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Preface to the Dover Edition 

Sputnik, the world's first artificial satellite , was successfully launched into 
orbit around the earth on October 4, 1957, thus initiating the Space Age . 
Introduction to Space Dynamics was first published four years later, in 1961. 
Although it is already a quarter century later, the basic nature of the text makes it 
still useful and appropriate for instruction today. 

Fundamental principles of dynamics are invariable , and only the problems to 
which they are applied change with time . The development of the high-speed 
electronic computer has radically changed the way we solve these problems 
today. Computers have opened a new means of tackling a host of more complex 
problems and have solved these problems with the speed and accuracy de­
manded by modem technology. They have not, however, eliminated the neces­
sity for the analytical study of basic principles. In this respect. the author is 
pleased with Dover Publications for making this introductory textbook 
available once again to the students , engineers , and scientists who wish to 
study in this field . 

1985 WILLIAM T. THOMSON 
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Preface to the First Edition 

Developments in the exploration of space have brought to the forefront 
many new problems in science and technology. The new environment and 
the requirements of high speeds, large energy inputs, accurate guidance, 
reliability, and a host of other considerations confront the engineer with 
formidable and challenging problems. Motion in outer space poses 
unusual dynamic problems, the solution of which requires a thorough 
knowledge and understanding of the pertinent dynamical principles and 
techniques of analysis. Three-dimensional attitude problems involving 
gyroscopic phenomena play an important part in the behavior of guidance 
instrumentation and in establishing the motion of satellites, missiles, and 
space vehicles. The analysis of variable mass systems under rotation, 
effects of vibration due to flexibility, and optimization of flight conditions 
are all dynamical problems requiring the use of advanced analytical 
techniques. For most problems, the high speeds encountered in space 
motion are not sufficiently great (in a relativistic sense) to invalidate 
Newton's laws of motion, and a knowledge of classical mechanics serves 
as adequate foundation for a description of the phenomena encountered. 

As any experienced student of mechanics will know, the difficulties of 
dynamics lie not so much in the comprehension of the formal theories of 
mechanics as in their application to the solution of actual problems. The 
formulation of the problem and the analytical details required for its 
solution are, in general, difficult and often beyond the present state of 

vii 



,, 

viii PREFACE TO THE FIRST EDITION 

knowledge, as in the case of nonlinear problems, The problems of space 
dynamics soon become too complicated for adequate discussion in an 
introductory textbook. However, the underlying principles involved and 
the techniques of analysis which can be employed are capable of thorough 
discussion and exposition in terms of simplified versions of these problems. 
It is from this viewpoint that this textbook was written. 

In acquiring a thorough understanding of dynamics, it is necessary to 
associate with each mathematical concept or operation a logical intuitive 
feeling which must serve as guide for the mode of analysis. Confidence in 
approaching new problems is generally acquired through experience in the 
mastering of a variety of dynamical situations. Problem solving by 
students is therefore essential. An effort has been made to supply problems 
of sufficient variety and difficulty, and some of these serve to extend the 
discussions of the text. 

The first two chapters cover the essentials of vector algebra and kine­
matics, including the gen(,!ral case of space motion. In the third chapter the 
subject of transformation of coordinates is presented. Central force 
problems and orbit theory are discussed in Chapter 4 under particle 
dynamics. They lead to many interesting problems of satellite and space 
vehicle motions. No attempt is made here to discuss precision orbit 
calculations or perturbing effects other than those due to impulsive thrust 
and the oblateness of earth. Chapter 5 on gyrodynamics forms the basis 
for rigid body dynamics. Gyroscopic phenomena are examined and 
physically interpreted. The subject of Chapter 5 leads naturally to the 
theories of gyroscopic instruments and their oscillatory behavior. The 
instrument gyro, gyrocompass, inertial platform, and inertial navigation 
are some of the subjects considered in Chapter 6. Chapter 7 on space 
vehicle motion deals primarily with the attitude of spinning rockets, 
missiles, and satellites. The effect of thrust misalignment, unbalance in 
inertia, variable mass, and changing configuration are analyzed. Special 
techniques for the transformation of motion from body coordinates to 
inertial coordinates are covered in this chapter. Optimization with respect 
to performance of rockets is a subject which can be treated at great length. 
Chapter 8 is a brief introduction to this subject, first in terms of multistage 
rockets in vertical flight and, later, in terms of single-stage rockets moving 
along curved trajectories. Aerodynamic forces are omitted in the dis­
cussion, not because they are unimportant but because their inclusion 
renders the problem unmanageable from the analytical point of view. 
Finally, the last chapter presents the generalized theories of Hamilton and 
Lagrange which unite the field of mechanics in an over-all formulation. 
The presentation is from the variational approach which has the advantage 
of providing greater generality and clarity. 



9 

PREFACE TO THE FIRST EDITION ix 

This book can be used at the intermediate or graduate level of instruction. 
Although matrices, dyadics, Laplace transformations, and the calculus of 
variations are occasionally encountered, it is my belief that they are 
introduced in a manner which is understandable to the beginner and will 
serve as an introduction to the use of these mathematical techniques. 

Finally I wish to acknowledge my indebtedness to many persons with 
whom I have enjoyed working and learning-students, colleagues, and 
associates at Space Technology Laboratories. 

September, 1961 WILLIAM T . THOMSON 



', 



' , 

Contents 

Chapter I Introduction, I 

1.1 Basic Concepts, 1 
1.2 Scalar and Vector Quantities, 3 
1.3 Properties of a Vector, 5 
1.4 Moment of a Vector, 8 
1.5 Angular Velocity Vector, 8 
1.6 Derivative of a Vector, 10 

Chapter 2 Kinematics, 13 

2.1 Velocity and Acceleration, 13 
2.2 Plane Motion (Radial and Transverse Components), 14 
2.3 Tangential and Normal Components, 16 
2.4 Plane Motion along a Rotating Curve (Relative Motion), 18 
2.5 General Case of Space Motion, 20 
2.6 Motion Relative to the Rotating Earth, 27 

Chapter 3 Transformation of Coordinates, 29 

3.1 Transformation of Displacements, 29 
3.2 Transformation of Velocities, 31 
3.3 Instantaneous Center, 32 
3.4 Euler's Angles, 33 
3.5 Transformation of Angular Velocities, 37 

xi 



' · 

xii 

Chapter 4 Particle Dynamics (Satellite Orbits), 44 

4.1 Force and Momentum, 44 
4.2 Impulse and Momentum, 45 
4.3 Work and Energy, 47 
4.4 Moment of Momentum, 49 
4.5 Motion Under a Central Force, 52 
4.6 The Two-Body Problem, 54 
4.7 Orbits of Planets and Satellites, 56 
4.8 Geometry of Conic Sections, 59 
4.9 Orbit Established from Initial Conditions, 61 
4.10 Satellite Launched with Po = 0, 63 

CONTENTS 

4.11 Cotangential Transfer between Coplanar Circular Orbits, 66 
4.12 Transfer between Coplanar Coaxial Elliptic Orbits, 70 
4.13 Orbital Change Due to Impulsive Thrust, 71 
4.14 Perturbation of Orbital Parameters, 79 
4.15 Stability of Small Oscillations about a Circular Orbit, 81 
4.16 Interception and Rendezvous, 83 
4.17 Long-Range Ballistic Trajectories, 91 
4.18 Effect of the Earth's Oblateness, 94 

Chapter 5 Gyrodynamics, IOI 

5.1 Displacement of a Rigid Body, 101 
5.2 Moment of Momentum of a Rigid Body (About a Fixed Point or the 

Moving Center of Mass), 102 
5.3 Kinetic Energy of a Rigid Body, 105 
5.4 Moment of Inertia about a Rotated Axis, 105 
5.5 Principal Axes, 107 
5.6 Euler's Moment Equation, 111 
5.7 Euler's Equation for Principal Axes, 113 
5.8 Body of Revolution with Zero External Moment (Body Coordinates), 

113 
5.9 Body of Revolution with Zero Moment, in Terms of Euler's Angles, 117 
5.10 Unsymmetrical Body with Zero External Moment (Poinsot's Geometric 

Solution), 121 
5.11 Unequal Moments of Inertia with Zero Moment (Analytical Solution), 

126 
5.12 Stability of Rotation about Principal Axes, 130 
5.13 General Motion of a Symmetric Gyro or Top, 132 
5.14 Steady Precession of a Symmetric Gyro or Top, 138 
5.15 Precession and Nutation of the Earth's Polar Axis, 146 
5.16 General Motion of a Rigid Body, 149 

Chapter 6 Dynamics of Gyroscopic Instruments, 155 

6.1 Small Oscillations of Gyros, 155 
6.2 Oscillations About Gimbal Axes, 157 



CONTENTS 

6.3 Gimbal Masses Included (Perturbation Technique), 163 
6.4 The Gyrocompass, 170 
6.5 Oscillation of the Gyrocompass, 171 
6.6 The Rate Gyro, 178 
6.7 The Integrating Gyro, 180 
6.8 The Stable Platform, 180 
6.9 The Three-Axis Platform, 183 
6.10 Inertial Navigation, 186 
6.11 Oscillation of Navigational Errors, 188 

Chapter 1 Space Vehicle Motion, 194 

7.1 General Equations in Body Coordinates, 194 
7.2 Thrust Misalignment, 195 
7.3 Rotations Referred to Inertial Coordinates, 198 
7.4 Near Symmetric Body of Revolution with Zero Moment, 201 
7.5 Despinning of Satellites, 208 
7.6 Attitude Drift of Space Vehicles, 212 
7.7 Variable Mass, 220 
7.8 Jet Damping (Nonspinning Variable Mass Rocket) , 221 
7.9 Euler's Dynamical Equations for Spinning Rockets, 223 
7.10 Angle of Attack of the Missile, 227 

xiii 

7.11 General Motion of Spinning Bodies with Varying Configuration and 
Mass, 230 

Chapter 8 Performance and Optimization, 240 

8.1 Performance of Single-Stage Rockets, 240 
8.2 Optimization of Multistage Rockets, 246 
8.3 Flight Trajectory Optimization, 248 
8.4 Optimum Program for Propellant Utilization, 252 
8.5 Gravity Turn, 257 

Chapter 9 Generalized Theories of Mechanics, 261 

9.1 Introduction, 261 
9.2 System with Constraints, 261 
9.3 Generalized Coordinates, 264 
9.4 Holonomic and Nonholonomic Systems, 266 
9.5 Principle of Virtual Work, 268 
9.6 D'Alembert's Principle, 269 
9.7 Hamilton's Principle, 270 
9.8 Lagrange's Equation (Holonomic System), 272 
9.9 Nonholonomic System, 279 
9.10 Lagrange's Equation for Impulsive Forces, 282 
9.11 Lagrange's Equations for Rotating Coordinates, 292 
9.12 Missile Dynamic Analysis, 293 



xiv 

General References, 303 

Appendix A Matrices, 305 

Appendix B Dyadics, 307 

Appendix C The Variational Calculus, 309 

Index, 313 

CONTENTS 



INTRODUCTION TO 

SPACE DYNAMICS 



' ' 



Introduction 

CHAPTER I 

1.1 Basic Concepts 

The basic concepts of mechanics are space, time, and mass or force, 
which are more or less understood intuitively by most beginning students. 
To be useful for quantitative analysis, however, these notions must be 
viewed as mathematical concepts related to each other by fundamental laws. 
Such a formulation was introduced by Sir Isaac Newton (1642-1727) in his 
three laws of motion which have become the foundation for the classical or 
Newtonian mechanics. 

Newton's laws were formulated for a single particle. Our notion of a 
particle is that of a material body of infinitely small dimensions. In 
mechanics we can expand this notion to include any material body whose 
dimensions are small in comparison with distances or lengths involved in 
defining its position or motion. Thus planets can be considered to be 
particles when their position in the solar system is under consideration. 

In defining the position of a particle in space, a frame of reference is 
necessary. For this purpose, three mutually perpendicular lines intersecting 
at a common point called the origin are adequate. The position of the 
particle can then be defined in terms of distances along these lines. 

To describe the motion of a particle, the concept of time is required. By 
noting the position of the particle as a function of time, its motion­
described by its displacement, velocity, and acceleration-is completely 
defined. 

Force is known to us intuitively as a push or pull. It represents the 
action of one body on another, exerted by contact or through a distance as 

I 
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in the case of gravitational or magnetic force. To describe a 
necessary to know its magnitude, its direction, and its point 

Mass is a property possessed by all material bodies. It is a property 
which describes the effort necessary in giving the body a in motion. 
Its precise definition is embodied in Newton's second which may be 
stated as follows. "A particle acted upon by a force F will move with an 
acceleration a proportional to and in the direction of the force; the ratio 
F /a being constant for any particle." Thus for a given particle we can 

F1 F2 F3 - = - = - = constant 
a1 a2 a3 

where F and a are in consistent set of units. The ratio which is found 
to be a constant for any given particle, is a property of the which 
is designated as mass. We can therefore write Newton's second law as, 

F =ma 
Newton's first law is a special case of the second law when F' = 0. H 

states that if no force acts on the particle, it will remain at rest or continue 
to move in a straight line with constant velocity. The equilibrium concept 
in statics is based on the first law, and the converse of the above statement 
requires that the resultant of all the forces acting on a particle in equilibrium 
must be zero. 

The extension of Newton's laws to a group of particles necessarily 
involves the action between particles. Actual bodies can be viewed as a 
group of particles, and to deduce the behavior of such bodies, Newton 
introduced his third law which states that, "For every action, there is an 
equal and opposite reaction." Thus if particle 1 exerts a force f12 on 
2, particle 2 must exert a force on particle 1, where f21 = -f12• 

From his interest in astronomy, Newton formulated the law of gravita­
tion between two particles. The law states that any two particles attract 
one another with a force of magnitude, 

F = G m1m2 ,2 
where m1 and m2 are the masses of the particles, r is the distance between 
them, and G is the universal constant of gravitation. Application of this 
law to a particle on the earth's surface gives us an understanding of the 
relationship existing between mass and weighL Letting M and m be the 
mass of the earth and that of another body at the earth's surface, a distance 
equal to the radius r = R from the center, the attraction of the earth on the 
body, which is called weight, is given by the above equation, 

GM 
W=m­R2 
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If this force is not opposed by a support of some kind, the body will fall 
toward the center of the earth with an acceleration g. Thus from Newton's 
second law, we can write, 

W=mg 

and by comparison with the previous equation, we arrive at the result, 

GM 
g= R2 

We find then that the acceleration of gravity g will vary inversely with R2• 

Since m is a property of the body which is fixed, its weight will then vary 
with g or R, and so we find a given body weighing somewhat different 
amounts at different places on the earth's surface. At the earth's surface, 
g is very nearly 32.2 ft/sec2• 

So far we have avoided one very important question regarding the frame 
of reference used in the measurement of the motion. Newton assumed that 
there was a frame of reference whose absolute motion was zero. He 
considered such an inertial frame fixed relative to the stars to be one of 
absolute zero motion, and his laws of motion to be valid when referred to 
such a reference. Controversies regarding the existence of such a reference 
frame of absolute zero motion led to the formulation of the theories of 
relativity for which Newtonian mechanics is a special case. 

In arriving at the concept of weight, it was necessary to measure g 
relative to the surface of the earth which is not at rest. Thus the accelera­
tion of the earth's surface due to its rotation must be accounted for in a 
more exact analysis. For many problems this error is insignificant, in 
which case the earth's surface will be found to be an adequate reference. 
There are other problems, however, such as navigation for space flight, 
where the earth's surface cannot be considered stationary. In general, 
problems in space dynamics are involved with rotating and accelerating 
coordinates, and the subject of relative motion and transformation of 
coordinates plays an important role. 

1.2 Scalar and Vector Quantities 

In our discussion so far we have encountered two types of physical 
quantities. The first type can be adequately expressed by a single number 
denoting so many units; i.e., temperature, density, mass, time, and energy. 
Such quantities are known as scalar quantities. 

The second type cannot be fully represented by a number only, and 
further information is required. For instance, a displacement in space 
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requires in addition to its numerical value a statement as to its starting 
point and its direction. Such additional information is necessary to 
describe completely many physical quantities such as force, velocity, and 
acceleration. Physical quantities possessing magnitude and direction and 
satisfying certain necessary requirements are called vector quantities. 

Vectors are further subdivided into free and bound vectors. Free vectors 
are those which can be shifted about as long as their magnitude and direc­
tion are not altered. Vectors in rigid body mechanics are ih general free 

z 

X 

Fig. 1.2-1. Right-handed coordinate system. 

vectors. Bound vectors are those which cannot be moved without altering 
the results sought. For instance, in determining the stress distribution in a 
deformable solid, the applied force cannot be moved without altering the 
results. 

Vector quantity will be denoted by a bold face roman letter, whereas a 
scalar quantity will be indicated by a light-face italic letter. Frequently we 
are not concerned with the direction of the vector quantity, in which case 
the italic letter will be used to indicate its magnitude. This situation may 
occur when all the vectors are collinear or when we are concerned with 
components of a vector along specified directions. To distinguish vector 
quantities at the blackboard or in hand-written material, an overhead bar 
or arrow can be used. 

Graphically, a vector is represented by a straight line with an arrow 
referenced to some coordinate system. When rectangular axes x, y, z are 
used, the right-handed coordinate system of Fig. 1.2-1 will be adopted. 
A left-handed coordinate system would have the Oz axis in the opposite 
sense, or the x and y axes interchanged. 
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1.3 Properties of a Vector 

Addition 

Not every quantity possessing magnitude and direction can be treated 
_as a vector. To qualify as a vector, such quantities must obey the law of 
composition which states that the sum of two vectors is represented by the 
diagonal of a parallelogram formed by the two vectors as sides. Subtrac­
tion can be viewed as an addition of the vector directed in the opposite 
sense. Moreover, vector addition must be commutative (independent of 
the order of summation). 

As an example of a directed quantity that will not obey the law of com­
position, we can mention the finite angular rotation of a rigid body. It has 
magnitude equal to the angle of rotation, which can be directed along the 
axis of rotation. However, two such rotations along different axes are not 
commutative and will not add up to the diagonal of a parallelogram, as we 
can readily demonstrate by rotating a book 90° about the x and y axes and 
repeating the procedure in the reverse order about y and x. 

Aside from being commutative, vector addition is associative (may be 
grouped in any order), and these two properties enable the parallelogram 
law to be successively applied to any pair of vectors for the addition of 
several vectors. 

Resolution 

Resolution of a vector is the reverse of composition. Since different 
components could have the same resultant, a vector can be resolved in an 
infinite number of different ways. Resolution of a vector into rectangular 
components often leads to a simpler formulation. 

Unit vector 

A vector r multiplied by a scalar n is equal to nr. Its direction is un­
changed and its magnitude is n times the original magnitude. The unit 
vector 1, or i, j, k, is constantly used to define the orientation of a vector 
quantity. A vector r, expressed in terms of its rectangular components, 
becomes 

r = r.,i + ryj + r.k 

= r(i COS IX + j COS {J + k COS y) 

= r1 
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The unit vector in the direction r is thus identified as 

r 
1 = - = (i COS IX -!- j COS /J + K COS 'Y) 

r 

Fig. i.3-!, Component of r along 1 by dot 

Scalar "dot" product 

The dot product of two vectors a and b with angle ,f> between them is a 
scalar quantity defined by the equation, 

a· b = ab cos ef> 

The result is not dependent on the order of multiplication 
dot product is commutative. 

the 

The equation suggests a convenient procedure for the 
component of a vector r along any chosen direction 1, the result being, 

r · 1 = r cos ef:, 
as shown in Fig. 1.3-1. 

Vector "cross" product 

The cross product of two vectors a and b is a vector defined by the 
equation, 

a X b = (ab sin ef,)1 

where 1 is a unit vector in a direction perpendicular to both a and b. From 
Fig. 1.3-2 it is seen that the magnitude is equal to the product of the length 
of one of the two vectors and the projection of the other on a line per­
pendicular to the first vector, which is equal to the area of the parallelo­
gram formed with a and b as sides. 
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To establish the direction of the cross-product vector, the three-finger 
rule of the right hand, as illustrated in Fig. 1.3-2, is helpful. The first 
vector a is represented by the thumb; the second vector b ( or its component 
b sin 'P perpendicular to a) by the index finger; and the product vector 
perpendicular to the previous two by the third finger. We note here that 
the cross product is noncommutative, and the following rule holds: 

a X b = -b X a 

Fig. Ul-l. Cross product of two vectors is normal to the plane of the two vectors. 

Products in rectangular components 

When resolved into rectangular components, the dot and cross products 
become, 

a· b = (a.,i + ayj + a,k) · (b,J + bvj + b,k) 

= a,A, + aubv + a,bz 

a X b = (a,,i + a,,j + a,k) X (b,,i. + b11 j + bzk) 

= (axh11 - avhc,,)(i X j) + (axbz - a.b.,)(i X k) + (a,,bz - azb,J(j X k) 

= (axby - ayb,,)k + (azbx - axbz)j + (aybz - azby)i 

The result of the cross product can be conveniently expressed by the 
following determinant. 

Ii j k 

a X b = a,, ay a, 

, b,, by bz 
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Multiple products 

Certain multiple products of vectors are occasionally encountered and 
we list two of the most common ones in the following: 

a· (b X c) = b · (c X a) = c · (a X b) 

This product can be geometrically as being to the volume 
of a parallelopiped of sides a, b, and c. 

The second multiple product is, 

a X (b X c) = (a· - (a· 

I A Moment of a Vector 

Consider a vector F and any point O in space. If we draw a vector :r 
from Oto any point on For on the line ofactionofF, as shown in Fig. 1.4-1, 
and form the cross product with r as the first vector, then the result will be a 

fig. 1.4-!. Moment vector M normal to plane of r and F is r x F. 

moment M about an axis through O in a direction perpendicular to the 
plane containing r and F, the direction of which is indicated by the unit 
vector 1. 

M = r X F = (Fr sin rp)l 

The moment M will be independent of where r terminates on F or on its 
line of action, as can easily be shown. 

LS Velodty Vectors 

It was pointed out previously that finite angles of rotation, although 
representable by a vector, are not commutative and, hence, will not obey 
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the rules of vector addition. Infinitesimal rotations however can be shown 
to be commutative and to possess all the properties of a vector. To show 
this, consider the displacement of a point p due to two infinitesimal rota­
tions w1 dt and w 2 dt about any two axes, where w1 and w2 are their 
respective rotational speeds. Let the direction of each of the axes of rota­
tion be indicated by unit vectors 11 and 12, as shown in Fig. 1.5-1, and we 

0 

fig. Ui-1. Angular velocity represented by vector. 

will perform the rotations in the order l and 2, then repeat in the reverse 
order to examine the final result. 

Because of the infinitesimal rotation (w1 dt)11, the end of the displacement 
vector r defining the position p wili be displaced by an amount, 

( w1 dt)11 X r (1.5-1) 

and the new position is defined by the vector, 

r 1 = r + (w1 dt)l1 X r (1.5-2) 

Next allow the second infinitesimal rotation (w2 dt)12, in which case the 
final position of p is defined by the vector r2• 

r 2 = r1 + (w2 dt)1 2 X r1 

= r + (w1 dt)11 X r + (w2 dt)12 X r + (w2 dt)]._2 X (w1 dt)1 1 X r (1.5-3) 

Neglecting the second-order term (w2w1 dt dt), we arrive at the result, 

r 2 = r + (w111 + w212) dt X r {l.5-4) 

If we repeat the operation in the reverse order, we will find the equation 
for :r2 to be identical to the previous case, indicating that infinitesimal 
rotations are commutative. In effect, we have represented an angular 
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velocity by a vector w = wl according to the right-hand screw convention, 
as shown in Fig. 1.5-2. The fingers in this case indicate the rotation sense, 
and the positive direction of the vector w is represented by the thumb. 

Since angular velocities obey all the rules of vectors, they can be com­
pounded by the parallelogram rule to a single resultant vector. Thus the 

F!g. Ui-2. Right-hand rule for angular velocity. 

two infinitesimal rotations of Fig. 1.5-1 can also be reduced to a single 
rotation which is evident by rewriting the equation for r2 as, 

(1.5-5) 

1.6 Derivative of a Vector 

In differentiating a vector, the usual rules of the limiting process apply. 

11!_ = lim (r + Lir) - r = Jim Lir (1.6-1) 
dt Cit-o b.t c,.i-o !lt 

If the vector r is referenced to a fixed coordinate system, the ~r is the 
vector change relative to the coordinates which is also the total change, 
and Eq. 1.6-1 is the total derivative ofr. 

If the vector r is referenced to a rotating coordinate system such as the 
one shown in Fig. 1.6-1, the vector r remaining stationary relative to the 
rotating axes will undergo a change 

Mr sin cp 
along the tangent to the dotted circle, and its rate of change is established 
by the limit, 

Jim {\~8)r sin ef, = (wr sin </>)1 
Cit-o ut 

where 1 is a unit vector along the tangent. 
Since this expression is equal to the cross product of w and r, we 
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conclude that due to rotation w of the coordinate system the vector r 
undergoes a rate of change of 

wxr (1.6-2) 

This term occurs in addition to the vector change relative to the coordinate 
system, so t}lat the total derivative relative to inertial axes is 

(dr) [dr] - = - +wxr 
dt inertial dt rel!; to 

(1.6-3)* 

coo rd. 

z 

y 

.o 

X 

Fig. 1.6-1. Differentiation of a vector r referenced to rotating coordinates. 

Equation 1.6-3 applies to any vector quantity and is of fundamental 
importance to dynamics where body-fixed axes are often used. 

We mention finally that the derivatives of the dot and cross products are 
treated as in products of scalar quantities, except that the order of the cross 
product must be maintained. These rules are illustrated by the following 
equations. 

d db da 
- (a· b) = a· - + - · b 
dt dt dt 

(1.6-4) 

d db da 
- (a X b) = a X - + - X b 
dt dt dt 

(1.6-5) 

* A convenient notation to distinguish between differentiation in the inertial and 
rotating coordinates is to use brackets, or parenthesis around the latter, i.e., 

~=[~J+wxr dt dt 

This notation will be used in this book. 
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PROBLEMS 

1. Determine the unit vector along r = 3i - 2j + 2k. 
2. Determine the angles()(, {3, and y between r of Prob. 1 and the x, y, and z axes. 
3. Determine the dot product of the vectors r1 = 4i - 3j + .k; r2 = -2i + 

2j + 3k. 
4. Determine the angle between l\ and r 2 of Prob. 3. 
5. Determine the cross product I\ x r2 of Prob. 3. Show means of dot 

products between the cross product vector and r2 that cross 
is perpendicular to each of vectors r1 and r2• 

6. Show by vector means that any inscribed angle in a semicircle is a right angle. 
7. What is the geometric interpretation of (a + b)2• 

8. If a and b are absolute values of vectors a and b, express the scalar quantity 
a2b2 by using only the dot and cross products of a and b. 

9. Write the equation of a plane, a distance c from a given point 0, in terms of 
the radius vector r from O to any point in the plane, and the unit vector 1 
normal to the plane. 

10. Determine the various angles between the spatial diagonals of a unit cube of 
sides i, j, and k. 

11. Find the area of a triangle specified by the two vectors r1 = 3i. + 4j; r2 = 
-5i + 7j + 2k. 

12. Show that the moment r x F about O is independent of how r is drawn from 
0 as long as it terminates along the line of action ofF. (Hint: Consider two 
vectors r1 and r2 = r1 + r3 both terminating along F.) 

13. Determine the derivative of the dot product of the vectors 
r 2 = -4i + 2tj, and compare with the derivative determined 

14. Repeat Prob. 13 for the cross product, using 1.6-5. 

= 2ti - 3t2j; 
Eq. 1.6-4. 

15. A vector r = 3ti - 4j + k is referenced to a coordinate system which is 
rotating at a speed w = 2tk. Determine its derivative. 

16. Prove the equations given on p. 8 for the multiple products. 
17. Complete the derivation for Eq. 1.5-3 when the order of rotation is 2 and 1. 

Under what conditions are the two equations ? 
18. Determine the relative magnitudes of the terms of Eq. 1.5-3 when r = 4i + 

3j; w1 =2; w2 = -1; 11 =iand12 =j. 
19. In Prob. 18, determine the value of dt necessary to reduce the term 

(w1 dt)11 x r to 1 % of the magnitude of the smallest vector component. 



Kinematics 

CHAPTER 2 

2.1 Velocity and Acceleration 

The subject of kinematics is the study of motion. It is concerned with 
space and time, and with the time rate of change of vector quantities 
relating to the geometry of motion. 

We consider first the motion of a point in a fixed coordinate system xyz. 
The position of a point p which is in continuous motion along a curve such 
as s in Fig. 2.1-1 is specified by its position vector r, the magnitude and 
direction of which are functions of time. In time !:..t, r changes to r + !:..r, 
and its velocity v is given by the time derivative, 

v = lim (r + !:..r) - r = lim !:..r = dr 
~t-o !:..t ~t-o !:..t dt 

(2.1-1) 

The direction of v can be shown to coincide with the limiting direction of 
!:..r as it approaches zero, or the tangent to the curves at p. By rewriting v 
in the form, 

. !:..r !:..s 
v=hm-­

~i-o!:..s !:..t 

the limiting value of !:..r/ !:..sis a unit vector along the tangent to the curve, 
so that the velocity can also be written as, 

ds 
V =-lt 

dt 
(2.1-2) 

13 
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If r is represented in terms of its rectangular components, we obtain 

r = r.,i + r11j + rzk (2.1-3) ,, 
where r.,, rv, and 'z are components of r along the fixed xyz coordinates, 
and i, j, and k are their corresponding unit vectors. Differentiating, we 
obtain 

dr 
-d = f.,i + 1\j + f.k 

t 

where i, j, and k, are treated as constants. 

z 

X 

fig. l.1-1. Time rate of change of a vector r. 

(2.1-4) 

Acceleration is the time rate of change of velocity v, and by observing 
the vector change from v to v + 6.v in time flt, we obtain 

. (v + b.v) - v . Ll.V dv . . . • . 
a= hm 11 = hmA = -d = v,,1 + VvJ + v.k (2.1-5) 

At-o t Ll.i-o ut t 

2.2 Pla~e Motion (Radial and Transverse Components) 

Consider a particle p moving along a curve s fixed in a stationary Oxy 
plane, as shown in Fig. 2.2-1. The position of p is established by the 
position vector 

:r = rl, (2.2-1) 

where ::1., is a unit vector which is always oriented along r. 
To determine the velocity of p, we differentiate r, recognizing that lr 

changes in direction, 
dr . dl, 
- = rl + r­dt r dt 

(2.2-2) 



KINEMATICS 15 

The unit vector lr is one of fixed magnitude which is rotating with 
angular velocity 8 about an axis through the origin perpendicular to the 
xy plane. Its derivative or its velocity is the cross product of the vectors 8 
and lr, which is a vector perpendicular to r, or 

y \ 
\ 
\ 

~8 

8 

O'""'---'------''---~~~~~~~ 

Fig. 2.2-1. Unit vectors 1, and lo moving with r in the x, y plane. 

where 18 is a unit vector in the direction perpendicular tor. 
Equation 2.2-2 may then be written as 

dr 
dt = v = fl, + 8 X r 

=fl,+ r01 8 

(2.2-3) 

(2.2-4) 

which expresses the velocity in terms of the radial and transverse com­
ponents. 

We can view this problem as that of a point p moving along a set of 
rotating axes with direction 1, and 10. The point p always moves along the 
1, axis, and its relative velocity along it is f which corresponds to the first 
term of Eq. 2.2-4. The second term 8 X r is the velocity of the coincident 
point p due to rotation 8. 

The acceleration of p can be determined by differentiating Eq. 2.2-4. 

d1, .. ,.. ,.. d1 8 
a= r =fl,+ f dt + (r(J + ro)18 + ru di (2.2-5) 

As before, the derivative of a unit vector rotates it 90° and multiplies it 
with its angular rate 0, so that 

~ 8 = 8 X le = -Olr (2.2-6) 
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Thus Eq. 2.2-5 reduces to 

a = (f - r6 2)1, + (r8 + 2r6)1o (2.2-7) 

which expresses the acceleration in terms of the radial and transverse 
components. We note here the term 2r6i, which is known as the Coriolis 
acceleration, and which will be referred to again in the more general case. 

2.3 Tangential and Normal Components 

To resolve the acceleration into tangential and normal components, we 
start with Eq. 2.1-2. 

y 

fig. 2.3-1. Unit vectors 1n and 1, moving along curves, in x, y plane. 

(2.3-1) 

Differentiating and noting that 

(2.3-2) 

where ln is a unit vector along the radius of curvature which is normal to 
the tangent to the curve s at p, and ¢ is the angular rate of the radius of 
curvature as shown in Fig. 2.3-1, we obtain 

(2.3-3) 

Since the length 11s is related to the radius of curvature p and to the angle 
!1rp swept out by p, 

(2.3-4) 
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the acceleration, Eq. 2.3-3, can be expressed in the following alternate 
forms. 

a= 
s2 

+-
p 

=sit+ p¢2ln 

= sl1 + ~ X s 

PROBLEMS 

1. The position of a particle in a plane is given by the equations 

X = 6t y = 412 

(2.3-5) 

(2.3-6) 

(2.3-7) 

Determine the rectangular components of its velocity and acceleration as a 
function of time. 

2. A projectile is fired with speed v0 at an angle 80 above the horizon. Neglecting 
air friction and the rotation of the earth, the acceleration components are 
ay = -g and a,, = 0. Determine the equation for its trajectory, the range R, 
and the maximum height H. 

3. A rock is thrown at an angle of 45° with the horizontal, and it just clears a 
wall 24 ft high and 40 ft away. Determine the initial speed of the rock. 

4, Find the greatest distance that a stone can be thrown inside a horizontal 
tunnel 15 ft high with an initial speed of 80 ft/sec. Find also the correspond­
ing time of flight. 

5. For a gun with a given muzzle speed v0 , show that a point (x, y) can be hit by 
two different trajectories with initial elevation 81 and 82. 

6. Derive the equation for the envelope of a series of trajectories of a projectile 
fired with constant speed v0 and varying angles 80• 

y 

" 
Prob. 6 

7. A point moves so that r = 20 + lOt and 6 = 0.20t2 . Determine the radial 
and transverse components of the velocity and acceleration at t = 2 sec. 

8. A spiral fixed in a plane is given by the equation r = 1oeo.2e. If a particle 
moves along the spiral according to the equation e = 0.5t2, determine the 
radial and transverse components of the velocity and acceleration at 
t = 2.0 sec. 
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9, 1n Prob. 8, determine the tangential and normal of the 
and acceleration, and compare the resultant for the problems. 

J.lt A moves along the circumference of a circle of radius R at constant 
speed v0 . Determine its radial and transverse velocity with respect to an 
origin on the circumference. Find the radial and transverse components of 
the acceleration and show that their resultant passes through the center of 
the circle. 

y 

About 0 

A p moves along a curve s which is rotating with angular velocity 
w and angular acceleration w, \Ve will attach axes 1 and 2 to curves so 
that 1, 2, ~.nd s rotate together with w and as shown in Fig. 2.4-L 

The velocity may be determined as follows. If the remained 
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fixed on s, its velocity due to the angular velocity w of the curve and 
attached coordinate axes is w X r which is perpendicular tor. The motion 
of p along s results in an additional velocity dr/dt = .Ht directed along the 
tangent to s. This latter component is the velocity relative to the curve s 

I 

/,, 
I 

\ 

Fig. 2.4-1. Motion along a rotating curves in a plane. 

and can be determined as if the curves were held stationary. Thus the sum 
of the above two components represents the velocity of point p 

v = [!:] + W X r 

= slt + w X r (2.4-1) 

and the above equation conforms to Eq. 1.6-3 for the derivative of a vector 
referenced to a rotating coordinate system.* 

The acceleration of point p is determined by the derivative of v or of its 
two components in Eq. 2.4-1. Since the coordinates are rotating with 
angular speed w, the acceleration is given by the equation 

a= [!;] + w X v (2.4-2) 

which can be interpreted in terms of the two components of v. 

* Differentiation relative to the moving coordinates is indicated by [ ]. 
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Considering first the component sit, if the curve is held stationary and p 
is allowed to move along it, the acceleration relative to the curves would be 

s2 
s1t + -1.,. 

p 
(2.4-3) 

as in Eq. 2.3-5. The rotation of the coordinate system at a rate w intro­
duces an additional term 

(2.4--4) 

which is normal to s1t. Thus we obtain three components of acceleration 
from the tangential velocity vector. 

The remaining velocity vector w X r is treated similarly. Relative to the 
coordinates we have 

[~ (w X r)] = w X f + w X r 

= w X s1t + w X r (2.4-5) 

The rotation of the coordinates introduces the additional component 

w X (w X r) (2.4-6) 

which is directed towards the negative r direction. 
Summing all these terms, we have 

a= (s1t+~1.,.) +(wXr+wXwXr)+2wXslt 

= ( .i'lt + ; 1.,.) + ( <.brio - rw2lr) + 2wsl.,. (2.4-7) 

In this equation the first two terms represent the acceleration of 
p relative to the curves. The next two terms represent the acceleration of 
the coincident point due to angular velocity and angular accelera­
tion of the coordinate system and the curve s fixed to it. The last term 
is known as the Coriolis acceleration, and it is perpendicular to the rela­
tive velocity sl1• The various components of Eq. 2.4-7 are shown in 
Fig. 2.4-1. 

2.5 General Case of Space Motion 

We now consider the general case of the motion of a particle p moving 
with respect to a rigid body which is itself in motion with respect to a fixed 
coordinate system, as shown in Fig. 2.5-1. 



KINEMATICS :u 

We will designate the fixed coordinate system by capital letters X, Y, Z, 
and attach a set of axes x, y, z on the calling them the body 
axes. Thus the motion of the rigid is established the motion of the 

of the axes x, y, z, and a rotation w with respect to XYZ. 
The vector w in vary in and both 
of which can be referenced with respect to the fixed Y, Z axes. Thus 
the absolute motion of the p, referred to the Y, Z axes, will 

z 

-----Y 

X 

X 

Fig. l.!i-1. General case of space motion in terms of body axes x, y, z, and inertial 
axes X, Y, Z. 

be equal to the motion of the particle relative to the body axes x, y, z 
(or the body itself) plus the motion of the coincident point (a point on the 
body momentarily coinciding with p), which is further equal to the motion 
of the moving origin and the additional motion of the coincident point due 
to rotations w and w. 

To visualize the motion, let the motion of the particle p with respect to 
the rigid body be indicated along a curve s fixed in the body. Thus, this 
curve is also fixed with respect to the body axes x, y, z. An observer sitting 
on the body would see only the motion of p along the curve s. 

Let the position of p relative to the x, y, z axes be represented by the 
vector 

r =xi+ yj + zk (2.5-1) 

where i, j, and k are unit vectors along x, y, z, and, hence, must be treated as 
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variables due to their changing direction. If we differentiate r, we will 
obtain 

. [ .. + .. + "k] ( di + dj dk) r = x1 YJ z + x dt y dt + z dt (2.5-2) 

Since di/ dt = w X i, dj/ dt = w X j, dk/ dt = w X k, this expression can 
be written as 

t = [xi + yj + zk] + w x (xi + yj + zk) 

= [t] + w X r (2.5-3) 

Interpreting this equation, the first term [t] represents differentiation holding 
i, j, k constant and, hence, is the velocity of p relative to the rotating x, y, z 
axes, or the velocity which an observer stationed on the x, y, z axes is able 
to detect as the particle moves along the curve s. The second term w X r 
is the velocity of the coincident point relative to the origin, due to rotation 
w. Finally, we add to the above the velocity v0 of the moving origin, in 
which case the absolute velocity of p becomes 

V = V0 + [t] + W X r (2.5-4) 

To determine the acceleration, we start with the velocity t, of Eq. 2.5-3, 
relative to the moving origin, and differentiate once more 

r = [xi + gj + zk] + w x [xi + yj + zk] 

+ w x (xi + yj + zk) + w x [xi + yj + zk] 

+ w X w X (xi + yj + zk) (2.5-5) 

The first two terms result from the differentiation of the first term [xi + 
yj + zk], whereas the differentiation of the second term w X (xi + yj + 
zk) results in the remaining three terms. We can now group these terms 
together as 

i' = [a] + w X w X r + w X r + 2w X [v] (2.5-6) 

where [v] = [t] = [xi+ yj + zk] is the velocity of p relative to the body 
axes 

[a] = [xi + yj + zk] is the acceleration of p relative to the body axes 
We now add the acceleration a0 of the origin, to i' to obtain the total 

acceleration 

a = a0 + [a] + w X w X r + w X r + 2w X [v] (2.5-7) 

The terms w X w X r and w X r are the acceleration of the coincident 
point and 2w X [v] is the Coriolis acceleration which is directed normal 
to the plane containing the vectors w and relative velocity [v], as given by 
the three-finger rule. 
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The vector 2.5-4 and 2.5--7 are in the 
defining the general case motion. All 
directly from these 

1, A wheel 
speed of l To an observer 
wheel appears to move to the left with a 

of 

most form for 
cases can be deduced 

?ml:!. 2 

with a 
of the 

Determine the 

2. At a given instant, bar AC is horizontal and bar DB has an 
of 3 rad/sec clockwise and acceleration of 2 
wise. Determine the of the slider B relative to bar AC and the 
angular and acceleration of AC. 

3. Pin p which slides on arm OC is made to move 
If the disk is held stationary and OC has an 
clockwise, when fJ = 30°, determine the 
its absolute velocity. 

the slot AB in a disk. 
velocity of 3 

relative to OC and also 

4. Determine the absolute acceleration ofp of Prob. 3 if, in addition to the data 
given, the arm OC has an acceleration of 4 in the counter-
clockwise direction. 
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5. If in Probs. 3 and 4 the data given are relative to the disk which is rotating 
with angular velocity and acceleration of 2 rad/sec and 4 rad/sec2 both clock­
wise, determine the absolute velocity and acceleration of p. 

6. A particle moves with velocity kr outward along a_ spoke of a wheel rotating 
with angular speed e and angular acceleration a. Determine its absolute 
velocity and acceleration, identifying each component by a diagram. 

7. An airplane travels overhead at constant altitude h and constant horizontal 
speed v. Determine the angular velocity fJ and angular acceleration e of the 
line of sight of a tracking device on the ground, where e is the angle measured 
from zenith. How fast is the distance to the plane increasing at e. 

Prob. i 

8. A bomber flying at constant speed vb and constant altitude h0 sees an enemy 
plane flying in the same direction with velocity ve and at a lower altitude h •. 
Assuming that v0 > v ., show that the angle e of the line of sight at the instant 
at which the bomb should be released must be 

-Vb ---r---

(} 

Prob. 8 
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9. An airplane traveling at constant altitude h and constant speed v is ob­
served by a radar station a distance s from the vertical plane of travel of 
the airplane. Determine the angular velocity of the radar dish about the 
horizontal and vertical axes from the instant when the plane is closest to 
the station. 

Radar dish 

Prob.9 

10. In Prob. 9 determine the angular rates if v = 450 mph, h = 12,000 f.t, s = 
;Y2 mile, and t = 15 sec. 

11. Fuel flows out along the impeller blade of a turbo pump at a speed of 100 
ft/sec and acceleration of 120 ft/sec2 relative to the blade. If the turbo wheel 
is running clockwise at 2400 rpm, determine the absolute velocity and accelera­
tion of the fuel just before it leaves the impeller. 

-w 

Prob. II 

12. The large wheel of the quick-return mechanism rotates in the counterclock­
wise direction at a constant speed of 120 rpm. Determine the velocity of 
point p as a function of the angle IJ and the relative velocity of the slider 
s. 

13. Determine the angular acceleration of the arm Op of Prob. 12 when the crank 
arm makes an angle 30° with the horizontal in the first quadrant. 
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.. 

!"rob. ll 

14. A bomber traveling with constant speed v at constant altitude h spots an 
enemy plane at a lower altitude h. and traveling along a line perpendicular 
to his. Assuming he and v. to be constant, determine how far ahead of the 
intersecting vertical and perpendicular planes the bomb should be released. 

15. A satellite in a S-to-N polarorbit of120 min is observed to travel from horizon 
to horizon in 25 min and pass directly over an observation station at latitude 
35° N. Determine the direction of the path of the satellite relative to the 
meridian plane passing through the station. 

s 
!"rob. 15 

16. A satellite traveling in a circular polar orbit of altitude h around the earth 
has a period of 120 min. An observer on the earth's surface tracks the satellite 
and finds that it is moving at a rate of 15°/min when directly overhead. 
Determine its altitude h. 
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2.6 Motion Relative to the Rotating Ea.l"th 

The center of the earth as it moves around the sun is accelerating toward 
the sun. We, however, neglect this acceleration and place a set of non­
rotating axes with origin at the earth's center as an inertial system. 

,Mt 
I 
z k;J 

//1'~---
// I _)7 ~; < 

f-----r I f'-i \ 
I RI \'-"' \ 

/ I \ X \ 

I \ \ \ 
I o·, I >. \ I 
.I ---._\ '1 ,,,/ 
I "-----._ / 
I ---..:J,...,,-

z 

y 

1 -----------
X 

fig. l.6-L Motion relative to earth using axes x, y, z fixed to earth's surface. 

We are often interested in the motion of a body relative to the earth's 
surface. Placing a set of axes at a given point O on the earth's surface, we 
orient the z axis along the plumb line which, for simplicity, we assume to be 
equal to the geocentric line. The x and the y axes then lie in the horizontal 
plane, and we orient x along the meridian plane pointing south and y along 
the latitude line pointing east as shown in Fig. 2.6-1. 

The acceleration of O is Q X 9 X R = -(02R sin A cos ?.)i -
(0.2R cos2 ,1.)k where the angular velocity of the earth-fixed coordinate 
system x, y, z is .Q, the earth's rotational velocity with components: 

Q = -(Q cos ,1.)i + (0. sin J.)k 

The acceleration relative to the inertial system is 

(2.6-1) 

F 
a=-= 9 X .Q X R +[a]+ .Q X .Q X r + 29 X [v] (2.6-2) 

m 

If the only force acting on the body is its weight, then F/m = -gk, and the 
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acceleration [a] relative to the rotating earth is 

[a] = -gk - .Q X Q X R - Q X .Q X r - 2Q X [v] (2.6-3) 

Since Q 2 is (0.729 x 10-4 rad/sec)2, it can be neglected, leaving 

[a] = -gk - 2Q X [v] (2.6-4) 

Displacements relative to the earth can be found by two integrations of 
Eq. 2.6-4. expressed in terms of the x, y, and z components. 

PROBLEMS 

1. Determine, due to the earth's rotation, the angular deviation of a plumb line 
from the geocentric line at latitude J. 0 N. At what latitude is this deviation a 
maximum? 

2. A particle is dropped from rest at a height of 1 mile at latitude 32° N. Neglect­
ing air friction and using the x, y, z coordinate system of Pig. 2.6-1, determine 
where the particle will land. 

3. A bullet is fired vertically at a latitude of 50° N with a muzzle speed of 2000 
ft/sec. Neglecting air friction, determine the landing point of the bullet. 

4. A rocket is fired vertically upward at a point on the earth's surface oflatitude 
J. 0 N. Determine the Coriolis deviation at its maximum height h. What is the 
numerical value of this deviation if h = 150 miles and ;. = 35° N. 

5. In Prob. 4, determine the Coriolis deviation during the downward flight and 
compare it with that at maximum height. ( Caution: Initial lateral velocity for 
downward flight is not zero.) 

6. An airplane is traveling with speed v due south with constant altitude at 
latitude J. 0 N. Determine the Coriolis acceleration relative to earth. 

7. At latitude .1. 0 S, a projectile is fired with speed v0 in the east-west vertical plane 
at an elevation 00 in the easterly direction. Determine the latitude deviation. 
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T 
of 

J. I Transformation of Displacements 

ati 
ates 

Consider a case where the position of a particle p in space is defined in 
terms of the displacement vector r relative to the moving coordinates xyz, 
shown in Fig. 3.1-1. If the displacement of the origin of the moving 
coordinate system is R0, the displacement of p relative to the fixed coordi­
nates X, Y, Z 

R=R0 +:r 
Letting unit vectors along the fixed and moving axes be designated by i, j, k 
and i', j', k' respectively, the above equation can be written as, 

(Xi+ + Zk) = (X0i + + yj' + zk') (3.1-2) 

We can determine the component of the above vector in any direction 
by forming the dot product of the above equation with a JJnit vector in the 
desired direction. For example, the X component is obtained by the dot 
product of the above equation with i, etc. The three rectangular components 
along the fixed coordinates are, then, 

X = + xi • i' + yi • f + zi. • k' 

Y = Y0 + xj • i' + yj · j' + zj • k' (3.1-3) 

Z = Z0 + xk • i' + · j' + zk • k' 
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where the dot product of the various unit vectors represents the direction 
cosine between the coordinates. 

z 

z 

X 

X 

Fig. 3.1-1. Transformation between coordinates x, y, z and X, Y, Z. 

y 

X 

Fig. 3.1-2. Coordinate transformation in a plane. 

For plane motion with Z = z = 0 shown in Fig. 3.1-2, the direction 
cosmes involved are, 

i . i' = cos () = j . j' 

i · j' = -sin() = -j · i' 

so that Eq. 3.1-3 reduces to, 

X - X0 = x cos () - y sin () 

Y- Y0 =xsin0+ycos0 
(3.1-4) 
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A convenient way to express the above is by the following 
matrix * 

- X0l rcos () 

I= l Y -- Y0J sin (J 
(3. 1-5) 

The square matrix with the direction cosines for elements is called the 
transfer matrix which, in this case, transforms the body coordinates to the 
fixed inertial coordinates. 

To obtain the inverse transformation from the fixed coordinate system 
to the moving coordinate system, we can start with Eq. 3.1-2 arranged as 
follows: 

+ yj') = (X - X0)i + (Y - Y0)j 

and form the dot product with i' and j' 

x = (X - X0)i · i' + (Y - Y0)j • i' 

y = ( X - X0)i • j' + ( Y - Yo)j • .f 

The above equations in matrix notation become, 

-l cos fJ sin ()l [X - X0] 

= --sin IJ cos e..J Y - Y0 

(3.1-6) 

(3.1-7) 

(3.1-8) 

which is the inverse of.Eq. 3.1-5. The transfer matrix is here the inverse of 
the transfer matrix of Eq. 3.1-5. 

[ 
cos () sin (}J [cos 8 

-sin(} cos() = sin() 

·-sin 

cos 

3.2 Transformation of Velocities 

The velocity of any arbitrary fixed point on the moving coordinate 
system x, y, z with respect to the fixed-axis system is, 

(3.2-1) 

This equation indicates that we can start with the displacement equation in 
terms of the rectangular components and differentiate, holding x, y, z as 

* See Appendix A. 
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constants. For instance, if we differentiate Eq. 3.1-4, with x and y held 
constant, we obtain the velocity equation, 

X - X0 = -(x sin (} + y cos e)() 
Y - Y0 = (x cos(} - y sin (})O 

Comparing with Eq. 3.1-4, these equations can also be written as, 

X- X0 = -(Y- Y0)0 
Y - Y0 = (X - X0)0 

3.3 Instantaneous Center 

(3.2-2) 

(3.2-3) 

If we define an instantaneous center as a point of zero velocity, we can 
find its coordinates in the XY plane by letting X = Y = 0 in Eq. 3.2-3. 

Yo 
Xic=Xo-7i 

(3.3-1) 
Xo 

Yic= Yo+7i 

The locus of such points in the fixed plane is the space centrode or the 
herpolhode curve. The locus of the instantaneous center on the moving xy 
plane is called the body centrode or the polhode curve. 

y 

y 

X 

Fig. 3,3-1, Polhode curve rolls on the herpolhode curve. 
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As an illustration, consider a bar AB, shown in Fig. 3.3-1, the ends of 
which must move along the vertical and horizontal guides. Placing the 
moving coordinates x, y as shown with the origin coinciding with point A, 
X0 = ..¥0 = 0. We therefore have, 

which indicates that the locus of the instantaneous center (herpolhode) in 
the XY plane is a quarter-circle of radius equal to the length AB. 

If for every position of the bar AB a hole is punched through the two 
planes at the instantaneous center, the set of holes on the moving plane will 
trace out the polhode curve, which in this case is a half-circle of diameter 
AB. It is evident, then, that the polhode curve rolls without slipping on the 
herpolhode curve. 

3.4 Euler's Angles 

A point on a rigid body can be defined in terms of body-fixed axes x, y, z. 
To determine the orientation of the body itself, we now introduce Euler's 
angles '1/J, <p, (} which are three independent quantities capable of defining 
the position of the x, y, z, body axes relative to the inertial X, Y, Z axes, as 
shown in Fig. 3.4-1. 

z 

y 

Fig. 3.4-1. Body axes x, y, z defined relative to inertial axes X, Y, Z by Euler's angles 
'1/J, <p, 0. 



INTRODUCTION TO SPACE DYNAMICS 

The position of the body axes can be arrived at three rotations which 
will also define other coordinates often encountered in rigid body dynamics. 

With the x, y, z, axes coinciding with the X, Y, Z axes, allow the x, y, z 
coordinates to rotate about the Z axis through an angle ip so as to take up 
the position tr/ f, shown in Fig. 3.4-2. 

z 
I 

fig. l.4-2. Rotation about Z axis through ,p. 

The relationship between the two coordinates is then given the 
transfer matrix 

r tl r cos '1/J 

117' = LI -sin 'i/J lrJ o 

sin 11' 

cos 11' (3.4--1) 

0 

We next allow a rotation e about the t axis as shown in Fig. 
3.4-3, and let the new position of the!;', 17', faxes be /;, 'f/, ( with transfer 
matrix 

0 

cos{) 

-sin(} 

0 l' tl 
sin e I ri'J'. 
cos (j l" 

(3.4-2) 

Finally we allow a spin <p about the axis (, as shown in Fig. 3.4-4, to 
arrive at the body axes x, y, z. The transfer matrix for this rotation is 

sin ffJ 

cos <p 

0 

(3.4-3) 



TRANSFORMATION OF COORDINATES 

n 
fig. J.4--J. Rotation about node axis ;' = ; through angle IJ. 

z 

X 

fig. J.4-4. Rotation about z = ( axis through spin angle <p. 
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In arriving at the final position of the body axes, we have encountered 
four sets of orthogonal axes: X, Y, Z; t, r/, ('; I;, 'Y/, t and x, y, z. 
Some of these axes coincide, such as the Z(', the ,z, and the I;' I;; however 
both letters will be retained to identify the coordinate system referred to. 
Of particular interest is the I;' I; axis, called the line of nodes. It represents 
the intersection of the transverse body plane xy and the horizontal inertial 
plane XY. 

Other transformations between these coordinates can be obtained by 
the multiplication of two or more transfer matrices. For instance, by 
substituting Eq. 3.4-1 into Eq. 3.4-2 we obtain the following transforma­
tion* between the X, Y, Z and the I;, 'Y/, , axes: 

l cos 1P 

= -cos (} sin 1P 

sin(} sin 1fJ 

(3.4-4) 

Substituting Eq. 3.4-4 into Eq. 3.4-3, we obtain the transformation from 
the XYZ axes to the body axes xyz: 

[
x] [ (cos <p cos 1P - sin <p cos (} sin '1/J) 
y = (- sin cp cos 1P - cos cp cos(} sin '1/J) 

z (sin (} sin 'lfJ) 
(cos cp sin 1fJ + sin <p cos(} cos '1/J) 

(- sin cp sin tp + cos <p cos (} cos tp) 

(-sin(} cos 1fJ) 

(sin cp sin 0) ] [X;] 
( cos cp sin 0) 

(cos 0) 

(3.4-5) 

.The inverse transformation from the x, y, z body axes to the X, Y, Z 
inertial axes can be obtained in a similar manner by writing Eqs. 3.4-1, 
3.4-2 and 3.4-3 in the inverse order, i.e., 

* See Appendix A. 

-sin tp 

cos tp 

0 

(3.4-6) 
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etc. Rules are also available for the direct inversion of matrices. The 
inverse of Eq. 3.4-5 is 

1 x1 re cos r cos 1P - sin cp cos e sin 

I y I = I ( cos 'P sin 'If) + sin i:p cos e cos 

lzJ L (sin8sin 

( -sin cp cos 1P - sin 1P cos e cos 

{ -sin cp sin 1P + cos qi cos (:) cos 

(sine cos 

(sin e sin -] 

(-sine cos 1p) I 
(cos e) J 

3.5 Transformation of Angular Velocities 

(3.4--7) 

Frequently we need to express the angular velocities w,, w11 wz about the 
body axes x, y, z in terms of Euler's angles. The transformation may be 
pursued as follows. 

z 

I. 

y 

fig. 3.5-!. Angular rates of Euler angles. 

Resolve the angular velocity 'ljJ along the , and ri axes so that the 
orthogonal components of -q;, ¢, and (J are () along-;, VJ sin e along 'Y/, and 
¢ + 1p cos e along?;, as shown in Fig. 3.5-1. 

Next resolve the components along the ~ and ri axes to the x and y 
directions, the result 

wx = VJ sin fl sin cp + () cos cp 

Wy = 1P sin e cos 'P - G sin 'P 

wz = ¢ + 1iJ cos e 
(3.5-1) 
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or in its inverse form, 

VJ = ~e (w., sin <p + w~ cos <p) 
sm 

cos e . 
<p = Wz - -:--0 (w., Slll <p + Wy COS <p) 

sm 

(J = w., cos <p - wy sin <p 

Arranged in matrix form, these equations become 

[
w"'] [sine sin <p 
Wy = sin O COS <p 

w. cos e 

[
VJ] [ sin <p 

~ = si~ O -sin <p ~OS 0 

e cos <p sm e 

PROBLEMS 

(3.5-2) 

(3.5-3) 

(3.5-4) 

1. A point Pin the inertial space is defined by its components X1, Y1 , and Z1• 

From Pa perpendicular PN is drawn to a line whose direction is specified 
by the angles or;, {J, and y. Determine the lengths ON and PN. 

z 

X 

Prob. I 

2. Determine the inertial components of a point (3, 4, 5) in the rotating co­
ordinate system x, y, z, specified by the Euler angles O = 30°, 'P = 45°, and 
<p = 30°. 
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3. Using body-fixed axes along a bar of length l whose ends slide along a 
smooth vertical wall and horizontal floor, determine the acceleration of its 
midpoint. 

