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Preface 

There are many components of machines, process plants and household goods that fail through 
fatigue and fracture, which can be avoided by applyingfracture mechanics. Although the modern 
fracture mechanics was born in 1948-49, its acceptability was quite slow for several decades because 
of its complex mathematics and involved concepts. Initially, the fracture mechanics was applied to 
high-risk products like nuclear plants, airplanes, space vehicles, submarines, etc. Now this field is 
becoming popular at the grassroot levels too. Therefore, it is important to explain this concept in 
simple, well-disposed and easy-to-understand manner without compromising on the rigor-this 
book is intended to do the same. 

The book has gone through several phases of revisions to improve its readability further. Several 
analogies and anecdotes placed appropriately in this book have also helped in accomplishing this 
goal. Two most important mechanisms-fatigue failure and environment-assisted fracture that 
result in the growth of subcritical cracks to catastrophic failure of structural components-have 
been discussed in Chapter 9. Along with that, an additional chapter has talked about various non­
destructive test methods for identifying cracks in the structural components. The detailed 
illustrations developed with the help of latest graphic software have added more clarity in 
understanding the concept. 

This book has adopted the approach of different courses on fracture mechanics at the advanced 
undergraduate and postgraduate levels. The readers novice in this field can explore this complex 
but beautiful concept effortlessly through this book. The responses of students have directed me in 
choosing the right pace and the appropriate levels while presenting the subject. Readers with prior 
knowledge of fracture mechanics may find it rudimentary at few places. But with experience I have 
learned to be on elementary side rather than leaving a reader confused. 

Unlike in most books on fracture mechanics where basic concepts are discussed shortly usually 
leaving the reader confused, this book gradually discusses the fundamental theory with the results 
and their applications. With my industrial experience and interest in product design, I view the 
theories of fracture mechanics as useful tools to be applied to practical problems. Once the 
fundamentals of fracture mechanics are mastered properly, the reader can easily move to advanced 
books or research journals. Therefore, special tricks involving highly complex mathematics to solve 
problems of minor interest are not included here. 

I hope this book will be appreciated by the readers for its salient features like lucid content, 
articulation, anecdotes, and presentation of the subject in small and effective steps, and will prove 
to be beneficial in introducing the subject in general. 

PRASHANT KUMAR 
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Chapter 

1 
Background 

I learned there that innovation is a very difficult thing in the real world. 

R.P. Feynman 

1.1 KINDS OF FAILURE 

Some people suffer from hypertension and are susceptible to heart attacks. Many, unfortunately, 
suffer from diabetes and take special precautions to avoid or delay its destructive effects. On an 
average, a person in our society is vulnerable to one or two of such diseases as cancer, arthritis, 
asthma, hepatitis, gastritis, tuberculosis, etc. and is conscious about it. Similarly, a component in 
a structure may be susceptible to one, two or more kinds of failure. For example, under given 
load conditions a roller bearing is most likely to fail through fatigue of its rollers after a certain 
number of rotations. 

We should thus know the different conditions that can cause the failure of a structural 
component. Some of the common causes of failure are: 

• Yielding 
• Deflection beyond a certain stage 
• Buckling 
• Fatigue 
• Fracture 
• Creep 
• Environmental degradation 
• Resonance 
• Impact 
• Wear 

A component is designed so as to avoid yielding of the worst loaded point (critical point). 
Safety against yield failure is considered to be the basic requirement of any design and is taught 
in all courses on 'strength of materials' at undergraduate level. Although stress tensor is quite 
complex with six independent components, criteria like Mises or Tresca are adopted to obtain a 
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scalar number (e.g., maximum shear stress in Tresca criterion). The scalar number is then compared 
with a limiting value which is determined through experiments. In simple cases, the worst loaded 
point may easily be identified, whereas it may be difficult to find where exactly the worst loaded 
point is in a general case. These days excellent computer packages based on finite element analysis 
are available. In a finite element simulation, the body of the component can be divided into 
different colors; for example, red color shows the portion where the stresses are maximum, green 
color shows the lowest stresses and other colors for intermediate stresses. However, it has been 
found that often a structural component fails even when the worst loaded point is well within the 
yield stress. Thus we conclude that a design of a work-component based entirely on avoiding 
yielding is not adequate in certain cases. The component may be susceptible to crack growth! 

All engineering materials deform on loading. A structural component may be deformed to 
such an extent that its performance is affected. Certain plastics have been developed to posses.t, 
high strength, but they may not be suitable for many structural components because of their low 
stiffness, i.e., about 1 % of steel's stiffness. If the wings of an airplane are made of a polymer, they 
may droop down so much that the tip of the wings would touch the ground. In fact, many 
components of conventional engineering materials (steel, aluminum, and the like) are designed 
to meet constraints of deflection, although the stress of the worst loaded point is considerably 
lower than yield stress. These kinds of components are thus susceptible to failure through 
deflection beyond a certain value. If a crack grows in a component, its stiffness decreases and the 
deformation may exceed the allowable limit. 

A thin member under a compressive load or a thin tube under torsion or lateral compression 
may be susceptible to buckling, and the design should be checked against likely failure through 
buckling. 

Many components of the modern industrial world are subjected to fluctuating loads and 
consequently may fail through fatigue. In fact, failure through fatigue is so common that more than 
80% failures are caused by fluctuating loads. Many investigators are currently working for the 
development of this field.However, convenient and effective methods to control fatigue-failures are 
still not adequately developed. A critical structural component should be regularly checked to detect 
fatigue cracks through non-destructive tests. This has led to the development of excellent methods of 
crack identification, such as ultrasonic crack detection, X-ray or radiation filming, detecting through 
monitoring acoustic emission, magnetic flux method, decoration of surface cracks through dye­
penetration, etc. 

Fracture mechanics is based on the implicit assumption that there exists a crack in a work­
component. The crack may be man-made such as a hole, a notch, a slot, a re-entrant corner, etc. 
The crack may exist within a component due to manufacturing defects like slag inclusion, cracks 
in a weldment or heat affected zones due to uneven cooling and presence of foreign particles. A 
dangerous crack may be nucleated and grown during the service of the component (fatigue 
generated cracks, nucleation of notches due to environmental dissolution). Fracture mechanics 
deals with the question-is a known crack likely to grow under a certain given loading condition? 
Fracture mechanics is also applied to crack growth under fatigue loading. Initially, the fluctuating 
load nucleates a crack, which then grows slowly and finally the crack growth rate per cycle picks 
up speed. Thereafter comes the stage when the crack-length is long enough to be considered 
critical for a catastrophic fracture failure. 

About 50-60 years ago, when accurat(!! analysis for predicting the growth of a crack was not 
available, a reasonably h1gh factor of safety was chosen to'account for unforeseen factors. A large 
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part of this ambiguity has been cleared with the development of fracture mechanics and 
understanding the causes and effects of fatigue failure. This now enables a designer to use a 
much lower factor of safety, thus reducing cost of such structural components. Simultaneously, 
the weight of these components is reduced and their reliability is enhanced. 

Other ways of failure (creep, environmental degradation, wear, etc.) are also as important and 
must be looked into and analyzed, so that the component may not develop snags on their account. 
However, one thing should also be borne in mind, that a component is usually not likely to fail 
through more than two or three ways. Therefore, susceptibility should be kept in mind at the time 
of designing a component. 

1.2 HISTORICAL ASPECTS 

For a long time, we always had some idea about the role of a crack or a notch. While cutting a tree, 
we would make a notch with an axe at its trunk and then pull it down with a rope. While breaking 
a stick we would make a small notch with a knife before bending it. Swords played an important 
role in the pre-industrial society. Good swords were made by folding a thin metal sheet at the 
centre line and then hammering it to make it thin again so that it could be further folded. Thus, a 
sword would have many layers. If a crack develops in one of the layers, it is not likely to move to 
another, thus making the sword very tough. 

Leonardo da Vinci (1452-1519) was the first person to make a setup to measure the strength of cl. 

wire. He found out that the strength of a wire depended on its length. A wire in his time were not of 
high quality and a long wire was likely to posses many cracks. However, fracture mechanics was 
not studied as a separate discipline for a long time. 

The Industrial Revolution opened a new vista for us and many different kinds of machines 
and structures were designed and built. If we look back and study, we would find that many 
bridges, boilers, buildings, ships, were failed due to fracture in nineteenth century [1.1]. 
Locomotives, a very important industry in those days, used to face innumerable accidents due to 
failure of wheels, axles of wheels, and rails. Wohler [1.2] was one of the earliest investigators 
(1860), who investigated fatigue of locomotive axles by applying controlled cyclicloads. This led 
to development of S-N Diagram and finding endurance limit of steel (1.3]. 

In nineteenth century and early part of twentieth century, the entire industry was obsessed 
with production. Even the failure theories were developed quite late: Tresca in (1864) and Mises 
(1913). However, World War II accelerated the industrial production at a very rapid rate, due to 
unusually high demands of war. Within six years of the war, the know-how of aircraft making 
improved dramatically. Also, the ships, which were earlier made by joining plates together through 
the process of riveting, were changed to welded frames. Many cargo ships, known as liberty 
ships, were rolled out from American docks within a short span. However, soon there were 
complications regarding welded structures. Many of these failed in the cold temperatures of the 
North Atlantic Ocean (1.1]. As a matter of fact some of these broke up into two parts. However, 
:;hips made by riveting plates did not display such failures. If a crack nucleated and grew in a 
olate, it would only split that plate into two parts; the crack would not grow into another plate. A 
;,velded structure is a large single continuous part and therefore, if the crack becomes critical, it 
,vill run through the entire hull of the ship. 
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Jet planes were developed initially as small fighter planes, which would fly at high altitudes. 
When this technology was used for the construction of large body passenger planes, it was found 
that the planes were exploded in the air. An investigating team was appointed to look into the 
failures of the Comet}etliner right in the early fifties. It was found that a fatigue crack, initiated 
near an opening in the fuselage [1.4], ran through its entire body especially at high altitudes, 
where the outside atmospheric pressure was low and the interior of the airplane was pressurized 
for the comfort of passengers. In fact, a jetliner flying over a height of 10,000 m (32,800 ft) works 
like a pressurized balloon with the wall of its fuselage under high tensile stresses. 

With the development of large ships made of welding plates and high capacity jet airplanes, 
new problems arose; the predominant question asked was-what causes the failure? Can we 
contain the failure? And then a new discipline of engineering, called 'fracture mechanics' was 
developed. In fact, Griffith [1.5, 1.6] developed the right ideas for the growth of a crack in the 
1920s. Using atomistic models, he estimated the strength of a structural material and found that 
it should be of the order of its modulus. However, the strength of engineering materials was 
experimentally found to be of two to three lower orders. He went ahead and developed the ideas 
of energy requirements in growing a crack. However, his work was not taken seriously at that 
time because engineers were busy in increasing production and making money. This period was 
followed by the Great Depression which had many problems of its own. Further, Griffith was not 
able to invent a convenient parameter to predict the load on a component that would cause the 
growth of a crack. 

For all practical purposes, modem fracture mechanics was born in 1948 when George Irwin [1.7] 
formulated fracture mechanics by devising workable parameters like stress intensity factor and 
energy release rate. Once the breakthrough took place, many investigators started taking interest in 
it and fracture mechanics became a separate and important discipline with several reputed journals 
and text books. Irwin's development was mainly for brittle or less ductile materials. The analysis 
was conservative for most engineering materials which are generally ductile. Other parameters, 
like Crack Tip Opening Displacement by Wells [1.8] in 1961 and }-Integral by Rice [1.9) in 1968, 
were developed to account for the large plastic zone at the crack-tip in ductile materials. 

Fracture mechanics is now applied extensively to important fields like nuclear engineering, 
piping, space ships, rockets, offshore structures, etc. Critical components in nuclear power plants 
are made from very tough materials; but they too have failed catastrophically once in a while. 

1.3 BRITTLE AND DUCTILE FRACTURE 

Some materials are known as brittle because a crack moves easily through components made of 
such materials. If we investigate a fractured surface of a brittle failure to determine the depth up 
to which the material is affected by the crack growth, we find that material was influenced to a 
very shallow depth. Rest of the material remains unaffected. On the contrary, a ductile fracture 
causes a large amount of plastic deformation to a significant depth. 

Brittle fracture in crystalline metals can be classified into two broa.d groups-intergranular 
and transgranular. A crack tip of intergranular failure grows along the grain boundaries as shown 
in [Fig. 1.1 (a)]. Transgranular fracture, on the other hand, occurs through the crack tip propagating 
within grains [Fig. 1.1 (b)]. However, cleavage failure within a grain occurs along a weak 
crystallographic plane. In fact, cleavage fracture is the most brittle form of a fracture and it hardly 
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damages the fractured surfaces. Once the cleavage crack reaches the grain boundary, it finds 
another favorable orientation in the next grain. 

(a) lntergranular (b) Transgranular 

Fig. 1.1 Brittle fracture 

Ductile fracture growth occurs due to substantial plastic deformation and creation of microvoids 
in the vicinity of the crack tip. The material deforms plastically due to micromechanisms, such as 
nucleation and motion of dislocations, formation of twins, etc. Engineering materials generally 
contain second phase particles. Tiny voids are formed at the sides of these particles under the 
influence of the tensile field of the crack tip. Dislocation motion helps in the formation of these 
voids. The ductile crack growth occurs by the coalescence of these voids. Fractured surface of a 
ductile failure shows tiny dimples and gives the surface a rather rough look. In fact, around one 
such dimple, a second phase particle can be identified. The plastic deformation and coalescence 
of voids absorb a large amount of energy and, therefore, a crack does not grow easily in ductile 
materials. 

Often it has been found that materials normally ductile at room temperature in ordinary 
conditions behave as brittle materials under certain special conditions. Steel, which is quite ductile 
at room temperature, becomes brittle at low temperatures. This explains why welded structures 
of Liberty ships in World War II failed in the cold waters of the North Atlantic Ocean. Also, the 
toughness of certain materials is affected considerably by the rate of loading (strain rate). 

A thick plate of a regular ductile material may also allow the growth of a crack in a brittle 
manner. The portion that is deep inside the thick plate (away from free surfaces) is constrained 
from all sides and large plastic deformations are not possible in the vicinity of the crack-tip. In 
comparison to thick plates, thin plates are more resistant to crack growth. These aspects will be 
discussed in detail in subsequent chapters. 

1.4 MODES OF FRACTURE FAILURE 
\ 
. . 

A crack front in a structural component is a line usually of varying curvature. Thus, the state of 
stress in the vicinity of the crack front varies from one point to another. A segment of the crack front 
can be divided into three basic modes as shown in Fig. 1.2. Mode I is the opening mode and the 
displacement is normal to the crack silrface. Mode II is a sliding mode and the displacement is in 
the plane of the plate-the separation is antisymmetric and the relative displacement is normal to 
the crack front. Mode III also causes sliding motion but the displacement is parallel to the crack 
front, thereby causing tearing. 
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Mode II 
(sliding mode) 

p 

p 

p 
Mode III 

(tearing mode) 

Fig. 1.2 The three modes of fracture 

An inclined crack front in a component can be modeled as a superposition of the three basic 
modes and then, the effect of loading by each mode can be analyzed separately. Mode I usually 
plays a dominant role in many engineering applications and is considered to be the most 
dangerous. However,in certain applications, components fail through the dominant roles played 
by Mode II or Mode III. Mode I has been analyzed most so far. Also, elaborate experimental 
methods have been developed to determine toughness in Mode I; in fact, detailed codes have 
been prepared for these experimental methods and they are internationally accepted. · 

1.5 How POTENT ls A CRAcK? 

Designers are always interested to know whether a crack is likely to grow if the geometry of a 
crack in a structural component, loads and other boundary conditions are known. We should, 
therefore, have a parameter to measure crack potency or crack extension force. 

The analysis of fracture mechanic problem is done through different approaches, each having its 
own parameter [1.10-1.12]. All of them are well accepted to measure the potency of a crack; only 
one is needed to solve a problem. The parameter Energy Releas ~ Rate (G) is energy based and is 
applied to brittle or less ductile materials. Stress Intensity Factor (K) is stress based, also developed 
for brittle or less ductile materials. J-Integral ( J) has been developed to deal with ductile materials. 
Its formulation is quite general and can be applied to brittle materials also. Crack Tip Opening 
Displacement (CTOD) parameter has been also developed for ductile materials and, as the name 
suggests, it is displacement based. 
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Depending upon the application, an appropriate parameter is chosen to analyze the given 
problem. For critical components of nuclear reactors, airplanes, submarines, locomotives, turbine 
blades, etc., a sophisticated fracture mechanics analysis is recommended and one may gain by 
investing more money for accurate analysis and experimental tests. In this book, all four 
parameters are developed and discussed. 

1.6 POINT OF Vrnw 

Fracture mechanics problems are studied through two different points of views: (a) material 
science and (b) applied mechanics. Material scientists like to study microscopic mechanisms near 
the crack front, such as dislocation generatiOJ.1- ;md motion, role of grain boundaries, formulation 
of twins, role of second phase particles, nucleation and growth of voids and their coalescence, 
etc. They also study texture of the fractured surfaces. In this short book, we have taken the applied 
mechanics approach and the material is assumed to b.e continuous, ahead of the crack-tip. 
However, some discussion on micromechanisms has been included at a few places .. 

1.7 DAMAGE TOLERANCE 

Problems of fracture mechanics are solved using two different approaches. In the first approach, 
component geometry which includes the length, location and orientation of the crack is given 
along with boundary conditions. The objective is to find the upper limit of the applied load that 
would not cause catastrophic failure of the component. 

In the second approach, known as damage tolerance, the maximum load on a component is 
known; the objective is to find the longest length of a crack that remains dormant. Once we know 
the length, the structural component can be thoroughly checked with an appropriate non­
destructive test. In the case of fluctuating loads applied on the component, a fatigue crack may be 
nucleated even at a surface which was previously crack free. This crack may grow with fluctuating 
loads. In such situations, critical components are checked regularly. If a crack that is likely to 
grow and become critical is detected, then the component is repaired or replaced. On the other 
hand, detection of a small crack should not cause panic because its length may be much smaller 
than the maximum length of crack allowed in damage tolerance analysis. 

These days many companies have started believing in avoiding a likely catastrophic failure by 
regular non-destructive tests of critical components. For example, a chemical company making 
urea in Kanpur city maintains an excellent nondestructive test department. Its engineers mostly 
face problems at the pipe-joints and thus they regularly check the joints, identify cracks and take 
necessary actions. In the long run, it saves considerable expenses because a catastrophic failure 
through the growth of a crack may cause extensive damage to other parts, besides causing shut­
down of the plant and loss of human lives in some cases. 
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Chapter 

2 
Energy Release Rate 

A man in passion rides a horse that runs away with him. 

C.H. Spurgeon 

2.1 INTRODUCTION 

Whether a crack in a component is likely to grow under given load conditions is of vital importance 
to fracture mechanics. 

The problem has been analyzed through several approaches-stress, displacement or energy 
methods [2.1-2.7]. Each approach defines a suitable parameter. A limit on the parameter defines 
the toughness of the material. For a prescribed load condition, if the value of the parameter exceeds 
the limit, the crack may grow. 

This chapter deals with the energy method. The advantage of this energy approach is that 
there is no need to account for the large stresses that are developed in the vicinity of a crack-tip. 
The energy method com .:niently avoids any analysis close to the crack-tip. The approach is similar 
to solving the problem of a body sliding down on a frictionless slope in which one is interested to 
know only the velocity of the body. It is determined by invoking the conservation of kinetic and 
potential energies, irrespective of the slope of the slide, which may vary from one point to another 
along the path. 

2.2 GRIFFITH'S DILEMMA 

Griffith, in the early 1920s [2.8, 2.9], developed some basic concepts. He was aware of the analytical 
solution, developed by Inglis [2.10], which determines stress field around an elliptical hole in a 
large plate, loaded under the tensile stress <r0 as shown in Fig. 2.1. He noted that the maximum 
stress develops at point A of the ellipse and is given by 

max ( 2a) <r22 = O"o l+b (2.1) 
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Xz 

f.~x, 
T1.2a., 

r 
Fig. 2.1 An elliptical hole in a stretched plate 

For a circular hole, O'~ax is three times greater than a0• But for an elliptical hole where the 
major axis a is much longer than the minor axis b, a~ax becomes quite large; so much so that for 
a sharp crack with minor axis tending to be very small (of the order of interatomic distances), no 
real material can sustain the stress. Thus, even for a small applied stress a0, Eq. (2.1) suggests that 
O'~ax would be very large and would exceed the ultimate strength of the material. Equation (2.1) 
further suggests that even a sharp crack of small length may grow and break the component into 
two pieces. However, this is contrary to our observations. Griffith thus concluded that some other 
mechanisms must be existing which helped materials to sustain solid forms. 

2.3 SURFACE ENERGY 

Similar to the surface tension of a liquid, all solid surfaces are associated with surface energies or 
free energies. These energies are developed because atoms close to a surface behave differently 
from atoms at the interior of the solid. The interior atoms are attracted or repulsed by the 
neighboring atoms more or less uniformly from all directions. On the contrary, an atom on the 
free surface has no neighboring atoms towards the exterior side of the surface, thus resulting in a 
different equilibrium. In fact, atoms at the surface, as well as atoms just under them, have to 
re-adjust to form the equilibrium and this develops a strain in the material close to the free surface. 
Such surface deformation requires energy and is known as surface energy. 

2.4 GRIFFITH'S REALIZATION 

Griffith realized that a crack in a body would not grow unless energy was released to overcome 
the energy needs of forming two new surfaces, one below and one above the crack plane. The 
surface energy of a material depends on the material properties. However, its magnitude is rathe1 
small, of the order of 1 J /m2

• Table 2.1 lists the surface energy of some of commonly encountered 
solids. 

Surface energy of the order of 1 J / m2 is considered insignificant (1 J energy will raise thE 
temperature of one teaspoon of water by 0.05° Conly). In brittle materials such as silica, glass anc 
diamond, advancing cracks require small energies of the order of surface energies, and, therefore 
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once a crack starts advancing, it runs through the body easily, causing catastrophic failure. But 
some additional mechanisms operate on most materials which do not allow cracks to grow at low 
energies. These mechanisms will be discussed subsequently in this chapter. 

TABLE 2.1 Surface energy of some commonly used materials 

Material Surface Energy (J/m2
) 

Copper 0.98 
Mild Steel 1.20 
Aluminum 0.60 
NaCl 1.35 
MgO 3.30 
Glass pane 2.30 
Ice 0.07 
Diamond 5.50 

2.5 GRIFFITH'S ANALYSIS 

Let us consider a plate with no prior crack [Fig. 2.2(a)]. It is pulled and then maintained in tension 
between two rigid supports [Fig. 2.2(b)]. Now, with a knife, a crack is cut at the centre of the plate 
with the crack plane normal to the tensile stress. The crack length is increased gradually with the 
help of the knife. A critical stage reaches when the crack starts growing on its own; i.e., without 
any further need of the knife. How long is this critical length? How to predict it? 

?.2a 

(a) (b) (c) 

Fig. 2.2 (a) A unstretched plate, (b) the stretched plate, and (c) introducing 
a crack at the center 

Before we answer these questions, we would like to point out that the plate becomes less stiff 
as the crack advances. Consequently, for this case of the plate with ends held rigidly, the stress 
within the plate decreases and the strain energy stored in the plate is reduced. The energy thus 
released is available for the crack to grow. 
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To convince ourselves, a simple experiment may be conducted by taking a discarded tube of a 
bicycle wheel and cutting it along the length to obtain a plate sheet. The sheet is stretched and 
mounted on a frame. We can even use the arm-rests of a chair for the purpose. A small crack is 
introduced with a blade or knife normal to the stretching direction and the crack is enlarged 
gradually. At the critical le:ngth, the crack starts advancing slowly on its own and the knife is 
withdrawn. The crack slowly picks up the speed and runs all the way to the side edges, thus, 
snapping the rubber sheet into two pieces. 

Finding a rigorous solution to the problem shown in Fig. 2.2(c) is a difficult task at this stage. 
To understand Giriffith's analysis, we will carry an approximate analysis in this section. The 
plate is chosen to have its dimensions much larger than the longest crack to be considered. Then, 
the stress at points far away from the crack is assumed to remain constant. 

Most of the energy release, as the crack advances, comes from those parts of the plate which 
are adjacent to the cracked surfaces, because they are traction free. For the sake of convenience, 
the major area of the plate where its strain energy is released may be taken as a triangle on each 
side of the crack plane as shown in Fig. 2.2 (c). In fact, other shapes such as a parabola will serve 
the purpose; we have chosen it to be triangular to keep the algebra simple. With the increase in 
crack length the base and the height of both triangles increase and, therefore, the area from which 
the strain energy is released is proportional to the square of the crack length. 

The height of a triangle is .:l(2a) where A is a constant. Then, the total release of energy ER is 
determined by multiplying the area of both triangles with plate thickness Band the strain energy 
density a 2 /2E where a is the tensile stress and Eis the Young's modulus. Thus, released energy 
is given by 

ER= (Volume of triangles) x ( ~;) 

= 2(}<2a)(2.:la)B) x ( ~;) = 
2
.:la:Ba

2 

Rigorous analysis (Chapter 4, Problem 8) shows that A= n:/2 for thin plates (plane stress) giving 

n: a2Ba 2 

ER= E (2.2) 

Energy is required to create the two new surfaces. If y is the surface energy per unit area of one 
surface, the surface energy required Es is 

Es = 2(2a)By= 4aBy (2.3) 

The relations of Equations (2.2) and (2.3) are shown graphically in Figure 2.3. ER increases 
parabolically whereas Es increases linearly with increasing crack length a. Consider a small crack 
length, 2a0 whose length is incremented by /j,a. The slope of ER is smaller than the corresponding 
slope Es and, therefore, the energy release jj,ER in advancing the crack-tip by distance Ila is not 
sufficient to meet the energy needs of new surfaces (jj,Es). The crack would not grow and would 
remain subcritical. In fact, the crack would be dormant unless energy is supplied by an external 
agency, the operator of the knife in this case. 

As the operator gradually continues cutting the crack further, the slope of ER increases, while 
the slope of Es remains the same. A stage is reached when the slope of ER becomes equal to the 
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slope of Es. The crack now becomes critical, because for an incremental advance of crack length, 
energy release equals the energy required. Therefore, for the crack to become critical 

dER dEs -->­
da - da 

(2.4) 

A question may be raised here-why does the crack grow in this experiment even when ER< Es? 
Note that the difference in these two energies has already been supplied by the operator of the 
knife. In fact, this difference is an extremely useful quantity because of which many small cracks 
in a body do not grow and they remain dormant. 

If the plate had been pulled to a higher tension prior to the introduction of the crack, the ER 
would increase with the crack length at a faster rate (Fig. 2.3) and then even the cracks of smaller 
lengths would become critical. In order to determine the critical crack length ac we substitute ER 
[Eq. (2.2)] and Es [Eq. (2.3)] in Inequality 2.4 to obtain 

2rc a)3a 2 

--'-- ~4By . 
E 

-+-: :..-Ila a 

Fig. 2.3 Variation of energy release ER and required surface 
energy E5 with crack length 

For a safe crack, 

< 2Ey 
ac- --2 

1C(J 

(2.5) 
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If we want to know how much stress is required to advance a given crack for plane stress cases, 
the inequality is rearranged to 

[
2Ey ]1;2 

,... > -­Ve-
n:a 

For plane strain (thick plate), Eis replaced by E/(l-v2
) and the relation becomes 

[ 

2Ey ]1;2 
(Jc;?: 2 

n:(1-v )a 

where vis the Poisson's Ratio. 

(2.6) 

(2.7) 

We deduce, from Inequalities 2.6 and 2.7, that the critical stress depends on modulus E, surface 
energy rand crack length a. As expected, the higher value of the surface energy of a material 
increases the critical stress whereas a longer crack reduces it. Larger modulus means that the plate 
is capable of storing less energy, thereby resulting into smaller energy release which, in tum requires 
higher stress for making the crack critical. One may also note from Inequality 2.6 that the product 
O"c Ja depends only on material properties ( elastic constants E and v and surface energy y). Therefore, 
a ..fa may be treated as a new variable in fracture mechanics (stress intensity factor) to be 
developed in Chapter 3. 

Griffith acknowledged with developing the correct theses in the 1920s but his analysis was not 
developed to the extent that a designer can employ it to solve practical problems. For example, a 
reader interested in the history of science knows that Kepler had almost developed everything 
about the laws of motion, but they were not simple enough for a designer to make a machine. 
The laws of motion were exploited only after Newton put them into a simple form with variables 
clearly defined. In case of fracture mechanics also, it took another two and a half decades for 
Irwin [2.11] and Orowan [2.12] to polish Griffith's concepts and to define a variable, energy release 
rate, which could be understood more easily and measured experimentally. 

2.6 ENERGY RELEASE RATE 

2.6.1 Definition 

As discussed in the previous section, two important quantities are invoked- (i) how much energy 
is released when a crack advances and (ii) minimum energy required for the crack to advance in 
forming two new surfaces. The first quantity is measured with a parameter, energy release rate, 
denoted by the symbol G after Griffith{Jhe energy release rate is defined as energy release per 
unit increase in area during crack growth?The word "rate" is sometimes confusing to beginners 
because in most engineering applications, rate signifies differentiation with respect to time. In 
the definition of G the rate is defined with respect to change in crack area. Another aspect of the 
definition is that the energy re'lease rate can be calculated even for the cracks which cannot grow 
under a given load condition. That is, if there is a virtual growth of the crack, energy equal to G 
would be released from the system per unit extension of area. 

The energy requirement for a crack to grow per unit area extension is called crack resistance 
and is usually denoted by the symbol, R. Note that symbol R is used in place of surface energy 
r discussed in the previous section because during crack growth an anelastic deformation 
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(e.g., plastic deformation in metals) also occurs up to a certain depth of the cracked surfaces. R, in 
fact, is the sum of the energies required, (i) to form two new surfaces and (ii) to cause anelastic 
deformation. Like energy release rate, the crack resistance is also a rate but it is rather unfortunate 
that the word 'rate' has not been included in its nomenclature. 

