 365,412 

-0-

O'Brien, R. 48 
Olsen, F. 0. 435 
Open- versus closed-section 

stiffeners 405-407 
OPLAM 435, 439 
Optimization 370-371, 376-377, 385, 

425-454 
artificial constraint 437 
brute-force search 428-429, 433, 

435 
constraints 427, 434 
fundamentals of 426 
laminate 431 
mathematical 370, 428-430 
merit function 427, 434 
nonlinear 429 
strength 435 
structural 426 
Tsai's laminate ranking 

procedure 433 

Orthogrid 410-411 
Orthotropic lamina 70-73 

See also Generally orthotropic lamina 
See also Specially orthotropic material 
definition of 70-73 
invariant properties of 85-87 
stiffness in arbitrary 

coordinates 74-84 
strength 88-118 

Orthotropic material 59 
compliances for 64 
definition of 11 
engineering constants of 63 
invariant properties of 85-87 
orthotropic behavior 12-13 
plane stress state 70 
strain-stress relations 61 
stress-strain relations 59 

Orthotropic modulus ratio 298, 300, 
311-312,314, 320,322,328 

See also Stiffness ratio 
Orthotropy 191,200,264,282, 336-337, 

343-344,346, 348,350,455 
Overdesign 383, 384, 404, 447 

-P-

Padding up 409 
Pagano, N. J. 85, 87, 89, 97-99, 

119-120, 261,264,266, 268-273, 
346-347, 348-350, 353, 355, 363, 365, 
440-443, 446-447, 460-461, 466 

Particulate composite materials 158-159 
definition of 2, 8 
types of 8-1 O 

Particulate reinforcement 2, 8-10, 136, 
158-159, 163 

Paul, B. 137, 143, 158-159, 163 
Perrone, N. 364, 466 
Petit, P. H. 199, 485, 489-494 
Philips, L. N. 365 
Pinckney, R. L. 334 
Pipes, R. B. 99, 113-114, 116-117, 

245-246, 261,264,266, 268-273, 460 
Pister, K. S. 145,191,361 
Plane stress 70 
Plastic deformations 340, 362 
Plastic-based laminates 8 
Plate aspect ratio 279 
Plate boundary conditions 501-503 
Plate buckling equations 505-506 
Plate equilibrium equations 498-505 
Plate vibration equations 506 
Plates, laminated 

See Laminated plates 
Ply drops 409 
Plywood 2 
Poisson's ratios 13, 63-67, 84, 101 

lnutlX 515 

apparent 140-143 
apparent for a lamina 132-133, 

142-143, 148 
definition of 64 
effect on transverse modulus 131 
restrictions on 67-70 

Polymer matrix materials 392 
Polymers 

branched 5 
cross-linked 5 
linear 5 

Postcuring shapes of laminates 356-359 
Post, D. 269 
Potential energy 357 
Preliminary design-analysis 387-388 
Principal material coordinates 

definition of 59 
shear strength in 89 

Principal material directions 59 
See also Principal material coordi-

nates 
definition of 59 
determination of 67 
nonalignment with coordinate di-

rections 74 
Principle of minimum complementary en

ergy 138 
Principle of minimum potential 

energy 140, 479 
Principle of stationary potential 

energy 292, 479 
Pultrusion 22-23 

-Q-

Quasi-isotropic laminate 219-220, 435, 
445 

-R-

Radiation 361 
Rail shear test 100 
Rayleigh-Ritz method 289, 292-294, 306, 

318,328 
RC7 435 
Reciprocal relations 65, 68, 72, 80, 95 

generalized Betti's law 66 
Reddy,J. N. 91,277 
Reduced bending stiffness 

approximation 328-329, 456 
Reduced stiffnesses 71, 77, 191 
Reed, D. L. 335 
Regular antisymmetric angle-ply 

laminate 217, 232 
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Regular antisymmetric cross-ply 
laminate 216 

Regular laminate 210-212, 216-217, 219 
Regular symmetric angle-ply 

laminate 212, 232 
Regular symmetric cross-ply 

laminate 210 
Reifsnider, K. L. 333 
Reissner variational theorem 355 
Reissner, E. 191,350,355,419 
Representative volume element 124-134, 

145-146, 168, 172 
definition of 124 

Resin-transfer molding 20-21 
Reuter matrix 75-76, 78 
Reuter, R. C. 75 
Riley, M. B. 147 
Roll-forming 22 
Rosen, B. W. 4, 143-144, 147, 163, 

168-172, 1n. 101-102 
Rule of mixtures 127, 132, 135, 138, 144, 

149, 151, 156, 159 
Rutan Voyager 48 

-S-

Saint-Venant, Barre de 
end effects 97 
semi-inverse method 145 

Salkind, M. J. 333, 335, 362 
Savin, G. N. 336 
Schapery, R. A. 362 
Schmit, L. A. 431, 447 
Schuerch, H. 182-183 
Schwartzkopf, P. 158 
Schwartz,H.S. 120 
Schwartz, M. M. 394 
Schwartz,R. T. 120 
Self-consistent model 137, 147, 151 
Semi-inverse method 145 
Sendeckyj, G.Y. 118, 137, 147, 158 
Sensitivity studies 371, 378 
Separation of variables 289, 291 
Serafini, T. T. 345 
Shear deformation theory 350-355 
Shear moduli 13, 63-64, 99-101, 