4, One end A of a bar AB moves along a vertical wall while some intermediate 
point slides over the comer of a step a distance s from the wall. Derive 
the equation for the herpolhode and polhode curves. (Use fixed co­
ordinates through the corner 0, and let Z, Y, be coordinates of the space 
centrode.) -

5. The center of a wheel of radius R is moving to the right with velocity v0 

while the angular speed of the wheel is w 0 in the counterclockwise direction. 
Using body-fixed axes x', y' and inertial axes X, Y as shown, determine the 
polhode and herpolhode curves. 

y 

'\~ I 
X 

\8 

0 
X 

l"rnb. 5 

6. The ends of a link of length-/ = kR moves along the circumference and the 
diameter of a circle of radius R. Determine the instantaneous center as a 
function of the angle 13. 
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7. A rod moves in a vertical plane, with the lower end along the horizontal and 
an intermediate point resting against a small pin at height h. Determine the 
instantaneous center as a function of e and plot the polhode and herpolhode 
curves. 

r\ u____ 
Prob. 7 

8. At a given instant a man in a parachute is 60 ft above a 20° inclined hillside. 

X 
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If his horizontal and vertical velocities are constant and equal. to 10 ft/sec 
and 20 ft/sec respectively, determine his coordinate as a function of time: 
(a) in the X, Y system; (b) in the x, y system. Determine the time and place 
of landing on the hillside. 

9. A convenient coordinate system for surface navigation on earth is the 
longitude-latitude system with the origin coinciding with the moving vehicle 
shown in the sketch. The x, y axes lie in the horizontal plane along the 
latitude and longitude lines. Show that the angular velocities along the 
coordinates are 

1.,; = -Ai + (¢ + 0) cos J,j + (¢ + Q) sin ilk 

where the i, j, k vectors are along the x, y, z directions, and O is the earth's 
rotational speed. 

z 

Prob. 9 

10. For the system of Prob. 9, determine the x, y, z components of the accelera­
tion. 

U, A satellites circles the earth with the orbit plane making an angle cc with the 
earth's equatorial plane. The X axis is oriented so that it passes through the 
intersection of the orbit an? equatorial planes. The position of the satellite 
at any time can be given in terms of r 8 , the distance from the earth's center, 
'Ps the angle of the meridian plane measured from the X axis, and il, the 
latitude; the corresponding coordinates of an observation station Oare R0, 

"Po, and l 0• 

(a) Determine the angle cp measured from the X axis to rs in the plane of the 
orbit, in terms of ,p., As, and cc. 
(b) Determine the cosine of the angie between R 0 and rs, and the straight-line 
distance between O and S. Use h for altitude. 
(c) Determine the direction cosine of the line OS relative to X, Y, Z. 



42 INTRODUCTION TO SPACE DYNAMICS 

(cl) Determine the direction cosine of the line OS relative to a coordinate. 
system x, y, z, with the origin at the observation station as shown. 

z 

X 

Prob, II 

12. A vehicle moving relative to the earth is located in terms of its position vector 
r from the center of earth. Place the x, y, z axes with the origin coinciding 
with the moving vehicle, but with z parallel tor. If the angular velocity of 
the x, y, z coordinate axes is w = w.,i + wyj + w.k, show that the x, y, z 
components of the absolute acceleration of the vehicle are, 

a., = w.,w.r + wyr + 2wyf 

a11 = w11w,r - w.,r - 2w.,f 

a, = f - (w.,2 + w112)r 

13. Letting the direction cosines of a rotating coordinate system x, y, z be 
specified by 

I Ix., ly., lz., 
lxy !yy lzv 
Ix, ly, lz, 

where l XY is the cosine of the angle between X and y, determine the equations 
for the unit vectors i', j', k', along x, y, z, in terms of the unit vectors i, j, k, 
along X, Y, Z. 

14. If the x, y, z coordinate system is rotating with angular velocity w = w.,i' + 
w11j' + w,k', show that the velocities of the unit vectors are 

!!_ i' = w J0 ' - w k' dt z y 

d ., k' ., dtJ =w., -w.1 

!: k' = w i' - w.,j' dt y 



TRANSFORMATION OF COORDINATES 43 

15. From Probs. 13 and 14, show that the rate of change of the direction cosines 
between the X, Y, Zand x, y, z axes is, 

l xx = i' · i = w.j' • i - w •. k' • i 

= Wzlx'V - wixz 

iy., = w.ly'V - wyf y. 

etc. Complete the other seven equations. 
16. The following relationship for the unit vector k' can be written. 

k 
k' = i' x j' = lx., ly., lz., = lx.i + ly.j + lz.k 

lxu ly" lzu 

This equation leads to the scalar equation 

lxz = ly.,[z11 - lyyfz., 
and two others. Complete the nine scalar relationships of this type. 

17. Derive the matrix Eq. 3.4-7. 



CHAPTER 4 

4.1 Force and Momentum 

Particle Dynamics 
(Sate II ite Orb its) 

Newton's laws of motion were formulated for a single particle. If the 
mass m of the particle is multiplied by its velocity v, the resulting product 
is called the linear momentum. 

p=mv (4.1-1) 

The velocity v here is measured with respect to an inertial frame of 
reference so that, if the position of the particle is defined by its displacement 
vector r, the velocity is v = t. 

Newton's second law states that the time rate of change of momentum is 
equal to the force producing it, and this change takes place in the direction 
in which the force acts. 

F=p (4.1-2) 

With m a constant, this equation can also be written as, 

F=mv=m'i (4.1-3) 

Newton's first law, which forms the basis for statics, is a special case of 
the second law when the force Fis zero. It states that, if the forces acting 
on a particle balance to give a resultant force of zero (F = i> = 0), the 
44 
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particle remains at rest (p = 0), or continues to move in a straight line 
with constant velocity or momentum (p = constant). 

4.2 Impulse and Momentum 

If the force F is multiplied by the time dt and integrated, we obtain 

it, it" dv Fdt = m-dt = mv2 - mv1 
1 t, dt 

(4.2-1) 

V1 > v1 < v2 - - -
Impact 

Fig. 4.2-1. Momentum before impact is equal to momentum after impact. 

The time integral on the left side of the equation is called the impulse of 
the force, so that the above equation states that the change in momentum 
of a particle is equal to the impulse of the force acting on the particle. 

When two bodies collide, a large force f(t) acts for a short time, and the 
impulse f f dt exerted on the two bodies must be equal and opposite 
according to Newton's third law. Since impulse is equal to the change in 
momentum, for the two bodies considered together as a system, the 
impulses of collision cancel each other. Thus the change in momentum of 
the system is zero, and the momentum before impact must equal the 
momentum after impact. Energy however, is generally dissipated during 
impact, in which case the impulse during relaxation is less than the 
impulse during compression. For central impact we let this ratio be e, the 
coefficient of restitution, and it can be shown that e is also expressible in 
terms of the velocities as 

e = (J f dt ),e,ax. = v2 - v1 = Velocity of separation 

(J ) V1 - V2 Velocity of approach 
f dt compr. 

(4.2-2) 

where the sequence of events is illustrated in Fig. 4.2-1. Thus when no 



INTRODUCTION TO SPACE DYNAMICS 

energy is dissipated, the impact is elastic and e = 1, whereas for the 
completely plastic impact the relaxation impulse is zero and e = 0. In 
general e depends on the material, shape and the velocities of the two 
bodies. 

Example 4.l-1 
A honeycomb plastic has a crushing stress of a O lb/in. 2 If a package of mass m 

is to be dropped through a height h without exceeding a deceleration of ng, 
determine the cross-sectional area and the thickness required. 

Referring to the sketch, we let ; be the crushing displacement of the honey­
comb material. The force equation becomes, 

m~ = mg - acA = - m(ng) 

mg 

T 
i 

I; 

Ex. 4.2-1. 

and its integral is 

. ( a,A) q = g - -'- t + Vo 
\ m 

From (a) the required area is 

A = mg (1 + n) 
ac 

which substituted into (b) becomes, 

! = [g - (1 + n)g]t + v0 

Maximum crushing is attained when ! = 0, or 

Vo t =­
ng 

(a) 

(b) 

(c) 

(d) 

(e) 

Integrating (d) and substituting (e), the material crushed is given by the equation, 

, ng 2 1 v02 h 
~ = - - t + v0t = - - = -

2 2ng n 
(f) 
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4.3 Work and Energy 

If the force F acting on a particle moves through a distance dr, the work 
done is equal to the scalar product F · dr. The total work done in going 
from r1 to r2 is then 

i'• W= F,dr 
1 

(4.3-1) 

By substituting for F and changing the variable of integration to time by 
dr = v dt, the expression for work becomes, 

(4.3-2) 

The scalar quantity tmv2 is called the kinetic energy of the particle, so the 
work done on the particle by the force is equal to the change in kinetic 
energy of the particle. 

We now define a conservative force system as one in which the work 
done is a function only of the position, and independent of the path taken 
by the force. It follows then that the work done by a conservative force 
system around any closed path must be zero. 

1F·dr=0 (4.3-3) 

We will now define the potential energy U(r1) as the work done by the 
conservative force in going from any point r1 to some reference point r0. 

(4.3-4) 

Thus every point in space can be assigned a scalar potential U(r) which 
will 4epend on the reference point. 

Consider next the work done by a conservative force in going from r1 

to r 2. Since the work done is independent of the path taken, we can go 
from r 1 to r O to r 2 as follows : 

(4.3-5) 



48 INTRODUCTION TO SPACE DYNAMICS 

Thus the work done in going from r1 to r2 is the difference in the scalar 
potential -[U(r2) - U(rJ], and it is evident that the result is independent 
of the reference point. In terms of the differential displacement, the above 
equation can be written as, 

F·dr = -dU (4.3-6) 

which expresses the conservative force in terms of the potential or the 
potential energy. This discussion clearly indicates why the reference point 
for the potential energy is arbitrary in setting up the differential equations 
of motion, which are force or moment equations. 

In a conservative system, the total energy is a constant. If we designate 
the kinetic energy by the letter T, Eq. 4.3-2 can be written as 

J. .. F · dr = T2 - T1 = -(U2 - UJ 
1 

Rearranging, the total energies at 1 and 2 are seen to be equal, 

T2+ U2=T1+ U1 

(4.3-7) 

(4.3-8) 

which illustrates the principle of conservation of energy for the co,nser­
vative system. 

As an example of a conservative force system, we have the gravitational 
attraction of the earth, which is inversely proportional to the square of 
the distance from the earth's center, 

(4.3-9) 

where g and R are the acceleration of gravity at the earth's surface and 
radius of the earth respectively. If we use the earth's surface as the 
reference, the potential energy, or the potential of a mass m at height h 
above the earth's surface is, 

U(h) = (R -mg(!!.)2
• dr = mgR2(.!_ - - 1-) JR+k r R R + h 

h 
(4.3-10) 

Thus, for the moderate heights h above the earth's surface, h/R is small, 
and we have for the potential energy the simple equation, 

U(h)~mgh (4.3-11) 
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4.4 Moment of Momentum 

The moment about an arbitrary point O of the momentum p = mR of a 
particle is 

hv = r X mR (4.4-1) 

where R is the absolute velocity of m and r is drawn from O as shown in 
Fig. 4.4-1. Differentiating this equation, we obtain 

. .. . 
h0 =rXmR+rXmR (4.4-2) 

z 

R 

R r 

X 

Fig. 4.4-1. Moment about O of momentum mR is i: x mR. 

Substituting R = Ro + rand noting that r X r = 0, this equation becomes 

-Ro X mi: (4.4-3) 

To establish the relationship between h0 and the moment Mo of the 
forces F = mR acting on m, we have 

.. .. 
Mo = r X mR = r X m(R0 + r) 

d .. 
= dt (r X mi') - R0 X mr 

Substituting M0 = r X mR into Eq. 4.4---J, we can also write 

M 0 = h0 + R0 X mi' 

(4.4-4) 

(4.4-5) 
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Several interesting conclusions can be drawn from Eqs. 4.4-4 and 4.4-5 
as follows: 

a. If point O is fixed in space, then R0 = R0 = 0 and t = R, which 
results in the simplified equation 

Mo= ho 
b. If point O is moving with constant velocity, R0 = 0, and 

d . 
M 0 = dt (r X mr) 

which states that the moment is equal to the rate of change of the apparent 
moment of momentum expressed in terms of the relative velocity t. 

c. If either R0 and r or R0 and t are parallel, again the simplified 
equations are valid. 

d. If the system consists of more than one mass, then the second term 
of Eq. 4.4-4 becomes -R0 X L mr which is zero (I mr = 0) when the 
point O coincides with the center of mass. The moment equation is then 
the same as in case (b). 

Example 4.4-1 
A dumbbell idealized by two masses on a stiff, weightless rod of length I is 

dropped without rotation, and the left mass strikes a ledge with velocity v. 
Assuming the coefficient of restitution to be e, determine the angular rotation of 
the dumbbell immediately after impact. 

ev 

t 
9 -n el -® 

Ex. 4.4-1 

The sketch shows the dumbbell immediately after impact. The velocity of the 

center of ma~s immediately after impact is ev - J Ii, and the change in the linear 
momentum 1s, 

f tdt=2m(ev-Je)-(-2mv) (a) 

The change in the moment of momentum about the center of mass is equal to 
the moment about the center of mass of the impulse, 

Jf tdt=2mG)2e (b) 
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Eliminating the impulse integral, the angular velocity immediately after impact is, 

&=~fl+e) 
l ' ' 

PROBLEMS 

(c) 

1. Assuming that meteors attracted by the earth start at infinity with zero speed, 
determine the speed with which they will strike the earth, neglecting friction 
(radius of earth = 3960 miles). 

r r 
2. The acceleration i' of a particle acted upon by a central force f (r) - , where~ is 

a unit vector along r, is r r 

m'i: = -f(r)~ 
., \. ."' 

Show by the vector method that equal areas are swept out by r per unit of 
time. Hint: 

d2r d( dr\ 
rx-=-rx-J=O 

dt2 dt dt 
K 

3. A force field in a plane is defined by the equation F = - - 18 where r and e 
r 

are polar coordinates. Show that the above force does not have a potential 
when the path encloses the origin. Alternatively, describe a closed path exclu­
sive of the origin and show that a potential exists. 

4. Show that the moment of momentum about an ~r,ntr~'"" 

of particles is equal to 

h0 = 1 r; X m;r; - R0 XL m/ti 
i i 

where the notation is that of Fig. 4.4-1. 
5. If a tempered-steel ball, weighing 0.01 lb will support a 

without being crushed, what is the greatest speed with w ·t"[a,n.be pro­
jected without rupture, perpendicularly against a plane for which e = 0.75, 
assuming that the actual pressure is never greater than twice the average 
pressure, and the impact lasts 0.005 sec. 

6. In Ex. 4.4-1 the dumbbell in the horizontal position just prior to impact has an 
angular velocity of 0.2 rad/sec counterclockwise. Determine the angular 
velocity immediately after impact. 

7. In Ex. 4.4-1 determine the velocity of each mass before and after impact and 
prove that the change in the moment of momentum about the mass center is 
2m(l/2)28. 

8. During impact (see Fig. 4.2-1) the relative velocity of the two masses becomes 
equal to zero at the instant of maximum compression. Letting the common 
velocity of the masses at this instant be V0 , it is possible to write for m1 the 
equations 
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and likewise a similar set for m2• Derive Eq. 4.2-2. Hint: When two fractions 
are equal, the two numerators and the two denominators may be added with­
out altering their ratio. 

4.5 Motion Under a Central Force 

A force which is always directed towards a fixed point is called a central 
force. Choosing the origin O of polar coordinates as the fixed point, the 
moment of the central force about O must be zero. 

fig. 4.5-1. Radial and transverse components of orbit velocity. 

The moment of momentum about O must therefore be constant. 

h = r X mv = constant 

As shown in Fig. 4.5-1, the magnitude of the cross 

I I [r X dr/ 
rXv=--­

dt 

(4.5-1) 

(4.5-2) 

is equal to twice the area swept out by the radial line per unit time. It is 
equal to the moment of momentum per unit mass, and we will designate 
it by the letter h. 

h = Ir X vi = r 28 
We will now examine the motion under a central force 

(4.5-3) 

which is 
some arbitrary function of r for a unit mass. The acceleration in the radial 
and transverse directions are 

f - re2 = F(r) 

.. . J. d . 
re + 21'(} = - - r2(} = 0 

r dt 

(4.5-4) 

(4.5-5) 

From the second equation we obtain the integral corresponding to Eq. 
4.5-3 

r 28 = h = constant 



PARTICLE DYNAMICS (SATELLITE ORBITS) 

Substituting 6 = h/r2 into the first equation, it can be written as 

or, since 

Integrating, 

h2 
f--= ,a 

df 
f=f­

dr 

df h2 

i- =-+ 
dr r 3 

,'2 = - ; + 2JF(r) dr + C 
Y" 

To eliminate the time, we note that I' = 

Eq. 4.5-8 can be written as 

(dr)2= -r2 , ~ 
\df} . T 2 h2 

(4.5-6) 

(4.5-7) 

(4.5-8) 

Thus 

(4.5-9) 

When is specified, the orbit equation is obtained by the integration of 
the above 

Another equation of interest is the speed equation which can be deter­
mined from its two components as 

v2 = f2 + = 2 f F(r) dr + C (4.5--10) 

Since the direction of h as well as the magnitude must be a constant, the 
orbit plane, perpendicular to .h, must also remain fixed. Thus, the motion 
under a central force requires a constant area rate and a fixed orientation 
of the orbit plane. The motion of planets, as stated by Kepler's second 
law, closely conforms to the above requirements. 

PROBLEMS 

1. Determine the equation for the central attractive force f (r) for which all 
circular orbits have the same areal rate Jc. 

2. Show that a particle in a central repulsive force field varying inversely as the 
square of the distance from the focus will move along a branch of a hyperbola. 

3. If a particle describes a circle with the center of force on the circumference, 
determine the law of force. 
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4.6 The Two-Body Problem 

Consider two bodies assumed as particles and moving under the 
influence of a mutual attractive force. Letting r1, r2, and re be the displace­
ment vectors of each mass and their center of mass, as shown in Fig. 4.6-1, 
the vector r = r1 - r2 will define their separation distance. The distance 

z 

X 

Fig. 4.6-1. Displacement vectors of two masses and their center of mass c. 

of each mass from their center of mass is [m2/(m1 + m2)]r and 
[m1/(m1 + mJ]r so that r1 and r2 can be expressed in terms of re 
and r as 

(4.6-1) 

m1 
r2 = re - r 

m1 + m2 

We now let F1 and F2 be forces acting on m1 and m2 respectively, and 
write Newton's equations, 

(4.6-2) 
.. .. m1m2 .. 

F2 = m2r2 = m2re - r 
m1 + m2 

In addition we can write the equation for the kinetic energy. 
• 2 • 2 

T = m1r1 + m2r2 
2 2 

(m1 + mJ . 2 1 ( m1m2 ) .2 = r +- r 
2 e 2 m1 + m2 

(4.6-3) 
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If we specify that the system is isolated from external forces, then the 
resultant force F = F1 + F2 = 0, which requires that the acceleration i'c 
of its center of mass must be zero. The force equations then reduce to 

F1 = -F2 = ( m1m2 )r 
m1 + m2 

(4.6-4) 

Eqs. 4.6-3 and 4.6-4 indicate that the two-body problem can be reduced 
to that of a single body with an equivalent mass (m1m2)/(m1 + m2) at a 
distance r from the center of mass which is either stationary or in uniform 
motion along a straight line. It should be noted that the requirement 
F1 = -F2 does not restrict the forces to be collinear, so that the force 
system may be a couple as well as a collinear mutual attraction. 

If one of the masses is very large compared to the other, the equivalent 
mass (m1m2)/(m1 + m2) reduces to that of the smaller mass moving 
relative to the center of the larger mass. This is essentially the condition 
encountered when a satellite is placed into an orbit around the earth. It 
is, however, of interest to recognize that we have a two-body problem 
which can be analyzed exactly in terms of an equivalent one-body problem. 

Example 4.6-1 
Assume that the ratio of the mass of the moon to that of the moon plus earth 

is known as 

Fig. 4,6-2. Earth-moon system and their center of mass. 

By observation relative to the fixed stars, the angular velocity w of the line 
joining the centers of the earth and moon can be measured as w = 2.66 x 10-5 

rad/sec. Show that the distance between the two bodies is 

na = gR2 
w2(1 - µ) 

Referring to Fig. 4.6-2, the center of mass is given by the equation 

m1x = (D - x)m2 x = Dµ 
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Equating the force in Eq. 4.6-4 to Newton's gravitational force, we obtain 

na = K(m1 + m2) 

m1w2 

Substituting 1 - µ = m1/(m1 + m.), and K = gR2 

D3 = gR2 
w2(1 - µ) 

PROBLEMS 

1. If the mass of the moon is l-1 times that of the earth and its period is 27.32 days, 
determine the distance in miles between their centers, using R = 3960 miles 
for earth. 

2. Determine the distance from the earth's center to the center of mass of the 
earth-moon system. 

3. Determine the distance from the center of earth to the neutral point where the 
attractions of the earth and moon balance each other. 

4. Derive the equation, 

for the earth-moon system, where m2 and m1 are the mass of the moon and 
earth respectively, r the distance between their centers, and T the period of 
rotation of the moon about the earth. 

4.7 Orbits of Planets and Satellites 

In the two-body problem where one of the masses is very large compared 
to the other, the motion of the smaller mass takes place about the larger 
mass whose gravitational attraction is an inverse-square central force. For 
an artificial satellite moving around the earth as its focal center, the 
gravitational attraction is 

F= 
GMm 

,2 (4.7-1) 

where M and m are the masses of the earth and satellite, G is a constant, 
and r is the distance of m from the center of the earth. Equation 4. 7-1 also 
applies to the earth-sun and the moon-earth system. The constant GM 
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can be evaluated from a simple experiment of a falling body at the earth's 
surface. If the measured acceleration of the falling body at r = R is g, 
then Fjm = -g = -GM/R2• We will now replace the constant GM= 
gR2 by the letter K. The constant K can also be calculated from measured 
observations of earthbound satellite orbits. 

Assuming the satellite to be successfully launched, its motion is governed 
by the following equations of force; 

Radial force 

Transverse force 

.. e·2 K r-r =-­,2 

.. · I d · 
re + 2NJ = - - r2() = 0 

· r dt 

(4.7-2) 

(4.7-3) 

The second equation leads to the statement of conservation of moment of 
momentum per unit mass , 2() = h. 

Since our interest is centered about the shape of the orbit, it is advisable 
to eliminate the independent variable t in terms of e as follows, 

Thus by letting 1/r = u, the following terms are converted to the new 
variables, 

f = -hdu 
d() 

.. - -hd2u e· - -h2 2d2u r- - - U-
d()2 J()2 

Substituting these quantities into the radial force equation, the differential 
equation for the orbit becomes 

(4.7--4) 

Equation 4.7-4, being a second-order differential equation, requires two 
arbitrary constants in the general solution. The general solution for this 
differential equation is, 

u = !'!._ + C cos (8 - 60) 
h2 

(4.7-5) 
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where K/h2 is the particular integral. The constant 80 can be made 
to zero by measuring () from perigee (a point of minimum distance from 
the origin of 

The evaluation of the constant C can be made from the energy 
For a body at heights beyond the influence of the atmosphere, the 
is conservative and the total energy E = T + U of any orbit is a constant. 
In this equation it is convenient to consider the energies as those associated 
with a unit mass. 

For the determination of the potential energy per unit mass, we choose 
the point at infinity for and from Eq. 4.7-1 we obtain, 

dr 
;=ii = 

K 

r 
(4.7-6) 

Adding this to the kinetic energy per unit mass, the total energy becomes 

In terms of u and e, 

v2 K 
E=---

2 r 

. 1(du)2 l v2 = ,'2 + (r(;l)2 = h2 I _ + u2J 
._ .de 

= h2 l-C2 sin2 8 + (!!:_ + C cos . h2 

so that substituting Eqs. 4. 7-8 and 4. 7-5 into Eq. 4. 7-7 results in 

2 - (K\ 2 (' ' 2Eh2) 
C - li2J \ l T 1(2 

The equation for u can now be written as, 

where 

K 
u = h2 (I + e cos &) 

J 2Eh2 
e= 1+--1(2 

7-7) 

7-8) 

7-9) 

(4.7-10) 

7-H) 

Equations 4.7-10 and 4.7-11 to the general case for the motion 
under the inverse-square central force, and the type of orbit is established 
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by the numerical value of e as follows: 

Hyperbola if e > 1 
Parabola if e = 1 
Ellipse if O < e < 1 (perigee corresponding to () = 0) 
Circle if e = 0 
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Subcircular ellipse if -1 < e < 0 (apogee-point of maximum dis­
tance from the origin of r corresponding to () = 0) 

4.8 Geometry of Conic Sections 

Motion under central force results in an orbit which is one of the conic sec­
tions. The conic is the locus of a point whose distance from a fixed point 
F and a fixed line DD' have a constant ratio e. The fixed point Fis called 
the focus, the fixed line DD' the directrix, and the ratio e the eccentricity. 

Letting m be the distance from the focus to the directrix DD', the polar 
equation for the conic is 

or 
r = e(m - r cos 0) 

em 
r=----

l + e cos() 
(4.8-1) 

By letting() = 0°, 90°, 180°, and tan-1 (b/a), important distances are found. 
These are shown in Figs. 4.8-1, 4.8-2, and 4.8-3. 

D D 

I 
I 

I 
I r= 

1 +ecos8 

r,(1 + e) I 

a a I 
I 
I 

b I 
l+ecos8 Perigee 

a(l - e2) 

l+ecos8 

me =I 

m4 
I 

r, = a(l - e) I 
I 

D' D' 

Fig. 4.8-1. Geometry of the ellipse. 



ea 
D D 

D' 

INTRODUCTiON TO SPACE DYNAMICS 

I 
/ Hyperbola 

-I::::,..,,. 

r=----
1 + e cos(} 

r/1 + e) 

+ e cos(} 

a(e2 - 1) 

1 + e cos IJ 

me= l 

rv = a(e - 1) 

r' - r = 2a 

Fig, 4.8-2. Geometry of the hyperbola. 
D 

Parabola I 

I 

m 2rv 
r=----

1 + cos (.J 1 + cos 0 

m = l 

D' 

Fig. 4.8-3. Geometry of the parabola. 

PROBLEMS 

1. If and y are rectangular coordinates of a point on the ellipse as shown in 
Fig. 4.8-1, show that x = a cos 'Pandy = b sin 1/J, where the angle ,pis called 
the eccentric Hint: Use equation of ellipse in rectangular coordinates 
to relate y in terms x. 

2. Shov, that cos ,p = (a - r)/ae. Hint: 
a cos ,p). Combine with r = [a(l -

From Fig. 4.8-1, r cos 8 = -(ae 
+ e cos IJ) to eliminate cos f!. 

3. Prove the relationship 

1P Jl - e e 
tan 2 = 1 + e tan 2 
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4.9 Orbit 1:stab!ished from Initial Conditions 

The initial conditions at rocket burnout are: 

r = r0 

V = Vo 

fl = f3o 
where fJ is the heading angle, measured outward from the normal to r, as 
shown in Fig. 4.9-1. From this information we would like to determine 

F ,;;__... ____ __,.,, Perigee 
rp 

fig. 4.9-L Initial conditions at injection into orbit. 

the value of the eccentricity e, which establishes the type of orbit, and 
the angle between perigee and r0 . 

We will let r,, be the perigee distance ate = 0 (when e is negative, e = O 
corresponds to apogee with distance ra) in which case we have from Eq. 
4.7-10 

h2 
K = ril + e) 

Equation 4.7-10 can then be written as 

1 + e cos 6 
U=-----

r,,(l + e) 

The components of the initial velocity are, 

. h 
v0 cos {30 = rof)0 = -

ro 

. (du) Ke sin 80 

Vo sin = 'o = -h d(} e~e. = rovo cos fJo 

(4.9-1) 

(4.9-2) 

(4.9-3) 

(4.9-4) 
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Since from Eq. 4.7-10 we can write 

l K 
- = - (1 + e cos B0) 
ro h2 

(4.9-5) 

substitution for h2 from Eq. 4.9-3 results in the equation 

e 

r V 2 
0) cos2 {30 = 1 + e cos B0 (4.9-6) 

I 

2~~-------+~+----+-----7'r~t---i--~ 

I 
Oi----t----;~---t---t----t---i---i----r---t---1 

2 3 4 5 

fig. 4.9-2. Orbit eccentricity established from initial values of f3 and rv'/K. 

Solving for e sin (}0 and e cos ()0 in Eqs. 4.9-4 and 4.9-6 and dividing, the 
angular position from perigee is found 

() (r0v02/K) sin /30 cos /30 tan = ~-:-,---,--:--:---
0 (r0v02/K)cos2 /30 - l 

(4.9-7) 

By adding the squares of e sin 80 and e cos (}0, e2 is obtained 

e2 = (ro;2 - cos2 /30 + sin2 /30 (4.9-8) 

Equations 4.9-7 and 4.9-8 completely establish the orbit for any initial 
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conditions and fJ0 arranged in nondimensional form. In =wv ... ,~ .. 

the total orbit energy established from Eq. 4.7-7 at burnout is 

Ero = ~ roV02 - 1 
K 2 K 

(4.9-9) 

A plot of Eq. 4.9-8 showing e as a function of r0v02/K with as par-
ameter is presented in Fig. 4.9-2. It is evident that, if /30 =I= 0, e can never 
become zero, so that a circular orbit is not possible. Equation 4.9-7 indi­
cates that, when cos2 /30 = 1, {)0 = 90°. For cos2 < 1 
and (30 > 0, B0 is in the second quadrant. 

PROBLEMS 

1. Explorer No.? launched in October 1959 resulted in the following observations. 
Apogee distance above earth surface = 664 miles, 
Perigee distance above earth surface = 346 miles, 
Orbit period = 101.2 min. 

Using mean radius of earth to be 3960 miles, calculate K for earth. 
2. For Prob. 1, determine the eccentricity and the perigee and apogee speeds . 
.Yo Determine the circular orbit radius for which a satellite will remain stationary 

with respect to earth. 
4. Explorer No. 6 launched in August 1959 is reported to have perigee and 

apogee heights above the earth's surface of 157 miles and 26,400 miles. 
Calculate the orbit period, its eccentricity, and the maximum speed. 

5. If the initial conditions for a satellite at rocket burnout are p0, r0/R, and 
show that the perigee and apogee distances from the center of the 

are given by the equation 

rv.a = ___ l __ f 1 ± I 1 - (roV02) ( 2 - rovo2)· cos2 fJ J 
ro 2 - (r0Vo2/K)L ·I\/ K I I K o 

where - corresponds to perigee and + to apogee. Plot 
> l for fJ = 1 ° and 5 °. 

and r air O versus 

6. Assess the effect of the heading angle error {J0 on the perigee height when the 
velocity at rocket burnout is equal to the circular orbit value. 

7. Plot 80 versus with p0 as parameter. Use a range of O < r0v02/K < 2 
and /30 = , 5°, 10°, 30°. 

4. rn Satellite lau111.:hed with [30 = 0 

The special case of a satellite launched with fJ0 = 0 is instructive 
because of its simplicity of interpretation. From Eq. 4.9-7 it is evident 
that ()0 = 0, so that the launch point corresponds with perigee. Equation 
4.9-8 now becomes 

(4.10-1) 
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which is represented by the straight line for Po = 0 in Fig. 4.9-2. Equation 
4.10-1 indicates that a circular orbit (e = 0) is obtained only when 
r0vl/K = 1 and, Po = 0. If v0 or r0 is increased so that 1 < r0v02/K < 2, 
the orbit will be an ellipse. For values of r0v02/K > 2, the orbit will 
become a hyperbola and the satellite will escape from the earth. Thus 
r0vl/K = 2 corresponds to the velocity of escape at height r0 = R + z. 

v =J2K =RJ 2g 
• r0 R + z 

(4.10-2) 

Considering the geometry of the elliptic orbit, the semimajor and semi­
minor axes are: 

a 
(4.10-3) 

r0 1 - e 

(4.10-4) 

The apogee distance is: 

r0 1 - e 
(4.10-5) 

and in terms of the altitude z above the earth's surface, the apogee and 
perigee altitudes are: 

za r0 1 + e 
-=--- -1 
R R 1 - e 

:::=~-1 
R R 

(4.10-6) 

(4.10-7) 

Numerical values for small e are given in the following table to show the 
nearly circular shape of such elliptic orbits in spite of the large difference 
in the apogee and perigee heights. 

Table 4.10-1. Calculations for Launching Altitude 
r0/R = 1.10 

1 + e Za a (Elliptic speed) e 
1 - e z"' b Circular speed at launch 

0.00 1.00 1.00 1.000 1.00 
0.05 1.105 2.15 1.00125 1.025 
0.10 1.22 3.40 1.0050 1.050 
0.20 1.50 6.50 1.020 1.096 
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For an eccentricity of 0.20, the apogee height is 6.50 times the perigee 
height when the launch height is r0 = 1.IOR, or approximately 400 miles 
above the earth's surface. 

We can next examine the case r0v02/K < L Equation 4.7-10 with 
negative e shows that we have an ellipse with the starting point corre­
sponding to apogee, and perigee is at fJ = 180°. The speed is then not 
sufficient to balance the attractive force of the earth, and the satellite 

Fig. 4. Hl-!. Satellites launched with /Jo = 0. 

distance r will diminish from its initial value r0 • With negative e, the 
center of the ellipse falls between the origin and the launching point. It is 
evident from the previous set of numbers that the satellite will fall into a 
region where atmospheric drag becomes important, even for small negative 
e. Figure 4. 10-1 shows one such orbit along with orbits for positive e. 

The period of closed orbits, ellipses, or circles can be found by dividing 
the enclosed area by the areal rate h/2. The area of the ellipse is 7rab. The 

semiminor axis, from Fig. 4.8-1, is b = a Vl - e2, and h from Eq. 4.9-5 

at fJ = 0 is h = V Kr11(l + e) = V Ka(l - e2). Thus the equation for the 
period becomes 

PROBLEMS 

1. A satellite is launched parallel to the earth's surface at r/R = 1.10 with rv2/K = 
1.20. Determine the apogee distance and the ratio of the apogee to perigee 
heights above the earth's surface. 
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2. A satellite is launched parallel to the earth's surface with a 
mph at a height of 400 miles. Calculate the apogee height above 
surface and the period. 

3. Plot the escape from the earth as a function of the altitude. 

4. Determine and plot the orbit energy lei.el Er 0/ K of circular orbits as a function 
of the altitude z. 

5. For Prob. 4, plot the period versus z. 

6. For bodies launched with {J0 = 0 at height r 0 / R, determine the equation for the 
apogee distance r a as function of the velocity parameter rv2/ Kat perigee. 

4.!i Transfer between Coplanar Circular Orbits 

Transfer between coplanar circular orbits can be effected an 
orbit with perigee and apogee distances equal to the radii of the respective 
circles, as shown in Fig. 4.11-1. The cotangential ellipse is known as the 

fig. 4.i 1-1. Hohmann transfer orbit. 

Hohmann transfer orbit, and it can be shown to be a minimum energy 
orbit for transfer between the coplanar circular orbits. 

Assuming transfer to take place from 1 to 2, we can obtain the rario 
ra/r'l) from Eq. 4.7-10. Letting 8 = 180°, u = so that 

11-1) 

From Eq. 4.10-1, e can be eliminated in terms of r'l)v'l)2/K as 

(4.11-2) 
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Substituting Eq. 4.11-1 into 4.ll-2, we obtain 

r vvv 2 2(ra/r ,,) 
K 1 + (ra/r,,) 

which is plotted in Fig. 4.11-2. 
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(4.11-3) 

In interpreting these results, we can assume the space vehicle to be 
initially orbiting around the inner circle of radius r v· This requires 
r,,vv2/K to be equal to 1.0. To escape from the inner circular orbit and 

3 4 

Values 

rpvp2/K ra/rp 

0.666 0.5 
1.0 1 
1.33 2 
1,5 3 
1.66 4 

Fig. 4.11-2. r,v."/K necessary for Hohmann transfer between orbits r0 /r,. 

travel along the elliptic transfer orbit of ratio ra/r P' r vvP2/K must be increased 
to a value given by Eq. 4.11-3. This may be accomplished by firing a 
rocket in the tangential direction, the required increase in velocity being 

Liv = ~[J 2(ra/rP) _ l] 
v rP 1 + (ra/rP) 

(4.11-4) 

On reaching point 2, the apogee velocity, which can be found by 
equating the angular momentum at 1 and 2, i.e., r vvv = rava, becomes 

rava2 r'P r'Pv'P2 
-=---=---
K Ya K 1 + ra/r P 

2 
(4.11-5) 

Since the circular orbit velocity for radius ra is rava2/K = 1, and the apogee 
velocity as given by Eq. 4.11-5 is less than 1, another thrust in the forward 
direction is necessary. The increment in velocity required at point 2 to go 
into the circular orbit is then 

(4.11-6) 

Thus the total impulse which must be applied in the direction of motion is 
determined by Livv + Liva, and the fuel energy corresponding to it is 
proportional to (Livv + Liva)2• 
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It is of interest to compare the total velocity increment to transfer from 
orbit I to orbit 2 with that of the velocity increment for escape from orbit 
I. The parabolic orbit velocity of escape from radius r 11 is found from 
r 11v112/K = 2 to be 

V 110 = 1.414ft (4.11-7) 
r<> 

which requires a velocity increment of 

Liv11 = 0.414ft (4.11-8) 
r<> 

acquired under a single impulsive thrust. 
The total velocity increment for the Hohmann transfer orbit obtained 

by adding Eqs. 4.11-4 and 4.11-6 is 

Liv11 =fl[J 2(ra/r<>) (1 - ~)' + fi- 1] (4.11-9) 
r11 1 + (rafr 11) ra ra 

Equating Eqs. 4.11-8 and 4.11-9 we find ra/r11 = 3.4. Thus transfer 
between circular orbits of ra/r 11 > 3.4 will require rocket energy in excess 
of the orbit escape energy. 

Heliocentric orbits 

In considering planetary orbits, the large mass of the sun (99 .2 % of the 
total mass of the solar system) enables one to ignore all other forces. 
Although planetary orbits are ellipses with their orbit planes inclined 
slightly from the ecliptic (earth's orbit plane), great simplification results 
from assuming the orbit to be circular and coplanar. 

Assuming coplanar circular orbits, the equations for the Hohmann 
transfer orbit are applicable with the numerical values of K corresponding 
to the sun. K for the sun can be found from measured data pertaining to 
any planet. Assuming a circular orbit of radius r for the earth, we have 

rv2 

-= 1 
K 

where r = 490.5 x 109 ft = 93 x 106 miles 
K= Gilf,forthesun 
v ~ 27TrjT = velocity of earth 

(4.11-10) 

T = 365.25 x 86,400 sec = period of the earth around the sun 

Substituting these figures into Eq. 4.11-10, K for the heliocentric system is 
found to be 4.68 x 1021 ft3/sec2• 

Another convenient set of units for planetary and interplanetary orbits 
is one referenced to the earth's orbit, with r = 1 astronomical unit and 
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T = l year. Substituting for these quantities in the 

T = 2riV(r3/K), the heliocentric constant K becomes equal to 41T2 astro­
nomical units cubed per year squared. 

PROBLEMS 

1. Discuss how a space vehicle traveling around a circular orbit of radius r2 

can transfer to a coplanar circular orbit of radius r1 , where r1 < r2. 

2. Show that, if r1/r2 < 0.50, the velocity increment necessary for the transfer 
to the inner orbit wi!I exceed that of escape from the outer orbit. 

3. Determine the time of flight for the Hohmann transfer orbit. 
4. Determine the equation for the velocity versus distance for the 

Hohmann transfer orbit, where departure is from the inner orbit radius r,, 
and circular orbit speed Ve. 

5. A rocket traveling in a circular orbit r1vi2/K = 1 is given an impulsive thrust 
normal to the orbit so that the resultant velocity vector makes an angle {3 0 

outward from the trangent to the departing circular orbit. Determine the 
new orbit, specifying the perigee and apogee distances and the eccentricity. 
Determine 8 0 to perigee. 

6. For the maneuver of Prob. 5, determine the areal rate and show that the area 
enclosed from the point of maneuver to apogee is given by the equation 

A = _ __!_£_ J~ + e(ev 1 - e2 + sin~1 e + '.:.) 
2(1 - e) 1 - e · 2 

7. A rocket traveling at 18,300 mph at perigee, fires a retrorocket at perigee 
height of 300 miles. What velocity change is necessary to reach minimum 
altitude of 100 miles during the first circuit? 

8. The following table gives the distances of some of the planets from the sun. 

Planet Mean Distance from Sun 

Mercury 
Venus 
Earth 
Mars 
Jupiter 

0.39 
0.72 
1.0 = 93 x 106 miles 
1.52 
5.2 

Assuming the two orbits to be in the same plane, determine the Hohmann 
transfer orbit from earth to Mars and corn.pute the time required for transit. 
Determine the position of Mars in its orbit relative to earth for interception 
to take place. 

9. For the transfer orbit of Prob. 1, determine the velocity increments necessary 
on departure and on arrival. 

10. Determine the spherical region around earth where the earth's gravitational 
attraction dominates over that of the sun. 

11. Determine the equation for the escape velocity from the solar system. What 
is its value at the earth's orbit. 
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4.12 Transfer Between Coplanar Coaxial Elliptic Orbits 

Figure 4.12-1 shows two coaxial elliptic orbits in the same plane. To 
transfer from the inner orbit l to the outer orbit 2, it can be shown that 
for minimum expenditure of energy, the thrust should be impulsive at 
perigee of the inner orbit and apogee of the outer orbit. 

We will assume that the orbit parameters e and a of the two orbits are 

Fig. 4.12-L Transfer between coplanar, coaxial, elliptic orbits. 

given. The perigee and apogee distances are then known from the relation­
ships rP = a(I - e) and ra = a(l + 

Before impulse, the velocity at A can be obtained from Eq. 4.9-6 by 
letting (3 = 0 and fJ = 0, 

(4.12-1) 

For the transfer orbit, the necessary velocity at perigee can be found from 
Eq. 4.11-3 to be 

(4.12-2) 

The increment in velocity required at perigee of the inner orbit is then 

(4.12-3) 

After departure, the vehicle proceeds along the transfer orbit until it 
reaches apogee. The velocity as it approaches apogee is 

(4.12-4) 
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The apogee velocity for orbit 2 can be found from Eq. 4.9-6, letting 

f3 = 0 and() = 180°, 

(4.12-5) 

The increment in velocity necessary to transfer from orbit (t) to orbit (2) 
at apogee is then 

!1va2=fl[v1-e2-J1 / 1 )] (4.12-6) 
ra2 + ra2 rpl 

and the total increment in velocity in the tangential direction is 

4.13 Orbital Change Due to Impulsive Thrust 

In this section we will consider the general problem of changing an 
existing orbit to another of a given specification. Such changes may range 
from small corrections to an existing orbit, to large changes in the orbit 
for maneuvers. It will be assumed that the change will take place under 
impulsive thrust; e.g., a change in the direction and magnitude of the 
velocity vector takes place under negligible change in the displacement 
vector. This idealization is generally acceptable when the distance 
traveled during thrust is negligible in comparison to the radius vector. 

In general, our concern is with elliptic and hyperbolic orbits, the circle 
and the parabola being special limiting cases. The relationship between 
the velocity v, the angular position 0, the heading angle {3, and the 
eccentricity e, shown in Fig. 4.13-1, is already available from Eqs. 4.9-7 
and 4.9-8, which are rewritten as follows: 

() (rv2/ K) sin f3 cos f3 
tan = ------­

(rv2/K) cos2 f3 - 1 

[ rv2 ]2 
e2 = K - 1 cos2 f3 + sin2 f3 

(4.13-1) 

(4.13-2) 

By holding () constant and varying {3, rv2/K can be computed from Eq. 
4.13-1 rearranged as follows: 

rv2 

K = cos2 f3 - (sin f3 cos /3)/(tan 0) 
(4.13-3) 
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By holding e constant and varying (J, the curve for rv2/K versus fJ can be 
computed from Eq. 4.13-2 rearranged as Eq. 4.13-4: 

rv2 J (l - e2 \ 

K = 1 ± 1 - cos2 fJ J (4.13-4) 

These results for the ellipse and the hyperbola are plotted as shown in 
Figs. 4.13-2 and 4.13-3. 

V 

e 

l Perigee 

fig. 4. !3-1. Displacement, velocity and heading angle (J at any position e. 

In addition to these two equations we have the energy relationship of 
Eq. 4.7-7, 

Er 1 rv2 
- =-- -1 
K 2 K 

(4.13-5) 

Since Eis constant for a given orbit, we can evaluate it at perigee. Letting 
(J = fJ = 0 in Eqs. 4.13-1 and 4.13-2, 

rPvl 
e=---1 

K 

which substituted into Eq. 4.13-5 with r = rv results in 

2E l - e 
-=---
K 'v 

(4.13-6) 

(4.13-7) 

Since r v = a(l - e) for the ellipse and r v = a(e - I) for the hyperbola 
(see Sec. 4.8), the energy E can be expressed in terms of a as follows. 

2E = J-~ 
K I I +­

l a 

for elliptic orbit 

(4.13-8) 

for hyperbolic orbit 
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Substituting these values into Eq. 4.13-5, the energy equation can be 
written as 

a 1 
for elliptic orbit (4.13-9) 

r 2 - (rv2/K) 

a 1 
for hyperbolic orbit (4.13-10) -= 

r (rv2/K) - 2 

Finally, we need an equation from which the time elapsed during travel 
along an orbit can be computed. For this we examine the equation for the 
moment of momentum, 

r20 = h = v'Kr,,(l + e) (4.13-11) 

and rearrange it as follows: 

d() = VKr,,(l + e) dt 
(1 + e cos ())2 r ,,2(1 + e)2 

Fore < l, the integral of the left side is (see Peirce, Short Table oflntegrals, 1 

no. 308 and no. 300), 

{ 6 d() 1 ( -e sin() re d() ) 

Jo (1 + e cos ())2 = I - e2 I + e cos() + Jo I + e cos() 

= -- + tan- tan 72 1 [ -e sin e 2 1 (v'~ 1,/e)J 
I - e2 1 + e cos () v' 1 _ e2 1 + e 

Fore> 1, 

l e d() 1 [ e sin () 
o (1 + e cos ())2 = e2 - I (1 + e cos()) 

I 1 (v'~ + v'~ tan te)] 
- v' e2 - 1 n v' e + I - v' e - I tan te 

Replacing r,, in terms of a and e as before, the equation for the time 
becomes: 

For elliptic orbits (e < 1) 

. a% [ (JI - e ) ev' 1 - e2 sin ()] . 
t. = , 1- 2 tan-1 -1 - tan te - () (4.13-12) 

·y K + e 1 + e cos 

For hyperbolic orbits (e > 1) 

_ a% [ev'e2 - I sin() 1 (~ + v'e - 1 tan t(J)] 
th - -= - n 

v' K 1 + e cos () v' e + I - v' e - 1 tan te 
(4.13-13) 

1 Third revised edition, Ginn & Co. 1929. 
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Fig. 4.13-4. Dimensionless time for elliptic orbits. 

These equations in nondimensional form, T6 = (t.VK)/(21ra"A) and T1,, = 
(t1,,VK)/a%, have been computed and plotted by Augenstein1 and are 
reproduced here as Figs. 4.13-4 and 4.13-5. 

A somewhat simpler expression for the time along the elliptic orbit is 
available in terms of the eccentric anomaly "P· For its derivation we need 
the following relationships: 
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fig. 4. ! J-5. Dimensionless time for hyperbolic orbits. 

From the equation of the ellipse 

1 K 1 + e cos 8 
- = 2 (1 + e cos ()) = (I 2) 
r h a, - e 

we obtain 
h2 = Ka(l - e2) (4.13-14) 
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From Eq. 4.7-11 for the eccentricity, we have, 

K2 
2E = -(1 - e2) -

h2 

From the invariance of the moment of momentum, 

. h2 
,282 = _ ,2 

From the equation cos 1P = (a - r)/ae (see Prob. 2, p. 60), 

(a - r)2 = a2e2(1 - sin2 'I/,') by squaring 

I' = ae,p sin 'I/' by differentiating 

(4.13-15) 

(4.13-16) 

(4.13-17) 

(4.13-18) 

We now write the total energy equation, Eq. 4.7-7, noting that 
v2 = f 2 + (r8)2, as follows: 

. 2K 
1'2 + (r())2 - - = 2E (4.13-19a) 

r 

Using Eqs. 4.13-14, 4.13-15, and 4.13-16, this equation becomes 

,2;2 
- = a2e2 - (a - r)2 (4.13-19b) 
K/a 

Substituting Eqs. 4.13-17 and 4.13-18 into Eq. 4.13-19b, we obtain 

. JK f'I/J = -;; (4.13-20) 

Replacing r from the equation cos '1/J = (a - r)/ae, and rearranging, 

Adt=aJ¥adt=a(l-ecos'I/J)d'lf) 

which integrates to 

!K . A/ ~ t = 1P - e sm 1P + C (4.13-21) 

The constant of integration C is zero if time is measured from perigee. 
Equation 4. 13-21 is the well-known Kepler equation for planetary 
motion. 

Example 4.13-1 
A satellite is launched with the following initial conditions: 

2 
rovo = 1 40 K . flo = 200 ~ = 20 R . 

Determine the orbit parameters e and a/R, and establish the initial position with 
respect to perigee. 
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From Eqs. 4.13-2 and 4.13-1 

e = v (0.4)2(0.939)2 + (0.342)2 = 0.508 

8 = -1 (l.4)(0.939)(0.342) = 62023' 
tan (1.4)(0.939)2 - 1 • 

These values agree with those of the graph of Fig. 4.13-2. 
From Eq. 4.13-9 

a 1 a R 
-=--=1.67=-­
ro 2 - 1.4 Rr0 

~ = (1.67)(2.0) = 3.34 
R 

!Example 4.13-2 
The satellite orbit of Example 4.13-1 was characterized by e = 0.508 and 

a/R = 3.34, and its launch point was r0/R = 2.0, e = 62°23'. Jf the satellite 
continues along this orbit toe = 150°, at which time the orbit is to be increased 
to a value a/R = 3.60 without rotating the apse line, determine the required 
increment in the velocity and its direction. 

We first determine the value of rv2/K and fJ before impulse for(} = 150° and 
e = 0.508. Using subscripts 1 and 2 for before and after impulse, we find from 
Fig. 4.13-2 

r V 2 
:...!....!... = 068 K . /J1 = 240 

From Eq. 4.13-9 we have 

a 1 = 0.757 = :!: ~ = 3.34 ~ 
r1 2 - 0.68 R r1 r1 

Therefore 

~ = 3.34 = 4 41 
R 0.757 . 

To maintain no rotation of the apse line, the new values of r2v22/K and /J2 after 
impulse must lie along thee = 150° line in Fig. 4.13-2. (Note that r 2 = r1 for the 
instantaneous impulse.) The value of a/R after impulse is specified as 3.60, so 
from Eq. 4.13-9 we have 

Therefore 

a 2 a2 R 3.60 
~ = R Yi = 4.41 2 - (r1vl/K) 

r V 2 
.12- = 0 780 K . 

The new eccentricity and heading angle corresponding to r1v22/K = 0.78 and 
e = 150° is, from Fig. 4.13-2, 

e2 = 0.30 



78 INTRODUCTION TO SPACE DYNAMICS 

(Note e2 = 0.77 and {J2 = 49° is also a solution but one which requires a larger 
velocity increment.) Figure 4.13-6 shows a rough sketch of the two orbits. 

/, 

/ 
/ 

/ 

------ -- ---- "-
'-

'-

" e = 0.30"'-'\ 

\ 
\ 

\ 
\ 
\ 
I 
\ 

Apse line I 

llVt 

/-< 
// llvn\ 

t / \ 
/ \ 

F 

\n 

Fig. 4.13-6. Impulsive orbit change without changing apse line. 

I 
I 

From the vector diagram of the velocities, the tangential and normal components 
of the required velocity increments are 

Llvt = (0.882 cos 13° - 0.823) {! = 0.036 {! 
,J Yi ,J Yi 

Llvn = (0.882 sin 13°) {! = 0.198)! ,J Yi r1 

and the total velocity increment is 

Llv = vo.0362 + 0.1982 f! = 0.202 f! 
,J Yi ,J Yi 

or 0.202 times the circular velocity at a radial distance r1. 

PROBLEMS 

1. If in Example 4.13-2 the impulse of Llv = 0.202 v Kfri is applied in the 
tangential direction, determine the new orbit parameters e and a/R and the 
rotation of the apse line. 
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2. In Example 4.13-2 determine the time required for the satellite to reach e = 
150° from the initial position of e = 62°23'. 

3. In Prob. 2 determine the eccentric anomaly 'P corresponding to the two angles 
and check the time from Kepler's equation. 

4. A satellite is launched at a height of 400 miles with rv2/K = 1.50 and ,80 = 10°. 
Determine the eccentricity e, the orbit parameter a/R, and the position 00• 

5. If in Prob. 4 the satellite is given an increment in velocity of Av = 2000 ft/sec 
at apogee, determine the new orbit, e, a/R, and e. 

6. A satellite is placed into an orbit of e = 0.60 at perigee of height r/ R = 1.2 
with v2 = l.6v02, where v0 is the circular velocity atthis height. Determine a/R 
of the orbit and r/R at e = 100°. 

7. If the satellite of Prob. 6 is to reduce the size of the orbit to a/ R = 2.23 with­
out rotating the line of apse, by an increment of velocity at the position e = 
100°, determine the new eccentricity and the components of the velocity 
increment along the tangent and normal to it. 

4.14 Perturbation of Orbital Parameters 

The motion of a space vehicle moving along a specified orbit is 
completely defined by the following three equations: 

() (rv2/K) sin fJ cos fJ 
tan = ------­

(rv2 / K) cos2 fJ - 1 

( rv2 )2 
e2 = K - 1 cos2 fJ + sin2 fJ 

a ±1 
~=~ 

2-­
K 

{+ = ellipse 
- = hyperbola 

(4.14-1) 

(4.14-2) 

(4.14-3) 

If at a specified position in the orbit a small impulsive thrust is imparted, 
in what way will the orbit parameters be affected? To answer this question 
we can examine each of the above equations separately. 

Equation 4.14-1 indicates that the angular position of the apse line is a 
function of rv2/K and {J, so that 

( rv2 ) 
O=f K'{J 

Differentiating, 

d() = of drv2 + of d{J 

0 rv2 K o{J 
K 

(4.14-4) 
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The first term of this equation represents a variation of() due to a variation 
in the velocity (i.e., r is not changed during impulsive thrust), holding f3 
constant. This is equivalent to moving the point in Fig. 4.13-2 along the 
horizontal line. Figure 4.13-2 shows that, if rv2/K is increased along a 
horizontal line, then () decreases, and vice versa. With larger velocities, the 
semimajor axis a will also increase according to Eq. 4.14-3. Figure 4.14-1 

Fig. 4.14-1. Orbit variation by tangential thrust. 

illustrates how these orbits change with increasing velocity in the tangential 
direction. All orbits will be tangent to the velocity line. 

To evaluate quantitatively the rotation of the apse line due to an incre­
ment in the tangential velocity, we can differentiate Eq. 4.14-1, holding f3 
constant. 

d() = -sin f3 cos f3 cos2 () d(rv2/K) 
[(rv2/K) cos2 f3 - 1]2 

(4.14-5) 

To reduce this equation further, we first replace the denominator from 
Eq. 4.14-1 

d() = -sin2 () d(rv2/K) 
(rv2/K)2 sin f3 cos /3 

then eliminate sin /3 cos /3 = (K/rv2)e sin() (see Eq. 4.9-4) to obtain 

d() _ -sin() d(rv2/K) _ 2 sin() dv (4_14-6) 
- --e- rv2/K - - -e- -;;-

If vis eliminated by Eq. 4.14-3, Eq. 4.14-6 can also be written as 

d() = - 2 sin OJ r dv 
e K[2 - (r/a)] 

(4.14-7) 

If next the perturbation of the apse line is desired due to a small change 
in /3, while holding the magnitude of the velocity constant, the change in 
() can be found from Fig. 4.13-2 by moving the point along the vertical 
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line. Such a change corresponds to the second term ofEq. 4.14-4, and the 
required increment in the velocity vector is du = 

The perturbation in the eccentricity e due to a small increment in the 
tangential velocity is again available from Fig. 4.13-2 by moving the point 
along the horizontal (fJ = constant) line. It can be determined analytically 
by differentiating Eq. 4. 14-2, holding (3 constant. The result is 

2 2 {a ) du de = - (1 - e) - - l - ( 4.14-8) 
e \r U 

When the thrust is continuous over a finite length of time, it can be 
visualized as a series of small impulses, and the orbit change can be 
obtained by a succession of small changes. 

PROBLEMS 

1. Holding /3 constant, integrate the second form of Eq. 4.14-5 and compare 
the rotation of the apse line in Prob. 4.13-1 with this equation. 

. de (e + cos e)dv 2. Show that Eq. 4.14-8 can be expressed m the form -;- = 2 e -; 

which indicates that~ = 0 for cos() = -e. Verify points on Fig. 4.13-2 
e 

for which this is true. 
3. According to Fig. 4.13-2, fore greater than a certain value there is a value of 

rv2/K, e, and /3 at which d8/de and dv/de are zero. Determine the locus of 
rv2/K, e, and f3 for such values. 

4.l!ii Stability of Small Osdliations abmit a Circular Orbit 

In a central force system, the circular orbit is always possible at a 
proper speed when the centrifugal force is balanced by the attractive force. 