Both parameters, energy release rate as well as crack resistance, are important to study the 
possibility of a crack becoming critical. Obviously, the energy release rate of a crack must be 
greater than the crack resistance for the crack to have a chance to grow. In fact, this is not the only 
condition; other conditions will be discussed subsequently. We would like to compare the growth 
of crack with a young man trying to purchase a car. If he does not have enough money, he cannot 
own the car. If he has just enough money to buy the car, he will make the purchase and bring the 
car home. In case, he has money in excess, not only he will purchase the car, but he can drive 
around at fast speeds to far away places and may even break road regulations and be dangerous 
to other vehicles. Similarly, if the energy release rate exceeds the crack resistance, the crack acquires 
kinetic energy and may grow at a speed faster than the speed of a supersonic airplane. 

2.6.2 Mathematical Formulation 

With an advancing crack, the following happens in a general case: 

l. Strain energy in the component decreases or increases. 
2. Stiffness of the component decreases. 
3. The points of the component, at which external loads are applied,, may or may not move. 

Work is being done on the component by these forces if the points move. 
4. Energy is being consumed to create two new surfaces. 

Formulation for energy release rate is carried out by invoking the conservation of energy. Consider 
the case of an incremental increase in the crack area M. To cause this crack growth, an incremental 
external work ~ Wext is done by the external forces and the strain energy within the body of the 
component increases by ~U. Then, the available energy, GM, provides the energy balance as 
follows: 

GM= G~Wext-b.U (2.8a) 

Dividing the equation by M and taking the limit M ~ 0 , we obtain 

G = - .!!__ (U - W ) dA ext (2.8b) 

The negative sign has been deliberately taken out of the differential term because (U - Wext) is 
commonly known as potential energy IT. Therefore, the equation is written as 

G = _ dIT 
dA 

(2.9) 

The above equation is quite powerful to evaluate the energy release rate of a system. The equation 
may be viewed from a different angle; that is, energy is available from the system if the potential 
energy decreases. Note that G is always positive for a crack studied fodts probable growth. 

In many engineering applications, fracture mechanics is applied to plates of uniform thickness 
and then M can be expressed as B~a, where B is the thickness and t,.a is the increment in crack 
length. Equation (2.9) is then modified to · 
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G == _ _!_ dIT 
B da 

(2.10) 

Before we show an application of the equation, we would like to modify it for dynamic crack 
propagation. As a crack moves rapidly, some energy is being consumed to the impart kinetic 
energy to cracked portions of the body and to generate stress waves. Therefore, Eq. (2.8a) is 
modified to 

GM== LiWext -LiU-AT 

where LiT is the incremental increase in kinetic energy in the body. On taking the limit, the equation 
becomes 

d dT 
G==- -(U-LiW )- -dA ext dA (2.11) 

Equation (2.9) looks simple but one still has to worry for external forces and change in internal 
energy. Can we simplify the equation further? For some cases we can. Two approaches are 
developed: (i) change in compliance, (ii) change in internal energy. 

2.6.3 Change in Compliance Approach 

In a component, decrease in stiffness with an increasing crack length may be simple to visualize, 
but in fracture mechanics, it is easier to deal with compliance which is the inverse of stiffness. 
Thus, compliance of a body increases with the increase in the crack length. 

Consider a general case of a body with a crack and load Pas shown in Fig. 2.4. The displacement 
u of the point at which the load is applied can be expressed as 

u == CP (2.12) 

p 

u 

Fig. 2.4 Component with a crack 

where C is the compliance. The objective now is to find the energy release rate G in terms of 
change of compliance with respect to the crack length a. 

In order to prov\de a feel to the reader, we have chosen the case of a double cantilever beam 
(DCB), which is mac\~ by splitting a beam on one end (Fig. 2.5). However, the proof is general and 
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the results can be applied to other problems. Further, we have chosen the case in which the crack 
is at mid-plane of the beam, with both cantilevers having identical geometry. 

This problem is solved for two extreme cases: (i) constant load Pin which the displacement of 
load point increases as the crack grows and (ii) constant displacement where load decreases with 
crack growth. 

(a) (b) 

Fig. 2.5 DCB specimen loaded with a constant load 

Constant Load: In the case of a constant load (Fig. 2.5), the cantilever ends move away from 
the crack plane with the advancing crack and thus work Pu is being done on the specimen. 
Consequently, the cantilevers are flexed more and they absorb a part of energy out of the external 
work. The remaining energy is utilized to extend the crack by t,,a. For this system strain energy U 
and work done wext are 

1 
U= - Pu 

2 

Wext= Pu 

The potential energy becomes 

1 1 
I1 = U- Wext = 2 Pu - Pu= - 2 Pu (2.13) 

Substituting the expression of I1 in Eq. (2.10) and making use of the fact that P remains constant, 
we obtain: 

G = !!_ du 
2B da 

Substituting u from Eq. (2.12), we obtain: 

P2 dC 
G=--

2B da 
(2.14) 

The equation provides another way to determine the energy release rate-just by finding the rate 
of change of compliance. Also, the simple expression of this equation justifies our choice of 
displacement-load equation in terms of compliance rather than in stiffness. 
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Fixed Grip: The analysis for the case of fixed grip is quite different; but the result would 
indeed be the same. As the crack advances, no external work is done on the system because the 
external load is not allowed to move (Fig. 2.6). What is the mechanism of energy release required 
for the crack growth? With the increase in the crack length, the cantilevers of Fig. 2.6a are relaxed 
to acquire a smaller curvature (Fig. 2.6b). The configuration of Fig. 2.6b has less strain energy 
because the energy stored in a cantilever is proportional to the square of the curvature. The body, 
therefore, continuously releases its strain energy with increasing crack length and if the release is 
large enough to meet the demands of producing two new surfaces, the crack may grow. The 
potential energy of the system is: 

1 
D= -Pu 

2 

(a) (b) 

Fig. 2.6 DCB specimen with fixed grips 

Substituting in Eq. (2.10), we obtain: 

G = _ _!!_ dP 
2B da 

Substituting P from Eq. (2.12) and realizing u remains constant, we obtain: 

G = _:£_ dC 
2BC2 da 

which, on eliminating u using Eq. (2.12), provides: 

P2 dC 
G=--

2B da 

It is worth noting that the result is same as that of the constant load case. 
We deliberately solved the two cases separately to make the reader aware that energy to 

propagate a crack may come from different sources. In the case of a constant load, energy 
requirements of the crack surfaces are met by the external work done on the body. In fact, the 
external work done is split into two parts, first part [50%, Eq. (2.13)] increases the strain energy, 
as the cantilever deforms to higher curvature and the second part is released for the crack growth. 
In the case of a fixed grip, the entire energy needed for the advancement of the crack is met by the 
decrease in existing strain energy. 

In practical applications, the cases are mixed. If P and u are changing simultaneously, as shown 
in Fig. 2.7, it can be argued that, for a short while, Pis changed by t.P at constant u and, then, u is 
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changed by I::,. u with constant P. Such successive changes approximately follow the actual loading 
path. Since there is no constraint on the magnitude of 1::,.u and t:,.P, they can be made as small as we 
like; so much so that the actual load-displacement curve is approached exactly. Since the expression 
for finding G is same for either case, Eq. (2.14) is valid for any general kind of loading. 

p 

u 

Fig. 2.7 General case 

The parameter G is often chosen by many researchers to determine interlaminar toughness of 
a composite laminate. A DCB specimen is pulled in a tensile machine at a slow cross-head speed 
(Fig. 2.8a). A stage is reached (state A in the load-displacement curve of Fig. 2.8b) when the crack 
starts growing. It is allowed to grow by a small distance (se 5 to 10 mm) to state M, and the 
machine is stopped and unloaded. From A to M, load decreases due to reduced stiffness, and 
distance u increases because the machine is continuously pulling the cantilever all along. The 
slope of the unloading curve MO is smaller than that of the loading curve OA. With this data in 
our hand, we could now evaluate the energy release rate. In fact, we will prove that the area 
OAM is the energy released when the crack moves through distance !::,.a. 

p 

u 

0 

(a) 

A 

B' C' 

(b) 

Fig. 2.8 DCB specimen of a polymer composite laminate 

M 

u 

Line AM is split into horizontal and vertical segments as shown. From A to B, the crack advances 
with constant displacement, and, therefore, the energy equivalent to the area of 1::,.QAB is released. 
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Along BC the crack propagates at constant load, adding external work given by the rectangle 
BCC' B'. Half of it is used to increase the strain energy of the cantilever given by the area of AOBC. 
The rest is available as energy release for the growth of the crack, which is also equal to the area 
of AOBC. Thus, by moving from point A to C, the energy release is equivalent to the sum of the 
areas of triangles OAB and OBC. The remaining segments along AM, with the same argument, 
provide the energy release as we move towards M. These segments can be made as small as 
possible, giving area OAM as the overall energy release. Thus, 

yielding, 

GBAa = Area OAM 

AreaOAM 
G=----

BAa 

2.6.4 Change in the Strain Energy Approach 

Another method, based only on the change in the strain energy, is also found convenient for 
linear elastic materials to determine energy release rate. For constant displacement (fixed grip) 
case, Eq. (2.8b) is simplified to: 

G=- dU 
dA 

(2.15) 

This equation states that the decrease in the existing strain energy per unit area extension of crack 
is the energy release rate. In case of a constant load case, we have already seen that: 

dWext = 2 dU 
dA dA 

(2.16) 

This, in fact, is a general theorem for linear elastic materials and is known as Clapeyron's 
Theorem. Substituting Eq. (2.16) in Eq. (2.8b), we have, 

G= dU 
dA 

(2.17) 

We thus obtain the same form for Gin both cases, except with a difference of the negative sign. 
In the fixed grip case, the already existing strain energy decreases as the crack advances, whereas 
in the constant load case, strain energy of the component increases, which is equal to half of he 
external work. However, the rate of change of internal energy does not give G in the mixed case 
with simultaneous variation of :P and u. In such cases, the method of finding the rate of change of 
compliance [Eq. (2.14)] is preferred. 

Some professionals like to address energy release rate as strain energy release rate (SERR). 
There is nothing wrong in calling a phenomenon or object by any name as long as there is no 
confusion in communication. Rigorously speaking, strain energy is not released in a constant 
load case; only a part of the work done is released. We will, therefore, not be using SERR for 
energy release rate in this book. 

Example 2.1 Determine the energy release rate for an edge crack loaded as shown in Fig. 2.9. 
Solution: This is a case of constant load and, therefore, we can determine G using Eq. (2.17). Frn 
each cantilever, 



Fig. 2.9 Edge-cracked body of Example 2.1 

U= f ~MTCda 

where TC is the curvature of the beam and obtained as: 

M M 12M 
TC= - = = --

El E(hB3 /12) EhB3 
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where Eis the modulus and I the moment of inertia of the beam's cross-section. Accounting for 
strain energy in both the cantilevers, 

U = 2 J _!_ M ( 12M ) da = 12M
2 
a 

0 
2 EhB3 EhB3 

Invoking Eq. (2.17), we have 

G = _!_(dU) = 12M
2 

B da EhB4 

2. 7 ENERGY RELEASE RATE OF DCB SPECIMEN 

The energy release rate can be obtained if the variation of compliance with respect to crack length 
is known. For some cases, a relation between the applied force P and the displacement u can be 
obtained by using field equations of solid mechanics. Then, by differentiating the ratio of u/P 
and substituting in Eq. (2.14), the energy release rate is determined. In this section, we would 
apply the method to a DCB specimen. 

The deflection of a cantilever beam, 8, caused by load P applied at the free end is well-known 
and is given as, 

1 P z3 

b= ---
3 EI 
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where l, E and I are the length, modulus, and moment of inertia of the beam's cross-section, 
respectively. For a DCB specimen with one cantilever-end attached to a fixed jaw of a tensile 
machine, the deflection of the moving jaw is twice the deflection of one cantilever and, therefore, 
for crack length a, the displacement u becomes 

2 P a3 

U= ---
3 E I 

(2.18) 

leading to, 

C = !:!_ = 2a3 
P 3EI 

(2.19) 

For the rectangular cross-section of cantilevers, I= Bh3 /12, where his the depth of a cantilever 
and Bis the thickness of the DCB specimen. Substituting I in Eq. (2.19) we obtain 

a3 
C=8-­

EBh3 

Differentiating and substituting in Eq. (2.14), we obtain 

12 a2 P2 

G----
1 - E B2 h3 (2.20) 

The depth h plays a dominant role because deflection of the cantilever depends prominently 
upon its depth. A cantilever of high depth flexes only by a small amount and therefore has a poor 
capability of storing strain energy. It is to be noted here that energy release rate depends on the 
capacity of the body to store strain energy. When the crack extends with fixed grip condition, the 
energy release comes from the decrease in strain energy and if the capability to store energy is 
small, the energy release rate is also small. In case of a constant load, the release of energy comes 
from the external work, but it is equal to increase in strain energy. Therefore, a body with low 
capability of storing strain energy provides small values of energy release rate. 

The thickness B also controls the deflection of the cantilever and therefore a beam of larger 
thickness would make the beam less flexible and provide a smaller energy release rate. Similarly, 
material property, modulus E, also governs the deflection; a stiff material like steel does not allow 
large deflection and, therefore, releases less energy in comparison to low modulus materials like· 
glass fiber composites or aluminum. 

From Eq. (2.20), we should make one more observation which is disturbing from the designers' 
point of view. If load P is maintained constant, energy release rate keeps on increasing with the 
square of the crack length, whereas the surface energy required per unit surface area does not 
depend much on the crack length for most engineering applications. Because of the excess energy, 
which increases rapidly with the crack length, the crack is likely to attain high velocity causing 
catastrophic failures. Designers find it very difficult to devise effective and practical methods to 
arrest cracks that have become unstable. Therefore, while designing a component, an all-out effort 
is made not to allow a crack to become unstable. In critical components, like an axle of a locomotive 
wagon, the entire body is scanned with modern techniques (ultrasonic flaw detector, etc.) to make 
sure that it does not contain a crack longer than the predetermined safe length. 
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Example 2.2 Determine the critical energy release rate of a DCB specimen loaded in a tensile 
testing machine. The thickness of the DCB specimen is 30 mm, depth of each cantilever 12 mm 
and crack length 50 mm. It is made of a hardened steel with the modulus of 207 GPa and the crack 
is about to propagate at 15405 N pulling load. 

Solution Invoking Eq. (2.20), we have 

12 a2 P2 

Grc= E B2 ,1 = 

= 22.1 kJ/m2 

12 X (0.050 m)2 X (15405 N)2 

(207 x 109 Pa) x (0.030 m)2 x (0.012 m)3 

Example 2.3 Determine the shape of the DCB specimen if G1 is to remain constant with the 
growth of the crack. The specimen is loaded in the constant load mode. Determine the depth h of 
the specimen beyond the crack tip if thickness of the specimen remains constant (B = 30 mm). The 
initial crack length is 50 mm, modulus 207 GPa and depth of each cantilever 12 mm up to the 
initial crack length. 

Solution: For G1 to remain constant in Eq. (2.20) 

12a2P2 

G1 = = constant 
EB21z3 

leading to, 
a2 EB2G 
3 = --2-

1 = constant 
h 12P 

But the constant is determined with initial conditions as 

a5 (0.050 m)2 
constant= 3 = ( 3 = 1447 m-1 

1zo 0.012m) 

yielding to, 
a2/3 

h = = 0.0884a213 

(1447)113 

T 
2h 

l 
Fig. 2.10 DCB specimen with constant G1 

For a = 0.08 m, the above relation gives h = 0.0164 m (=16.4 mm). The resulting shape of the 
specimen is shown in Fig. 2.10. Note that the cantilever depth increases with the growing crack; 
the cantilever with larger depth releases smaller energy because its capacity to store energy is 
smaller, thus compensating the effect of increased crack length. 
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2.8 ANELASTIC DEFORMATION AT CRAcK,TIP 

To advance a crack, Griffith correctly identified that energy is required which is consumed in forming 
two new surfaces. As discussed earlier in this chapter, the surface energy of solids is quite small and 
only cracks in brittle materials (e.g., diamonds, window glass panes) advance by such criterion. For 
most of the engineering materials (metals, polymer, etc.), a lot more energy is required in addition 
to the surface energy in order to grow a crack. Therefore, besides surface energy of the solids, some 
other mechanisms are also operative, which absorb large amounts of energy. 

Inglis [2.10] showed that the stresses at crack-tips are quite large; so large that they cause an 
anelastic deformation in front of the crack-tip. The anelastic deformation, such as plastic flow in 
metals, is mostly irreversible and if the stresses are released the body will not attain its original 
configuration near the crack-tip. The energy that causes this anelastic behavior is eventually 
converted into heat energy and is lost to the surroundings. Thus, the anelastic deformation 
dissipates work energy into heat energy. 

In metals, the plastic deformation in the vicinity of the crack-tip is caused mainly by motion 
and generation of dislocations, rotation of grains and grain boundaries, formation of voids, etc. If 
the material is of low yield stress, the size of the plastic zone is large. 

The plastic zone is very useful to designers who like to avoid fracture failure in machine 
components. A large plastic zone means that a large amount of energy is required to advance a 
crack-tip because a newer portion of the component is being continuously subjected to plastic 
deformation. The energy is thus continuously being dissipated bythe advancing crack tip to the 
plastic deformation. This is analogous to the preparation of an agricultural field with a plough 
which goes on throwing soil on either side. If the plough is dug deeper, more soil is upturned and 
this requires more energy. On the contrary, if the plough is not inserted into the ground at all, 
hardly any energy is required. The plastic deformation is thus a boon in disguise. A large plastic 
zone introduces plastic deformation to greater depth in the cracked surfaces as shown1n, .. 
Fig. 2.11. To understand the concepts, one may even express overall surface energy y as sum of 
natural surface energy y

11 
which a surface possesses even if it has not been subjected to any plastic 

deformation and the surface energy Yp which is caused by the plastic deformation near the cracked 
surfaces. The simple relation is written as, 

y= Yn + Yp (2.21) 

Depth of plastic 
deformation 

( 
1 

--.... 1 Crack growth 

Fig. 2.11 Increase of the effective surface energy due to plastic deformation 
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For most structural metals used in our daily life, Yp is several orders higher than Y,, and, therefore, 
r,

1 
may as well be ignored (Table 2.2). However, Eq. (2.21) is not a convenient way to formulate 

problems in fracture mechanics because there is always an uncertainty in the magnitude of r,,. 
TABLE 2.2 Representative values of r,, and r,, for some common materials 

Material Yn (J/m2) Yp (J/m2) 

Mild Steel 1.20 125,000 

Alloy Steel 1.20 15,000 

Aluminum Alloy 0.60 4,000 

In case of non-metals such as polymers, anelastic deformation near the crack tip is governed 
by mechanisms different from those in metals. For example, polymer chains align themselves 
parallely to each other under high stress and dissipate energy. The energy dissipation is several 
orders more than the natural surface energy. 

To sum up, the anelastic deformation in front of a crack-tip demands a large energy release 
rate. Therefore, for most of the cracks in a body, the energy release rate is not high enough to 
make them critical. Consequently, the cracks remain sleeping or dormant. 

2. 9 CRACK RESISTANCE 

For a crack to grow, the crack resistance (R) is the energy required by the crack per unit increase 
in area. It characterizes the material behavior. For most engineering materials, crack resistance 
increases with the crack length as shown in Fig. 2.12. A minimum value R; is needed to make the 
crack grow. Crack resistance depends on the plastic zone size. In a crack with a large plastic zone 
size, high energy is required to grow the crack as more material is subjected to plastic deformation. 
A substantial portion of the energy is lost eventually to the surroundings. 

R 

R; ------------------

a 

Fig. 2.12 R-curve of ductile materials 

Why does R increase with a? As the crack advances, plastic zone size becomes larger which, in 
turn, requires higher energy for crack growth. Interestingly, the shape of the R-curve is not found 
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to depend much on the initial length of a crack for most of the engineering materials. However, 
R-curve depends considerably on the temperature and the thickness of a plate. The dependence 
on temperature is understandable because many other properties (yield stress, etc.) depend on 
temperature. Dependence of the R-curve on a plate's thickness involves a geometrical parameter 
and makes it difficult to define toughness as an intrinsic property of a material. This aspect will 
be taken up again in this chapter. 

2.10 STABLE AND UNSTABLE CRACK GROWTH 

We have already realized that for a crack to grow the energy release rate of a crack must be 
greater than the crack resistance. We have now developed an adequate background to explore 
other requirements for a crack to become unstable. 

Consider a large plate with a centre crack length 2a, loaded in Mode I by stress a(Fig. 2.13). We 
would explore how much energy is released at a constant stress a 1 if the crack length is varied. It 
will be shown in Chapter 4 that G = a 2rca/ E for plane stress and G = (1 - v2

) a 2n:a/ E for plane 
strain cases. Note that G increases with crack length as shown in Fig. 2.13. If stress o-1 is small and 
the G-curve intersects the R-curve below R1, the crack will not propagate because the energy 
release rate is not adequate. The curve of higher stress o-2 just passes through R; and still the crack 
does not advance because with !:la increase in crack length, the energy release is smaller than the 
requirement. If the stress is further increased to o-3, G exceeds R for crack having length between 
a0 and a3 and the crack is likely to grow. However, with the increase in crack length the difference 
between G and R diminishes to zero at point B. There will not be any further advancement of the 
crack. Therefore, the crack may advance from length a0 to length a3 only. 

a 

2a 

• I 

a 

Fig. 2.13 (a) Centre-cracked plate, and (b) stable crack growth 

If the applied stress increases gradually, point B shifts to the right (Fig. 2.13). In other words, 
the crack grows slowly (stable crack growth). For stress a4, G-curve just touches the R-curve 
which means energy release rate is higher for all crack lengths except, of course, at the crack 
length a4 where they are equal. Even a slightly higher stress or a perturbation makes the crack 
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grow. As soon as the crack length increases, the difference between G and R grows, which provides 
excess energy to the crack. As a result, the crack gains velocity, ending up in a catastrophic failure. 
Thus, for a crack to grow and become critical, two conditions are necessary 

G ~ R (2.21a) 

dG dR 
~ ~ da (2.21b) 

The stable crack growth, at times, is useful in detecting a potential danger. Once a stable crack is 
detected in a component, a remedial action should be taken either by finding ways to arrest the 
crack or replacing the defective component with a new component. 

Even if the above two conditions are fulfilled, the crack may not extend. The local conditions at 
the crack-tip are quite important. If the tip is blunt, stresses at the crack-tip are not very high as it 
is clear from the Inglis solution [Eq. (2.1)]. Then, the crack is unlikely to propagate, although the 
energy criteria are met.An analogy may be drawn with some stone pieces placed right in front of 
the tires of a car-the powerful engine finds itself helpless although the car is capable of moving 
once the stone pieces are removed. 

A designer should not feel assured in cases where cracks are of long lengths, satisfying 
inequalities 2.21, but have blunt ends such as a hole at the crack-tip. Such cases are like sitting on 
a volcanic mountain which may erupt at any time. On the surface of a blunt crack front, a small 
length crack with a sharp tip may develop due to some unforeseen factors such as bad 
workmanship, fatigue or environmental degradation. The effective crack length then is the sum 
of the length of the blunt and the small crack. Under such conditions the crack may grow easily. 

2.11 R-CURVE FOR BRITTLE CRACKS 

In a brittle material, the size of the plastic zone in the vicinity of a crack tip is negligible and even 
the growth of the plastic zone is negligible with the advancement of the crack. Consequently, the 
R-curve rises vertically at the given crack length (Fig. 2.14) and then turns horizontal like a step 
function. 

G 

~-----R 

a 

Fig. 2.14 R-curve of brittle materials 

. As soon as the stress is large enough to make G overcome R, the crack advances. Note that 
stable growth does not occur. The difference between G and R increases rapidly with increasing 
crack length and the crack runs catastrophicallv. 
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2.12 THIN PLATE vs THICK PLATE 

From the point of view of fracture, which plate is tougher, thick or thin? Once I organized a 
trekking trip in the Grand Canyon, USA. We went down, right up to the Colorado river; i.e., 5000 
ft. down and then we climbed up 5000 ft. in a day covering a distance of nearly 45 km. One of my 
team-mates, who, even after being a little overweight was fit enough to be admitted in the Indian 
Army, had a very hard time climbing up the 5000 ft. On the other hand, there was another fellow, 
extremely lean and thin, climbed without any problem and that too two hours ahead of the other 
trekkers. From this incident the reader might have guessed by now that the thin plate is tougher; 
but the question still remains, why? 

It has already been argued that because of plastic deformation at the crack-tip, a large amount 
of energy is dissipated near the cracked surfaces. If the material yields easily and the plastic zone 
size is large at the crack-tip, the crack will not grow at low values of the energy release rate. We 
shall prove that in a thin plate (plane stress) the plastic zone size is considerably bigger than the 
plastic zone size in a thick plate (plane strain). If this is so, a thin plate is tougher against crack 
growth. 

We will first consider yielding in the vicinity of the crack-tip in a thin plate. Both the free 
surfaces of the plate are traction free and, therefore, the three stress components a33, a31 and a32 
(Fig. 2.15a) are zero on the surfaces. Also, they are negligible small even at all interior points for 
most of the engineering applications because the plate is thin. Note the a33 becomes one of the 
three principal stresses and will hence forth be called a3• 

Tmax 

(1 

~ ~\ 
Fig. 2.15 (a) A thin plate with a center crack and (b) principal stresses with a large 

value of maximum shear stress 

Other two principal stresses a1 and a2 lie in the plane of the plate. To avoid complex algebra 
and emphasize more on the concepts, we explore the nature of stresses on points which are ahead 
of the crack-tip and are close to the plane of the crack for Mode I cases. Shear stresses are small 
near this plane due to the symmetry of the problem. 

Normal stress a22 is large and tensile, contributing dominantly to the highest principal stress 
0'1. The other normal stress a11 is also tensile as the material is not free to move in the plane of the 
plate. It contributes to next highest principal stress a2 as shown in Fig. 2.15b. For estimating the 
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size of the plastic zone, we will now make use of Tresca Yield Criterion, which is based on 
maximum shear stress. The maximum shear stress can easily be obtained by drawing all the three 
Mohr circles. cr1 being the largest is on the far right in Fig. 2.15b and cr3 at the origin with cr2 lying 
in between. The radius of the largest Mohr circle, between 0'1 and 0'3, provides the maximum 
shear stress -rmax· It is worth noting that -rmax is quite large in cases of thin plates resulting in the 
generation of a plastic zone of a large size. 

A thick plate with a Mode I crack, cr2 and cr1 are again tensile stresses as they are for the thin 
plate. Due to tensile cr1 and cr2, the material tends to stretch in the plane of the plate, which in turn 
tends to make the plate thinner. However, the plate is thick and constrained; the material is not 
able to flow in x3 direction. As a result, tensile stress develops along x3 direction. Fig. 2.16 shows 
all the three Mohr circles. For plane strain (thick plate), cr3 is finite and only marginally smaller 
than cr1 making the largest Mohr circle substantially smaller than the largest Mohr circle of plane 
stress. Thus, -rmax is considerably lower in a thick plate. In fact, the material in front of the crack­
tip is locked and is not free to deform. In other words, thick plates do not allow the generation of 
large plastic zone sizes. Hence, they are not as capable of dissipating energy as thin plates are. 
These aspects will be discussed in detail in Chapter 5. 

r 

!max 

(a) (b) 

Fig. 2.16 (a) A thick plate with a center crack and (b) principal stresses with a 
low value of maximum shear stress 

When the Alaska pipeline to transport crude oil from the interiors of the Alaska state to the 
sea-shore was being designed, there was a constant tussle between the conventional designers 
and the modern experts of fracture mechanics. The conventional designers wanted the pipe line 
to be made of thick wall so that stresses will be smaller and the material would not fail due to 
yielding. The experts of fracture mechanics wanted to choose smaller wall thickness because then 
the wall of the pipe would be loaded in the plane stress and be tough against crack growth. 

2.13 CRITICAL ENERGY RELEASE RATE 

R-curve depends on the thickness of a plate if it is loaded in a plane stress. Figure 2.17 shows 
three R-curves for plane stress for three thicknesses, with the corresponding critical energy release 
rates G~l G~'-J and G~l. 
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Fig. 2.17 Critical energy release rate of plane strain and plate stress 

When the thickness of the plate is increased further, it becomes a combined case of plane stress 
and plane strain. Close to the free surfaces, material deforms in plane stress and, in the interior, 
plane strain conditions exist. On thicker plates, the component of plane strain dominates; so much 
so, that a stage is reached beyond which the effects of thickness are not felt on the R-curve as 
shown in Fig. 2.17. Then the energy release rate required to cause the unstable growth no longer 
depends on plate thickness. This is called critical energy release rate and is denoted by Grc where 
'I' stands for Mode I. The critical energy release rate becomes the property of a material. Table 2.3 
provides representative values of plane strain Gic of some widely used engineering materials. 

Design engineers like to use components made of thin cross-sections so that they are loaded in 
plane stress. For example, the web and the flange of an I-beam should be made of small thicknesses. 
An irony is that, when designers refer to literatures or handbooks, the critical energy release rate 
is available only for plane strain and not for plane stress. One may argue that by using the critical 
energy release rate of plane strain we have conservative design. But, the resulting design may 
sometimes turn out to be over-designed and non-feasible. For example, the structure of an airplane 
is designed with a low factor of safety for restricting its dead weight. In such cases, the critical 
energy release rate is determined for the thickness of the sheet chosen by the designers. 

Experimental techniques to determine the critical energy release rate are not developed well 
except in some special cases like determining the interlaminar Ge of fiber composite laminates. 
Details of experimental techniques are presented in Chapter 8. 

The concept of the energy release rate is not conveniently applicable to materials with large 
plastic zone at the vicinity of the crack tip. In the analysis discussed so far in this chapter, the 
material is assumed to be linearly elastic and if the plastic zone is small, its effect may be neglected 
in determining the energy release rate. However, with a large plastic zone at the crack tip, the 
analysis should be done more carefully by accounting for the constitutive relations of plasticity 
within the plastic zone. The parameter J-Integral deals with such problems more effectively (Ch. 6). 
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TABLE 2.3 Representative plane strain G1c of some common materials 

Material G1c (J/m2
) 

Mild Steel "'250,000 
Alloy Steel ( er ;s = 1070) 30,000 

EN 24 (U.K.) 
4340 (U.S.A.) 
40Ni2Cr1Mo28 (I.S.) 