133-134, 149, 151-152 
Shear stiffness 88, 91, 96-101, 115, 

133-134, 149 
Shear strength 88, 91, 96-101, 115 
Shear-extension coupling 14, 59, n, 81, 

91, 97,205, 211-213, 230, 235-237, 258, 
269,273, 2n-210, 291,306,317,348, 
439, 454-455 

Shear-shear coupling 80 
Sheet molding compound 22 
Shells, laminated 361 
Shen, C. H. 245 

Shockey, D. 99 
Shtrikman, S. 143, 159 
Sierakowski, R. L. 2n 
Signorelli, R. A. 365 
Sih, G. C. 345 
Sims, D. F. 362 
Skew plates 293-307 
Softening strip concept 338-339 
Solution techniques 288-289 

complex variable mapping 145 
fin!te differences 145, 266-267, 289 
finite elements 125,145,289 
Galerkin method 289 
Rayleigh-Ritz method 289 
semi-inverse method 145 
separation of variables 289 

Space effects 361 
Specially orthotropic lamina 76, 78 

See also Orthotropic lamina 
Specially orthotropic laminate 214, 

278-279, 290-291, 303-305, 315-317 
Specific stiffness 3-4, 27-31 
Specific strength 3-4, 27-31 
Springer, G. S. 245, 276, 360 
Stacking sequence 219, 240, 272 
Stansbarger, D. L. 100 
Stationary potential energy 292, 479 
Stavsky, Y. 191, 355 
Stiffened structures 400, 414 

See also Stiffeners 
advantages of composite 

materials 401 
honeycomb core 414-415, 421 
isogrid 411 
metal versus composite 402 
optimization 402 
orthogrid 410-411 
sandwich core 414 
shells 361 

Stiffener design 407-410 
Stiffeners 379,400 

design 407-410 
design parameters 407 
eccentricity 408 
embedded stiffening strap 404 
hat 405-406 
manufacturing 403 
open- versus closed-section 405 
optimum design 404 
sandwich-blade 405-406 
types 403 

Stiffening strip concept 338-339 
Stiffness 2, 26-31, 381,390,398,423 
Stiffness in fiber direction 88 
Stiffness ratio 225 

See also Orthotropic modulus ratio 
Stiffness tensor 91, 102 
Stiffness transverse· to fiber direction 88 
Stiffness-sensitive structures 386 
Stiffnesses 

See also Coupling 

bending 198-199 
bending-extension 198 
comparison of measured and pre-

dicted 222-237 
definition of 56 
elastic constants 58 
extensional 198-199 
for bending-extension coupling 199 
in fiber direction 88, 91, 93-95 
inversion of 222-224 
laminate 198-237 
measurement of 91-102, 229-232, 

235-236 
mnemonic notation for 58 
of anisotropic layer 205-206 
of generally orthotropic layer 205 
of isotropic layer 203-204 
of specially orthotropic layer 204-205 
reduced 191 
relation to compliances for orthotropic 

materials 66 
restrictions on 68 
shear 88, 91, 96-101, 115 
special cases for 203-222 
symmetry of 58 
transformation of n, 85 
transformed reduced 191 
transverse to fiber direction 88, 91, 

95-96 
unequal in tension and 

compression 89-91 
Stinchcomb, W. W. 333 
Strain distribution 281 
Strain energy 138-141, 340-341, 345 
Strain-displacement relations 56, 193, 

265 
Strain-energy-release rate 340-342 
Strain-stress relations 

anisotropic 60 
isotropic 62 
monoclinic 61 
orthotropic 61 
plane stress (orthotropic) 71 
transversely isotropic 61 

Strains 
engineering shear strain 56-57, 75 
expansional 242-246 
linear strain-displacement 

relations 56 
principal 88 
tensor shear strain 56-57, 75 
transformation of 7 4 
volumetric strain 67 

Street, K. N. 365 
Strength 2, 26-31, 390, 398, 423 

See also Anisotropic lamina 
See also Generally orthotropic lamina 
See also Orthotropic Lamina 
See also Specially orthotropic lamina 
analogy to plate buckling · 238 
angle-ply laminate 255-258 

111dex 517 

axial 88 
cross-ply laminate 246-255 
experimental determination 

of 91-102 
fatigue 272, 333-336, 339 
in fiber direction 88, 91, 93-95 
longitudinal 88 
of a laminate 237-260 
of an orthotropic lamina 88-118 
shear 88, 91, 96-101, 115 
transverse to fiber direction 88, 91, 

95-96 
unequal in tension and 

compression 89-91, 115 
Strength in fiber direction 88 
Strength tensor 91, 102, 115 
Strength transverse to fiber direction 88 
Stress concentration 409 
Stress concentration factor 336-339, 
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