-r/J2 = F(r0) (4.15-1) 

To determine the stability of such an orbit to a small radial disturbance 
T1, we start with the general equation for the radial force 

f - T8 2 = (4.15-2) 

and eliminate (j from the condition that the moment of momentum 
T28 = h must be a constant. 

h2 
(4.15-3) 

Vl/e now let T = r0 + r1 = + so that f = i\ and 

1!._ = h2_(1 + 
r3 ro3 \ 

= h:{ 1 ·- 3r1 + 6:~2 
•• • ) 

To \ To 'o 
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Also expand F(r) about r0 by the Taylor series 

F(r) = F(r0) + r1F'(r0) + tri2F"(r0) + · · · 
Substituting these expansions, ignoring higher-order terms, and noting 
that -h2/r03 = F(r0), we arrive at the differential equation for small 
oscillations about r0 • 

f 1 - [~ F(r0) + F'(r0)}1 = 0 (4.15-4) 

This is a well known second order differential equation for harmonic 

oscillation provided -[~ F(r0) + F'(r0)] is a positive number; i.e., for 

stable oscillations we must have 

! F(r0) + F'(r0) < 0 (4.15-5) 
'o 

3 
If - F(r0) + F'(r0) > 0, then the solution is an exponentially increasing 

Yo 

function of time and the system is unstable. 

Example 4.15-1 
Determine the differential equation for small oscillations about a circular orbit 

when the attractive force is -K/r2• 

We have F(r) = -K/r2• Differentiating, 

F'(r) = 2K ,a 
The differential equation of small oscillations is then 

and the solution for an initial disturbance of ri(O) with 1\(0) = 0 is 

r1(t) = ri(O) cos ~ t ,./-;:;} 

PROBLEMS 

1. For a central force -K/rn, show that a stable circular orbit is possible only 
for n < 3. 

2. A body is moving in a circular orbit ofradius r0 under a central force -K/r2• 

If the body is given a disturbance r1(0), show that the angular speed becomes 

() = \[1 - lri(O) cos ~ t] 
'o ro ,./-;:;} 
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4.16 Interception and Rendezvous 

Problem 1. ( Circular orbits) 

We will consider first the problem of two vehicles moving in the same 
circular orbit r/R, one leading the other by a specified angle cf,12 as shown 
in Fig. 4.16-1. We will let 1 and 2 be the pursuer and the pursued 

Fig. 4.16-1. Intercepting and rendezvous on circular orbit. 

respectively. Since the orbit is circular, rv?/K = 1, fJ = 0 for both 
vehicles, and cf,12 remains unchanged until altered by thrust. 

We wish now for 1 to overtake 2 at some position 3, indicated by angle 
cf,23, and to rendezvous with it along the circular orbit. What impulsive 
velocity increments are necessary at 1 and 3? 

The problem is solved in the following manner. First the time required 
for 2 to travel to 3 is determined as 

(4.16-1) 

Vehicle 1 must travel to 3 on a new orbit which will require the same time. 
Due to equal radial distances 01 and 03, the perigee for the new orbit must 
bisect the angle cf,12 + cf,23• Thus O measured from perigee to 3 is 
%( cf,12 + c/,23), as shown in Fig. 4.16-1. 

We must now choose a value of e for the new orbit and, together with 0, 
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determine n = a/R for the time equation. If e > 1, we use the hyperbolic 
formula. 

n = ~ = ( ~) (~) = ~ ( l + e cos (}) 
R \R r1 R, e2 - 1 

(4.16-2) 

From Fig. 4.13-5 we find r11, = t11,(V K/a3) and compute the time for 
vehicle l to travel from e = 0 to point 3. 

J~ -/R3 -
th= rh K = r1i"1./n\; K = 806r1iVn3 (4.16-3)* 

If this value disagrees with ;Y:zt23 , a new e is chosen and the procedure is 
repeated until agreement is found. 

Withe and e known, rv2/K and f3 are found from Fig. 4.13-3. Since ,Bis 
zero for the circular orbit, the new f3 is the angle between the two velocity 
vectors at 3, and the increment in velocity is determined from the vector 
triangle as 

(4.16-4) 

where v1 = V K/r is the circular velocity. Due to symmetry the same ~v 
is applied at l to initiate the maneuver, and at 3 to rendezvous, as shown 
in Fig. 4.16-1. 

Example 4.16-1 
Given two vehicles on the same circular orbit of r/R = 3.0, with vehicle 1 

lagging vehicle 2 by 80°. It is desired for 1 to intercept and rendezvous with 2 
at a position 3 which is 40° ahead of 2. Determine the transfer orbit and the 
required increments of velocity. 

We have ef,12 = 80°, and ef,23 = 40°, so that perigee for the transfer orbit is 
e = 60°, bisecting angle 103. The time for 2 to travel to 3 is 

_ 40(21r)JR3( 3)% 
f23 - ~ K ' 

= (0.698)(806)(5.20) = 2930 sec 

and the half time is 1465 sec. 
As an initial guess, we choose e = 2.0, and from Eq. 4.16-2 we find af R. 

n =!!:.. =3.o(l +2cos60°) =2.0 
R \ 4 - 1 

From Fig. 4.13-5, "1i = 0.80 for e = 60° and e = 2.0. The half time of flight 
from 1 to 3 is then 

t1i = 0.80(2.0)%(806) = 1825 sec. 

* /R" )[(3960)5280]3 - = = 806sec. 
f\J K (1.407)1016 
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Since this is larger than 1465, the orbit is too slow and we seek a faster one by 
choosing a larger e. A few trials result in 

e = 3.0 
a R = o.938 

rv2 
K =5.2 

t,. = 1465 sec. p =46° 

Fig. 4.16-2, Vehicle (1) intercepting vehicle (2) at (3). 

The circular and hyperbolic velocities at 3 are, 

v1 =J! =JK = - 1- ~ = 25•930 = 15,000 ft/sec* 
r 3R 1.7311/ R 1.13 

{s:iK ff v3 = II/ 3 R = 34,100 t sec 

and the required incremental velocity is 

~v = 103v' (23.7 - 15)2 + (24.58)2 = 26,000 ft/sec 

The geometry of the maneuver is shown in Fig. 4.16-2. 

Problem 2. (Elliptic orbits) 

If the orbit on which thetwovehiclesaretravelingisanellipse, theproblem 
becomes somewhat more complicated because the perigee for the transfer 

*JK JCt.401)101
• R = . (3960)5280 = 25,930 ft/sec. 
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orbit cannot be found by inspection as in the circular-orbit case. Using 
the same notation as in Prob. 1, the time required for 2 to reach 3 in 
Fig. 4.16-3 is shown by the shaded areas subtended by the angle 203. 
A maneuver at I must put vehicle I on a new orbit, and its subtended 
angle 103 must result in the same time. Although angle 103 = rp is known, 
the perigee angle ()1 is not known except in the special case r1 = r3 • 

/ 

/ "e' 
'- ----- - -

-- '" Perigee for 
X transfer 

/ \ orbit 
I 
I 

I 
I 

/ 
/ 

Fig. 4.16-3. Vehicle (1) intercepting vehicle (2) at (3) on elliptic orbit. 

The solution is possible by trial as follows. For the new orbit we have 

r3 I + e' cos ()1 

r1 I + e' cos (()1 + rp) (4.16-5) 

Choosing a value of ()1 , the eccentricity e' can be found. n = !!. can be 

found from ± (~) (1 :,:'~0; ()1) where + is used fore' > I a-:a - for 

e' < I. The angles ()1, ()1 + rp, and e' will establish T1 and T3 in Fig. 4.13-4 
or 4.13-5. With the value of a/R = n, the elapsed time is found as in 
Prob. 1. 

When agreement is established between the two elapsed times, the values 
of e' and ()1 for the transfer orbit will result in rv2/K and /3', which can be 
found from Fig. 4.13-2 or 4.13-3. The remainder of the solution is then 
straightforward. 

Problem 3. (Noncoplanar interception) 

Vehicle 2 at t = 0 is at latitude O and longitude 0, traveling in a circular 
polar orbit of r/R = 2.5 and headed toward the north. Vehicle I at t = 0 
is at latitude O and longitude 90° west, and traveling eastward in an 
equatorial elliptic orbit of e = 0.50, as shown in Fig. 4.16-4. The above 
position of vehicle 1 corresponds to perigee for which r/R = 1.5. Deter­
mine the impulsive velocity increment at 1 to intercept vehicle 2 at 3 when 
its latitude is 30° N. 
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The procedure for the solution of this problem is very much similar to 
that of Prob. 2. The transfer orbit 1, 3 is inclined 30° to the equatorial 
plane, r1/R = 1.5, and r3/ R = 2.5, the angle between r1 and r3 being 90°. 
Perigee for the transfer orbit is again unknown and its position from r1 

is 81. 

The elapsed time from 1 to 3 must equal that from 2 to 3, which is 

t21 = 30(277) (2:511:!.% = :!'.. (2.5)%(806) = 1670 sec 
· 360 v K 6 

X 

fig. 4.16-4. Interception for noncoplanar orbits. 

From the general equation of the orbit, we have for the two points on 
the transfer orbit, 

~ = 2.5 = 1.666 = 1 + e' cos el 
r1 1.5 1 + e' cos (01 + 90°) 

(4.16-6) 

or 
0.666 = e'(cos 81 + 1.666 sin 01) 

Choosing a value of 81, the eccentricity of the transfer orbit e' can be found 
from the above equation. With these two values of e' and 81, we can 
compute n from 

_a_ r 1 (l+e'cos81) 

n - R - ± R e'2 - 1 J (4.16-7) 

where + is used for e' > l and - for e' < 1. 
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The nondimensional time T,,,is next found from Fig. 4.13-5 and" with a/R 
known, the elapsed time is computed and compared to the required time. 

As a first choice off\, try 340°. Equation 4.16-6 gives e' = 1.803 and 
a 

Eq. 4.16-7 gives n = R = 1.795. From Fig. 4.13-5, T11, = 0.15 for 

01 = 340° (same as for +20°) and T11, = 0.80 for 03 = 70°, making a total 
for the elapsed time of T11, = 0.95. The actual elapsed time is then 

Jaa 
t,,, = T11, K = 0.95(1.795)%(806) = 1845 sec 

Since this time is larger than 1670 sec, the orbit is too slow. A few trials 
result in the following: 

01 = 338° e' = 2.20 

a R = 1.19 T 01 = 0.29, To, = 1.31, T11, = 1.60 

t,,, = 1.60(1.19)%(806) = 1675 sec 

(rv2) 
K 1 = 3.26, v1 = 1.8A_ = 1.8J;!f; = 1.47 A 

r1 l.5R R 

/31 = -150 

To find the velocity increment, let x, y, z be radial, transverse, and normal 
to the equatorial plane at point I. Then the components of v1 are (see 
Fig. 4.16-5): 

z 

X 

Transfer 
orbit plane 

Fig. 4.16-5. Velocity increment required at (1) 
of Fig. 4.16-4. 

v1• = -v1 sin 15° = -0.381 J~ 
V1, = V1 COS 15° COS 30° = 1.23 J~ 

o K J-V1, =V1COS15°sm30° =0.711 R 
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The original velocity is entirely in the y direction, and since the initial 
orbit was an ellipse with e = 0.50, = (1 + e) = 1.50 and v0 = 
Vf:5K/rP = VK/R. 

The x, y, z components of the velocity increment at l are 

. J"R ilVz = 0.711 R 

PROBLEMS 

1. Two satellites 1 and 2 are in the same circular orbit of r/R = a/R = 2 in the 
same plane, but 2 is leading 1 the angle ef,12 = 30°. What velocity incre­
ments are necessary to intercept and rendezvous when 2 has traveled through 
45°. 

2. Repeat Prob. 1 when 2 has traveled 90°. 
3. Two satellites 1 and 2 are in the same circular orbit of a/ R = n0 in the same 

plane, but 2 is leading 1 by the angle ef,12. If 1 fires a retrorocket in the tan­
gential direction, show that, in order for the two satellites to intercept after 

(?,} 
\

( 'P12 l 

\ I, 
\ I " / ...__ / 

_____ _..... 

Prob. 3 

1 has completed one revolution of its subcircular orbit, the necessary increment 
in the velocity is 

I ! 1 } 
!iv = Ve\ 1 - J 2 - [1 - (ef,12/360)]% 

where Ve is the circular orbit velocity. 
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4. If in Prob. 3 the rocket is fired towards the rear so as to increase the velocity, 
determine the t>v necessary to intercept vehicle 2 on the Nth visit to 1. Hint: 
The time for the Nth visit of vehicle 2 at point 1 is 

/ 

// 
/ 

---------, 
"' 

/ 

I 
I 

I 
I 
I 
I 
I 
I 
\ 
\ 

\ 

' ' ',,_ _..,.;..--7 

------

5. Two satellites 1 and 2 are traveling in the same elliptic orbit in the same plane. 
The orbit is characterized by e = 0.60 and a/R = 3.0. When 1 is at 150°, 
2 is at 170°. If interception and rendezvous are desired when 2 reaches 
8 = 210°, determine the transfer orbit and the increments in velocity. 

1.,._ _____ _ 

Prob.S 

6. Satellite 2 is leading satellite l by an angle ef,12 in an elliptic orbit (see Fig. 
4.16-3). To overtake 2 in a decreasingly short time, the eccentricity of the 
transfer orbit must increase to a large value. Show that in the limit as 
e -+ oo, the perigee of the transfer orbit can be determined from the equation 

For fast transfer orbits, the actual 81 will be close to the above value. 

7. Satellite 2 is traveling east in an equatorial circular orbit of a/ R = 2, being at 
position longitude 0, latitude Oat time t = 0. Satellite 1 at t = 0 is at latitude 
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90° and traveling in an elliptical orbit in the plane, longitude 0, with a/R = 2 
and e = 0.30. If it is desired for 1 to intercept 2 at longitude 330°, determine 
the transfer orbit and the components of the velocity increment. The position 
of 1 at t = 0 corresponds to perigee for the elliptic orbit. 

4.17 Long-Range Ballistic Trajectories 

Since the shortest distance between two points on the surface of a 
sphere is along a great circle, ballistic trajectories are also considered in 
the great circle plane. Figure 4.17-1 shows the pertinent geometry of a 

Apogee 
.------,r-~~~~~-::--...-.-

Fig. 4.17-1. Geometry of a ballistic trajectory. 

ballistic trajectory which is an ellipse with the center of the earth as focus. 
Perigee is then inside the earth while the point of maximum height coin­
cides with apogee. 

Of interest here is the determination of the range Rep, the height H, and 
the time tb as function of the initial conditions which are r0 = R, v0, and 
{30 • We have at our disposal Eqs. 4.9-7 and 4.9-8 as developed in the 
initial-value problem of Sec. 4.9. The eccentricity is determined from the 
equation )2 

e2 = (R~;2 - 1 cos2 (30 + sin2 (30 (4:17-1) 



INTRODUCTION TO SPACE DYNAMICS 

11 
l 

40 

fig. 4.17-1. Plot of Eq. 4.17-2 for the ballistic trajectory. (ef, versus {J0 with Rv2/K as 

parameter. 
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Since <fo/2 = 180° - B0, tan B0 = - tan (<fo/2), and Eq. 4.9-7 can be 
written as 

<p -(Rv02/K) sin {30 cos {30 
tan - = -----c-----

2 (Rv02/K) cos2 (30 - 1 
(4.17-2) 

Figure 4.17-2 is a plot of <p versus {30 with Rvl/ K as parameter. The height 
H can be determined from its geometry. 

ra = a(l + e) = H + R 

H a 
- =-(I+ e)- 1 
R R 

(4.17-3) 

From the equation of the ellipse, we have for B0 = 180° - <fo/2, r0 = R. 

(1 - e cos!) 
-= 
R (I - e)(I + e) 

a 
(4.17-4) 

which, substituted into Eq. 4.17-3, results in 

1!_ = _e_(1 - cost) 
R 1 - e 2 

(4.17-5) 

The time of flight is determined by subtracting the time required to go 
from perigee to B = B0 from half the orbit period and doubling this figure, 
which from Eq. 4.13-12 is 

(
1Ta% ) 

tb = 2 \IK - 1. 

= 2a~{7T - [2 tan-1( ~ tan !Bo) - eV~ sin Bo]} 
V K ,J ~ 1 + e cos B0 

(4.17-6) 

PROBLEMS 

1. For Rv02/K > 1, show that the launching point corresponds to perigee if 
/Jo = 0. 

2. For a given initial velocity Rva2/K < 1, determine the angle {30 for maximum 
range. 

3. Relate the maximum range to the optimum heading angle /30 and specified 
velocity Rv02/K. 

4. For a given range show that the minimum required velocity is related to /30 

. 2 cos 2/30 
by the equation (Rv2/Kk1n = 1 l/3 . + cos o 
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5. For a range of 5000 miles, determine the angle (30 the H, 
and the velocity Rv02/K. 

6. For Prob. 5, determine the time of flight. 
7. Discuss the effect of the earth's rotation on the motion of the ballistic missile. 

Distance 
traveled "'\ 
by target 

-----

Prob. 6 

I 
~/ 

Ballistic 
/flight 

/ 
/ 

Burnout 
point 

__ ,.,. Powered 
flight 

4.18 Effect of the Earth's Oblateness 

Due to the rotation of the earth from west to east, there is a speed 
advantage in launching a satellite in a direction with an easterly component. 
Such an orbit will precess in a westerly direction due to the earth's 
equatorial bulge, and thus a closed orbit is really not possible. The 
revolving satellite is like a gyroscope and, as shown in Fig. 4.18-1, its 
angular momentum vector perpendicular to its orbit plane and directed 
towards the northern hemisphere, must slowly revolve about the north 
polar axis due to the moment exerted by the excess mass over the sphere 
near the equator. The rate of precession will depend on the orbit angle 
with respect to the equator and, to a somewhat smaller extent, on the 
altitude. 

The moment due to the equatorial bulge responsible for the precession 
of the satellite orbit can be determined as follows: 

Referring to Fig. 4.18-2 the satellite ms is attracted towards the mass 
element dm of the earth according to the equation, 

Km8 dm 
dF = - r 

mr3 
(4.18-1) 

where K = Gm and m is the mass of the earth. 
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Fig. 4.18-1. Precession of orbit plane due to earth's oblateness. 

z 

Fig. 4.18-2. Satellite m, attracted by element dm of earth. 

Resolving r into components, 

r=a-p 

= (a cos gi)i + (a sin <p cos O)j -(a sin <p sin O)k -(xi + yj + zk) 

(4.18-2) 

where O is the angle between the orbit plane and the equatorial plane and 
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x, Y, z are the components of p. The moment v~,Muw0, 

dM=pXdF 

-Kmsdm 

mr3 
X y 

k 

z 

(a cos rp - x) (a sin rp cos e - y) sin rp sin F) - z) 

dm 
--- [(y sin cp sin (j + z sin rp cos 

mr3 
-(x sin 'P sine + z cos 

The quantity 

-(x sin rp cos 8 -y cos rp)k] (4.18-3) 

can be obtained by the following steps: 

r2 = (a - p) · (a - p) = a2 + p2 - 2p · a 

= a2 + p2 - 2a (x cos cp + y sin cp cos e - z sin rp sin 8) 

; = ~ [ 1 + (!J2 
- ~ (x cos cp + y sin cp cos 8 -z sin cp sin 

(4.18-4) 

and its substitution into the moment equation leads to a complicated 
expression for integration. The expression however can be simplified if a 
is much larger than p(x, y, z), in which case we neglect the term (p/a)2 in 
1/r3, expand the remaining terms by the binomial theorem, and retain only 
the first terms. We then obtain, 

~ ~ ~ [1 + ~ (x cos cp + y sin cp cos() -z sin cp sin()) l (4.18-5) 
r a a _J 

and its substitution into the moment equation results in 
The x component of the moment is, 

M=-Kms [ 
x ma2 

sin cp sin 8 + z sin cp cos 8) dm 

+ ~ J (y sin cp sin 8 + z sin rp cos ()) 

X ( X COS (f! + y sin (f! COS 8 - Z sin (f! sin 8) dm l 
_J 

and M •. 

(4.18-6) 

where 8 and cp are held constant during integration. It is evident that the 
first integral is zero due to symmetry of the oblate spheroid. Also all cross 
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products of the form xy, xz, yz will integrate to zero due to symmetry. We 
are then left with the integral, 

3Km8 f' 
Jvt" = -- sin2 (])sine cos e I (y2 - z2) dm 

, ma3 ' J 

= 3:;s sin2 rp sin(} cos e [ J(x2 + y2) dm - Jcx2 + z2) dm J 
3Km8 ( ) • 2 • 11 (} = --3- C - A sm rp sm v cos 
ma 

18-7) 

where C and A are the moments of inertia of the earth about the polar 
and equatorial axes respectively. 

My 
-y 

" /J, \ 

........._,, ~ 
M ,f; .................... __ / ms 

4 Node line - -

X 

fig. 4.18-l. Precession of vector I!, due to moments ivlx and My. 

Similarly, the moment about the y axis is, 

-3Km 8 • (} • 

My= --3 - (C - A) sm sm rp cos rp 
ma 

and the moment about the z axis is zero. 

Mz =0 

(4.18-8) 

(4.18-9) 

These equations indicate that the moment Jv[Y is negative for 
0 :C::: rp :C::: w/2, and positive for w/2 :c::; rp :C::: w, the cycle repeating itself over 
1r to 21r. Thus the net moment My over a complete cycle is zero. The 
moment Mx, however, is always positive and varying as sin2 rp. 

Figure 4.18-3 shows the orbit plane, the satellite m8 , and the moments 
Mx and My exerted by the earth on the satellite. To determine the preces­
sion of the satellite orbit plane, we note that the angular momentum of the 
satellite has the value h3 = m8a2rp, which is normal to the orbit plane. The 
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action of the moment My on hs is oscillatory and zero over a complete 
cycle, but M,, requires the rate of change of hs over the cycle to be 
cumulative in the x direction. 

Measuring the regression of the node line 'l/J in the equatorial plane, the 
rate of precession 1P is directed along the -z axis with components 1P sin (} 
in the plane of the orbit, and 1P cos (} normal to it. The component 
1P sin (} rotates the vector hs to give 

h8VJ sin (j = Mx 

3Km 
mp2cpv; sin(}= -:i- (C - A) sin(} cos(} sin2 T 

mu-

from which the rate of precession of the orbit plane becomes, 

'ljJ = .3K 5 ( C - A) cos (} sin2 T 
cpma 

(4.18-10) 

Since the moment of inertia of a sphere of radius R is JmR2, we can 
introduce C = fmR 2, where R is the mean radius of earth, and rewrite 
1P as 

1P = ~ ~(!:_)2 (C - A) cos (} sin2 T 
5a3 T a C 

(4.18-11) 

Assuming a circular orbit, the angular rate around the orbit, is a 
constant, cp = 27T/T, where T is the orbit period equal to 

Thus cp can be replaced by (27T/T)t, and the precession angle measured in 
the equatorial plane per revolution of the satellite becomes, 

6K(C - A) (R)2 
T l'. 2 27T 'l/J = - --- - - COS (j Sill -t dt 

5a3 C a 27T o T 

6K( C - A) (R)2 T2 
= 5 --c- a 47Ta3 cos (j 

= 6;(C ~ A) (~)2cos (} (4.18-12) 

The quantity (C - A)/C for earth is 0.0032, so that the node line of the 
orbit regresses westward by the amount 

'l/J = 0.0121 (~fos (} (4.18-13) 

for each revolution of the satellite around the earth. 
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We can compare this equation with the equation given by Blitzer,2 

which is 

Translated into our notation with J = 1.637 x 10-3 (see ref. 5) Blitzer's 
equation is 

tp = o.01022(~rcos (} 

which indicates fair agreement for our approximate equation, Eq. 4.18-13. 
The reverse problem to the above is the precession of the earth's polar 

axis due to the moment exerted by the satellite on the earth. When the 
satellite is a sizeable mass, such as the moon, its influence is a measurable 
quantity. The problem of the precession of the earth's polar axis due to 
the sun and the moon is taken up in Chap. 5, Sec. 15. 

PROBLEMS 

1. Examination of Eq. 4.18-7 indicates that no restriction as to the density 
variation of earth was imposed; however in letting }mR2 = C just before 
Eq. 4.18-11, uniform density is implied. Indicate what would be changed in 
Eq. 4.18-12 if the density of the earth varied with the distance from its center. 

2. If the term (p/a)2 in Eq. 4.18-4 is retained to the first term of the binomial 
expansion, determine the correction to Eq. 4.18-5. 

3. For a satellite launched southeasterly in a circular orbit at an angle of 35° with 
the equator and at an altitude of 400 miles, determine the regression of the 
node per revolution taking into account the rotation of the earth during the 
period. 

4. Show that the attraction of a thin spherical shell of constant density is equal 
to that of a particle of the same mass concentrated at its center. 

5. Assuming that ( C - A)/ C = N differs from zero due to a narrow band around 
the equator of a perfect sphere, show that the mass of this narrow band must 
equal, 

4N 
m =---m0 

5 -6N 

where m0 is the total mass of the sphere plus the narrow band. 
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Gyrodynamics 

CHAPTER 5 

5.1 Displacement of a Rigid Body 

A rigid body can be viewed as a system of particles where the relative 
distances between particles are fixed. The position of a rigid body is defined 
by any three points on it, not in the same straight line. 

Fig. 5.1-1. Displacement of a rigid body. 

The motion of a rigid body can be described by a translation of some 
reference point 0, plus a rotation about some axis through 0. Consider 
three arbitrary noncolinear points 1, 2, 3, in the initial and final positions 
l', 2', 3', as shown in Fig. 5.1-1. The first point 1 can be brought to l' by 
a translation so that the new position is l', 2", 3". Next, rotate about an 

1111 
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axis through 1' which is perpendicular to the plane 1', 2", 2', bringing 2" to 
coincide with Y Finally, rotate about an axis through I' and 2', to 
3 111 to 3'. 

We will now show Euler's proof that the two individual rotations can 
be replaced by a single rotation. Draw a unit sphere about point l' and 
where the two rotation axes it, connect the points by a great circle 
as shown in Fig. 5.1-2. Measure off Y:;81 on each side of the great circle at 

J)e1 r~--. --...._ 
' '-..... . 

', 1 "/) 
\ -,1:/i /I 
\ // \ 
I / I 

a I // I 
/-_,:a~.../', I 

/ / '- '13 I / / ,, , 6 , 2 

I /// -"~ 

,-~ 
6----

02 

Fig. !i.1-2. Resultant rotation axis by Euler's proof. 

axis 1, drawing two other great circles, and do likewise with angle 82 at 
axis 2. Now a rotation of 81 about axis 1 will bring point a to b, and a 
rotation 82 about axis 2 will bring b back to a. Thus l 'a is an undisturbed 
line during rotation (}1 and e2, and therefore it must be the resultant axis 
of rotation. Note that 1 'a is not in the plane containing the axes of 
rotation 81 and 02, which again points out the fact that finite rotations do 
not possess the properties of vectors. 

5.l Moment of Momentum of a Rigid Body (About a Fixed 
Point or the Moving Center of Mass) 

Let body axes x, y, z be attached to the body with the origin O at any 
point. The velocity of any point i on the body is then, 

(5.2-1) 

where w is the angular velocity of the body. 
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The moment of momentum about the origin O of the x, y, z, system is, 

(5.2-2) 

If the reference point O is stationary, v0 = 0, whereas if O coincides with 
the center of mass, I,imiri = 0. Thus, if O is fixed, or a center of mass, 
the angular momentum is given by the first term of the above equation, 
which can be expressed by the following integral, 

h0 = Jr X (w X r) (5.2-3) 

To evaluate this integral, we note that the first cross product'-'> X r is 

I i 
t.:i X r = / w,, wY 

, X y 

k 
- w.y)i + - w.,z)j 

+ (wxy - wyx)k 
(5.2-4) 

Multiplying by dm, we have the x, y, z, components of the momentum of 
dm, as shown in Fig. 5.2-1. 

The cross product :r X (w X r) dm is, 

r X (w X r) dm = x y 

k I 

z ldm 

I (w,;; - WzY) (w.x - w.,z) 

= i[ wx(Y2 + z2) -

( WxY - wyx) \ 

dm 

+ wx(xy) + wv(x2 + z2) - wz(yz)] dm 

+ k[- w,,(xz) - wy(yz) + w.(x2 + y2)] dm (5.2-5) 

which represent the moment about the x, y, z, axes of the momentum 
vectors shown in Fig. 5.2-1. Integrating over the body, we arrive at the 
x, y, z, components of the moment of momentum of the body. 

+ h,k (5.2-6) 

We now define the moment of inertia of the body about the x, y, z, axes 
as 

I,,= Jcy2 + z2) dm ly = Jcx2 + z2) dm ! 2 = Jcx2 + y2) dm 

and the products of inntia as, 
{' 

I,,v = Jxydm = J xz dm ly, = J yz dm 
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in which case the moment of momentum components along the x, y, z, 
axes become, 

X 

z 

h., = l.,w,, - I.,YwY - I.,.w. 

hy = - f.,yWx + fyWy - fyzWz 

h. = - I.,.w., - lyzWy + I.w. 

z 

X 

Fig. 5.2-1. Components of momentum (w X r) dm. 

(5.2-7) 

The moments and products of inertia can be concisely presented by an 
inertia dyadic as follows:* 

iii., -ijl,,,y -ikl.,. 

.Y= -jil.,y jjly -jklyz (5.2-8) 

-kif.,. -kjlyz kkl. 

If we form the dot product of the inertia dyadic with the angular 
velocity vector 

w = w.,i + wyj + w.k 

we would obtain the moment of momentum 

(5.2-9) 

The order of the dot product must be preserved with the following inter­
pretation, 

* See Appendix B. 

ij , i = i(j , i) = 0 

ji . i = j(i . i) = j 
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.S.3 Kinetic of a Body 

Consider a rigid body moving space, and attach to it a set of 
body axes x, y, z, with its origin coinciding with its center of mass. Then 
any point r will have a velocity equal to, 

v = v0 + w X r 

The square of the velocity is obtained by the dot product of its vector, 

v2 = v • v = v0 2 + (w X r) • X r) + 2v0 • X l') 

Thus, the kinetic energy of the body is given as, 

T= dm = t mv0 2 + t Jew X r) · 

= t mv0 2 + t J<w X r) · 

X r) dm + v0 • w X dm 

X r) dm (5.3-2) 

where fr dm = 0 for the origin of the body axes coinciding with the center 
of mass. We have thus found that the kinetic energy of translation is 
determined as if the entire mass is concentrated at the center of mass as a 
particle, and the second term is the kinetic energy of rotation about an 
axis w through the center of mass. 

Focusing our attention to the kinetic energy of rotation, we examine the 
quantity X r) · (w X r). Resolving w X r into components the 
body axes, the dot is given by the square of the i, j, k -v·""•N··-··"J· 

(w X r) · (w X r) = + 
+ 

Thus 

5.4 Moment of Inertia about a Rotated A.xis 

+ 
+ Wz + 

If 11;1; is the moment of inertia of a body about any axis ,;, with angular 
velocity (o.>, we can write 

2Trot. = (5.4-1) 
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Substituting Eq. 5.3-3 into the above equation, we have 

l"" = (;)\ + (;)\ + (:;)\ 

J3y )s:tti,ng /""' leY' fez. be direction <tOsines of the vector w or axis t with 
respect to the x, y, z axes, the above equation can be written as 

lee = le,?lx,+ le/lv + le,21, - 2/eie!xz - 2leislvz - 2/eievlxy (5.4-3) 

Equation 5.4-3 can be concisely written in terms of a double summation 
as follows 

(5.4-4) 

where IX and /3 take on the letters x, y, z with l'X(f. interpreted as lxx = I,,, lyy, 
etc., and Irxf! as -lxy, -Iyz, -Ixz· In fact Eq. 5.4-4 can be changed slightly 
to apply to products of inertia as well by the equation 

-le~= LL lsrxl~f!lrxf! (5.4-5) 
(X fJ 

z 
z' 

j 
~'---~+"---~-,-'- y 

X 

, x' 

Fig. 5.4-1. Components of r in two coordinate systems. 

The direction cosines lerx to be used in Eq. 5.4-4 or 5.4-5 can be formed 
most conveniently from the transformation matrix between the two co­
ordi;nate sys.terns. If the two coordinate systems are x, y, z and x', y', z' 
with unit vectors i, j, k and i', j', k', a point in space can be expressed in 
terms of either coordinate system as 

r = xi + yj + zk = x'i' + y'j' + z'k' 

as shown in Fig. 5.4-1. 

(5.4--0) 
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Scalar 

X = (i_' • 

y = (i'. 

+ (j'. 
+ 

z = (i' · k)x' + (j' · 
which, in matrix notation, is 

[Xl _ [!xx' 
Y, - . lyx' 

.Z- /zx' 

+ (k' · i)z' 

+ (k' · j)z' 

+ •k)z' 

(5.4-8) 

Thus when the transfer matrix between the two coordinates is known, the 
elements of the matrix are the direction cosines. 

We note further that the equation for the kinetic energy can be expressed 
by the dot product of the angular velocity and the moment of momentum, 

2T = (.,) · h0 (5.4-9) 

Since h0 can be expressed in terms of the momental dyadic (see Eq. 5.2-9), 
the above equation becomes 

2T= w .J •W (5.4-10) 

Again letting Jf = AB, the above double dot product is interpreted as 

(w · A)(B · 

which is a product of two scalars and, therefore, a pure number. 

5.S Principal Axes 

We define the principal axes of the body, 1, 2, 3, as those about which 
the products of inertia vanish, and let A, B, C, be the moment of inertia 
about the l, 2, 3 axes respectively. The moment of inertia about the 
instantaneous axes of rotation t in terms of A, B, C then becomes, 

(5.5-1) 

where l1;1, l1; 2 , l1;3 are the direction cosines of the vector w, or axis !; and the 
principal axes 1, 2, 3. Since the axes 1, 2, 3 are fixed in the body, A, B, C 
are constants. However, as the instantaneous axis !; is moved, lw l1;2, l1;3 

change, and so will the value of I about the !; axis. 

Ifwe let p = 1/V~, and Iay off p and!;, and do this for every orientation 
of the instantaneous axis !;, we would obtain an ellipsoid of inertia. 
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Dividing the above equation by 11; and noting that l1;1/V4 = l1;1p = x, 
lg2 p = y, l1;3 P = z are the principal coordinates of the equation for the 
ellipsoid of inertia, Eq. 5.5-1 becomes, 

Ax2 + By2 + Cz2 = 1 (5.5-2) 

PROBLEMS 

1. For the slender uniform bar of length land mass m oriented in the position 
shown, determine the moment and product of inertia about each of the axes, 

z 

X 

Prob. I 

2. If the bar of Prob. 1 is rotated about the z axis with angular velocity w, 
determine the angular momentum about the three axes. 

3. While getting into position for takeoff, a small aeroplane with two bladed 
propellers turns about its vertical axis as shown. Determine the x, y, z 
components of the angular momentum of the left propeller. Assume the 
propeller to be a uniform slender rod of length l. 

l"rob. l 

4. Find the moments of inertia of six 10-lb weights arranged symmetrically on 
the x, y, z axes as follows: x = ±5, y = ±2, z = ±6. 

5. Find the moment of inertia of the configuration of Prob. 4 about an axis 
through the origin and the point (1, 2, 2). 
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6. A thin disk of radius R is mounted on a shaft which deviates by an angle a: 
from the normal. Choose orthogonal axes through the shaft and disk and 
determine the moment and product of inertia about each axis. 

7. Determine the moment of inertia about the ~, 'Y/, { axes for a cube of sides c, 
if { is placed along the diagonal and the~, 'Y/ axes normal to { are rotated into 
a position such that 11; = I~. What will be the direction cosines of ~ and 'Y/ 
so placed? 

8. Determine the length of a uniform cylinder of radius R such that its principal 
moments of inertia are equal. 

9. If A, B, Care principal moments of inertia of a given body, show that 
A + B is larger than C. 

10. A space vehicle makes a landing on a hillside with velocities v, and v., just 
before impact as shown. If a leg strikes a boulder and the vehicle pivots 
about this point, show that the angular velocities immediately after impact 
are 

my 
() = --v 

"' I., • 

() _ mylyz - mz,J, 
'Y - 11 -1 2 v., 

'Y Z 'YZ 

() - my lyz mylyz - mu. 
z - -l v., + l- 11 - 1 2 v., 

Z Z 'JI Z 'YZ 

where the x, y, z coordinates are oriented with z vertical, x parallel to the 
horizontal velocity v.,, and y horizontal. 

z 

Prob. 10 

11. Assume that the moments and products of inertia about the x, y, z axes 
are known. Determine the equation for the moment of inertia about the 
~, 'Y/, { axes by noting that Pi = p2 - ~2 = p2 - (p, i')2, p = xi + yj + zk, 
and 11;1; = S Pl dm, etc. 
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X 

12. In the same manner as in Prob. 11, determine the equation for the product 
of inertia I1;1 , Ia, and 

13. An airplane of mass M and moments of inertia A, B, C about principai 
axes drops at a uniform rate of V ft/sec, and at the same time spins at the 
rate of 10 rpm about an axis which makes angles with the three 
principal axes. Determine its total kinetic energy. 

14. Show that the moment of inertia of three equal masses 120° apart as shown 
in the sketch is equal to about any axis in its plane. 

m 

m 

l"rnb. 14 

15. With the x, y, z axes passing through the center of mass of a body shown in 
the sketch, prove that the moment of inertia about any axis n through the 
origin is 

+ + 

where n = nxi + nyj + nzk is a unit vector along the axis n. Hint: Start 
with 

In = L m,.(ri X n) · (ri X ll) = L 
i 
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n 

l[~:-"----Y 
/0 

/ 

X 

Prob. !5 

16. within•= L + ri) x n] · [(.r0 + ri) x n], derive the equation 
i 

for the moment of inertia about an axis n' parallel to n, and displaced 
the vector r 0 . 

17. By actually multiplying, using the rule ij · i = 0, ij · j = i, etc., show that 
h = .Y •W. 

18. Show that 

I 
j: = [.fl + w X .f + I 

I 
: 

-jw X ilxy 

-kw X ilxz 
where 

-jkiyz 

-kjiyz 

19. Determine the total time derivative 

-iw X 

jw X j/11 

-kw X 

dh . 
-· =f•w +J'·w dt . 

-iw X 

-jw X 

kw X 

with respect to inertial coordinates, and show that it is equal to 

dh = .f · w + • !.i.l + w X h 
dt 

5.6 Euler's Moment Equation 

We have shown previously that the moment about the mass center is 
equal to the time derivative of the moment of momentum about this point. 
With he = h). + hj + hzk, we can differentiate, noting that i, j, k rotate 
with the body. 

Mc= +wXhc 

= (h.,i + + (5.6-l) 
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The cross product w X he can easily be visualized as the rotation of the 
vectors h.,i, hvj, h.k, due to w,,, wv, w., as shown in Fig. 5.6-1. Thus, by 
adding vectors along the x, y, z directions, the above equation becomes, 

Mc = M,,i + Mvj + M.k 

= (h,, + w). - w.hv)i + (hv + w.h,, - w,,h.)j + (h. + w,,hv - wyh,,)k 
z (5.6-2) 

~Wz 

Fig. 5.6-1. Components of moment of momentum and their rate of change. 

The component equations, known as Euler's moment equations, are 

M,, = h,, + Wyhz - w.hy 

My = h11 + w.h,, - w,,h. 

M. = h. + w.,h11 - w11h., 

(5.6-3) 

where the x, y, z axes with the origin coinciding with the center of mass 
rotate with angular velocity w. 

Equation 5.6-1 or 5.6-3 for the moment is applicable to any coordinate 
system with a fixed origin or a moving origin coinciding with the center of 
mass. The angular velocity w is that of the coordinate system and, if the 
axes are fixed in the body, the moments and products of inertia are 
constant. 

For a body of revolution with moments of inertia A, A, C about 
principal axes, A about any transverse axis is the same, and so we might 
choose a set of transverse axes rotating at a speed different from that of the 
body without introducing a variable moment of inertia with time. We can 
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for instance use the node axis system t 'YJ, ,, in which case the moments 
are, 

Ms = lzs + h,wn - hnw, 

Mn = hn + hsw, - h,ws 

M, = h, + hnws - hewn 

These equations are known as Euler's modified equations. 

S.7 Euler's Equation for Principal Axes 

(5.6-4) 

With the origin of the body axes coinciding with the center of mass, we 
can orient the x, y, z axes to coincide with the principal axes 1, 2, 3 of the 
body to eliminate the products of inertia terms in the moment of 
momentum expressions. We then have, 

h1 = Aw1 h2 = Bw2 h3 = Cw3 

where A, B, C, are principal moments of inertia which are constant since 
1, 2, 3 are fixed in the body. The moment equations are then, 

M1 = Aw1 + W2wiC - B) 

M2 = Bw2 + W1wiA - C) 

M3 = CdJ3 + W1W2(B - A) 

which are called the Euler's equations for principal axes. The general 
solution of these equations is difficult, and in the sections to follow we will 
consider some special cases which enable an analytical solution. 

S.8 Body with A = B and Zero External Moment 
(Body Coordinates) 

We will consider here a cylindrical disk with axis 3 normal to the 
circular face, as shown in Fig. 5.8-1. 
The moment of inertia about the three body axes are, 

B=A 
and C 

Euler's equation then becomes, 

about 1 and 2 
about 3 

Aw1 + (C - A)w2w8 = 0 

Aw2 - (C - A)w1w3 = o 
Cw3 = 0 

(5.8-1) 
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From the third of these equations, we conclude that w3 must be a constant. 

Making the substitution, 

(C-A) n -A- =A 

Fig. 5,8-1. Body of revolution with principal axes 1, 2, 3. 

the first two equations can be written as, 

W1 + AW2 = 0 

W2 - AW1 = 0 

(5.8-2) 

(5.8-3) 

(5.8-4) 

Multiplying the first equation by w1 and the second by w2, and adding, we 
obtain the equation, 

or 
(5.8-5) 

Thus the magnitude of the resultant angular velocity vector w is a constant. 

Since there is no moment acting on the body, we have, 

M=h=O (5.8-7) 

which requires that the angular momentum vector h be a constant, fixed in 
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space. It is evident that h must lie in the plane containing axis 3 and w, 
since the component of h in the l, 2-plane is 

+ (5.8-8) 

which has the same direction as the of w in the 1, 2-plane. 
Thus, the plane axis 3 and thew vector rotates about the fixed h 
vector, as shown in Fig. 5.8--2. The motion can be visualized the rolling 
of the body cone on the space cone, which is fixed in space by the vector h. 

fig. !i.ll-2. Body cone rolls on space cone. 

The speed of rotation of the containing w and axis 3 about the 
line h can be found as follows. Differentiating the first of Eq. 5.8-4, and 
substituting from the second, v,e have, 

(5.8-9) 

Letting and be the initial conditions at t = 0, the solution of 
this equation 

cos .~t + --- sin At 
A 

Also, from this set of equations, 

sin 'At - ---,1,- cos Jct 

From the last equation we obtain for t = 0, 

(5.8-10) 

(5.8-11) 
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We note further that 
(5.8-12) 

where i = V -1 so that, another form of the solution is obtained by adding 
w1 and w 2 in quadrature 

lr wi(O)l 
w12 = w1(0) - i-y-j(cos At+ i sin 

= [w1(0) + iwlO)] eiM (5.8-13) 

= W1iO) i!.t 

These equations all indicate that the vector w12 = V w12 + w22 in the 
1, 2-plane, rotates at a speed equal to }. rad/sec, with respect to 
the rotating body axes 1, 2, 3. ,1, is then the angular velocity of the w 
vector as viewed by an observer stationed on the body at the axis of 
symmetry. 

The angle f! between h and axis 3 is, 

ll AW12 
tan u = -­

Cn 

The angle y between w and axis 3 is, 

By comparison we have, 

W12 
tany = -

n 

A 
tan e = c tan r 

(5.8-14) 

(5.8-15) 

(5.8-16) 

If C > A, then y will be greater than 6, as shown in Fig. 5.8-2, and h will 
lie between axis 3 and w. If C < A, y will be smaller than (j and w will lie 
between h and axis 3. 

The equations derived in this section all refer to the body axes which are 
in motion with the body. They do not tell us how the body moves in space. 
However, the following conclusions were obtained. 

l. The vectors w, h, and axis 3 lie in the same plane. 
2. In the plane of w, h and axis 3, the angle fJ between 03 and h is 

constant. 
3. The angle y between 03 and w is constant. 
4. The vector h is constant or fixed in direction and magnitude. 
5. The vector w has constant magnitude v w1l + n2. 

6. The plane containing the three vectors rotates relative to the body 
axes at an angular speed A. 
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5.9 Body of Revolution with Zero Moment, in Terms of 
Euler's Angles 

We will consider the previous problem of Section 5.8, by introducing 
the Euler angles 'P, e, r:p, in order to establish the motion with respect to 
fixed axes. Since his fixed in space, we will orient it along the OZ axis, in 
which case 1P becomes the angular velocity of the node line and the spin 
axis about the OZ direction. We also had (J = 0 from the previous section, 
so that Eq. 3.5-1 becomes, 

W1 = 'If sin e sin r:p 

W2 = 'If Sin e COS r:p 

m3 =p+'ljJcos0=n 

Differentiating with (J = 0, the angular accelerations are, 

w1 = 'lf<p sin () cos rp 

w2 = -'ljxp sin() sin r:p 

w3 = 0 

Substituting into the first of Eq. 5.8--1, we obtain, 

(5.9-1) 

(5.9-2) 

A'lj;cp sin() cos r:p + (¢'1j; sine cos r:p + '!j;2 sine cos e cos r:p)(C - A)= 0 

(5.9-3) 

Thus, the precession velocity in terms of the spin velocity ¢, C, A, and (} 
becomes, 

. C¢ 
'P = (A - C) cos 8 

(5.9-4) 

Equation 5.9-4 states that the roll axis (also plane containing z and w) 
rotates about a fixed OZ or h axis with a speed of 1P proportional to the 
angular velocity of spin ¢. If C > A, the spin must be negative, since 1P 
was drawn in the positive direction. Thus if C > A, the spin is opposite 
in sense to the precession, and we call the case retrograde precession. If 
C < A, then <p and 1P have the same sense, and we have direct precession. 
Thus a flat disk spinning about an axis perpendicular to its plane will have 
retrograde precession, whereas a slender rod spinning about its longitudinal 
axis will have direct precession. The space and body cones for the two 
cases are shown in Figs. 5.9-1 and 5.9-2. It should be noted also that, 
when C > A, 

I C I 

I I> 1 I (A - C) cos e . 
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h 

Space cone 
(fixed)' 

Fig. 5.9-1. Retrograde precession C > A. 

h 

z () 

Space cone 
(fixed) 

Fig. 5.9-2. Direct precession C < A. 

Fig. 5.9-3. For steady precession w is the vector sum of VJ and rp. 

Therefore, 
VJ> <p 

As e - 90°, VJ becomes very large compared to <p. Since tJ = 0, the 
resultant angular velocity w is the vector sum of VJ and <p, as shown in 
Fig. 5.9-3. 
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PROBLEMS 

1. Show that a thin disk thrown spinning with its plane nearly parallel will 
make two wobbles to every cycle.of spin. . ...... _ ~ ... 

2. A thin disk thrown into the air is seen to wobble so that its normal generates 
a cone of 20° twice per second. Determine the rate of spin and the total 
angular velocity vector with respect to the inertial coordinates. 

3. A thin disk is spun about an axis making an angle y with the normal to the 
disk and then released. Assuming the disk to be moment free, find the 
half-angle of the cone generated by the disk normal, and the time required 
for one complete rotation of the normal around the cone. Is the precession 
direct or retrograde? 

4. A cylindrical disk has a thickness equal to R/2 where R is the radius. If 
it is spinning and precessing with its normal generating a cone angle of 15° 
with a fixed direction in space, determine the cone angle in space generated 
by the angular velocity vector. If the magnitude of w is l01r rad/sec, deter­
mine its component w12 in the plane of the disk. 

5. In Prob. 2, determine the equations for the angular velocities abo.ut the boqy 
axes I, 2, 3, where 1 and 2 are in the plane of the disk and 3 is normal to it. 

6. In Prob. 2, determine the equations for the angular acceleration about the 
axes 1, 2, and 3. 

7. Letting m be the mass of the disk of Prob. 4, write the equations for the 
vectors w and h, and determine the kinetic energy of rotation. 

8. A uniform disk of radius R and mass m is mounted through its center to a 
shaft so that its normal makes an angle oc with the shaft. If the shaft rotates 
at speed w between bearings a distance I apart, determine the bearing 
reactions. 

Prob. 8 

9. A thin rectangular plate of sides a and b is mounted on a shaft in the plane 
of the plate through its center. The shaft makes an angle oc with the long 

Prob,9 
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side b. Determine the bearing reactions when the shaft rotates at speed w. 
The distance between bearings is l. 

10. Let x, y, z be the principal axes through the center of gravity of an airplane, 
with A, B, C as principal moments of inertia. Show that in order for the 
airplane to make a turn of radius R about a vertical line, with speed V, it 
must bank at an angle e = tan-1 V2/Rg and supply a rolling moment in the 
same direction as 8, equal to 

1 v2 
-fC-A)-sin2/J 
2' · R2 

Prob. Ii! 

11. Determine the gyroscopic moment necessary for the airplane of Prob. 10 
to spin with speed ,p about the vertical OZ axis, when the nose of the air­

is inclined at an angle Cl( below the horizontal. 
12. If the spin ,p takes place about an axis through the center of gravity making 

angles ix, (J, y, with respect to the x, y, z axes of the airplane, write the differ­
ential equations for the moments Afx, My, and Mz, 

13. A slender rod of mass m and length l is welded to a shaft at its point at 
an angle 6. Determine the bearing reactions when the shaft rotates with 
speed w, and the distance between bearings is 2c. 

~11~ 1 
1 • ,:' I 
I I 

:1";~i .. J 
Prob. 13 

14. A missile with Cf A = :Y:i'o is spinning at speed n = lOrr rad/sec and precess­
ing at an angle e = 5° with a fixed direction in space. Determine the preces­
sion speed ,p and the angle between the resultant angular velocity vector 
and the longitudinal axis. Draw the body and space cones. What can you 
conclude regarding the precessional speed of slender bodies? 
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5.10 Unsymmetrical Body with Zero External Moment 
(Poinsot's Geometric Solution) 

121 

In the general case of a body without an axis of revolution, the principal 
moments of inertia are unequal, so that Euler's equations for no external 
torque become, 

Aw1 + (C - B)w2w3 = 0 

Bw2 + (A - C)w1w3 = 0 

CdJ3 + (B - A)w1w2 = 0 

(5.10-1) 

where l, 2, 3 are body-fixed axes coinciding with the principal axis. The 
solution of these equations involve elliptic functions, and is taken up in 
Sec. 5.11. The following is a geometric discussion of the solution due to 
Poinsot. 

With no external torque, the kinetic energy and the moment of 
momentum about the center of mass C are constants. 

h = constant 

No work is done on the body, therefore, 

T = constant 

The expression for w and h are, 

W = W1i + W2j + W3k 

from which we obtain, 

w • h = Awl + Bw22 + Cwa2 = 2T = constant 

h2 = A2w12 + B2w22 + C2wa2 = constant 

(5.10-2) 

(5.10-3) 

(5.10-4) 

(5.10-5) 

(5.10-6) 

(5.10-7) 

With h drawn in a specified direction, its unit vector is h/h, and the 
component of w along h will be given by 

h 2T 
ON= w ·- = - = constant h h 

(5.10-8) 

Thus N is a fixed point along the direction of h, as shown in Fig. 5.10-1, 
and the end of the w vector must lie in a plane through N perpendicular to -
ON. The line ON is referred to as the invariable line, and the perpendicular 
plane the invariable plane. Thus the end of the vector w must move in this 
invariable plane. 
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Letting the coordi!!ates of w bet, r/, r, we have w1 = ¢', w2 = r/, and 
W3 = r. The equation for 2T may then be written as 

~ 12 r/2 {'2 
-~~-+ + =l 
(Y2T/A)2 (V2T/B)2 (V2T/C)2 

(5.10-9) 

which is called the Poinsot ellipsoid. Figure 5.10-2 is an illustration of the 
ellipsoid. 

0 

Fig. 5.!0-i. Invariable line ON and invariable planes. 

3 

/ ITT' 
~"\Jc 

/ rll\ 
/)w i ,·Y/_ ---<,~r ) "' 

1 . /2T '-C!J..- ' '1¥ 
1'"\/T 

Fig. S. lll-2. Poinsot ellipsoid. 

2 

We next examine the inertia ellipsoid which was previously described 

as the locus of p = I /YI laid off along thew vector. Letting the coordinates 
of p bet, 7/, ,, the equation for the inertia ellipsoid from Eq. 5.5-2 becomes, 

t2 7/2 ,2 
---+ + =l 
(Yl/A)2 (Yl/B)2 ('/1/C)2 

(5.10-10) 
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We thus see that the Poinsot ellipsoid is proportional to the inertia 

ellipsoid with its coordinates equal to V2T times the coordinates of the 
inertia ellipsoid. 

The Poinsot ellipsoid can be shown to roll on the invariable plane with 
its center a distance ON= 2T/h from it. Starting with the equation, 

2T=w·h (5.10-11) 

and remembering that h and Tare constant, we can obtain the following 
differential relationship. 

d(2T) = dw · h = 0 (5.10-12) 

Since the vanishing of the dot product of two vectors dw and h requires 
that the cosine of the angle between them be zero, we conclude that dw and 
h are perpendicular to each other. With the end point of w moving in the 
invariable plane, any change dw of w is perpendicular to h, and since the 
locus ofw (f, r/, O corresponds to the Poinsotellipsoid, it must be tangent 
to the invariable plane. Thus to an observer stationed to a fixed co­
ordinate system, the motion of the body is described by the rolling of the 
Poinsot ellipsoid (or inertia ellipsoid with t, 'Y/, , coordinates increased by 

V2T) on the invariable plane. 
If we wish to examine the motion from the point of view of an observer 

stationed on the moving body, the invariable plane will now appear to 
move with respect to the body. From the angular momentum equation, 
Eq. 5.10-7, we can rearrange the terms to form the angular momentum 
ellipsoid as follows. 

(5_10-13) 

The curve traced by the end of the w vector is then defined by the inter­
section of the Poinsot, ellipsoid Eq. 5.10-9, and the angular momentum 
Eq. 5.10-13, ellipsoid. 

The instantaneous axis w passes through the point of contact between 
the Poinsot ellipsoid and the invariable plane. It therefore generates 
simultaneously two cones, one in the fixed space, and the other in the body 
or the Poinsot ellipsoid. These cones, called the herpolhode and the 
polhode cones respectively, are shown in Fig. 5.10-3. 

Since w is common to both the Poinsot ellipsoid and the momentum 
ellipsoid, the equation for the body cone can be obtained by subtracting 
Eq. 5.10-9 from 5.10-13 and multiplying by h2• 

A(A -;;)r2 + B(B -;;)'Y/'2 + c( c-;;)r2 = o 

(5 .10-14) 
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This equation indicates that for the body cone to be 
between the greatest and least values of A, B, and C 
let A > B > C, then h2/2T must satisfy the relation, 

h2/2T must lie 
For instance, ifwe 

(' \- / 
~ Polhode cone 

\ 
2 

Fig. !ii.I 0-3. Poinsot eliipsoid rolls on the invariable s. 

To find the polhode curves, we let the Poinsot ellipsoid intersect the 
polhode cone. The form of these curves is best visualized by looking at 
their principal plane projections, obtained by eliminating in turn one of 
the coordinates between Eqs. 5.10-14 and 5.10-9. The three equations so 
obtained are, 

A(A - C)t2 + B(B - C)r/2 = 2r(;~ - C) 
( h2 ) A(A - B)t2 - C(B - C)f2 = 2T 2T - B 

( h2) B(A - B)r/2 + C(A - C)C2 = 2T A - 2T (5.10-15) 

If h2/2T = C, the first equation can be satisfied for f = r;' = 0. The 
polhode curve then degenerates to a point on the r axis. 

If h2/2T = B, we obtain from the second of the three equations 

I= jA(A -· B) 
I;' 1V C(B - C) 

(5.10-16) 

which indicates two planes passing through r/ axis. The I;' r;' and the r/ f 
projections from the other two equations, are ellipses. 
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If h2/2T = A, the third of the three equations can only be satisfied if 
r/ = ,, = 0, and the polhode curve degenerates to a point on the !;' axis. 

If h2/2T lies between B and C, the polhodes lie between the planes of 
Eq. 5.10-16 and the C axis. Their !;'r/ projections are ellipses. 

ff h2 /2T lies between A and B, the polhodes lie in the central part of the 
ellipsoid between the planes of Eq. 5.10-16. Their riT projections are 

3 

fig. S. !0-4. Polhode curves. 

ellipses and their !;' C projections are hyperbolas. The general nature of 
the polhode curve for the various cases are shown in Fig. 5.10-4. 

If we write Eqs. 5.10-6 and 5.10-7 in terms of momentum components, 
h1, h2, h3, they become 

h2 h2 h2 
..2-. + 2 + -2.. = 2T 
A B C 

(5.10-17) 

(5.10-18) 

and their simultaneous solution give the intersection of the Poinsot 
ellipsoid, Eq. 5.10-17, and the momentum sphere, Eq. 5.10-18, in terms 
of the momentum coordinates. Since Eqs. 5.10-14 and 5.10-15 are also 
solutions to the same problem, we need only to rewrite these equations in 
terms of hi, h2, and h3• Thus Eq. 5 .10-14 rewritten in terms of momentum 
coordinates is 

( J h2-) ( 1 h2 ) ( 1 h2 ) 1--- hi2+\1--- hl+ l--~_h32 =0 (5.10-19) 
A2T B2T , c~r 
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Figure 5.10-5 is a plot ofEq. 5.10-i9 showing the locus of the h vector on 
the momentum sphere for various values of h2/2T, where A > B > C, and 
A~ h2/2T ~ C. 

Fig. !U0-5. Locus of hon momentum sphere. 