I Aluminum 7075-T6 8,000 
Titanium Ti-6Al-4V 29,000 
Perspex (PMMA) 800 
PVC 4,500 

* Yield Stress in MPa 

2.14 CLOSURE 

In this chapter, the problem of fracture has been discussed purely through energy approach 
without worrying about existence of very large stresses in the vicinity of the crack tip. To sum up, 
there should be an energy release from the system to make a crack move. The energy release is 
measured by the parameter, energy release rate (G). Also, energy is required to form two new 
cracked surfaces and is accounted by another parameter, crack resistance (R). The necessary 
requirements for the crack advance are (i) G ::?: R and (ii) dG Ida ::?: dR/ da. The value of G, which 
satisfies these two conditions, becomes the material property known as critical energy release 
rate. For thin plates, the critical energy release rate depends on the thickness of a plate, whereas 
it is independent of the thickness of thick plates. 

QUESTIONS 

l. Why is the surface of a solid associated with surface energy (or free energy)? 
What is an approximate value of free energy of the surface of a metal? 

2. Actual energy required in a ductile material to create two new surfaces through the crack 
growth is several orders higher than the surface energy of solids. Why so? 

3. Why does the compliance of a component increase with the growth of a crack? 
4. Does the strain energy of a component increase with the crack growth? 
5. Why does negative sign appear in the expression of G defined through Eq. (2.9)? 
.f:,. How does the rate of change of strain energy give G for constant load case or 

constant deflection case? Is this approach valid for non-linear elastic materials? 
7. Why is failure catastrophic once a crack starts growing in a DCB specimen? 
8. What are different mechanisms of anelastic deformation in a polymer? 
9. If the load is increased gradually on a component made of a ductile material, why do we 

obtain stable crack growth before the catastrophic failure? 
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10. Why does a brittle material not have stable crack growth? 
11. Why are thin plates tougher in comparison to thick plates? 
12. Why is critical energy release rate not given in handbooks for thin plates? 

PROBLEMS 

1. Determine the energy release rate of a DCB specimen through change in strain energy 
approach for constant load. 

2. Determine the energy release rate, using elementary beam analysis, for the configurations 
given in Fig. 2.18 (h<<a). 

p 

(c) 

Fig. 2.18 The figure of Problem 2 

(b) 

p 

p~ 

~'},IJ 

(d) 

h 

4 
h 

3. G1 is determined for a DCB specimen with a load at the end of each cantilever in 
Section 2.7 by neglecting the effect of the shear stress. If the strain energy of the shear 
force is also considered, find G1. 
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4. Consider a plate with a crack of length a and lateral load P acting on the corners as shown 
in Fig. 2.19. Find the energy release rate. 
[ e = TL I Kµ where e is the angle of twist, T twisting moment, L length, µ shear modulus 
and 

K = bh3 [16 -3.36!:(1- ~)] 
16 3 b 12b4 

12=5 
h 
h<<b 

h<<a 

Fig. 2.19 The figure of Problem 4 

5. The load on a 30 mm thick plate with an edge crack of 50 mm length was increased very 
slowly and the displacement of the load point was monitored. It was observed. that at the 
load of 2100 N and displacement u = 4.1 mm, the crack started growing. The rate of crack 
growth was much faster than the rate at which the load increased and therefore the crack 
essentially was grown at the load of 2100 N. Through an optical recording using a rapid 
camera it was found that the crack grew up to 65 mm length with the rapid increase in 
displacement to u = 7.5 mm. Determine the critical energy release rate. 

6. A large plate of 36 mm thickness with an edge crack of a = 32 mm length is pulled very 
slowly under displacement control loading. At the displacement of 7.2 mm, when the 
recorded load is 2750 N, the crack starts growing. At a= 41.7 mm, the crack is arrested 
and the load decreases to 1560 N. Determine the critical energy release rate. 

7. A double cantilever beam of a fiber composite laminate with an initial pre-crack is loaded 
under displacement control to the critical load and the crack is allowed to grow by a small 
length. Then, the specimen is unloaded to zero load. Now, the specimen with a larger 
crack length is loaded again to the new critical load and allowed to grow further by a 
small length. Such load cycles are repeated five times and compliance is obtained during 
each cycle. The data is summarized in Table 2.4. The load displacement curve remains 
elastic up to the critical point and the thickness of the specimen is B = 30 mm. Determine 
the critical strain energy rate for each segment of crack growth through the approach of 
finding the area enclosed in the corresponding triangle of the load-displacement recording. 
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TABLE 2.4 The table of Problem 7 

Crack length a (mm) Compliance C (m/N) Critical load P (N) 

32 33.5 X 10-6 94.3 

42 68.9 X 10-6 78.8 

50 121.0 X 10-6 64.0 

58 191.0 X 10-6 53.5 

67 294.0 X 10-6 44.0 
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Chapter 

3 
Stress Intensity Factor 

... nature is intelligent because it is too complicated to be called anything else. 

Deepak Chopra 

3.1 INTRODUCTION 

3.1.1 Why Should Investigations be Closer to the Crack Tip? 

Today, thinking big often implies focusing on minute details. Huge amounts of atomic energy is 
generated, both for peaceful and destructive purposes, by manipulating atoms which are invisible 
even under powerful microscopes. Similarly, in order to understand how crystalline materials 
(e.g., metals) deform plastically, we should understand the behavior of dislocations, which are 
imperfections and look like threads. Dislocations too are very small in diameter, but can be viewed 
under a powerful microscope. A crack front exists within a material, like a line running from one 
region of the body to another. The vicinity of a crack tip offers interesting information as the 
magnitudes of stress components are extremely high. When we want to break a wooden stick by 
bending it we make a notch. The notch creates high stresses, which in turn make the notch tip 
move rather easily. 

Knowing the stress or displacement field in the vicinity of a crack tip is very useful. A material 
scientist may devise ways to develop new materials which can diffuse high stresses at the crack 
tip. A designer may modify some features such as notches, cutouts, keyways, etc., to minimize 
stresses. An experimentalist can think of methods of characterizing cracks by measuring stresses 
or strains near the crack tip. One of the biggest advantages is that stress analysis leads to define a 
parameter, stress intensity factor (SIF) to characterize a crack. In comparison to energy release 
rate, SIF is simpler for a designer and easier for laboratory measurements, so as to determine 
material properties. 

3.1.2 Linear Elastic Fracture Mechanics (LEFM) --,,----,----~--.l..' -" ____ , " 
In a brittle material, the material remains elastic ev~n at the crack tip where stj:e~~e high. 
Mosf engine'ering materials do not fall in this category. Diamonds are known to be quite brittle 
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(elastic) even in the vicinity of a crack tip. Other brittle materials like window panes are known to 
have some anelastic deformation close to the crack tip. This chapter develops analysis of brittle 
materials only; the analysis does not account for plastic deformation close to the crack tip. A 
natural question arises-when most materials are not brittle, why should we make detailed 
analysis of brittle materials? Obviously, analysis of brittle materials is far simpler than the analysis 
of a material having a plastic zone at the crack tip. The presence of a plastic zone means that two 
kinds of stress-strain behaviors should be incorporated, plastic behavior inside the plastic zone 
and elastic behavior outside it. At the same time, it is difficult to evaluate the interface between 
the two zones. Furthermore, the material behavior inside the plastic zone is complex to model 
and in some materials, especially those which exhibit pronounced Bauschinger effect, the material 
behavior is extremely difficult to account for. Therefore, for the analysis of elastic-plastic fracture 
mechanics (EPFM), problems are usually solved through numerical analysis. 

By confining our attention to elastic (or brittle) materials, we would be able to obtain closed 
form solutions to many problems. Also, we will learn how to deal with the singularity (infinite 
stresses at the crack tip) involved. There is another advantage in developing solutions of elastic 
crack problems. In many real life cases where the plastic zone size is quite small in comparison to 
the crack length, the contribution of the plastic zone in an elastic analysis may be neglected. That 
is, if stress fields in such cases are determined for purely elastic and elastic-plastic cases separately, 
the difference between the two is small enough to be considered negligible. A large number of 
engineering problems of practical applications fall in this category and consequently elastic 
analysis is good enough. This leads to an important subfield-linear elastic fracture mechanics 
(LEFM), where only elastic analysis is carried out to determine stress and displacement fields 
near a crack tip with characterizing parameters like the SIF. It is worth mentioning here that the 
energy release rate (G) has also been formulated for LEFM. / 

3.2 STRESS AND DISPLACEMENT FIELDS IN ISOTROPIC ELASTIC MATERIALS 
,,/ 

On what parameters d~es the stress field depend in the vicinity of tlle crack_twIJ.J:_,_of course, 
depends on the external load, generally denoted by the far field stressa.-1'.he-name,-far field, may 
mislead some readers; it refers to stress at points of the body where the influence of the high 
stresses generated at the crack tip is negligible. The second important parameter, as discussed in 
Chapter 2, is the crack length a. We also realize that the stress field varies near the tip significantly 
from point to point and one must specify the coordinates at which stress components are to be 
determined. Generally, polar coordinates (r, 8) are employed for describing the location of the 
point. Further, the stress field depends upon geometry i.e., whether the crack is at the centre of 
the body, at the edge, or at the off-centre. Under geometrical considerations, the effect of the 
overall size of the specimen with respect to the crack length would also be included. 

Let us express stress component a ij in the vicinity of crack tip as 

CJ;j =/(a, a, r, (), geometry) 

where i, j are the suffixes representing various stress components like a 11, a 22, a 12, a 33, etc. There 
is a separate relation (function!) for each stress component. 

In engineering applications, most of the hardware components are in the form of plates. 
Commonly used sections like angles, I-beams, channels, rectangular tubes, etc., are made of flat 
plate sections. Even in a circular tube with a crack having its length much smaller than the diameter 
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of the tube, the region around the crack tip may be regarded as a flat plate. Thus, a study of crack 
in a flat plate encompasses many engineering applications. 

In most problems of this book, x1-axis is chosen along the crack length, xraxis along the normal 
of the plate and x2-axis in the plane of the plate and normal to the crack length [Fig. 3.l(a)]. Also, 
we have chosen to denote stress components with two suffixes because that is a better way of 
representing the stress tensor. Consequently, we would be using symbol cr for shear stress 
components also; the suffixes will only differentiate shear components from normal components. 
Further, we prefer to use suffixes l, 2 and 3 in place of x, y and z, as used in many books. 

Fig. 3.1 Axes with respect to the crack in a plate 

Solving equations of solid mechanics to obtain expressions for crij in the vicinity of the crack tip 
is mathematically involved and, therefore, only the results would be presented and discussed in 
this section. The derivations would be presented in Sections 3.4 and 3.5. 

To present results, we have chosen the common case of a flat plate with a crack of length 2a and 
far field stress a as shown in Fig. 3.2(a). The stress field at a general point H near the crack tip' for 
isotropic and linear elastic material in the flat plate for this Mode I case is 

(a) (b) 

Fig. 3.2 (a) Infinite plate with a crack of length 2a subjected to a far field stress cr, and 
(b) definition of stress compon~nts at point H 
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a(n: a)112 8[1 .8.38] {3.la) a - cos - -sm-sm-
11 - (21r ,)112 2 2 2 

a(1r a)112 8[1 .8.38] (3.lb) 0"22 = (2n; r)112 cos - +sm-sm-
2 2 2 

a(n: a)112 
8 8 38 

(3.lc) 0"12 = (2n; r)112 sin - cos - cos -
2 2 2 

For a thin plate, other stress components are negligible. In case of a thick plate o-33 = v(a11 + o-22) 

where vis the Poisson's Ratio of the material; the other two stress components (a13, o-23) are 
negligible. 

It is clear from these equations that each stress component is proportional to the far field stress 
a. The crack length appears under a square root and, therefore, its influence on stress components 
is also prominent, but not to the extent of a. 

The distance (r) between the crack tip and the point plays the most important role. It sits in the 
denominator under a square root sign. If r becomes very small, the stress components, specially 
o-22 goes up steeply, so much so that for r ~ 0, a22 tends to be infinite. Such solutions are called 
singular. In this case, it is known as square root singularity. In some special cases of fracture 
mechanics, other kinds of singularities are encountered. 

Displacement field for a: plane strain near the crack tip for Mode I of Fig. 3.2(a) is given by 

- a(n: a)l/2 (-' )1/2 8 [ 8] 
U1 - ' µ 2n: cos2 1- 2v + sin

2 
2 

u 2 = a(n::)
112 (;11:}12 

sin1[2-2v+cos2 1] 

U3 = 0 

(3.2a) 

(3.2b) 

(3.2c) 

where µ is the shear modulus. The above equations do not contain any singularity, because 
displacement is finite near the crack tip. Mathematically, displacement components are obtained 
from stress equations by converting stress components to strain components and then integrating 
the resulting expressions. During integration, the square root singularity disappears and 
displacement components turn out to be proportional to the square root of the distance r. However, 
one should note here that the Eqs (3.2a-c) are valid only in the close vicinity of the crack tip. 

3.3 STRESS INTENSITY FACTOR 

~ 
In the engineering field, a problem with two variables is much more difficult to solve than a 
problem of one variable. A question may be raised here-can two independent variables be 
combined to form a new independent variable? If the answer is yes, the solution to the problem is 
likely to become much simpler. In the case of a wave propagation, solution even along one 
dimension becomes complex because two variables, space (x) and time (t), are involved. In such 
wave pr9blems,we usually combine two variables to form a new variable, (x - ct), where c is the 
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velocity of the sound. There are many other similar cases such as linear kinetic energy combining 
two variables to one, linear momentum combining two variables to one, Reynolds Number in 
fluid mechanics combining four independent variables to one, and Sommerfield Number in journal 
bearing combining five variables into one. 

If we look carefully into Eqs (3.1) and (3.2), we find that for a given geometry there are two 
main variables, the far field stress er and the crack length a. Furthermore, in all the equations of 

stress and displacement, CJ and a coexist as CJ .fa . Can this product be called by a different variable? 
Now with several decades of research work, we find that it is advantageous to do so. This credit 
goes to Irwin [3.1 ], who defined the new variable, stress intensity factor, and used the symbol K 
after the name of his collaborator Kies [3.2]. He defined K as t\ 11),. 

r;: 

K1 = CJ (na) 112 (3.3) 

There is no reason to have Jr in the above definition. It wask;;cluded in the expression because 
of some historical reasons which shall be explained in the next chapter. However, the stress 
intensity factor K1 is formally defined as }< .- ( I\ i)'/'l: 

I I " "" K1 = (2.m} 2 cr22 (r, 8 = 0) as r ~ 0 · (3.4) 

This definition can be checked easily by substituting Eq. (3.1b) in the formal definition [Eq. (3.4) ], 
the resulting expression will be the same as of Eq. (3.3). 

We realize that, for stress or displacement fields, magnitude of CJ or a is immaterial as long aS, 
cr(na)112 is same. This means a small crack length in a plate with high far field stress is equivalent 
to a large crack length with small far field stress, provided K remains same. This combination of 
er and a to form a new variable is regarded as a breakthrough in the field of fracture mechanics. 
For Modes I-III, the stress intensity factor is written as K1, Kn and Km respectively, with subscript 
in Roman numbers. 

The stress and displacement Eqs (3.1) and (3.2) may now be written in terms of the stress 
intensity factor. For Mode I problems of plane strain, they become 

K~-,\ 8 [ 8 38 J 
cr11 = ~t'~ cos - 1- sin - sin -

(2n r 2 2 2 
(3.Sa) 

K 1 8 [1 . 8 . 38 J cr22 = l/? cos- +sm-sm-
(2.irr) - 2 2 2 

(3.Sb) 

Kr . 8 8 38 
CJ 12 = 1 sm - cos - cos -

(2n r)1 2 2 2 2 
(3.Sc) 

( )
1/2 [ J Kr r 8 . 2 fl u1 = - - cos - 1- 2v + sm -

µ 2n 2 2 
(3.Sd) 

( )
1/2 [ J Kr r . 8 2 8 

u2 = - - sin - 2 - 2v + cos - . 
µ 2n 2 2 

(3.Se) 

The stress intensity factor elegantly characterizes a crack, similar to energy release rate, G, 
developed in Chapter 2. Equations (3.Sa-e) need to be modified for bodies which are of finite 
dimensions or where the crack tip is close to one of the free edges of the component. Closed form 
expression for stress intensity factor is available only for simple cases and, therefore, determining 
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the stress intensity factor becomes a challenge for many practical cases. These days, numerical 
techniques are widely used for this very purpose. However, for a body with a crack and known 
boundary conditions, once the stress intensity factor is determined, the crack is characterized for a 
designer and then, he can predict whether a crack in the work-component is likely to grow or not. . 

Stress and displacement equations for the center-cracked body are similar for other modes. 

For Mode II in plane strain and far field stress <Y 12 = r (Fig. 3.3) with Kn = r Jira, 

we have 

Fig. 3.3 A centre-crack in an infinite plate loaded3} Mode II 
~ 

',,c 

K . 6[ 6 36] --=II 
1
.....,
1

,,,..
2 

sm - 2 + cos - cos -
(2n:r) 2 2 2 

Kn . 8 6 36 
<Y22 = (2n:r)112 sm 2 cos 2 cos 2 

Kn 6 [1 . 6 . 36 J <Y12 = cos - - sm - sm -
(2n:r)1.12 2 2 2 

·. K ( )
1
1

2 
6 [ 6 J \ II r · 2 u1 =,- - sm- 2-2v+cos -

\µ 2n: 2 2 \ . 

} ( )

1

1
2 6 

[ 
6

] u2 = --1!. ~ cos - -1 + 2v + sin2 
-

µ 2n: 2 2 

For Mode III and far field stress a23 = r (Fig. 3.4) with Km= r.Jiia, we have 
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Km . e 
0"13 = - (2.u )112 sm 2 

Km (J 
0"23 = 112 cos -

(2Jrr) 2 

u = Km 2r sin !!_ 
( )

1/2 

3 µ TC 2 

Fig. 3.4 A centre-crack in an infinite plate loaded in Mode III 

3.4 BACKGROUND FOR MATHEMATICAL ANALYSIS 

In the previous section, stress and displacement fields in the vicinity of a crack tip were presented 
without providing proofs. This section would develop the mathematical base and the following 
section would solv~ problems of all the three modes for simple geometries. 

Although the field equations of solid mechanics are quite well-known, they would be presented 
for plane problems for the sake of completeness. The solution to fracture problems would be 
obtained by solving field equations of solid mechanics. Of course, proper boundary conditions 
would be incorporated, including zero traction conditions (free surface) of the cracked faces. To a 
beginner, some parts of this section may look strange and may be a bit difficult in the first reading 
because such analysis is not usually seen in other fields of mechanics of solids. A straightforward 
and simple analysis is not possible because the problem deals with a singularity. We would proceed 
slowly as if we are trying to reach the centre of a flower bud by taking one petal out gently at a 
time. This, of course, comes at a risk of annoying some of the readers who are already conversant 
with this field. · 
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3.4.1 Fii{d Equations , 

There are three kinds of field equations [3.3] whk C.solved for a set of given boundary 
conditions of a component. They are: (i) equilibri=~:;i~ns relating to stress components,fii) 
'§ffaifr=disptm:e-nn~nt-rdations and (iii) stress-strain relations for the given material of the 
component. In case the problem is solved with stress or strain components as dependent variables, 
an additional set of equations inust be satisfied to ensure that during the deformation, a continuous 
body remains continuous. This condition is called compatibility [3.4]. We will develop it because 
most problems would be solved in stress components. In fact, the compatibility condition provides 
the governing differential equation for many problems. 

Equilibrium Equations: Equilibrium equations within a body are developed in any textbook of 
'soliarriecflanics and, therefore, they will not be derived here. For problems dealing with plates, 
variation of stress components in the thickness direction is assumed to be negligible. For most 
fracture mechanics problems, body force is not important and, therefore, we are left with the 
following two differential equations of uilibrium: ~er 

ofu)+ clcr12 0 I -f::>"----~-··-
(3.6a) 

a~ 
\ aal~ + a~ = ~ (3.6b) 

\i I ax1 a~ 
rain- isplace~~nt ahd Compatibility Relatio_ns: Only three strain-displacement relations are 

. ~IIlostprol5leinsoHracturemecfianics dealing with plates. If U1 and U2 are displacement 
components, strain components t:11( t:22 and t:12 are expressed by well known relations, as: 

: "'- OU1 ,, «;" I/ c>U_r 
811-r- ' \ 

/ OX1 \ -=::::--- j 
' i )•r"-'t./ OU2 "'-! __ _, 

822= -
OX2 

(3.7a) 

(3.7b) 

£12 = _!_[clu2 + clu1 J J_ (3'.7c) 
2 axl OX2 

It is to be noted here that the tensorial strain has been chosen, wKose normal components are the 
same as the normal components of the engineering strain, but a shear component is half the 
corresponding shear component of the engineering strain. The compatibility conditions (necessary 
relation between strain components) are obtained by eliminating u1 and u2 from the above 

,A_ 

equa~ions. Differentiating the eq\u~ l !J , , I 

ax~ OX10X~ 

0£22 OU2 

axf = axfax2 

a 
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By substituting the first two equations in the last equation, and rearranging the terms, we obtain 

iie11 + cf £22 - 2 ,is12 = 0 
ox1 oxf OX1<1X2 

(3.8) 

This relation between the strain components ensures compatibility. 
, Stress-Strain Relations: For the linear isotropic materials deforming elastically, the stress-strain 

relations are well known as 

£11 = }[ 0"11 -v ( 0"22 + 0"33)] 

ei2 = }[ 0"22 -v(0"11 +0"33)~1 

1 
£33 = E[ 0"33 -v ( 0"11 + 0"22)] 

0"12 (1 + v) 
£12 = - = -- 0"12 

2µ E 

where Eis the Young's Modulus,µ is the shear modulus and vis the Poisson's Ratio. 

(3.9d) 

Plane Deformation: Consider a thin plate that is deformed in plane stress. On the free surfaces, 
the out of plane stresses are zero and they are usually negligible in the interior points of the plate. 
We thus assume 

Therefore, the plate carries only in-plane stresses. The stress-strain relations are simpllfied to 

1 
£11 = -[ 0"11 -v 0"22] 

E 
(3.10a) 

1 
£22 = -[ 0"22 -v 0"11] 

E 
(3.10b) 

0"12 (1 + v) 
£12 = - = -- 0"12· 

2µ E 
(3.10c) 

On the other hand, the plane strain case corresponds to a sufficiently thick plate for which (i) 

displacement in x3 direction is restricted (u3 = 0) and (ii) variation in x3 direction is zero ( a!
3 

=a). 
These two conditions yield 

E13 = £23 = £33 = 0 

Therefore, for plane strain cases, simplified stress-strain equations are obtained by setting 
£33 = 0 in Eq. (3.9c) to have 

0"33 = V ( 0"11 + 0"22) 
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Substituting a33 'in Eqs (3.9a) and (3.9b) and rearranging the terms, we have 

En= (l -v2) [au - _v_a2~] 
E 1-v ~ 

E22 = (l-v2)[a22 - _v_au] 
E 1-v 

Also, Eq. (3.9d) is manipulated to 

(1 - V) (1 - V) 1 - V 
2 

( V ) 
E12 = -E- (1- V) 0"12 = -E- 1 + 1 -V CT12 

In the above equations, we define 

E 
E'---

- 1-v2 

' V V =--
1-V 

Then, stress-strain relations for the plane strain become: 

E11 = ;,[a11 -v'a22 ] 

Ez2 = ;,[a22 -v'an] 

l+v' 
E12 = ~0"12· 

(3.lla) 

(3.llb) 

(3.llc) 

(3.lld) 

(3.lle) 

(3.12) 

We thus note that the form of these equations is exactly the same as that of the corresponding 
equations for plane stress cases [Eqs (3.10)]. 

/ Biharmonic Differential Equation: When we glance at the field equations, we find that they are 
too many of them to compute. Therefore, we shall reduce the number of equations by going to the 
higher order of differential equations. 

The analysis of determining stress field in the vicinity of a crack tip can be done either in stress, 
strain or displacement components. Based on experience we find that it is convenient to solve the 
differential equations with stress components as dependent variables for many problems of 
fracture mechanics. This is because the boundary conditions, especially at the cracked faces, are 
usually known in stress components. In fact, the cracked surfaces are generally traction free, 
thereby making several stress components zero (e.g., a22 = a 12 = 0). 

Sine~ we are planning to develop the differential equations in terms of stress components, 
compatibility conditions should be invoked. Thus, the compatibility condition of Eq. (3.8), which 
relates strain components should be changed into a relation between stress components. This is 
done by substituting stress-strain relations [Eq. (3.10)] into the compatibility relation [Eq. (3.8)]. 
Thus, we have 

a2 a2 d20"12 
- 2 ( 0"11 - V0"22) + - 2 ( 0"22 - van) - 2(1 + v) -;--;- = 0 
~ ~ ~~ 

(3.13) 



Stress Intensity Factor 45 

This equation has three dependent variables a11, a22, a12 and is still cumbersome to solve. To 
make it manageable a new function cJ>, known as Airy's Stress Function, is defined as: 

a2cJ> 
0'11 = -2-

dX2 

a2cJ> 
0'22 = --2 

dX1 

a2cJ> 
(J. - - ---

12 - dX1dX2 

(3.14) 

There is a definite purpose in coming to such a definition-they satisfy the equilibrium equations. 
Therefore, we will not worry for the equilibrium conditions any more. Substituting Eq. (3.14) in 
Eq. (3.13) and simplifying, we obtain the governing differential equation as 

a4cJ> 2a4cJ> a4cJ> 
--+ +-- =0 
dX[ dXidX~ dXi 

This equation is generally written in more compact form by making use of the symbol 

Then, Eq. (3.15a) is expressed as 

or 

2 a2 a2 
V =-+­

ax2 ax2 

V2 (V2cJ>) = 0 

V4cJ> = 0 

1 2 

which is known as Biharmonic Equation. 

(3.15a) 

(3.15b) 

If the above analysis is carried out for a plane strain [using Eq. (3.12) in place of Eq. (3.10)], the 
governing differential equation turns out to be the same. This is because the stress-strain equations 
of the plane stress and the plane strain have identical forms. The biharmonic solution may appear 
to be deceptively simple in appearance, but the solution to even simple problems is often not 
straightforward, because it involves fourth order partial derivatives. 

3.4.2 Elementary Properties of Complex Variables 

Stress and displacement fields in the vicinity of a crack tip have been obtained in several ways by 
various investigators. Some like to solve it through complex variable techniques and others 
without it. We will solve it through complex variables, as presented hy Westergaard [3.5] in 1939. 
Some of the readers may hesitate in the beginning to play with complex numbers but we feel that 
it provides a short and simple route. It is like somebody travels from Delhi to Mumbai by an 
airplane instead by a train; the airplane takes only one tenth of time, but is more complex. 

It has been found convenient to form a complex variable z as 

Z = x1 + iXz 

In fact, by combining two independent variables x1 and x2 into one complex variable z, we reduce 
our difficulties of dealing with two independent variables in solving the biharmonic equation. · · · 

' ' 
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If F(z) is a complex function of variable z, it can be written as 

F (z) = ReF1 + ilmF 

In fact, F(z) forms a surface on the complex plane (Fig. 3.5). The function is analytic at a point z if 
the derivative is the same in all directions [3.6]. This fact is quite useful and we equate derivative 
of F(z) in x1 direction with its derivative in ix2 direction to obtain 

F(z) 

Fig. 3.5 Surface F(z) on a complex plane 

F'(z) = cJF = cJReF + icJimF 
dX1 dX1 dx1 

F'(z) = cJF = -i cJReF + cJimF 
idX2 dXz dX2 

Since F'(z) = Re F' + i ImF', the equations are rewritten as 

F'( ) R F' . I F' a Re F . a Im F z = e +z m =--+z--
dx1 dX1 

F'( ) R F' . I F' . d Re F d Im F z = e +z m =-z--+--
dx2 dx2 

Comparing real and imaginary parts, we obtain (Cauchy-Riemann relations): 

dReF = ReF' 
dX1 

dlmF = ImF' 
dX1 

dReF =-Imf' 
dXz 

dlmF = ReF' 
dX2 

(3.16) 

All the four equations are useful for analysis because they provide the method for differentiating 
the real and imaginary parts of F(z) with respect to x1 and x2. 
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3.5 WESTERGAARD'S APPROACH 

One way to solve the biharmonic equation is to express <I> in terms of another complex function 
Z1(z) for Mode I problems. In other words, Z1(z) is an intermediate solution which satisfies the 
biharmonic equation. It is chosen appropriately by Westergaard t~ suit the general characteristics 
of Mode I problems. Then to solve a specific problem, the form ofZ1(z) is chosen to satisfy all the 
boundary conditions of the problem. An analogy is drawn here with an airplane that goes from 
Delhi to Bangalore. The intermediate solution Z1(z) is analogous to the airplane's flight which 
does a major job of taking passengers from a far away distance to the city. Then, dispersing 
passengers from the airport to various different parts of the city is analogous to solving various 
problems of Mode I. 

Similarly, there is a Westergaard intermediate solution Zu for the biharmonic equation for 
Mode II problems. Since general characteristics of Mode II problems are different from those of 
Mode I, Zu has a different form. In the analogy of air flights the airplane goes from Delhi to 
Bangalore for Mode I problems whereas it flies from Delhi to Mumbai for Mode II problems. 

The case of Mode III problems is usually simpler and can be managed without taking the help 
of the biharmonic equation. The problem can be solved in terms of displacement component u3, 

thus avoiding the compatibility equations. It would be shown that the governing differential 
equation consists of only second order partial derivatives. 

3.5.1 Mode I (Opening Mode) 

For Mode I problems, <I> is expressed as 

<I> = Re 21 + x2 Im 21 

where, Z1 = dZ1 I dz and 21 = dZr I dz 

(3.17) 

We shall show that this expression of <I> satisfies the biharmonic equation. Also, components 
a11, a22 and a12 would be expressed in terms of Z1(z) with the help of Eq. (3.14). What are the 
advantages in constructing the Westergaard function Z1(z)? For many complex looking differential 
equations, such as the biharmonic equation, there are no set ways of solving them. We keep trying 
various solutions on the basis of feel, intuition or clairvoyance until one satisfies the differenti~l 
equation. Westergaard is credited here for offering a simple solution. The integrals of Z and Z 
do not cause difficulties in determining the stress field of a problem, because Z1(z) is differentiated 
at least twice and in the process, integrals are eliminated. 