5,11 Unequal Moments of Inertia with Zero Moment 
(Analytic Solution) 

When the moments of inertia A, B, C are unequal, the general solution 
of Eqs. 5.10-1 results in elliptic functions. We take advantage of Eqs. 
5.10-6 and 5.10-7 which are integrals of the Euler equations, and obtain 

h2 - 2T A = B(B -- A)w22 + C( C - A)w32 

h2 - 2TB = A(A - B)w12 + C(C - B)wl 

h2 -- 2TC = A(A -- C)w12 + B(B - C)w22 

(5.1 

(5.11-2) 

(5.11-3) 

If we assume A> B > C, Eq. 5.11-1 is always negative, Eq. 5.11-3 
is always positive, and Eq. 5.11-2 may be either positive or negative. 
From Eqs. 5.11-1 and 3, we write 

w 2 = 1- w 2 
. h2 -- 2TC { B(B - C) } 

1 A(A - C) h2 - 2TC 2 

2T A - h2 { (A - B) (h2 - 2TC) B(B - C) } 
w32 = C(A - C) l - B - C ,2TA - h2;(h2 - 2TC) w22 

1-4) 

We now let 

JB(B- C) 
y = h2 ·- 2TC w2 

k = J(A - B) (h2 
- 2TC)\ 

B- C 2TA - h2 

(5.11-5) 
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so that 
ih2 -2TC --

w = / Vl - y2 
1 A,/ A(A - C) 

1-6) 

J2TA - h2 
o• = v1 - k2,,2 

' 3 C(A - C) . • 01 
(5.11-7) 

Substituting these into the second of Eq. 5.10-1, we obtain 

. jh2 - 2TC . 
w = u 

2 ' B(B - C) J ' / 

(5.11-8) 

= (C - A) /l(h2 ·- 2TC)(2TA - h2) V(l - 2)(1 - k2 2) 
B Ai AC(C - A)2 . y y 

which is recognized as an elliptic integral of the first kind, 

/
1(B - C)(2TA - h2) 

Nt = u = · t 
Al ABC 

where t is measured from the instant when w2 = 0. On letting y = sin ¢, 

fef, 

u =J = F(cb, k) 
o V l - k 2 sin2 ef:, ' 

(5.H-10) 

and u becomes a function of the modulus k and the amplitude ¢,. Con­
versely, y is a function of u = Nt and k, and is available as a tabulated 
function for O :s;: k :s;: 1, where N is defined by Eq. 5.11-9. 

y = Sfln(u, k) 

Thus from Eq. 5.11-5 the solution for w2 is 

- I h2 - 2TC y ( T l 
W2 - -'I B(B _ C) nJ'lt, k1 

(5.11-11) 

(5.11-12) 
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Likewise, it can be shown that the solution for the angular velocities about 
the other two axes are 

/ h2 - 2TC 
W1 = AJ A(A _ C) <cn(Nt, 

f2TA - h2 

w3 = - Aj 1 ) f»n(Nt, k) c,A - C, 

1-13) 

where the <cn and f»n functions are related to the fl'n function by the 
equations, 

<cn2x = 1 - fl'n 2x 

f»n 2x = l - k 2fl'n 2x 
(5J1-14) 

These solutions correspond to the case h2 < 2TB which is required for 
O~k~l. 

y 

-11 
k == t 
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I 
I 

K 

Fig.5.11-L Plot of elliptic functions. 

fig. S. l 1-2. Plot of elliptic functions. 

Nt 
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For small values of k->- 0 (i.e., A approaching B), the functions 
approach the trigonometric functions, 

S°n(Nt, 0) = sin 

~n(Nt, 0) = cos 

!!Jn(Nt, 0) = 1.0 

Thus when A = B, the angular velocities reduce to the form: 

w 2 = f3 sin (Nt) 

W1 = /3 cos (Nt) 

W 3 = n 

which agree with the results of Sec. 5.8. 

lr-~~~~~,---=:::::=~~~ 

0.5 

0.5K K 

Table of y = sin 4> = Y"n(u, k) Taken from Peirce's Table of Integrals 
3rd Revised Ed. p. 122 

Abscissa = u = Nt = i</> VI 
def, 

Ordinate, - k2 sin2 ef, 
Y'n(u, k) = , 

1> sin cf, I k = 0 k = 0.50 k = 0.707 k = 0.866 k = 0.9848 

oo 0 
I 

0 0 0 0 0 
100 0.1736 0.111 0.1037 0.0943 0.0814 0.0556 
20° 0.3420 I 0.222 0.2080 0.190 0.1646 0.113 
30° 0.500 

I 
0.3333 0.3140 0.289 0.2515 0.174 

45° 0.707 0.500 0.477 0.445 0.3945 0.278 
60° 0.866 I 0.666 0.645 0.616 0.563 0.413 
75° 0.9563 

I 
0.834 0.821 0.802 0.765 0.617 

90° 1.000 1.000 1.000 1.000 1.000 1.000 
K = 1.686 = 1.854 = 2.156 = 3.153 

fig. 5.11-l. Plot of elliptic function fl'n(u, k). 

I 
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To show the effect of A =I= a of the elliptic function for k = 

is compared to the trigonometric functions in Fig. 5. 11-L If y = sin cf> = 

Sl7n(u, k) is plotted against u = Nt for various values of k, with u nor­
malized to unity at cf> = 90°, the of Sl7n(u, k) will appear as in Figs. 
5.11-2 and 5.11-3. 

5.12 Stability of Rotation about 

lf we write Euler's equations for no external moment in the 

we find that, 

= (B - C)w2w3 

BoJ2 = (C -

Cw3 =--= 

w1 = constant if w2 = w3 = 0 

w 2 = constant if w1 = w3 = 0 

w3 = constant if w1 = w 2 = 0 

indicating that permanent rotations are possible about each of the principal 
axes. We will now show that these permanent rotations are stable about 
the axes of maximum and minimum moments of inertia, and unstable 
about the axis of intermediate moment of inertia. 

We will assume constant rotation about one of the axes, say axis 1, and 
allow a small perturbation to determine its stability. We then have an 
initial condition w1 = w0, w2 = w3 = 0, and a perturbed 
w1 = w0 + E, with w2 and w3 smalL The linearized are, 

Ai= 0 

(5J2-2) 

Differentiating the second and third of Eq. 5.12-2, we obtain, 

=0 

.. (A - B){A - C) 2 
w3 + BC w0 w3 = 0 

which are stable provided - B)(A - C) is positive. We see that this 
condition is satisfied provided A > B, and A > C a principal 
axis), or B > A, and C > A a minor axis). When A is an 
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intermediate value between B and C, (A - B)(A - C) is negative, and 
small values of w2 and w3 will increase. The first of Eq. 5.12-2 requires 
that the small perturbation E remain constant, and, hence, if axis 1 is 
either a major or minor principal axis, the rotation is stable. ff axis l is 
an intermediate axis, w2 and w 3 will increase, resulting in an unstable 
oscillation. The above conclusions can be simply demonstrated by drop­
ping an eraser spinning about each of the principal axes. Situations 
requiring modification of these conclusions are discussed in Sec. 7.6. 

PROBLEMS 

1. Determine the ellipsoid of inertia for the configuration of Prob. 5.5-4. 
2. Determine the ellipsoid of inertia for a solid uniform cylinder of radius R 

and length 2R. What is its moment of inertia about a line passing through 
its geometric center and the perifery of one end. 

3. Consider a spinning body with A > B > C. With initial conditions w1 = p0 , 

w2 = 0, w3 = r0 , find w1 , w2 , and w3 for a motion characterized by one of 
the plane polhodes 

0!_ = ± jA(A -B) 
p 0 ty C(B - C) 

Show that, with t approaching w, the motion tends to a permanent rotation 
about axis 2. 

4. Show that, for a body with principal moments of inertia A, B, C, the polhodes 
are closed curves while the herpolhodes generated on the invariable plane 
are generally open curves. 

5. Derive the equations for w1, w2, w3, when h2 > 2TB and A > B > C. 
6. Discuss the stability of rotation of an unsymmetric body in the moment-free 

case in terms of the polhode curves of Fig. 5.10-4. 
7. Solve for the exact solution of a simple pendulum oscillating through large 

amplitudes. Express the equation for the period in terms of an elliptical 
integral and its series approximation. 

8. For h2/2T < B, where A > B > C, the angle 03 made by the h vector and the 
h3 axis is defined by the equation (see Fig. 5.10-5) 

sin 03 = 1 Vh12 + h22 

Show that the value of 83 varies between 

. f BC 11 l ) 
Sill 83max = rJ B - C \C - h2/2T 

. J AC (1 1 ) 
Sill 03min = A - C C - h2/2T 

Hint: Rewrite Eqs. 5.10-15 in terms of h1, h2, h3• 
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!Jl. Derive the equations for ro1 , w2, w3 when C > B > A and examine the con­
ditions h2 < 2TB and h2 > 2TB. 

5.13 General Motion of a Symmetric Gyro or Top 

Figure 5.13-1 shows a symmetric gyro spinning about axis , and 
supported by two gimbals. The inner gimbal allows a pitching rotation of 
the spin axis about the horizontal bearings ~, while the outer gimbal is free 

(a) (b) (c) 

Fig. 5.13-1. Symmetric gyro-angular momentum about gimbal. axes. 

to rotate about the vertical Z axis. The gyro is then pivoted about the 
stationary geometric center of the gimbal system, and the center of mass 
does not coincide with the fixed center 0. 

We will now define precession and nutation in the following manner. 
The rotation 1fa of the horizontal axis ~ (node axis) about the vertical Z 
axis is called precession. ff the angle (} is held constant, the spin axis will 
generate a cone due to precession. The rotation fJ of the inner gimbal 
about the node axis f is called nutation. The term signifies a nodding of 
the spin axis. In the general case, both precession and nutation may exist 
simultaneously. 

We will at first neglect the mass of the gimbals, in which case we would 
have only the spinning wheel free to rotate in any manner about the 
stationary geometric center 0, as shown in Fig. 5.13-lb. The system is 
then identical to that of a spinning top pivoted about a fixed point 0, 
and subject to a gravity torque Wl sin () about the axis t If l = 0, we 
have the special case of a gyro free to rotate about the center of 
gravity. 
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It is convenient here to write the moment equations about the cartesian 
coordinates through the geometric center with the line of nodes $ as one of 
the axes. We will let the moment of inertia of the wheel about the node 
axis system $, 'Y/, and i be A, A, C. The angular velocities of the $, 'Y/, i 
axes and the angular momentum about them are, 

cos=(! h" = A(i 

w" = 1j, sin (I h" = A1j, sin (I (5.13-1) 

w, = 1P cos (i h, = C(q; + 1P cos (i) 

where <pis the spin angle of the body axes 1, 2, referenced to the node axis$. 
The components of the moment equation, 

M = [h] + w X h (5.13-2) 

can be immediately written down by examination of Fig. 5.13-lc. 

M" = h" + h,1J, sin (I - hri"P cos (I 

M'f/ = hri + hs"P cos (I - h,(i (5.13-3) 

M, = h, + h'f/(i - h"1j, sin (I 

Substituting for the components of h and M, these equations become, 

WI sin (I = AO + C(q; + 1j, cos (})1j, sin (I - A1j,2 sin (I cos (I 

d . . 
0 = A dt (1j, sin (i) + A(i1j, cos (I - C(}(q; + 1j, cos(}) 

d 
0 = C d,J if; + 1j, cos (}) (5.13-4) 

The last equation indicates that if; + 1j, cos (I is a constant, and we will let 
it equal n. 

n =if;+ 1j, cos (I (5.13-5) 

With this substitution, the first two equations of Eq. 5.13-4 can be inte­
grated with proper integrating factors. We will, however, consider an 
alternative approach based on certain integrals of the equations of motion 
which are constant. These are the conservation of total energy; and the 
conservation of angular momentum about the vertical Z axis which is 
moment-free. 

If we examine the equations for the angular velocities about the body 
axes, 

w1 = (! cos <p + 1j, sin (I sin <p 

w2 = - O sin <p + 1j, sin (I cos rp 

W3 = qJ + 7P COS (} = n 

(5.13-6) 
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we would find that by adding the squares of the first two, that the square 
of the resultant velocity in the equatorial in terms of Euler's angles is 

+ W22 = e2 + sin2 () 

Since w3 is constant and equal to n, the kinetic energy can now be 
written as, 

T = !Cn2 + }A(82 + 7jJ2 sin2 8) (5.13-8) 

Referencing the potential energy to the level of the origin of the coordinate 
system, 

U = Wi cos() (5.13-9) 

and the total energy E, which must be a constant, becomes 

E = fCn2 + fA(8 2 + 1iJ2 sin2 8) + Wl cos 6 13-10) 

which is one of the first integrals of the differential equations of motion. 
With the moment about the Z axis equal to zero, the momentum 

hz = h, cos 6 + h~ sine must be a constant, 

hz = Cn cos e + A1iJ sin2 fJ (5.13-11) 

This equation could also be obtained from the Lagrangian approach since 
the generalized coordinate 1P is a cyclic coordinate with M z = 0 (see 
Chap. 9) Solving for 7jJ from the above 

. hz - Cn cos (j 
1P = 

A sin2 fJ 

and substituting into Eq. 5.13-10, we obtain the following form of the 
energy equation, 

Cn2 A82 (hz - Cn cos 
E - 2 = 2 + 2A sin2 e + Wl cos e (5.13-13) 

Equation 5.13-13 is entirely in terms of 8, and its solution substituted into 
5 .13-10 completely describes the motion of the system. 

We now make the following substitution of symbols: 

ex. = ~ ( E - c;2
) a constant 

2Wl 
(3 = -· a constant 

A 
hz 

y = - a constant 
A 

Cn 
N = - a constant 

A 
u = cos e a variable 
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which enables Eq. 5.13-13 to be written as, 

o: sin2 (} = 62 sin2 8 + (y - N cos 8)2 + (3 cos fJ sin2 {} (5.13-14) 

In terms of u, the equation becomes, 

u2 = (ex. - pu)(l - - (y - (5.13-15) 

The solution of the above equation is given by the following integral 
which can be evaluated in terms of elliptic functions. 

du 

V(o: - pu)(l - u2) - (y - Nu) 2 

The mathematical solution resulting from the above elliptical integral is 
difficult to interpret, however; fortunately it is not necessary to carry out 
the above solution to evaluate the behavior of the gyro. If we let, 

u2 = f(u) 

Equation 5.13-15 can be written as, 

= (a: - (3u)(l - u2) - (y - (5.13-18) 

and the roots of this equation will tell us a great deal about the'motion of 
the gyro. 

Although u = cos (J is limited between ± 1 for the physical problem, 
mathematically u can extend outside this region. For large values of u, the 
dominant term in f(u) is (3u3 , thus f(u) must be positive for large positive 
u, and negative for large negative u, as shown in Fig. 5.13-2. Also at u = 1, 
the first term drops out, leaving, 

/(± 1) = -(y =t= N)2 

It is evident then that f(u) at u = ± 1 must always be negative. Looking 
at the expression for f(u) in terms of e, 

f (u) = 112 = 82 sin2 (J (5.13-19) 

we find that, for real values of e and 8,f(u) must be positive. We therefore 
conclude that, for the physical problem, u = cos fl, must always lie between 
u1 and u2 for which/(u) is positive. 

We note next that for() > 0, ti must be zero at u1 and u2, which requires 
that the spin axis a, move between the bounding circles u1 = cos 01 and 
u2 = cos 82, as shown in Fig. 5.13-3. 

The type of curve traced by the spin axis in the region e1 and fl 2, depends 
on the relative values of y and N. For example, Eq. 5.13-12 can be 
written as, 

. y-Nu 
'l/J= 

1 - u2 
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and since u is less than l between u1 and u2, the sign of 1P depends on 
y - Nu. If y = Nu1, then 1/J must be zero at the upper bounding circle and 
positive for f) greater than 81, as shown in Fig. 5.13-4. To obtain the 
curve of Fig. 5.13-5, 1P must change sign for some value ofu between u1 and 
u2• Thus for this case, y - Nu; = 0 for u2 < ui < u1• 

i""' 
I I 

I I 
-1.0 1.0 I 

I 

0~ 
u ;r~~ 

180° /go• o• f} 

Fig. 5.13-2. Cubic equation representing motion of symmetric gyro. 

Initial conditions 

If a gyro or is started at t = 0 with 6 = 60 and e = ·ip = 0, the 
values of the two constants of the system, E and are found from Eqs. 
5.13-12 and 5.13-13, to be, 

hz = Cn cos 80 

E - }Cn2 = WI cos 60 

Substituting into Eqs. 5.13-12 and 5.13-13, the equations for the precession 
and nutation are, 

. N(cos 80 - cos(}) 
'lj)= 

sin2 f) 

82 = (cos 60 - cos 8)[,8 - .~2
A (cos 60 - cos 8)1 

Slll v ...1 

(5.13-20) 

These equations both agree with the initial conditions imposed on the 
system. The second of the above equations indicates that the right side of 
the equation must always be positive, therefore 80 must correspond to the 



Fig, S.B-3. Oscillation bounded between 81 and&, with y > Nu,. 

fig. !Ul-4. Oscillation bounded between Ii, and 82 with y = Nu1• 

fig. !U3-!'i. Oscillation bounded between 81 and 82 with y = Nu,, where u2 < u; < u,. 

137 
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highest elevation of the axis, or the upper 
circle is found by letting O = 0 and 

circle. The lower 
for cos 6. The result is 

JV2 / JV2 ' /N2\2 
cos 6 = 2fJ ±;J 1 - tT cos 60 + \ 2µ) 

It can be shown that the sign before the radical must be For 
i;nstance,.since cos 60 is. less than 1, the radical is greater than 

/ . JV2 ! N2)· 2 JV2 ;' N2 (N2\2 JV2 
1 - - + 1- = 1 - - < 1 - - cos e + - I = cos G - -

I\/ (J . \ 2{3 2(J 'V (J O \ 2{3 I 

Thus if the positive sign is used, this would 

cos(}> 1 

which is an impossibility. Thus () 2 corresponding to the lower bounding 
circle is given by the equation 

(5.1 

5.14 Steady Precession of a Symmetric or 

In the previous section it was shown that the spinning top pivoted about 
a fixed point is able to move in such a manner that its axis of symmetry Ot 
occupies a zone between 61 and 62 to the roots = 0 
at u1 and u2• It is evident then that as u1 and u2 approach each other, the 
annular zone between ()1 and ()2 will narrow until eventually they merge to 
a single value as shown in Fig. 5.14-1. Physically, this is the angle of 
steady precession which can be initiated by the initial 8 = (} ,, 
() = 0, and 1P = 

The analysis for this special case is probably one of the simplest cases of 
the spinning top, which will now be investigated. Although the problem 
can be approached mathematically from the two equations, 

=0 

df(u) 
--=0 

du 

it will be more instructive to examine the problem from a 
follows. 

basis as 
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For steady precession, 6 = 0, and the angular velocities about the t, 'f/, 
, axes, shown in Fig. 5.13-1 c, are 

W1; =0 

wn = VJ sin() 

w, = 1P cos(} 

The angular momentum about the corresponding axes are, 

Fig. !i.14-1. Steady precession corresponding to u, = u, = u,. 

h1; = 0 

hn = AVJ sin() 

h1 = C(¢ + 1jJ cos fJ) = Cn 

and the moment about the ~ axis becomes 

M1; = h1VJ sin() - hnVJ cos() 

= Cmp sin 8 - A1j}2 sin 8 cos 8 = Wl sin fJ 
or 

• 2 ( Cn ) . WI 
'If! - --- 'j)+---=0 

A cos () . A cos fJ 

The two precessional speeds are then given by the equation, 

Cn J( Cn \ 2 Wl 
= 2A cos () ± 2A cos fJ J - A cos fJ 

(5.14--1) 

(5.14-2) 

(5.14-3) 

(5.14--4) 

provided the spin is great enough to keep the radical of the above equation 
positive. This requirement is satisfied if, 

2 AAWlcos (} 
n > c2 (5.14--5) 
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Further insight to the problem is obtained by plotting M1; versus if; from 
Eq. 5.14-2, as shown in Fig. 5.14-2. The curve is a parabola and for any 
value of M1; there correspond two precessional speeds. When M1; = 0, the 
precessional speeds are zero and ij;0• This value of the precessional speed 
is given by the equation, 

. Cn Crp 

% = A cos e = (A -- C) cos e (5.14-6) 

fig. S.14-l. Constant moment Mr; results in two possible precessional speeds 'if,, 
and ,p 2 • 

which agree with that of the moment-free gyro (see Eq. 5.9-4). The 
precessional speed corresponding to the peak moment is 

. Cn 
'l/1p = 2A cos(} (5.14-7) 

and the corresponding peak moment is 

1 C2n2 
M, = ---tane 

,max 4 A (5.14-8) 

For intermediate moment M1;, the two precessional speeds ¢1 and ij;2 

are referred to as the slow and the fast precession. In general, the fast 
precession is not attained due to the high kinetic energy required, and the 
precession of a spinning top is usually slow precession. 

Limiting cases 

For 1P to be real, it is necessary for the terms under the radical of Eq. 
5.14-4 to be greater than zero, or, 

C2n2 ;::,: 4 WlA cos () 

If (} = 90°, Eq. 5.14-5 indicates that the minimum required n is zero. 
However, Eq. 5.14-4 indicates that¢ then is indeterminate. This limiting 
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case can be resolved for n greater than zero by the elementary consideration 
of Fig. 5.14---3. The rate of change of the angular momentum vector h, = 
Cn, is equal to the moment M1; = Wl, 

=Cn 

Cnif; 

Mr;= h, 

Wl = Cmp 

fig. !i.14-3. Limiting case e = 90°. 

The whirling speed 1fa for e = 90° is therefore equal to, 

. Wl 
'ljJ=­

Cn 

and as long as n is finite, 'lj; will also remain finite. 

(5.14-9) 

The same result can also be obtained from Eq. 5.14-3, for as cos---+ 0, 
the term VJ2 is negligible compared to the other two. 

For e = 0°, the required value of n from Eq. 5.14-5 must satisfy the 
equation, 

( 5 .14---10) 

in which case we have the sleeping top. Equation 5.14-10 is often used to 
determine the spin of a missile or a projectile necessary for stability. 
Referring to Fig. 5.14---4, as long as the spin axis o, coincides with the 
velocity vector of the missile, the drag force will also coincide with o,. 
However, if the spin axis deviates slightly from the velocity vector by a 
small angle (}, the drag force, which acts at the center of pressure, a distance 
l ahead of the center of mass, will have a moment Rl sin (} about the center 
of mass. Thus this problem is identical to that of the sleeping top with Wl 



2. 

3. 
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Rl. The missile or nrn10r·r1 will her:ce be stable if the spin is 
as established 

2 
n ::..> -

C 

Fig. 5. i 4-4. stabilization of n1issiles and 

PR.OBlEMS 

is mounted on two What are the 
moment of momentum ~. rJ, ,, and Z axes. 

for the moment about the above axes. 

u = cos 0° = 1, can be satisfied 
that (a) is stable and 

consH1,:rnc1g a small variation of the curves as indicated 

(a) (/;) 

4. lf the for Prob. 3, 

=0 

5. Show that the 
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6. Show that for n, the lo"ver and 

'P1 
WI 
Cn 

Cn 
1P2 = --­

A cos 6 

1rn:1e1Jer1ch:nt of 6? 

becvn1.e 

7. betiveen the n10mentum vector !"1 

1 
tan cc1 , 2 = 2 tan 

_ 4WAlcos Gl 
c2n2 J 

where the minus n.1ust be used for the slow 
8. Show that for n, the 

sional are, 
AW/sin fJ 

tan o:2 = tan 6 

9. What is the for a to the minimum value of n 
consistent with precession? 

10. Determine the conditions necessarv for small oscillation of the axis of 
a gyro, betvveen two annular circle; 01 and such that VJ is the san1e at the 
tv10 circles. 

U. The end of the spin axis of a 
sphere the curve shown. If 

ua,wc<"'' in terms of N. 

/3 
2Wl 

Prob. Ii 

Show in that a motion with the 

describes on a 
determine the 

(a) 

(b) 

(c) 

cusp at 62 > 61 cannot take 
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12. A thin disk of radius r and mass m has a stem of length a which is pinned 
to a vertical shaft as shown. Show that if r < 2a, it will be unstable if 

,p2 > 4)8::_ r2 • Show also that it will be stable at all ,p if r > 2a. 

Prob. 12 

13. A flywheel with axes x, y, z has moment of inertia I,,, Iv = I., and is spinning 
with high speed ro. If it is oscillating in pitch and yaw with the center of 
:gravity stationary, set up the equations of motion with restraining moments 
equal to K,lJ in pitch and Kytp in yaw. 

Prob. 13 

14. The ore crusher wheel of weight W and radius R has moments of inertia C 
and A about its polar axis and an axis through O parallel to the diametric 
axes. The spin axis z on which the crusher wheel is free to rotate, precesses 
at speed ,p about the vertical OZ axis. 
(a) show that the spin velocity of the wheel with respect to the axle is 

<p = -i(lsin6 +Rcos6),j; 

(b) Show that the velocity of the center of the wheel is equal to 

Ve = -R(,p + ,p cos 6) 
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Prob. 14 

15. For the ore crusher of Prob. 14, write the equation for the moment about 
the pin 0, and show that the normal force between the wheel and the 
inclined track is 

F = Wsin () +~vi{~ (1 - cos W) + 1 sin ze] 
16. From the result of Prob. 15, show that the crushing force Fhas a maximum 

or minimum between() = 45° and 90°, or between O = 135° and 180°. Since 
the force due to gravity is a maximum at O = 90°, we can reason that the 
maximum occurs for(} = 45° to 90°, or actually between 0° and 45° with the 
horizontal. Determine the optimum axle tilt above the horizontal for a 
crusher of the following dimensions. 

R = 18 in. l = 3 ft (from center plane of wheel 
to pin 0) 

b = 12 in. ,p = 100 rpm 

17. Determine the velocity and acceleration of the top of the crusher wheel for 
the dimensions given in Prob. 16. 

18. The general equation for the symmetrical gyro is given by Eq. 5.13-18. 
Show that 

f '(u) = df(u) = 2ii = -2(02 cos(} - e sin 0) 
du 

19. For steady precession l:l = e = 0, which requires that f(u) = f'(u) = 0. 
From these two equations show that the steady precession is defined by the 
quadratic, 

·2 N. + {J 0 'I/) --'lj) - = 
u 2u 

with the following restriction 
N ~ -V2{Ju 

20. A gyro of weight mg, spinning with angular speed n is tied to a string of 
length 11 and precesses around the vertical axis with constant speed n. If 
C and A are moments of inertia about the spin axis and its normal through 
the center of mass, determine the three equations of motion. 
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Prob. 20 

21. The outer frame of a toy gyro is symmetric about the three axes through its 
geometric center, and has a moment of inertia C2• If when the rotor is 
spinning with speed <p, the outer frame also spins at a different speed ¢2 in 
the same direction, write the new momentum and moment equations for 
steady precession. 

Prob. 21 

22. 1f the outer frame of the toy gyro is a single ring in one plane, the moment 
of inertia about an axis normal to the plane of the ring will be 2C2• How 
does this affect the equations of Prob. 21 ? 

5.15 Precession and Nutation of the Earth's Polar Axis 

In Sec. 4.18, we derived the equations for the moment exerted by the 
earth, due to its oblateness, on a satellite revolving around the earth. 
According to Newton's third law, the satellite must exert an equal and 
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opposite moment on the earth, but, due to the large mass of the earth in 
comparison to that of the satellite, its effect is measurable only on the 
satellite motion. 

The moment equations from Sec. 4.18, with opposite signs for moment 
exerted by the satellite on earth, are, 

M,, = - 3K:s (e - A) sin2 <p sin(} cos(} 
ma 

3Km8 ( ) • (} • My = --3 e - A Sill Sill <p cos <p 
ma 

M.=O 

(5.15-1) 

These equations apply to any two bodies oriented as in Sec. 4.18, and, 
therefore, are applicable to the sun and earth, or the moon and earth. 
The fact that the earth's polar axis is inclined from the normal to the plane 
of the ecliptic by 23° 27' results in a moment exerted by the sun on the 
earth as shown in Fig. 5.15-1. 

Fig. 5.15-1, Moments Mx and M. exerted by sun on earth. 

The angular momentum vector of the spinning earth is en, and the 
moment My causes the end of the vector en to move in the same direction 
and, therefore, change the angle (}. Since Mv is oscillatory with net result 
per cycle equal to zero, its effect is to produce an oscillatory nutation of 
zero net angle per cycle. 

The moment M,, is oscillatory but cumulative along the negative x axis, 
which requires a net precession per cycle. Letting 1P be the precession rate 
normal to the plane of the ecliptic, the component 1P sin (} along the 
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negative y direction will rotate the angular momentum vector CQ in the 
direction to give 

CD.ip sin 8 = 
The precession rate from Eq. 5J5-l is then 

3Km IC- A) 
1P = - __ s 1--- cos e sin2 rp 

mOc, 3 \ C 1 

(5.15-2) 

(5.15-3) 

The quantity Kmsfm = Gms in this equation, where ms and m are the mass 
of the sun and earth respectively, can be eliminated from the equation of 
the central force between the sun and the earth as follows. 

Gm3m = Kms = maf27T)2 
a2 a2 \T! 

(5.15-4) 

Also the average value of sin2 cp for O ::;: rp ::;: 27T is V2, so that the average 
precession rate per year due to the sun is given by the equation, 

'!Pav= - 2~(2:)2(C ~ A)cos e (5.15-5) 

where f.l is the spin rate (relative to inertial space) of the earth, Tis the 
period of the earth around the sun, 8 = 23° 27', and (C - A)/C = 0.0032 
for the oblateness of the earth. 

Equation 5.15-3 applies also to the earth-moon system, where ms now 
becomes the mass of the moon. However, in eliminating the quantity 
Kmsf ma3, the attractive force between the earth and moon given by Eq. 
4.6-4 must be used as follows. 

Gmms = ( mms )a(27r)2 

a2 m + ms T 

(5.15-6) 

Thus (Kms/ma3) = [ms/(m + ms)J(27r/T)2 and the equation for the average 
precession rate of the earth's polar axis per revolution of the moon around 
the earth becomes, 

. 3 ms /27T\2 (C - A) e 
1Pav = - 20 m + ms \-:;J ,-C-- COS 

(5.15-7) 

PROBLEMS 

1. The earth's spin rate is Q = 2rr x 366.25 rad/year. Show that the earth's 
polar axis precesses 0.0000765 rad/year due to the sun. 

2. The mass of the moon is Ys1 that of earth, and its period is 27.32 days. Its 
orbit plane e varies between 18° 19' and 28° 35', with an average value of 
23° 27'. Determine the precession of the earth's polar axis per year due to 



GYRODYNAMICS !Si 

these equations have simple solutions only for certain special conditions 
which are; 

e~ 90° 

e~ 90° 

a~ 0° 

and w, large 

and w,·__.,. 0, VJ large 

and w r small, ij; large 

The first case represents a rolling of the disk with its nearly vertical; 
the second case corresponds to the spinning of the disk about its 
vertical diameter; and the last case the disk with its 
face nearly horizontal. 

z ~e 
)O

ROcosO 

RO sin// --------\--~-------11· 
~ 

·\ 
t 

Fig. S.16-2. Components of velocity. 

Rolling of a disk ·with plane of the disk vertical 

Consider the disk rolling with the plane of the disk nearly vertical. Here 
the angular velocities (J and 1jJ will be small in comparison with w ,. Also 
sin O ~ 1, and cos () = a, where()( is the complimentary angle o: = ( n/2) -
e. We can therefore replace (J and 6 by -ci: and -a respectively. The 
force and moment equations can then be written as, 

fsR = Cci.>{ 

A1p = 

-Aa - Cw,'lj! = --fzRo: + 
-t = mRw, 

+ 
fz - mg= 0 

(5.16-14) 

16-15) 

(5.16-16) 

(5.16-17) 

(5.16-18) 

(5.16-19) 
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From Eqs. 5.16-14 and 5.16-17, we 

(C + mR2)oJ, = O 

w, = n = constant (5.16-20) 

With the initial conditions ip = 0, and C( = 0 (i.e., disk started in a straight 
path with its plane vertical), we integrate 5.16-15 to obtain, 

AijJ = Cnrx 

We next substitute Eqs. 5.16-18, 5.16-19, and 5.16-21 into Eq. 5.16-16 
and obtain, 

+ mR2)rx·· ', 1_c __ n2_(_C_+___ Rll 0 ~ I - - mg ex= ' 
L A. 'J 

(5.16--22) 

This equation indicates that the plane of the disk wobbles in and out of 
the vertical, the spin is great enough to satisfy the inequality, 

n2 _ mgAR 
' > C(C + mR2) 

(5.16-23) 

Equation 5.16-21 also indicates that 1P is to a, and hence the 
precession also wobbles sinusoidally. The disk then rolls in a wavy line 
which is nearly 

of the disk 

-We next consider the case where the main motion of the disk is a spin 
about the vertical axis. Due to some disturbance, the disk will move in a 
smail circle, but it is evident that w, will be small and 1P large. () will, 
however, remain nearly 90°, so that again sin 8 ~ l and cos e ~ o::, where 
a is a small angle. 

With these approximations, the moment and force equations become, 

Therefore 1jJ = constant. 

fsR = Cw, 

A'lji=O 

-ls= 

fz - mg= 0 

- &.ijJ) 

(5.16-24) 

(5.16-25) 

(5.16-26) 

(5.16-27) 

(5.16-28) 

(5.16-29) 
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From 5.16-24 and 5.16-27, we 

+ 

With initial values of w, and ct. equal to zero, we 
equation, 

+ 

(5.16-30) 

the above 

(5.16-31) 

Substituting Eqs. 5.16-28, 5.16-29, and 5.16-31 into Eq. 5.16-26, the final 
equation becomes, 

+ +[(A+ =0 

Interpreting this equation, the spinning motion is stable as long as, 

. 2 mgR 
7P >A+ mR2 

(5.16-33) 

With this inequality satisfied, the disk oscillates with a small 
angle ct. about the ! axis which is spinning around the vertical axis with 
speed ip. 

Disk spinning nearly horizontally 

Spin a coin about a vertical line and watch its final stages when the plane 
of the coin is nearly horizontal. You will be able to detect from the sound 
that the frequency increases very rapidly during the last stage of oscillation. 
You can also observe that the point of contact with the table spins around 
a circle of diameter nearly equal to that of the coin, and that w, is very 
small (i.e., the face on the coin is rotating very The , axis is nearly 
vertical so that() is very small. However, the end of the, axis is precessing 
around the vertical very rapidly so that 1jJ is very large. 

With these assumptions, the moment and force equations become, 

hR = Ca>;; 

Aip6 + 2Aipf} = 0 

A8 - A1i128 = -fzR +J~,R6 

-h = mRw, 
= mRw,ip 

fz - mg= mR.tJ 

(5.16-34) 

(5.16-35) 

(5.16-36) 

(5.16-37) 

(5.16-38) 

(5.16-39) 

From Eqs. 5.16-34 and 5.16-37 we find that w, must be a constant. 

(C + mR2)w, = o 
w, = n = constant (5.16-40) 
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From Eq. 5.16-35 we obtain, 
if 6 
- = -2~ 
1P fj 

(5.16-41) 

Integrating with initial conditions 1Po and fJ0, we obtain 

1P fj 
In-= -2ln-

1Po fio 
Therefore, 

( 
fj )-2 

1P = % fio (5.16-42) 

Substituting Eqs. 5.16-38, 5.16-39, and 5.16-42 into Eq. 5.16-36, we 
arrive at the differential equation for f). 

(5.16-43) 

Due to f) and fJ3 in the denominator, the acceleration iJ increases as e 
approaches zero. Equation 5.16-42 indicates that the precession also 
increases to infinity as f) goes to zero. 

PROBLEMS 

1. Determine the least spin about a vertical axis for a 50-cent coin by making the 
necessary measurements. 

2. Determine the equation for the least spin about the vertical diameter of a 
circular hoop of radius R. Compare with that of a solid disk of same radius. 

3. Determine the least rolling velocity of a 50-cent coin. 
4. Determine the least rolling velocity of a circular hoop of radius R. 
5. With v.,, Dr/, vz given as in Fig. 5.16-2, verify the accelerations ofEqs. 5.16-11, 

5.16-12, 5.16-13 as a = [v] + w xv, where the components of ware ro., = fJ, 
Wr( = 0, and wz = ,p. 



Dynamics 
of Gyroscopic Instruments 

CHAPTER 6 

6.1 Small Oscillations of Gyros 

If the gyro or top of Fig. 5..13-1 is given a slight disturbance from its 
steady state, we can show that the oscillations about the steady values will 
be harmonic. 

We can begin with Eqs. 5.13-4, which are the moment equations about 
the node system coordinates shown in Fig. 6.1-1. 

WI sin() = AO + Cmp sin() - AVJ2 sin() cos() 
0 = Aip sin O + 2AVJO cos() - CnO 
0 = Cn (6.1-1) 

Letting the steady-state values of() and VJ be 00 and VJo, and designating the 
deviations about the steady values by () - and VJ-, the instantaneous values 
of () and VJ are, 

() = Oo + ()­
VJ= VJo + VJ-

For small oscillations we can make the following approximations. 

OVJ = 0-(VJo +VJ-),.._, (J-VJo 
sin(),.._, sin 00 + ()- cos 00 

cos () ,.._, cos 00 - () - sin 00 
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Substituting these expressions into the second of 6.1-1 and negiecting 
products and squares of the small deviations, we obtain, 

1-2) 
Integrating, 

l'P-
A sin 80 0 

d'lj}- = (Cn - 2AVJ0 cos 

Aip- sin 80 = (Cn - 2A1j;0 cos (6.1-3) 

'f/ 
~sine 

fig. 6.1-L Angular momentum along node system coordinates. 

Likewise, from the first ofEq. 6.1-1, we obtain, 

AB- - A(1P02 + 2ip0'1j;-)(sin 80 cos 80 - 8- sin2 00 + ()- cos2 00) 

+ Cn(VJo + 1P-)(sin 80 + 8- cos 80) = Wl(sin 80 + 8- cos 80) (6.1-4) 

However, for steady precession 8 is zero, and the steady components of 
Eq. 6.1-4 are, 

-Aip02 cos 80 + CmjJ0 = WI 

Thus by striking out these terms in Eq. 6.1-4 and introducing Eq. 6.1-3 to 
eliminate VJ-, we arrive at the second-order differential equation in (J-: 

The nodding oscillations are therefore sinusoidal with period equal to, 

2r. 2r.A 
'To= - = (6.1-6) 

Wo v(Cn)2 - 4A WI cos 80 + A2ipc2(1 -· cos2 00) 
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If n is very large, the nutation period reduces to, 

21TA 
To~ Cn 

The precession period is also the same since, from Eq. 6.1-3, 

. = (Cn - 2Atp0 cos 00) f) 
"P- A . fJ -sm 0 

and "P- is proportional to fJ -· 
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(6.1-7) 

(6.1-8) 

When cos fJ0 = 1, we have the sleeping top and, in order for the denomi­
nator of Eq. 6.1-6 to be real, (Cn)2 must be greater than 4AWI. Thus, 
again, we verify the stability requirement for the sleeping top, which is, 

2 
n > cv.lwi 

6.2 Oscillations About Gimbal Axes 

Figure 6.2-1 shows the two gimbal gyro with the mass center coinciding 
with the geometric center of the gimbals. We wish now to write the moment 

z 

1/; sin 8 

V; cos 8 

Fig. 6.2-1. Symmetric gyro with gimbal axes; and Z. 

equations about the gimbal bearing axes. Neglecting again the mass of the 
gimbals, the moments of inertia about the ~. 'YJ, { axes are A, A, C, of the 
wheel. 
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The angular velocities and angular momentum about the !, rJ, , axes 
are the same as in Sec. 5.13, and the moment equations about the l;, 17, , 
axes are rewritten in the following form. 

sin 8 - A 1j;2 sin (} cos 6 

Mn = A( ip sin 8 + 21j;6 cos ()) - CnO 

d 
M 1 = Cdt + 1jJ cos 8) 

The moments Mn and M 1 can be resolved along the vertical Z axis and in 
the horizontal plane. The Z component is (i.e., M 1 = 

M z = Mn sin (J + M, cos fJ = sin (} 

= A ip sin2 6 + 2Aip() sin 8 cos 8 - Cn6 sin 6 
(6.2-2) 

These nonlinear equations can be linearized under certain simplifying 
assumptions. Usually the spin ¢; is very large in comparison to ijJ and e. 
The spin ¢; is then approximately equal to n which is a constant of large 
magnitude. Neglecting the squares and products of the smaller quantities 
1jJ and fJ, the simplified equations of interest are, 

Mr;= AB+ Cnip sin 8 

Mz = Aip sin2 (} - Cn6 sin(} 
(6.2-3) 

Several interesting solutions of the above equations are possible 
depending on the type of excitation. We can first examine the steady 
precession condition, 

(j = (jo 

1P = '/Po 
fJ=8=ip=0 

The above equations then become, 

M1;o = Cmp0 sin ()0 

Mzo = 0 
(6.2-4) 

which requires a constant torque M1;o about the horizontal gimbal axis, 
as found previously in Sec. 5.14. 

We can now consider the problem where the spin axis under steady 
precession is given a disturbance by a moment Mr;(t). 

We will assume small oscillations and introduce the equations, 

e = e0 + e-
1P = VJo + 1P-

sin (} = sin eo + (j - cos (}o 

cos () = cos 80 - 8 - sin 80 
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Again neglecting products of the small oscillatory terms, Eqs. 6.2-3 become, 

.. Cn . . . . . M/t) + M 00 (}_+A (1Po(j- cos 80 + 1Po Sill 80 + 1fJ- Sill 80) = A 

Cn . (6.2-5) 
ip_ sin 80 - A 8_ = 0 

Eliminating the steady-state terms, Eq. 6.2-4, from the above, and letting 
Cn/ A = p, we have the final form of the differential equations for the 
disturbance about the steady precession: 

.. . . . M.(t) 
(}_ + p(1fo(J_ COS (Jo+ 1fJ- Sill (Jo)= -;r (6.2_6) 

ip_ sin 80 - p6_ = 0 

The solution of these equations is most conveniently obtained by the 
use of Laplace transforms with (} _ and "P- as dependent variables. IO 

Since initially (} = 80, f) = 0, and 1P = "Po, (} _(O) = 6 _(0) = 1iJ _(O) = 0, 
and the transform equations are, 

_ _ M.(s) 
(s2 + P1Po cos 80) (j_(s) + (p sin 80) ip(s) = -;r (6.2_7) 

-p ii_(s) + (sin 80) ;p_(s) = 0 

By Cramer's rule, the equations for ii_(s) and ;p_(s) are, 

~ M.(s) p sin 80 

- ( 0 sin 80 (6.2-8) 
(j s) = ,--~------~_,. 
- I (s2 + pip0 cos 80) p sin 80 I 

-p sin 80 

2 1 -
(s + pip0 cos 80) A Mr;(s) 

..,. (s) = -p 0 
1P- I (s2 + pip0 cos 80) p sin 80 I 

-p sin (}0 

which may be solved for any excitation M.(t), and any angle 80• 

Example 6.2-1 
When the spin axis is at rest at 80 = 1r/2, an impulse is applied to the spin axis, 

resulting in an impulsive moment M1;(t) = M o(t), where o(t) is a delta function 
with the unit per second and M is the moment impulse in lb-in. sec. From 
Eqs. 6.2-8, we have _ M 1 

e_(s) = -A -2--2 
s +p 

..,. pM 1 
,p_(s) = A s2 + p2 



and their time solutions are, 

M 
f)-(t) = -. Ap 
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. M 
e -Ct) = A cos pt 

fvf . 
= M Cl - cos 

Ap = A smpt 

The actual position of the spin axis at any time is then to 

rr M 
(}(t) = - + -

2 Ap 
Mr, 

= Ap ,, 

These results can be as follows. Assume first that the spin 
axis is stationary so that = 0. The moment impulse suddenly 
shifts the angular momentum vector Cn along the equator an angle 

I 

'~~O I.---------......._ h _ __,,. 
- --M - I-------

\'"" k ~=- -
fig. 6.2-2. Motion of spin axis due to delta function impulse (initial moment is zero). 

M/Ap = lvf/Cn. The spin axis however cannot change instantaneously, 
but develops a downward velocity of = M/A from the equatorial 
position. Thus the rotation of the spin axis around the new resultant 
angular momentum vector generates a cone of base radius as shown in 
Fig. 6.2-2. This is, of course, consistent with the conclusions of Seco 5.8 
which indicates that, with zero moment (with a delta function moment, 
the moment is zero at all t except t = the angular momentum vector is 
constant and stationary, and the spin axis will precess around it. 

If next we consider an initial steady precession with the spin axis at 
80 = n/2 due to a constant moment M1;0 , the resultant angular momentum 
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vector h will be above the equator by the moment component A¢0• The 
moment impulse M will ,again suddenly shift the resultant h horizontally by 
an amount M along the latitude A = A¢0/Cn, as shown in Fig. 6.2-3. At 
time t = o+, the spin axis will have angular velocity components 0(0) = 
M/A vertically, and ¢0 horizontally. Their resultant will however be 

Fig. 6.2-3. Motion of spin axis dues to delta function impulse (initial moment is 
contant, with steady precession ,p0). 

normal to the radial line from the h vector, as shown in Fig. 6.2-3. Thus 
the h vector of approximate length Cn will precess steadily along the 
latitude A = A¢0/Cn with angular velocity ¢0 while the spin axis will 
rotate around h in a circle of radius v' M2 + (A¢0) 2• The result is a com­
bined nutation and precession, and the curve described by the spin axis 
depends on the relative magnitudes of the initial velocity components 
M/A and ¢0• This behavior is somewhat similar to the problem of the 
disturbed top, the difference being that we have here imposed a constant 
moment about the node axis t, whereas in the problem of the top, the 
gravity moment will change withe. For small disturbances, however, the 
motions are identical. 

PROBLEMS 

1. With the axes initially at rest with () = 1r/2, a constant moment is applied to 
the ~ axis. Determine its solution. 

2. Repeat Prob. 1 if Mis a delta function M cl(t). 
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3. With the system at rest at ar. angle 
to the OZ axis. its motion, 

4. Consider Crp to be the only 
and determine the time the { axis to rotate from the horizontal 
to the vertical due to a constant moment about the Z axis. 

5. A satellite with moment of inertia C and transverse moment of 

6. 

inertia B = A has at the initial moment three vectors, h, w, and k, 
~ ~~ 

three vectors imnJediately 
satellite. 

in time 

of the 
of the 

be made collinear 
in the same direction 
an attitude 
Determine the 

7. It is proposed to the attitude of the spin axis of a satellite with 
angular momentum h = Cn an angle of 90° with a series of N 
impulses, ending up with the w, and k vectors coHinear. Determine 

of the and their time 
with Eq. 3.5-4 for the transformation between the 

' w 2 , and the Euler rates, ,j,, 
the Euler by the 

1J-l = 1Po +· ( wx sin cp + w 11 cos 
\ S!D 8 

dt 

cp='f!o+ 

9, For small oscillations with rp = constant, discuss the solution for fJ and 'P 
of Prob. 8 as influenced the value of 80 which be cnosen. 
Why is 00 = rr/2 desirable for small solutions 

10. With 80 = rr/2 in the of Prob. solve Prob. 5 for 8 and ,p 
first the axes x a;,d 

11. Assume that the rotor of Fig. 6.2-1 is its normal (axis z) 
makes an angle CT with the spin axis (. Let axis normal to both z 
and (, y the third axis of the x, y, z set, and show that the velocities 
along x, y, z, are; 

wx = (J cos cp + V' sin 8 sin cp 

w." = -0 sin cp cos CT + ijJ sin 8 cos cp cos" + (if., + 'f' cos G) sin rx 

wz = 0 sin cp sin rx - V' sin (J cos 1p sin cc + (¢ + ip cos 6) cos Ci. 

Since the moments of inertia of the rotor are A, A, C, the 
x, y, are; hx = Awx, hy = Aw,n hz = Cw 2 • 

rr1omentun1 
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Prob. II 

12. Resolve the angular momentum h.,, h11, h. of Prob. 11 along the gyro gimbal 
axes .;, Z, and {, assuming rt. to be small (see Fig. 6.2-1). 

6.3 Gimbal Masses Included (Perturbation Technique) 

Referring to Fig. 6.2-1, the moment of inertia of the rotor about the;, 
'fJ, , axes were A, A, C. In addition, we introduce the moment of inertia of 
the gimbals as follows. The moment of inertia of the inner gimbal about 
the ;, r;, , axes are Ai. Bi, Ci respectively. The moment of inertia of the 
outer gimbal about the OZ axis is C0• 

Noting that the ;, 'fJ, ,, axes rotate with angular speeds 8, VJ sin 0. 
VJ cos 0, and noting the masses which rotate due to these components, the 
moment of inertia about the three axes are, 

I,= A+ Ai 

l 11 =A+ Bi 

1, = Ci 

(6.3-1) 

The direction cosines of the OZ axis with respect to ;, r;, ,, are lz1; = 0, 
lzri = sin 0, lz, = cos 0, so that the moment of inertia about the Z axis 
becomes, 

lz = C0 + I/ z/ + Ii z/ + 1,1 zl 

= C0 + (A + Bi) sin2 0 + Ci cos2 0 (6.3-2) 

We next determine the angular momenta about the ;, r;, , axes, which are, 

h1; =(A+ Ai)8 

h11 = (A + B;)VJ sin 0 

h, = C(efJ + VJ cos 0) + C;VJ cos 0 

(6.3-3) 

(6.3-4) 

(6.3-5) 
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The moment about the , axis can be separated into two thus: 

= 111/ + M( (6.3-6) 

where Mi;,' = C(d/dt)(rp + 1jJ cos 8) is the moment on the rotor axis, and 
M{ is the moment due to the forces exerted on the inner gimbal axis by 

Fig. 6.3-1. Moments on inner gimbal and rotor. 

the outer gimbal, as shown in Fig. 6.3-1. We will assume Mi;,' to be zero, 
in which case the rotor angular momentum will be a constant. 

C(<p + 1P cos 8) = Cn = constant (6.3-7) 

The angular momentum components along l;, ri, ,, shown in Fig. 6.3-2, 
can be resolved along the I;', ri', t axes by noting the vertical and hori­
zontal components of hn and h,. The h1; and hn, components now rotate 
about the OZ axis with angular speed 'lj;, as shown in Fig. 6.3-2. The 
components of h along the l;'' r/, r axes are, 

(6.3-8) 

h~, = h~ cos 8 - h, sin fJ = (A + B;)'lj! sin (} cos 8 

-(Cn + C;1j} cos 8) sin{) (6.3-9) 

hr = hn sin 8 + h, cos fJ + C0'1j; = (A + B;)1i! sin2 fJ 

+ ( Cn + Ci1P cos 8) cos {) + C0'1jJ (6.3-10) 
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We can now write the moment equations about the C and c;' axes as 
follows: 

Mr=Mz=hr= + sin2 8+ sinf)cos8) 

- ( Cn + Ci VJ cos 6)8 sin {) 

+ ( C;ip cos 6 - Civ;B sin f!) cos e + Coip 

= [C0 + Ci cos2 ()+(A + Bi) sin2 

+ 2(A + Bi - C;)ip8 sin () cos e - Cn(; sin f! 

I .. + . dl z C (j . fJ = z'IP 'P dt - n sm . 

d . 
= -d (Iz1iJ) - CnO sin 6 

. t 

= Iii'.. - h~·VJ 
= (A + Ai)@ + Cny; sin 6 

+ [Ci - (A + Bi)]1j,2 sin fJ cos() = 0 (6.3-12) 

We next investigate the problem for which the axes are initially at rest, 
and the inner gimbal axis in position 80 is given an initial angular velocity 

z 
I . yJ; 

1/1 cos e 1 

19----J . T/ 
I lj;sin6 /. 
I 

hi; I 
I h~ 
! h~· 

Q\----'---S,----T/ 

hr 

/:'- t ' - s 

Fig. 6.3-2. Resolution of angular velocity and angular momentum. 

8(0) = Cl, by an impulsive moment in the form of a delta function about 
the ; axis. The time t = 0 is referenced to the instant after the impulse, in 
which case M, = M z = 0, and the initial conditions are ,p(O) = 0, 
y;(O) = 0, /3(0) = 80, 8(0) = Cl. We can safely assume that '/f(O) = 0, since 
the initial velocity Cl results in a gyroscopic moment about the Z axis 
(through reaction oft bearings) which is not impulsive. 
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With the outer gimbal axis unrestrained, Mz = 0, and 
be written as, 

d(lz?j!) = Cn sin() df) 

6.3-11 can 

(6.3-13) 

Integrating and noting that lz?j! at t = 0 is zero, we obtain the equation, 

lz1)! = -Cn(cos () - cos 

We now make the small oscillation approximation, 

e =(Jo+()-

sin () ~ sin eo + ()- cos (Jo 

cos e~ cos eo - e- sin f)o 

sin () cos () ~ sin 60 cos 80 + () -C cos2 80 - sin2 

(6.3-14) 

and rewrite Eqs. 6.3-2, 6.3-14, and 6.3-12 as Eqs. 6.3-15, 6.3-16, and 
6.3-17 

lz = [C0 + (A + B;) sin2 80 + Ci cos2 ()0] 

+W,_(A + Bi - Ci) sin 80 cos 80 (6.3-15) 

= / 0 + 28-(A + Bi -- C;) sin 80 cos 60 

I 0?j! - ( Cn sin 80)()- + W-?j!(A + Bi - Ci) sin 60 cos 80 = 0 
(6.3--16) 

(A + A;)6 - + ( Cn sin 80)1j) 

+{(Cn cos 80)()-1fa - (A+ Bi - C;)[sin 80 cos 80 

+ 8jcos2 80 - sin2 80)]1fa2} = 0 (6.3-17) 

Equations 6.3-16 and 6.3-17 are nonlinear due to the last term in each 
equation. They can be solved by the perturbation technique1 ,3 , 8 which will 
be illustrated by the following simple example. Consider a first-order 
nonlinear equation 

y + ay + by2 = 0 

where the coefficient b of the nonlinear term is a small quantity. We will 
now consider a similar equation 

y + ay + µby2 = 0 (b) 

which differs from the previous equation by an additional factor µ which 
may be any positive number. If the solution of Eq. b is found, then the 
solution of the previous equation, Eq. a, is found by letting µ = 1. 

We seek now a solution in the form, 

(c) 
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Substituting c into b we obtain, 

(Yo+ µ'!i1 + µ 2'!i2 + · · ·) + a(yo + µY1 + µ 2Y2 + · · ·) 
+ µb(Yo + µY1 + µ 2Y2 + · · ·)2 = 0 (d) 

Rearranging, this equation can be written in terms of equal powers ofµ as 
follows: 

(Yo + ayo) + µ(?i1 + ay1 + hYo2) + µ2(?i2 + ay2 + 2bYoY1) 

+ µ3(Ya + .. ·) = 0 (e) 

We note now that, ifµ = 0, we obtain Yo as the solution of the linear 
equation. The solution y0 is called the generating solution, and it can be 
fitted to the initial conditions of the problem. Ifµ is allowed to increase 
from zero, Eq. e can 'be satisfied only if the coefficients ofµ raised to the 
various powers are zero. We thus obtain the following equations, 

?i1 + ay1 + byl = o 
Y2 + ay2 + 2byoY1 = 0, etc. 

which can be solved for y1, y2, etc. 

(!) 

(g) 

We will now apply this technique to Eqs. 6.3-16 and 6.3-17, but will 
carry out the solution only to the first-order correction. Since Eq. 6.3-16 
and 6.3-17 already have the symbol 00, we will let the solution to the linear 
equation (corresponding to y0) be 000 and 'lj;00 • The linear equations are 
then, 

/ 01j;00 - ( Cn sin 00)000 = 0 

(A + A;)000 + (Cn sin 00)1j;00 = 0 

Eliminating 'lj;00, we obtain the equation 

/j (Cn sin 00)2 e _ O 
oo + Io(A + A;) oo -

Letting 
Cn sin 00 

w = ---;:==== 
Vl0(A + A;) 

the generating solution fitting the initial conditions is, 

8(0) . 
e!JO = -SlllWt 

w 

. Cn sin 00[8(0) . J 
'!Poo = -smwt 

/ 0 w 

(6.3-16a) 

(6.3-17a) 

(6.3-18) 

(6.3-19) 

(6.3-20) 

(6.3-21) 
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Vl/e next consider the first-order correction corresponding to y1 in 
From the generating solution we determine the nonlinear terms 

sin 60 . 2 
9 Slll wt 

W"I0 

( Cn sin 60 112 (6(0))2 . 2 
) -- sm wt 

Io w 

substituted into 
differential equations, 

6.3-16 and 6.3-17, results in a new set of 

sin 

2(A + - C;) sin2 60 cos 60 Cn8(0)2 . 2 --------------sm wt (6.3-16b) 
Io w2 

.. 8(0)2 Cn sin e0 + Ai)81 + (Cn sin &0)1iJ1 = -(Cn cos 80)-2- sin2 wt 
w . Io 

+(A+ . (B(O)Cn sin 60) 2 . " 
- Ci) sm 80 cos 130 · sm" wt 

\ wl0 
(6.3-17b) 

We will now eliminate From Eq. 6.3-16b we obtain 

+ [ 48(0)2(A + wt - sin2 

Substituting into Eq. 6.3-17b, we obtain the differential equation for '!fJ1. 

[ I0(A + Ai)l--· (C . 
. c, 1Pi + n sm 

Cn sm t10 J 

= 1e(O)Cnl 2 

L W J 

- A + Ai f48(0)2(A -!- B -
I . , ' sin 00 cos 60] cos 2wt (6.3-17c) 

0 

In examining this equation, the solution of the homogeneous equation 
for 'lj;1 is again harmonic of frequency w as given by 6.3-19. The 
particular solution will have harmonic terms of frequency 2w and, in 
u~,uavu, a constant term equal to the constant term on the right side of 
the equation divided by the coefficient of on the left side. We are 
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interested in the constant term since it results in a steady drift which 
rotates the outer gimbal according to the equation 'lf!s = ip,t. 

The constant term of the solution is 

1Ps = - ~(Ot~n 8 [(A + B; - C;) sin3 80 cos 80 - I0 sin 80 cos 80] 
2w I0 sm 0 

Substituting for I 0 from Eq. 6.3-15, it reduces to 

. 8(0)2Cn( C0 + C;) cos 80 
1P, = - (6.3-22) 

It is evident, then, that the outer gimbal oscillates and drifts in a negative 
direction, a phenomenon referred to as "gimbal walk."6 It should be 
noted that gimbal walk cannot take place at 80 = 90° or if the moment of 
inertia (C0 + C;) is zero. 

PROBLEMS 

1. The periodic solution for Eq. 6.3-17c is 

,p1 = o: + (3 cos 2wt 

Evaluate the coefficient (3. 
2. Discuss the solution of a nonhomogeneous equation, 

y + ay + byn "."f(t) 

by the procedure of Sec. 6.3. 
3. Solve the nonlinear differential equation, 

my+ ky - by3 = Fsinpt 

by the perturbation method outlined in Sec. 6.3. The solution with the use 
of only two terms, y = Yo + µyi, is 

where 

[ 3ba3 J . ba3 . 
y = a + 4m(w2 - p2) sm pt - 4m(w2 - 9p2) sm 3pt 

F a=-~--
m(w2 - p2) 

and 
k 

w2 =­
m 

4. Show that if only the first term y = a sin pt of Prob. 3 is substituted into the 
differential equation, the amplitude relationship 

3b 3 ( p2) F 
4mw2a = 1 - w2 a - mw2 

is obtained. Letting the ordinate v = (3b/4mw2)a3 be plotted against a, 
discuss the solution for the amplitude a versus p/w, where w2 = k/m. 

5. For the problem of Sec. 6.3, investigate the equation for O and establish 
whether there is a unidirectional motion about the node axis. 
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6.4 The Gyrocompass 

The requirement of a gyrocompass is to point north at any latitude at 
any time. The high-speed, two-gimballed gyro, with a pendulous weight 
w on the -'f} axis to give it moment wl cos (} about the t axis when the axis 

n sin I\ 

East 

12C=: 
North 

s 

Fig. 6.4--1. Gyrocompass and angular velocity components. 

is.tilted above the horizon, as shown in Fig. 6.4-1, will satisfy this require­
ment. 

In Fig. 6.4-1, the rotation of the earth from west to east is indicated by 
the angular rotation vector Q pointing in the northerly direction. Its 
numerical value is Q = 21r/(24 x 3600) = 7.27 x 10-5 rad/sec. At any 
latitude A, Q will have components in the meridian plane, equal to Q cos A 
horizontally, and Q sin A vertically. 

With the Z axis of the gyrocompass in the local vertical direction, in 
order for the , axis to remain in the meridian plane, and hence point 
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north, the outer gimbal must precess steadily by an amount VJ = Q sin A 
and in addition have an angular velocity f2 cos A about the -'l'j axis perpen­
dicular to the outer gimbal We assume that the gyro is constrained 
to move in this manner, and investigate the moment requirement satisfying 
the motion. 

Letting () = 90° - ()(0, where ()(0 is a small angle above the horizontal 
at latitude },, the angular velocities of the t, 'I'/, , axes are, 

wt= 0 

OJ~ = D(sin A cos ()(0 - cos A sin 

w, = D(sin A sin cx0 + cos A cos 

(6.4-1) 

Assuming the spin to be very large, we can neglect aU other components 
of h. With M z = 0, ¢ = constanL The required moment about the t 
axis, is 

Ms= 

wl sin cx0 = Cq,O(sin A cos ()(0 - cos A sin cx0) (6.4-2) 

Dividing by sin o:0, the required inclination of the spin axis above the 
horizon is, 

Crpf2 sin A 
tan ex = -

0 wl + Crpf2 cos A 
(6.4-3) 

which depends on the latitude A. 
The moment required for the angular velocity Q cos A about the -r/ axis 

is supplied by the reaction of the bearings on the outer gimbal axis Z. 

6.5 Oscillation of the Gyrocompass 

If the axis of the gyrocompass is disturbed from the meridian plane, as 
shown in Fig. 6.5-1, the oscillation which takes place will have two 
components, one perpendicular to the meridian plane and the other in the 
meridian plane. Both oscillations will have the same frequency, and so 
the end of the axis of the gyrocompass will describe an ellipse. 

Letting '1/J be the angular deviation of the spin axis out of the meridian 
plane, and <X its inclination above the horizontal, we will assume both these 
angles to be small, in which case the angular velocities about the t r;, , 
axes will be, 

W1; = -<i - Q'I/J cos A 

OJ~ = VJ + Q sin ,1, - Q,x cos ,1, (65-1) 

+ Q sin + Q cos ..1. 
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We will also assume the spin to be large and the angular momentum about 
the t and ri axes to be negligible in comparison. 

h; = Cif; = constant for M, = 0 

h1; = = 0 

The moment equations of interest are then, 

M 11 = -h,w1; = C¢(ci. + D.ip cos J) = 0 

M1; = h,w11 = C¢(VJ + Q sin). - O.o: cos;\)= wl!J'. 
(6.5-2) 

where wl is the mass unbalance of the pendulous weight on the -'f} axis. 
Rearranging these equations, we have 

ti + (Q cos J,,)ip = 0 

(C<p)VJ - (wl + CcpD. cos Jl)ix = -C<jJD. sin;\ 
(6.5-3) 

West 

Fig. 6.5-1. Vector components for the gyrocompass. 

Eliminating ip between these equations, the differential equation for oc 

becomes 
(wl + Cq;D. cos J)(Q cos;\) ,.2 • , , 

ii + o: = ~~ sm I\ cos I\ 
Cg; 

(6.5-4) 

with the general solution, 

. C¢D. sin}, 
o: = C1 smpt + C2 cos pt+ 1 .0 ;I. 

- w + Crp cos 
(6.5-5) 

= JwlQ cos ;\ + Cq;D.2 cos2 ;\ ,....., JwlQ cos ;\ 
p Cr:p - Cg; (6.5-6) 
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From Eq. 6.5-3, the equation for 1P is, 

-P 
ip = -·-· --- (C1 cos pt - C2 n cos;. 

17l 

(6.5-7) 

These equations indicate that the spin axis oscillates horizontally about 
the meridian plane and vertically about the stationary angle o:D, given by 
Eq. 6.4-3. The frequency of oscillation, Eq. 6.5-6 is a function of the 
latitude A, and is very small due to Crp in the denominator. The frequency 
p approaches zero, as the gyrocompass nears the north polar axis, whei;g 
the reliability of the instrument diminishes. 

Highjrequency oscillation 

In addition to the slow oscillation given by the foregoing equations, 
there is a high-frequency oscillation which was not revealed because the 
angular momentum about !; and T/ were assumed to be zero. By adding 
1/p and - l/i. to Eqs. 6.5-2, we have, 

= Ccp(&. + Dip cos 1) + l~ip = 0 

M? = Ccp('lj; + Q sin A - '20<. cos).) - l/i. = w/0<. 
(6.5-8) 

Rearranging, and letting, 

a= C¢0. cos 1 

b = wl + CcpO cos ). 

the above equations become, 
.. Crp. a 

'l/J +-IX +-1.p = 0 
In In 

(6.5-9) 

Assuming harmonic oscillations, eipt, the natural frequencies are given by 
the determinant, 

c· r:p. 
-lp 
In 

=0 
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or 

(6.5-10) 

is very much larger than 
simplifies to 

or the natural frequency 

_ (C¢)21, 1·--4-;,bl/,1]- (Crp)2{ , 
---,J + 1.--- -·--1-L - - (C¢)4 , ..J... 

The two frequencies are, 

cos A 2 __ (C¢)2 
----- P2 - JI (6.5-12) 

I'; 1 

We find then that Pi corresponds to Eq. 6.5-6, and an additional high­
frequency oscillation of frequency p 2 is introduced. With = h1 = 0, 
p 2 = oo did not enter into the solution. The of the 
high-frequency oscillation, however, is extremely small, and hence, the 
slow oscillation at A is generally the only one detectable. 

Effect of damping 

Damping for the slow osciJlation of the gyrocompass can be provided 
introducing a moment about the rJ axis as follows. We move the 

pendulous weight w a distance e to the east of the center line so that its 
coordinate (~, '/'/, O = (-e, The for the moment about 
the axis is then modified as follows: 

= Cg;(ri + D1.fJ cos l) = -weoc 

We()( 
a: = -0.1.fJ cos A - -

(6.5-13) 

(6,5-14) 

Differentiating the equation for 
and substituting for 6. from above and 
following differential equation for 1/J: 

of Eq, 6,5-8 without l/i term), 
ex from Mt, we arrive at the 
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The effect of the offset e is then to the ,p oscillations and shift the 
position to the east the angle, 

we tan}, 

wl + C¢0 cos }, 'lf!o = (6.5-16) 

Compass error due to vehicle motion 

When a vehicle carrying a gyrocompass moves in a northerly direction 
along a meridian with velocity v, an angular velocity v/R pointing west, 

I 

~Meridian 

I 

~:::~: 
1. \IB" 

ll cos IJ 

fig. 6.S-2. Angular velocities in horizontal plane due to vehicle motion v. 

where R is the radius of the earth, is introduced. By combining this vector 
with the horizontal component of the earth's rotation Q cos ..1., the resultant 
angular velocity in the horizontal plane deviates to the west by an angle 

v/R 
y ~~ Q cos ..1. 

and the gyrocompass will now point in the direction of the resultant, 
introducing a heading error of y. 

If the vehicle is traveling in a direction making an angle () with the 
meridian plane, v can be replaced by v cos (} to give, 

V COS(} 

y ~ RO cos A + v sin fJ 

where the effect of the component v sin (} is neglected due to the fact that 
it is small in comparison to O cos ..1.. 
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PROBLEMS 

1. Resolve h = Crp along the vertical and horizontal dim~tions, so tha_t we have 
the vector diagram shown. Derive Eq. 6.4-3 from this configuration. 

z. 1' 

I 
nsin" 

C<,0sina 

0 cos 1' 

-r;'--+----E------c-----'-­
Crj,cos ot 

Pr.ob.! 

2. Determine the reactions on the outer gimbal bearings t for the gyrocompass 
of Sec. 6.4 (see Fig. 6.4-1). 

3. If the gyrocompass axis tis clamped at the angle a0, show that the frequency 
of oscillation becomes, 

JCrpOcos;i. 
Pa= Iry 

4. The following data are given for a gyrocompass. 

C = 3.0 in. lb sec2 

A = 1.80 in. lb sec2 

rp = 1000 rad/sec 
wl = 75 lb in. 

Determine p1, p 2, and a0 for any latitude ..1.. 

5. Determine the gyrocompass heading error for a ship traveling at a constant 
speed of 15 knots in a direction N 20° Eat latitude 48° N. Would the head­
ing error be different if the ships direction were N 20° W? 

6. Derive the equation for the heading error of a gyrocompass, taking into 
account the latitude component v sine of the carrier vehicle. 

7. A gyropendulum is a spherical pendulum with a spinning disk with angular 
momentum Cn along its pendulum length !, as shown in the sketch. Letting 
A be the moment of inertia through O perpendicular to l, show that the 
moment equations for small angles are, 

Cnrp + Afi = - wte 
Cn& - Aqj = Wlrp 
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z 

X 

X 

Prob. 7 

8. Show that the gyropendulum of Prob. 7 has natural frequencies given by the 
equation, 

2 (C2n2 + 2AWI) ± Cn'V C2n2 + 4AWI 
P1,2 = 2A2 

Approximate equations for the lower and higher natural frequencies, 
neglecting the term AWI/C2n2, are, 

WI 
Pi= Cn and 

Cn 
p2=A 

9. The gyropendulum of Prob. 7 is mounted on a vehicle traveling in the x 
direction (a great circle) with velocity v. Show that the pendulum must tilt 
through a small angle <p about the x axis according to the equation, 

where R is the radius of earth. 

X 

Cnv 
'P = WIR 

w 

Prob.9 

-w=f 
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10. If the vehicle of Prob. 9 accelerates along the x axis so that dv/dt = a,,, 
show that 

drp Cna,, 
dt = WIR 

and Cn =JR 
WI g 

The lower natural period of the pendulum, according to Prob. 8, now 
becomes, 

.,.1 = 21T ~ = 21T J~ = 84.4 min 

which is called the Schuler period, after Max Schuler of Germany, who 
extensively studied the problem. 

6.6 The Rate Gyro 

High-speed gyros serve as basic elements in many instruments for 
guidance and control of moving vehicles. Figure 6.6-1 shows the essential 

z 

1 

Fig. 6.6-1. Rate gyro. 

elements of a rate gyro. The inner gimbal supporting the spinning wheel 
is restrained by a spring which permits a limited rotation about the outer 
gimbal which is fixed in the vehicle. The Z axis about which the vehicle 
turns is called the input axis, and the axis of rotation of the inner gimbal is 
called the output axis. 

If the vehicle makes a steady turn about the input axis at a rate ?jJ, the 
rate of change of the angular momentum vector Cn is Cn?jJ, which requires 
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a moment equal to it about the 
the torsional spring of stiffness 
angle e, as shown in Fig. 6.6---L 

or 
= Kfl 

Cn 
{}=-?ii K, 

This m.ornent is 
axis tilts by a small 

the two moments, we 

and the I) is ~--··"·"'w,-, to the rate of turn 1iJ of the 
axis or the vehicle itself. 

The output angle (} is in read ,,.,p,c,n·ir" a device. 
One such device is the E-pickoff shown in The middle leg of 

fig. 6.6-2. on shaft. 

the E is supplied an alternating current, of 400 cps. The two 
outer legs of the E are wound in so that when the armature, 
attached to the axis, is centered about the middle no voltage 
appears across the outer coils connected in series. When the 
armature is due to &, the magnetic :flux path is unbalanced, 
resulting in a voltage in the outer coils. 

In the undamped the output axis will overshoot the 
angle 8 and oscillate about it. To prevent this undesirable condition, 
damping is generally provided, and its behavior can be established from 
the differential 

AO+ cB + K6 = (6.6-2) 

where A is the moment of inertia of the wheel and inner about the 
output axis, and c the coefficient of viscous damping. Thus the transient 
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characteristics of the instrument can be obtained from the homogeneous 
equation, 

where 
fJ + 2(w0 + w20 = 0 

w = J~ = undamped natural frequency 

{ = _!_ = damping factor 
Ccr 

Ccr = 2V KA = critical damping 

6.7 The Integrating Gyros 

(6.6-3) 

If the torsional spring restraining the output is replaced by a viscous 
damper, the instrument becomes an integrating gyro. Equating the rate 
of change of angular momentum to the viscous damping torque, 

Cmp = cO 
or 

Cnf Cn 0=- 'ljJdt=-tp 
C C 

(6.7-1) 

Thus the output angle() is proportional to the integral of the input angular 
rate which is the input angle itself. 

6.8 The Stable Platform 

The principal function of the stable platform is to maintain a space­
fixed angular reference. It is an essential part of an inertial guidance system. 
The platform makes use of the property of the gyroscope, that a torque 
about an input axis (excluding the spin axis) produces an angular velocity 
about the orthogonal ( output) axis. In general, three single-degree-of­
freedom gyros oriented in mutually perpendicular directions are mounted 
on the platform, as shown in Fig. 6.8-1. The platform, in turn, is mounted 
on two gimbals which allow it three degrees of angular freedom. If the 
platform is perfectly balanced and the bearings are frictionless, no torque 
will be experienced by the platform, and its orientation will be maintained 
regardless of the motion of the carrier. However, due to unbalance and 
friction which cannot be eliminated entirely, disturbing torques will be felt 
by the platform. It is the function of the gyros to sense this disturbance 
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Yaw 

fig. 6.11-1. Stable platform for inertial guidance. 

fig. 6.S-2. Single-axis platform to maintain angular orientation about y axis. 

and, through a servo system, counteract the disturbing torque to produce 
essentially a torque-free system. 

The understanding of the dynamics of the stable platform can be obtained 
by a discussion of the single-axis platform shown in Fig. 6.8-2, 4 where the 
y axis is the input axis and the x axis (rotation of the spin axis) is the output 
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axis. A disturbing torque Tv about the y axis will rotate the axis, and, 
therefore, h through the angle e, and the applied torque minus the inertia 
torque about the y axis must equal the rate of change of the angular 
momentum h according to the equation, 

T -y 

where Jy is the moment of inertia of the platform, and the gyro with its 
frame about the y axis. In the above equation, small angle approximation 
is used for the right side which is justified since (} is seldom allowed to 
become greater than 1 °. 

The precession B which is developed by Ty results also in a torque 
equation about the x axis as follows: 

- TX = I/} - h¢,y = 0 

where Ix is the moment of inertia of the gyro and its frame about the x axis. 
Using the Laplace transform notation S!?(J = s 8(s), the two equations 

can be written as 

'lis) - lys2 ;p./s) = hs B(s) 

8(s) = hs {>u(s) 

Eliminating fy(s), we obtain the equation 

B(s) h/JJx 
Tis) = s[s2 + (h2/1Jx)] 

(6.8-3) 

(6.8-4) 

which defines the transfer function between the output @(s) and the input 
disturbing torque fv(s). 

The angular velocity (J of the gyro relative to the platform is sensed by 
the electric pickoff, amplified and fed to a servomotor which applies a 
counter torque T8 opposing the disturbing torque Ty. Generally the 

platform inertia J~ is large so that the nutation frequency Vh2/Jvfx (see 
Eq. 6.3-19) is negligible. The approximate transfer function is then equal 
to, 

h 

Ty{s) = JJxs3 
(6.8-5) 

which enables the platform servosystem to be represented the block 
diagram of Fig. 6.8-3, where A(s) is the transfer function of the electric 
pickoff, amplifier, and the servo motor. With A(s) known, the stable 
platform's dynamical behavior can be studied for stability and drift 
characteristics. 

The three-axis stable platform can be considered to be an assembly of 
three single-axis platforms similar to those of the previous section, but 
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mounted in a single stable unit, as shown in Fig. 6.8-1.4 The analysis is 
more complex due to coupling between the three rotations. For the 
discussion of the inertial guidance system, it is sufficient to assume that 

fig. 6,8-l. Block diagram for the single-axis platform. 

there is a platform which will successfully maintain a given orientation in 
space. 

The analysis of a three-axis platform is more complex owing to coupling 
between the three rotations and the necessity of resolution of the platform 
pickoff signals because of nonalignment of the gimbal and platform axes. 

t· ' t¢z 
' 'Py e 

Ox hx~~ z-gyro 

~~- hz-~< 
N~-gyro ··~ 

, r,::i::::u-gyro 

Oy-~I 

fig. 6.9-L Coupling in three-axis platform. 

Figure 6.9-1 shows the angular momentum vectors of the x, y, z gyros. 
Letting fix, Bv, fJ z be the outputs of the x, y, z gyros due to rotations 'Px, 'P,r 
ef>z of the input axes, the pickoff of each gyro must be, 

ax= e,, - <py 
ay = ey + f,, 
a.= e. - <Pv 

(6.9-1) 
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With the gimbal axes lined up with the platform axes, the counteracting 
torques called for by the pickoff signals are of the form, 

T .,is) = A,h) <1,v(s) = Av(s)[Ov(s) + cf>.,(s)] (6.9-2) 

where Ay(s) is the transfer function of they servosystem. Thus the behavior 
of the single axis platform is modified by the coupling term of the form 
Av(s) cf>,,(s). 

Ty 1 </>y h 8y 
Jys2 I,s 

Tsy 

Ay(s) -I 

Tx <f>x Bx 

Ax(s) 

T, 8, 

A,(s) 

Fig. 6.9:-2. Block diagram of three-axis platform 

The block diagram of the three-axis platform consists of the three 
uncoupled circuits of the form shown in Fig. 6.8-3 with additional 
connections corresponding to the coupling terms, -A,,,(s) </>is), Ay(s) cf>.,(s), 
and -A.(s) cf>,.(s), as shown in Fig. 6.9-2. 

Assuming that the outer gimbal axis, originally parallel to the platform 
x axis, is attached to the vehicle, as shown in Fig. 6.9-3, and assuming that 
the vehicle is roll-stabilized, the motion of the vehicle in pitch and yaw will 
cause the gimbal axes to deviate from the platform axes. It is evident 
then that the platform torques T,,, Ty, r. must now be resolved along the 
displaced gimbal axes where the torque servomotors act. Since the 
countertorques are proportional to the platform pickoff signals, the 
proper torques about the new gimbal axes are found by resolution of the 
platform pickoff signals along the gimbal axes. 
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With the vehicle roll-stabilized, we first allow the vehicle to nose down 
through a pitch angle Letting the new gimbal axes be indicated by 

Fig. 6.9-3. Gimbal rotation requires resolution of torque. 

primes, the components of the platform pickoff signals along the gimbal 
axes are 

ax' = ax cos <D,, - az sin ©11 

ay' = ay 

az' = ax sin <l\ + az cos <I:\ 

Next allow a rotation <Dz in yaw about the z' axis, and resolve ax' along 
the pitch gimbal axis and the new roll axis, 

a roll = ax' sec <Dz 

dpitch = -ax' tan <Dz 

The resulting signal about the new gimbal axes of roll, pitch, and yaw due 
to both © 11 and q:i z are, then, 

aron = (a,, cos <DY - az sin ©y) sec <llz 

apitch = -(a,, cos (DY - a, sin (Dy) tan ©2 + av 

<lyaw = (dx sin <PY + az COS <Py) = az' 

which can be expressed in the following matrix notation. 

-s'.n WY sec <I\]l ra"'] 
sm tan <D, aY 

COS <Dy <Yz 
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The function of the resolver is then to resolve the platform pickoff signals 
a,,, ay, a. to the Groll, a pitch, ayaw along the displaced gimbal 
axes the pitch, and yaw servomotors. 

Navigation is the science of directing a vehicle to a destination by 
determining its position. In inertial navigation this task is accomplished 
without observation of landmarks, celestial bodies or radio beams. 

----> a 

Fig. 6. i0-1. Accelerometer and integrator. 

A vehicle moving in space possesses six degrees of freedom, three 
translational and three rotational. Consequently, six sensors are needed. 
The stable platform discussed in Sec. 6.8 offers a reference for the rotational 
motion, whereas the accelerometer is an instrument capable of detecting 
translational motion. In the three gyros of the stable platform and 
the three accelerometers oriented in mutually directions can 
supply all the information for establishing the motion of a rigid body, and 
the high degree of accuracy with which this is being done has made 
inertial navigation a practical reality.2,5,7 

Figure 6.10-1 shows a schematic of an accelerometer and integrator. 
Acceleration along its axis displaces the mass against the spring according 
to Newton's equation F = ma, where Fis the spring force. The displace­
ment of the mas.s which is proportional to the acceleration is picked off by 
a potentiometer and integrated to velocity and displacement of the vehicle. 

The accelerometers are mounted on a table which is always maintained 
normai to the local radius of the earth. This is accomplished by means of 
a computer and a clock which rotates the table relative to the stable 
platform, as indicated in Fig. 6,10-2. In some cases the accelerometers 
are mounted directly on the stable platform which is torqued to the normal 
position. 
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To obtain an understanding of how the inertial navigator works, we 
assume that the vehicle starts at the equator and that the plane of the stable 
platform is horizontal with the arrow pointing in the N polar direction. 
If the vehicle moves towards the north along a longitude, and the accele­
rometer table is always kept normal to the geocentric radius r, the N-S 
accelerometer will measure the acceleration a., (see Fig. 6.10-2). The 

z 

G Computer I 
Fig. 6.10-2. Components of an inertial navigator. 

proper rate of rotation of the table about the y axis is then wv = v.,/r, 
where v., is determined from the first integral of a.,. The latitude motor B 
then rotates the table at a rate my to keep the N-S line on the table normal 
tor. 

Due to rotation of the earth towards the east, the E-W line of the table 
must be rotated by the longitude motor A to unwind the earth's rotation. 
Since during the motion of the vehicle the orientation of the stable platform 
remains fixed in inertial space (towards the N star) the required rotation 
of the accelerometer table about the x axis of the stable platform at any 
latitude is n or 15°/hr. 

To this rotation must be added the rotation about the platform x axis 
due to the E-W motion of the vehicle relative to the original longitude. By 
integrating the output of the E-W accelerometer and dividing by r cos A, 
the additional rotation to maintain the E-W line of the table normal to r 
is w., = vvf r cos A. 

These computations are performed by a computer which must be an 
integral part of the inertial system. Thus the inertial navigator must 



INTRODUCTION TO SPACE DYNAMICS 

consist of the stable platform, accelerometers with integrators, a computer 
to compute the proper angular rates of the table due to vehicle motion, a 
dock to unwind the earth's rotation, and the servomotors to actually 
carry out these functions. 

6J I Oscillation of Navigational Errors 

The accelerometers mounted on the vehide measure only the non­
gravitational force F nu acting on the vehicle, and therefore one must add 
to it the gravitational force Fg in order to determine the total force which 
determines the acceleration av of the vehicle. 

(6.11-1) 

For example if the vehicle is resting on the surface of the earth, the vertide 
accelerometer will indicate the upward force (thrust) of the ground on the 
vehicle, or F ng = W. To this must be added the gravitational attraction 
of the earth on the vehicle F g = - W which results in the zero acceleration 
of the vehicle. 

Ang 

g-computer 

Fig. 6.11-1. Simplified block diagram of gravity and position computation. 

Equation 6.11-1 can be expressed entirely in terms of acceleration by 
dividing by m 

(6.11-2) 

where Ang is the nongravitational (thrust) acceleration indicated by the 
accelerometers. The vehicle position is then found by a double integration 
of the vehicle acceleration av as shown by the simplified block diagram 
of Fig. 6.11-L The gravitational acceleration au which depends only on 
the position r is computed and added to the output of the accelerometers 
to give the vehicle acceleration av. 

It is evident that an accelerometer error would result in incorrect 
rotation rates of the accelerometer table which would result in a position 
error, an incorrect value of a,, and a deviation of the accelerometer table 
from the normal to the true geocentric radius lf. These errors are oscillatory 
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for subsatellite speeds, and we will now investigate their nature. 
We will define the correct position of the vehicle by a vector r refer­

enced to inertial coordinates with origin at the center of earth. We will 
also define another set of coordinates x, y, z with origin coinciding with 
the correct position of the vehicle and with the z axis parallel to r as 
shown in Fig. 6.11-2. Thus the angular velocity of the vehicle is specified 

y 

Fig. 6. 11-2. Vehicle position indicated by r. Origin of x, y, z coinciding with vehicle. 

by w.,, wy, w. respectively and the xy plane is always normal to the local 
geocentric radius r. 

We now assume that the position of the vehicle is in error by 

Ll.r = fl.xi + Llyj + Llzk (6.11-3) 

and examine first the error in ag = -g. Since g is inversely proportional 
to the square of the distance from the center of the earth, the incorrect 
components of g computed from r + Llr are 

gz = -g(-r_\2 = -g(l - 2 ll.z) = -g + 2w,l Liz 
r + Liz/ r 

t::.x 2" g., = -g- = -mo ux (6.11-4) 
r 

"Vhere -g is the correct value and w1} = g/r. 
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The acceleration error of the vehicle can be determined from the general 
equation for acceleration by replacing r by Ar. 

Aav = [Ax+ w,,/JJy Ay + w.,w. Az - (w112 + w.2) Ax+ w11 Az - w. Ay 

+ 2(w'Y Az - w. Ay)]i 

+ [Ag+ w.,w11 Ax+ WyWz Az - (w.,2 + w.2) Ay + w. Ax - w., Az 
+ 2(w. Ax - w., Az)]j 

+ [Az + w.,w. Ax+ WyWz Ay - (w.,2 + Wy2) Az + w., Ay - Wy Ax 
+ 2(w., Ay - w 11 Ax)]k (6.11-5) 

Substituting these quantities into the error equation, 

A&v =AA+ Ag 

its component equations can be written as 

[ d2 
2 2 2 J A _ A ( d , ) A dt2 + w0 - (wy + w. ) ux - uA., + 2w. dt + w, - w.,w11 uy 

- (2wv ~ + Wv + w.,wy) Az (6.11-6) 

[!2
2 + %2 - (w.,2 + w.2)] Ay = AA11 + ( 2w., ~ + w., - wvw.) Az 

- (2w.~ + w, + w.,wy) Ax (6.11-7) 

[:t22 - 2roo2 - (w.,2 + w/)] Az =AA.+ (2w'Y~ + w11 - w.,w.) Ax 

- (2w.,~ + w., + wvw.) Ay (6.11-8) 

To interpret these equations, assume the vehicle to be traveling with 
velocity v in the y direction along a great circle at constant altitude. Then 
wil = w. = 0, and w., = -v/r. The above equations reduce to, 

(:t22 + roo2) Ax= AA., (6.11-9) 

[:t2
2 + ( roo2 - ~) J Ay = AAv + (2w., ! + w.,) Az (6.11-10) 

[!:- (2roo2 + ~) J Az = AA. - (2w.,1 + w.,) Ay (6.11-11) 
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The first two equations have solutions which are harmonic oscillations of 

frequency % = V g/r and V mo2 - (v2/r2). The solution of the third 
equation is hyperbolic and Llz must diverge. 

For ordinary altitudes, the period as computed from Wo is, 

J r J3960 X 5280 . 
T = 2TT - = 2TT = 84 mm 

g 32.2 X 602 
(6.11-12) 

and the inertial system is often referred to as the 84-min Schuler pendulum. 
As v approaches orbital speeds for satellites, mo2 - (v2/r2) will approach 
zero and the desirable oscillatory nature of the position error disappears. 

In addition, we might mention briefly the error introduced by the 
deviation from normal of the acceleration table. If the table tilts by a small 
angle <p = ef,.,i + </>vj + </>.k, the error in the accelerometer output will be, 

<p X A = (<pyAz - </>zAy)i + (</>.A., - <p.,A.)j + (<p.,Ay - <pyA.,)k 

(6.11-13) 

PROBLEMS 

1. An aircraft directional gyro has a spin angular momentum of h = 3.0 
lb-in./sec. If the drift rate is specified as O.Ql 0 /hr, determine the torque 
producing the drift. 

2. An inertial system is to guide an airplane traveling at a speed of 600 mph 
to a destination of 1000 miles with an accuracy of Y2 mile. Determine the 
allowable drift rate. 

3. Assume that for the single-axis stable platform of Fig. 6.8-2 there is damping 
and spring stiffness restraining the rotation of the output axis. Write the 
equation for the torque about the output axis. 

4. Write the subsidiary equation for the single-axis platform including damping 
and spring stiffness, and draw the new block diagram. 

5. For the single-axis platform of Prob. 3, determine the transfer function 
O(s)/rf>(s) and discuss the special cases when: (a) damping = O; (b) spring 
stiffness = O; (c) damping and spring stiffness = 0. Indicate the type of 
gyro obtained in each case. 

6~ For case (c) of Prob. 5, obtain the transfer function T,/Ta, where Ta and T8 

are the disturbing torque and the servo countertorque, and discuss the 
influence of A(s) on the system. 

7. Obtain the stiffness characteristics of the single-axis platform by examining 
the transfer functions Ta(s)/O(s) and Ta(s)/r/>(s). 

8. A three-axis stable platform has gyros mounted as shown in the sketch. 
Identify which are the x, y, and z gyros and determine the equations for the 
pickoff signals, using </,; for input and O; for output. 
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Prob. 8 

9. If the three-axis platform has gyros arranged as shown, identify the x, y, 
and z gyros and determine the equations for the pickoff signals. 

Prob. 9 

10. Draw a block diagram for the dynamics of the platform of Prob. 9. 
11. If the platform of Prob. 9 is mounted on a missile with the roll-stabilized 

axis along the x axis, determine the equations for the resolver signal along 
the servo roll, pitch, and yaw axes due to angular rotations <I>y and <I> 2 • 

12 . .An airplane with an inertial navigator is headed in the direction N 60° W 
at latitude 32° N, at speed 600 mph. Determine the angular rates about the 
meridian and latitude axes due to the motion and the required angular rates 
of the accelerometer table. 

13. A rocket ship guided by an inertial navigator is traveling along a great circle 
route at constant altitude of 100 miles and at a speed of 12,000 mph. With 
the horizontal axis y oriented along the flight path, discuss the nature of the 
navigational errors and calculate the frequency of the oscillatory error. 
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7.i General Equations in Body Coordinates 

For rockets and space vehicles it is often necessary to consider the 
problem of the spinning under thrust The concern here is 

attitude and the motion of the center of mass. We will first 
consider where the rate of mass variation is small enough to be 
negligible. 

To outline the problem at we will consider a rigid define 
a set of body-fixed axes x, y, z rotating with angular 
the origin coinciding with the center of mass. it is 
desirable to let the body axes coincide with the principal axes, this is often 
not possible, so that, in the general case, the moments and products of 
inertia will be defined as 

Ix= A = D 

ly = B = E 

lz = C = F 

The angular momentum 5.2-7) in the above notation becomes 

and the moment equation about the axes 

M= +wXh 

194 
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can be written out in terms of the components given by Eq. 5.6-3 as 

M" = (Aw" - Dwy - Ew.) + (Cw. - Ew., - Fwy)Wy 

- (Bwy - Fw. - ,Dw.,)w. 

My = (Bwy - Fw. - Dw") + (Aw., - Dwv - Ew.)w. 

- ( Cw. - Ero., - Fwy)w., 

M. = (Cw. - Ew" - Fwy) + (Bwv - Fw. - Dw.,)w., 

- (Aw., - Dwy - Ew.)wy 

(7.1-2) 

We next let the velocity of the center of mass be expressed by the 
equation 

and the force as 

(7.1-4) 

Since the x, y, z coordinates are rotating with the body, the force com­
ponents in the x, y, z directions are determined from the equation 

to be 

F=m[!;]+wx mv 

F., = m(v., + VzWy - VyWz) 

Fv = m(vy + v.,w. - v.w.,) 

F. = m(v. + VyW., - v.,wy) 

(7.1-5) 

(7.1-6) 

If the resultant of the above forces does not pass through the center of 
mass coinciding with the origin of the x, y, z, axes, Eqs. (7.1-2) and (7.1-6) 
become coupled owing to the moment of the force. Also these equations 
define the motion of the body only in terms of the linear and angular 
velocities referred to body axes, and their solution and transformation to 
displacements and angles relative to inertial coordinates are problems of 
considerable difficulty which can be accomplished only under simplifying 
assumptions. 

7.2 Thrust Misalignment 

We will consider first a simple problem of a spinning missile with a 
misalignment of the thrust line. We will assume that the missile is 
symmetric so that the x, y, z, axes coincide with the principal axes 1, 2, 3 
with /1 = /2 = A and / 3 = C. With A = B, we can rotate the 1, 2 axes 
so that one of these axes, say 1, is perpendicular to the plane containing 
the thrust and axis 3, as shown in Fig. 7.2-1. 
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Euler's equation for the missile is then 

Awl+ (C - A)w2W3 = M1 

Aw2 - (C - A)w1w3 = O 

CdJ3 = 0 

3 

F 

Fig. 7.2-1. Thrust misalignment resulting in moment M1 . 

(7.2-1) 

(7.2-2) 

(7.2-3) 

The third equation tells us that w3 = n, a constant. Although C is 
generally less than A for missiles, we let 

C-A 
l=n-­

A 

as in Sec. 5.8-3 and rewrite the first two equations as 

. M1 
W1 + AW2 =-x 

(7.2-4) 

(7.2-5) 

(7.2-6) 

For the solution of these equations, we will use the technique used in 
Sec. 5.8 of adding w1 and w2 in quadrature. Multiplying Eq. 7.2-6 by 
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i = V -1, adding it to Eq. 7.2-5, and letting w12 = w1 + iw2, the two 
equations for w1 and w2 are replaced by one 

. . Mi(t) 
W12 - lAW12 = ~ (7.2-7) 

Using the method of Laplace transformation, its subsidiary equation 
becomes 

_ ( ) w1l0) Mi(s) 
W12 S = -- + ----

S - iA A(s - iA) 

and its solution given by its inverse is 

W12(t) = W12(0)ei•t + ...!. rtMi(-r)ei•(t-T) dT 
A Jo 

(7.2-8) 

(7.2-9) 

The separation of this equation to w1 and w2 is easily accomplished by 
noting its real and imaginary parts. 

PROBLEMS 

1. From Eq. 7.2-6, w1 = (I/J.)w2• Substitution into Eq. 7.2-5 results in 
}. 

cii2 + J.2w2 = A Mi(t) 

Solve this equation for w2 and show that 

w2(t) = wlO) cos At + w2i°) sin ?.t + 1 EMi(r) sin J.(t - T) dT 

2. From w1 = (l/J.)w2 and the solution of Prob. I, determine the solution for 
wi(t). 

3. Note that the procedure of Prob. 2 encounters differentiation of an integral. 

Let cf,(t) = ibF(T, t) dT = EMi(r) sin J.(t - T) dT and use 

dcf,(t) = rb oF dT + F(b t) db - F(a t) ~ 
dt J,, at ' dt ' dt 

The result is 

d re rt dt Jo Mi(r) sin J.(t - T) dT = J. Jo Mi(r) cos J.(t - T) dT 

4. Separate the Eq. 7.2-9, w12 = w1 + iw2, into its real and imaginary parts and 
verify the solutions for w1 and w2 of Probs. 1, 2, and 3. 

5. A symmetric body, A, A, C, is damped with moments about the body-fixed 
axes as follows: M1 = -kw1, M2 = -kw2, M3 = -kw3• Show that the 
angle between the spin axis, (axis 3) and the angular momentum vector is 

tan e =lw12(0)I~ exp [- (~ - 1)kt] 
wa(O) C A C 
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6. A symmetrical satellite with moments of inertia A, A, C is "i-''rn"''"'" 

angular velocity w about the axis of C. lf a constant torque 
the transverse body-fixed pitch axis, show that the angular 
satellite is 

- M1 (1 - ei,1t) 
iJA 

7.3 Rotations Referred to Inertial Coordinates 

The solution of the previous problem is in terms of body-fixed co­
ordinates which are rotating. In order to transform from the body-fixed 
coordinates to the inertial coordinates Y, Z it is necessary to introduce 
Euler's angles. From Eq. 3.5-1 the transformation is 

W1 = VJ Sin 8 Sin <p + 8 COS <p 

w 2 = 'P sin (} cos rp - 6 sin rp 

w3 = 1P cos 8 + rp = n a constant for M 3 = 0 

Adding w1 and w2 in quadrature, 

. n-¢ 
'!jJ=-­

cosf) 

which, ·substituted into Eq. 7.3-2, results in 

w12 = [@ + i(n - ¢) tan O]e-iT 

(7.3-2) 

(7.3-3) 

(7.3-4) 

Although this equation relates the angular velocity w12 about the body­
fixed coordinates in terms of Euler's angles referenced to inertial axes, 
further simplification generally requires a small angle approximation for 0. 
Such an approximation is often justified when dealing with rockets and 
missiles whose spin axis must not deviate greatly from a fixed direction of 
flight. 

When O is small tan () can be replaced by 0 

(7.3-5) 

At this point we introduce a complex angle of attack, proposed by H. 
Leon4•5, which uncouples Eq. 7.3-5. 

(7.3-6) 
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Differentiating 
612 = (li - i¢8)e-i'P 

Equation 7.3-5 can then be written as 

012 + in()l2 = w12 

199 

(7.3-7) 

(7.3-8) 

so that when w12 is a known function of time we have a first-order ordinary 
differential equation in 812 to solve. It must be remembered however that 
the above procedure is limited to problems where () is small. 

z 

Fig. 7.3-1. Velocity components in transverse plane tilted by angle IJ. 

At this point the significance of the term e-irp appearing in the various 
equations should be pointed out. For example, consider Eq. 7.3-2, 
which is 

w12 = w1 + iw2 = (li + bp sin 8)e-irp 

All of the components in this equation lie in the tilted transverse plane 
which are shown in Fig. 7.3-1. 

Writing e-irp = (cos <p - i sin <p), w12 becomes 

w12 = (li cos <p + 1P sin() sin rp) + i(1P sin() cos <p - li sin rp) 

(7.3-9) 

The real and imaginary parts of this equation are, however, equal to the 
components of li and 1P sin () along axes 1 and 2. Thus the multiplication 
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of the components (6 + hp sin 0) along the node coordinate system by 
results in w1 + iw2, the components along the body-fixed axes rotated 

through an angle g; from the node axis. lt follows logically then that, ifwe 
multiply the components w1 + iw2 along the body axes by ei'P, we should 
obtain the vector w12 in terms of the node axis components as follows: 

(7.3-10) 

We can now attach physical significance to the complex angle of attack 
812 = 8e-i'P. Since (} is multiplied by e-icp, is resolved into components 
along the body-fixed axes 1 and 2. (Although an angle is strictly not 
representable as a vector, we have assumed f} to be small, thereby 
justifying its vector presentation.) To restore (} along its node axis we 
multiply 812 by ei'P, i.e.,(}= 812ei'P. Furthermore, ifwe wish to examine 812 

in terms of inertial components, we need only to multiply {} by ei'P 

(assuming 'P measured in the XY plane to be equal to that measured in the 
tilted plane for (} small), or 

where 

Example 1.l-1 

8ei'P = (fl12icp)ei,p 

= e12ei<cp+,p) 

~ (}12eint 

g; + 'P ~ Jc rp + 'ljJ cos (}) dt ,~ nt 

(7.3-11) 

For a body of revolution A, A, C, under moment-free condition, the complex 
angular rate from 7.2-9 is 

(a) 

where Jc = n[(C - A)/A]. Substitution into Eq. 7.3-8 results in the differential 
equation for the complex angle of attack 

(b) 

Letting 1Ji2(s) be the Laplace transform of 812(t), the subsidiary equation becomes 

812(s) = ll12(0) + W12(0) (c) 
s + in (s + in)(s - i},) 

From its inverse, the solution for ll12(t) is 

ll12(t) = ll12(0)e-int + W12(0)e-int itei(!c+n)7 dT 

(d) 

~which is referred to body-fixed axes. 
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To examine the angle of attack in terms of the inertial axes, we by 
eint to obtain 

= [e12(0) + : 1~ 0] sin (n + ,,1.)t] + i : 1i0J [1 - cos (n + J,)t] (e) 

The real and imaginary components of 612(t) are along the X and Y axes, the end 
of the vector Bxy(t) prescribing a circle of radius [w12(0)]/(n + },) about the 
center 612(0) + i[w12(0)]/(n + as shown in Fig. 7.3-2. 

t= 0 -~-

(n + "r.)t 

X 

Fig. 7.3-2. Inertial components of angle of attack e. 

1.4 Near Symmetric Body of Revolution with Zero Moment 

When the geometric axes x, y, z corresponding to yaw, pitch, and spin 
of a . missile are not principal axes, the solution in terms of such body 
coordinates will require the solving of the general Eq. 7.1-2. These 
equations do not lead to a simple solution, even for small. products of 
inertia, and it is desirable to take a different approach. 

We recognize first that every body has a set of principal axes 1, 2, 3. 
For the near symmetric body, the principal axis 3 deviates only by a small 
angle fJ from the spin axis z, as shown in Fig. 7.4-1. Without loss of 
generality, the transverse axis x can be chosen normal to the plane z03, 
and the other two axes 1 and 2 are defined by the angle $ between axis 1 
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and the transverse axis x which intersects the planes 1, 2 and xy. Since 
both the 1, 2, 3 and x, y, z axes are body-fixed axes, f3 and <Pare constants. 

If we assume that the principal inertias 11 ~ I 2, then elementary 
solutions are available in terms of principal axes 1, 2, 3. The motion of the 
geometric axes x, y, z can then be obtained by a transformation of 
coordinates with f3 and <D known. 

z 

X 

. / 
V ./ 

/ 

/ 
/ 

2 

; V 
~-

fig. 7.4-1. Principal axes 1, 2, 3 displaced from missile axes x, y, z. Axis xis normal to 
plane z03. 

We will assume that the moments and products of inertia about the 
missile axes x, y, z are 

Ix= A 

ly = B 

1. = C 

lxy = D 

=E 
Ivz = F 

They are related to the principal moments of inertia /1, / 2, / 3 by the 
equations of Sec. 5.4 as follows: 

A = l,,i2I1 + L,2212 + lx32l 3 = / 1 cos2 <D + 12 sin 2 <P 

B = /1 sin2 (!) + 12 cos2 <D + /3213 

- E = (/1 - 12)(3 sin <D cos (f) 

-F = (/1 sin2 <D + /2 cos2 
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The direction cosines used in the above equations are obtained from the 
matrix transformation between coordinates x, y, z and 1, 2, 3 with lengths 
x', y', z' along it (see Sec. 5.4). Since /3 is the approximation 
sin (3 = (3 and cos (3 = 1 is used: 

-sin <D 

cos {j) cos (3 

cos {J) sin (3 

O l ix' 1 

-sin (3 I I y'J 
cos /3 J L z' 

If we assume /1 = 12, Eqs. 7.4-1 reduce to the following 

A= /1 

B = 11 + (32/a 

C = (32/1 + ls 

and the angle fJ becomes 

D =0 

E=O 

F = --fJ(/1 -

(7.4-2) 

(7.4-3) 

(7.4-4) 

To solve for the angular velocities, we first write down the trans­
formation from the missile axes to the principal axes, assuming fJ to be 
small: 

[ 

W1 l r COS Q) sin (1) fJ sin Q) 1 [ cu,, l 
w2· , = l -sin <D cos© (3 cos([) J wy I 
w3 _J O -{J l WzJ 

(7.4-5) 

Adding W1 and iw2, where i = v=---i", we obtain the complex angular 
velocity 

w12 = w1 + iw2 = [(% + iwy) + if3wz]e-i<J> 

~ ( wxy + i{Jn )e-i<J> (7.4-6) 

where wz ,-...,_ n. By multiplying Eq. 7.4-6 by ei<D, this equation may also 
be written in the inverse form 

(7.4-7) 

Figure 7.4-2 shows the relationship between the missile axes x, y, z, the 
principal axes I, 2, 3, the inertial axes X, Y, Z, and the line of nodes t. 
The missile axis x is normal to axes 3 and z, whereas the line of nodes ; is 
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normal to axes z and Z. The position of the missile axes x, y, z is obtained 
by starting with the missile spin axis z coinciding with Z and performing 
three rotations as follows: (1) rotation of 1f! about Z; (2) rotation of () 
about ,; ; and (3) rotation of ,:p about the spin axis z. The principal axes 
1, 2, 3 are then referenced to the x, y, z axes by the fixed angles /3 and©. 

X 

Fig. 7.4-2. Principal axes 1, 2, 3 referred to missile axes x, y, z, which, in turn, are 
referred to node axis t and inertial axes X, Y, Z. 

From Ex. 7.3-1 we have the solution for the moment-free body in 
terms of the principal axes with /1 = 12, 

OJ12 = OJ12(0)ei"t (7.4-8) 

() = () (O)e-int+ i w12(0) e-int·Ll _ ei(n+.<)t] 
12 12 n + ;i. -

(7.4-9) 

where A = n[(/3 - / 1)/11]. From Eq. 7.4-6, the initial value w12(0) is found 
to be 

(7.4-10) 

Substituting Eq. 7.4-10 into Eq. 7.4-8, and Eq. 7.4-8 into Eq. 7.4-7, we 
have 

(7.4-11) 

which transforms the complex angular rate solution to the missile axes 
x, y, z. 
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As discussed in Sec. 7.3, e,;y = ee-i'P resolves O into components along 
the body-fixed axes x, y. It is also noted (see Fig. 7.4-2) that the angle /1 is 
a vector along axis x so that the components of() and (3 along the x and y 
axes are 

(8 cos cp + ;B) - i(8 sin cp) = ee-i'P + (3 

= 8XY + (3 (7.4-12) 

To reference e,w + f3 to the principal axes 1, 2, we multiply bye-ii)) and 
designate it as 812 : 

012 = W,v + f3)e-ii)) 

Multiplying Eq. 7.4-13 by ei<P, we obtain its inverse 

(}XY = (}12ei(p - f3 

Substituting for 812 from Eq. 7.4-9, 

(7.4-13) 

(7.4-14) 

{ 
w fO)e-int } 

()xy = 01lO)e-int + i l:\ + A [l - i<n+.l)t] ei<P - (3 (7.4-15) 

However, from Eq. 7.4-13, 

812(0) = [tlx/0) + (3]e-i<P (7.4-16) 

so by substituting from Eqs. 7.4-10 and 7.4-16 into Eq. 7.4-15, 

w (O)e-int 
tl = tl (O)e-int + i xv [l - i<n+.!lt] 

XY xy • n+A 

Equation 7.4-17 expresses the angle() between the missile spin axis and 
the inertial Z axis as a vector in the transverse plane with components 
along the rotating x and y axes, with x real and y imaginary. To examine 
this vector in the transverse inertial plane XY, we multiply (jxv by eint to 
obtain 

(j = e . (0) + i wxv(O) [1 _ ei<n-H)t] + (3[-}c- _ eint + _n_ ei(n+.!)t] 
XY "'" n + ,l n + Jc n + A 

(7.4-18) 

Comparing Eq. 7.4-18 with Eq. 7.3e, we find that the vector () in the 
inertial plane has an added term due to (3. In addition to the precession 
speed (n + A), the effect of the product of inertia has introduced a 
component (3eint which rotates at the spin speed n. The result is a motion 
of the spin axis indicated by a curve, as shown in Fig. 7.4-3. 
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y 

Fig. 'l'.4-3, Possible motion of axis projected on inertial plane X, Y. 

PROBLEMS 

1, Assume that the fuel consumption rate of a given missile with A = lOC is 
small enough to justify a constant mass analysis. If the thrust misalignment 
in the body coordinates is a constant and equal to Te, where Tis the thrust 
parallel to the longitudinal axis, and e is its offset, determine the equation 
for the complex angular velocity w12. 

2. When fJ, the angle between the principal axis 3 and an inertial axis Z is 
small, it can be represented as a vector. Along what axis do we represent 
this vector, and how do we resolve it into components along the rotating 
body axes with spin ¢. How do we resolve it into components along 
the inertial XY axes. 

3, If we assume the velocity vector V of the center of mass of a missile to be 
fixed in space, determine for the moment-free missile the angle between V 
and the angular momentum vector h. 

4. Defining the angle of attack of a missile as the angle between the longitudinal 
axis and the velocity vector V, show how this varies for the moment-free 
missiie. 

5. For a body of revolution (A, A, C), the motion under moment-free conditions 
is described by a constant precession angle fJ, the plane containing the angular 
momentum h, the angular velocity w, and the spin axis 3 rotating about the 
fixed h vector at a rate 1j; = C¢/[(A - C) cos !J] = Cn/(A cos !J). Show that 
the results of Example 7.3-1 are consistent with this requirement provided 
fJ12, the angle of attack is small. 

6. If the missile of Prob. 1 is spinning at a rate n = h rad/sec, determine the 
complex angle of attack relative to inertial space, and plot the results in the 
XYp!ane. 

7. If the geometric axes x, y, z of a near symmetric missile deviates from the 
principal axes 1, 2, 3 by the angles (3 and i!>, where (3 is a small angle between 
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the z axis and the principal axis 3, show that the assumption of / 1 ~ / 2 

results in <l> = 1r. Physically what does this mean? 
8. Show that in the general case for small fl, where <l> may not be 1r, Eq. 7.4-1 

can be solved for fl as 

fl =JFD + E(B - C) 
FD 

9. The principal moment of inertia ratio / 3//1 for a near symmetrical satellite 
is given as 1.20, and the principal axis 3 is tilted from the geometric axis z 
by the angle fl = 0.05 rad. If the spin rate n = 21r rad/sec and [w.,y(O)]/n = 
Yio, determine the complex angle of attack relative to inertial space and 
show how the geometric axis z is moving in a plane normal to the velocity 
vector. 

10. Using the equation for w12(t) of Prob. 6, p. 198, in Eq. 7.3-8 shows that the 
angle Oxy referred to inertial axes is given by the equation 

Oxy = e (0) + iw12(0)[l - ei<nH>t] - M1 [-).- - eint + _n_ ei<n+A)t] 
12 n + ). nJ.A n + J. n + J. 

11. Body axes x, y, and z initially coinciding with the inertial axes X, Y, and Z are 
given the following sequence of rotations. Rotation 03 about z followed by 
rotation 02 about the displaced y axis and a rotation 01 about the final position 
of the x axis. Derive the transfer matrix expressing the body axes in terms of 
the inertial axes, and its inverse. 

12. Assume angular velocities 63 , 62 and 61 about axes z, y, and x in the sequence 
given by Prob. II, and write the equations for the angular velocities w1, w2, 

and w3 about the final position of the body axes x, y, z. 

X 

z I 
z 

Prob. 12 

13. Referring to the figure of Prob. 12, assume the missile to be symmetric so 
that Iv = I., and determine the equation for the attitude deviation 02 + i03 

of the longitudinal axis due to a constant yawing torque Mz. 
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14. A space vehicle of moment of inertia / 1, / 2, and / 3 is in a circular orbit with 
constant angular velocity mo about the axis 2 to maintain the direction of 
axis 1 always tangent to the orbit as shown in the sketch. Assuming small 
disturbances 1\, 02, 03, derive the differential equation of motion for the 
torques about the body axes 1, 2, and 3. 

Prob. 14 

15. Assume the body axes 1, 2, and 3 of the space vehicle of Prob. 14 to deviate 
from the orbit axes 1 ', 2' and 3' by angles 03, 02, and 01 in the sequence 
specified in Prob. 11. Using the procedure of Sec. 4.18 and a spherical earth, 
show that the gravity force on the space vehicle results in torques about the 
body axes equal to 

M1 = }~3 ([3 - / 2) sin 201 cos2 02 

M2 = ;:3 ([3 - / 1) sin 202 cos 01 
0 

M 3 = 2
3\ ([1 - / 2) sin 202 sin 01 
Ro 

where K = Gm. and R0 is distance from the center of earth to the vehicle 
center of mass. 

7.5 Despinning of Satellites 

In the design of satellites it is often necessary to provide means for 
reducing the spin of a spin-stabilized satellite while in orbit to allow proper 
functioning of instruments. Figure 7.5-1 * shows a simple device,7 used in 
the Pioneer III lunar probe, which is capable of reducing the spin to zero. 
It consists of a small mass m on the end of a light cord wrapped around 

* To maintain symmetry two such masses are released. 
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the symmetrical spinning body. With the satellite spinning with speed Wo 
about its axis of symmetry, the mass m is released. The cord will now 
unwind and the angular speed of the satellite will gradually decrease. 

Fig. 7.5-1, Despinning device for a satellite. 

When the cord is completely unwound, it is released and allowed to fly 
away. By choosing the length of the cord properly, the spin of the satellite 
can be reduced to any value less than the initial value. 

y 
y 

Fig. 7.5-2. Unwinding of mass m. 

The device may be analyzed as follows. Since m is small, the body may 
be assumed to spin about the geometric axis of symmetry of the body 0, 
with moment of inertia I and angular velocity w. We attach the X, Y 
coordinate axes to the body and allow a second set of axes x, y to rotate 
relative to the body so that the y axis always passes through the tangent 
point of the cord, as shown in Fig. 7 .5-2. 



:mi INTRODUCTION TO SPACE DYNAMICS 

We will assume that initially m was in contact with the cylinder at the 
X axis, in which case the of cord extending beyond the tangent 
point is equal to the arc The position of m is 

r= Ref,i. + 
Since the axes x, y are rotating with speed 

v = r + (w + ef,)k X r 

=R.¢,i.+ 

= -Rwi + + 
The angular momentum of the mass m is, 

h=rXmv 

the velocity of m is 

+ 
(7.5-2) 

= (Rcpi + X m[-Rwi + Rcp(w + ¢)j] 

= mR2[w + + ¢)]k (7.5-3) 

and the total angular momentum is 

H= + (7.5-4) 

The system kinetic energy T is the sum of the kinetic energy of the 
satellite and m. 

T = tfw2 + 
= tfw2 + fm{(Rw) 2 + [Ref,(w + 
= tJw2 + + ef,2(w + ¢)2] (7.5-5) 

Since the system has no external forces and no dissipation of energy, the 
kinetic energy and angular momentum must remain constant and equal to 
their initial values. Letting the spin rate at t = 0 be 

T =}(I+ mR2)w02 = tfw2 + fmR2[w2 + 

H = (I+ mR2)w0 = lw + mR2[w + 
Dividing through by mR2 the two equations become, 

C(wo2 - w2) = ef,2(w + ¢)2 

C(wo - = 4,2(w + ¢) 
where 

I 
C=-+l mR2 . 

Dividing the first equation by the second, we find, 

W + W 0 = W + ,j> 

+ 

+ ¢)2] (7.5-6) 

(7.5-7) 

(7.5-9) 

(7.5-10) 
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Wo = 'P 
w0 t = <p 

which tells us that the mass m unwinds at a constant rate. 
ef> and ¢ in 7 the rate at any tin1e becornes 

l'ig. 7.5-3. Despinning of satellites. 

(7.5-11) 

The may be reduced to any desired value w1 ~u-vv,aH,.,_ the proper 
and it when unwound. If 11 is the 
the terminal value of ,p 

and from Eq. 

Solving for !1, the 

If the terminal is to be zero, 11 becomes, 

l, = RVC 
;-7 

= jR2 +-
A m 

(7.5-13) 

(7.5-14) 

For symmetry, two cords with masses can be used as shown in Fig. 
the result being the same as that for one mass of value m. 

E:m:unple 1.5-i 
The Pioneer HI lunar 

It was desired to reduce 
0.2 oz each. 

was launched with an initial 
to 5,5 rpm a yo··YO 
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For Pioneer HI 
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gI = 92 lb in. 2 

R = 5 in. 

92 
C = (0.4/16)52 + 1 = 148 

From Eq. 7.5-15 the proper length of cord is, 

J 400 - 5.5 . 
l = 5 148 400 + 5_5 = 60 m. 

7.6 Attitude Drift of Space Vehides8 

The attitude of a body of revolution spinning in the absence of external 
forces is not a constant when energy dissipation takes place. Elastic 
vibrations, induced by gyroscopic action, result in a dissipation of energy 
and a change in the precession cone angle fJ. In this section we examine 
the effect of energy dissipation on the spinning body and evaluate the 
time required for a body of given configuration to undergo a specified 
change in attitude. 8 

The moment-free motion of an unsymmetric body with principal 
moments of inertia A, C is an unsteady periodic precession and nutation 
about the resultant angular momentum vector h fixed in space. Steady 
rotation is possible only about the principal axis of maximum or minimum 
moment of inertia, the principal axis of intermediate moment of inertia 
being unstable. 

For a body of revolution A, A, C, the moment-free motion is a steady 
precession of the spin axis at a constant angle e about the resultant angular 
momentum vector h fixed in space. Steady rotation is again possible 
about the axis of maximum or minimum moment of inertia, and the axis 
of intermediate moment of inertia does not exist. 