The proof of showing that the expression of <I> satisfies the biharmonic equation is straight­
forward, but it is carried out below for the sake of completeness. We would be adopting the 
convention 

Z, _ dZ1 • Z" - dz; d Z"'- dZ;' r--, i--an r--. 
dz dz dz 

We differentiate Eq. (3.17) by making liberal use of Eq. (3.16) to obtain 

act> -
.;- = ReZ1 + x2 ImZ1 
uX1 

cf<t> 
= ReZ1 + x2 ImZ1 axf 
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a2<1> 
- 2- = - x2 Im Z1 + Re Z1 
OX2 

o
3

<l> R Z" I Z' I Z' R Z" 2 I Z' -3- = - X2 e I - m I - m I = - X2 e I - m I 
OX2 

a4<I> 
-- - x ImZ"' Re Z" -2ReZ" - x lmZ"' -3 ReZ" ::.4 - 2 I - I I - 2 I I 
0X2 

a2<I> 
-::.-- = x2 Re Z1 
0X10X2 

a4<I> 
-,,--- = - x2 Im Z'{' + Re Z;' oxfox~ 

Substituting in the biharmonic Eq_. (3.15a) to have the left hand side as 

Re Z;' + x2 Im Z'{' - 2x2 Im Z'{' + 2Re Z;' + x2 Im Z'{' - 3Re Z{' ~ 0 

(3.18) 

The differential equation is thus satisfied. Substitution of the relevant partial derivatives of 
Eq. (3.18) in Eq. (3.14) leads to 

a11 = ReZ1 - x2 ImZ1 
a22 = ReZ1 + x2 ImZ1 

(3.19a) 

(3.19b) 

a12 =-x2 ReZ1 (3.19c) 

In order to solve a given problem, the proper form of the Westergaard function Z1(z) is chosen 
such that the stress components, determined through Eq. (3.19), satisfy all the boundary conditions. 
Once such a function is obtained, the stress field in the vicinity of the crack tip can. be easily 
obtained through Eq. (3.19). The Westergaard function does not solve a problem completely; it 
only aids in solving a problem. We still have to guess the form of the complex function Z1(z) in a 
specific problem. 

To determine the displacement field (u1, u2) in the vicinity of the crack tip, we convert the 
stress field to the strain field with the help of appropriate stress-strain relations (Eq. (3.10) for 
plane stress problems and Eq. (3.12) for plane strain cases). Strains are then integrated for 
determining displacements. ' 

We first'take the case of plane stress. Substituting Eqs (3.19a-c) in Eqs (3.lOa-c), we have 

~u1 = t:11 = .!.[(ReZ1 -x2 ImZf)-v(ReZ1 +x2 Imzf)J 
0X1 £ 

(3.20a) 
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duz = c:22 = ]:_[(ReZ1 + x2 ImZ{)- v(ReZ1 - x2 rmzf)J 
dx2 E 

(3.20b) 

1 [du1 du2 ] _ _ ReZ1 - -+- - e12--Xz --
2 dXz dX1 2µ 

(3.20c) 

Rearranging terms and making use of the relationµ= E/[2(1 + v)], we simplify the first two 
equations to 

du1 _ 1 [(1-v) R z ImZ'] -----e1-X2 I 
dx1 2µ (1 + v) 

du2 1 [(1- v) '] -:::;-- = - --Re Z1 + x2 Im Z1 
0X2 2µ (l + V) 

We integrate both the partial differential equations using relations of Eq. (3.16) to obtain: 

1 [(1-v) - ] u1 = - --ReZ1 - x, ImZt + f(x,) 
2µ (l + v) - 4 

(3.21a) 

u2 = J_[-2
-Im.2\ - x2 ReZl l + g(x1) 

2µ (1 + v) J 
(3.21b) 

where, f(x2) is the constant of integration which can be the function of x2 only. Similarly g(x1) is 
the function of x1 only. We shall be showing that for the fracture mechanics problems, function 
f(x2) and g(x1) can be equated to zero without losing any generality. To prove it, we substitute 
Eqs (3.21a and b) into Eq. (3.20c) to find that all terms involving Z1 cancel each other, leaving only 
the following equation: 

df(x2 ) + dg(x1 ) = 
0 

dX2 dX1 

The equation is rearranged as 

df(xz) = - dg(x1) = A 
dXz dX1 

where A is a constant. On integration, 

f(x2) = Ax2 + B 

g(x2) = -Ax1 + C 

Again Band Care constants of integration. If we substitute these equations into Eqs (3.21a and b) 
and study them carefully, we note that all the points of the component are displaced by the same 
distance, given by u1 = B and u2= C. Therefore, B and C correspond to rigid body translation and 
they may be set to zero without losing any generality. Furthermore, rigid body rotation co is 
governed by the equation 

CO = l_ [ dU1 _ dU2 ] 

2 dXz dX1 
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and the contribution of function f and g towards rigid body rotation becomes 

1 
m = - (A + A) = A 

2 
Therefore, A corresponds to a rigid body rotation of the component and may be set equal to zero 
without losing any generality. Thus, for the plane stress cases, 

1 [(1-v) - ] u1 = - --ReZ1 -x?ImZ1 2µ (1 + v) -

u2 = l_[-2
-ImZ1 -x2 Rez1] 

2µ (1 + v) 

For plane strain problems, we substitute Eqs (3.19a-c) in Eq. (3.12) to obtain 

~u1 = J_[(l- v')ReZ1 -(1 + v')x2 ImZ1] 
dX1 E' 

~:: = ;,[(1-v')ReZ1 +(1+v')x2 ImZ1] 

(3.22a) 

(3.22b) 

Substituting the values of E' and v' [Eqs (3.lld and e)] in the above equations and then 
integrating them, we obtain the results for the plane strain cases as: 

u1 = J:_[(1-2v)Re.Z1 - x2 ImZ1] (3.23a) 
2µ 

(3.23b) 

Thus, we have expressed all the stress and displacement components in terms of the 
Westergaard function Z1, which still is an unknown function. 

The Westergaard function does not solve a problem completely. The function solves it to a 
stage from where we have a much better chance to guess the form of Z1 by looking at the boundary 
conditions of a problem. The Westergaard approach comes out handy for the problems of an 
infinite plate because we do not have to concentrate much on satisfying boundary conditions of 
far field stress. 

Now, we take up the problem of an infinite plate with through-the-thickness crack length of 2a, 
loaded under a biaxial field of stress CY as shown in Fig. 3.6. Usually, if the exterior dimensions of 
the plate are much larger than the crack length, the plate is considered to be infinite. The boundary 
conditions that should be met while choosing the Westergaard function are: 

(i) At the crack tip 

CY22 = co 

(ii) On cracked surfaces (x2 = 0, - a < x1 < a) 

CY22 = 0, CY12 = 0 

(iii) Far away from the crack (large I z I) 

CYn = CY, CY22 = CY, CY12 = 0 
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While guessing the form of the Westergaard function for this problem we study Eq. (3.19) in 
light of the boundary conditions. The function which satisfies all the boundary conditions is 

CJZ CJZ 

Zr(z) = (z - a)1/2(z + a)112 = (22 -a2)1/2 (3.24) 

a 

t t t t t t t 

- X2 -- _..,... 

- rcoo _..,... 
a a - _..,... 

- I~ 
X1 -- -- _..,... 

i i i i i i i 
a 

Fig. 3.6 A centre-crack in an infinite plate subjected to a biaxial stress field 

Now we shall check whether the form of Z1(z) satisfies the boundary conditions. For checking the 
first boundary condition, using Eq. (3.19b), we find CJ22 for x1 ;;,: 0 and x2 = 0 as 

CJX1 
(J'. - --~--

22 - ( 2 2 )1/2 
X1 -a 

Clearly for I x1 I~ a, the stress component CJ22 tendsJ:owards infinity, thus satisfying the first 
boundary condition. On cracked surfaces wit "'.-.. 2hMM~tmall ( c::: 0), Zr is simplified to 

0 /oOy.-fN~-f 
(Jx O <o o\C, 

- 1 /"' (I_ \.-1 
Z1 (z) = ( 2 2)1; 2 i5(f LIBRARY ~\fl, (3.25) 

X1 -a ·· ~]Qg,J1; 0 · . 

Then, the stress components are ~Gd, 1.S/* 
~/ 

CJ22 = ReZ1 ~EM 
..........,_u..:;,_.;.,q-· 

CJ12 = 0. 

Zr is imaginary on the cracked surfaces because x1 lies between - a and a, making Re Zr = 0. Thus 
the second boundary condition on the cracked surfaces is satisfied. In order to check the third 
boundary condition, we take I z I ~ oo in Eq. (3.24) to have 

leading to Z1 (z) = CJ for l:I « 1. 



52 Elements of Fracture Mechanics 

The differentiation of Eq. (3.24) gives 

2 

Z, ( ) <Ya (3 26) 
rZ=-(2 2)3/2 . 

z -a 

which gives Z1(z) = 0 when I z I~ 00 • Substitution of the limiting values of Z1(z) and Z1(z) in 
Eq. (3.19) leads to <Y11 = <Y, <Y22 = <Y and <Y12 = 0, thus satisfying the far field boundary conditions. 
Therefore, the chosen form of Z1(z) is the correct solution to the problem. 

For determining the stress field near the crack tip, it is convenient to transform the origin from 
the centre of the crack to its tip. It is done by the transformation 

z =a+ Z0 
(3.27) 

where z0 is measured from the crack tip. Z1 then becomes 

<Y(a + Z0 ) <Y.Ja [1 + Z0 / a] 
Z~)- ------'---~ 

I o - (a+zo -a)112(a+zo +a)l/2 - (2zof2[1+zo/2a)l/2 
(3.28) 

Since I z0 I<< a in the vicinity of the crack tip, the above equation is simplified to the approximate 
relation 

Expressing z0 in polar coordinates as z0 = r(cos9 + i sin9), it is modified to 

Z K1 ( 9 .. 9) 
I= (2nr)112 cos2 -tsm2 

Similarly, the transformation z = z0 + a changes Eq. (3.26) to 

<Y a2 <Y a2 
Z'1 (zo) = - "' - ----

3/2 ( 2 )3/2 - 3/2 ( 2 )3/2 

= 

Z0 Z0 + a Z0 a 

-Ki ( 39 .. 39) 
2(2n)l/2r3/2 COS2-:lS1Il2 

Substituting Z1(z0) and Z1 (z0 ) in Eq. (3.19) and realizing x2 = r sin 9, we obtain 

K1 9 rsin9 K1 . 39 
<Y11 = cos---- sm-

(2nr(2 2 2 (2n )112 r312 2 

Similarly, 

(3.29) 

(3.30) 

(3.31) 

(3.32a) 

(3.32b) 
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Kr . 0 0 30 
o-12 = sin - cos - cos - (3.32c) 

(2n-r )112 2 2 2 

For determining the displacement field in the vicinity of the crack tip, Zr (z0 ) is obtained from 
Eq. (3.29) as 

_ (2Jl/2 (2 )1/2 ( () ()) 
Z1 (z0 ) = 1C K1 Fa = ; K1 cos2 + isin 2 

Now, it is a simple matter of substituting 21 (z0 ) and Z1 (z0 ) in Eq. (3.22) and simplifying it to 
obtain the displacement field in the vicinity of the crack tip for the plane stress as: 

K(r)112 
0((1-v) 01 

u1 = ; 2rc cos2 (l+v) +sin22J (3.33a) 

K1 ( r )
112 

. 0 ( 2 2 0) u2 = µ 2rc sm 2 l+v -cos 2 (3.33b) 

For the plane strain, substitution of Z1 (z0 ) and Zr (z0 ) in Eqs (3.23a and b) gives: 

u1= - 1 .!._ cos- 1- 2v + sin2 -K ( )112 0 ( O) 
µ 2:rr 2 2 

(3.34a) 

( )
1/2 ( ) K1 r . 0 2 0 

u2 = - - sm- 2-2v-cos -
µ 2rc 2 2 

(3.34b) 

Unlike the stress components, the displacement components are finite and there is no square 
root singularity. One should not get misled by noting that u1 and u2 keep on increasing with 
increasing r; the above solution is valid only in the close vicinity of the crack tip. Also, note that u1 
does not depend on the sign of O; it is expected because Mode I problem is symmetric about the 
crack plane. However, as expected, u2 changes its sign as O is replaced by - 0. 

The distance between the two crack faces, known as the crack opening displacement (COD), is 
useful for carrying out experiments and for defining the parameter, crack tip opening displacement 
(CTOD) which is introduced in Chapter 7. COD of a centre-cracked plate when subjected to plane 
stress loading (Fig. 3.6) will be obtained by invoking Eq. (3.22b) for x2 = 0. For this problem Z1 

and 21 simplify to 

Z1 = ( 2 2 )112 = 
z -a 

O" z 

21 = o-(z2-a2)1;2 = ia ~a2 -xf 

Substituting Z1 and .Z1 in Eq. (3.22b) and realizing the shear modulus asµ= E /2(1 + v) we obtain 

1[ 2o- ~2 2] COD = 2u2 = 2 x - -( -) a - x1 2µ l+v 
(3.35) 
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= 40" ~a2 -xf 
E 

with the maximum crack opening equal to 40" a/ E at x1 = 0. 
In fracture mechanics problems, if Z(z0 ) is expressed with the crack tip as origin, .jz; appears 

in the denominator of all the three modes. Another formal definition of K [3.7], which is an 
alternative yet equivalent to the two definitions already presented through Eqs (3.3) and (3.4), is 

K = ~2:rrz0 Z(z0) (3.36) 

Z0 ~ 0 

If this definition is applied to Eq. (3.29), we have the familiar result, K1 = O" Ji7i. 
We realize that the simple expression of Eq. (3.29) was obtained by neglecting some terms from 

Eq. (3.28). Some of us may, at this stage, like to split hairs and be interested in knowing how 
approximate the results are for the relation of Eq. (3.29). To have some idea, we would explore 
how 0"22 differs from the correct solution on x2 = 0 plane. For the biaxial case under consideration, 
the rigorous solution of Eq. (3.24) is simplified for x2 = 0 to 

O" X1 
Z1(z) = 

112 
for I x1 I> a. 

(xf - a2) 

Substituting in Eq. (3.19b) leads to 

0"22 _ X1 

CJ - (xf -a2
(

2 

The origin is moved to the crack tip by the transformation x1 = a + x0 and, with some mani­
pulation, we obtain 

0"22 = (l+x0 /a) (l+ x0 )-

112 

<J (2xola)l/2 2a 

The approximate value of a22 is obtained from Eq. (3.32b) fore= 0 as 

<522 - 1 
- - ( I )112 <J 2x0 a 

The percentage difference between the two values, rigorous and approximate (labeled as 'no 
approximation' and 'one term' respectively in Fig. 3.7), increases with the increase in distance 
from the origin on the crack plane. At the distance where x0 / a= 0.15, the difference is 9.8%. 

The approximate relation of Eq. (3.29) can be improved by retaining higher terms in the 
expansion of (1 + z0 /2ar112 of Eq. (3.28). In fact, the form of Z1(z0 ) changes to 

K1 A 112 A 3/2 A s12 Z1 = 1/2 + 1Zo + 2Zo + 3Zo +... (3.37) 
(2:rr z0 ) 

where A1, A2, A3, etc. are real numbers. If we retain the first two terms, 0"22 is modified to 

<J = cos - 1 + sm - sm - + - 1 - sm -K1 e ( . e . 3e 3r ( . 2 e )) 
22 (2:rrra)1/2 2 2 2 4a 2 
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3.5 

3.0 

2.5 
No approximation 

2.0 Two terms 

One term 

1.5 -!-----,---,---,----r--
0.00 0.05 0.10 0.15 0.20 

xola 

Fig. 3.7 cr22 on the crack plane for biaxial loading 

In Fig. 3.7 the solution of 'two terms' is also plotted for er 22 from the above results for e = 0. It 
shows that the inclusion of one more term considerably reduces the difference between the rigorous 
and approximate values. For the biaxial loading problem, Fig. 3.8(a) shows the photo-elastic fringes 
(simulated on a computer) in the approximate case of using only the first term in Eq. (3.37). The 
lobes of the fringes are almost normal to the crack plane. Figure 3.8(b) shows the fringes when 
two terms are used and it is evident that the lobes of the fringes are inclined. This result is close to 
the fringes observed in real life cases. 

(a) (b) 

Fig. 3.8 Photoelastic fringes for the biaxial loading case with analysis of (a) one term, and 
(b) two terms (Courtesy: Dr K. Ramesh, Dept. of Applied Mechanics, IIT Madras) 
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The stress field [Eq. (3.32)] developed in this section for a biaxially loaded plate is usually 
claimed to be the stress field of an uniaxially loaded plate (Secs 3.2 and 3.3). What is the 
contribution of the far field stress a11 = a? It does not cause any substantial change in the stress 
field in the vicinity of the crack tip because 0\1 does not open up the crack. Invoking the principle 
of superposition, we can separate the biaxial stress (Fig. 3.9) to two configurations, (a) and (b). 
Configuration (a) is of importance to us; however, a simple solution to it is still not available. 
Configuration (b) does not try to open the crack but it does modify the stress field to a certain 
extent near the crack tip. However, the solution to configuration (b) is not simple and we usually 
neglect its effect in engineering solutions to fracture mechanics. 

(J 
(J 

t t t t t t - - --- - (J- -(J 

(J (J - - -- = + 

- - -- a b - -- -t t t t t t 
(J 

(J 

Fig. 3.9 Separating biaxial loading case to configs (a) and (b) 

We close this subsection by realizing that the exact Westergaard solution is not available for a 
centre crack in a plate loaded uniaxially in the direction normal to the crack plane. However, a 
simple Westergaard function is available for biaxially loaded plates whose stress field in the 
vicinity of the crack tip is not substantially different from the case of an uniaxially loaded plate. 
Therefore, for most of the practical purposes, the solution of a biaxially loaded plate is employed 
for both uniaxially and biaxially loaded problems. 

3.5.2 Mode II (Sliding Mode) 

A centre-cracked problem in an infinite plate for Mode II loading is considered, as shown in 
Fig. 3.3( a). It has been found that the following expression of the Airy Stress Function </J is convenient: 

(3.38) 

where, Zn is a complex function and its form would be so chosen such that all the boundary 
conditions are satisfied. One can easily show that the above expression for <I> satisfies the 
biharmonic equation and the stress field is given by 

0"11 = 2 Im Zn+ x2 Re Z 11 (3.39a) 

(3.39b) 

(3.39c) 
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Further, stress components are converted to strain components and then integrated to yield for 
plane strain cases as 

u1 = 2-[2(1- v)ImZn + x2 Re Zn J 
2µ 

u2 = 
2
~[-1(1-2v)ReZ11 -x2 ImZn] 

For the case of Mode II, as shown in Fig. 3.3, the Westergaard function is given as: 

(3.40a) 

(3.40b) 

Zn= ( 2 -rz2 t2 (3.41) 
z -a 

which satisfies all the boundary conditions. They are similar to boundary conditions of the 
Mode I problem [Fig. 3.2(a)]. Like in the case of Mode I, we transform the origin to the crack tip 
by the transformation relation z = a + z0 and obtain the simplified but approximate relation as 

r (Jr a(2 

Zn= (
2

7rz
0

)1;2 (3.42) 

Invoking the definition of the stress intensity factor [Eq. (3.36)], we obtain: 

Kn= r ..fica 
Substitution of Zn and its derivative in Eqs (3.39a-c), leads to: 

-Ku 8 ( 8 38) 0"11 = 112 sin 2 +cos-cos-
(27rr) 2 2 2 

Kn 8 8 38 
(3.43) O"zz = 

(2nr)
112 cos sin - cos -

2 2 2 

Kn 8(1 .8.38) 
0"12 = 

(27rr)112 
cos 2 -sm2-sm2 

Substitution of Zn and Zn in Eqs (3.40a and b) gives the displacement field for a plane strain 
problem as 

U1 = __!!_ _!_ sin - 2 - 2v + cos2 
-K ( )

1

1
2 8 ( 8) 

µ 2Jr 2 2 
(3.44a) 

u2 = :
1 (;n J1

12 
(- cos~)(1- 2v- sin

2 
~) (3.44b) 

With the similar procedure, the displacement field for a plane stress field can be obtained as 

Ku r . 8 2 2 8 
( )

1/2 ( ) 
u1 = µ 2Jr sm 2 1 + v + cos 2 

(3.45a) 

Kn r 8 1 - V . 2 8 
( )

1/2 ( )( ) u2 = µ 
2
n - cos 2 1 + v - sm 2 (3.45b) 
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3.5.3 Mode III (Tearing Mode) 

A large plate with a centre crack, subjected to a far field shear stress a23 = i- (Fig. 3.4), is considered. 
For this case of Mode III, 

U1 = 0 

u2 = 0 

u3 = w(x11 x2). 

For this displacement field, components of strain tensor turn out to be 

leading to, 

£11 = £22 = £33 = £12 = 0 

ldw ldw 
£13 = --; 823 = --

2 dX1 2 dX2 

0'11 = <122 = 0'33 = 0'12 = 0 

dW 
0'13 = 2µ £13 = µ-::_:;-

0X1 
(3.46a) 

(3.46b) 

It should be kept in mind that the problem of Mode III is not a case of plane stress or plane 
strain. It is considerably simpler because many components of displacement, stress and strain are 
zero. We would, therefore, not be using the biharmonic equation. Instead, the problem will be 
solved with displacement component w as the dependent variable and then there is no need to 
worry for compatible conditions any more. Out of the three equilibrium equations, only the last 
one provides the non-trivial equation, 

d0'13 da23 -- + -- =0. 
dX1 dX2 

Converting it into displacement components using Eqs (3.46a and b) 

a2w a2w 
+- =0 axf ax? 

which is the well known Laplace equation and is also written as 

V2w= 0 

The Westergaard approach is also applicable to this differential equation by choosing w in the 
form of 

1 
w = -ImZm 

µ 
(3.47) 

where Zm is a complex function of variable z. Again one can show that the above expression 
satisfies the governing differential equation. Also, substituting win Eqs (3.46a and b), we obtain 
stress components as 

0'13 = Im Z III 
0'23 = Re Z III 

(3.48a) 

(3.48b) 
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The form 

Ziu=(2 2)112 
z -a 

r:z 

satisfies all the boundary conditions. Z'm is transformed to the origin at the crack with relation 
z = a+ z

0 
and after neglecting the small terms, we obtain: 

I rJa . 
2 III = 1/2 · 

(220 ) 

(3.49) 

Using r.J;; = Km and expressing 20 in polar coordinates, the equation is simplified to 

, Km ( e . . e) 
Zrn = (

2
n-rf2 cos2 -zsm2 . (3.50) 

Substituting Zin in Eq. (3.48), we obtain the stress field as 

Km . e 
0"13=- 1/2Sm-

(2n-r) 2 
(3.51a) 

Km () 
0"23 = 1/2 cos-

(2n-r) 2 
(3.51b) 

Integrating Eq. (3.49) and substituting r .fia. = Km, we have 

which on substih,ition in Eq. (3.47), gives the displacement field as 

· )1/2 
u = Km ( 2r sin!!_ 

3 µ. 7r 2 

with u1 = 0 and u2 = 0 

3.6 CONCLUDING REMARKS 

We determined the stress and displacement fields around a crack tip in infinite plates for all the 
three modes. These results are quite useful to a designer, because in many practical applications 
a crack in a plate is quite small in comparison to the lateral extent of the plate. 

The Westergaard's approach adopted in this chapter is not the general way of solving problems. 
In fact, problems of infinite plates are easier to solve because stress fields far away from the crack 
are simple; we mainly focus our attention to the cracked faces and with some luck we may be able 
to guess a solution, which satisfies all the boundary conditions. In the cas.e of work-components, 
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which have their edge/ edges close to the crack, the job of guessing a Westergaard function, which 
not only satisfies conditions at cracked faces but also meets the requirements at the edges, becomes 
a difficult task. Problems dealing with bodies of finite dimensions will be taken up in Chapter 4. 

QUESTIONS 

1. What is a singularity? What kind of singularity describes a stress field near the vicinity of 
a crack tip in LEFM? Is it expected to be different for elastic-plastic fracture mechanics? 

2. Stress field is the same for plane stress and plane strain problems. Why is it not so for 
displacement fields? 

3. In problems of plates, stress components are expressed in the Cartesian coordinate 
system whereas the location at which stress is considered is defined in polar coordinates. 
Why is such a mixed approach adopted? 

4. For many problems of practical applications, solutions of infinite plates are applicable. 
Justify the statement. 

5. Displacement near the crack tip is determined by integrating strain components. Why 
do we equate integration constants to zero? 

6. Mode I case has been solved for a biaxial case and its stress and displacement fields are 
taken to be approximately the same as of an uniaxial case. Justify. 

7. Why do we not use biharmonic equation to solve Mode III problems for a centre crack in 
an infinite plate? 

PROBLEMS 

1. Show that <I>= - x2 Re Zn, chosen for the Mode II problem, satisfies the biharmonic equation. 

Determine stress components and displacement components (plane stress) in terms of Zn. 
2. For a centre crack in an infinite plate loaded in Mode II, determine stress components and 

displacement components (plane stress) near the vicinity of a crack tip in terms of Ku. 

3. Show that w = _!_ Im Zm , chosen for the Mode III problem for a centre-cracked infinite 
µ 

plate, satisfies the Laplace equation V2w = 0. Determine stress components and all 
displacement components in terms of Zm. Also, determine stress and displacement fields 
in the vicinity of the crack tip in terms of Km. 

4. In a large plate, a crack of length 2a is inclined with an angle a with xi-axis (Fig. 3.10). The 
plate is loaded in x2 direction with a 22 = a. 
(i) Find the stress intensity factors. 

(ii) For a= 80 MPa, 2a = 20 mm and a= 30°, determine K1 and Ku. 
5. Determine stress at point Hof Problem 4, if r = l mm and €J = 45°. 
6. Determine the critical crack length in a centered-cracked plate, loaded in Mode I, if critical 

stress intensity factor K1c = 60 MPa Jm and far field stress is 120 MPa. 
7. Determine stress components ( am a88, a,8 ) and displacement components (u,, u8 ) in polar 

coordinates for plane stress of Mode I. 
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Fig. 3.10 The figure of Problem 4 
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Chapter 

4 
SIF of More Complex Cases 

Models are useful, but without exception, they have blind spots built into them. 

Deepak Chopra 

4.1 OTHER APPLICATIONS OF WESTERGAARD APPROACH 

We have so far solved the basic problems of Modes I, II and III in the previous chapter through 
the approach made available by Westergaard. The chapter defined stress intensity factor and 
determined stress and displacement fields near a tip of a crack in an infinite plate loaded with a 
far field stress. In this section, we would take up some more problems which are also important 
for the practical cases. 

4.1.1 Wedge Loads on Cracked Surfaces 

Consider the problem of two wedge loads P (per unit length), acting symmetrically on each cracked 

X2 

I a - a --J 
I 

tp tp 
-=- x1 

ip ip 
l,.sJ 11 sJo I 

Fig. 4.1 Symmetrically applied wedge loads on the surfaces of a crack 
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surface (Fig. 4.1) at a distances from the centre of the crack. The problem has applications to riveted 
joints. For this case, the Westergaard function is known to be 

2Pz(a2 
- s2 )112 

Zr= 112 
Jr ( z2 - s2) ( z2 - a2) 

(n a)1;2 
which leads to K -

2
P (4 1) 

I - Jr ( 2 2 )1/ 2 . a -s 

Another case of wedge loads on one side only (Fig. 4.2) is more general, and stress intensity 
factors are known to be [4.1]: 

A P a+s 
[ ]

1/2 

Kr= .jiia, a-s 

P a-s 
[ ]

l/2 

KB- -- -­
I - .jiia, a+s 

I 
I 

B 
~ 
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I 

tp 
A 

tp 
X1 

w 

Fig. 4.2 A pair of wedge loads at distances on the surfaces of a crack 

(4.2a) 

(4.2b) 

These results are also found to be very useful in solving problems of distributed pressure on 
the crack surfaces by constructing Green's functions. To explore the approach of Green's function, 
we consider the problem of a triangular pressure distribution at the cracked surfaces as shown in 
Fig. 4.3 with maximum pressure p0 acting at the centre. This problem is solved by invoking the 
solution to the symmetric line loads acting on the faces of the crack [Eq. (4.1)]. Consider two thin 
slices, each of width ds and at a distance s from the origin, as shown in the figure. Then, the load 
on one slice is given by 

(a - s) 
dP=-- p0ds 

a 
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s s I~ 

a a 

Fig. 4.3 Triangular pressure distribution acting at the surfaces of a crack 

which contributes towards stress intensity factor as 

dK = 2 ( a - s) Po Jira ds . 
I ( 2 2 )1/2 arc a - s 

Now, to determine the effect of pressure, the equation is integrated to have the form 

2 fa (a-s) 
K1 = -p0Jiia 112 ds 

re o a(a2 -s2) 
which on integration gives 

Ki = (1 - 2/ re )Po .Jiia . 
Note that we have considered a simple example for demonstrating the approach of Green's 

function; but problems having any variation of p(x) on the crack surfaces can be solved through 
Eq. (4.1) for symmetric pressure, or through Eq. (4.2) for asymmetric pressure. If p(x) is a simple 
distribution, one may be able to integrate to obtain a closed form solution; otherwise, one can 
always resort to numerical techniques to solve the problem. 

4.1.2 Collinear Cracks in an Infinitely Long Strip 

A classic problem in fracture mechanics is of collinear cracks in an infinitely long strip as shown 
in Fig. 4.4. Identical cracks, each of length 2a, are separated by a distance W. The geometry of this 
problem is not usually encountered in practical cases and, therefore, one may think that the 
problem is solved just for the sake of academia. This is not the case, because the problem acts as 
a stepping stone to several real life problems dealing with finite size plates. In this section, we 
shall find the solution of this problem, but in subsequent sections of this chapter, appropriate 
portions will be cut out from this strip to solve problems encountered in several engineering 
applications of importance. The Westergaard function Z1 for the problem [4.2] is known to be 
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Fig. 4.4 Collinear cracks in an infinitely long strip 

o- sin ( n z I w) 
Z1= =-------'---'---=--

[ sin2 (n z/W)- sin2 (n a/W) ]112 
(4.3) 

where, the origin is at the center of a crack. Transforming axes to the tip of the crack by relation 
z = a + z0 leads to 

. n z . ( n z0 ) n a ( n z0 ) n a 
smw=sm w cos w +cos w sin w 

Since we have confined the analysis to the close proximity of the crack tip ( I z I<< a), 

. (nz0 ) nz0 sin -- ""' --
W W 

nz 
cos--0 ""'1 w 

(4.4) 

Simplifying Eq. (4.4) with the above approximations and substituting in Eq. (4.3), we obtain 

[
nz0 na . na] 

CJ --cos-+sm-
W W W 

Z1= -----------~--:-:-::-

[
n2z; 2 na 2Jz:z0 na . nal

112 

--cos -+--cos-sm-
W2 WW WW 

Since z0 / W is a small number, the first term of the numerator as well as of the denominator are 
negligible, leading to 
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a(sin~_r

2 

(
2nz0 na '\112 

~cosw) 

Zr= 

Using basic definition of Kr [Eq. (3.36)], we obtain 

Kr= (2nz0 )
112Z1 

a(sin 7: f 2 

=-~-~-,.,-

( 
1 )1/2 

wcos7; 

Manipulating the equation, so as to have the familiar a.Jia in the numerator, we have 

K,~ crfo,['tr (4.5) 

It is worth noting that the expression of Eq. (4.5) is only an approximate relation. For W >>a, we 

obtain K1 = a .Jia, which is the same as that of an infinite plate with one crack. 

4.2 APPLICATION OF THE PRINCIPLE OF SUPERPOSITION 

The principle of superposition can be applied to identical geometries for linear elastic bodies. 
Since only elastic bodies are considered in this chapter, the principle can be exploited to solve 
problems of fracture mechanics. 

Take an example of a centre-cracked plate with two different loads, a as a far field stress and 
line loads Pat the cracked faces as shown in the Config. (s) of Fig. 4.5. Invoking the principle of 
superposition, stress at any point Hin the vicinity of the crack tip is given by the sum of the stress 
of Config. (m) and Config. (n); that is, 

0"22 = (j; + (j 22 

Substituting the values of a; and a~2 from Eq. (3.32b), we get 

Kf'1 8 ( . 8 . 38) Kf' 8 ( . 8 . 38) a 22 = r,,;;:cos- l+sm-sm- + r,,;;:cos- l+sm-sm-
v2nr 2 2 2 v2nr 2 2 2 

(K111 K") 
= 1 

+ 
1 

cos!!..(1 + sin!!..sin 
38

) 
~2nr 2 2 2 

(4.6) 
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Fig. 4.5 Separating a complex problem into two simpler problems to exploit 
the principle of superposition 

which means, 
K1 = K"i'+ K'{ (4.7) 

We thus conclude that when several external loads develop stress intensity factors of Mode I 
on a crack, the resulting stress intensity factor is the sum of individual stress intensity factor. 
However, it is clear from Eq. (4.6) that in the case of mixed modes, the stress intensity factors 
cannot be added to obtain the net stress intensity factor. 

4.2.1 Internal Pressure on Cracked Faces 

Consider the case of a large plate with an uniform pressure p applied on the crack faces (Fig. 4.6a). 
The pressure opens the crack faces and loads the specimen in Mode I. We would be determining 
the resulting stress intensity factor at the crack tips. The solution to this problem can be easily 
obtained through the Green's function approach usjng Eq. (4.1), as 

Kr= p.fia 
The same problem can also be solved using the principle of superposition. This method is 

different from the approach of Green's function. In fact, several interesting and powerful tricks 
are developed which can be used for solving more complex problems of fracture mechanics 
through the use of the principle of superposition. 

Consider an infinite plate which has no crack but is loaded by a far field stress a, shown through 
the starting Config. (s) in Fig. 4.6(b ). Config. (s) is equivalent to Config. (j) with a centre-crack and 
the applied traction CJ on the cracked faces, whose magnitude must be the same as that of the far 
field stress. This is because the neighboring atoms on the opposite side of the crack are no longer 
held together with the help of the interatomic bonding. In place of these bonds, external traction 
is applied on the cracked faces so that they do not open up under the far field stress and the stress 
in the entire plate remains uniform. Now, the Config. (j) has two external loads, the far field stress 
and the applied traction at the cracked faces. They are separated, keeping the geometry of the 
crack and the plate same, into Config. (g) and Config. (h). Thus, the superposition of Config. (g) 
and Config. (h) makes Config. (j), whose stress intensity factor is zero. Invoking the principle of 
superposition, we obtain: 
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Fig. 4.6 (a) Internal pressure on the surfaces of a crack, and (b) determination of Ki 
by invoking the principle of superposition 

Kf +Ki1 = 0 

yielding Kf = - Kf = - a.fica 

If the direction of the externally applied traction in Config. (h) is reversed (p = - a), we have the 
stress intensity factor of the centre-crack with internal pressure p, as 

Ki= p ..fiia 

4.2.2 Wedge Load at the Surface of a Crack Face 

Consider the case of a line load Pat one surface of the crack (Config. (s) of Fig. 4.7) and a far field 
stress <Jon the side of the other crack face. Note that for maintaining equilibrium, P = a W. Such 
a problem has practical applications in riveted joints. The Config. (s) can be separated into 
Config. (h) and Config. (n). As shown in the figure, Config. (h) is further separated into Config. (I) 
and Config. (m). The principle of superposition gives 

Ki= Ki1 -Kf1 

_ Kl +Km K11 - I I - I (4.8) 
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Fig. 4.7 A wedge load on one surface of a crack and a far field stress 
on the side of the other crack face 
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It is to be noted that loads on Config. (n) are the same as those on Config. (s), except with the 
difference in the direction of the loads. When the Config. (n) in Fig. 4.7 is taken to the left hand 
side of Eq. (4.8), it gets added to Config. (s), giving 

2Ki =Ki+ K'¥ 
Using Eq. (4.2a) and substituting P = a W, we have 

M P aw 
K - ------Fa-Fa 

The expression for Ki is well known as a./ia for the infinite plate. Thus, we have 

Kr= a./iia + aW 
2 2./iia 

4.3 CRACK IN A PLATE OF FINITE DIMENSIONS 

In practical applications, an edge (boundary) of a component may be close to the crack tip. Since 
the edge is traction free, it disturbs the stress field around the crack tip. The-edge then may have 
a considerable influence on the stress field in the vicinity of the crack tip and on the stress intensity 
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factor. The situation may require an accurate determination of the SIF. When is an edge regarded 
close to the crack? I£ the distance of the edge from the crack tip is less than the crack length, or of 
the order of the crack length, the component is of finite dimensions. 

Experimentalists, who determine the toughness properties of materials, also require accurate 
analysis of the SIF for a test specimen. A crack in a test specimen is fairly long (usually longer 
than 10 mm) for practical considerations. The lateral dimensions of the specimen cannot be made 
very large for reasons such as to save money on the material of the specimen, to reduce machining 
charges, to use a test-machine of low load capacity and to minimize material handling problems. 
Since free edges of a specimen have considerable influence on the stress field and the SIF, it 
becomes necessary to analyze the problem accurately. Usually, SIF is expressed in the form 

K = alicaf(a/W) 

where, Wis the width of plate (dimension of the component from one edge to opposite edge 
along the crack length) and the function/ depends on a/W. For most cases,f(a/W) is written as 
a series of ratio a/W. 

The Westergaard approach is applicable only to a limited cases of finite dimensions. More 
problems are solved by the general approach of Muskhelishvili, in which Airy's Stress Function 
is expressed in terms of two complex variables. An introduction to this method is discussed in 
Appendix 4A. It is worth mentioning here that the Westergaard approach is a special case of 
the general Muskhelishvili approach [4.3]. If a closeJorm solution to a problem is not available, 
powerful numerical methods have been developed for determining stress intensity factor of a 
crack in a given component. 

We now consider the case of a common problem-a centre-cracked plate of finite dimensions 
subjected to a tensile stress a which acts normal to the crack plane. The SIP is estimated using 
the results of collinear cracks in an infinite strip (Fig. 4.4), by cutting a portion out at AA' and 
BB'. The separated portion is shown in Fig. 4.8, with traction on the cut faces. Since AA' and BB' 
are the planes of symmetry, shear stress on them is zero. The stress component a11 has some 
distribution, shown qualitatively in the figure. In fact, the problem is somewhat similar to the 
biaxial loading (Fig. 3.6), where it is argued that a11 does not change the SIP significantly. On the 
same lines, the effect of a11 on cut faces may be ignored. Then, the SIF of a plate with a centre­
crack is approximated to be same as that of the case of collinear cracks in an infinite strip, i.e., 

K,= rrfoa[ta:r 
However, the Mode I problem of a finite plate with a centre crack is important and has been 

solved through advanced mathematical techniques and sophisticated numerical methods. It has 
been found that the exact solution is more close to the form 

[ ]

1/2 

Kr = a Jiia sec ( ';;) 
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Fig. 4.8 Centre-cracked plate of finite dimensions 

Note that for a/W < < 1, K1 approaches CJ.fia which, as expected, is the solution of an infinite 
plate. 

4.4 EDGE CRACKS 

Edge cracks are more dangerous than interior cracks: We have already discussed in Sec. 4.3 that a 
free edge close to the crack influences the stress field near the crack tip. In the case of an edge 
crack, the free edge is not only close to the crack, but it intersects the crack (touches the surfaces 
of the crack). Edge cracks are very commonly encountered in day-to-day life. Since they are more 
dangerous, special attention is required to deal with them. 

Consider an edge crack in a semi-infinite plate which is loaded by a far field stress CJ, as shown 
in Fig. 4.9. The stress intensity factor for this case is known [4.2] to be equal to 1.12 CJ.fia. When 
the edge crack is compared with one half of the overall length of an interior crack, the value of the 
SIF is about 12% more. We can justify the larger value by looking at the problem closely. The ends 
of cracked faces at the free edge tend to open up more easily. This is similar to the case of a 
cantilever beam whose deflection is more than the deflection of a beam supported at its two ends. 
SIP for a finite plate with an edge crack can be determined through the expression given in 
Appendix 4B. 

The analysis for the case of edge crack is not straightforward, because the mouth of the crack 
lies on the free edge and the stress field is influenced considerably by the free edge. The problem 
can be solved by separating a portion CBB'C' from the strip of collinear cracks (Fig. 4.4) and 
invoking the principle of superposition to make the traction zero on section. However, the solution 
is quite complex and is beyond the scope of this book. 
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Fig. 4.9 Edge-crack in a large plate 

4.5 EMBEDDED CRACKS 

So far in this chapter, we have considered through-the-thickness cracks, i.e., the crack front runs 
from one face of the plate to another. But there are many cracks of practical importance where a 
crack initiates at one face of the plate, but does not go all the way to the other face. The front of 
such a crack is usually curved and embedded within the thickness of the plate. Embedded cracks 
are usually modeled as a semi-ellipse in the literature of fracture mechanics. Figure 4.lO(a) shows 
an embedded crack, also known as surface crack. If the crack happens to be at the corner of the 
plate (Fig. 4.lO(b)), it is usually modeled as a quarter-elliptical-crack. 

When a semi-elliptical crack becomes critical, it may grow along the minor axis a, or major axis 
c, or along both. Later in this section, we would show that for c > a, the crack in most cases tends 
to grow more into the depth and less along the lateral direction. 

Surface cracks are observed in boilers, compressor-chambers, pipelines, etc., which carry high 
pressure fluids or gases. Also, many structural components with embedded cracks are subjected to 
flexural loads. The SIF of some important cases may be obtained from handbooks [4.2, 4.4] or other 
reference books [4.l, 4.5, 4.6]. The SIF may also be determined using a FEM computer package. 

It is worth noting that embedded cracks, such as those shown in Fig. 4.10a are exposed to a free 
surface of the plate. The free surface influences the stress field and the SIF considerably. This is 
similar to the case of the edge crack of through-the-thickness in which the free surface affects the 
stress field and makes the analysis difficult (Sec. 4.4). Therefore, the analysis of an embedded 
crack, with its crack face meeting the surface of the plate, is complex and one generally determines 
SIF through numerical techniques. However, one way to estimate the SIF of surface cracks is by 
considering the solution to an elliptical crack that is fully embedded in a plate, as shown in 
Fig. 4.11. Once the solution to this problem is obtained, the SIF of the semi-elliptical crack is 
approximated to be 12% higher, similar to the practice adopted for through-the-thickness edge 
cracks. 
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Fig. 4.10 (a) A semi-elliptical surface crack, and (b) a quarter-elliptical corner crack 
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Fig. 4.11 A fully embedded elliptical crack 

4.5.1 Elliptical Crack 

The problem of the fully embedded elliptical crack was first presented in complete form: by Irwin 
in 1962 for a large plate of infinite thickness [4.7]. The SIF at a point of the elliptical crack front is 
given by (Fig. 4.11) ' 
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( )1"2 [ 2 ]1/4 
K1 = CJ rel: sin2 0 +(~) cos2e (4.9) 

where I2 is the elliptical integral of a second kind that depends on ale (ratio of minor to major 
axis) as defined in Fig. 4.11. I2 is given by 

TCJ/2( c2 - a2 )112 
I2 = 

0 

1- c2 sin2 a da (4.10) 

Since the evaluation of J2 is not handy for a designer, its value is generally provided through a 
table or an approximate algebraic relation. We have chosen to present it through Table 4.1. 

TABLE 4.1 Value of elliptical Integral J2 

ale 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

,i I2 1.000 1.016 1.1051 1.097 1.151 1.211 1.277 1.345 1.418 1.493 n:/2 

4.5.2 Semi-elliptical Cracks 

As mentioned before, a surface crack is modeled as a half ellipse with its minor axis into the 
thickness direction. The SIF of the surface crack is then 12% higher over the corresponding SIF of 
the elliptical crack. Thus, the SIF at a point of the crack front of a semi-elliptical crack is 

112 ( f 2
[ ( )2 ]

114 

K1 = . CJ I; a sin2 0 + ~ cos2 0 
At the extreme end of the minor axis (0 = 90°), the SIF is 

K 90 _ 1.12a(na)112 
I - I2 

and at the extreme end of the major axis of the ellipse ( e = 0°), the SIF is given by 

Kf = 1.12a(na)1;2 (E.)1;2 
I2 C 

(4.11) 

It is worth noting that the segment of the crack tip, which is deep inside the material, possesses 
a higher SIF. Thus, a crack tends to grow deeper into the thickness, rather than sideways on the 
surface, as shown in Fig. 4.12. 

Also, for a very shallow crack (a<< c), 12 from Table 4.1 is close to unity and the SIF ate= 90°, 
becomes 

Ki0 = 1.12CJ (n a)112 

which is the same as the result of through-the-thickness edge crack of length a. In this case, the 
dimension of the major axis is no longer relevant. Therefore, a shallow crack is equivalent to a 
through-the-thickness edge crack of length a. 
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Fig. 4.12 The growth of a semi-elliptical surface-crack 

The problem of the surface crack in a plate, where the crack depth a is comparable to thickness 
of the plate, has also been solved through finite element methods [4.4]. The SIF at the deepest 
segment of the crack front is expressed as 

(n: af2 
K1 = Ma (4.12) 

lz 
where the factor Mis 1.12 for a very small a/t, t being the plate thickness. M increases with the 
increasing a It, but it depends on two ratios, a It and a I c. For further details, readers are referred 
to a handbook on stress intensity factors [4.4]. 

4.5.3 Quarter or Corner Cracks 

A corner crack under tensile load [Fig. 4. lO(b)] is exposed to two free surfaces, each one applying 
an additional correction factor on the SIF. The overall correction factor of such cracks in thick 
plates has found to be about 20% higher [4.1] i.e., the largest SIF on the crack front is 

K1 = 1.2 .Jira 

4.6 THE RELATION BETWEEN GI AND Kl 

Energy release rate G1 is a global parameter and deals with energy. On the other hand, stress 
intensity factor K1 is a local parameter which deals with displacement and stress fields in the 
vicinity of the crack. Although the approaches are entirely different, the goal is same, i.e., to 
characterize a crack. It is like measuring edible oil through either mass or volume; both methods 
are employed in the Indian market. There is a relationship between the two methods. In fact, if 
the oil is sold by the liter, the relation should be prescribed on the container as per the law of the 
Government of India. Similarly, we should have a relation between G and K. 
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The relation was obtained by Irwin [4.8]. He however employed a method which is somewhat 
indirect and some beginners may find the proof to be a bit difficult to accept at the first reading. 
Since the two approaches are quite different, the global approach of G is made to become local 
through Irwin's clever manipulation. 

Consider a crack of length a which is extended by an incremental length !':i.a (Fig. 4.13). Note 
that we have the freedom to choose !':i.a as small as we want-a point that can be exploited later. In 
order to maintain clarity the extended crack and its associated parameters are referred by the 
prime system; i.e., crack length a + !':i.a is designated as a' and the SIP based on a' is denoted by K'. 
At a distances, which is at a distance (t:i.a - s) from the extended crack tip, the displacement of a 

· crack face (u2)'is determined for plane stress cases from Eq. (3.33b) for () = 180° as 

K[(t:i.a-s)112 
2 

u2(s) = µ ~ (l+v) 

(1 

(1 

a 
__ a ___ s-i ~ 

Fig. 4.13 Closure of the crack to find relation between G1 and K1 

Now, each crack face in the portion !':i.a is moved in through the distance ui(s) with the help 
of the traction a22 so that the crack faces touch each other. The magnitude of stress a22 is 
evaluated from the stress field of the unextended crack of length a, and therefore at a distances, 
it is given by 

aii(s) = (21rs}112 

Thus, the crack is closed by length !':i.a. Irwin argued that the total elastic work required by a22 in 
closing the crack is equal to the energy released. Balancing the two energies, we have 

Ila 

G1 B6.a = 2 J Ba;2u2 ds (4.13) 
0 

where B is the thickness of the plate; the integral is multiplied by 2 to account for strain energy in 
both cracked faces and divided by 2 to account for the linear relationship between a22 and u2• 

Substituting a22 and u2 in the equation and taking limit !':i.a ~ 0, we have 
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M K' (!).a, )1/2 
G = lim 2 f Ki r - s ds (4.14) 

r Aa-tO (1 + v) J.LM o (2irs )112 (21r)112 

We can express 
K1 =Kr+ LlKi 

Since /la can be chosen as small as we like, AK1 can be made small enough to be neglected in 
comparison to K1. Then, Eq. (4.14) is simplified to 

Gr= lim Kf f ( M - s)1;2 ds 
M-tO (1 + v)ir J.LM O S 

To solve the equation, we substitutes = Lla sin2a to obtain 

K2 rc/2 

Gr=( \ f2cos2 ada 
l+virµ 

0 

Solving the integral and realizing the shear modulusµ= E/2(1 + v ), we obtain 

G _ Kf 
r- E (4.15a) 

The relation is simple, but is rigorous only for brittle materials in which the components remain 
elastic. 

During the historical development of Fracture Mechanics, the relation of Eq. (4.15a) was 
made simple at the cost of making the expression of the SIF more complex than necessary. 
There is no need to have 1r under the square root in the expression Ki= a.Jira. It should have 

been Ki= a-fa with Gr= irK2
1/ E. However, with so much work already carried out with Ji in 

the definition of Ki, it is extremely difficult to correct the historical mistakes. There are many 
similar compromises in the history of science and technology. For example, one hour has 60 
minutes, or the angle around a point is 360° in place of a convenient decimal system just because 
a long time ago in Babylonia, there were sixty Gods leading to a sexagesimal number system 
(based on the number sixty). 
In the case of a plane strain, the relationship becomes: 

2 Kf 
Gr=(l-v )E (4.15b) 

Similar relations for Mode II and Mode III can be obtained as: 
K2 

Gu= -1!.. 
E 

2 Kii Gu= (1-v )­
E 

for plane stress 

for plane strain 

K2 K2 
G - (1 + V ) III - III m- ---

E 2µ 
In case all three modes are present, the energy of each mode is added up to GTOr, as 

Gror = Gi + Gu + Gm 

(4.15c) 

(4.15d) 

(4.15e) 
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4. 7 CRITICAL STRESS INTENSITY. FACTOR 

Two Questions: 
Why should we evaluate the SIF for a crack in a component? 
How does it help a designer? 

Recall that our prime goal of studying fracture mechanics is to predict whether a crack is likely to 
grow or not. If the SIF of a crack approaches or exceeds an upper limit of the stress intensity factor, 
the crack may grow. The upper limit is known as the critical stress intensity factor which is a material 
property and is usually denoted by the symbol K1c for Mode I cases (Kuc and Kmc for Mode II and 
Mode III respectively). In order to provide a feel of stress intensity factor and the critical stress 
intensity factor, an analogy is made with stress and yield stress of a solid. Stress is a parameter 
which represents internal loading within the solid and yield stress is the limit on stress, beyond 
which the material is regarded to have failed by many designers. Similarly, stress intensity factor is 
a parameter to measure the severity of stress at the crack tip. But, critical stress intensity factor is the 
limit on the SIF, such that if the SIF exceeds the critical stress intensity factor, the crack may grow. 

Thus, in order to predict the growth of a crack in a component, the designer should find two 
values: (i) the SIF determined through analysis for the geometry of the component, crack 
configuration and applied loads and (ii) the critical SIF determined through experiments for the 
material of the component. If the stress intensity factor exceeds the critical stress intensity factor, 
the designer should do something, such as reducing the loads on the component, modifying the 
geometry of the component, or choosing a material of higher toughness. 

The SIF of some commonly encountered cases is listed in Appendix 4B. In addition, several 
handbooks [2.2, 2.4] are available and the designer may find the SIF of an application under 
consideration. Otherwise, he may have to determine the SIF for the problem usually through a 
numerical technique. 

One difficulty, faced during the experimental determinatfon of the critical SIF for the materialof 
the component, is that critical SIF is found to be dependant on the thickness of a plate. In fact, the 
critical SIF is independent of the thickness only in the case of a thick plate, because the plate is then 
loaded in the plane strain. One question remains-what is the criterion of assuring that the plane 
strain conditions prevail? The size of the plastic zone in the vicinity of the crack tip decides it. If the 
plate thickness is significantly greater than the size of the plastic zone, then the conditions of plane 
strain exist. Determination of the plastic zone size is discussed in detail later in Chapter 5. 

Thus, we find that the critical SIF becomes a property of the material only for plane strain 
cases. Therefore, in handbooks and literature, the values of critical SIFs of commonly used 
materials (steel, aluminum, titanium, brass, etc.) are given for plane strain conditions. 

Critical stress intensity factor for thin plates depends on the plate thickness and its value is 
rarely provided as a function of thickness in literature. However, the critical SIF of a plane stress 
case is higher than the corresponding value in a plane strain. A designer may find that a component 
is subjected to plane stress, but critical SIF is available only for plane strain. He may safely use the 
critical SIF of the plane strain because it would provide a conservative design. 

· In certain design problems (e.g., components of airplanes, rockets and spaceships), using the 
critical SIF of a plane strain as material property ma.y be too conservative, because structural 
plates are mostly used in plane stress. Adopting a too conservative approach is against the 
philosophy of engineering profession. Engineers should always strive to obtain numbers close to 
! 
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reality. In aerospace applications, where the factor of safety is of the order of 1.1 for many 
components, using material toughness properties of plane strain is likely to make the machine 
heavy with poor payload. In such a situation, stress intensity factor is determined by preparing a 
test-specimen of same thickness as of plates used in the actual application. 

However, for most down-to-earth problems (such as the designing components of automobiles, 
roof trusses, locomotive carriages, pipe lines, etc.) the conservative approach of using the critical 
SIP of the plane strain may be quite practical and useful. 

Companies, specially dealing with aerospace parts, do generate data for in-house use. 
Unfortunately, the data is usually not placed in any open literature (handbooks, journals), so that 
competitors are not able to take any advantage. Looking through a bird's eye view, many of us 
think that there is unnecessary wastage of resources if the properties of a material are 
experimentally determined at several places in the world. An open policy is desirable where the 
companies share data freely. This will reduce the cost of testing and consequently the cost of their 
products. 

Critical SIF of a material depends on many factors, such as 

• Heat treatment which controls the yield stress of the material. 
• Speed of the crack. 
• Temperature of the specimen. 
• Process of manufacturing (e.g., vacuum furnaced or air melted, as cast or rolled). 
• Orientation of the crack with respect to the grains at the crack tip. 
• Test method. 

To provide a feel to the readers about the toughness of engineering materials, representative 
Kie is listed in Table 4.2 for quasi-static load conditions, at room temperature. In the table, the 
process of heat treatment of alloys has been accounted for by listing the yield stress of the material 
along with the K1c For alloy steel or maraging steel, one can note from the table that K1c decreases 
substantially when the yield stress is increased by heat treatment. However, Kic of a material in 
Table 4.2 is only a representative value. 

TABLE 4.2 Representative K1c of various materials 

Material 

Mild Steel 

Medium Carbon Steel 
Alloy Steel* 

Rotor Steel 
Nuclear Reactor Steel 
Maraging Steel 

Yield stress, MPa 

240 

260 
860 

1070 
1515 
1850 

626 
350 

1770 
2000 
2240 

K1c,MPa 

very high 

(:::: 220) 
54 
99 
77 
60 
47 

50 
190 

93 
47 
3.8 

(Contd.) 
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Material 

Stainless Steel 
Aluminum 
2014-T4 
2014-T651 
7075-T651 
7178-T651 
Titanium (Ti-6Al-4V) 

Perspex (PMMA) 
PVC 
Nylon 

Yield stress, MPa 

460 
455 
495 
570 
910 

* 40Ni2Cr1Mola (IS)/EN 24 (UK)/4340 USA 

4.8 BENDING AND TWISTING OF CRACKED PLATES 

80-150 

29 
24 
24 
23 
55 

1.6 
3.5 
3.0 

In this chapter, so far, we have discussed cases where plates are subjected only to simple tensile 
or shear stress components. In such cases, stress components do not vary across the thickness of 
the plate. But in several engineering applications, a plate is subjected to bending and torsional 
moments and shear forces. Stress developed by a bending moment varies across the thickness, 
tension on one surface and compression on another. Similarly, twisting moments and shear forces 
develop stresses which vary across the thickness. Thus, the analysis is more complex. 

4.8.1 Terminology of the Plate Theory 
Consider a square element which has been sectioned out from a plate (Fig. 4.14). In the case of a 
thin plate, a33 is negligible at all points of the plate. All the other five stress components are 
developed by three moments per unit length of the plate (M1, M2 and Mn) and two shear forces 
per unit length (V1 and V2). M1 and M2 are bending moments, whereas M12 is a twisting moment. 
If h is the thickness of the plate, all moments and shear forces can be expressed in terms of stress 
components, as follows: 

lz/2 

M1 (Xi, X2) = f 0'11 X3dX3 

-h/2 

h/2 

M2 (xi, x2) = f 0'22 X3dX3 

-h/2 

h/2 

M12 (x1, X2) = f 0'12 X3dX3 

-l!/2 

h/2 

V1 (x1, x2) = f 0'13 dx3 

-/z/2 

(4.16) 
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BM12 

Fig. 4.14 A centre-cracked plate loaded with bending moments M1 and M2, 

twisting moment M12, and shear forces V1 and V2 

h/2 

V2 (x1, x2) = f cr23 dx3 

-lz/2 

For linear elastic materials in plane stress, components, CJ 11, er 22, er 12 vary linearly in x3 directions 
and shear components cr 13 and er 23 have parabolic distribution. In case moments and shear forces 
are known, the stress components can be determined by the following relations: 

12x3M1 
O" 11 = h3 

12x3M2 
0"22 = h3 

12x3M12 
0"12= h3 

"n = :,, [ 1-(2:' )} 
cr23 = 2-[1-( 2

x3 
)

2]v2 2h h 

4.8.2 Through-the-Thickness Crack in a Plate 

For the crack shown in Fig. 4.14, surfaces of the crack are traction free (cr22 = cr12 = cr23 = 0). Invoking 
Eq. (4.16), we obtain the following boundary conditions on the crack surfaces: 
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Mix1, 0) = 0; M12(x1, 0) = 0; Vix1, 0) = 0 

The solution to this problem is complex and only approximate or numerical results are available. 
It has been found convenient to express all the three moments and the two shear forces in the 
vicinity of the crack tip in terms of the three moment intensity factors K1, K2 and K3. Note that 
these S1Fs are different from K1, Ku and Km earlier used in this chapter. Mi, M~, M{2 , Vi and Vi, 
are evaluated in the vicinity of a crack tip (Fig. 4.14) by the expressions [4.9] 

1 K1 e( . e . 3e) K2 • e( e 30) 
M 1 = -(

2
r)11 2 cos2 l-sm2 sm2 - (

2
r)112 sm2 2+cos2cos 2 

M? = --- cos- 1 + sm - sm - + --- sm - cos- cos-1 Ki o ( . o . 30) K2 • o o 30 
- (2r)11 2 2 2 2 (2r)112 2 2 2 

1 K1 . o o 30 K2 o ( . o . 30) lv112 = --- sm - cos- cos- + --- cos·- 1 - sm - sm -
(2r)112 2 2 2 (2r)112 2 2 2 

1 -K3 • 0 
V = ---sm-

i (2r)1/ 2 2 

K, e 
V

2

1 = J C0S-
(2r f2 2 

Formal definitions of K1, K2 and K3 can be stated as: 

K1 = limffrM~ (r,e = o) 
r-,0 

4.8.3 Bending Moment on a Centre-Cracked Plate 

Consider a large plate with far field moments, M1, M2, and M12, acting on it with a crack aligned 
with x1 axis. The effect of M1 on the stress field near the crack tip is small. This is analogous to the 
small effect of CJ 11 on the plate considered under biaxial tension (Fig. 3.6). For design purposes, 
one can evaluate the SIFs from the following: 

Ki= <I>M2.fa 

K2 = wM12 .fa 

K = - .Jio Q M= .fa 
3 (l+v)h 12 

The large and thin plates <I>, 'P, Q, determined numerically, are shown in Figs 4.15-4.17. 