In either case, the axis of maximum or minimum moment of inertia is 
considered to be stable in that, if the spin axis deviates slightly from the 
resultant angular momentum vector, there is no tendency for this 
deviation to grow. This statement is true only for a perfectly rigid body 
in the absence of external moment. 

In an elastic body, deformation between particles will always take place, 
resulting in some dissipation of energy. When the dissipation of energy is 
taken into account, we must revise our statement of stability in that it is 
possible for a small deviation of the spin axis to grow into a large one and, 
eventually, to result in a complete changein attitude of the body. For such 
bodies, only the principal axis of maximum moment of inertia is stable, 
and the axis of minimum moment of inertia is one of unstable equilibrium. 
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These facts were actually observed in the Explorer I satellite, 6 which 
was spin-stabilized about the longitudinal axis of minimum moment of 
inertia. The flexible antennas of the satellite provided an excellent source 
for energy dissipation, and in one revolution around its orbit (approxi­
mately 90 min) the Explorer I was observed to be tumbling at an attitude 
of () = 60° instead of spinning about its longitudinal axis at () = 0. The 
remedy for this behavior is obviously to shorten the longitudinal dimensions 

2 
~ 

J 

Fig. 7.6-1. Coordinate system of body axes 1, 2, 3. 

of the satellite so that the moment of inertia about the longitudinal spin 
axis is greater than that about the transverse pitch or yaw axis. However, 
the problem still exists for missiles which are long, slender bodies and 
inherently unstable about the spin axis. Here the important question is 
how long can the spinning missile coast in a moment-free condition 
without an appreciable change in its attitude. 

Energy considerations of stability 

We will now examine the basis for stability from an energy point of 
view. For a body of revolution with principal moments of inertia A, A, C, 
as shown in Fig. 7 .6-1, the moment-free motion is that of steady precession 
described by the equations 

• C<p C Ws 
'f/J = (A - C) cos () = A cos () 

(7.6-1) 

W3 = <p + VJ COS (} 
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Since the moment is zero, the angular momentum vector h is a constant 
and we can write for the square of its magnitude the equation 

(7.6--2) 

We next examine the kinetic energy of rotation, T, which is given by 
the equation 

(7.6-3) 

Multiplying Eq. 7.6-3 by A and subtracting from Eq. 7.6-2, 

h2 - 2TA = C(C - A)w32 (7.6-4) 

and since Cw3 = h cos (}, we obtain the relationship for cos fJ in terms of 
h and T as follows 

h2 
h2 - 2T A = - ( C - A) cos2 () 

C 
(7.6-5) 

Equation 7.6-5 indicates that () remains constant provided T and 
h are constant. However energy dissipation under zero external moment 
is possible, in which case T must decrease while h remains constant. 
Differentiating Eq. 7.6-5, we obtain 

. h2(c ) . T = - - - l (sin 8 cos 0)0 
CA 

(7.6-6) 

and with ta negative quantity, () is negative for Cf A > l and positive 
for C/A < l. Thus the principal axis of minimum moment of inertia is 
one of unstable equilibrium, and a small deviation of the spin axis will 
increase due to energy dissipation when Cf A < 1. 

Dissipation of energy 

Assuming an elastic body, the energy dissipated per unit volume per 
cycle of stress can be assumed to be 

2E 
(7.6-7) 
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where y is a hysteretic damping factor establishing the fraction of the 
elastic energy which is dissipated as shown by the shaded area in Fig. 
7.6-2. Dividing by the time t0 per cycle of stress, and integrating over the 
entire structure, the rate of energy dissipation can be found. Thus the 
equation to be solved is of the general form 

J ya2 h2 IC ') . 
-- dV = -1- - 1 (sin 6 cos 6)6 
2Et0 C\A 

(7.6-8) 

In examining the source of cyclic stressing, free vibrations can be 
discarded since they will soon damp out. Steady cycling of stress is 

fig. 7.6-2. Energy dissipated by hysteresis damping. 

however induced by the gyroscopic precession, and these stresses are 
repeated at the rate ¢ and 2¢, as we will presently show. 

The excitation for the cyclic stress is the acceleration. Choosing an 
arbitrary point on the structure and orienting the plane l, 0, 3 through it, 
the position vector for the specified point is 

r = ,;i + zk (7.6-9) 

With (J small, the angular velocity and acceleration of the coordinate axes 
1, 2, 3 are 

w = ( 1jJ sin e sin q:, )i + sin{) cos rp)j + 
w = sin 6 (cos q:ii - sin q:,j) 

+ 1jJ cos 6)k (7.6-10) 

(7.6-11) 

Substituting into the general vector equation for the acceleration 

a = a0 + [a] + w X (w X r) + w X r + 2w X (7.6-12) 
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and noting that the following quantities are zero 

a0 =[a]= = 0 

the result after some algebraic reduction is 

+ ~ij;2 sin2 () sin2 rp - 2~¢V' cos () + sin() cos() sin rp]i 

+ (~ij;2 sin2 (} sin cp cos cp + zij;2 sin () cos (} cos 

+ (2~rpij; sin (} sin rp + ~ij;2 sin () cos (} sin cp - zip2 sin2 B)k 

A somewhat more convenient form of Eq. 7.6-13 results by eliminating rp 
and v;. 

(
C\2 [ (C)2 , 

+ ~ A} sin2 (} sin2 rp + ~ \A - 1 J cos2 () 

+ z(~r sin() cos() sin cp} i 

[ (c)· 2 (c)2 .., + w,} ~ A sin2 e sin rp cos cp + z A sin e cos e cos cp ji 

[ ( C\ (C \ (C)2 l + Wo2 -~ \A) \A - 2) sine cos e sin cp - z A sin2 6 Jk 
(7.6-14) 

Since the only time-varying quantity in Eq. 7.6-14 (assuming (J to be 
negligible) is cp = it is evident that the cyclic stress is repeated at a rate 
rp and 2rp. It should be pointed out that, for slender bodies like missiles, 
Cf A is small compared to unity, and the predominant variable acceleration 
term is 

a = 2Wo2f (~) sine cos() sin <pk 

which is repeated in the time 

217 217 
t - - - --------

0 - rjJ - [l - (C/A)]w 0 cos(} 

Example 7.6-1 

(7.6-14a) 

(7.6-15) 

As an example of the simplest kind, we will consider two solid disks connected 
by a flexible tube, as shown in Fig. 7.6-3. We will let C1 and A1 be the moments of 
inertia of each disk about its own polar and diametric axes. The gyroscopic 
moment required by each disk is 

Mg = Ci(¢ + ,j, cos sine - A 1,p2 sine cos e (a) 

Since the moments of inertia about the center of mass of the body are 

C = 2C1 

A~ 2(A1 + m1l 2) 
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Equation a can be rewritten as 

Mg = t[C(qi + ,p cos O),p sin O - A,p2 sin() cos O] + m112,p2 sin() cos() 

The first term, however; is the moment about the center of mass which is zero and 
from which Eq. 7.6-1 is obtained. We are thus left with 

Mg = mif2,p2 sin O cos 6 

=Ficos() 

where F = mif,p2 sin () is the centripital force of the precessing disk. 

Mg 
F~ 

I 

I~ F 

Fig. 7.6-3. Satellite configuration, displacement, and moment distribution. 

(b) 

The effect of Mg and Fon the flexible tube is shown in Fig. 7.6-3. At point z 
along the tube, measured from the center of mass, the bending moment is 

z 
M. =Mg! 

and the expression for the maximum stress becomes 

M.~ 12 ·2 z ~ . 0 0 a= - 1- = m1 'P 11 sm cos 

1 (c)2 z ~ . = - ml2 - roa2 - - sm O cos 0 
2 A 11 

(c) 

(d) 

which is repeated at the rate given by Eq. 7.6-15. The rate of energy dissipation 
as given by the left side of Eq. 7.6-8 is then 

( 12~)2 (c)4(c ) 48:E m I V A A - 1 Wos sin2 () coss o (e) 

and the rate of change of the attitude angle () becomes 

6 = _Y_ ~ - - ro03 sin0cos20 ( 12~)2 v(c)4 
48,,.E I CA 

= K sin () cos2 6 (f) 
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A plot of Eq.f is shown in Fig. 7.6-4. Since ti is zero for 8 = 0, ,~,,,v,,""' 

be initiated unless the initial value of 8 is finite. However e = 0 is never 
in practice for many reasons, and 6 will build up when Cf A is less than unity. By 
differentiating Eq.f, ti ca.n be shown to have a maximum at 8 = tan-1 1/V2 = 
35° 20'. Due to cos2 e, e will diminish to a small. value near e = 90°, and an 
infinite time will be required to reach this angle. 

e 
K 

0.4 

0.3 

0.2 

0.1 

0 
0 

fig. 1.6-4. Variation in the rate of tumbling. 

For small values of e, Eq. approximately 

(i =KB 

to 

and the time required for the attitude angle to change from 60 to 61 is 

Numerical example 

1 81 
t=-ln­

K 80 

Let the two solid disks be aluminum, in. thick and 24 in. diameter, 
and the flexible tube be 0.032 in. stainless steel, 6 in. in diameter and 24 in. 
long. The quantities required for the computation of K are: 

C = 8.16 lb-in.-sec2 

A = 20.44 lb-in.-sec2 

m = 0.1136 lb-in.-1-sec2 

V = 14.5 in.3 = volume of flexed tube 

! = 3.0 in. 

I= 2.71 in.4 

l = 12.0 in. 

E = 29 X 106 lb-in.-2 
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Assuming y = 0.05 and% = 5071'/sec, the value of K is 662 x 106• Thus 
for the body to undergo an attitude change from IO to 10°, the time 
required, as calculated from Eq. h, is 

2.303 
t = -- x 106 = 3480 sec 

662 

= 58.0 min 

PROBLEMS 

1. A satellite has a moment of inertia of I = 1.20 lb-in.-sec2 about its spin axis. 
It is desired to reduce the initial spin of 200 rpm to zero by two weights of 
%o lb each wrapped around a section having a radius of 10 in. Determine the 
proper length of cord. 

Prob.2 

2. In Prob. 1, determine the speed of the / 0 -lb weights as they fly off. As shown 
in the sketch, the pin holding the string will slide out when the string goes 
beyond the tangent to the circle. 

3. It is proposed to despin a satellite by four weights of mass m each, hinged by 
stiff arms as shown in the sketch. Show that the spin is given by 

w0(C0 + 4mr02) w=-------~ C0 + 4m(r0 + I sin 0)2 

Prob. 3 

4. Determine the i, j, k components of the acceleration of m in Prob. 3. 
5. Verify the relations given by Eq. 7.6-8. 
6. Verify Eq. 7.6-14. 
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7. Equation 7.6-5 can be written as 

Plot Tversus l:i for - i < l:i < 5:when (a) C/A > 1; (b) C/A < 1, and discuss 
its stability. 

8. For a symmetric body A, A, C acted upon by moments M1, M 2, M3 about 
body axes 1, 2, 3, show that the dissipation rate of energy is equal to 

9. Show that the hysteretic damping factor y of Eq. 7.6-7 is related to the 
structural damping factor oi: by the relationship oi: = y/2TT. 
Hint: The work done per cycle by a. damping force Fd for harmonic oscillations 
is W = TTFdX, where Xis the amplitude leading the damping force by 90°. 
The structural damping force can be taken as ioi:kx, where k is the stiffness. 

7.7 Variable Mass 

In the previous sections we have limited our discussion to a constant­
mass system. In many cases the mass variation rate is large, which 
requires us to consider the problem of variable mass. 

-v -VO ----v+Av 

~.____m____,, B 4.___m_+ Am _....__.I I 

Fig. 7.7-1. Momentum of the system at times t and t + !!i.t. 

Newton's second law, F = i>, which states that force is equal to the time 
rate of change of momentum, is intended to apply only to a system of 
definite mass. However, the equation can be applied to a system of 
varying mass provided the same mass is examined for the change in 
momentum at two instances of time. 

We will consider a mass m moving with velocity vat time t, and assume 
that our system is accumulating mass continually at a rate rh (if the system 
is losing mass as in a rocket, rh is negative). We will define our system to 
bethemassm + ~mattimetasshowninFig. 7.7-1. Itsinitialmomentum 
at time tis 

p = mv + v0 ~m (7.7-1) 
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where v0 is the initial velocity of /:;.m before it is acquired by m. The 
momentum at time t + !::,.t is 

p + L\p = (m + /:im)(v + 

= mv + m /:iv + v ilm 
(7.7-2) 

where the negligible second-order term (ti.m)(.6.v) has been omitted. 
Subtracting to determine the change in momentum and dividing by 
the equation for the variable mass system becomes, 

dv dm 
F = m- + (v - v0)-

dt dt 
(7.7-3) 

T 

/u 
Fig. 7.7-2. Forces on a rocket. 

Equation 7.7-3 indicates that the force Fis expended in accelerating the 
mass m and changing the momentum of the acquired mass from v0 dm to 
vdm. 

dm db . For rockets u - = T is the thrust exerte y the 3et, ,,.,-here u = 
dt 

-(v - v0) is the velocity of the gas jet relative to the engine.* Thus the 
equation for the rocket in rectilinear motion, Fig. 7.7-2, can be written as 

dv 
F+T=m­

dt 
(7.7-4) 

where the external forces of gravity and aerodynamic drag can be included 
in F. If the rocket is not spinning or turning and Tacts through the center 
of mass, the moment on the rocket is zero, and we are concerned only 
with its translational motion. 

7.8 Jet Damping (Nonspinning Variable Mass Rocket) 

When a nonspinning rocket rotates about a transverse axis, as shown 
in Fig. 7.8-1, the ejected gas acquires a momentum component -mlw 

" u is the velocity of the jet relative to the nozzle. When it is positive we have a 
retro-rocket. m is negative for any rocket. 
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perpendicular to the longitudinal axis, where m is the mass of the rocket at 
any time, m = dm/dt is its rate of change (m is negative), and Im is the 
transverse velocity of the nozzle exit due to rotational velocity m. Letting 
the transverse rotational axis coincide at all times with the center of mass 
and letting the moment of inertia of the rocket about this axis be I= mk2, 

where k is the radius of gyration about the transverse axis, the moment M 

Fig. 7.8-1. Jet damping of nonspinning rocket. 

about this axis must supply the change in angular momentum of the rocket 
and the ejected mass as follows; 

d 
M = - Im - ml2m 

dt 

Substituting for I and carrying out the differentiation, 

M = I dm + m (m d k2 + k2m) - ml2m 
dt dt 

= ldJ - m[ m(l2 - k2) - m ! k2] 

(7.8-1) 

(7.8-2) 

Assuming the applied moment M to be zero and !!:_ k2 to be negligible 
dt 

(i.e., burning proceeds radially), this equation can be solved in the 
following manner: 

dm = (/2 - k2) dm = (/2 - 1) dm 
m I k2 m 

In(::!_) = (~ - 1) In~ 
m0 k m0 

( 
1• 

m _ m) 0 -1 
-- - k 
mo mo 

(7.8-3) 

(7.8-4) 
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Thus with an initial angular rate of w 0, the angular 
is greater than unity and increases if is less than Since in 

w 
wo 

/~ 
2.0, 

I 

I 

1.8 r 
1 r ~ _.o 

I 

I 

l 

1.4 

1.2 

LO j ~__:::_::___-J 1.0 

0.81 
0.61 

I 

0.4 f-
I 0.21 

ol 
1.0 0.8 0.6 

m 
mo 

J 

I~ 
0.4 0.2 0 

fig. 7.8-2. Change in pitch angular rate of nonspinning rocket due to jet damping. 

most configurations l/k > 1, the angular speed decreases and the action 
of the is that of a damper. Figure 7.8-2 shows how the angular speed 
changes with mass ratio for various values of 

7.9 Euler's Dynamical Equations for Spinning Rockets2 

The statement that the force is equal to the time rate of change of 
momentum can be applied to problems of varying mass provided the 
momentum of a definite mass is examined for its rate of change. The 
result is the rate of change of the momentum of the varying mass plus the 
rate of momentum transfer from the varying mass. The moment of the 
force about its center of mass is then the time rate of change of the moment 
of momentum which, can be written as 

M = + w X h + rate of angular momentum transfer 
from the variable mass system 
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Consider a general motion of a symmetric rocket with body axes x, y, z 
fixed in the rocket with the origin at the center of mass. The jet is con­
sidered to be ejected through a cluster of nozzles, the center of each being 
defined by the vector ri = xii + y;j - lk, as shown in Fig. 7.9-2. 

y 
I 

<bw 

z;;-<=_--=-)_--y _-__,__u~ 
:x% ,I 

Fig. 7.9-!. Jet damping of spinning rocket. 

With the x, y, z axes coinciding with the principal axes of the rocket, the 
angular momentum components are 

hy = fywy 

hz = fzwz 

(7.9-2) 

where I,,, ly, and lz are instantaneous values of the principal moments of 
inertia. The rate of change of the angular momentum of the rocket is 

[h] + w X h 

which results in the components 

i,,wx + lxwx + (Iz - ly)WyWz 

iYwV + Iywy + Ux - Iz)w,,wz 

izwz + Izwz + 
(7.9-3) 

In considering the angular momentum imparted to the jet, the cluster of 
nozzles is assumed to be symmetrically located relative to the z axis. If all 
the angular velocities of the missile are zero, the angular momentum 
imparted to the jet is zero. The velocity of the nozzle exit due to w,,, wy, 
and w 2 is shown in Fig. 7.9-2. Multiplying these velocities by their mass 
rate of flow rh., we obtain the linear momentum rates in the direction of 
the velocities, from which the angular momentum rates can be determined 
by multiplying with proper distances from the coordinate axes. 
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For the ith nozzle, the linear momentum rate due to wz is 
its angular momentum rate about the z axis is -rhir/w,, where 
dmi/dt (a negative quantity). Summing over all nozzles, the total rate of 
angular momentum transfer to the jet, about the z axis is 

where 

y 

-Wz I m4? = -mp2wz 
i 

I 
p2 =-i __ _ 

m 

Fig. 7.9-2. Velocity of nozzle due to pitch and spin. 

Due to wx the rate of change of the momentum of the ith jet is 

and its moment is -rh;(/2 + y/)w,,. Summing over all nozzles, the total 
rate of change of the angular momentum of the jet about the x axis is 

- I m;Cz2 + y/)w,, = -mu2 + tp2)w,, (7.9-5) 
i 

In a similar manner, the rate of change of the angular momentum of the 
jet about the y axis is 

(7.9-6) 

Putting together all these terms, the moment equations become 
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Substituting Ix = 2, we have ix = 
equations ean be rewritten as 

d 
2 + m - 2 and the above 

dt 

1 . 1 \ d 2Jw + Lm(12 + 2 p2 - 2) -m-
dt 

X 

1 ( 1 \ d 2lw + I n1 /2 + - p2 - k; 2) -m-
L \ . 2 " dt J y 

1 d -, 
= Jzwz + I ri1(p2 - k/) - m - k} lwz 

- dt J 

We find, therefore, that the usual Euler's equations are supplemented by 
additional terms related to jet damping and the variable moment of 
inertia. 

Example 1.9-1 
Consider the moment-free motion of a symmetrical missile, 

initial spin velocity wz(O) = n. We will assume that the fuel 
manner that the variations in ky, and kz are negligible. 

From the third of Eq. 7.9-8, we obtain 

( p2 
_ i) f dm 

lc,2 m 

which leads to the solution, 

= ly = I, with 
in such a 

(a) 

(b) 

We now multiply the second of Eq. 7.9-8 by i = v -1 and add it to the first 
equation letting 

The first two equations of Eq. 7.9-8 then reduce to the 
from above has been substituted. 

k 2\ 

- k~) 
-1 

(c) 

where wz 

dt (d) 

If we assume m to vary linearly with time so that m = m 0 - m't, this equation 
reduces to 

! (J)X .. 'I _/2+Jp2-k2j m ·(1 kz2) ( m' ,n-- - n - - 1 - - 1 - -
wx/0) k 2 m 0 k 2 - m0 

dt (e) 

By letting 1 = ~ and [(p2/kz2) - 1] = K, the last integral is 



SPACE VEHICLE MOTION 

and the solution becomes 

I )l2 +Y.lP
2-k2 

( ) (k 2) ( k 2) [( ' ) P2 1 Wxy n10 --,-- mo z z ,,, m 2 
!n--1---, k =in~ 2 1 - 2 1 --t.k,, -1J1 

wxy(O) \mo - m t m. . p k , mu 1 

or 

~'!_ = mo - m k' ( 
't)l'+Y,p2 -k2 

wxy(O) mo 

x exp{-inmokz2(1 - k,2)!1 - {1 - m' t);,',J} (f) 
m' p2 k2 L \ mo I 

Figure 7.9-3 shows how the various terms of Eq .Jvary with time. The oscillatory 
amplitude of wxy diminishes with time due to jet damping, and the frequency of 
oscillation increases.1·3 

Fig. 7.9-3. Terms of Eq. f 

7.IO Angle of Attack of the Missile 

The angular velocity wxv is referred to coordinates x, y, which are 
rotating with the missile. To establish the angle of attack of the missile, 
it is necessary to determine the Euler angle e measured from a fixed 
inertial axis. For this determination we start with the angular velocities 
w,,, wy, wz expressed in terms of Euler's angles 

w., = ij; sin () sin cp + (} cos cp 

wy = ip sin () cos cp - (} sin cp 

Wz = 7P COS (j + qJ 

(7.10-1) 
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Adding the first two in quadrature, we have 

wxy = wx + iwy = (0 + i?p sin 8)e-i'P (7.10-2) 

From Eq. 7.9-b and the third of the above equations, we obtain 

(
m )(p2/kz'J-1 

n - = 1P cos 8 + <p 
mo 

or 
. = _1_[n(!!!...)(p2/k))-1 _ ·l 

'1/J cos 8 m 0 
1J 

By substituting into the equation for wxy, Eq. 7.10-2, 

w,w = {o + {n(;}:,>1 - p] tane}e-iT 

-{e + {n(1 _ =~ t)::2 -
1 

_ <f!Je}e-i'P 

We now introduce the transformation 
= {)e-iT 

proposed by H. Leon,4 which differentiates into 

OXY = (0 - i<ptl)e-i<p 

Thus this equation becomes 

. ( m' )L-1 
(jxy + in 1 - mo t kz' (;lxy = Wxy 

( 
m' )z2+y,µ2-k2 

= w (0) 1 - - t k 2 

r,;y mo 

f m k 2 
( k 2

) [ ( m' ) L]} X exp l - in m~ pz2 l - { 2 I - 1 - ~ t kz' 

where the previous solution for w.,y, Eq. f has been substituted. 

(7.10-3) 

(7.10-4) 

{7.10-5) 

(7.10-6) 

This equation differs from that of the constant mass missile, first, by 
the fact that the coefficient of {)xv which is in for the constant mass missile, 
is now a time function, 

in( l _ :~ tF:.-l 
and, secondly, by the right-hand forcing term which is also different due to 
wz slowing down by jet damping and variable mass. The equation is a 
time-variable linear differential equation which can be solved for ()xw· * 

* The equation is in the form 
OXY + P(t)8.y = Q(t) 

with solution 
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The angle (}wY is referenced to the rotating body axes x, y and must be 
p• 

multiplied by ei"'•t = exp {in[l - (m'/m0)t]k,"-1}t in order to reference 

with respect to the inertial axes. Thus the complete solution for the angle 
of attack as a function of time and the variation of mass is possible by the 
foregoing procedure. 

PROBLEMS 

1. Water is fl.owing out relative to the nozzle shown in the sketch at a speed of 
30 ft/sec, and at a rate of 0.10 ft3/sec for each nozzle. If R = 1.5 ft and the 
nozzles are rotated at 60 rpm, determine the torque necessary. 

Prob. I 

2. The ends of the nozzle of Prob. 1 are bent back 30° so that the sprinkler will 
rotate by itself. If the resisting torque due to friction is 1.72 ft. lb, determine 
the speed in rpm with which the sprinkler will rotate. 

=::yo· 

Prob. 2 

3. A jet engine takes in air at a rate rh0 , compresses it, mixes it with kerosene at a 
rate rh1c, and ejects the ignited mixture at a speed u relative to the nozzle. If 
the jet plane is traveling at a speed of v, show that the thrust of the engine is 

T = rh1cu + rha(u - v) 

4. A nonspinning rocket of total mass m0, half of which is fuel, is rotating about 
the pitch axis with an initial angular velocity of 0.5 rad/sec. If 1/k for the 
rocket remains constant at 2, determine the pitch rate at burnout. 

5; If in Prob. 4 the radius of gyration about the pitch axis decreased with time, 
would the pitch rate at burnout be larger or smaller? 
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6. The ratio of the fuel to the total mass for a missile is 0.70, and 
burning takes place with negligible change in the value of = Vi If the 
rate of fuel consumption is m'/m0 = Yioo sec-1, and the missile is rotating 
about a transverse axis without spin, plot the variation in its rotation speed 
against time. 

7. If for the spinning rocket with variable mass, the ratio p/k, = 1 and the 
quantity p/k is negligible compared to l/k, show that the equation for the 
complex angular velocity is 

( ) 
1• ( k 2, 

Wxy _ m -k2 -1 -i,1-4)nt 
~-- - e k 
w,,11(0) m0 

How does this equation differ from that of the nonrotating rocket'! 

8. For the case p2/kz2 = 1 and k//k2 is negligible compared to unity, the differ­
ential equation for the complex angle of attack, (Eq. 7.10-6) reduces to 
(see also Prob. 7), 

1• 
f). , · f) _ _ ( m) • -l ( ) -int 

XY Tm XY - Wxy - ,mo k Wxy O e 

Letting m/m0 = 1 - [(m'/m0)t], a closed form solution is possible when l2/k2 

is an integer. Letting l2/k2 = 4, carry out this solution and show that the 
motion of the missile longitudinal axis is a converging spiral. 

9. Assuming the angle of attack 8 of a spinning missile to be small (angle of 
attack is measured from the velocity vector V which can be considered fixed 
in space) draw the inertial coordinates X, Y, Z, the node axis t, and the rotat­
ing body axes x, y, z, where z is the longitudinal axis of the missile at an 
angle 8 from the vector V placed along the Z axis. On this diagram show the 
complex angular velocity wxy, wz, and the resultant angular velocity w. 

10. Assuming small angle of attack, determine the inertial components of the 
angular velocity w of Prob. 9, by resolving it along the Z axis and in the XY 
plane. 

11. If the moment of inertia of the missile about the transverse and longitudinal 
axes are A and C, determine the position of the angular momentum vector 
for Prob. 9, and find the angle between it and the velocity vector. How does 
the angular momentum vector vary in the inertial space? 

12. Compare the solution for the complex angle of attack Bxy of a missile with 
constant thrust misalignment 1\11 (Prob. 10, Sec. 7.4) with that of the near 
symmetrical missile with principal axis misalignment of {J. Determine the 
product of inertia Fin terms of the misalignment moment M 1, which will give 
the same motion. 

7.11 General Motion of Spinning Bodies with Varying 
Configuration and Mass 

In the previous sections the origin of the body axes always coincided 
with the mass center. In the most general case, a body under translation 
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and rotation may have relative motion between particles leading to a 
varying configuration, and may be undergoing a change in mass with 
time. The origin of the body coordinates attached to the system will then 
not coincide with the center of mass at all times. Relative motion between 
particles could take place when motors and other moving parts are present 
or when the body contains liquids such as fuel. Vibration due to flexibility 

X 

Fig. 7.11-1. Body of varying mass and configuration. 

is another contributing factor. Mass variation would take place owing to 
jets ejected from the body. 

To examine the motion of such a general system, it is advisable to view 
the problem as a system of particles with the origin of the body axes not 
coinciding with the center of mass.9 * Such a procedure will account for 
every conceivable configuration of the system and eliminate the possibility 
of omitting terms. In spite of this generality, the terms of the equation 
can be regrouped to more familiar forms of rigid body, jet ejection, center 
of mass shift, and relative motion. 

We define the system by a group of particles within a specified boundary 
with body coordinates x, y, z moving with the system as shown in Fig. 
7.11-J. Variation in mass is allowed by particles leaving the system 
through the boundary. The angular momentum of the system about the 
moving origin O at time t is 

(7.11-1) 

where ri is drawn from the moving origin 0, and Riis the absolute velocity 

* In Ref. 9 the origin for the moment is chosen to coincide with the center of mass 
and the various subbodies are considered to be rigid. Also no provision is made for 
the variation of the total system mass. 
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of mi referenced to the inertial axes 
equation, we obtain, 

Y, Z. If we differentiate this 

. d 
h0 = "'r- X -

.,;;., i dt (7.11-2) 

From Fig. 7.11-1, Ri = R 0 + ri, and the last term of Eq. 7.11-2 can be 
reduced by the following steps, 

Li\ X m)ti = l:ri X m;(R0 + 
= -Ro X l:m;ri = -Ro X mr 

where mis the total mass at time t, and i its center of mass relative to the 
body axes. 

Referring to the first term of Eq. 7.11-2, (d/dt)(m}ti) is equal to the 
force applied to the mass mi, and its cross product with ri is the moment 
about 0. Equation 7.11-2 can then be rewritten as 

(7.11-3) 

which states that the moment about an arbitrary point O is equal to the 
rate of change of the angular momentum h0 plus a term depending on the 
velocity of the origin and the velocity of the center of mass with respect to 
the origin. It is evident, then, that the moment is equal to the rate of 
change of the angular momentum only under the following conditions: 
(1) When O is stationary; (2) when the velocity of the center of mass 

relative to the origin is zero; or ( 3) when the two velocities R0 and r are 
parallel. 

The moment equation for the general system can be found directly from 
the equation 

1-4) 

However, to clarify certain concepts, we will examine the angular 
momentum at two instances of time and determine h0 to be substituted 
into Eq. 7.11-3. 

Figure 7.11-2 shows a mass mi at time t, which at a later time t = l::,.t 

occupies a different position (1:-; + !lr;) and has separated into two parts, 
mi + mi 8.t and (-mi !lt), with relative velocity ui between them. In 
separating into two parts, m is decreasing and m = dm/dt is a negative 
quantity. The angular momentum at t + !::,.t is 

h0 + 8.h0 = 2 (I"; + 8.ri) X (mi + m; !lt)(Ri + l::,.Ri) 

+ 1 (ri + ll1";) x (-mi 6.t)(Ri + u;) (7.11-5)* 

* ui is negative when mass is ejected in the opposite sense to R (see p. 221). 
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and, by neglecting higher order infinitesimals and approaching the limit 
!:l'b.0/At, as (t:.t ->- 0) the rate of change of the angular momentum becomes 

ho = 2 :I'; X + 2 :i'i X - 2 I\ X 

= l: ri X mJii - R0 X mi" - ,2 ,:; X (7.11-6) 

a +,:1j 
-- .R+11 -

t + L'it 

r 

0 

Fig. 7. I i-2. Angular momentum of element m at times t and t + /:;.t. 

Substituting Eq. 7.11-6 into 7.11-3, the moment equation becomes 

(7.11-7) 

which could have been obtained directly from Eq. 7.11-4 by recognizing 
that (d/dt)(miti) = (see Sec. 7.7). * 

We now replace Ri by the general expression for acceleration, 

R; = R0 + w X I';+ w X (w X 1:;) + [i';] + 2w X (7.II-8) 

where [r] and [i';] are velocity and acceleration relative to the moving 
coordinate system, 

M 0 = -R0 X mr + Ir; X (w X m;r;) + l:ri X {w X m;(w X ri)} 

+ ! ri X mi[i';] + 2 ! ri X (w X mi[i';]) - 2 r; X miui (7.11--9) 

To recognize the moment equation in terms of familiar expressions, we 

dv dm 
* F = m -d - 11 - = applied external force, therefore M 0 is the moment of the 

.t dt 
externally applied force. 



2:14 INTRODUCTION TO SPACE DYNAMICS 

introduce the moment of inertia diadic of Sec. 5.2 and identify the 
following: 

d . 
dt (JI • w) = .f · w + w X .f · w + . <-v 

.JF • w = I ri X X 

w X .f · w = 2 :r; X {w X X 

[j] · w = I [r;] X m;(w X :r;) + Ir; X 

+ I ri X rr1;(w X r;) 11-IO)t 

Supplying the missing terms by adding and subtracting, the moment 
equation can be written in the following forms: 

M 0 = -R0 X mr + .f • w + w X f • w 

+ Ir; X m;[i\] + 2 I ri X 

.. d 
M 0 = -R0 X mr + - .f • w 

at 

- Ir; X miui - I•\ X m;(w X r;) 

(7.11-11) 

A third and a more convenient form can be found reducing the first 
two terms of the second line in Eq. 7.11-12 into a single term by the 
following equation.* 

a X (b X c) + (b X a) X c = b X (a X c) 

2 r; X m;(w X [r;]) + 2 m;(w X I\) X [r;] = w X I (ri X 

The third form of the moment equation then becomes 

.. d 
M 0 = - R 0 X m'i +dt (f · w) 

+ w X 2 (r; X m;[ri]) + I ri X 

- _Lf; X rrl;lli - Iri X m;(w X (7.11-13) 

The various terms of these equations can now be identified. We have in 
the first term the effect of the origin of the body coordinates not coinciding 
with the mass center. The terms .JF , w + ro X .JF O w correspond to the 

* This equation results from the application of the relationship 

a X (!J X c) = b(a • c) - c(a • b). 

t See Probs. 18 and 19 p. 111. 
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usual Euler equation, whereas (d/dt)(f · w) includes the additional term 

[f] · w which accounts for the rate of change of the inertia diadic resulting 
from the position change of the particles in relative motion and the 
variation of mass. The term Ir; X m;u; is the thrust misalignment 
moment,* while the term - Ir; X m;(w X r;) is the jet damping due to 
rotation of the body. All other terms are due to relative motion of 
particles. The three forms of the moment equation, Eqs. 7.11-11, 7.11-12, 
and 7.11-13 are presented here to sh~w the origin of the various terms, 

some of which were inserted due to (f] · w. 
To complete the discussion, it must be recognized that the external 

moment may result from the forces not directed through the origin of the 
body coordinates. The external forces accelerate the instantaneous center 
of mass and change the linear momentum of the ejected particles according 
to the equation 

F = m[Ro + w X (w X r) + w X r + 2w X rr1 + fr]] - I 111;U; 

(7.11-14) 

Thus, in the general case, the force equations are coupled to the moment 
equations. 

Example 7.11-1 
A space vehicle is moving under a force-free condition. If a motor located at r1 

is started, determine its perturbation torque. 
The perturbation torque is the contribution from the relative motion terms of 

Eqs. 7.11-11, 7.11-12, or 7.11-13. We will use the form given by Eq. 7.11-13, 
which is (with total mass a constant, m = O) 

M1) = [;]. w + w XI (r; X m;[r;]) + ,Lr; X m;[i';] 

Owing to the symmetry of the motor rotor, the change in the inertia diadic 
relative to the body coordinates resulting from the spin of the rotor is zero, which 
eliminates the first term [.i] • w = 0. 

From Fig. 7.11-3, we have, 
r; = r 1 + P; 

[r;] = W1 X Pi 

[i';] = w1 X P; 

and noting that L m;P; = 0 for a symmetrical wheel, the equation for the 
perturbation torque becomes, 

Since 
M1) =W X [LP; X (w1 X m;P;)] + LP; X (w1 X m;P;) 

LP; X (w1 X m;p;) = -'1 •W1 = (C1 w1)k1 = h1 

the equation for M1J can be written as 

M1J = [h1] + w X h1 

*Letting.Mp= _Lr, X m,u, = moment of the thrusting jet, the moment acting on 
the varying tnass is M0 + Mp. 
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w 

\ 
y 

X 

Fig. 7.1 i-l. Perturbation torque due to rotation of wheel. 

where h1 is the angular momentum of the rotor wheel. Thus the perturbation 
torque is the result of the angular acceleration of the wheel, and the precession of 
the angular momentum vector of the wheel caused by the rotation w of the body 
coordinates. 

PROBLEMS 

1. A uniform rigid bar of length l and mass m is translating with constant 
velocity R.0 in a direction normal to its length. At the same time a mass m0 is 
sliding from one end to the other with velocity [i']. Placing body coordinates 
as indicated in the sketch, verify from Eq. 7 .11 ~3 that the moment about O is 
zero. Describe the motion of 0. 

y 

!rJt mo __ Ro 
X 0 

Prob. i 

2. The center of mass of a uniform rigid bar of length l is moving with constant 
velocity R along a straight line, while the bar rotates with constant angular 
velocity w. Placing body axes as shown, verify from Eq. 7.11-3 that the 
moment about O is zero. 
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y 

0 

X 

3. For a system of particles which is not changing in mass, write the equation 
for the moment about its center of mass when relative motion betweeen 
particles is allowed. 

4. Consider a constant-mass system such as a satellite in orbit, and assume body 
axes x, y, z through its center of mass and coinciding with the principal axes. 
There is a motor on the pitch axis x, a distance x0 from O with its axis of 
rotation parallel to the y axis. Let the rotor moment of inertia be I,/ and 
that of the entire satellite including the motor to be A, A, C about x, y, z 
respectively. If the motor is started with angular acceleration w1, define the 
terms in Eq. 7.11-11 which apply to the problem, and write the components 
of the moment equation. 

5. Show that the angular momentum of a group of particles about an arbitrary 
origin is equal to 

h0 = -R.0 x m r +fr x ( w x r) dm +fr x dm 

where J • w =Jr x (w x r) dm and [r] is the velocity relative to the rotat­
ing body axes. 

6. Show that the terms of the equation 

d . . 
- (J • w) = J • w + W X J • W + [J] • W 
dt 

can be identified as 

J•w=Jrxwxrdm 

w X J • w =Jr X [w X (w X r)] dm 

[i]•w = Jr X (w X [r])dm + fr] X (w X r)dm + Jr X (w X r)df,i 
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7. Show that 

~fr X [r]dm = fr X [i']dm + fr X (t.., X [r])dm + J<w X r) 

X [r] dm + fr X [r] dm 

Combining the results of Prob. 5 and 6, two of the terms add to give 
2 fr x (w x [r]) dm, while the terms f (w x r) x [r] dm cancel each other. 
Now clarify the interpretation of Eqs. 7.11-9, 7.11-10, 7.11-11, and 7.11-12. 

8. Write the component equations for the two terms 

-2 [r;] X m;(W X r;) + 2 r; X m;(w X [1\]) 

ofEq. 7.11-12. 

9. Write out the component terms of [ i] · w and show that they represent the 
time derivative of J • w relative to the body coordinates. Identify the parts 
due to relative motion of the particles and those due to mass variation. 

10. Show that J = 2 m;(r; • r;tff - r;r;), where tff = ii + jj + kk is a unit diad. 
Show also that 

11. Derive Eqs. 7.9-7 and 7.9-8 as a special case of the general equation, 
Eq. 7.11-12. State the restrictions imposed on Eq. 7.11-12 in arriving at the 
above equations. 

12. A symmetrical spinning satellite in orbit has moments of inertia A, A, C 
about the x, y, z axes (including m0 at position { = O), as shown in the sketch. 

y 

z 

Prob. 12 

If the mass m0 is restricted to move in the z direction and has a restoring spring 
stiffness of k with viscous damping c, show that the differential equations of 
motion are: 
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Moment: 

M 0 = i{(A + m0l 2)w., + (C - A - m 0l 2)wywz - m<fl)0lwz - m0x0lw,,wy 

+ 2moltw,, - ~
2 

[2tro., + l(w,, - WyWzm} 

+ j{(A + m 0l 2)wy - (C - A - m 0 f)w.,wz + m 0x0l(w.,2 - w.2) - moXoi 

+ 2moawy - m~2 [2twy - l(wy - w,,w.m} 

+ k(Cwz - m0x0lw,, + m<fl)0lwywz - 2m0x 0tw.,) 

Force on mass m 0 in z direction: 
2 

Fz = m 0[i - x 0wy + x 0w.,wz - ,(ro,,2 + roy2)] + mo [l(w,,,2 + ro/) - il 
m 

+ct+ kl= 0 

Acceleration of origin: 

+:; [l(w.,2 + w/) - ilk 
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Performance 
and Optimization 

CHAPTER 8 

In Chap. 4 it was shown that the problem of placing a satellite into 
an orbit is a matter of achieving the required velocity at a specified position 
in space. For earth-bound orbits the required velocity is in the neighbor­
hood of 25,000 ft/sec, whereas for the lunar mission a velocity of approxi­
mately 35,000 ft/sec is necessary. In this chapter we discuss the basic theory 
of rockets and examine the problems of optimization to meet a specific 
performance. Missile flexibility as it affects the desired performance will 
be discussed in Chap. 9. 

8.1 Performance of Single-Stage Rockets 

A rocket is a variable mass vehicle which acquires thrust by the ejection 
of high-speed particles. The force equation for the rocket can be written 
in the general form 

dv T Fa 
dt =;;; + m - g (1) 

where T is the thrust of the jet and Fa is the aerodynamic force. Since 
F aim varies inversely as the characteristic length of the rocket, this term is 
small in comparison to T/m for large rockets. 

Certain parameters of importance can be brought out by studying the 
behavior of a rocket in vertical flight, neglecting aerodynamic forces, and 

240 
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assuming the gravity field to be a constant. Referring to Fig. 8.1-1, we 
start with the equation, 

du T 
-=--g 
dt m 

(8.1-2) 

Since the rocket is losing mass, dm/dt is negative, and the thrust becomes, 

dm 
T= -u- (8.1-3)* 

dt 

where the small term due to the difference in pressure has been omitted. 

/1\\t/111 
\\ ~1;) 

Fig. 8.i-1. Rocket in vertical flight. 

Substituting Eq. 8.1-3 into 8.1-2, 
dm 

dv = -u- -gdt 
m 

and integrating, the velocity equation becomes 

m 
v - v0 = u In _Q - gt 

m 

(8.l-4) 

(8. l-5) 

where m is the mass at any time t. By substituting the burnout time tbo 

and the burnout mass mb0, the maximum attainable velocity in vertical 
flight is 

(8.1-6) 

* u = -u 
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For chemical propellants, the ejection u relative to the rocket 
nozzle depends on the heat energy per pound which must be high, and on 
the molecular weight which must be small. Its performance is rated by the 
specific impulse I, defined as the thrust of a of propellant multiplied 
by the number of seconds required to burn it. Its to u is 
found from the equation, 

I = f
0
i T dt = u dm dt = (1\ dm = '.!. 

Jc o dt Jo g 
or 

U= = 32.2/ft/sec (8.1-7) 

Some indication as to the merits of certain fuels and their propellant 
combinations are obtainable from Table 8-1. 

Chemical Propellants Type Specific Impulse I, sec 

Ammonium nitrate rubber 
Potassium perchlorite thickol or asphalt 
Boron metal components and oxidant 
Liquid oxygen alcohol 
Liquid oxygen fluorine JP4 
Fluorine hydrogen 

Solid 
Solid 
Solid 

170-210 
170-210 
200-250 
250-270 
270-330 
300-385 

0 "Astronautics and its Applications," Space Handbook, U.S. Govt. Printing Office, 
Wash. D.C. (1959). 

It is convenient here to introduce a thrust parameter which establishes 
the initial acceleration of the rocket. We define thrust ratio £1: as the 
thrust of the rocket divided by the initial weight, 

• (17} T a0 
Thrust rat10 £h. = - = - + 1 1-8) 

mog g 

where a0 is the initial acceleration in vertical flight. The time duration of 
the powered flight is then 

tbo = gl(mo - mbo) = !.._ (i _ mbo) 
T ; £1: m0 

(8.1-9) 

Equation 8.1-4 can now be written as, 

(8.1-10) 
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which indicates that the maximum attainable velocity depends on the mass 
fraction mb0/m0, on the specific impulse I of the fuel, and on the thrust 
ratio !]72. 

With v0 = 0, it is possible to versus with !]7l as a 
parameter. It is instructive, however, to plot vb0 versus mw/m0 for given 
values of I and !]7l as in Fig. 8.1-2, since such a plot indicates the inadequacy 

30 I r I 
I £n= 2 I I ~ u 20 ~ "' <J) 

I 

? 
0 
0 
0 ,..., 
l 
§ 10 i 

Fig. 8.1-2. Burnout velocity as function of mass ratio, specific impulse I, and thrust 
ratio &f. 

of a single-stage rocket for placing a satellite into orbit. As in most designs, 
a compromise must be established between, !]72, mb0/m0, and I (i.e., a large 
thrust ratio requires a heavier structure, and exotic fuels of high I tend to 
give larger values of mbOf mo- In any event, it is difficult to achieve a number 
less than 0.1 for mb0/m0 and a specific impulse greater than 350 for chemical 
propellants, which indicates the necessity of multistage rockets for satellite 
orbits and space missions. 

To determine the distance traveled during the powered flight, the 
velocity equation, Eq. 8.1-5, must be integrated. Equation 8.1-5 can be 
integrated if the variation in g is assumed to be negligible and known. 
A realistic assumption is that of constant rate of fuel consumption leading 
to constant thrust. We can then let 

dm 
dt=­m and 

. mo - mbo 
-m =----=constant 

tbD 
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so that 

re.. 1 imbo m ,m .. Jc (In m) dt = -:- (In m) dm = -:- (ln m - 1) 
0 mm. m mo 

The distance traveled then becomes, 

- ~ go ; 2 ( 1 - :::r (8.1-11) 

After burnout, the rocket is in free flight under the retarding force of 
gravity. In general, the altitude is sufficiently great so that the variation 
in g must now be taken into account. Since the system during coasting is 
conservative, we can equate the kinetic energy at burnout to the work done 

by the gravity force mb0g0 ( ;) 
2

• 

J.roo+h,(R}2 Vbo2 
g0 - dr=-

'•• r 2 

Thus the equation for the coasting distance becomes, 

h = Vbo2 (R + hbo)2 
c 2g R2 - (vbl/2g)(R + hb0) 

(8.1-12) 

where rb0 = R + hbo has been substituted. The total height hbo + h0 

reached by a single stage rocket is then the sum ofEqs. 8.1-11 and 8.1-12. 
Equations 8.1-10 and 8.1-11 indicate that the performance of a single­

stage rocket depends on the specific impulse I, the thrust ratio PA, and the 

mass ratio µ = mo • The effect of varying these quantities on the burnout 
mbo 

velocity or height can be found by considering Eqs. 8.1-10 and 8.1-11 to 
be in the form, 

vbO.= fi(I, PA,µ) 

hbo = fil, PA, µ) 
(8.1-13) 
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and differentiating. Thus the change in the burnout velocity is determined 
from the equation 

a;;_ . a;;_ , a;;_ 
dV0o = Of df + ofli dfli T Oµ dµ {8.1-14) 

For optimum burnout velocity, dvbo = 0, which defines the constraints 
imposed on the three quantities. 

PROBLEMS 

1. For a given mass ratioµ and specific impulse I, how does the burnout velocity 
of a single-stage rocket vary with the thrust ratio i!l2. Assume vertical flight. 

2. Plot vb 0/g0I versus µ = m0/m00, with v 0 = 0 and !J1l as parameter. Use 
!J1l = 1, 2, 5. 

3. For a given specific impulse and thrust ratio, plot h00 versus µ = m0/m00• 

Use i!l2 = 2 and I= 150, 300 and 400 sec. 

4. Determine the burnout speed of a rocket launched vertically, using a fuel of 
specific impulse 250 sec and a mass fraction of 0.22 with i!l2 = 3. 

5. For I= 300 sec and !J1l = 2, determine the maximum height attained by a 
single-stage rocket of mass ratioµ = 5. 

6. Repeat Prob. 5 for f., = 3 and µ = 10, and plot hmax versus µ. 

7. Determine the partial derivatives o/1/ol, of1/i!!J1!, and of1/i3µ of Eq. 8.1-14. 
How much would the burnout velocity of Prob. 5 be changed by changing 
I to 250 sec; by changingµ to 6.0. 

8. Determine the partial derivatives o/2/ol, %/oi!l2, and i%/ oµ from Eq. 8.1-H 
and discuss the effect of changing I, !J1l; or µ. 

9. If the burnout velocity of a rocket fired vertically is 8500 ft/sec at a height of 
h miles, how high will it rise when constant gravitational acceleration is 
assumed? 

10. Assuming a burnout velocity of vb 0 at r = R + h, and an inverse square 
attractive force, determine the maximum height reached by a rocket What 
is the maximum height for data of Prob. 9 under this assumption? 

11. If the specific impulse of a rocket engine is doubled by doubling the burning 
time, keeping the thrust per pound of fuel consta):lt, how does this affect the 
burnout velocity? 

12. If the mass ratio of a rocket is doubled, keeping all other variables constant, 
how does this affect the burnout height for vertical flight? 

13. A rocket fired vertically from rest has an initial weight of 10,000 lb and a 
burnout weight of 2000 lb. The flux velocity of the fuel is a constant and 
equal to 7500 ft/sec, and the total burning time is 55 sec. Determine the 
velocity and acceleration just before burnout, and calculate the height to 
which it will rise by equating the kinetic energy to the work done under (a) 
varying gravity: (b) constant gravity. 
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14. The efficiency of a rocket engine can be defined as the ratio of the useful 
power Tv (T = thrust) to the useful power plus the kinetic energy ;Yfm'(u - v)2 

lost to the surroundings. Show that the rocket efficiency is given by the 
equation, 

2(u/v) 
7/ = 

1 + (u/v)2 

and find the value of u/v corresponding to its maximum. 
15. Repeat Prob. 14 for a jet engine. 

8.2 Optimization of Rockets2 

A simple calculation with achievable mass ratio, thrust ratio, and 
specific impulse indicates that satellite velocities cannot be attained by the 
use of a single-stage rocket. We are thus led to the multistage rocket for 
space missions. 

In a multistage rocket the burnout velocity of the first stage becomes 
the initial velocity v0 of the second stage, and, by casting off the empty 
first stage, the full burnout velocity of the second stage is available as an 
additional velocity to the burnout velocity of the first stage. The maximum 
velocity of a multistage rocket can then be computed as the sum of the 
single-stage velocities, as given by Eq. 8.1-6. 

We will ignore the gravity loss in velocity due to the burning time, in 
which case the maximum velocity available to the multistage rocket of N 
stages becomes, 

N 

Vm = Iu;ln µi 
i=l 

(8.2-1) 

where µi = (m0/mbo)i is the mass ratio of the ith stage. Assuming that this 
velocity is specified, we have a choice as to how the mass ratios should be 
assigned to the various stages. The problem is that of minimizing the 
over-all mass ratio m01/P, where m01 is the takeoff mass and P the final 
payload mass. 

To determine the mass ratio µi which will lead to a minimum over-all 
mass ratio m01/P for a specified maximum velocity vm, it is necessary to 
express m01/P in terms of all the µi. Since at each burnout the empty 
structure of the stage is to be discarded, the initial mass of the new stage is 
equal to the initial mass of the previous stage minus the fuel burned and 
the empty structure thrown off. For example, the initial mass of the second 
stage is m02 = m01 - mP1 - m,1, where mP1 is the propellant mass of 
stage l and m31 the empty structural mass of stage 1. Thus by writing 
m01/P in the form 
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it is possible to express the over-all mass ratio in terms of all the mass 
ratios 

moi 
lti=---­

r11,0i - mpi 

and an additional structural factor /Ji defined as 

Examining one of the factors, we can write 

moi moi 1npi (mo-t - mpi)(mpi + -----
moi - mp; - m.,i mo; - m1>i m,,i + m,i mP;(moi - m'f)i - msi) 

1 - p.JJi 

Equation 8.2-2 can then be written as 

(8.2-5) 

(8.2-6) 

If m01/P is to be a minimum, In (m01/P), will also be a minimum, so that we 
can write, 

N 

2 [ln µi + ln (1 - /3;) - ln (1 - µJl;)] 
i~l 

(8.2-7) 

The above equation by itself does not contain the constraint imposed by 
the specified velocity as given by Eq. 8.2-1. This constraint can be 
imposed on the optimization process by the Lagrange multiplier 
method, which requires the constraint equation to be multiplied by a 
constant ,1, and added to the above equation (adding zero), as follows: 

m N 
ln ~ = 2 {ln µi + In (1 - /3i) - ln (1 - µ;f3i) + 

p ,-1 

(8.2-8) 

Differentiation of this equation with respect to µi will lead to the optimum 
values of µi. 

Carrying out the differentiation, we obtain N equations of the form 

-+ {Ji . +AU; = 0 
l - µi/3i µi 

leading to the result 

(8.2-9) 
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Substituting this value of µi into Eq. 8.2-1, the constant Jc can be found 
from the equation 

N 1 + 
vm = L U; ln -,-R-

i =1 AUiJJi 
(8.2-10) 

where ui, and vm are assumed to be known. With A 
ratio µi of each stage is found from Eq. 8.2-9. 

Example 8.2-1 
Consider a special case where the specific impulse is the same for all stages. 

The ui are then equal in all stages and Eq. 8.2-10 becomes 

Vm (1 + AU) N 
- = Nln -- - 21n,6i 
u AU I i-l 

1 + AU -11 (v N 
-- = exp - ..!':': + :I ln 

},u LN \ u i-1 J 
Since from Eq. 8.2--9 

I + AU 
= ---XU-

the mass ratio of stage i is 

l [1/v N )l µi = - exp - I _.!!': + 2 ln ,Bi 
.6i N\ u i-I ..J 

1. Show that if u; and (Ji are the same for each stage, the optimum mass ratio is 

2. A two-stage rocket is to attain a maximum speed of 26,000 ft/sec with 
/ 1 = / 2 = 300 sec and (J1 = (J2• Determine the mass ratio of each stage. 

Ans. µ = 3.85. 
3. In Prob. 2, determine the propellant mass per stage in terms of the initial 

mass of the stage. Also determine the structural factor (J;, assuming msi = 
0.15m0;, and show that the optimum over-all mass ratio is equal to m01/P = 
82.4. 

4. In designing a two-stage rocket for a maximum speed of 26,000 ft/sec, assume 
that / 1 = /2 = 250 sec, and (J1 = 0.18, ,B2 = 0.15. Show that it is capable of 
boosting a payload of 0.00172m01 . 

8.l flight Trajectory Optimization3 

We will now consider a more difficult problem of establishing an 
optimum flight path to place a satellite into orbit. The rocket is assumed 
to be rigid, and we will neglect the aerodynamic forces. Generally, the 
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length of the powered flight path is short compared to the earth's radius, 
and we are justified in replacing the central gravitational field by a constant­
plane parallel-force field. 

The geometry of the problem, illustrated in Fig. 8.3-1, shows the thrust 
attitude angle rp measured from the horizontal, the gravitational force 
along the negative y direction, and the velocity vector tangent to the flight 

y 

I 

W V 

c;;c:]u 
I 
I 

Oo I 

rru 
Yo I 

l_l.____'--'-~~~~~~~~~~-x 

I 

Fig. 3.3-1. Powered flight trajectory. 

trajectory. Letting u and w be the x and y components of the velocity v, 
the differential equation of motion in rectangular coordinates are, 

F u = - cos <p 
m 

F. ,,J. 
W = -Sllly, -g 

m 

y=w 

(8.3-1) 

(8.3-2) 

(8.3-3) 

The quantities F/m and <p are functions of time, and the trajectory 
depends on how they vary. We will assume that Ff mis a known function of 
time, and define the problem of selecting ef>(t) for maximum horizontal 
velocity U at a specified altitude Y. The time T corresponding to the 
instant y = Y will differ with different </,(t) and, therefore, will not be 
specified. We will assume however that all of the fuel be burned prior to 
the time T. 
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The problem which we have defined differs from the one of 
vertical flight in that we must maximize a time with constraints. 
The equation which we are concerned with is the of Eq. 8.3-1, 

F ' - cos ,p dt (8.3-4) 
m 

which we wish to make a maximum at a specified value of y under the 
condition wt~T = 0. Thus Eqs. 8.3-2 and 8.3-3 represent constraints on 
the allowable variations of 8.3-4. We write 8.3-2 and 8,3-3 in 
the form 

F ,v - - sin ,p + z = 0 
/n C 

y-w=O 

each by undetermined time functions;,, and rewrite Eq. 8.3--4 in 
the form 

(Tl-F 
U = u0 + Jo ; cos ef, + 

F 
- - sin <p + 

m + dt (8.3-5) 

We must now specify the boundary conditions under which the optimi­
zation is to take place. 

At t = 0 
Y = Yo x=O 

At t = T 
y= y w=O 

The initial velocity Do at initial altitude Yo will be considered fixed, but the 
initial angle 80 will be left undetermined, thereby allowing the first term of 
Eq. 8.3-5 to contribute a term at the lower limit t = 0. 

Before applying Eq. C-9 of Appendix C to Eq. 8.3-5, we will dispense 
with the first term u 0 = Do cos 60 by noting that its contribution to o U is 
-v0 sin 60 080• We are then left with the integral of Eq. 8.3-5, where in 
place of the variable z, we have ef;, w, y, and T. The equation with 
which we are concerned is, then, 

OU= -Vo sin (jo oe + 1( cp, w, w, y, dt (8.3-6) 

where the variation of the integral is to be determined from C-9. 
For the first problem, is assumed to'be a known function of time 

which is not varied, and we are to find a which will result in a maximum 
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horizontal velocity U at a given height Y. The partial derivatives indicated 
in Eq. C-9 are determined from Eq. 8.3-5 to be 

of 
-= -?.2 aw 
of 
-=0 ay 

The total variation from Eq. C-9 is then 

t,U = -v0 sin 00 t,00 + A1 t,w [ + A2 t,y ,: 

{T[p dJ.2 (d?.1 ) J - Jo ; (sin <p + J.1 cos</>) t,cp + dt t,y + dt + A2 t,w dt = 0 

(8.3-7) 

Since y at t = 0 and t = T are fixed as Yo and Y, the variation at the 
end points must be zero, which eliminates the third term in Eq. 8.3-7. For 
the second term of Eq. 8.3-7, the variation t,w at t = 0 is (v0 is specified 
as fixed), 

At the terminal time t = T, w is obtained from the integral of Eq. 8.3-2a 
to be 

w = (T !. sin <p dt - gT + v0 sin 00 
Jo m 

and its variation at t = T due to variations t,cp and t,00 is 

t,w IT= LT~ cos <p t,cp dt + v0 t,(J0 cos 00 

We note that w for the optimum curve becomes zero at t = T, whereas 
for the varied curve w becomes zero at a different time T + t,T, Since 

~ is not varied and is zero for t > T, the above expression for t,w IT must 

equal g t,T. 

t,U = -vo(sin 00 + 11,t=o cos 00) t,(J0 + g?.1,t=T t,T 

jT[p dJ. (dJ. ) J - Jo ; (sin <p + A1 cos</>) ()<p + a/ t,y + a/ + Az ()W dt = 0 

(8.3-8) 
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Since the variations 1300, bT, b<p, etc., are arbitrary, bU can be zero only if 
all their coefficients are zero, or 

tan Oo = -A.1,t=o 

A.1,t=T = 0 

tan <p = -A.1 

From the last two equations we, obtain 

A2 = -C2 
dA.1 
--C2 =0 
dt 

dA.2 
dt 

=0 

dA.1 
dt+A.2=0 

(a constant) 

A.1 = C1 + C2t 

Substituting for A.1 at t = 0, and t = T from the first two equations, we 
find 

so that 

C1 = -tan 00 

1 
C2 = -tan 00 

T 

Ai = -( 1 - ;) tan 00 

The equation for the thrust attitude is then obtained from the third 
equation to be 

tan <p = ( 1 - ;) tan 00 

and <p varies from 00 to zero according to Eq. 8.3-9. 