'P 
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$ 
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0~--....,.--~--~-~-----~-
0 0.5 1.0 1.5 2.0 2.5 3.0 

,Ffi{h!a) 

Fig. 4.15 <P for a centre-crack in a thin plate [4.9] 

1.0 

0.8 

0.6 

0.4 

0.2 

0 
0 0.5 1.0 1.5 2.0 2.5 3.0 

.J1o (hfa) 

Fig. 4.16 1.£' for a centre-crack in a thin plate [4.9] 
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0.2 

O 0.1 

v<=0.5 
0.25 
0.0 

0~-~--~--_.._--~--~-~~-
0 0.25 0.5 0.75 1.0 1.25 1.5 

$if (hla) 

Fig. 4.17 Q for a centre-crack in a thin plate [4.9] 

4.9 CLOSURE 

Problems dealing with plates of finite dimensions are more difficult to solve, because the edges 
influence stress and displacement fields near the crack tip. However, approximate values of the 
SIFs of some of these problems are determined through the Westergaard approach. In some 
problems, the principle of superposition is helpful in determining the SIF. 

For a given problem, the task of a designer is to determine the SIF somehow. For simple 
problems, close form solutions available in reference books may be used. SIFs of more complex 
problems may be available in handbooks on the stress intensity factor. The designer can also use 
a computer package to evaluate the SIF. Once the SIF is known, he compares it with the critical 
stress intensity factor, so as to ascertain that the crack is not likely to grow. If SIF exceeds the 
critical SIF, the designer modifies his design-either to have a lower SIF (e.g., by changing the 
crack configuration or reducing loads) or by changing material to have a higher critical SIF. 

APPENDIX4A 

General Approach to Determine Stress and Displacement Fields 

4A.1 MUSKHELISHVLI POTENTIALS 

Solving the biharmonic equation through the Westergaard approach has its limitations, because 
they are restricted to a few simple cases. For the general approach, Airy's Stress Function is 
expressed in the form 

<I>(z) = Re[z <t,(z) + f 1/f(z)dz] 
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where </J(z) are lf'(Z) two analytic complex functions. They are chosen appropriately to satisfy the 
boundary conditions of the given problem. 

Now, the goal is to express stress and displacement components in the terms of </J(z) and lf'(z). 
For the development of expressions, one may refer to the monograph of Muskhelishvli [4.3] or 
other references [4.10]. The resulting stress field is given by 

cr11 + cr22 = 4Re [</>'(z)] = 2[</J'(z) + ~' (z)] 

0'22 - 0'11 + 2icr12 = 2[z </>"(z) + l/''(z)] 

(4.17a) 

(4.17b) 

wherez = x1 - ix2 and prime on a function corresponds to differentiation with z. Unlike in Chapter 3, 
the bar at the top of a complex number denotes complex conjugate. These two equations, in fact, 
represent the three equations for the three unknowns-er 11, cr22 and er 12. The first equation deals 
only with real numbers. The second equation is having both real and imaginary parts and thus 
represents two equations, because real and imaginary parts may be equated separately. Functions 
</J(z) and lf'(Z) are still unknown complex functions which, for a prescribed problem, are chosen to 
satisfy the boundary conditions. Alternatively, approximate solutions may be obtained by 
expressing each one of them in terms of a power series of z. Both approaches will be discussed 
subsequently in this section. 

4A.2 CENTRE-CRACKED PLATE 

In Sec. 3.5.1, solution had been determined for a centre-cracked plate loaded by a biaxial field 
because the Westergaard function is not available for a uniaxial field. However, the problem of a 
uniaxial far field stress can be solved with the general approach. The expressions for </J(z) and 
lf'(Z) are available, which satisfy all the near and far field boundary conditions. They are: 

</J(z) = a [2(22 - a2)1;2 - z] 
4 

l/'(Z) = O' [z - a2(z2 - a2f 1/2] 
2 

(4.18a) 

(4.18b) 

with its origin at the centre of the crack [Fig.3.2(a)]. To show that they satisfy the boundary 
conditions, we would be substituting </J(z) and l/'(Z) in Eqs (4.17). It is convenient to first evaluate 
differentials of </)(z) and l/'(Z) as 

er[ 2z J </J'(z) = 4 (22 - a2)1;2 -1 

er [ a2 ] 
</J"(z) = - 2 (22 - a2 )3;2 

er[ a
2

z ] l/''(z) = - 1 + 2 2 3/2 
2 (z -a ) 

To check the boundary conditions on the far field stress, we determine their values for I z I>> a as 
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(5 
<f/(z) ~ 4 ; </>"(z) ~ O; 

Substituting in Eqs (4.17a and b), we have 

(511 + C522 = (5 

cr 22 - cr11 + 2icr 12 = <J' 

leading to cr11 = O; cr22 = <J' ; cr12 = 0 

(5 

l/f'(z) ~ 2 

They satisfy the far field stress boundary conditions of the uniaxial stress. In order to check the 
boundary conditions on traction free crack-faces, values of </>'(z), </>"(z) and lj/1 (z) are determined 
for x2 = 0 and -a < x1 < a as 

</>'(z) = : [ (x/ ~:~)112 -1] 

</>"(z) = - ~ [ (xf ::2)312] 

[ 
2 l ' CJ a X1 

V' (z) = - 1 + 2 2 3/2 
2 (x1 - a ) 

Substituting them in Eqs (4.17a and b), for - a< x1 < a, we have 

(511 + C522 = - (5 

leading to 
CJ22 - cr11 + 2icr12 = cr 
cr22 = O; and cr12 = 0 

Thus, the cracked surfaces are traction free. 
For obtaining stress field in the vicinity of the crack tip, the origin may be moved to the crack 

tip, as done in Sec. 3.5, with the transformation z =a+ z0. It can be shown, by neglecting higher 
terms of r I a, that the stress field is same as obtained earlier through Eqs (3.32). Better accuracy in 
results can be achieved by retaining higher terms of r I a. 

Many other problems can be solved by trying appropriate expressions for</> and. ljlfor a given 
problem. However, to arrive at such expressions, one relies on feel, experience or intuition. 

4A.3 SOLUTION THROUGH POWER SERIES 

The general way is to express </>(z) and ljl(z) in terms of a power series. For the symmetric case of 
a centre-cracked plate loaded in Mode I through a uniaxial stress, it has been shown [4.11] that 
the </J(z) and ljf(z) can be expressed as 

</J(z0) = AzJ+1 

l/f(Zo) = B zt+ 1 

(4.19a) 

(4.19b) 

where the exponent A is real but A and B may be complex; z0 is measured from the crack tip. For 
solving the problem, </>(z) and ljl(z) will be substituted in Eqs (4.17a and b) and the boundary 
conditions will be invoked. Boundary conditions on the cracked faces are: 
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0"22 = 0 for - a< x < a (4.20a) 
0"12 = 0 for - a< x < a (4.20b) 

Applying these boundary conditions, it can be shown that the problem be reduced to an 
eigenvalue problem with multiple roots of A, each root having a solution. The overall solution would 
then be the sum total of all the individual solutions. Equation (4.17a) is added to Eq. (4.17b) to have: 

0"22 + i0"12 = 2Re[</>'(z0)] + [Zo </>"(z0) + 1Jf'(z0)] (4.21) 

For carrying out the details, we differentiate Eqs (4.19a and b) to obtain: 

</>'(z0) = A(..'.l + l)zi = A(..'.l + 1)/·(cosAe + i sin ..'.le) 

</>"(z0) = AA(A + l)zt1 

= A..'.l(,'.l + l)r,l-1[(cos(..'.l-1)8 + isin(..'.l- l)e] 

1J!'(z0) = B(..'.l + l)zG' = B(..'.l + l)r\cos..'.le + isin..'.le) 

Substituting in Eq. (4.21), we have 

0"22 + i0"12 = 2A(A + l)rA cos..'.le + [r(cose - isin8)AA(A + l)/,-1 

x {cos (..'.l-1) e +isin(..'.l-1) e} + B(..'.l + l)l(cosA8 + isin..'.l8)] 

Equating real and imaginary parts and also by collecting terms, we obtain 

0"22 = (..'.l + 1)/'[A{2cosA8 + Acosecos(..'.l-1) e + Asin8sin(..'.l-1) e} + Bcos..'.le] 

= (A+ 1)/'[A{2cos..'.le + ..'.lcos(..'.l- 2) 8} + BcosW] 

0"12 = (..'.l + 1)/'[AA{cose sin(A -1) e - sin8cos(A -1) e} + Bsin A8] 

= (,'.l + l)r,l[A..'.lsin(..'.l- 2) e + BsinA8] 

On crack faces ( e = ±n) both 0"22 and 0"12 are zero, thus yielding 

A{2cos..'.ln + Acos(..'.l- 2)n} + Bcoskr = 0 

AAsin(A- 2)n + BsiI1An = 0 

(4.22a) 

(4.22b) 

(4.22c) 

(4.23a) 

(4.23b) 

(4.24a) 

(4.24b) 

These equations represent an eigenvalue problem with ,'.l representing the eigenvalues. Therefore, 
for having nontrivial solution, 

1

(2cos..'.ln + ..'.lcos (..'.l- 2)n) cos..'.lnl 
A sin (A- 2)n sin..'.ln = O 

leading to sin 2..'.ln = 0. Consequently, for Mode I problems, 

1 1 3 5 
..'.l=- 2' 2' 2' 2, ... 

Note that other negative possible values of A(-3/2, -5/2 ... ) are nor admissible, because they 
would give singular displacements at the vicinity of the crack tip. ,'.l = -1 /2 is the dominant mode 
and it gives singular stress and non-singular displacement. Other values of A do not give singular 
stresses and therefore their contributions may be neglected if the analysis is carried out in a region 
which is very close to the crack tip, i.e., for a very small value of r I a. 
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The stress field near the crack tip corresponds to the dominant mode A= -1/2. Eigenvector 
corresponding to this eigenvalue is determined through Eqs (4.24a and b), as 

A= 2B 
Substituting A =-1/2 and B = A/2 in Eqs (4.23a and b) and manipulating trigonometric functions, 
we obtain 

A 811 . 8 . 381 
0'22 ::;: -cos- +sm-sm-

Jr 2L 2 2J 

A 38 . 8 8 
0'12 = Jr cos 2 sm 2 cos 2 

Definition of K1 [Eq. (3.4)] leads to 

yielding, 

Ki = ( §Jrr Jr) 
r~O 

A= JS.L 
$ 

Substituting A in Eqs (4.25a and b), we obtain 

K1 8[ . e . 38] 
O'n = ~cos- l+sm-sm-

- v2nr 2 2 2 

K1 . e e 3e 
0'12 = r::;-::::: sm - cos- cos-

v2nr 2 2 2 

(4.25a) 

(4.25b) 

For determining the value of 0'11, we substitute A= -1/2 in Eq. (4.22a) to evaluate q/(z0), which is 
then substituted in Eq. (4.17) to yield 

2A e 2K1 8 
0'11 + 0'22 = Jr cos 2 = /2m- cos 2 

leading to, K1 8 [1 . 8 . 38 J 0'11 = r::;-::::: cos - - sm - sm -
v2nr 2 2 2 

The stress field thus obtained is same as that of Sec. 3.5.1. In order to predict more accurate 
results, similar analysis may be carried out for the next higher term (A= 1 /2) and be added to the 
results already obtained for A= -1/2. 

It is worth reviewing that the problem of a centre-cracked plate loaded in Mode I can been 
solved in three different ways (Sections 3.5, 4A.2 and 4A.3), giving the same stress field for a 
small value of distance r. The solution of Sec. 3.5 is always approximate because the problem was 
solved for a biaxial filed. However, the solution of Secs 4A.2 and 4A.3 can be obtained with a high 
accuracy if the contribution of higher terms is included in the solution. 

A plate of finite dimensions is more difficult to solve because the stresses and displacements 
must also satisfy the prescribed conditions at the boundary of the component. One can refer to 
the work of Ramesh et al. [4.12] for the solution of a uniaxial field applied to a plate [4.12] of finite 
dimensions. For these problems, Muskhelishvili potentials </J(z) and lf/(Z) are represented through 
a series. The coefficients of the series can then be determined by matching the prescribed stresses 
at the boundary [4.13, 4.14]. 
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APPENDIX4B 

SIF of Some Important Cases 

In this appendix, the stress intensity factor for some important cases is listed, which are useful 
to (i) experimentalists for designing specimens and (ii) designers for determining the SIF for 
critical components. For other cases, readers can refer to handbooks like" Stress Intensity Factor" 
(2 volumes), edited by Y. Murakami, Pergamon Press, Oxford, 1987 [4.4]. 

1. Compact Tension (CT) Specimen, shown in Fig. 4.18(a) [4.15] 

6 
Q 

a 

w 

Fig. 4.18(a) 

p 
Kr= -1/?f(a) 

BW ~ 

a 
a= -w 
B = Plate thickness 

, (2 +a) ( 0.886 + 4.64a -13.32a2 + 14.72a3 
- 5.6a4

) 

J(a) = ( )3;2 · 
l·-a 

2. Single-Edge-Notch-Bend (SENB) Specimen, shown in Fig. 4.18(b) [4.15] 

p 

t T 
w 

a _l_ 

I~ S=4W ~I 
Fig. 4.18(b) 
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PS 
Kr= BW3;2 f(a) 

a 
a=-

W 
B = Plate thickness 

3a112 
[ 1.99 - a(l- a) (2.15 -3.93a + 2.7a2

) J 
f(a) = 2(1+2a) (1-af2 

3. Centre-Cracked Plate under Uniform Tension, shown in Fig. 4.18(c) [4.5] 
(j 

t t t t t t t 

4 2a f-

2W 

t t t t t t t 
(j 

Fig. 4.18(c) 

Kr= aliaf(a) 
a 

a=- for O < a< 0.7 w 
f(a) = 1.0 + 0.128a- 0.288a2 + l.523a3 

4. Single-Edge-Cracked Plate under Uniform Tension, shown in Fig. 4.18(d) [4.5] 
(j 

+ + + + + 

w 

(j 

Fig. 4.18(d) 
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a 
a= W for O < a< 0.6 

f(a) = 1.12 - 0.23a + 10.55a2- 21.72a3 + 30.39a4 

5. Double-Edge-Cracked Plate under Uniform Tension, shown in Fig. 4.18(e) [4.5] 
(J 

t t t t t t t 

2W 

Fig. 4.18(e) 

Kr= c;/;aj(a) 

a 
a= W for O <a< 0.7 

j(a) = 1.12 - 0.20a- 1.2oa2 + l.93a3 
6. Strip with Edge-Crack under bending, shown in Fig. 4.18(£) [4.5] 

M M 

( [____.__,__,+ _____,, ) } 
t 

Fig. 4.18(£) 

6M r= 
Kr= --2 vna f(a) 

BW · 

a 
a=-

W 
B = Plate thickness 

J(a) = 1.12 - l.40a + 7.33a2-13.083a3 + 14a4 

7. Circumferentially Cracked Round Bar under Tension, shown in Fig. 4.18(g) [4.6] 

Kr= CJ .Jiaf(/3) 
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CJ 
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I 
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CJ 

Fig. 4.18(g) 

-
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' 

.la i-.-

f(/3)= (; +{+};f3-0.36l{J
2

+7.33[J 3){ff 
8. Circumferentially Cracked Round Bar under Torsion, shown in Fig. 4.18(h) [4.6] 
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Fig. 4.18(h) 
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f(/3) = (2- + 0.5 + ~ + 2 /3 + 35 /32 + 0.21/33)~ [I 
{3 2 /3 8 16 128 8 {/3 

9. An Oblique Edge Crack in a Semi-Infinite Plane, shown in Fig. 4.18(i) [4.4] 

- -~ /3 - -- -(J" (J" - -- -
Fig. 4.18(i) 

K1 = F1a./iia 

Kn= Fucr.fiia 

/3 Fr Fu 

10° 0.162 0.174 
20° 0.305 0.271 
40° 0.625 0.365 
60° 0.920 0.306 
80° 1.098 0.119 

10. Lapped Joint under Tension-Shear, shown in Fig. 4.18(j) [4.4] 

Q 

Fig. 4.18(j) 

Q Yb 
1 
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Q: Load per unit width of plate 

Fr(r,K) = /31(~r 

Fn ( i, K) = ! + /32 ( i r 
K /31 r1 /32 Y2 

0 0.770 0.397 0.365 0.710 

0.1 0.687 0.394 0.285 0.744 

0.2 0.639 0.375 0.230 0.776 

0.3 0.614 0.352 0.186 0.812 

0.4 0.576 0.344 0.149 0.868 

0.5 0.558 0.331 0.142 0.843 

11. Arc-Shaped Tension (AT) Specimen, shown in Fig. 4.18(k) [4.15] 

Fig. 4.18(k) 

p 
Kr= BW1;2 f(a) 

a 
a=-

W 
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B = Plate thickness 

f(a) z [; + 19 + Lla l [ 1+ 025(1-a)' (1- :: )] x [ (l~:):1,] x 

[3.74- 6.3a + 6.32a2- 2.43a3] 

12. Disc-Shaped Compact Tension (DCT) Specimen, shown in Fig. 4.18(1) [4.15] 

QUESTIONS 

a 
a=-

W 

1 

B = Plate thickness 

w 

a ....__ 

Fig. 4.18(1) 

p 

p 

(2 +a) x ( 0.76 + 4.8a - ll.58a2 + ll.43a3 
- 4.08a 4

) 

j(a)= (1-a)312 

1. Why is the solution of collinear cracks in an infinitely long strip important? 
2. Why is an edge crack more dangerous than a centre crack of the same length a? 
3. In the case of a shallow elliptical edge crack, the SIP at the tip of the minor axis is higher 

than the SIF at the tip of the major axis. This may sound contrary to our intuition. Can you 
explain the results on physical grounds? 

4. In a short fiber composite material, an embedded fiber does not act like a dangerous crack. 
Explain it by assuming the fiber has a shape of an ellipse. 

5. Why does material property E appear in the expression that relate.s G1 with Kr? 
6. Energy release rate of various modes can be summed, whereas the SIF cannot be. Why? 
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7. If a designer finds that a crack (e.g., slot) in a component gives K1 > K1c, discuss the different 
options available to avoid such a situation. 

8. Why does K1c depend on the direction i.n a rolled plate? 
9. Why do rolled or forged components have better toughness? 

10. Name an application of bending and twisting a plate with a crack. 
11. If we use a specimen with a large lateral dimension to find Krc, the accuracy of the 

experimental results is high. But, in experiments to determine the SIF, specimens with 
large lateral dimensions are not employed. Why not? 

PROBLEMS 

1. Determine value of K1 for some cases listed in Appendix 4B for the following values: 
(a) Centre-cracked plate under uniform tension; 2a = 60 mm, 2W = 140 mm, <1= 150 MPa. 
(b) Single-edge-notch three point bend (SENB) plate; a = 20 mm, S = 150 mm, W = 50 mm, 

B = 25 mm, P = 20 kN. 
(c) Single-edge-cracked plate under uniform tension; a= 30, W = 70 mm, cr = 140 MPa. 
(d) Strip with edge crack under bending;a = 25 mm, W = 60 mm, B = 20 mm,M = 2000 Nm. 

2. A crack of 3 mm length is emanated from the surface of a 50 mm diameter hole in a large 
plate (Fig. 4.19). Compute the maximum stress cr that would not allow the crack to grow 
if K1c = 55 MPa Jm, <11,s = 300 MPa, E = 207 GPa. [Hint: Treat as single-edge-crack under 
tensile stress computed using Inglis solution Eq. (2.1)] 

(j 

t t t t t t t 

ti 
50mm 

dia 

~ 

Fig. 4.19 The figure of Problem 2 

3. A steel flat (K1c = 90 MPa ,Im , <1ys = 700 MPa) is being considered as a structural member 
of a pedestrian bridge over a busy street. The flat is 100 mm high and 40 mm thick, and the 
main load on the flat is a bending moment. If there is an edge crack on the tension side, 
draw a curve for allowable bending moment vs crack length. 
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4. Determine Kr for the pressure distribution acting on the cracked faces of an infinite plate 
as shown in Fig. 4.20. 

Fig. 4.20 The figure of Problem 4 

5. The distribution of load per unit area on the cracked faces of a centre crack in a large plate 
is shown in Fig. 4.21. Determine the values of stress intensity factor. 

Fig. 4.21 The figure of Problem 5 

6. Determine the values of Kr for a center crack of length 2a in a large plate, subjected to a 
triangular distribution of load per unit area, as shown in Fig. 4.22. 

' ' ' ' I 
' I 
I 
I 
I 
I 
I 
I 
I ~---------l 

2a 

Fig. 4.22 The figure of Problem 6 
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7. Determine values of K1 in some cases (given in the text or listed in Appendix 4B) for the 
following values: 
(a) Circumferentially cracked round bar under tension; a= 20 mm, D = 100 mm, P = 80 kN. 
(b) Circumferentially cracked round bar in torsion; a= 10 mm, D = 100 mm, M1 = 40 kN. 
(c) An oblique crack in a semi-infinite plate; a= 30 mm, f3 = 45°, a= 200 MPa. 
(d) Embedded semi-elliptical crack; a= 15 mm, 2c = 90 mm, t = 40 mm, <J= 160 MPa. 
(e) Lapped bonded joint under tension shear; 2b = 8 mm, 2a = 40 mm, Width= 25 mm, 

Q = 400 N/mm, v = 0.3. 

8. Determine G1 from the SIP of the center cracked infinite plate, subjected to a uniform 
tensile stress a for both plane stress and plane strain. Check whether they agree with the 
expression used in Sec. 2.5. 
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Anelastic Deformation at the 
Crack Tip 

Out of His eye the sun was born. 

5.1 FURTHER INVESTIGATION AT THE CRACK TIP 

Chapter 

5 

Rig Veda 

The material in the vicinity of a crack tip is most affected. We therefore attempted to place a 
magnifying lens at the crack tip in Chapter 4, and determined stress and displacement fields in its 
vicinity. We, of course, took the simple route of assuming that the material remains elastic even at 
the crack tip where the stresses are very large. The assumption is difficult to accept for most of the 
engineering materials because they do not remain elastic at high stresses. Under real conditions, 
the material in the vicinity of the crack tip deforms anelastically. In metallic components, the 
material yields and flows to decrease the stress. Anelastic deformation also occurs in the vicinity 
of the crack tip in components of other materials like plastics, composites, cardboards, etc. 

Anelastic deformation has not been considered so far in the analysis of our models. Why is it 
so? We have observed in the previous chapters that even elastic solution to a problem is quite 
complex. The magnitude of complexity increases several folds if a plastic zone is included in the 
mathematical modeling. Therefore, if the size of the anelastic zone is small in comparison to the 
crack length, we assume, only for the sake of analysis, that the entire body remains elastic. Such 
analysis, as mentioned in the earlier chapters, is known as Linear Elastic Fracture Mechanics 
(LEFM). For a large plastic zone, more sophisticated analytical methods have been developed 
which would be discussed in the subsequent chapters. 

Now, we will investigate what happens at the crack tip when loads are applied on a component. 
Similar to the behavior of a district magistrate who tries to diffuse a problem such as a communal 
tussle, the material in the neighborhood of the crack tip tries to reduce the danger of high stresses. 
In metals, plastic deformation occurs which is generally caused by nucleation and motion of 
dislocations. Tht: material flows in such a manner that high stresses are reduced dramatically. 
Quite often the flow of material makes the crack tip blunt, which in turn decreases the magnitude 
of stress components. Thus, many potential catastrophic failures are avoided just by the local 
plastic deformation at the crack tip. 
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In highly extensible polymers, molecules may become oriented and can result in strain 
crystallization [5.1]. This blunts the crack tip. Often, the morphology of a material is found to 
change over a large area around the crack tip. 

Those materials which are not able to release high stresses are usually found to have low 
toughness. Diamond is a good example of such materials. Its inter-atomic bonds are so strong 
that the material in the vicinity of a crack tip does not yield. Consequently, any plastic zone is not 
formed at the crack tip and the material toughness is very low. According to a Chinese proverb, 
trees which can bend under the blow of a high velocity cyclone survive better. To survive against 
the danger of high stresses near the crack tip, the material should be able to deform anelastically. 

Discussions in this chapter would be confined mostly to metals. Since plastic zone plays a vital 
role in a fracture, we will investigate the shape of the plastic zone, yield planes, and the factors 
which control the size of the plastic zone. A designer who tries to avoid fracture failure in a 
component prefers that a large plastic zone is developed at the crack tip. This is contrary to the 
likings of a conventional designer who tries hard to avoid yielding at any portion of a component. 
In a way, the size of the plastic zone may be regarded as a parameter in representing the toughness 
of a material. This approach has not been adopted so far owing to problems in predicting the size 
accurately through analytic methods and also owing to difficulties involved in experimental 
determination of the size of the plastic zone. 

5.2 APPROXIMATE SHAPE AND SIZE OF THE PLASTIC ZONE 

The stress field in the vicinity of a crack tip has been determined in Sec. 3.5, assuming the material 
of the component remains elastic even at the crack tip. Knowing the stress field, we may invoke 
one of the two commonly accepted yield criteria, Mises or Tresca, for evaluating the size and 
shape of the plastic zone. Rigorous analysis becomes complex because two sets of constitutive 
equations should be used; one for plastic deformation inside the plastic zone, and another for 
elastic deformation outside the zone. The surface that separates the two zones is not known and 
the rigorous analysis may require iterative solutions to many problems. 

A rigorous analysis is complex as closed form solutions are not available for most problems. 
We will determine only approximate solutions. The procedure adopted for finding the interface 
between a plastic and an elastic zone is as follows: 

Consider that one moves on a radial line from a far away place (where the stress field is definitely 
elastic) towards the crack tip and a yield criterion is being applied continuously. As soon as the 
material is found to yield, we mark that point as the interface between the elastic and plastic fields. 
Similar consideration on other radial lines generates the shape and the size of the plastic zone. It is 
worth noting that the material in the plastic zone no longer takes high stresses predicted by elastic 
analysis. This, in fact, offsets the internal force balance, and therefore, the elastic field surrounding 
the plastic zone should be corrected or re-evaluated for a more rigorous analysis. To incorporate 
such a correction is quite complex and is beyond the scope of this book. The shape and size of the 
plastic zone thus obtained through the procedure can only be accepted as approximate figures. 

Before we apply a yield criterion, it is useful to determine the principal stresses. Considering a case 
of Mode I, cr33 is a principal stress because cr13 = cr23 = 0 for plane problems. We need to rotate axes in 
x1 -x2 plane to determine the principal stresses o-1 and cr2. Figure 5.1 shows the Mohr circle, for which 
cr11, cr22 and cr12 are known through Eq. (3.32). The centre o-0 and the radius R of the Mohr circle are 
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Shear 
stress 

R 

Normal 
stress 

Fig. 5.1 Mohr circle to determine principal stresses 

0"11 + 0"22 Ki 8 
O"o = =--cos-

2 .Jiirr 2 

[ 
2 ]1/2 

R = (0"22 - O"n) + o-2 =~cos!!_ sin!!_ 
2 12 .Jiirr 2 2 

These equations determine principal stresses o-1 and o-2 as ( defining the larger one as o-1) 

c, = a + R = --cos- 1 + sm -K1 e[ . e] 
1 0 ~2nr 2 2 

o-2 = a0 -R = ~~~r cos%[1-sm%] 

The third principal stress o-3 becomes, 

o-3 = 0 for plane stress 

K1 8 
0"3 = v (o-1 + 0"2) = 2v ~cos- for plane strain 

"2nr 2 

5.2.1 Plastic Zone Shape for Plane Stress 

(5.la) 

(5.lb) 

(5.lc) 

(5.ld) 

Two widely used yield criteria, Mises and Tresca, are applied to Mode I, so as to determine the 
plastic zone size for plane stress cases. All the three principal stresses and associated Mohr circles 
are shown in Fig. 5.2(a). To ensure the yielding of the material, the Mises criterion states [5.2] that: 

( 0"1 - 0"2)2 + ( 0"2 - 0"3)2 + ( 0"3 - 0"1)2 ~ 20" ;s (5.2) 

where O"ys is the yield stress. Substituting o-1, o-2, and o-3, in the equation and using the symbol rpz 

in place of r for the equality sign of the Mises criterion, we obtain 
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r 

r 'fmax 
'fmax 

(a) (b) (c) 

Fig. 5.2 Mohr circles for (a) plane stress, (b) plane strain for small e, and 
(c) plane strain for large e 

2 [ ( )2 ( )2] K1 2 e . 2 e . e . e 2 
-- cos - 4sm - + 1- sm - + ~1 + sm - = 2a 
2,rr 2 2 2 2 ys pz 

which is simplified to 

1 K
2

( 3 ) rpz= -+ 1+-sin2 8+cose 
4,r O"ys 2 

The resulting shape of the plastic zone size is plotted in Fig. 5.3(a) in terms of non-dimensional 
distance r pzl(Kf/(rco-!5 )). The shape of the plastic zone size is slightly different if the Tresca yield 
criterion is invoked. In order to ensure yielding, the Tresca yield criterion [5.2] states that: 

/ 
Plane stress 

(a) (b) 

Fig. 5.3 Plastic zone shape and size for (a) Mises yield criterion, and 
(b) Tresca yield criterion 
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(j ys 
~~T ~~ 

For plane stress, rmax is given by the biggest Mohr circle [Fig. 5.2(a)] which is between a-1 and 
a-3• Thus, at r = rpz 

0-1 -0 = 0-ys 
2 2 

Substituting a-1 from Eq. (5.la), we obtain the approximate s~ape of the plastic zone as [Fig. 5.3(b)] 

K
2 

[ e( e)]2 

rpz = ~ cos- 1 + sin-
2rccrys 2 2 

5.2.2 Plastic Zone Shape for Plane Strain 

The third principal stress a-3 is no longer zero [Eq. (5.ld)] and, therefore, it influences the yielding 
considerably. In fact, a-3 is also a tensile stress, creating conditions of triaxiality of the tensile 
stresses. As a result, the plastic zone size is substantially smaller. 

To find the shape of the plastic zone using the Mises yield criterion, a-1, a-2 and a-3 are substituted 
in Eq. (5.2) and the resulting equation simplifies to 

rpz= Kf 2 [~sin2 8+(1-2v}2(1+cose)] 
4rca-ys 2 

If the Tresca yield criterion is applied, we should first find out which is the largest Mohr circle. 
Looking carefully into Eq. (5.1), we find cr1 is always larger tha.n cr2 and a-3. Subtracting Eq. (2.ld) 
from Eq. (2.lb), we obtain 

0-2 - 0-3 = ~ cos~[(1- 2v)- sin~] 
"2rcr 2 2 

Note that for small e (~ 38.9° for v = 1/3), a-3 is the smallest principal stress and the yielding is 
governed by a-1 and a-3 as shown in Fig. 5.2(b). Substituting a-1 and cr3 in Eq. (5.3), we have 

Kr cos~(1 +sin~ - 2v) = CTys 
J2rcrpz 2 2 

leading to 
e 

Kf cos2
- 2 

rpz = ---2-
2~(1- 2v + sin i) 

2rca-ys 2 

For a large value of 8 (~ 38.9° for v = 1 /3), a-2 is the smallest principal stress and the yielding is 
governed by a 1 and a 2, as shown in Fig. 5.2(c). Then, rpz is obtained by using Eq. (5.3) as 

2 
Kr . 2e rpz = --2- sm 

21CO"ys 

Corresponding plastic zone shapes are shown in Fig. 5.3. As expected, the plastic zone size of 
plane strain is much smaller than that of plane stress. In fact, the difference between the two 
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plastic zones is so large that it should convince a designer to choose, as much as possible, thin 
plates or thin sections of a component. 

It is worth noting here that the plastic zone size is proportional to the square of the stress 
intensity factor and inversely proportional to the square of the yield stress. Whenever yield stress 
of a metal is increased, say by an appropriate heat treatment, its plastic zone size decreases 
considerably; this in turn makes the material more prone to crack growth. The increase in yield 
stress may please a conventional designer, because he usually designs structural components 
based on a yield criterion. But as far as the toughness of a material is concerned, the designer is 
left with an inferior material. The designer should explore a happy compromise between yield 
stress and toughness, while choosing a material and its heat treatment. 

5 .3 EFFECTIVE CRACK LENGTH 

The appearance of the plastic zone at the tip does not allow its material to bear high stresses 
predicted by the elastic analysis. Looking from a different angle, one can argue that the material 
is soft in front of the crack tip and therefore the effective crack length is longer than the actual. 

In fact, owing to the presence of the plastic zone, the stiffness of the component decreases or 
the compliance increases. Consequently, the crack is equivalent to a length that is longer than 
actual length. The size of the plastic zone in front of the crack tip determines the effective crack 
length. Therefore, considerable efforts have been made by many investigators to determine the 
plastic zone size accurately in front of the crack tip along the x1-axis. 

5.3.1 Approximate Approach 

One of the simplest (but highly approximate) expressions for the plastic zone size is found from 
a22 vs x1 curve of Fig. 5.4 for Mode I. The length of the plastic zone r* along x1 direction is then 
obtained from the relation 

x, 

Fig. 5.4 Approximate plastic zone size r* 



Anelastic Deformation at the Crack Tip 105 

0'22 = kO'ys (5.4) 

where, k depends on whether the case is of plane stress or plane strain. Substituting 0'22 = 
K1/ (2nr*)112and solving for r*, we obtain 

K2 
r* = r (5.5) ~'2: 2 

2nk O'ys 

We now evaluate k for both plane stress and plane strain. Due to the symmetry, 0'12 vanishes on 
the x2 = 0 plane. Also, on this plane 0'22 = 0'11 • Thus, we have principal stresses as 

for plane stress 

0'3 = v (0'1 + 0'2) = 2v0'22 for plane strain 

Substituting 0'1, 0'2 and 0'3 in Eq. (5.2), and then comparing the resulting expression with Eq. (5.4), 
we obtain 

k = 1 for plane stress 

k = 1/(1 - 2v) for plane strain 

In fact, k = 3 for v = 1/3 in the case of plane strain. Substituting the value of kin Eq. (5.5), we 
obtain 

r* - J_[ Ki )

2 

for plane stress, and 
- 2n (j'ys 

(5.6a) 

r* = - 1-[_!!_)
2 

for plane strain (v = 1/3) 
18n O'ys 

(5.6b) 

These results are highly approximate; better expressions are obtained through the Irwin plastic 
zone correction, or the Dugdale approach. 

5.3.2 The Irwin Plastic Zone Correction 

Irwin [5.3] suggested a vastly improved expression for the plastic zone size along the x1-axis 
through a model which accounts for the absence of high stresses within the yield zone. Consider 
a case of plane stress with k = 1. As shown in Fig. 5.5, the plastic zone size beyond the tip T of the 
actual crack is TL along x1-axis. The tip of the effective crack is located somewhere inside the 
plastic zone. There should be an appropriate criterion to find the length of the effective crack. 
Note that if the tip of the effective crack is at point M, then the material beyond the tip will not be 
able to sustain O' 22 > O'ys· Moreover, the crack-faces of the effective crack are not actually separated 
between the points T and M an1 _t refore tensile stress equal to O' 5 ts on the length o for an 
elastic-perfectly plastic material~[Wi roposed tRa.t 8 is so chosen sucn at the load not taken 
beyond the poin , g1 by the area Pc n length ~qual to the load su ined on length 8, 
givenJi¥..area PA" Then, the ot sustained on length A becomes) 
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L 

1-a-~1 

Fig. 5.5 Irwin plastic zone correction 

where, Bis the plate thickness. The load sustained (PA) on length 8 is 

PA= Bays 8 
Irwin's correction (PA= Pc) leads to 

,i. ,i. K 
CJ'ys 8 = J CJ'22dx1 - CJ'y5 A = J ffex; dx1 - CJ'y5A (5.7) 

0 .O flr X1 

where, K1 is based on the effective crack length (a + 8 ). ,l is determined by noting that at x1 = ,l, 
a22 is equal to ays for plane stress (k = l), i.e., 

(j = _IS_ 
ys ~21r ,t 

Rearranging, we have 
K = (21r,l)1;2a 

I ys 

Substituting in Eq. (5.7), we have 

,1. CJ'ys (2,r ,t)l/2 
CJ'ysO= J ~ dx1 -CJ'ys,l 

0 1 

On solving, we obtain 

8 = ,t 
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The overall plastic zone size becomes 

K2 
rP = 2?. = - 1

-2 (5.8) 
lt"<Iys 

The effective crack length aeff is given by 

Kf aeff = a + 8 = a + ?. = a + --2- (5.9) 
2n<Iys 

Since Ki is based on the effective crack length, aeff is still unknown. If the plastic zone is small in 
comparison to the crack length, Kr may be assumed to be equal to the SIF of crack length a. 
However, Ki can also be obtained in a closed form for the case of an infinite plate; the corrected 
SIF is expressed as 

[ ]
1/2 

Ki=<J n(a+?.) 

On solving, we obtain 

[ ]

1/2 

= an:112 a+ _E_ 
2n: (J2 

ys 

For a finite size specimen, 

Kr = a [ n (a+?.) J 112!( a;?.) 

or 

(5.10) 

Ki= an
1

1
2[a+~]112 1([a+~])w) (5.11) 

2n a ys 2n a ys 

For certain geometries, function f is simple ( e.g.,f = 1 for a centre-cracked infinite plate and 
f = 1.12 for an edge-cracked infinite plate) and Kr can easily be obtained from the above equation. 
Otherwise, it can also be determined by an iterative procedure. For example, K1 on right hand 
side is taken based on the actual crack length a in the first round of iteration. The evaluated value 
Kr is then fed on the right hand side in the second round. The iterative procedure is repeated until 
two successive values of K1 are within a small percentage difference. 

Irwin's correction to the plane strain case is useful to determine the plastic zone size. Due to 
the plastic deformation the crack tip becomes rounded. Since the rounded tip acts as a free surface, 
a 11 is released to zero. The effect of the release of a 11 is felt for some distance on the Xi-axis 
beyond the crack tip. Irwin [5.4] found that k is no longer 3 but is closer to ~2,,/i which may be 
taken as .f3. Then, the plastic zone size for the plane strain becomes (1/3n)Ktf a ;s· For an 
experimental determination of K1c of material, plane strain conditions are assured by taking plate 
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thickness to be much thicker than the plastic zone size. In fact, it is chosen to be more than 25 
times of the plastic zone size and therefore, the ASME codes require 

K2 
B~2.5-+ 

O'ys 

The details of the experimental procedure to determine the critical SIF are presented in Chapter 
8. To have an idea, the estimated plastic zone size (rp) is listed in Table 5.1 for some commonly 
used materials for plane strain, corresponding to Krc, 

TABLE 5.1 Estimated plastic zone size (rp) at the critical stage of a crack for some 
common materials for plane strain in Mode I 

Material 

Nuclear Reactor Steel 
Alloy Steel* ( O'ys = 1070 MPa) 
High Strength Aluminum (7075-T651) 
Titanium Alloy (Ti-6Al-4V) 
Perspex (Plexiglass) 

• 40 Ni2Cr1Mo;IB (IS)/EN 24 (UK)/4340 (USA) 

r (mm) 

93 
1.8 
0.8 
1.3 
0.1 

5.3.3 Plastic Zone Size through the Dugdale Approach 

Dugdale [5.5] determined the plastic zone size through a different approach. He considered the 
effective crack to be of length a+ p where pis plastic zone size [Fig. 5.6(a)]. 

(J' 

G'ys~. G'ys 

G'ys~G'ys 

W a I a 1.£.J 

(J' 

(a) 

G'ys~G'ys 

(b) 

Fig. 5.6 (a) Plastic zone size through Dugdale's approach and (b) nullifying the 
singularity using Green's function approach 

In the Dugdale approach, singularity at the tip of the effective crack is nullified by a uniform 
pressure equal to yield stress O'ys (for plane stress cases with k = 1) on the portion p of the crack, as 
shown in the figure. In fact, to determine p we employ the criterion that pis the length on which 
pressure O'ys exactly nullifies the singularity. If KP is the singularity due to the pressure O'ys and K0 

due to external load on the effective crack, we have 
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Ka+ KP= 0 (5.12) 

Ka is simple to evaluate and is given by 

Ka=a.J1e(a+p) 

To determine KP' Green's function is used (as discussed in Sec. 4.1.1). Application of Eq. (4.1) to 
Fig. 5.6(a) gives 

2 <J ysds.Jn(a + p) 
dK = - --';=====-

P 1r )(a+ p )2 - S2 

Integrating, we have 

2<Jy5 .Jn(a + p) a+fp 1 
~=- ~ 

1r a )(a+ p)z -S2 

= - 2<Jys.Jn(a + p) [cos-1 _a_] 
JC a+p 

Substituting KP and Kain Eq. (5.12), we have 

2<Jys -1 a 
(J- --cos -- = 0 

n a+ p 

which is simplified to 

a; p ~ cos[ 2::] 
An approximate, but simpler relation may be obtained for cases <J << <Jys and p << a as 

p 1r2(J2 
1--=1--2-

a 8<J ys 

na2na nKf 
giving, p = -- = - (5.13) 

sa;s sa;s 

We note that the plastic zone size of Dugdale's model is dose to that of Irwin's correction [i.e., 
Kf I (7C<iis )] for <J << <Jys· 

Example 5.1 A large plate of 5 mm thickness, made of medium carbon steel ( <J ys = 350 MP a) with 
a through-the-thickness centre-crack of 2a = 40 mm length, is subjected to a stress of 150 MPa. For 
Mode I loading, determine the effective crack length using Irwin's correction. 

Solution: We start by assuming that the plate is loaded in plane stress. 

K1 = a .Jira = (150 MPa) .Jn x (0.020 m) = 37.6 MPa .Jm 

rp = Kf = (37.6 MPa-/m/ = 3.67 mm 
na;s n(350 MPa)2 
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Since rp is not negligible in comparison to plate thickness, our assumption of plane stress 
conditions is justified. Invoking Eq. (5.10), we have: 

= 39.46 MPa.fm 

The plastic zone size is given by 

(150 MPa) .fii x (0.020m)112 

[
l - ]:_( 150MPa)

2

]

112 

2 350MPa 

(39.46MPa)2 
----- '= 0.004046 m = 4.046 mm 
n x (350MPa)2 

And then the effective crack length becomes: 

r. 
aeff = a + L = 20 mm + 2.023 mm = 22.023 mm 

2 

Example 5.2 A steel plate (avs = 350 MPa) of width 80 mm and thickness 5 mm has a centre­
crack 2a = 40 mm length. If the far field stress is 150 MPa, determine the SIF and the length of the 
effective crack, using Irwin's correction. 

Solution: We first check whether the plate is loaded in plane stress by finding rP based on the 
actual crack length. Referring to Appendix 4B, we have 

c-: 20mm 
Kr= a "nu f(a); a= a/W = = 0.5 

40mm 

f (a)= 1.0 + 0.128a - 0.288a 2 + 1.523a 3 

= 1.182 

Kr= (150MPaJm) ~n x 0.02m x 1.182 = 44.44 MPa ..fm 

K
2 

1 [44.44MPa./m)
2 

. 
rP = ----1z- = - = 5.13 mm"' Plate thickness 

nays n 350MPa 

Therefore, plane stress conditions do exist. Invoking Eq. (5.11), we have 

[ ]

1/2 

K1 = a n[a + Kl2 ·) xf(a ') 
2nays 

(5.14) 

where, a'= (a+4))w 
2nays 

This problem will now be solved through iteration. The general iterative procedure is that we 
guess a value of K1 and substitute it on the RHS of Eq. (5.14) to evaluate the variable Kr of LHS 
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and then compare the two values. In the second round of iteration, we guess another value of Kr 
on the RHS. The process continues till the two values converge. In this problem, we start the first 

round of iteration with Kr= 44.44 MPa .fm and substitute it in the RHS of Eq. (5.14) to have 

a'= 0.5641, f(a ') = 1.2539 

K1 = 50.08 MPa .fm 
Since this Kr is quite different from the 44.44, we go for the second round of iteration by feeding Kr 
as 50.08 into RHS of Eq. (5.18) to have 

a' = 0.5815, f( a') = 1.2765 

Kr= 51.758 MPa .fm 
The third round gives 

a'= 0.587, f(a') = 1.2839 

K1 = 52.306 MPa .fm 
and the fourth round determines 

a'= 0.5889, f(a ') = 1.2865 

K1 = 52.48 MPa .fm 
Since K1 is quite close to the value of the third round, we stop the iterative process. The plastic 
zone size is then given by 

_ Kf 
r,,- -2- = 

TCCf ys 

(52.48 MPaJni )2 

TC X (350 MPa)2 

= 0.00716 m = 7.16 mm 

and the effective crack length becomes, 

r,, 
aeff =a+ - = 0.02 m + 0.00358 m = 23.58 mm 

2 

5.4 EFFECT OF PLATE THICKNESS 

So far in this book, we have been using the terms plane stress and plane strain withbut having · 
spelled out any formal quantitative criterion, which would help us identify whether a given case 
is of plane stress or plane strain. Such a criterion could not be given earlier because the parameter 
that differentiates between plane stress and plane strain is the size of the plastic zone. Only after 
quantitative models are developed, we can estimate the plastic zone. 

In a thin plate, plane stress components CJ33, CJ31 and CJ32 and are able to relax to zero and the 
material deforms easily within the plastic zone. In the vicinity of the crack tip, both free surfaces 
of the plate move in forming a depression on each side, owing to in-plane tensile stresses and 
Poisson's effect. On the contrary, the material in a thick plate is constrained, giving rise to tensile 
stress CJ33. 
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There must be a limit on plate thickness under which a material is able to flow easily and the 
plate is deformed under plane stress. Similarly, there must be a limit on plate thickness over 
which the material is taken to be deformed under plane strain. Between the upper and lower 
limits of the plate thickness, the cases are known to have transitional behaviour, i.e., near a free 
surface, the material flows easily and deforms in plane stress and, in the interior, the material is 
constrained and is subjected to plane strain. 

Now, the method to set the limits on the thickness for plane stress and plane strain will be 
explored. These limits are decided mainly on the basis of the long experiences of many 
investigators. It has been found that if the plastic zone size is about the thickness of the plate, the 
material within the plastic zone relieves 'out of plane stresses' and deforms easily. Therefore, for 
a plate with its thickness less than or equal to the size of the plastic zone, the crack is loaded in 
plane stress. Figure 5.7(a) shows the case of plane stress with a section through the plastic zone. 

(j 

(j (j 

(a) (b) (c) 

Fig. 5.7 Plastic zone size for (a) plane stress, (b) transitional case, and (c) plane strain 

The thick plate [Fig. 5.7(c)] corresponds to plane strain, showing a smaller plastic zone. Even 
in this case, some effect of the free surface exists where the plastic zone is larger. However, the 
thick region of plane strain dominates and the surface effects can be neglected. A plate having 
thickness greater or equal to 2.5 Kfcf a ;sis regarded as a case of plane strain. In transitional cases 
[Fig. 5.7(b)], the interior portion of the plate and the regions near its both surfaces have mixed 
effects on the plastic zone. 

It is evident from Fig. 5.7 that the critical SIF of a plate depends upon its thickness. The 
nature of the critical SIF dependence on the plate thickness Bis shown in Fig. 5.8 qualitatively. 
For B ;::: 2.5 KfJ a :s , the critical SIF remains constant and then we can regard the critical stress 
intensity factor as the material property. The value of Krc of commonly used materials is 
available. Representative Krc of some materials are presented in Table 4.2. 
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Plane Transitional Plane 
stress strain 

... ;:,, ,, 

LI. 
u5 
ro u 

8 
t 
Kie 

t 
Bo Plate thickness B 

Fig. 5.8 Variation of critical SIF with plate thickness 

For B < 2.5 Kief <J" ts critical stress intensity factor depends on the thickness B. The relation 
between critical SIP and thickness should be provided to designers. However, this is not usually 
done, probably because experimental tests are expensive for tough materials. Users like aerospace­
companies generate their own data base of critical SIP of plane stress or transitional cases, for 
commonly used thicknesses. 

For plate thickness B0 (Fig. 5.8), the plastic zone size is approximately equal to the thickness of 
the plate thickness and is considered to be the case of pure plane stress. For thinner plates, 
experimental determination of the critical SIP is difficult, because the plate tries to buckle close to 
the cracked surfaces and the specimen is then loaded in Mode III also. 

Fractured planes of a plane stress case are different from those of a plane strain case. In case of 
Mode I, O" 33 is always zero if conditions of plane stress prevail. Also on plane x2 = 0, it is noted that 
0"12 = 0 and 0"22 = 0"11 . However, even at a point slightly away from the plane (8 is not equal to 
zero)0"22 is greater than 0"11• The maximum shear stress is dictated by 0"22 and 0"33 and therefore, a 
fracture is likely to occur on one of the two planes inclined at± 45°, as shown in Fig 5.9(a). Note 
that the fractured surface is inclined to the free surfaces of the plate as shown in Fig. 5.9(b ). 

Under plane strain conditions in Mode I, yield planes are more complex. The crack growth is a 
combined effect of yielding due to the dislocation motion and the generation and nucleation of 
voids in front of the crack tip. In metals, the nucleation and the growth of voids are facilitated by 
the triaxiality of tensile stresses near the crack tip in case of plane strain. The voids coalesce (grow 
and join each other) during the crack growth. It has been observed that in plane strain cases, a 
crack usually grows on the plane of the original crack. Figure 5.10 shows the self similar growth 
on the crack-plane. This fact is exploited in designing experiments, so as to determine the critical 
SIP of a material. 
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(J 

Crack growth 

(a) (b) 

Fig. 5.9 Yield planes of plane stress, and (b) a cracked face 

(J 

Crack 
growth 

Fig. 5.10 Crack growth of plane strain cases 

For the transitional behavior of a crack, the fracture is of mixed kinds (Fig. 5.11), flat in the 
interior, dominated by plane strain and slant close to the free surface. In fact, by looking at a 
fractured surface, one can conclude whether the fracture occurred prominently under plane stress 
or plane strain. 
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(a) (b) 

Fig. 5.11 Cracked faces of transitional cases 

Cutting a material by conventional machines (lathe, milling, shaper and drill press) is a fracture 
phenomenon and the edges of a cut surface are found to have lips generally known as burrs. 
These burrs are regarded as a nuisance in a production shop and are removed through specially 
designed deburring machines. 

5.5 CLOSURE 

The shape of the plastic zone has been obtained through a quantitative, but approximate method. 
This helps us in understanding the difference between plane stress and plane strain conditions. 
The critical stress intensity factor depends, in general, on the plate thickness. However, it does 
not depend on plate thickness, if the plates are thick enough to be loaded in plane strain. Thus, 
the critical stress intensity factor of plane strain (Krc) is treated as the property of a material. 

QUESTIONS 

1. The shape of the plastic zone, as determined in this chapter, is approximate. Why? 
2. In comparison to a plane strain case, a plane stress loading gives much larger plastic zone 

for the same SIF? Why? 
3. Looking at a fractured surface, can you distinguish whether the loading was in plane 

stress, plane strain or transitional? 
4. Show the yield planes of plane stress cases through a clear diagram. 
5. The plastic zone size obtained through Irwin's model is quite large in comparison to the 

plastic zone (r*), obtained through the yield criterion applied to the elastic field. Why? 
6. Can the effective crack length be used as a suitable parameter for formulating elastic plastic 

fracture mechanics? 
7. Why is the fracture plane of plane strain case normal to the free surface and in the plane of 

the original crack surface for Mode I loading? 
8. Why is burr developed during machining? 
9. Does fracture mechanics recommend the enhancement of the yield stress of an alloy 

through a heat treatment? Justify your answer. 
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PROBLEMS 

1. Show that the approximate plastic zone shape around the crack tip of a Mode II crack in 
an infinite plate is given by: 

1'p( 8) = _!_( Kn ]
2 

(14 - 2 cos 8 - 9 sin2 8) 
8Jt' (j1/S 

for plane stress employing Mises yield criterion. Plot the shape of the plastic zone. 
2. Apply the Mises yield criterion to show that the approximate plastic zone shape around 

the crack tip of a Mode II crack in an infinite plate for plane strain loading is given by 

rp(8) = _!_(Kn ]
2 

[12 + 2 (1-2 v)2 (1-cos 8)-9 sin2 8)] 
8n (jys 

Plot the shape of the plastic zone. 
3. Invoke the Mises yield criterion to show that the approximate plastic zone around the tip 

of a Mode III crack is a circle of radius 

', = 1n( ::: J 
4. In a case of a mixed mode with loading in plane stress, find the approximate shape of the 

plastic zone, if K1 = Ku = K, and plot the shape represented by r pf (K2 
/ 1t' <J 

2y5) vs 8. Use of a 
computer is recommended. 

5. Determine the plastic zone size rpl a of an edge crack of length a in a thin infinite plate, 
loaded in Mode I with a far field stress <J using Irwin's correction. 

6. Apply Irwin's correction to determine the SIF, the length of the effective crack and the 
plastic zone size for an edge crack of 15 mm length in a plate 80 mm width. The thickness 
of the plate is 5 mm and the far field stress is 150 MPa ( C5ys = 350 MPa). 

7. A thin plate with an edge crack of 35 mm length is loaded in Mode I with a far field stress 
of 300 MPa. If the yield stress of the material is 900 M~a and the material is idealized as 
elastic-perfectly plastic, determine the plastic zone size onx1-axis using Irwin's correction. 
What is the length of plastic zone size if the Dugdale Approach is applied? 
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Chapter 

6 
}-Integral 

Siddharth said: "Is it not true my friend, that the river has very many voices? Has it not 
the voice of a king, of a warrior, of a bull, of a might bird, of a pregnant woman and a 

singing man, and a thousand other voices?" 

Hermann Hesse 

6.1 RELEVANCE AND SCOPE 

A large plastic zone at the crack tip makes a material tough. However, in the early development of 
modern fracture mechanics, existence of the plastic zone was ignored in any analysis, because 
practical methods were not developed to account for the elastic-plastic behavior within the plastic 
zone. The LEFM assumes that the entire body, including the material very close to the crack tip, 
follows linear elastic relations. 

The stress-strain behavior of an elastic-plastic deformation is not simple, as it is well known to be 
non-linear. With the availability of inexpensive computers, non-linear stress-strain behavior can now be 
accounted for. But, it is difficult to incorporate the non-uniqueness of the elastic-plastic behavior. That 
is, the loading behavior of an elastic-plastic material differs from the unloading behavior, as shown in 
Fig. 6.1. For a given value of strain (e.g., ate= e1), there are always two stress values and therefore, one 
has to keep track of the specimen being loaded or unloaded. An analogy can be drawn with 
interaction with a person who is simple and straight forward like a linear elastic material. Non-linear 
elastic material corresponds to a man who is honest but rude. But elastic-plastic material is like 
dealing with a man who is not only rude but speaks truth sometimes and lies other times. 

For many metals, the stress-strain relations get further complicated due to the Bauschinger's 
effect [6.1], which shows that the yield stress in unloading is different from that in loading. Such 
problems will not be elaborated here. But we realize that solving problems of an elastic-plastic 
material is quite difficult, even for a regular component with no voids or cuts. The magnitude of 
complexity increases further when the problem is solved in the vicinity of a crack tip. 

Elastic-plastic behavior makes the analysis of fracture mechanics complex, because this implies 
the existence of two zones-the elastic-plastic zone, near the crack tip and the elastic zone 
surrounding it. The interface between the two zones is also not known and could be determined 
only by a complex analysis. 
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Non-linear elastic 

Elastic-plastic 

e 

Fig. 6.1 Non-linear elastic and elastic-plastic material behavior 

Because of these complex problems faced in any elastic-plastic analysis, it has, so far, not been 
possible to tackle the problem directly. In fact, we look for clever solutions which are improved 
over those of the LEFM, but are not too difficult for designers in field applications. The J-Integral is 
one such method which, in spite of some reservations, is the most accepted method to designers 
and researchers of elastic-plastic fracture mechanics (EPFM). In this chapter, we will discuss 
various aspects of the J-Integral. 

6.2 DEFINITION OF THE }-INTEGRAL 

Like other parameters (G and K), the J-Integral is also a parameter to characterize a crack. In fact, G 
is a special case of the J-Integral, i.e., G is usually applied only to linear elastic materials, whereas 
the J-Integral is not only applicable to linear and non-linear elastic materials, but is considered to 
be very useful to characterize materials, exhibiting elastic-plastic behavior near the crack tip. 

At first sight, the J-Integral looks like a strange term, but as we go along and develop it gradually, 
it would not look odd. For plane problems, consider a path r around a crack tip (Fig. 6.2) which 
starts from any point of a crack face and ends on any point on the other crack face. The path can be 
chosen arbitrarily within the material of the component. It may be smooth or may have corners, 
but should be continuous. J-Integral was first applied to fracture mechanics by Rice [6.2] in 1968 for 
plane problems. It is defined as: 

J = f (wdx2 -1'; ou; ds) 
r ax] 

(6.1) 

where, 

The Einstein's summation convention is followed in defining the above expressions. For two 
dimensional plane cases W may be expressed in full form as: 
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Fig. 6.2 Path r around the crack tip with outward normal n; and traction T; 

~. ~ % % 

W = J cr11 de11 + J cr12 dc:12 + f cr21 dc:21 + f cr22 dc:22 
0 0 0 0 

Summing the middle terms, we have: 

€11 E12 £22 

W = J cr11 dc:11 + 2 J cr12 dc:12 + f cr22 de22 

0 0 0 

Also, W which is strain energy per unit volume is a point function, i.e., it varies from point to point 
within the body of the component. Other parameters of Eq. (6.1) are: 

T; = traction vector at a point on the path r, 
u; = displacement vector at a point on the path. 

In the expanded form, the second term of Eq. (6.1) for plane cases is: 

J (T1 dU1 + Tz dUz )as 
r dX1 dx1 

Traction T; at a point on path r is expressed through the well-known relation 1'; = crij nj (i.e., 
Ti= cr11 111 +cr12 112 and T2 =0-21 111 +o-22 n2 ). Thus, by knowing the stress field and the direction of the 
normal at a point of path r, we can determine T;. Later in this chapter, we will prove the following 
two important features of J-Integral: 

(i) The J-Integral is path independent, i.e., r can be chosen arbitrarily within the body of a 
component. 

(ii) For linear elastic bodies, the J-Integral represents energy release rate and is same as G. 

Now, we will take up an example to show that the above mentioned features of the J-Integral are 
applicable to ~ practical case of the double beam cantilever solved in Sec. 2.7. 
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Example 6.1 Determine the }-Integral for a double cantilever beam (DCB) specimen, if each 
cantilever is pulled by a distributed load P, as shown in Fig. 6.3. 

X2 

t E 
! .------------ f---------1, 

Pit h I 

JI t : -====~--f-x1 B .. • 

11--a--J h : 
pl I ____________ J __ /f ___ : 

C D 

Fig. 6.3 Path r coinciding with outer edges of the DCB specimen 

Solution: The chosen path r is BCDEFH and it coincides with the body contour. Segments CD and 
EF of the path r do not contribute to the }-Integral, because dx2 is negligible and T; = 0. The 
contribution of the segment DE towards the }-Integral is negligible, because stresses are very small, 
which in turn, make Wand T; negligible. On segments BC and FH, Wis negligible, (no contribution 
of bending stress owing to zero bending moment and negligible contribution of shear stress) and 
the only non-trivial term is: 

I, .., 

f aU2 J = - 2 T2 -.::;- dx2 
0 aX1 

(6.2) 

where, the factor 2 accounts for the contribution from both cantilevers. Deflection u2 of a cantilever 

at a distance x1 is commonly evaluat~d by equating the bending moment with EI 
021

~
2 

, leading to: 
c/xj 

cJ
2
u2 = Px1 

cJxf EI 

Integrating it for the upper cantilever with the boundary conditionc/u2 I clx1 = 0 at x1 =a, we obtain: 

clu Px2 Pa2 
_2 = __ 1 ---

clX1 2EI 2EI 

Evaluating it at x1 = 0 and using the relation I= Bh3 /12, we have: 

6Pa2 

= - EB!t3 

Substituting in Eq. (6.2), we have: 

l2Pa2 ,, 

f = --3-f T2 dx2 
EBh 

0 
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" 
But Bf T2 ds =P on face FH, leading to: 

0 

12P2a2 

f1 = EB2hT (6.3) 

This expression is same as that of G1, obtained in Sec. 2.7 [Eq. (2.20)]. One may note here that the 
definition of the J-Integral is more versatile than the definition of G, because the J-Integral can cut 
out a portion of the component at the will of an investigator and characterize the crack fully. 
Although the technique to determine J is quite different from that of G, both lead to the same result 
for linear elastic materials in the end. Of course, the parameter G is limited only to LEFM, whereas 
the J-Integral encompasses a much bigger domain, because it can deal with both non-linear and 
elastic-plastic materials. 