8.4 Optimum Program for Propellant Utilization 

(8.3-9) 

In the problem just discussed, it was found that, for an arbitrarily defined 
time variation of F/m, the optimum program for the thrust attitude, where 
the initial angle 00 was also allowed a variation, was found to be 

tan <p = (1 - ;) tan 00 (8.4-1) 

If the initial angle 00 is a given quantity which is not allowed a variation, 
the optimum thrust attitude will still be a linear function of time but of the 
form (see Prob. 8.4-1), 

(8.4-2) 
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In either case, the above thrust attitude programs result in a maximum 
horizontal velocity U for the specified program of F/m. The maximum U 
attained will, however, differ with different programs of F/m, or the manner 
of propellant utilization, and we wish now to establish the optimum 
program for propellant utilization to obtain the largest of the maximum U 
attained under optimum thrust attitude variation. 

V 

Fig. 8.4-1. Possible variation of V. 

We recognize here that the theoretically attainable velocity Vk in the 
absence of all forces other than thrust, is essentially a function of the 
specific impulse I of the fuel and the mass ratio of the rocket (see Sec. lU) 

mo vk =glln­
mbo 

where it is assumed that the specific impulse is independent of the manner 
in which the fuel is utilized. It is then convenient to make the following 
substitution 

itp 
V= -dt 

om 
(8.4-3) 

where Vis the rocket thrust velocity with the maximum attainable value 
equal to V,.. It is evident that Vis a function only of time, and depends on 
the manner in which the fuel is consumed. Thus for any program of 
propellant utilization, any curve between V = 0 and Vk with positive slope 
(including zero), as shown in Fig. 8.4-1, is a possible curve. Since F and 
m are both positive quantities, the slope dV/dt is bounded between 0 
(for F = 0) to infinity (for instantaneous burning). 
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We will assume the initial value of v0 and 00 to be fixed and, that the 
optimum thrust attitude variation indicated by Eq. 8.4-2 is to be followed. 
The integral to be maximized is from Eq. 8.3-5, 

and since the optimum thrust attitude is to be followed, all of the variations 
have been considered in the previous problem except oV, which requires 
us to consider only the first term of this integral. 

To determine the terms of Eq. C-9, we need the following: 

of= 0 av :t = (cos <p - A1 sin</>) 

and since o Vat t = 0 and t = Tis zero, we obtain the variation 

lTd 
oU = - - (cos <p - A1 sin</>) oV dt 

0 dt 

= LT[(sin </>+Ai cos</>)¢+ sin</> ~7 Jov dt 

From Eqs. 8.4-5 and 8.4-2 we have 

A1 = -tan <p = -tan </>0 + C2t 

dA1 ¢ 
-=---=C2 
dt cos2 <p 

from which 

oU = C2L\in </>) oV dt 

= C2 rT tan <?o - C2t oV dt 
Jo v' I + (tan </>0 - C2t)2 

= C2 LT <I> 0 V dt = 0 

It is evident here that the integrand 

<I> = tan </>0 - C2t 

VI + (tan <p0 - C2t)2 

(8.4-5) 

(8.4-6) 

(8.4-7) 

can be positive, negative, or vary from plus to minus as t varies from O to 
T, so that, for the integral oU to be zero, the function V(t) must be a 
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discontinuous function of time (i.e., the fuel must be burned instan­
taneously). We will consider three possible cases: 

L If © is always positive, all of the must be burned 
instantaneously at the beginning, and the optimum program for Vis the 
heavy discontinuous curve of Fig. 8.4-2. For to be optimum, oU 

0 T 

fig. 8.4-2. Instantaneous burning at t = 0. 

must be negative for any variation of V from the optimum. For instance, 
any variation o V from the optimum curve of Fig. 8.4-2, such as the dotted 
curve, must be negative, which means that /JU would be negative. A 
positive variation o Vis not possible from the optimum curve shown, since 
Vk is the maximum available rocket thrust velocity fixed by the specific 

lv 
I K ------1 

iii Negative 

I 
0 T 

fig. 8.4-3. Instantaneous burning at t = T. 

impulse and the mass ratio. These arguments, therefore, establish the 
optimum program for the propellant utilization corresponding to positive 
© to be that of instantaneous burning at t = 0. 

2. If <D is negative, the optimum curve for must be as shown in Fig. 
8.4-3, which implies instantaneous burning at t = T. Any variation o V 
from this curve would be positive, which would result in a negative f;U or 
a smaller value of U. 
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3. If <D changes sign from plus to minus, the optimum curve for V must 
appear as in Fig. 8.4-4, and of the fuel must be burned instantaneously 

V 

I VK ------T-- -] 
I I 
I I 
I I 

t + I t- 1 

I I 
~~~~~~-'--~~_J_____t 

T 0 

fig. 8.4-4. Instantaneous burning at t = 0 and t = T. 

at t = 0, and the remainder at t = T. Again, any varied curve which has 
zero or positive slope is allowable, and if a positive o U cannot be produced, 
the discontinuous curve of Fig. 8.4-4 must stand as the optimum curve. 

PROBLEMS 

1. For a specified program of fuel utilization, F/m is a known function of time 
which allows no variation in the quantity F/m. Assume now that both the 
initial velocity v0 and its inclination 80 to be specified, and show that the 
optimum program for the thrust attitude cf,(t) is 

tan cf, = tan 'Po -

2. Show that, if a body is projected upwards with an initial velocity at an angle 
80, the tangent to the flight path will be 

tan e = ( 1 - !.) tan e0 
\ T 

where T = time for maximum height. 
3. For the case cf,0 = 80, show that <ll in Eq. 8.4-7 is always positive, and that for 

optimum utilization of the propellant all of the fuel must be burned instan­
taneously at the beginning. 

4. Assuming that v0 is zero, and all of the fuel is burned at the initial instant, 
determine the time T at which maximum horizontal velocity is attained at 
height Y. 

5. Determine the time required to deliver a satellite to a height Y = 300 miles 
with a horizontal velocity of V = 22,000 ft/sec. 

6. In Prob. 4, show that the initial thrust attitude should be sin cf,0 = (1/Vi,) x 
v 2g Y, and that Vi must be greater than the velocity necessary for projecting 
a body vertically upwards to a height Y. 

7. In Prob. 5, determine the initial angle ef,0 and the total rocket velocity Vi,,. 
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8. For the case where the variation of <!> is from positive to negative, discuss 
how you would find V1 or the portion of the fuel to be burned at the initial 
instant. 

9. Determine the optimum fuel utilization program to achieve maximum height 
for a rocket shot vertically. 

10. Determine the optimum fuel utilization program for maximum height of a 
two-stage rocket of equal stages. 

11. Discuss the problem of obtaining the greatest altitude for a specified hori­
zontal velocity. 

12. Discuss the problem of minimum propellant consumption for a specified 
horizontal velocity and altitude. 

8.5 Gravity Turn1 

In the previous section it was shown that the optimum thrust attitude 
for placing a satellite into orbit is given by the equation, 

tan ef, = ( 1 - !.) tan 60 (8.5-1) 
\ T 

Likewise, the optimum thrust attitude for maximum range (ballistic 
missile) can be shown to be ef, = constant. These conditions may be 
satisfactory for a rocket traveling in vacuum but, owing to the large angle 
of attack ( ef, - (}) which results from such trajectories, they are not feasible 
through the atmosphere. Thus for flight through the atmosphere, a 
trajectory known as gravity turn is generally used. In a gravity turn the 
thrust vector is kept parallel to the velocity vector at all times, starting 
with some nonvertical initial velocity v0 • Thus the gravity turn is also one 
of zero angle of attack or zero lift. 

It is convenient here to measure the angle made by the velocity vector 
from the vertical, as shown in Fig. 8.5-l. Again assuming zero aero­
dynamic drag and constant gravity field, we write equations for the forces 
in the tangential and normal directions to the trajectory. 

1 dv F 
-- = - - cos 1P 
g dt mg 

Vd'lj) . 
-- = sm ip 
gdt 

(8.5-1) 

(8.5-2) 

These equations are nonlinear and no analytical solution is known when 
F/mg varies with time. A reasonable assumption for Ff mg is F = constant, 
and m = m0 - m't. 

When Ff mg is a constant, these nonlinear equations can be solved 
analytically. For F/mg to be constant, the thrust F must decrease with 
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time to conform to the decreasing mass. If Ff mg is a varying function of 
time, we can assume Ff mg to be constant over short intervals of time, and 
we can carry out a step-by-step numerical integration, using the analytical 
solution over each interval. It is evident, then, that the analytical solution 

y 

r 
YO 

l _____ x 

Fig. 8.5-1. Gravity turn trajectory. 

for constant Ff mg is of practical interest, and we consider its development 
as follows: 

Let F/mg = n over a short increment of the flight path. We introduce 

Then 

and 

1 Jl - cos '1fJ sin '1fJ 
z = tan 2 '1fJ = 1 + cos 'If) = 1 + cos '1fJ 

z2 = 1 - cos 'If) 
1 + cos '1fJ 

1 - z2 
-- = COS'lf) 
1 + z2 

Differentiating Eq. 8.5-3, 

Therefore, 

dz 1 d'lf) 

dt = 2 cos2 ('lfJ/2) dt 

d'lfJ dz 
- = (1 + cos 'If)) -
dt dt 

(8.5-3) 
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By substitution into Eqs. 8.5-1 and 8.5-2, they become, 

1 dv l - z2 

--=n---
g dt l + z2 

vdz 
-- = z 
gdt 

Eliminating dt between the above equations, 

dv dz 1 - z2 dz 
-=n-----
v z l + z2 z 

Integrating, we have (see Peirce* nos. 53 and 55), 

1 + z2 
ln v = In zn + ln -- + In C' 

z 
or 

V = czn-1(1 + z2) 

The constant C can be evaluated from initial conditions to be, 

C = Vo 
z;-1(1 + zo2) 

Substituting Eq. 8.5-7 into 8.5-5 and integrating, 

clz t = - zn-2(1 + z2) dz 
g Zo 

- C zn-1 ( l + z2 ) I' 
g n - l n + 1 ,0 

(8.5-4) 

(8.5-5) 

(8.5-6) 

(8.5-7) 

(8.5-8) 

(8.5-9) 

Equation 8.5-9 gives t as a function of z = tan Y2111 for any initial 
condition C. Thus, conversely, 111 is known in terms oft and C. Equation 
8.5-7 gives v as a function of z and C, so that vis also known in terms oft 
and C. Thus Eqs. 8.5-7, 8.5-8, and 8.5-9 represent the solution for the 
gravity turn trajectory when the thrust-to-weight ratio Ff mg is a constant n. 

To apply these equations for a varying Ff mg, we start with the initial 
conditions expressed by Eqs. 8.5-3 and 8.5-8, and Ff mg = n at t = 0. 
Choosing a value of 111 slightly greater than%, determine v from Eq. 8.5-7 
and !it from Eq. 8.5-9. The increment in the displacement is, then, 

!ix = t(v0 sin 'I/Jo + v sin 111) !::.t 

!l.y = !(v0 cos 'I/Jo + v cos 1p) b.t 

The procedure can now be repeated with the values at the new point as 
initial condition. 

* Short Table of Integrals (3rd rev. ed), Ginn & Co., Boston (1929). 



INTRODUCTION TO SPACE DYNAMICS 

PROBU.:MS 

1. By reversing the force F, show that the motion of a body hurled into a resisting 
medium can be solved by the techniques of this section. 

2. If Ff mg is constant throughout flight, what is the effect of changing the initial 
angle 'Po on; (a) the final velocity; (b) the time of flight. 

3. For constant value of Ff mg, the velocity and its inclination 'P were observed at 
a given time. If the initial angle is doubled, how would the above quantities 
differ at the same time. 

4. From Eqs. 8.5-1 and 8.5-2 derive the ballistic equation of a rocket 

~ ~~ = (F ::Li~ 'P - ta! 'P 

where Dis the aerodynamic drag. 
Hint: The normal and tangential accelerations can be written as 

v,p = v2/R 
. dvd,pds v dv 
v = d,p ds dt =Rd,p 

where R is the radius of curvature of the trajectory, and ds = R d,p. 
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Generalized Theo es 
of Mechanics 

CHAPTER 9 

9.1 Introduction 

Experience indicates that our learning process consists of first assimilat­
ing simple bits of information and, second, of comprehending the relation­
ships between the various bits of information. As a result there begins to 
emerge an over-all pattern of behavior predictable from a theory. Simple 
theories are necessary for the beginner, in spite of the fact that they are 
limited in scope and incapable of extension beyond the bounds for which 
they are intended. 

Beyond this stage must be a more general theory which encompasses 
and unites an special theories into a harmonious understanding. Such a 
generalized theory of mechanics was developed by Hamilton and Lagrange. 
It encompasses all of classical mechanics, and an understanding of this 
important work is an essential part of advanced dynamics. 

Preliminary to the discussion of the generalized theories, it is necessary 
to have clearly in mind the basic concepts of coordinates and their classifi­
cation. 

9.2 System with Constraints 

The degrees of freedom of a body correspond to the minimum number 
of independent coordinates required to define its position. For a particle 

161 
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free to move in space, three coordinates are necessary to define its position. 
They may be rectangular coordinates x, y, z, spherical coordinates r, (), cp, 
or some other system of coordinates, but three are necessary, and each 
coordinate may be varied independently. We say then that the free 
particle has three degrees of freedom. 

If, next, the particle is constrained to move on a specified surface, only 
two coordinates are necessary to define its position, and we say that it has 
two degrees of freedom. For instance, the latitude and longitude com­
pletely define a position of a particle on the earth's surface. If the particle 
is further constrained to move along a specified line on the surface, one 
coordinate-such as the distance along this line-will define its position, 
and such a particle will have one degree of freedom. Here we have placed 
two constraints on the particle, one to restrict it to a surface, and another to 
confine the motion along some line on the surface. In each case the three 
degrees of freedom of a free particle have been reduced by the number of 
constraints imposed on the particle. 

The constraints of a system can be expressed analytically in terms of its 
geometry. For example, a particle a distance l from the fixed end of a 
string is constrained to move on a spherical surface, the equation of which 
is, 

x2 + y2 + z2 = 12 

In the general case, the equation of constraint restricting a particle to any 
surface is, 

f(x, y, z) = 0 (9.2-1) 

When the particle is constrained to move along a curve in space, the 
curve can be considered to be the intersection of two surfaces, so that the 
two constraint equations to be satisfied are, 

J;.(x, y, z) = 0 

h(x, y, z) = 0 
(9.2-2) 

An elementary example of two constraints is illustrated by the simple 
pendulum whose circular path in the vertical plane is the intersection of a 
sphere and a vertical plane through its center. The constraint equation, 
x2 + y2 = / 2, is actually the result of two equations, 

Sphere 

Plane 

x2 + y2 + z2 = z2 

z=O 

with the coordinates oriented as shown in Fig. 9.2-1. 
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Sometimes a constraint equation will also depend on time. For instance, 
if the support point of the simple pendulum is given a motion Xo(t), the 
constraint equation would have to be written as 

[x - xo(t)]2 + y2 = / 2 

It is evident, then, that for a time-dependent constraint, the equation may 
be written in the form, 

C(x, y, z, t) = 0 (9.2-3) 

Constraints may also be imposed between particles; e.g., two particles 
whose distance between them is always constant. The first particle has 

z 

X 

Fig. 9.2-1. Intersection of the x, y plane and a sphere ofradius I defines the path of the 
simple pendulum mass. 

three degrees of freedom. The second particle has two degrees of freedom. 
Thus we have 3 + 2 = 5 degrees of freedom for the two particles bound 
to each other a given distance apart. Actually two free particles would have 
six degrees of freedom; however a constraint has been introduced, 
specifying the distance between them, so that the degrees of freedom have 
been reduced by one. 

The position of a rigid body is known if we know the position of three 
noncollinear points on it. The three points, if free, would have nine 
degrees of freedom, but since there are three rigid constraints between 
them, a rigid body has six degrees of freedom. Another way of arriving 
at the same result is to choose the first point arbitrarily, in which case it 
will have three degrees of freedom. The second point must move in a 
sphere about the first, so it has two degrees of freedom. The third point 
must now move in a circular line about 1 and 2 as axis, which adds another 
degree of freedom, making a total of six degrees of freedom. 
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The general rule for N particles can be stated as follows. If N particles 
have c constraints restricting their freedom, the number of degrees of 
freedom n will be, 

n = 3N- c (9.2-4) 

9.3 Generalized Coordinates 

A simple pendulum is defined as a point mass on the end of a weightless, 
inextensible string, which is made to move in a vertical plane, as shown in 
Fig. 9.3-1. The point mass must move on a circular line in the plane, and 

(x,y) 

Fig. 9.3-1. Simple pendulum. 

has one degree of freedom. The position of the mass may be specified by 
rectangular coordinates x, y, which are not independent but subject to the 
constraint equation, 

x2+y2=f2 (9.3-1) 

It is simpler, however, to specify its position by the angle e, which is 
independent and free of any constraint equation. Such independent 
coordinates are called generalized coordinates, and the number of such 
coordinates corresponds to the degrees of freedom of the system. 

Consider next the double pendulum of Fig. 9.3-2, which is a system of 
two degrees of freedom. If the position of each mass is to be defined in 
terms of rectangular coordinates, four coordinates, x1, y1, x2, y2, would be 
necessary. There are however, two constraint equations between the 
coordinates, 

X12 + Y12 = /12 

(x2 - X1)2 + (Y2 - Y1)2 = l22 
(9.3-2) 

and the number of coordinates minus the number of constraints again 
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agree with the degrees of freedom of the system. two of the four 
rectangular coordinates can be considered independent, but the remaining 
two must be related by the above constraint equations. 

The double pendulum can also be defined by two angles, 81 and ()2 , 

Each f) can be varied independently and, therefore, no constraints exist 
between them. 81 and 82 are thus generalized coordinates for the double 
pendulum. 

For a system of n degrees of freedom, there are n generalized coordinates, 
q1, q2, q3 , q4 , ••• , qn- They are independent coordinates free from any 

I 

~x 

I \ l1 
I ' 
I 

/2 

fig. 9.l-2. Double pendulum. 

constraints. They are not necessarily lengths or angles, but can be any 
independent set of quantities which describe completely the motion of the 
system. 

It is always possible to relate the rectangular coordinates as some 
function of the generalized coordinates. For instance, in the case of the 
double pendulum, the rectangular coordinates expressed in terms of the 
generalized coordinates q1 = 81 and q2 = 82 are 

X1 = [1 sin el 

Y1 = 11 cos e1 

X2 = [l sin el + f2 sin ()2 

y2 = /1 cos 81 + 12 cos 82 

(9.3-3) 

In the more general case, the relationships between the various position 
coordinates x, y, z and the generalized coordinates can be expressed by 
the functional equation, 

(9.3-4) 

where n is the number of degrees of freedom of the system" 
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9.4 Holonomic and Nonholonomk: System 

When the constraints are expressible as functions of the coordinates or 
coordinates and time, the system is said to be holonomic. Sometimes the 

fig. 9.4-1. Example of holomonic system. 

constraints are expressed in terms of the velocities; however, if such 
expressions are integrable, we obtain the constraint equations as function 
of the coordinates or coordinates and time, so again we have a holonomic 
system. 

As an example, consider a wheel rolling without slipping along a 

fig. 9.4-2. Example of nonholonomic system. 

specified straight line, as shown in Fig. 9.4-1. The velocity of the center 
is x = ref>, which can be integrated to x = ref, + c. The system is hence 
holonomic. 

If the same wheel rolls without slipping on a plane, and is allowed to 
pivot about a vertical axis through the point of contact, as shown in Fig. 
9.4-2, the relationship between the velocities will be found to be non­
integrable, and hence the system must be classified as nonholonomic. We 



GENERALIZED THEORIES OF MECHANICS 

have, for instance, the equations for the 
path as, 

x sin 6 - y cos 6 = 0 

x cos () + y sin fJ = 

normal and 

and it is not possible to integrate these expressions to obtain 

267 

to the 

between the coordinates. It is possible, for instance, to roll the wheel to 
another point with a different value of x, but with the other coordinates y, 
8, and rp unchanged. It is evident, then, that x cannot be functionally 
related to the remaining coordinates. Each of the other coordinates can 
be singled out in the same manner, so that there can be no unique relation­
ship existing between them. We have a relationship between the 
infinitesimals which can be written as 

sin 6 dx - cos 8 = 0 

cos 8 dx + sin () - r drp = 0 

In a holonomic system, the constraint equations are in the form, 

(9.4-1) 

Moreover, the differential of the constraint equation is exact and expres­
sible as, 

ac ac 
+ - dr + · · · - dt = 0 

or2 2 ot (9.4-2) 

It is also possible in the holonomic to reduce the number of the 
dependent variables r; by the number of constraint equations to the number 
of the degrees of freedom of the system. These are then expressible in 
terms of the n generalized coordinates, equal to the number of degrees of 
freedom of the system, and independent of each other. Thus, provided 
we are able to find then generalized coordinates of the system, the problem 
reduces to that of solving n independent equations in q;, without concern 
of the constraints of the system. 

In the nonholonomic system, the constraints are not expressible in 
terms of the coordinates or coordinates and time, as in Eq. 9.4-L The 
constraint equations are available only as relationships between the 
infinitesimals, 

(9.4-3) 

which are nonintegrable. Thus, if we transform the dependent variables 
r; into the equation 

ri = q2, ... ' t) 

we would find that not all the q are independent. Special procedures to be 
used under these conditions are discussed in Sec. 9.9. 
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9.5 Principle of Virtual Work 

A virtual displacement bx, bfJ, bq, etc., is an infinitesimal change in the 
coordinate, which may be conceived in any manner irrespective of the time 
t. It may or may not coincide with the actual displacement, dx, dfJ, dq. 

In the case of constrained motion, the virtual displacement must be 
compatible with the constraints. For instance, if a particle is constrained 
to move on a surface, the virtual displacement must be confined to the 
surface. If the constraint equation for this case is 

f(x, y, z, t) = 0 

the virtual displacement must satisfy the equation, 

of of of 
-bx +-by +-bz = 0 
ox oy oz 

For a nonholonomic constraint, the restriction is 

a1 bx + a2 by + a3 bz = 0 

(9.5-1) 

(9.5-2) 

(9.5-3) 

Since virtual displacements are made irrespective of time, the above 
expression must be independent of time t. 

Consider a particle acted upon by several forces. If the particle is in 
equilibrium, the resultant R of the forces must vanish, and the work done 
by the forces in a virtual displacement br is zero. 

R•br=O (9.5-4) 

If the particle is constrained, the force R may be separated into an 
applied force F and a constraint force f. For equilibrium, 

R=F+f=O (9.5-5) 

and the applied force is balanced by the constraint force. The virtual 
work is then, 

F•br+f•br=O (9.5-6) 

But now the virtual displacement br must be consistent with the constraint, 
which requires that f · br = 0. For instance, a particle made to move along 
a smooth wire would have a constraint force of the wire acting normal to 
the wire and hence to the virtual displacement. Thus the constraint force 
cannot contribute to the work, and we are left with the result, 

F 0 br=O (9.5-7) 

which states that, if the particle is in equilibrium, the work done by the 
applied forces due to a virtual displacement is zero. 
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For a system of particles in equilibrium, the sum of the forces acting on 
each particle must vanish. The virtual work of the system is the sum of 
the virtual work done on each particle, which must also be zero. 

! Ri · c5ri = 0 (9.5-8) 
i 

The force R; can again be separated into the applied force F; and the force 
of constraint f;, and since! f; · c5r; = 0, we obtain the virtual work for the 

i 
system of particles to be, 

(9.5-9) 

where F; and c5r; are the applied force and the virtual displacement 
associated with particle i. Thus the principle of virtual work as presented 
by Jean Bernoulli (1717) can be stated as follows: If a system of forces 
are in equilibrium, the work done by the applied forces in a virtual dis­
placement compatible with the constraints is zero. 

For a rigid body or a system of interconnected rigid bodies, internal 
forces, which always appear in equal and opposite pairs, must do no work. 
Thus, with the principle of virtual work, we can ignore all internal forces 
and reaction forces of constraints, and equate the virtual work of the 
applied forces to zero. 

9.6 D'Alembert's Principle 

The principle of virtual work, established for the case of static equilib­
rium, can be extended to dynamics by a reasoning advanced by D'Alem­
bert (1743). We will let p be the momentum of a particle in the system, 
and separate the forces acting on it into an applied force F and a constraint 
force f. The equation of motion of the particle can then be written as 

F + f - p = 0 (9.6-1) 

which states that the forces are in equilibrium with the kinetic reaction -p. 
The quantity -pis sometimes referred to as the "reverse effective force" 
because the force effective in producing the motion is equal to p, and, if 
such a force is applied in the reverse sense, the motion could be nullified 
to produce a state of static equilibrium. As before, the virtual work of the 
constraint force is zero since f and c5r are mutually perpendicular. The 
virtual work of the forces acting on the particle is, then, 

(F - p) · c5r = 0 (9.6-2) 

and for the system of N particles, we sum to obtain the result 
N 

! (F - p); · c5r; = 0 (9.6-3) 
i=l 
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:L A constraint is scleronomic if time-independent, and it is rheonomic if time­
dependent If a particle of mass mis free to sl.ide on 3. smooth of radius r, 
which is rotated with constant O about a verticle diameter, discuss the 
degrees of freedom and the type of constraint, holonomic, nonholonomic, 
scleronomic, or rheonomic. 

2. The vertical diameter of a wheel rolling on a rough horizontal floor is rotated 
at a constant rate to form a circular path for the contact point. Is the con­
straint holonomic or nonholonomic? 

3. A sphere of radius a, ro1ling on a rough, horizontal plane is a nonholonomic 
system. Attach body axes x, y, z to the center of the sphere, defining their 
position by the Euler angles e, 'P, cp. Show that the angular velocity of the 
sphere with respect to fixed axes X, Y, Z is w = wxI + + wzK where, 

w x = (J cos 'P + ¢ sin e sin ,p 

wy = (J sin ,p - ¢ sin 8 cos ,p 

wz = ,p +¢cos e 

Show also that the constraint equation for no slipping is 

where VO is the velocity of the center of the sphere, and r = -aK. 
4. In Prob. 3, determine the variation of the constraint equation along the X and 

Yaxes. 
5. Virtual work for a system of N particles can be expressed by the equation 

N -

.2 (F; - , or; = 0. Discuss the interpretation of this equation for a 
i=l 
system of free particles versus a system of constrained particles. 

9.7 Hamilton's Prindp!e 

The principle of virtual work together with D' Alembert's principle was 
viewed by W. R Hamilton (1805-1865) as a basis for his variational 
approach, leading to one of the most general statements of mechanics 
known as the Hamilton's Principle. It reduces the formulation of problems 
in dynamics to that of the variation of a scalar integral, irrespective of 
coordinates and for conservative and nonconservative systems. 

We start with N discrete mass particles, coupled by either holonomic or 
nonholonomic forces of constraints, and write the virtual work equation, 

N 

.2 (m/i:; - Fi) • ori = 0 
i=1 

(9.7-1) 
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N 

We recognize in this equation that ! F; · or; is the work done by the 
i=l 

external forces in a virtual displacement, which could include noncon­
servative forces. 

N 

!F;•or; = oW 
i=l 

(9.7-2) 

Relating to the first term of Eq. 9.7-1, the following differential relation­
ships exist: 

d d 
- (t .. or.)= t .. - or.+ j' .• or. 
dt ' ' ' dt ' ' ' 

= i"; • at; + i'; · or; 

= o(!t;2) + i'; • or; 

The first term of Eq. 9.7-1 can then be written as 

itm;i';. or; =it fi (m;i";. or;) -it aG m/;2) 

N d 
= ! - (mt.· or.) - oT 

i=l dt '' ' 
and Eq. 9.7-1 becomes 

N d 
! -(m.t.•or.) = oT+ oW 
i=l dt ' ' ' 

(9.7-3) 

(9.7-4) 

(9.7-5) 

Consider times t = 0 and t = t1 at which or; = 0, and integrate Eq. 
9.7-5: 

it1 N d it1 ! - (m;i"; • or;) dt = (oT + oW) dt 
0 i=l dt 0 

(9.7-6) 

The left side of this equation is equal to the integrand evaluated at the 
upper and lower limits: 

N lt1 it1 !m,t; · or; = (oT + oW) dt 
i=l O 0 

(9.7-7) 

But since or; equals zero at t = 0 and t1, the left side ofEq. 9.7-7 is zero, 
and we arrive at the final result 

0 0 0 Jo (oT+oW)dt=oJ0 Tdt+Jo oWdt=O (9.7-8) 

We will review now the variational principle leading to Eq. 9.7-8. The 
motion of the system defined by the time variation of the Nr; is defined as 
the dynamical path. At any time t between t = 0 and t1, the N-valued r; 
are given a virtual displacement or, thereby varying the dynamical path 
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under the restriction ot = 0. In the varied configuration, T and W undergo 
variations oT and o W due to the variation in the coordinates and their 
velocities. Of all the possible variations, the dynamical path corresponds 
to the one which leads to a stationary value of the integral in Eq. 9.7-8 
which is Hamilton's principle. 

When the system is conservative the work can be expressed in terms 
of the potential energy in which case Eq. 9. 7-8 reduces to 

['1 o Jo (T + W) dt = 0 (9.7-9) 

Hamilton's principle states that, if the configuration of the system at 
two instants t = 0 and t1 is known, the motion of the system is given by 
the stationarity of the scalar integral. Hamilton's principle does not 
provide the solution to the dynamical problem, but formulates the 
equations of motion in a general manner irrespective of the coordinate 
system. It embodies both the Lagrange equation and the theorem of 
conservation of energy. 

9.8 Lagrange's Equation (Holonomic System) 

For a holonomic system, the dependent-variables r1 can be expressed 
entirely in terms of the n-generalized coordinates qk and time t, corre­
sponding to the n degrees of freedom. 

(9.8--'l) 

The qk in the above equation are independent and no constraint equation 
exists between them. 

Differentiating Eq. 9.8-1, the velocity can be written as 

. or; . or; . or; . or; 
r 1 = -q1 +-q2 + · · · + -q,,. + - (9.8-2) 

oq1 oq2 oq,,. ot 

By squaring and summing over all the particles of the system, the kinetic 
energy becomes 

1 N 1 N ["' n or. or- or. n or (Or-J2] 
T = - ! mil = - ! m; ! !-' ----3: <jk <ii + 2 -' !-i <jk + -' 

2 i=l 2 i=l k z oqk oqi ot k oqk ot 
(9.8-3) 

It is evident then that Tis a function of qk, <jk, and t, and we may write 

(9.8-4) 
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We will now consider the variation oT in Hamilton's equation, holding 
t fixed 

and 

lt, n lt, oT n ft, oT 
or dt = I ~ oq; dt + I J :,:- oq; dt 

o i-1 o uq; i-1 o uq; 

Writing the last integral in the form, 

ri, ar . i1, ar d 
J 37 aqi dt = ~ "'j, oq; dt 

Q U~ 0 ~ I 

we integrate by parts, letting 

Then 

ar 
U=-

OCj_; 

d ar 
du = -d" :;-:- dt 

i uqi 

d 
dv = - oq dt 

dt ' 

V = Oq; 

and the integral becomes 

11, ar d ar 111 i 11 d ar -:- - oq; dt = -:- oqi - oq; - -:- dt 
o aqi dt oq; 0 o dt aqi 

(9.8-5) 

(9.8-6) 

Since oq; = 0 at t = 0 and t1, the first term on the right is zero and Eq. 
9.8-6 becomes, 

l1, n lt, (d ar ar) o -Tdt = -I --. - - oq,dt 
o i-1 o dt aqi aq;1 

(9.8-7) 

Consider next the variation o W due to the m forces acting on the 
system 

m 

aw= I F-·or. 
j-1 ' ' 

(9.8-8) 

The virtual displacement or; is 

(9.8-9) 

so that o W becomes 

(9.8-10) 
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We can now define the generalized force Qi associated with q; to be 

or 
F . ---2 

, oqi 

which enables Eq. 9.8-10 to be written as 

(9.8-11) 

n 

+ ... Qn = 2 Qi (9.8-12) 
i=! 

We now substitute Eqs. 9.8-7 and 9.8-12 into Hamilton's equation, 

rt, 
o Jo (T + 

oT oT 
------
oqi aqi 

oq; dt = o 

(9.8-13) 

and since all the oqi are independent and arbitrary, we can let all the oqi 
equal zero except for oq1c which will be specified as not equal to zero. Then 
in order to satisfy the above equation, the coefficient of oqk must be zero, 
and we arrive at Lagrange's equation for the ho!onomic system. 

(9.8-14) 

So far we have not stated whether the forces F; are conservative or 
nonconservative. For a conservative system, the work is expressible in 
terms of the potential energy U 

and 
W=-

au 
oW= -_2 

(9.8-15) 

(9.8-16) 

It is evident then that Lagrange's equation for the conservative system is 

a ar ar au 
-----+-=O 
dtoqk oqk oqk 

It is now convenient to define the Lagrangian as 

L= T- U 

(9.8-17) 

(9.8-18) 

and since a U/aq1c = 0, Eq. 9.8-17 can be written in terms of the Lagrangian 
as 

(9.8-19) 
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When both conservative and nonconservative forces act on a system, we 
can separate the virtual work into terms like Eqs. 9.8-12 and and 
write Lagrange's equation as 

d aL oL 
(9.8-20) 

!Example 9.1:1-i 
The pendulum analogy is used in the simplified anal.ysis of many dynamical 

problems, including the sloshing of liquid fuel in missiles. As an appiication of 
Lagrange's equation, we will consider here the spherical of Fig. 9.8-1. 

fig. SI.II-I. Spherical pendulum. 

The position of the mass, at a distance l from the center, can be specified by the 
generalized coordinates IJ and 'P, which can be varied independently. 

The kinetic and potential energies are, 

T = f m[(/8)2 + (lrp sin 8)2] 

U= - cos /J) 

and the Lagrangian becomes, 

L = !m[(l1l)2 + (lrp sin 8)2] - - cos /J) 

Substituting into Lagrange's equation, the equations of motion are, 

m/2 ( 8 - cp' sin B cos IJ + 1 sin e) = 0 

sin2 fJ + 2¢(} sin 8 cos /J) = 0 

(a) 

(b) 

(c) 

(d) 

(e) 
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The solution of these equations can be obtained in the following manner. 
Equation e can be written as 

:!..rpsin2 (J=O 
dt 

rp sin2 () = C1 (f) 

If we examine the Lagrangian, we would note that L is independent of <p, so that 

oL =O 
o<p 

We should then expect Lagrange's equation for the coordinate to reduce to 

d oL 
dt orp = 0 

and 
oL 
orp = constant 

Equation f then is the direct consequence of oL/ ocp = 0. 
We can now make a general statement as follows: If the Lagrangian is not a 

function of the generalized coordinate qk, then oL/ oqk = 0, and Lagrange's 
equation for qk becomes 

d oL 
--=0 
dt oqk 

Its integral is then immediately available as 

oL 
-. = constant = Pk 
oqk 

(g) 

(h) 

where Pk is the generalized momentum for coordinate q,.. Such coordinates are 
called cyclic coordinates. 

Returning to the solution of the two equations of motion, we substitute rp from 
Eq./into Eq. d, 

.. 2 cos(J g. _ 
() - C1 ~() + -1 sm () - 0 

sm 
(i) 

We solve this equation in the usual way by multiplying by 20 and integrating. 

20~ = 20Ci2 ~OS () - lg O sin () 
sm3 () I 

f d(02) = 2ci2f co~ () d() - lg f sin() d() 
sm3 () I 

The solution for O is then, 
ci2 2g 

02 = - ~() + -1 cos () + C2 sm 
(j) 

We have so far identified the constant C1 as the generalized momentum pq,, 
We will show now that the constant C2 is associated with the total energy E of the 
conservative system, which is 

E = T+ U =2T-L (k) 
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We have from.Eqs. a, b, and c, 

ml{ (:)2 + ,p2 sin2 8 -1 02 -1 rp2 sin2 8 + f (1 - cos 8) J = E 

Eliminating if, from Eq. f, we arrive at the result 

(:)2 = - 1!rp2 + 2g cos (J + 2(.!._ -~) 
sm2 8 I m/2 I 

By comparison with Eq. j, we find that 

C2 = 2(.!._ -~) 
m/2 I 

Example 9.8-2 

277 

(/) 

A spinning satellite with moments of inertia A, A, C, with C < A, has whip 
antennas which are free to vibrate in the z direction, as shown in Fig. 9.8-2. Set 

Fig. 9.8-2. Energy dissipation by whip antennas of a satellite. 

up the vibration equation, using generalized coordinates associated with the 
normal modes of the antenna beam, and outline a procedure to establish the 
attitude drift of the spin axis. 

We will assume the beam to have structural damping, which can be accounted 
for by a complex stiffness EI(l + irx), where rx is the structural damping factor. 
Letting m be the mass per unit length of the antenna, and w the elastic deflection 
in the z direction, the differential equation of motion is 

o<'w o2w 
El(l + irx) ox4 + m ai'i = ma, (a) 

The acceleration a, is that of a point along the undeformed antenna, which from 
Eq. 7.6-14a is 

a, = 2 ~ (x0 + x)roo2 sin 8 cos 8 sin rpt (b) 



278 INTRODUCTION TO SPACE DYNAMICS 

We will express the deflection in terms of generalized coordinates qn(t) and the 
normal modes 'Pn(x) of the antenna, 

00 

w(x, t) = ! qn(t) <rn(x) (c) 
n=l 

The normal modes are vibration shapes associated with the undamped har­
monic oscillations at the natural frequencies On, which obey the equation 

d4<pn Q 2 -
EI dx4 - m n <pn - 0 (d) 

We now substitute Eq. c into a and replaceEI(d4<pnfdx4) by mf.ln2<pn ofEq. dto 
obtain 

00 00 

! m<pn"i/n + ! mf.ln2(1 + irx)<pnqn = ma, (e) 
n=l n=l 

Multiplying Eq. e by <pk dx and integrating over x = 0 to I, and noting the 
orthogonality relationship of the normal modes, 

iz {o for n =1= k 
<pn<pkm dx = 

o M forn = k 
The result is 

1 rz 
ijk + (1 + ia)f.ln2qk = M Jo ma,<pk dx 

= Fsin <pt 
where 

F = !(~) Wo2 sin 8 cos 8 i\xo + x)<pkm dx 

The ste_ady-state oscillation of the antenna is then established as 

Fsin (<pt + "k) 
q,, = nk2v[1 _ (¢/f.lk)212 + a2 

(f) 

(g) 

(h) 

To determine the energy dissipated per cycle, we start with the strain energy 

1 d w EI 2 ,,2 2 ,, 2 , " il(2)2 ( il ii il ) U = 2 EI o dx2 dx = 2 q1 o <pl dx + q2 o <p2 dx + 2q1q2 o <p/<p2 dx + ... 
(i) 

Using only the first mode and noting that (see Sec. 7.6) 

!!... = (1 - ~) mo cos () = R1 cos () n1 A n1 (j) 

the equation for the energy dissipated per cycle is 

(k) 
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Equating this to T of Eq. 7.6-6, the rate of drift of the attitude angle can be 
expressed as 

. K sin fJ cos2 fJ 
fJ=---~~~-----= 

(1 - Ri2 cos2 fJ)2 + cx;2 

where the many constants of the problem have been lumped into K . 

Ii 
K 
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Fig. 9.8-3. Resonance in attitude drift rate due to whip antennas. 

(l) 

This result should be compared to that of Example 7.6-1. Since fJ generally 
starts from some small angle 80 and increases for C/A < 1, there is a possibility 
of resonance if R1 is greater than unity. The peak values, however, are expressible 
as 

() = K sin () cos2 () 
(1..2 

(m) 

which is similar in form to Eq.f of Ex. 7.6-1, although the Kare different. A plot 
of the drift rate is shown in Fig. 9.8-3. 

9.9 Nonholonomic Systems 

The development of the previous section for the holonomic system, 
Eqs. 9.8-1 to 9.8-13, apply equally well to nonholonomic systems. The 
difference here is that for the nonholonomic system the q; of Eq. 9.8-1 are 
not all independent. However, the requirement for the independence of 
the q; for the holonomic system was not imposed in the development of 
the previous section until the step between Eqs. 9.8-13 and 9.8-14 was 
required. 
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For the nonholonomic system, the qi are restricted 
equations of the form 

+ a01 dt = 0 

the constraint 

(9.9-1) 

a1m dq1 + a2m dq2 + · · · anm dqn + a0m dt = 0 

which are nonintegrable. Holonomic constraints may also be present, 
but we will assume that they have been used to reduce the qi to independent 
quantities, of which there will be n - m, where m is the number of non­
holonomic constraints. 

We will assume for convenience that there are just two 
holonomic constraints and write their variation, 

all oql + G21 Oqz + ... anl oqn = 0 

a12 oql + a22 i5q2 + ... an2 bqn = 0 

= 2) non-

(9.9-2) 

Since the variation is one of configuration, holding time constant, t does 
not enter into 9.9-2. Two of the qi are now related by Eq. 9.9-2, 
leaving n - 2 of the q; as independent quantities. 

We will now multiply each of Eq. 9.9-2 by an undetermined multiplier 
). and integrate between t = 0 and t1 as follows: 

n lt1 L A1ai1 !3qi dt = 0 
i-1 0 (9.9-3) 

ii f 1Ji2a;2 oqi dt = o 

(Note that the A could be a function of time as well as constants.) Including 
these terms in Eq. 9.8-13, we can write, 

a f\r + W) dt = - I Jt1 (!!. 0~ - ar - Q; - A1ai1 - A2ai2) oqi dt Jo i-1 0 dt oq; oqi 
= 0 (9.9-4) 

Since n - 2 of the bqi are independent, we will separate the above integrals 
to 

where the two oq; of the last integral are fixed by the constraint equations 
and, therefore, are not arbitrary. We can however, make the integrand of the 
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last integral zero by a proper choice of },1 and Jc2. Each of the integrand 
of the first integral can be shown to be zero by assuming one of the 
arbitrary oq; to be nonzero and the remaining bq; to be all zero, repeating 
this procedure for each of the (n - 2) oqi. We then arrive at n equations 
of the form, 

d oT oT 
- ~ - :i- = Qk + A1ak1 + ?,2ak2 
dt uq7c uqk 

(9.9-6) 

Since we have two additional unknowns ,1.1 and A2 besides then q;, we 
need two other equations, which are furnished by the constraint equations, 
Eq. 9.9-J, written in the form, 

G11Cf1 + G21(j_2 + ' .. an1Cfn + a01 = 0 

a12(j_1 + a22(j_2 + · · · an2qn + ao2 = 0 
(9.9-7) 

These n + 2 equations are then sufficient for the solution of the problem. 
In the development of this section, we have illustrated the method of 

Lagrange's undetermined multipliers, },, which is not restricted to the 
nonholonomic system, and can be applied equally well to hoionomic 
systems. Occasionally it is not convenient to reduce the variables of the 
holonomic system to independent quantities by the use of the constraint 
equations, in which case the Lagrange multiplier method can be used. In 
such a case, the Lagrange multiplier method will also provide a solution 
for the constraint forces, which are sometimes required. 

Example 9.9-1 
A thin disk of radius r rolls down an inclined plane of small angle a with the 

horizontal. If the plane of the disk is always normal to the inclined plane, and 
capable of rotation about the normal, determine the x, y motion of the disk. 

Referring to Fig. 9.9-1, the coordinates of the problem are 'P, x, and ef,. The 
equations for the kinetic and potential energies are, 

T = tm[(r¢)2 + i(r,j!)Z + t(r,p)2] 

U = -mgx sin a 

and the constraint equation is 
dx 

rdef,--- =0 
cos 'P 

The Lagrange equations are then, 

~[mi~] =0 

}. 
-mg sin o:: + -- = 0 

cos 'JJ 

!!:_ [m(fr2)¢] - rX = 0 
dt 

(a) 

(b) 

(c) 

(d) 

(e) 
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From (d), 1iJ is a constant n, and its integral is 'P = 'Po + nt. Substituting for 'P 
in (e), the equation for ..1. becomes 

,1. = mg sin IX cos (,p0 + nt) (g) 

With ,1. substituted into Cf), its integral is 

3 2 • . . [1 . ( ) 1 . J O - mr (¢, - ef,0) - mgr sm IX - sm 'Po + nt - - sm 'Po = 
2 n n 

(h) 

0 

Fig. 9.9-1. Coordinates y, x, and ¢, are related by nonholonomic constraint. 

The x and y displacements can be found from the integrals of 

dx = r~ cos 'P dt 

dy = r~ sin 'P dt 

9.10 Lagrange's Equation for Impulsive Forces 

(i) 

(j) 

During impact of one body on another, a very large force acts for a very 
short time. Such forces are said to be impulsive. As the time of contact 
diminishes to zero, the force tends to infinity; however, like the delta 
function, the time integral of the impulsive force is finite. 

When an impulsive force acts on a body, the velocity of the body 
undergoes an instantaneous change over an infinitesimal change in 
displacement. Thus, generalized velocities cj; will change instantaneously, 
whereas generalized coordinates q; will not. The system is nonconservative 
since energy is generally dissipated during impact. 

In applying Lagrange's equation to impulsive force systems, we approach 
it by a limiting process. Starting with the equation, 

d or or 
----= Q. 
dt oq; oq; ' (9.10-1) 
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we dt and integrate over the impact time. 

ar 1E -dt= 
oq; o 

dt (9.10-2) 

The second integral contain terms associated with the generalized 
coordinate q; which do not change during the impact. Thus, in the 
limiting case when E--+ 0, the second integral vanishes, and we obtain 
the relationship, 

o""' 
1::1 _!_ = lim 

O(j; E-0 
(9.10-3) 

This equation states that the change in the generalized momentum is equal 
to the generalized impulse. 

Example 9.10-1 
Four equal bars, each of mass m and length 2a, lie on a smooth, horizontal 

floor, hinged together in the form of a rhombus, as shown in the sketch. If an 

D 

YA 
F 

C 

Fig. 9. I0-1. Impulsively loaded structure. 

impulsive force Flb-sec. is applied at A in the direction CA, determine the initial 
angular velocity of the bars. 

Place coordinates x, y with origin O at the center of mass. 
The x and y coordinates of the center G of the bar are, 

xa = a sine Ya= a cos e 
and the velocity of the center of mass of the bars becomes 

va = (aB cos e)i + (y0 ± aB sin iJ)j 

where the minus sign applies to AB and AD and the plus sign to CB and CD. 
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The kinetic energy of the bars is 

1 2 1 ( a2) .• T = 2 4m VG + 2 4m 3 8" 

= 2m('!io2 + 1a2e2) 

and the change in the generalized momentum becomes 

oT 
!1 ---:- = 1 ~ma28 

ae 3 

A 

The generalized force Q is found from the virtual work of the impulse. Due to 
virtual displacements oy0 and iJ(J, the point A undergoes a displacement 

o(y0 + 2a cos 8) = oy0 - 2a sin fJ of! 

and the virtual work of ft is 

bW = F(oyo - 2a sine ol.J) 

The generalized force due to of) is then 

Qe = -F2a sin 8 

and, by substituting into Eq. 8.14-3, we obtain 

and 
1lma28 = -ft2a sin e 

(J = _ 3.Fsine 
8ma 

PROBLEMS 

1. A particle moving in space is defined by the spherical coordinates r, e, and rp. 
Determine the generalized forces associated with the spherical coordinates, 
and establish the component forces in the radial, meridian, and latitude 
directions. 

z 

y 

X 

Prob. I 
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2. A satellite moves in a plane orbit under the influence of an inverse square 
attraction. Derive the orbit equation from Lagrange's formulation. Is there 
a cyclic coordinate for the system and, if so, what does it imply? 

Prob. 2 

3. A spherical pendulum of length l is set up on the earth's surface at latitude J., 
with the z axis in the vertical direction and x axis pointing north. Show that 
the Lagrangian is 

L = 1[x2 + y2 + Z(xy - xy)nsin). -f (x2 + y2) - 2yRncos). + 2/yncos ).] 

where n is the rotation speed of the earth and R = radius of earth. 
4. Determine the Lagrangian for the symmetric top spinning about a fixed pivot 

on the floor. Establish the cyclic (ignorable) coordinates and write directly 
the resulting integrals. 

5. For a system of N particles, the kinetic energy can be written in the form 

l n n n 

T = 2- ! !A1cifNh + IB1c<j1c + C 
k=l l=l k=l 

C = - Im; ---! } N (or-)2 

2 i=l at 
Prove that for a scleronomic conservative system, 

n oL 
2T = I <j7c-. 

k=1 °q1c 

6. For a conservative system of N particles, prove that the conservation of 
energy holds only if the time t does not appear explicitly in the Lagrangian, 
in which case, 

dE d ( n oL ) 
- = - I <j7c - - L = 0 
dt dt k=l <l<j1c 

7. Using the Lagrangian approach, deduce Eulers dynamical equations for an 
arbitrary rigid body subjected to moments about the body axes. 
Hint: T = :!,1(Aw.,2 + Bw,} + Cw.2). Express the angular velocites in terms 
of Eulers angles. The generalized force can be determined by giving each of 
the Euler angles virtual displacement with the other two equal to zero. 
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8, A mass is suspended from a weightless spring of stiffness k lb/in. Write 
Lagrange's equations and discuss the motion for small oscillations in the 
vertical plane. 

Prob. 8 

9. Using Lagrange's method, set up the equations for the motion of a bar sus­
pended by a string and oscillating in a plane. 

11:1. A uniform bar of mass m and length l is suspended from one end by a spring 
of stiffness k lb/in. The bar can swing freely only in one vertical plane and the 
spring x is constrained to move only in the vertical direction. Set up the 
Lagrange equations of motion. 

!'rob. rn 
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2. A satellite moves in a plane orbit under the influence of an inverse square 
attraction. Derive the orbit equation from Lagrange's formulation. Is there 
a cyclic coordinate for the system and, if so, what does it imply? 

--~--- --./ ' 
/ ' 

/ ' 
/ r 8 \ 
I \ 
\ I 
\ I 
'\ / " / ' / ' ---....... __ ---

Prob, 2 

3. A spherical pendulum of length l is set up on the earth's surface at latitude J, 
with the z axis in the vertical direction and x axis pointing north. Show that 
the Lagrangian is 

L = i[ x2 + y2 + 2(xy - xy)D. sin i -f (x2 + y2) - 2yRD. cos i + 2/yD. cos i] 
where n is the rotation speed of the earth and R = radius of earth. 

4. Determine the Lagrangian for the symmetric top spinning about a fixed pivot 
on the floor. Establish the cyclic (ignorable) coordinates and write directly 
the resulting integrals. 

5. For a system of N particles, the kinetic energy can be written in the form 

Prove that for a scleronomic conservative system, 

n oL 
2T=2 qk-. 

k=1 °q1r, 

C = - 2mi __..! 
1 N (or-)2 

2 i=i at 

6. For a conservative system of N particles, prove that the conservation of 
energy holds only if the time t does not appear explicitly in the Lagrangian, 
in which case, 

dE d ( n oL ) 
- = - 2 q1r, -. - L = 0 
dt dt k=i oq1r, 

7. Using the Lagrangian approach, deduce Eulers dynamical equations for an 
arbitrary rigid body subjected to moments about the body axes. 
Hint: T = %(Aw.,2 + Bwy2 + Cw.2). Express the angular velocites in terms 
of Eulers angles. The generalized force can be determined by giving each of 
the Euler angles virtual displacement with the other two equal to zero. 
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11. A centrifugal pendulum of mass m and length r is attached to a flywheel of 
moment of inertia I. Show that the kinetic energy of the system is, 

where 

1 ( I R2 ) A=--+-+1 
2 mr2 r 2 

Prob. II 

12. A particle of mass m slides without friction on a hoop of radius r, which is 
rotated with constant speed n about a vertical diameter. A single coordinate 
/J is sufficient to describe the position of m; however, we have a moving 
constraint. Compare the total energy of the system with that determined 
from T + U = Ii( oL/ oli) - L and discuss this discrepancy. 

Prob. 12 

13. A uniform bar of length 2l and mass m is dropped from a height h onto a 
horizontal floor. The bar descends without rotation and at an angle /J0 with 
the floor. If the. coefficient of restitution between the floor and bar is e, 
determine the velocity of the center of the bar and its angular velocity 
immediately after impact. 
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Prob. 13 

14. In Prob. 13, determine the time elapsed after the first impact when the 
opposite side of the bar strikes the floor. What is the angle e when it strikes? 

15. A simplified two-dimensional version of a space craft in landing is shown in 
the sketch, where the two legs are restrained from rotation by a torsional 
spring of stiffness K lb-in.jrad. If the legs strike _the smooth inelastic plane 
with velocity v, determine the rotational velocity e immediately after impact. 
Assume l:i = 0 before impact and the torsional spring to be exerting a moment 
C0, holding the legs against the stop. 

Prob. 15 

16. For the system shown, show that, if one incorrectly takes y and 8 as indepen­
dent generalized coordinates q1 and q2, then the resulting two Lagrange 
equations are also incorrect. Demonstrate the use of the Lagrangian multi­
plier by establishing the correct equation, using y and 8, and a constraint 
equation. 

I 

T, 
Prob. 16 

17. Two uniform bars of mass m and length l are hinged as shown, and lie on a 
smooth horizontal plane. If an impulsive force strikes the bar normally at 
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one end, determine the angular velocities of the two bars and the velocity of 
the hinge. 

yt 

§)=:====c:11=~-
F 

18. Four hinged bars, each of length land mass m, fall in translation and strike a 
horizontal inelastic ground. Taking y and f! as generalized coordinates, find 
the motion immediately after impact. 

19. A rigid pendulum of length land mass m can swing around the horizontal axis 
AA which is mounted in a frame that can rotate freely around the vertical axis 
BB. The moment of inertia of the frame and horizontal axle about the 
vertical axis is I. At the instant t = 0, the pendulum in the vertical position 
is given an initial velocity v0, and the frame is given an initial angular velocity 
w 0• (a) Set up the equations of motion, noting that the momentum and 
energy are conserved; (b) simplify the results of (a) by assuming small angles, 
sin f! = 6, and cos() = 1 - :Y:J62 ; (c) discuss the motion of the simplified 
system for w02 < g/l and w02 > g/l. 

l"rob, 19 
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20. A spherical pendulum of length l and mass m is suspended from end O of a 
horizontal arm of length e that rotates with constant angular velocity ro about 
a fixed vertical axis C, as shown in the sketch .. Assuming small oscillatory 

21. 

X 

Prob.20 

amplitudes and a damping equal to ( x critical damping in a plane pendulum 
oscillation, show that the equations of motion of the pendulum bob are 

x + 2{pi + (p2 - ro2)x - 2roy = ero2 

where p2 = g/l. 
fj + 2{py + (p2 - ro2)y + 2roi = 0 

In Prob. 20, let z = x - x0 + iy and x0 = ero2/(p2 - ro2), where x0 denotes 
the position of static equilibrium (not necessarily stable), and show that the 
two equations can be reduced to a single homogeneous equation in z with 
a general solution 

z = Ae (-,-i)(p+w)t + Be<-,+i)(p-w)t ( < < 1 

where terms of order (2 have been neglected. Discuss the criteria for stability 
of small oscillations. 

22. A one-wheel trailer shown in the sketch is towed with velocity v. If the 
trailer hitch has a lateral stiffness k, and the radius of gyration of the trailer 
about the center of mass G is p, write the two equations of motion and the 
constraint equation for no lateral sliding of the trailer wheel. Determine the 
stability of the trailer for small IJ (i.e., roots of the characteristic equation 
must not have positive real parts). 

23; Carry out the solution for x and yin Example 9. 9-1. Show that, if the initial 
conditions are zero, the curve traced out will be a cycloid. 

24. The spin axis of a space station with C = kA (for a thin disk k = 2) is 
initially pointing to the north star. It is desired to change the direction of 
the spin axis by IJ 0 in a specified direction without inducing a precession about 
the new direction. This can be done by two properly timed impulsive blasts 
from a single rocket engine on the rim and pointing parallel to the spin axis. 
If the initial angular momentum of the station is h = Cro0, determine the 
timing of the first and second blasts in relation to the desired direction change 
and their magnitude. 
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9.1 ! Lagrange's Equations for Rotating Coordinates 

In the dynamic analysis of f!exibie missiles, it is convenient to use a set 
of coordinates moving with the missile. The missile can be considered a 
system of particles whose position relative to the moving axes can be 
defined by generalized coordinates q;. 

In setting up the equations of motion, it is often simpler to start from 
the kinetic and potential energies of the system, using Lagrange's equation. 
For rotating coordinates, these equations differ from the usual Lagrange 
equations for fixed coordinates; however, since their rigorous derivation 
is lengthy,* we will only present the equations and justify each term. 

The position of the origin relative to the system of particles and the 
orientation of the axes are arbitrary choices which will influence the final 
form of the equations of motion. We will place the moving axes as shown 
in Fig. 9.1 with the origin at the center of mass and the x axis co­
inciding with the missile longitudinal axis in the undeformed state. Aside 
from the coordinates q; for the relative motion, the coordinate axes in 
plane motion will have three degrees of freedom, x 0, y0, and 6, which can 
be varied independently. The Lagrange equations can then be written as, 

<!_ oT - (J oT = °"'F (9.11-1) 
dt ox0 oy0 ,L, x 

d or . ar 
- - + e - = J,F (9.11-2) 
dt oy0 ox0 y 

d ar oT oT 
- :i-- + X0 :,:- - Yo:,:- = 2M0 (9.11-3) 
dt u8 uyo uXo 

The equation for q; remain unaltered in form. 
In accounting for the terms in these equations, we recognize oT/ox0 and 

i3T/oy0 as the generalized momenta, and oT/0$ as the generalized angular 
momentum. 'vVe will then represent the linear momentum by 

ar. or. 
p=-. 1+-. J ox0 oy0 

(9.11-4) 

As the force equation is the rate of change of the linear momentum, 

F = [~~] + w X p (9.11-5) 

the terms of Eq. 9.11-1 and 9.11-2 are immediately accounted for. 

* Thomson, W. T., "Lagrange's Equations for Moving Coordinates," Space Tech­
nology Laboratories Report No. EM 9-15 TR-59-000-00768, Los Angeles (July 1959). 
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The terms ofEq. 9.11-3 can be identified from Eq. 7.11-3, which can 
be written as 

(9.11-6) 

The term oT/ <J{) is the angular momentum h0, and the remaining two terms 
are equal to R0 X I m;i;, where R0 = :i0i + y0j. 

8 

I 
/ 

/ 

I 
I 

/ 
/ 

I 

X 

Y' 

Fig. 9.11-1. Rotating coordinate system. 

9.12 Missile Dynamic Analysis 

Missiles are, in general, flexible structures, weight being of primary 
concern. Vibrational problems are thus likely to plague their performance, 
and it is in general necessary to make a dynamical analysis of a vehicle in 
flight. Such an analysis consists of formulating the equations of motion 
in all their details to account for the interaction of the bending of the 
flexible missile with the rigid body motion, the reaction of the swiveling 
engine, the sloshing of the propellant, the excitation of the aerodynamic 
forces and gusts, and the coupling of the servosystem controlling the sta­
bility of its attitude. The equations of motion must then be linearized and 
programmed for machine computation, i.e., the missile is theoretically 
flown on the high-speed computer. 

It is evident that a detailed formulation of all the factors pertinent to 
the dynamical analysis is beyond the scope of this text. It is possible, 
however, to discuss a greatly simplified problem which will serve to 
illustrate the dynamical techniques employed in the general analysis. 



294 INTRODUCTION TO SPACE DYNAMICS 

We will consider here the problem of a flexible missile of constant mass, 
where the propellant is treated as a solid to avoid the complications of 
sloshing. The engine will be considered to be and the motion 

Fig. 9.12-L Geometry of flexible missile and coordinates. 

will be restricted to the vertical plane of the trajectory, as shown in Fig. 
9.12-1. The coupling of the servosystem, actuating the gimballed engine 
attitude, will also be neglected. 

Coordinate system 

The choice of the coordinate system is an important one which depends 
on the vibrational data available. The missile can be treated as a free-free 
beam, and its normal modes, computed with engine locked on, will be 
assumed to be available from a previous analysis. Such modes are 
orthogonal and possess the property of zero linear and angular momenta 
about the missile vibrational axis (axis coinciding with the undeformed 
missile with engine locked on, from which vibrational displacements are 
measured) passing through its center of mass. In actual analysis, the 
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shear deformation and rotatory inertia terms are accounted for in the 
normal mode analysis; however, for simplicity of discussion we will omit 
these terms. 

The x, y coordinate axes will be chosen with the origin at the center of 
mass, the x axis coinciding with the missile vibrational axis. It is evident, 
then, that the missile longitudinal axis will undergo an additional displace­
ment due to the rotation of the engine. The nature of this additional 

i"ig. 9.12-2. Conservation of linear and angular momenta. 

displacement is readily understood by considering a rigid missile whose 
engine section is given a rotational velocity 6 by an internal hinge moment, 
as shown in Fig. 9.12-2. If m and me are the total mass and the engine 
mass respectively, the maintenance of zero linear momentum (since there 
is no external force) can be expressed by the equation, 

r:lydm - b zdm = 0 (9.12-1) 

Letting c be a point on the missile longitudinal axis coinciding with the 
center of mass of the missile in the undeformed state, and e be the center 
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of mass of the engine, or section aft of the hinge, the above equation 
becomes, 

. m,z, b 
Ye=-;;;- (9.12-2) 

It is evident then that point c is displaced laterally by the amount 

m,z, y =- o = C1o 
e m (9.12-3) 

The small displacement of c in the x direction due to o is of second order 
and will be neglected. 

In addition to the lateral displacement Ye, there will be rotations of the 
sections forward and aft of the hinge to maintain zero angular momentum 
about the mass center of the missile. Letting the angular velocity of the 
missile forward of the hinge be 81, 10 the mass moments of inertia of the 
entire missile about the center of mass, and Ih the mass moment of inertia 
of the engine about the hinge, the angular momentum equation is 

f 12 yx dm - b f\x dm = 0 
-11 Jo 

Since y = Ye - x81 and x = -(lh + z) andJz• x dm = 0, 
reduces to -z1 

from which 
1081 = (Jh + m.f,.z,)b 

() _ I,. + m.f hze s _ s 
1 - u - C2u 

Io 

(9.12-4) 

the equation 

(9.12-5) 

These displacements can be considered to be the rigid missile displace­
ments due to hinge rotation o, which must be added to the vibrational 
displacements to obtain the total displacement of the flexible missile 
center line. They are, therefore, equivalent to translating and rotating 
the missile vibrational axis by Ye and () 1, and the total lateral displacement y 
of the flexible center line from the moving coordinate axis x is, at point x 

y = (C1 - C2x)o + 2, q;(t) <p;(x) (9.12-6) 
i 

where the vibrational displacement is represented by the sum of the normal 
modes ¢,;(x) multiplied by the generalized coordinate q;(t) associated with 
the mode. 

With the displacement relative to the coordinate system established, we 
next examine the motion of the coordinate axes themselves. The x axis, 
which coincides with the missile vibrational axis or the missile longitudinal 
axis with o = 0, makes an angle () with the vertical, as shown in Fig. 
9.12-1. The rate of rotation of the coordinate axes is then w = 8. 
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The origin of the coordinate axes, coinciding with the center of mass at 
all times, has a velocity v0 tangent to the trajectory. The angle (I( between 
v0 and the x axis is the angle of attack of the missile's longitudinal axis 
(the local angle ofattack will differ from (I( by dy/dx). Due to the changing 
direction of the trajectory tangent, the acceleration of the origin will be 
v0 parallel to v0, and v0/3 perpendicular to v0, where fJ is the angle made by 
v0 and the vertical. 

Equations of motion 

With the coordinate system defined in the foregoing, the equations of 
motion can be formulated by determining the kinetic and potential 
energies of the missile to be substituted into Lagrange's equation, taking 
note of the fact that the coordinates are rotating (see Sec. 9.11). 

The velocity of a point r = xi + yj in the rotating coordinate system is 

v = v0 + [v] + w X r (9.12-7) 

For any point x, y forward of the hinge h, the x and y components are· 

v., = x0 ·- y(J 

Vy= Yo+ '!i + xe 

(The relative velocity x of a point on the missile is of second order compared 
to y and is, therefore, neglected.) The velocity of a point aft of the hinge 
can be found from the above equations by replacing y by y - zo. 

In writing the kinetic energy equation of the missile with the swiveling 
engine, we need the squares of the velocity as follows: 

Forward of the hinge 

v2 = (io - ye)2 + ('!io + '!i + xe)2 (9.12-8) 
Aft of the hinge 

v2 = [(io - ye) + zeo]2 + [('!io + '!i + xe) - z6]2 

= (io - y(J)2 + ('!io + y + xe)2 

+ 2(io - y(J)zeo + (zeo)2 - 2('!io + '!i + xe)zb + (z6)2 (9.12-9) 

Thus part of v2 aft of the hinge has the same form as that forward of the 
hinge, which enables T to be written in the form T = T0 + T6, where the 
quantity o appears only in T6 • 

1 Jl· . . T0 = - [(x0 - y0)2 + (y0 + y + x0)2]m(x) dx 
2 -ll 

(9.12-10) 

Td = ~ Lb[2(xo - y(J)zeo + z2o2(J2 - 2('!io + '!i + xe)zb + z262]m(z) dz 
2 0 

(9.12-11) 
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In these equations the generalized coordinates are x0, Yo, (}, o, and q;, and 
it must be remembered that y is related to o and q; through Eq. 9.12-6. 

The equations of motion relating to the generalized coordinates x0, y0, 

and(} can be determined from Lagrange's equations, Eqs. 9.11-1, 9.11-2, 
and 9.11-3, however, since the linear and angular momenta relative to the 
coordinate system are zero, the sums of the external forces and moments 
must equal the rate of change of the linear and angular momenta of the 
rigid missile, which are related to the linear and angular accelerations of 
the x, y coordinate system with origin at the center of mass. These 
equations can therefore be written as 

ma0., = -mg cos(}+ F. + D* 

ma0v = mg sin(}+ F.(o + yh') - L* 

IO= -F.(o + yh')lh - F.yh + M 0* 

(9.12-12) 

(9.12-13) 

(9.12-14) 

where F. is the engine thrust, D *, L *, and M O* are the drag and lift com­
ponents of the aerodynamic force and its moment about 0, yh' = (dy/dx)h, 
and a0., and a0v represent the acceleration of the center of mass 0, which is 

a0., = x0 - y/J = v0 cos a - v0jj sin a 

a0y = 'fio + x/J = v0 sin a + v0jj cos a 

(9.12-15) 

(9.12-16) 

To demonstrate that these equations can also be determined from 
Lagrange's equations for rotating coordinates, the first of the above 
equation, for the sum of the forces in the x direction, will be derived from 
Eq. 9.11-1. Differentiating the kinetic energy, we have, 

oT JI• . . lb ~ = (x0 - y(})m(x) dx + (}o z m(z) dz 
UXo -~ o 

oT J~ . ·1b ~ = (y0 + y + x(}) m(x) dx - o z m(z) dz 
uy0 -l, o 

Substituting into equation 

we obtain 

d ar . ar 
----e-='I,F 
dt ox0 oy0 "' 

J12 [(x0 - yO - yO) - O(y0 + y + xO)]m(x) dx 
-1, 

+ (20b + Oo) f z m(z) dz= 1,F., 

(9.12-17) 

(9.12-18) 

(9.12-19) 

(9.12-20) 
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This can be rearranged as follows: 

y dx - z 

1 
dz I 

J 

dx = LFx 12-21) 

Since the second and third terms on the left side of this equation are the 
linear momentum relative to the coordinates, or the condition for the x 
axis passing through the center of mass (see Eq. 9.12-4), they are zero. 
The term 62 is also a negligibly small term. We have, therefore, demon-
strated the use of the Lagrange's for rotating coordinates. 

For the beam equation relating to the generalized coordinate q; and the 
engine rotation equation relating to o, the usual form of Lagrange's 
equation applies. We need, the for the potential or 
strain energy due to bending, which is, 

1 
U=-

2 

From Eq. 9.12-6 the curvature is 

( 'iJ2y\2 
-J dx iJx2 

'jJ2y N 

-"2 = I q /Pi 
ox i 

12-22 

(9.12-23) 

where the primes stand for differentiation with respect to x. Substituting 
into U and making use of the orthogonality relation, 

for j # i 
=i 

(9.12-24) 

The equation for the strain energy becomes, 

U= (9.12-25) 

The various partial derivatives needed for Lagrange's equation are: 

:: = r:l 
cJT 
oqi = 

au 
oq; 

. o?J + y + x6) ~ 
uqi 

. rb ofJ 
dx-bj_~z 

.10 vqi 

dx-

dz 

dz 
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We note here that l.i2 is a very small quantity, and terms multiplied by it 
can be neglected. Substituting for y from Eq. 9.12-6, taking into account 
the orthogonality condition, and noting that the linear and angular 
momenta of the vibration modes are zero, 

Jl2 fl' 
_

11
,:pi m(x) dx = _

11
xcpi m(x) dx = 0 (9.12-26) 

we arrive at the result, 

m(ij; + w;2q;) - J ibcp;z dm 

fl, 

= - L*qi; dx + F.(b + Yh 1)(f!;(-lh) 
-11 

(9.12-27) 

where the right side of the equation is established from the generalized 
force 

J_oy J-OY Qqi = F - dx = F - dx 
oqi aqi 

(9.12-28) 

In a similar manner, the engine rotation equation is determined from 

d ar ar au 
dt aJ - oo + oo = Q6 ( 9·12- 29) 

which gives 

[Ih - C1meze - Cilh + m.f.,ze)]b 

+ mez,(xo - l.iyo + g cos 8)(0 + yh') + (Ih + m.fhz.)e 

- m.zi!Jo + l.iio) - ~Ail r0
(f!;Z m(z) dz] 

i _Jo 
= MA(oA - o) - Mnb - M/5 (9.12-30) 

where the generalized force Q0 = MA(oA - o) - Mnb - Ml! is associ­
ated with M 6, the spring moment per unit angle of the hinge when locked, 
Mn with the damping moment of the hinge, MA with the engine actuator 
moment, and o A with the engine actuator position called by the autopilot. 
The autopilot actuating the engine attitude o operates from signals 
generated by the rate gyros in the missile in such a way that the missile 
motion at the position of the rate gyro, which depends on all of the 
generalized coordinates, is coupled to the previous equation through the 
engine attitude o. 

PROBLEMS 

1. Assume that the mass of a portion of the missile is represented by a lumped 
mass m; mounted on a spring of stiffness k against lateral motion (; from the 
center line at X;. Derive the equation for the additional kinetic energy of the 
missile due to l;-
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2. Derive Eq. 9.12-13 by the use of Lagrange's equation, 

d ar ar 
d- -;-:- + (J -;-:- = _2F11 

t uy0 ux0 

3. Derive Eq. 9.12-14 by the use of Lagrange's equation, 

d ar . ar . ar - ---,. + Xo -. - Yo-. = ,2Mo dt ao oy0 ox0 

4. Prove Eqs. 9.12-24 and 9.12-25. 
5. Derive Eq. 9.12-30 for the engine rotation. 
6. An elastic uniform bar of mass m and length I is supported from its upper end 

by a smooth pin. A constant force P is suddenly applied normal to the bar at 
its mid-length. Using generalized coordinates qi, and three arbitrary modes, 

. ,rX 
<p2 = sm 1 

• 2,rx 
<fa= sm-1-

determine the equation of motion, the natural frequencies, and the mode 
shapes. 

7. It is proposed to determine the natural frequencies of the two span beams of 
unequal length by assuming the deflection to be expressible by the equation, 

y = .2 qi <pt(x) 
i 

where 
'\;- i,rx 

<pt(x) = 2 sin I 

OJ· = (i'1T)2JEI 
• m/4 

C 

Prob. 7 

Show that the constraint equation .2i qi <pt(c) = 0, must be imposed and that 
the equation for the natural frequencies is, 

<pi2(c) + <pl(c) + <ra2(c) = 0 
roi2 - ro2 16roi2 - ro2 81 roi2 - ro2 
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APPENDIX A 

A system of linear equations 

Y1 = ll11X1 + ll12X2 + ll1aXa 

Y2 = ll21X1 + ll22X2 + ll23Xa 

Ya = lla1X1 + ll32X2 + a33Xa 

can be arranged into the matrix notation 

[::J = [::: ::: :::J [=:J 
Ya ll31 ll32 aaa Xa 

Matrices 

(A-1) 

(A-2) 

where the rule for the matrix multiplication is evident from the original 
equations. For Eq. A-2 to equal Eq. A-1, the terms of each row must be 
multiplied by the terms of the column x1, x2, x3• We can then view the 
matrix equation, Eq. A-2, as a convenient notation which may be further 
abbreviated to 

{y} = [a]{x} (A-3) 

We will next consider another set of linear equations like that of Eq. 
A-1, relating x to z, and write its matrix form as 

{x} = [b]{z} (A-4) 

where [b] is a square matrix like that of Eq. A-2. If we wish to relate y to z, 
Eq. A-4 can be substituted into Eq. A-3 as follows: 

{y} = [a][b]{z} 
= [c]{z} (A-5) 
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The elements of [c] can then be shown to be available from the equation 

Ci;= I 
k 

i.e., the third element of the second row is 

C23 = a21h13 + a22b23 + G23b33 

There are many theorems relating to the manipulation of matrix 
equations; however for the purposes of linear transformation of co­
ordinates, as treated in this text, the simple algebraic concepts discussed 
above are sufficient. 

1. Frazer, R. A., W. J. Duncan, and A. R. Collar, Matrices, Cambridge 
University Press, New York (1938). 

2. Pipes, L. A., Applied }Jathematics for Engineers and Physicists, 2nd ed., McGraw­
Hill Book Co., New York (1958), Chap. 4. 



Dyadics 

APPENDIX B 

We occasionally encounter a quantity which has nine components in a 
three-dimensional space. In elasticity we encounter nine components of 
stress at a point, whereas in dynamics we find nine components of inertia. 

For our purposes we can define a dyadic as a nine-component quantity 
which can be formed by multiplying two vectors, ignoring the dot- or 
cross-product rule. Thus the product of two vectors a and b is, 

ab = iia'"b'" + ija'"b11 + ika'"b" 
+ jiayh.,, + jja11b11 + jka11b. (B-1) 

+ kia.b'" + kja.b11 + kka.b. 

Although the above dyadic was formed by the multiplication of the two 
vectors a and b, the elements of the dyadic (called dyads) need not be 
related to the two vectors. Furthermore, it is convenient to arrange such 
terms in matrix form, so that a dyadic is in general expressible as, 

[ 
iic'"'" ijc,.y ikc'"" ] 

<c = jic11'" jjc1111 jkc11• 

kic.'" kjc.11 kkc •• 

(B-2) 

As an example of a dyadic not related to any vector, we have the inertia 
dyadic, 

[ 
ii/'"'" -ijl,.y 

_f = -ji/11., jj/1/11 

- kiJ Z'" - kjl.11 

-ikl.,. l 
-jk/11• 

kkl ••. 

(B-3) 
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To illustrate the general rule for the dot or cross product of a dyadic 
with a vector, we assume that the dyadic is formed by the product of two 
vectors as 

CC= ab (B-4) 

Its dot and cross product with a vector r is then dependent on the order of 
the product, and its interpretation is made clear by the following examples: 

<t' • r = (ab)· r = a(b · r) = a vector in the direction of a (B-5) 

r ·CC= r • (ab) = (r · a)b = a vector in the direction of b 

<t' X r = (ab) X r = a(b X r) = another dyadic 

r X CC = r X (ab) = (r X a)b = another dyadic 

(B-6) 

(B-7) 

(B-8) 

If we form the dot product of the inertia dyadic with the angular 
velocity vector w = w,,,i + wyj + w.k, the result will be the angular 
momentum vector. 

h = J • w = i.(I,,,,w,, - I,,ywy - I,,.w.) 

+ j(-f,,ywx + fyyWy - fyzWz) 

+ k( - I,,.wx - lyzWy + I •• w.) 

Here we encounter dot products such as, 

ji ,i = j(i d) = j 
ji. • j = j(i , j) = 0, etc. 

(B-9) 

which are evident from the general rule, and recognize that the subscripts 
of the inertia are interchangeable, i.e., lxy = ly,:,;· If, furthermore, we dot 
the angular velocity vector into the angular momentum vector, the result 
is a scalar, which in this case is twice the kinetic energy. 

2T=w•f•w (B-10) 

In summary, the dyadic is a special form of a tensor; however, our 
simple definition of the dyadic and its product with a vector requires no 
new rules of vector algebra, which appears to be adequate for the dynamical 
problems encountered in this text. For further reading on the subject, see 
reference. 

!iU::FERENCE 

1. Weatherburn, C. E., Advanced Vector Analysis, G. Bell & Sons, Ltd., London (1947), 
Chapter 5, and p. 207. 



The Variational Cal cul us 

APPENDIX C 

Many problems in Dynamics are formulated in terms of maxima and 
minima of quantities expressed by an integral. In this section we will 
briefly discuss the essentials of the variational calculus which are en­
countered for such problems. 

Consider the integral, 

(C-1) 

taken along a curve z = 1P(t). The quantity z can stand for any number of 
variables, such as position x, y, and the thrust attitude ef> of the missile 
problem. The value of the integral I will depend on the curve z = v(t) 
which we wish to find for the condition of maxima or minima of the 
integral C-1. 

Assuming that z = 1P(t) along curve ab of Fig. C-1 to be the optimum 
curve, we draw curve 1 along ab1 as the varied curve. The quantity z along 
the varied curve is represented by 

(C-2) 

where oz is the variation of z. The variation oz differs from dz in that dz is 
the increment along the curve z due to an increment dt, whereas oz is the 
difference in the z between the two curves for any given time t. We can 
also define the difference in the slopes of the z curves at any time t to be 

oz'= z/ - z' (C-3) 
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If oz is assumed to be a continuous function of time, we can differentiate 
Eq. C-2 and obtain 

d ~ ' ' - uz = z1 - Z 
dt 

Comparing Eqs. C-3 and C-4, we find that 

:!_oz= o ~ 
dt dt 

z 

Fig. C-!. Curve (1) is the varied curve of ab. 

(C-5) 

which indicates that the orders of operation of o and are inter­
changeable. Likewise, it can be shown that the interchangeability rule 
applies to integrals. 

o Jz dt = dt (C-6) 

With this understanding of o, we now express f along the varied curve 
by expanding it about the original curve. By Taylor series we can write, 

z + oz, z' + oz') = f(t, z, + ~ oz + of oz' + · · · (C-7) 
oz oz' 

Considering only the first order variation, the variation of the integral I is 

- {b(Of I 2/ 
M - J, oz oz T oz' dt (C-8) 

The second term in this variation can be integrated by parts so that the 
final expression for of becomes 

i)I' 'b 

M=2oz/ -i-:o, ' 
vz a 

(of d of) 
\oz - dt oz' oz dt 
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For the curve z = '!jJ(t) to be the optimum curve resulting in a maximum or 
minimum of I, the variation of must equal zero. 

Most texts treat the case where the variation bz is zero at the end points 
a and b (i.e., b1 coincides with b). In such cases the first term of Eq. 
C-9 vanishes, and we are left only with the integral. Since bz in the 
integral is arbitrary and not zero over the interval a to b, for the integrand 
to be zero, M = 0, and we obtain Euler's equation 

!:_ of_ of= 0 
dt oz' oz (C-10) 

The satisfaction of Euler's equation insures that the integral I is a maximum 
or minimum. For the more general case where bz is not zero at the end 
points, we must retain the first term and consider the entire expression 
of= 0, of Eq. C-9. 

Variation with Constraints 

We often encounter problems of optimization where the integral I must 
be maximized or minimized under conditions of constraints, 

g(t, z, ~;) = 0 

h(t, z, ~;) = 0 

(C-11) 

The procedure to be followed is then to multiply the constraint equations 
by arbitrary functions J., and maximize or minimize the equation 

I= [b[f(t, z, z') + J.1g(t, z, z') + J.2h(t, z, z') + · · ·] dt 
,a 

(C-12) 

which insures the satisfaction of the conditions of constraints in the 
process of optimization. The quantities }. are also functions of the 
variables of the problem and, since they are multiplied by zeros, 
the expression for I is unaltered. Equation C-9 is again applicable 
where f now stands for the entire integrand of Eq. C-12. 







Acceleration, components, 15, 16 
definition, 14 
of general motion, 22 

Accelerometer, 186 
Altitude of, launching, 64 

rocket burnout, 244 
vertical coasting, 244 

Angular, momentum (moment of mo­
mentum), 49 

momentum ellipsoid, 123 
velocity referred to inertial coordi­

nates, 198 
velocity vector, 8 

Angle of attack of missile, 227 
Anomaly, 60 
Antenna, energy dissipation of, 277 
Apogee, 59 
Apse line, 78 
Astronomical unit, 68 
Attitude control by flywheel, 236 
Attitude drift, 212, 279 

BaHistic, equation for missile, 260 
flight time, 93 
range chart, 92 
trajectory, 91 

Beam vibration of missile, 294 
Bernoulli, Jean, 269 
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Index 

Block diagram of, single axis platform, 
183 

three axis platform, 184 
Body fixed axes, 33 

angular velocity of, 113 
Burnout velocity of rockets, 243 

Center of mass, earth-moon system, 55 
Central force field, 52 
Charts for orbit computation, 72, 74, 75 
Chemical propellants, 243 
Circular orbit interception and rendez-

vous, 83 
Circular orbit speed, 64 
Coasting height of rockets, 244 
Coin spinning, 153 
Complex angle of attack, 198 
Complex angular velocity, 116, 197 
Computer for inertial guidance, 187 
Cone, body, 115, 118 

space, 115, 118 
Conic section, 59 
Conservation of energy, 48 
Conservation of momentum, 52 
Constraint, 261 

equations for, 267 
forces, 268 
variational method with, 311 
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Coordinate systems, 4, 29 
cyclic, 276 
transformation of, 29 

Coriolis acceleration, 16, 20, 22 
Coupling in three axis platform, 183 
Cross product, 6 
Crushable material, 46 
Cubic equation for symmetric gyro, 136 

D'Alembert, 269 
Damped oscillation of gyrocompass, 174 
Degrees of freedom, 262 
Derivative of a vector, 10 
Despinning of satellites, 208 
Direct precession, 117 
Direction cosine, 5, 42, 43 
Directrix, 59 
Disk rolling on inclined plane, 281 
Displacement of a rigid body, 101 
Drift of body attitude, 212 
Drop test, 46 
Dyadics of inertia, 104,307,111,237,238 

Earth, oblateness of, 94, 98 
precession of, 146 

Eccentric anomaly, 60 
Eccentricity, orbital, 58, 59 
Ecliptic plane, 68 
Efficiency of rockets, 246 
Ellipse, 59 

orbit transfer time, 74 
Ellipsoid of inertia, 107, 122 
Elliptic integrals, 127 
Energy, 47 

conservation of, 48 
dissipation effect on attitude, 208 
dissipation by hysteresis, 215, 277 
kinetic, 47 
orbital, 58 
potential, 47 

Equations of, Euler, 111, 113, 311 
Hamilton, 272 
Lagrange, 272, 282, 292 

Equatorial bulge, 98 
Equivalent mass of two body problem, 

55 
Escape velocity, 64 
Euler's, angles, 33 

differential equation, 311 
moment equation, 111 

INDEX 

Euler's, moment equation about princi­
pal axes, 113 

Exhaust velocity, 242 

Flexible missile, 294 
Flight trajectory optimization, 248 
Focus, 59 
Forces, central, 52 

conservative, 47 
of constraint, 268 

Fuel, rocket, 242 

General motion of rigid body, 149, 194 
Generalized coordinates, 264 
Generalized force, 274 
Generalized impulse, 283 
Generalized momentum, 292 
Geometry of conic sections, 59 
Gimbal, axis of gyro, 157 

mass effect, 163 
walk, 169 

Gravitational constant for sun, 68 
Gravitational law, 2 
Gravitational torque, 147 
Gravity, torque of bodies, 208 

torque due to oblateness, 147 
turn trajectory, 257 

Guidance, inertial, 181 
Gyroscope, cubic equation for, 136 

gimbals with mass, 163 
precession and nutation, 136, 138 

Gyropendulum, 177 
Gyropickoffs, 179 

Hamilton, 270, 272 
Heading angle, 61 
Heliocentric orbit, 68 
Herpolhode curve, cone, 32, 118 
Hohmann transfer orbit, 66 
Holonomic system, 266 
Hydrogen fuel, 242 
Hyperbola, 60 
Hyperbolic transfer time, 75 
Hysteresis energy dissipation, 215 

Impact, central, 45 
Impulse, 45 

specific of fuel, 242 
Impulsive, equation of Lagrange, 282 

moment on gyro, 161 
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Inertia, dyadic, 104 
ellipsoid, Hl7, 122 
moment of, 106 
product of, 106 

Inertial, coordinates, 3 
guidance, 181 
navigation, 186 

Initial conditions for satellite injection, 
61 

Injection velocity, 61 
Instantaneous burning of fuel. 255 
Instantaneous center, 3 2 
Instruments, gyroscopic, 178, 180 
Integrating gyro, 180 
Interception of satellite, circular orbit, 

83 
elliptic orbit, 85 
noncoplanar orbit, 86 

Invariable plane, line, 122 
Invariance, of kinetic energy, 121 

of moment of momentum, 121 

Jet damping of rocket, 222 

Kepler's equation, 76 
law, 53 

Kinetic energy, in generalized coordi­
nates, 172 

of rigid bodies, 105 
of two body system, 54 

Lagrange, 272 
equations, 274, 275 
equations for impulsive force, 282 
equations for rotating coordinates, 

292 
multiplier, 250 

Lagrangian, 274 
Launching parameters, 61, 64 
Line integral, 47 
Linear equation with variable coeffi­

cients, 228 

r,fass, definition of, 2 
Mass ratio of rocket, 243 
Matrices, 31, 305 
Missile dynamics, 293 
Moment, 49 

of inertia, 103 
of momentum, 49, 103 

Moment, of a vector, 8 
Moments for steady precession of gyro, 

140 
Momentum, conservation of, 52 

linear, 44, 45 
sphere, 126 
theorems, 49 

Motion, about body axes, 113 
about a fixed point, 102 
due to central forces, 52 
under zero moment, 113 

Navigation, inertial, 186 
Navigation errors, 188 
Near symmetric body, 201 

inertia relationship, 203 
motion referred to inertial coordi-

nates, 205 
Newton's law of gravitation, 2 
Newton's laws of motion, 2 
Node line, 35 
Noncoplanar orbit interception, 86 
Nonholonomic system, 266, 279 
Nonlinear equation techniques, 166 
Normal modes, 278 
Nutation of earth, 146 

Oblateness of earth, 94, 98 
Optimization of, multistage payload, 

246 
thrust attitude, 249 

Orbit, change due to impulse, 66 
computation charts, 72 
eccentricity, 58 
equation, 58 
parameters, 62, 72 
transfer time, 74, 75 

Ore crusher, 1.45 
Oscillation of, navigation errors, 188 

symmetric gyro, 137 

Parabola, 60 
Particle, 1 
Particle dynamics, 44 
Payload, 246 
Pendulum, centrifugal, 287 

double, 265 
Schuler, 190 
spherical, 275, 290 
tuned, 238 



Performance, of rockets, 240 
multistage optimization, 246 
powered trajectory, 249 

Perigee, 59 
Period of elliptic orbit, 65 
Perturbation, of orbit parameters, 79 

technique for nonlinear systems, 166 
Pickoff, gyro, 179 
Plane motion, 14 
Planets, distances from sun, 69 

orbits of, 5 6 
Poinsot's geometric solution, 121 
Poinsot's ellipsoid, 122 
Polar coordinates, 14 
Polhode curves, cones, 118, 125 
Position error of platform, J.89 
Potential, 48 
Potential energy, 48, 58, 105 
Powered flight trajectory, 249 
Precession, 117 

of earth, 146 
Principal axes, 107 
Propellant, mass, 246 

specific impulse, 242 
sloshing, 293 
types, 242 
utilization, 252 

Radial components of velocity, accel-
eration, 14, 15 

Radius of curvature, 16 
Range, ballistic, 92 
Rate gyro, 178 
Ratio, mass, 243 

thrust, 242 
Regression of node line, 99 
Relative motion, 18 

to rotating earth, 27 
Rendezvous of satellites, 83 
Resolution of platform torque, 185 
Resonance of spinning antenna, 279 
Restitution, coefficient of, 45 
Retrograde precession, 117 
Rheonomic, 270 
Right-handed coordinate system, 4 
Rigid body, 101 

kinetic energy of, 105 
Rocket, efficiency, 246 

multistage, 242 
theory, 240 

Rolling of disk, 149, 151, 281 
Rotated coordinates, 33 

INDEX 

moments and products of inertia 
about, 105 

Rotating curve, 18 
Rotation referred to inertial coordi­

nates, 198 

Satellite, interception, 83 
launching conditions, 61 
orbits, 56 
rendezvous, 83 

Scalar dot product, 6 
Scalar quantity, 3 
Schuler pendulum, 190 
Scleronomic, 270 
Semimajor, minor axes of ellipse, 59 
Simple pendulum, 264 
Single axis platform, 181 
Single stage rocket, 240 
Sleeping top, 141 
Small oscillations of gyros, 15 5 
Solar system, 68, 69 
Solid fuel, 242 
Solution by Laplace transform, 159 
Space, equations of motion, 22 

vehicle motion, 194 
Specific impulse of fuels, 242, 243 
Spin requirement for gyro, 139 
Spinning disk, 152 
Spinning rocket, 223 
Stabie platform, 180 
Stability, energy consideration of, 213 

of orbits, 81 
of rotation about principal axes, 130 

Staging of rockets, 246 
Steady precession of gyros, 138 
Structural damping, 215 
Structural factor for rockets, 24 7 

Thrust, attitude of, 249 
misalignment, 195 
ratio of rockets, 242 
of rockets, 241, 221 

Time of ballistic flight, 93 
Time of orbit travel, 73 
Trajectory, gravity turn, 257 

optimum, 248 
Transfer, functions for platforms, 182 

matrix, 31 
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Transfer orbit, coaxial ellipse, 70 
Hohmann, 66 
hyperbolic, 72 
noncoplanar, 87 
time, 73 

Transformation of, coordinates, 29, 34 
moments and products of inertia, 105 
velocity, 31, 37 

Transverse components, velocity and ac-
celeration, 14, 15 

Tumbling, rate of, 218 
Tuned absorber, 238 
Two body problem, 54 

Undetermined multipliers, 280 
Unit vector, 5 

Variable mass body, 220, 230 
Variational method, 250, 309, 311 
Vector properties, addition, 5 

bound, 4 
components, 6 

317 

Vector properties, cross products, 6 
derivative of, 10, 11 
dot product, 6 
free, 4 
moment of, 8 
multiple product of, 8 
quantity, 4 
rectangular components, 7 
resolution, 5 

Vehicle motion, effect on gyrocompass, 
175 

Velocity, definition, 13, 14 
Velocity impulse for Hohmann trans­

fer, 67 
Vibration of missiles, 294 
Virtual work, 268 

Weight, 2 
Work, 47 

virtual, 268 

Zero lift trajectory, 257 
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Ast:ronomy 

BURNHAM'S CELESTIAL HANDBOOK, Robert Bumham,Jr. Thorough guide 
to the stars beyond our solar system. Exhaustive treatment. Alphabetical by constel­
lation: Andromeda to Cetus in Vol. l; Chamaeleon to Orion in Vol. 2; and Pavo to 
Vulpecula in Vol. 3. Hundreds of illustrations. Index in Vol. 3. 2,000pp. 6\,i x 9%. 

23567-X, 23568-8, 23673-0 Three-vol. set 

THE EXTRATERRESTRIAL LIFE DEBATE, 1750-1900, Michael J. Crowe. First 
detailed, scholarly study in English of the many ideas that developed from 1750 to 
1900 regarding the existence of intelligent extraterrestrial life. Examines ideas of 
Kant, Herschel, Voltaire, Percival Lowell, many other scientists and thinkers. 16 illus­
trations. 704pp. 5% x 811. 40675-X 

A HISTORY OF ASTRONOMY, A. Pannekoek. Well-balanced, carefully reasoned 
study covers such topics as Ptolemaic theory, work of Copernicus, Kepler, Newton, 
Eddington's work on stars, much more. Illustrated. References. 52lpp. 5% x 8\i. 

65994-1 

AMATEUR ASTRONOMER'S HANDBOOK,]. B. Sidgwick. Timeless, compre­
hensive coverage of telescopes, mirrors, lenses, mountings, telescope drives, microm­
eters, spectroscopes, more. 189 illustrations. 576pp. 5% x 8%. (Available in U.S. only.) 

24034-7 

STARS AND RELATIVITY, Ya. B. Zel'dovich and I. D. Novikov. Vol. l of 
Relativistic Astrophysics by famed Russian scientists. General relativity, properties of 
matter under astrophysical conditions, stars, and stellar systems. Deep physical 
insights, clear presentation. 1971 edition. References. 544pp. 5% x 8%. 69424-0 

Chemistry 
CHEMICAL MAGIC, Leonard A. Ford. Second Edition, Revised by E. Winston 
Grundmeier. Over 100 unusual stunts demonstrating cold fire, dust explosions, 
much more. Text explains scientific principles and stresses safety precautions. 
128pp. 5% X 8%. 67628-5 

THE DEVELOPMENT OF MODERN CHEMISTRY, Aaron]. Ihde. Authorita­
tive history of chemistry from ancient Greek theory to 20th-century innovation. 
Covers major chemists and their discoveries. 209 illustrations. 14 tables. 
Bibliographies. Indices. Appendices. 85lpp. 5% x 8'h. 64235-6 

CATALYSIS IN CHEMISTRY AND ENZYMOLOGY, William P. Jencks. 
Exceptionally clear coverage of mechanisms for catalysis, forces in aqueous solution, 
carbonyl- and acyl-group reactions, practical kinetics, more. 864pp. 5% x 81h. 

65460-5 
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THE HISTORICAL BACKGROUND OF CHEMISTRY, Henry M. Leicester. 
Evolution of ideas, not individual biography. Concentrates on formulation of a coher­
ent set of chemical laws. 260pp. 5% x 81h. 61053-5 

A SHORT HISTORY OF CHEMISTRY, J. R. Partington. Classic exposition 
explores origins of chemistry, alchemy, early medical chemistry, nature of atmos­
phere, theory of valency, laws and structure of atomic theory, much more. 428pp. 
5% X 81h. (Available in U.S. only.) 65977-1 

GENERAL CHEMISTRY, Linus Pauling. Revised 3rd edition of classic first-year 
text by Nobel laureate. Atomic and molecular structure, quantum mechanics, statis­
tical mechanics, thermodynamics correlated with descriptive chemistry. Problems. 
992pp. 5% X 81/.i. 65622-5 

Engineering 
DE RE METALLICA, Georgius Agricola. The famous Hoover translation of great­
est treatise on technological chemistry, engineering, geology, mining of early mod­
em times (1556). All 289 original woodcuts. 638pp. 6% x 11. 60006-8 

FUNDAMENTALS OF ASTRODYNAMICS, Roger Bate et al. Modem approach 
developed by U.S. Air Force Academy. Designed as a first course. Problems, exer­
cises. Numerous illustrations. 455pp. 5% x 81h. 60061-0 

DYNAMICS OF FLUIDS IN POROUS MEDIA,Jacob Bear. For advanced stu­
dents of ground water hydrology, soil mechanics and physics, drainage and irrigation 
engineering and more. 335 illustrations. Exercises, with answers. 784pp. 6~ x 9\4. 

65675-6 

ANALYTICAL MECHANICS OF GEARS, Earle Buckingham. Indispensable ref­
erence for modem gear manufacture covers conjugate gear-tooth action, gear-tooth 
profiles of various gears, many other topics. 263 figures. 102 tables. 546pp. 5% x 81h. 

65712-4 

MECHANICS,]. P. Den Hartog. A classic introductory text or refresher. Hundreds 
of applications and design problems illuminate fundamentals of trusses, loaded 
beams and cables, etc. 334 answered problems. 462pp. 5% x 81h. 60754-2 

MECHANICAL VIBRATIONS, J. P. Den Hartog. Classic textbook offers lucid 
explanations and illustrative models, applying theories of vibrations to a variety of 
prac;:tical industrial engineering problems. Numerous figures. 233 problems, solu­
tions. Appendix. Index. Preface. 436pp. 5% x 81h. 64785-4 

STRENGTH OF MATERIALS, J. P. Den Hartog. Full, clear treatment of basic 
material (tension, torsion, bending, etc.) plus advanced material on engineering 
methods, applications. 350 answered problems. 323pp. 5% x 81h. 60755-0 

A HISTORY OF MECHANICS, Rene Dugas. Monumental study of mechanical 
principles from antiquity to quantum mechanics. Contributions of ancient Greeks, 
Galileo, Leonardo, Kepler, Lagrange, many others. 671pp. 5% x 81h. 65632-2 
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METAL FATIGUE, N. E. Frost, K.J. Marsh, and L. P. Pook. Definitive, clearly writ­
ten, and well-ill.ustrated volume addresses all aspects of the from the histori-
cal of metal fatigu; to vital concepts of the cyclic stress 
that causes a crack to grow. 7 appendixes. 5% x 81h. 40927-9 

STATISTICAL MECHANICS: Principles and Applications, Terrel.l L. Hill. 
Standard text covers fundamentals of statistical mechanics, to fluctuation 
theory, imperfect gases, distribution functions, more. 65390-0 

THE VARIATIONAL PRINCIPLES OF MECHANICS, Cornelius Lanczos. 
Graduate level coverage of calculus of variations, equations of motion, relativistic 
mechanics, more. First paperbound editi.on of classic treatise. Index. 
Bibliography. 53h x 65067-7 

THE VARIOUS AND INGENIOUS MACHINES OF AGOSTINO RAMELLI: 
A Classic Sixteenth-Century Illustrated Treatise on Technology, Ramelli. 
One of the most known and copied works on machinery in 16th century. 
194 detailed of water pumps, grain mills, cranes, more. 608pp. 9 x 12. 

28180-9 

ORDINARY DIFFERENTIAL EQUATIONS AND STABILITY THEORY: .An 
Introduction, David A. Sanchez. Brief, modem treatment Linear equation, stability 

for autonomous and nonautonomous systems, etc. 5% x 8%. 
63828-6 

ROTARY WING AERODYNAMICS, W. Z. Stepniewski. Clear, concise text cov­
ers aerodynamic phenomena of the rotor and offers guidelines for 1m,n.-emcac1 

mance evaluation. Originally prepared for NASA. 537 figures. 640pp. 
64647-5 

INTRODUCTION TO SPACE DYNAMICS, William Thomson. Com· 
prehensive, classic introduction to space-flight engineering advanced undergrad-
uate and graduate students. Includes vector algebra, kinematics, transformation of 
coordinates. Bibliography. Index. 352pp. 5% x 8'h. 65113-4 

HISTORY OF STRENGTH OF MATERIALS, Stephen P. Timoshenko. Excellent 
historical survey of the strength of materials with many references to the theories of 

and structure. 245 figures. i;52pp. 5% x 81h. 61187-6 

ANALYTICAL FRACTURE MECHANICS, David J. Unger. Self-contained text 
supplements standard fracture mechanics texts by focusing on analytical methods for 
determining crack-tip stress and strain fields. 336pp. 6% x 9%0 41737-9 

Mathematics 
HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS, 
GRAPHS, AND MATHEMATICAL TABLES, edited Milton Abramowitz and 
Irene A. Stegun. Vast compendium: 29 sets of tables, some to as high as 20 places. 

8 X 10%. 61272-4 
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APPLIED COMPLEX VARIABLES,John W. Dettman. Step-by-step coverage of 
fundamentals of analytic function theory-plus lucid exposition of five important 
applications: Potential Theory; Ordinary Differential Equations; Fourier Transforms; 
Laplace Transforms; Asymptotic Expansions. 66 figures. Exercises at chapter ends. 
512pp. 5% x 81h. 64670-X 

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA­
TIONS, John W. Dettman. Excellent text covers complex numbers, determinants, 
orthonormal bases, Laplace transforms, much more. Exercises with solutions. 
Undergraduate level. 416pp. 5% x 81h. 65191-6 

MATHEMATICAL METHODS IN PHYSICS AND ENGINEERING,John W. 
Dettman. Algebraically based approach to vectors, mapping, diffraction, other topics 
in applied math. Also generalized functions, analytic function theory, more. 
Exercises. 448pp. 5% x 8\t 65649-7 

CALCULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing. 
Applications-oriented introduction to variational theory develops insight and pro­
motes understanding of specialized books, research papers. Suitable for advanced 
undergraduate/graduate students as primary, supplementary text. 352pp. 5% x 81h. 

64856-7 

COMPLEX VARIABLES, Francis J. F1anigan. Unusual approach, delaying com­
plex algebra till harmonic functions have been analyzed from real variable view­
point. Includes problems with answers. 364pp. 5% x 81h. 61388-7 

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox. 
Graduate-level text covers variations of an integral, isoperimetrical problems, least 
action, special relativity, approximations, more. References. 279pp. 5% x 81h. 

65499-0 

CATASTROPHE THEORY FOR SCIENTISTS AND ENGINEERS, Robert 
Gilmore. Advanced-level treatment describes mathematics of theory grounded in the 
work of Poincare, R. Thom, other mathematicians. Also important applications to 
problems in mathematics, physics, chemistry and engineering. 1981 edition. 
References. 28 tables. 397 black-and-white illustrations. xvii + 666pp. 6~ x 914. 

67539-4 

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Excep­
tionally clear exposition of important discipline with applications to sociology, psy­
chology, economics. Many illustrative examples; over 250 problems. 260pp. 5% x 81h. 

65084-7 

NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard 
Hamming. Classic text stresses frequency approach in coverage of algorithms, poly­
nomial approximation, Fourier approximation, exponential approximation, other 
topics. Revised and enlarged 2nd edition. 72lpp. 5% x 81h. 65241-6 

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F. B. Hilde­
brand. Classic, fundamental treatment covers computation, approximation, inter­
polation, numerical differentiation and integration, other topics. 150 new problems. 
669pp. 5% X 81h. 65363-3 
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THE FUNCTIONS OF MATHEMATICAL PHYSICS, Harry Hochstadt. 
Comprehensive treatment of orthogonal polynomials, hypergeometric functions, 
Hill's equation, much more. Bibliography. Index. 322pp. 5% x 81h. 65214-9 

THREE PEARLS OF NUMBER THEORY, A. Y. Khinchin. Three compelling 
puzzles require proof of a basic law governing the world of numbers. Challenges con­
cern van der Waerden's theorem, the Landau-Schnirelmann hypothesis and Mann's 
theorem, and a solution to Waring's problem. Solutions included. 64pp. 51/" x 81/,. 

40026-3 

CALCULUS REFRESHER FOR TECHNICAL PEOPLE, A. PJbert Klaf. Covers 
important aspects of integral and differential calculus via 756 questions. 566 prob­
lems, most answered. 43lpp. 5% x 81h. 20370-0 

THE PHILOSOPHY OF MATHEMATICS: An Introductory Essay, Stephan 
Komer. Surveys the views of Plato, Aristotie, Leibniz & Kant concerning proposi­
tions and theories of applied and pure mathematics. Introduction. Two appendices. 
Index. 198pp. 5% x 81h. 25048-2 

INTRODUCTORY REAL ANALYSIS, A.N. Kolmogorov, S. V. Fomin. Translated 
by Richard A. Silverman. Self-contained, evenly paced introduction to real and func­
tional analysis. Some 350 problems. 403pp. 5% x 8\t 61226-0 

APPLIED ANALYSIS, Cornelius Lanczos. Classic work on analysis and design of 
finite processes for approximating solution of analytical problems. Algebraic equa­
tions, matrices, harmonic analysis, quadrah1re methods, much more. 559pp. 5% x 81h. 

65656-X 

AN INTRODUCTION TO ALGEBRAIC STRUCTURES,Joseph Landin. Superb 
self-contained text covers "abstract algebra": sets and numbers, theory of groups, the­
ory of rings, much more. Numerous well-chosen examples, exercises. 247pp. 5% x 81h. 

65940-2 

SPECIAL FUNCTIONS, N. N. Lebedev. Translated by Richard Silverman. Famous 
Russian work treating more important special functions, with applications to specific 
problems of physics and engineering. 38 figures. 308pp. 5% x 81h. 60624-4 

QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, V. V. Nemytskii 
and V.V. Stepanov. Classic graduate-level text by two prominent Soviet mathemati­
cians covers classical differential equations as well as topological dynamics and 
ergodic theory. Bibliographies. 523pp. 5% x 81h. 65954-2 

NUMBER THEORY AND ITS HISTORY, Oystein Ore. Unusually clear, accessi­
ble introduction covers counting, properties of numbers, prime numbers, much 
more. Bibliography. 380pp. 5% x 81h. 65620-9 

THEORY OF MATRICES, Sam Perlis. Outstanding text covering rank, non.singu­
larity and inverses in connection with the development of canonical matrices under 
the relation of equivalence, and without the intervention of determinants. Includes 
exercises. 237pp. 5% x 8%. 66810-X 
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POPULAR LECTURES ON MATHEMATICAL LOGIC, Hao Wang. Noted logi­
cian's lucid treatment of historical developments, set theory, model theory, recursion 
theory and constructivism, proof theory, more. 3 appendixes. Bibliography. 1981 edi­
tion. ix + 283pp. 5% x 8'h. 67632-3 

CALCULUS OF VARIATIONS, Robert Weinstock. Basic introduction covering 
isoperimetric problems, theory of elasticity, quantum mechanics, electrostatics, etc. 
Exercises throughout. 326pp. 5% x 8'h. 63069-2 

THE CONTINUUM: A Critical Examination of the Foundation of Analysis, 
Hermann Wey!. Classic of 20th-century foundational research deals with the con­
ceptual problem posed by the continuum. 156pp. 5% x 8'h. 67982-9 

CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY 
SOLUTIONS, A. M. Yaglom and I. M. Yaglom. Over 170 challenging problems on 
probability theory, combinatorial analysis, points and lines, topology, convex poly­
gons, many other topics. Solutions. Total of 445pp. 5% x 81h. Two-vol. set. 

Vol. I: 65536-9 Vol. II: 65537-7 

A SURVEY OF NUMERICAL MATHEMATICS, David M. Young and Robert 
Todd Gregory. Broad self-contained coverage of computer-oriented numerical algo­
rithms for solving various types of mathematical problems in linear algebra, ordinary 
and partial, differential equations, much more. Exercises. Total of l,248pp. 5% x 8'h. 
Two volumes. Vol. I: 65691-8 Vol. II: 65692-6 

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH 
APPLICATIONS, E. C. Zachmanoglou and Dale W Thoe. Essentials of partial dif­
ferential equations applied to common problems in engineering and the physical sci­
ences. Problems and answers. 416pp. 5% x 8'h. 65251-3 

THE THEORY OF GROUPS, Hans]. Zassenhaus. Well-written graduate-level text 
acquaints reader with group-theoretic methods <!lld demonstrates their usefulness in 
mathematics. Axioms, the calculus of complexes, homomorphic mapping, p-group 
theory, more. Many proofs shorter and more transparent than older ones. 276pp. 
~x~ ~~~ 

DISTRIBUTION THEORY AND TRANSFORM ANALYSIS: An Introduction to 
Generalized Functions, with Applications, A. H. Zemanian. Provides basics of distri­
bution theory, describes generalized Fourier and Laplace transformations. Numerous 
problems. 384pp. 5% x 8'h. 65479-6 

Math-Decision Theory, Sta.ti.sties, Probability 
ELEMENTARY DECISION THEORY, Herman Chernoff and Lincoln E. 
Moses. Clear introduction to statistics and statistical theory covers data process­
ing, probability and random variables, testing hypotheses, much more. Exercises. 
364pp. 5% x 8'h. 65218-1 
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Physics 
OPTICAL RESONANCE AND TWO-LEVEL ATOMS, L. AJlen 
Clear, comprehensive introduction to basic behind all CJuceucu,u 

resonance phenomena. 53 illustrations. Preface. 256pp. 5% x 

ULTRASONIC ABSORPTION: An Introduction to the Theory of Sound 
Absorption and Dispersion in Gases, Liquids a..TJ.d Solids, A. R Bhatia. Standard ref­
erence in the field provides a clear, systematically organized introductory review of 
fundamental concepts for advanced graduate students, research workers. Numerous 
diagrams. Bibliography. 440pp. 5% x 81h. 64917-2 

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text pre­
sents the quantum theory in terms of qualitative and imaginative concepts, foliowed 

specific applications worked out in mathematical detail. Preface. Index. 
X 8%. 

ATOMIC PHYSICS (8th edition), Max Bom. Nobel laureate's lucid treatment of 
kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic 
structure and spectral lines, much more. Over 40 appendices, bibliography. 495pp. 
5% X 81h. 65984-4 

AN INTRODUCTION TO HAMILTONIAN OPTICS, H. A. Buchdahl. Detailed 
account of the Hamiltonian treatment of aberration theory in geometrical optics. 
Many classes of optical systems defined in terms of the they 
Problems with detailed solutions. 1970 edition. xv + 

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory, 
George Gamow. Lucid, accessible introduction to influential of energy and 
matter. Careful explanations of Dirac's anti-particles, Bohr's of the 
much more. 12 plates. Numerous drawings. 240pp. 5% x 8%. 

ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: The 
Physics of the Chemical Bond, Walter A. Harrison. Innovative text offers basic 
understanding of the electronic structure of covalent and ionic solids, simple metals, 
transition metals and their compounds. Problems. 1980 edition. 582pp. 61{; x 914. 

66021-4 

HYDRODYNAMIC AND HYDROMAGNETIC STABILITY, S. Chandrasekhar. 
Lucid examination of the Rayleigh-Benard problem; clear coverage of the theory of 
instabilities causing convection. 704pp. 5% x 814. 64071-X 

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT, 
Albert Einstein. Five papers (1905-8) investigating dynamics of Brownian motion 
and evolving elementary theory. Notes by R. Fiirth. 122pp. 5% x 8%. 60304-0 

THE PHYSICS OF WAVES, William C. Elmore and Mark A. Heald. Unique 
overview of classical wave theory. Acoustics, optics, electromagnetic radiation, mO:re. 
Ideal as classroom text or for self-study. Problems. 477pp. 5% x 8%. 64926-1 



CATALOG OF DOVER BOOKS 

METHODS OF THERMODYNAMICS, Howard Reiss. '--'u""mu,111.1; 

on physical technique of thermodynamics, problem areas of 
and signifirnnce and use of thermodynamic potential. 1965 editicm. 

69445-3 

TENSOR ANALYSIS FOR PHYSICISTS, J. A. Schouten. Concise ex1Jositicm of 
the mathematical basis of tensor analysis, integrated with well-chosen exain-
pies of the theory. Exercises. Index. Bibliography. 5% x 8\:\. 65582-2 

RELATHTITY IN ILLUSTRATIONS,Jacob T. Schwartz. Clear nontechnical treat· 
ment makes relativity more accessible than ever before. Over 60 illustrate 
concepts more clearly than text alone. Only high school geometry needed. 
Bib!iogTaphy. 128pp. 6% x 911. 25965-X 

THE ELECTROMAGNETIC FIELD, faJbert Shadowitz. Comprehensive under· 
graduate text covers basics of electric and magnetic fields, builds· up to electromag· 
netic theory. Also related topics, including relativity. Over 900 problems. 
5% X 81/,. 

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Galileo to 
Einstein, edited by Morris H. Shamos. 25 crucial discoveries: Newton's laws of 
motion, Chadwick's study of the neutron, Hertz on electromagnetic waves, more. 
Original accounts clearly annotated. 370pp. 5% x 8\6. 25346-.5 

RELATIVITY, THERMODYNAMICS AND COSMOLOGY, Richard C. 
Tolman. Landmark study extends thermodynamics to special., general. relativity; also 
applications of relativistic mechanics, thermodynamics to models. 
50lpp. 5% X 8\<I. o.5383-8 

LIGHT SCATTERING BY SMALL PARTICLES, H. C. van de Hulst. ~u"'""~· 
hensive treatment including full range of useful approximation methods 
researchers in chemist.,, meteorology and astronomy. 44 illustrations. 5% x 8\1. 

64228-3 

STATISTICAL PHYSICS, Gregory H. Wannier. Classic text combines thermody· 
namics, statistical mechanics and kinetic theory in one unified of ther· 
mal physics. Problems with solutions. Bibliograp~y. 532pp. 53h x 6.5401-X 

Paperbound unless otherwise indicated. Available at online at WW'N.dover· 
publications.com, or by writing to Dept. GI, Dover Publications, Inc., 31 East 2nd Street, 
Mineola, NY 11501. For current price information or for free catalogues (please indicate field of 
interest), write to Dover Publications or log on to ww-w.doverpublications.com and see every 
Dover book in print. Dover publishes more than 500 books each year on science, elementary and 
advanced mathematics, biology) music1 art, literary history, social sciences, and ot11er areas. 
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INTRODUCTION TO 
SPACE DYNAMICS 

William Tyrrell Thomson 
Although this classic introduction to space-flight engineering was first published 
twenty-five years ago, not long after Sputnik was launched, the fundamental 
principles it elucidates are as valid today as then. The problems to which these 
principles are applied have changed, and the widespread use of computers has 
accelerated problem-solving techniques, but this book is still a valuable basic text 
for advanced undergraduate and graduate students of aerospace engineering. 

The author, William Tyrrell Thomson, Professor Emeritus of Engineering at the 
University of California (Santa Barbara), has provided the mathematical tools that 
are required for quantitative analysis of the basic concepts of motion in outer space. 

The first two chapters cover vector algebra and kinematics, including angular 
velocity vector, tangential and normal components, and the general case of space 
motion. The third chapter deals with the transformation of coordinates, with 
sections on Euler's angles, and the transformation of angular velocities. 

A variety of interesting problems regarding the motibn of satellites and other space 
vehicles is discussed in Chapter 4, which includes the two-body problem, orbital 
change due to impulsive thrust, long-range ballistic trajectories, and the effect of 
the Earth's oblateness. The fifth and sixth chapters describe gyrodynamics and the 
dynamics of gyroscopic instruments, covering such topics as the displacement of a 
rigid body, precession and nutation of the Earth's polar axis, oscillation of the 
gyrocompass, and inertial navigation. 

Chapter 7 is an examination of space vehicle motion, with analyses of general 
equations in body coordinates and their transformation to inertial coordinates, 
attitude drift of space vehicles, and variable mass. The eighth chapter discusses 
optimization of the performance of single-stage and multistage rockets. Chapter 9 
deals with generalized theories of mechanics, including holonomic and non­
holonomic systems, Lagrange's Equation for impulsive forces, and missile dynamic 
analysis. 

Throughout this clear, comprehensive text, practice problems (with answers to 
many) aid the student in mastering analytic techniques, and numerous charts and 
diagrams reinforce each lesson. 
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