6.3 PATH INDEPENDENCE 

The J-Integral is carried out along an arbitrary path r, which starts from one crack face and ends up 
on the other crack face, while going around the crack tip. It would be proved, in this section, that J 
is path independent for both linear and non-linear elastic materials. We first consider an area A of 
a plate not containing any cut or void and we surround it by a closed path S, as shown in Fig. 6.4(a). 
We will show that the value of integral I, containing the same integrand as that of the J-Integral, but 
evaluated along the closed path S, vanishes, i.e. 

f [ ou- ] I= Wdx2 -T;-_1 ds 40 
s OX1 

A 
n 

s 

dx2 = cos 8 ds = n1 ds 

(a) {b) 

Fig. 6.4 (a) Area A without any cut or void and enclosed by contour S, and 
(b) the relation between 111 and dx2 

Substituting dx2 = n1ds [Fig. 6.4(b)] and T; = CJ"ijnj in the above equation, we have: 

I= f [wn1 - c,ii ni ~:: ]ds 

(6.4) 
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The integral will be converted from a line integral to an area integral using the Divergence 
Theorem, which is stated in general form as: 

f Mn;ds = fd~dA=f MidA 
s A dX; A 

where Mis any variable. Invoking the Divergence Theorem, we have: 

leading to I- -----a -' -a -' dA I [aw at\ (au.) (au. JJ 
- A ac!i ax1 ij ax1 ,J ij,j ax1 

(6.5) 

We simplify Eq. (6.5) by realizing that for an elastic material (linear or non-linear) 

(6.6) 

and the equilibrium equations gives a,i,i = 0. The equation is simplified to: 

J ( 
dt:;j dui,j ) 

I = aij - - a;j -- dA 
A dX1 dX1 

(6.7) 

For further simplification, we note that: 

dt:-· 1 d(u- · +u- ·) 
CJ'·· _If = -CJ'·· 1,/ /,I 

If OX1 2 If OX1 
(6.8) 

and owing to the symmetry of aii 

Then, Eq. (6.8) is simplified to: 

clt:;
1
- du- . ,... ,... _1,_1 

v;/ c/X1 = v;i dX1 

Substituting in Eq. (6.7), we have: 

J [ 
ou-

1 = (J'ij I, 

A dX1 
du-·] 

- aij -
1
'-
1 dA ""70 

dX1 

This proves that the left hand side of Eq. (6.4) is zero for a closed curve and is valid for all materials 
whose constitutive equation can be defined through the relation of Eq. ( 6.6). This result will now be 
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used to prove the path independence of the J-Integral. Consider an area A, shown in Fig. 6.5, which is 
closed by four segments, BCD, DE, EFG and GB. Note that the segments DE and GB coincide with the 
crack surfaces. Segments BCD and EFG can be chosen arbitrarily within the material as long as they do 
not cross each other. We now split the integral of Eq. (6.4) into four parts, as: 

J+J+J+J =0 
BCD DE EFG GB 

D 

I 

\ C 
Crack 

Fig. 6.5 Area A enclosed by two curves around the crack tip and two segments 
along the crack surfaces 

Integrations along DE and GB do not contribute because dx2 ::::: 0 and Ti= 0 for the traction free crack 
surfaces considered here. Two surviving integrals are: 

J + J = 0 (6.9) 
BCD EFG 

The int:gral along BCD is counter-clockwise with its normal pointing into the external region 
and the integral along EFG is clockwise, with its normal pointing towards the interior. We can 
reverse the direction of the path of the inside curve from clockwise to counter-clockwise direction 
by introducing a negative sign. We then have: 

J ~ J 
BCD GFE 

Alternatively, I = I 
r 1 r 2 

as shown in Fig. 6.6. Thus, we conclude that path r of the J-Integral can be chosen anywhere within 
the material. 

We should note here that path independence of the J-Integral is valid only for cases in 
which a, =dW / de; is applicable. In fact, this is a constitutive relation and thus the property of 
the mat~rial plays ~n important role. This constitutive relation is valid for an elastic material, i.e., 
as the load is decreased, the strain retraces the path of loading (it goes from B to A as shown in 
Fig. 6.1). However, this is not true for an elastic-plastic material because unloading follows a 
different path from B to D. In fact, the relation between stress and strain for elastic materials is 
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\ 
Crack 

Fig. 6.6 Path independence of J-integral 

unique, but it is not so for an elastic-plastic material. However, if the loads on a component are 
increased monotonically (with no unloading), the mathematical behavior of an elastic-plastic 
material is the same as that of any non-linear elastic material. Thus, even if a component is 
deformed plastically under a monotonic loading, the equations of non-linear elasticity can be used. 
Under these conditions, the J-Integral is taken as path independent for plastic deformation also. 
The elastic-plastic fracture mechanics is based on this idea. 

The integration path r can be chosen far away from the crack tip to avoid the plastic zone or it 
may be taken very close to the crack tip so that it passes through the plastic zone. In any case, the 
J-Integral remains the same, provided there is no unloading. This suggests that the J-Integral is 
fully capable of characterizing a crack. Depending upon the conditions of a given problem, one can 
choose the path to minimize complexities in the evaluation of the J-Integral. 

For linear elastic materials the J-Integral, represents the potentiality for release of energy from 
the system per unit area extension of the crack growth, and is the same as G. The proof showing 
that they are same (6.3] is given in Appendix 6A, presented at the end of this chapter. 

6.4 STRESS-STRAIN RELATION 

We shall now replace the elastic-plastic behavior of a material by a non-linear elastic behaviour for 
cases where the load on a component increases monotonically. It would be convenient if we have 
only one smooth curve, such that it behaves essentially as a linear elastic material within the elastic 
limit and elastic-plastic at high stresses. Note that stress-strain relations of all material are empirical. 
We should choose an appropriate form of a constitutive relation. 

One of the most convenient constitutive relations has been formulated by Ramberg and Osgood. 
It is appropriate to describe the behavior of most engineering materials. However, there are some 
materials whose behaviour cannot be modeled by the Ramberg and Osgood relation. The relation 
is used in several different forms, but a convenient equation describing Ramberg-Osgood 
materials (6.4] for the one-dimensional case is: 

(j a-" 
e=-+-

E F 
(6.10) 

where Eis the Young's Modulus of the material. Also, n and Fare the other two material constants 
which are determined empirically by fitting the Ramberg-Osgood equation to an experimental 
stress-strain curve. In fact, n is known as the hardening exponent and its value is unity for linear 
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elastic materials. It is greater than one for elastic-plastic materials (monotonically loaded). An 
elastic-perfectly plastic material is represented by n = 00• For most of the commonly used metals, 
the value of n is in the range of 5-15. 

The material constant Fis much larger than E, and therefore the second term in the Ramberg­
Osgood relation is negligible for small values of cr and then Eq. (6.10) behaves as a linear relation. 
As cr increases, the second term starts dominating, but the first term still contributes to the elastic 
strain. In fact, Eq. (6.10) can also be written as (Fig. 6.7): 

where 
(J (Jn 

t:e = E and t:P = F 

For large values of cr, the first term in Eq. (6.10) becomes small and can be neglected. 

f-_ Ep _.J Ee 4- e 

fig. 6.7 Elastic strain Ee and plastic strain £P 

We should note that n which is an exponent is a dimensionless number, but F has the dimension 
of stress to the power n. Some countries still do not follow SI unit system. In fact, an advanced 
country where extensive experimental data are generated still follows FPS unit system. We should 
modify Eq. ( 6.10) from one system of units to another. 

Example 6.2 An alloy steel is represented by the equation 
(J (56.8 

£=---+---
30,000 2x1012 

where cr is given in ksi. Modify the equation for cr given in MPa. 

Solution: In the given Ramberg-Osgood equation, the units of E and f are ksi and ksi6
·
8 

respectively. Using the equivalence relation of 1 ksi = 6.895 MPa, we modify E and f to: 

E = 30,000 x (6.895)1 = 206.8 x 103 MPa 

F = 2 x 1012 x (6.895)6
·
8 = 1.0 x 1018 (MPa)6

·
8

. 

Thus, the Ramberg-Osgood equation in SI units becomes: 

a (a)6.s 
£= +--'--

206.8x103 1.0x1018 

where cr is in MPa. 
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The material constants n and F are determined from an experimental stress-strain curve by first 
converting it into a relation between stress and plastic strain and then taking its logarithm. A 
straight line is fitted to the data, whose slope becomes n. If a straight line cannot be fitted to the 
experimental data, the material is not represented by a Ramberg-Osgood relation. 

6.5 FURTHER DISCUSSION ON }-INTEGRAL 

6.5.1 From a Designer's Point of View 

In the previous three sections, we have introduced the definition of the J-Integral and have 
discussed about some of its useful features, such as its path independence and its physical 
interpretation as an energy release rate for elastic materials. We also hinted that with a clever 
methodology, the J-Integral can be applied to elastic-plastic materials keeping the complexity of 
the problem under control; so much so, that it can be used by a practising engineer or a designer. 
How is this achieved? 

Once a crack becomes critical and starts growing, most designers and engineers are not too much 
concerned about its further growth. To them, as soon as a crack starts propagating, the material is 
assumed to have failed. This is analogous to designers' attitude towards yielding. It is well known 
that most of the engineering materials (e.g., mild steel) deform considerably beyond yield stress 
before the final rupture takes place. Still a designer regards a component as failed as soon as any 
yielding initiates. Similarly, a designer looks at any kind of crack growth with panic feelings and he 
would try his best to avoid it. Thus, the designer is interested in predicting loads which are just about 
to propagate a crack; i.e., if the loads are increased by small amounts, the crack is likely to grow. 

The fact remains that a designer is only interested in knowing the condition of" onset of the crack 
growth". This condition is exploited when the J-Integral is applied to elastic-plastic materials. If we 
do not allow the growth of a crack, then we need not account for ;.;.nloading. This simplifies the 
analysis considerably; elastic-plastic behavior is no longer different from the non-linear elastic 
behavior, as far as mathematical equations are concerned. 

This idea sounds logical and rigorous, but there is a snag or a catch. Until we allow a crack to 
grow by a small distance, we would never know whether we are close to the condition at which the 
crack is just about to grow. In fact, while performing experiments to determine the critical value of 
the J-Integral, we do allow a small growth of the crack. And as soon as we allow the growth of the 
crack, the unloading is initiated and then the J-Integral approach is not rigorous anymore. Since 
better techniques are not available we compromise at this point. Initially, in the 1970s many 
investigators were very skeptical about the approach of the J-Integral. But based on further 
investigations and many experiments, we have realized that the compromise is acceptable. 

6.5.2 Experiments to Determine the Critical }-Integral 

Experiments to determine the critical J are designed in such a manner that a large amount of plastic 
deformation is allowed to occur near the crack tip. In fact, the plastic zone size may be as large as 
the crack length. This is in sharp contrast to experiments designed to find Kic or G1c, where the 
plastic zone size is controlled to remain small in comparison to the crack length. 

Details of the experiments are presented in Chapter 8. However, it would be useful to discuss 
some salient features of the commonly used 3-point bend specimen, as shown in Fig. 6.8. The 
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uncracked ligament bis chosen to be approximately the same as the crack length a. The bending 
moment is maximum at the centre of the span, where the depth of the beam is considerably smaller 
than W. Consequently, stresses are very high in front of the crack tip, forming a plastic hinge and 
the rotation of the beam, as shown in the figure. It is to be noted here that in the rest of the beam, 
elastic deformation is small, owing to combined effect of larger depth and lower bending moment. 
Consequently, the deflection 11 is caused mainly by the plastic deformation at the crack tip. Thus, 
clever experimental techniques have been developed which account for the large plastic zone in 
the vicinity of the crack tip. 

Plastic hinge 

Fig. 6.8 Plastic hinge formed in the uncracked ligament b 

6.5.3 Comments on the Numerical Evaluation of }-Integral 

As stated earlier, the primary goal of a designer is to predict whether a crack in a component is likely 
to grow under the given loading conditions. He can either obtain the critical J value from literatures 
or he can conduct an experiment to determine it. Stress-strain relations, such as the Ramberg-Osgood 
relation describing the elastic-plastic material (only for monotonically increasing load) are also 
available to the designer. · His task is to evaluate the J-Integral in an application knowing the 
constitutive relations, the loading conditions and, of course, the geometry of the component. 

The J-Integral is generally evaluated through a numerical programme, most probably using a 
finite element method. With the availability of sophisticated computers, the task is not difficult. 
The designer may take the help of an expert in the field of FEM. These days standard packages are 
also available, which makes it simpler for a designer to determine the value of J. This is because 
the J-Integral is evaluated by integrating on an arbitrary path around the crack tip and we need not 
evaluate the strain or stress field very accurately near the crack tip. In fact, we can choose the 
integration path which is far away from the crack, thus avoiding the use of singular elements in the 
vicinity of the crack tip. Also, we do not require choosing a fine grid close to the crack tip and still 
maintain the calculations reasonably accurate. With the increasing acceptance of finite element 
methods and the availability of standard packages, the determination of J is no longer a 
prohibitively difficult task in research and development work of many industries. 

6.5.4 Predicting Safety or Failure 

The J-Integral may be determined through a numerical method, or it may also be obtained from a 
handbook. In an application, if the J value of a crack is less than the critical J-Integral (Jc), the design 
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is safe against any fracture failure. On the other hand, whenever J exceeds le the designer must modify 
his design, either by choosing a tougher material or changing the geometry of the component. For 
example, if the failure is predicted for a slot in a component, the length of the slot may be reduced. In 
other cases, the stress on the component may be decreased by changing the geometry, such as 
increasing the moment of inertia of the component. In some cases, the designer may not have the 
freedom to change the geometry and he may settle for lower limits on the external loads. 

6.5.5 Comments on the Experimental Determination of the 
Toughness of Ductile Materials · 

The usage of the SIF method is mostly restricted to the LEFM, where the plastic zone is considerably 
smaller than the crack length. Experiments to determine the critical SIF are carefully designed to 
restrict the size of the plastic zone. This is done by making the specimen thick, so as to achieve plane 
strain conditions. Also, the lateral dimensions of the specimen are chosen reasonably large, so that a 
large portion of the specimen is under elastic deformation. Because the plastic zone of some tough 
materials is fairly large, the specimen size becomes accordingly larger, so much so that in certain 
cases the specimen size should be made of a plate as thick as 200 mm or more. A specimen of such 
thickness may also create many problems. First of all, the loads required to deform such a large 
specimen are enormously high and the test would require a machine of an extremely high capacity 
and also a high cost. Secondly, large amounts of the material will be required, which may have to be 
made specially of such thickness. Thirdly, the machining and handling cost of specimen will become 
rather steep. Because of these practical problems, Begley and Landes looked for alternative 
techniques in determining material toughness and suggested that the J-Integral provides more 
feasible and economical test-techniques for determining the toughness of ductile materials [6.5]. 

The J-Integral approach, on the other hand, allows the analysis of any elastic-plastic behavior of 
the material in the vicinity of the crack tip. Unlike the SIF methods, this approach does not limit the 
size of the plastic zone during the analysis, as the non-linear material behavior is incorporated. To 
determine the critical J-Integral, the specimens are designed in such a manner that there results a 
large amount of plastic deformation near the crack tip, so much so that the elastic deformation in 
the rest of the specimen may be neglected in many experiments. There is no need to make the 
specimen very large and the critical J value can be determined in a laboratory equipped with a 
normal loading machine, such as a 10 ton tensile machine. 

In spite of several strong points in favor of the J-Integral approach, the SIP method is still 
surviving. Unlike the critical K whose values are listed in literature for commonly used engineering 
materials, the critical J is still not widely available in literature and handbooks. If a designer is 
adopting the J-Integral approach, he may have to pay for the experimental tests, which usually 
turn out to be rather expensive. 

Moreover, it has been found that there is a large variation in the critical J value for ductile 
materials, due to its non-linear stress-strain behavior. For a small variation in the critical load, the 
corresponding variation in le is much larger. However, the large variation in le should not disturb 
us, because whenever a designer predicts loads for a maximum allowable J, the variation in the 
failure-load will be accordingly smaller. For example, two tests on the same material may give the 
critical J value with a large variation of 40% or so. When these results are used by a designer, 
maximum allowable load may vary only by 5%. There is nothing wrong in such an analysis, 
provided we realize that the large variation in the value of the critical J is normal. 
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6.6 ENGINEER APPROACH-A SHORT CUT 

6.6.1 A Simplified Relation for the }-Integral 

To minimize errors designers like to avoid making lengthy calculations and complex analysis. They 
would rather make use of the formulae available in handbook and plug numbers to get the answer. 
Therefore, natural question arises-can we prepare tables or handbooks that would avoid 
numerical analysis to determine J value of a crack? 

The energy release rate in a linear elastic case can be expressed as: 

132 K2 132 n:<J2a 
G = -- (6.11) 

E E 
where f3 accounts for the geometry of the crack and the component. For example, /3 2 = 1 in a centre­
cracked infinite plate, but for an edge crack, /3 2 becomes 1.12. For other cases, {3 2 may be taken 

from a handbook. Substitutinge =<JI E in Eq. (6.11), we obtain: 

(6.12) 

For materials following the Ramberg-Osgood relation, it has been realized that an expression [6.4] 
analogous to elastic cases [Eq. (6.12)] can be developed as: 

(6.13) 

where Er is the plastic strain and His a dimensionless factor that depends on geometry. Taking the 
plastic strain from Eq. (6.10) as e,, = d' IF and substituting the same in Eq. (6.13), we obtain: 

H<J"+1a 
JP= --­

f 
Then overall the J-Integral becomes: 

n: 132 <J2 a H <J11+1a 
J= +--

E F 

(6.14) 

(6.15) 

If handbooks/tables listing ./32 and H values are made available to a designer and material 
constants E, n and F are known, the designer can easily determine the values of J, thus 
minimizing the chances of making errors in computing J through a numerical analysis. In case, 
the value of <Jis large, the second term in Eq. (6.15) dominates and we may ignore the effect of the 
elastic deformation. 

Example 6.3 Determine the J-Integral for a component loaded in Mode I, with a far field stress of 
200 MPa and an edge crack of 40 mm length. The geometrical factors are /3 2 = 1.12 and H = 7; the 
material follows the Ramberg-Osgood relation with the material constants given as: 

E = 207 GPa, n = 6.8, and F = 1 x 1018 (MPa)6·8 

Solution: Substituting the data in Eq. (6.15), we obtain: 

n: x 1.12 x (200xl06 Pa)2 x (0.04m) 
J = (207x109 Pa) 

7 x [(2007
·8(MPaf8

] x (0.04in) 
+ -----,...,..----:-::----

[1 x 1018 (MPa)6·8 ] 

= 27.2 + 248.4 = 275.6 kJ/m2 
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Knowing the criticalJ-Integral Uc) through experiments and using Eq. (6.15), a designer may like 
to determine the maximum allowable stress a. The equation can be solved for a through an 
iterative procedure by guessing its value in the first trial. The problem can be solved easily with the 
help of a digital computer. In case the elastic contribution is negligible, ais directly obtained as: 

= [ FJ, ]1i(11+1) 
(jmax Ha (6.16) 

To study how L\a max varies with Li Jc, we differentiate the equation and then divide it by a max to have: 

L\a max -(-1-) L\ JC 
(jmax n+l J, 

We note that usually 11 is significantly larger than one and therefore the percentage variation 
in amax is much less than the percentage variation in Jc-The above relation justifies the discussion 
presented in Sec. 6.5.6. We may look at the problem from a different angle. If Jc is to be determined 
experimentally, amax may easily vary by 5-10% from specimen to specimen. The variation in Jc 
will be about eight times larger if n is close to 7. Therefore, we conclude that large variation in 
the experimental values of Jc should not be seen with contempt; the variation in the predicted 
amax values would still be small. 

6.6.2 Applications to Engineering Problems 

For any application of the }-Integral to practical problems, the Ramberg-Osgood relation is written 
in a slightly different form [6.3] as: 

.!_ - a +a[~J" 
Eo ao (jo 

(6.17) 

This relation has four material constants (n, a, a0 and co) in place of the three constants of Eq. (6.10). 
However, this form of the relation is better, because a is a dimensionless number. Since an equation 
expressed in another form cannot have more independent constants, there should be some relation 
between the four constants. In fact, a0 can be chosen anywhere on the elastic portion of the a - e 
curve and the corresponding co is evaluated by the relation: 

a0 = Ee0 (6.18) 

Many investigators prefer to choose a0 as the yield stress ( ays) of the material. Realizing a relation 
exists between a0 and e0 , we can compare Eq. (6.17) to Eq. (6.10) and obtain F =a~ I e0a. 

Corresponding to Eq. (6.17), JP is usually expressed as [6.6]: 

Jp = aa0e0bg1h1 ( ~ J+i (6.19) 

where Pis the applied load per unit thickness of plate, P0 is the limit or collapsed load of the plate. 
based on yield stress ays (=a0), b is the uncracked ligament; and g1 and h1 are geometric factors 
which depend on a/Wand n. Values ofg1 and h1 are listed for some common practical applications 
in Appendix 6B, presented at the end of this chapter [6.3, 6.7]. 
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For a centre-cracked plate shown in Fig. 6.9, P0 depends on the collapse-load for the material 
yielding in the uncracked ligament b on each side, and is given by: 

P0 = 2b<J'0 for plane stress 

for plane strain. 

(J 

t t t t t t t 

b j. 2a .1 b 

t t t t t t t 
(J 

I 2W I 
Fig. 6.9 Centre-cracked plate 

Example 6.4 A centre-cracked panel of width 2W = 500 mm and thickness B = 20 mm is pulled 
normal to the crack length (2a = 100 mm), with a far field stress <J'. Estimate the maximum <J' that can 
be applied without causing the growth of the crackif, Jp = 400 kJ / m2

• The material constants of the 
Ramberg-Osgood equation are known to be n = 5,. a= 5.4, O'ys ( = 0'0) = 520 MP a and £o = 0.00251. 

Solution: We would use the equation: 

where, b = (500 mm -100 mm) = 200 mm 
2 

1o find P0, g1 and h1 through the tables of Appendix 6B, we should know whether the plate is 
subjected to plane strain or plane stress. At this stage, we start solving the problem, assuming that 
the plane strain conditions prevail. Once the maximum <J' is determined, we can evaluate the plastic 
zone size and check the justification of our assumption. 

From Appendix 6B, we obtain: 

P 
_ 4b<J'0 _ 4x(0.2 m)x(520xl06Pa) _ 2 

0 106 N/ 
o- ..fj - ..fj - 4 X m 



g1 = !!:... 50mm =0.2 
W 250mm 

h1 = 3.71 
Substituting these values, we obtain: 

p = [ J,, ]l/(11+1) 

Po a O"o ea bg1 hi 

[ 
(400xl03J/m

2
) ]

116 

= 5.4 x (520 x 106 Pa) x 0.00251 x (0.2 m) x 0.2 x 3.71 

= 0.852 

which gives, P = 0.852 x (240 x 106 N/m) = 204.5 x 106 N/m 

P 204x106 N/m 
cr= -= =408MPa 

2W (0.5m) 
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We should now explore whether our initial assumptions regarding this problem as a case of 
plane strain were justified. Therefore, an estimate should be made on the plastic zone size. Earlier 
in Chapter 5, the Dugdale Approach was found to be handy, but in that case the material was taken 
to be elastic-perfectly plastic. With a hardening material, the plastic zone size (rp) is obviously 
smaller, but the estimation of rP is difficult. However, analysis of Mode III is simpler and rP has 
been determined for a work-hardening material with the hardening exponent n. Based on its 
results, r P of Mode I is estimated to be: 

1 (n-1) Kf 
r =----
P An ((n + 1) a;s 

where, A= 1 for plane stress, and A= 3 for plane strain. Kr is evaluated on the basis of the actual 
crack length to keep the calculations simple, using the relation: 

where, 

Then, we have: 

K1 = crJiiaf(a) 

a=!!:... 50mm =0.2 
W 250mm 

j(a) = 1.0 + 0.128a- 0.288a2 + l.523a3 = 1.026 

Kr= (408 MPa) x n112 x (0.05 m)112 x 1.026 

= 165.9 MPa Jin 
The plastic zone size for a plane strain is: 

1 4 (165.9MPaJml
2 

r z-x- =7.20mm 
P 3n 6 520MPa 

The plastic zone size is only slightly smaller than the thickness of the plate. We should now redo 
the entire problem for the case of a plane stress: 
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which gives the SIF as: 

p0 = 2bay, 

= 2 x (0.2 m) x (520 x 106 Pa)= 208 x 106 N/m 

h1 = 3.71 

_ = 400x10 Jim =0.852 
p [ 3 2 ]1/6 

P0 5.4x(520x 106Pa)x0.00251x0.2x(0.2m)x 3.71 

P = 0.852 X 208 X 106 = 177.2 X 106 N/m 

a= _!_ 177.2x106 =354.4 MPa 
2W 0.5 

K1 = 354.4x.11:112 x(0.05)112 xl.026 =144MPaJin 

The plastic zone size for plane stress is estimated to be: 

r = _! (n-1) Kf =.!x±x[144MPafm)2 =16.27mm 
P n(n+l)a;, .11: 6 520MPa 

This is close to the plate thickness(= 20 mm) and therefore the plane stress analysis is applicable. 

Example 6.5 Consider an axially cracked pressured cylinder of steel (E = 207 GPa) with internal 
radius of 80 mm and wall thickness of 16 mm (Fig. 6.10). An axial crack of 3 mm depth has been 
identified on the inner surface of the cylinder. If the yield stress a0 of the material is 700 MPa, 
the hardening exponent n = 7, the material constant of Ramberg-Osgood relation a= 6.2 and fr= 280 
J /m2

, determine the maximum pressure that the cylinder can resist against the crack growth. 

Solution: 

Fig. 6.10 Axially cracked pressurized cylinder 

R; = 80 mm, W = 16 mm, a = 3 mm, b =:: 13 mm, 

Re= 83 mm, a/W = 0.188, W /R; = 1/5 (Appendix 6B, Fig. 6.17) 

n = 7, a= 6.2 
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ays = a0 = 700 MPa, Jp = 280 kJ/m2 

qi= a0 IE 700 
=0.00338 

207xl03 

From Appendix 6B, we obtain: 

Then, we have: 

leading to 

6.7 CLOSURE 

a 
g1 = -- =0.188 w 
h1 = 11.4 

2bays 2x(0.013mx700MPa) =
126

.
6

MPa 
Po= .f3 Re .f3 x(0.083 m) 

p = ( JP )I/(11+!) 

Po a a0 e0 bg1 I; 

( 
280x103 J/m2 

'1
118 

= 6.2x(700 x 106 Pa) x0.00338 x(0.013m) x0.188 xl 1.4) 

= 0.953 

p = 0.953 x 126.6 = 120.6 MPa 

The plastic zone size near the tip of a crack is large for tough materials, and parameters G and K of 
LEFM may not be suitable. Therefore, another parameter, the J-Integral has been developed that 
can also account for non-linear stress-strain behaviour of the plastic zone. Such analysis is known 
as (EPFM). 

The J-Integral is an expression which remains path independent when integrated along a path 
from any point of a crack surface to any point of the other crack surface. When the J-Integral is 
applied to a linear elastic material, it is same as the energy release rate G. 

To account for the elastic-plastic behavior, only a single constitutive relation is generally 
adopted. It has been found that the Ramberg-Osgood stress-strain relation can be employed for 
most engineering materials. At low stresses, the equation is almost linear, representing elastic 
deformation; at high stresses, the non-linear behavior dominates. 

For checking whether a load is safe on a component, the J-Integral can be evaluated either 
through numerical analyses or by using tables from a handbook. If the value of J of a crack is less 
than the critical f c, the material is safe against any crack growth. 

The experimental procedure to determine the value of frc is described in Chapter 8. It is worth 
mentioning that the plate thickness of a specimen for finding K1c is large and impractical for 
materials with the large plastic zone, because plane strain conditions must be created. On the 
contrary, a test specimen to determine he allows a large plastic zone at the crack tip and the 
specimen thickness does not necessarily have to be large. 
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APPENDIX6A 

Equivalence of G and J for Elastic Materials 

It would be proved that for plane bodies, made of linear elastic materials, the expression of the 
J-Integral is equivalent to G. Consider the general case of a plane body of area A with no body 
forces. The contour of this body is represented with a curve r0, which is split into two parts: fy, 
where traction is prescribed and ru, on which displacement conditions are given (Fig. 6.11). Note 
that the free surface belongs tor T· Potential energy <t> is then given by: 

,-----------------------' ', 
' ' , ',, rr 
: ~' 

t 
"-----, -' :-

----- ---- ------_-, /i___,,_T; 
ro T 

' 

' ·-t : 
I-------------------------------------- I 

Fig. 6.11 Path r 0 chosen to coincide with the body contour and cracked surfaces 

<t> = f WdA- f T;u;ds 
A Tr 

Leading to, 

G = - d<P = -f dW dA + f 'I dui ds 
da Ada 1 da 'T 

Transforming the origin to the crack tip by the relation, 

X1 =x1 -a 

we obtain: 

d a ax1 a 
- =-+--
da aa aa axl 

From Eq. (6.21), we have: 

ax] =-l·and~=_l__ 
aa ' aXl axl 

Then, the differentiation relation simplifies to: 

d ~-_l__ 
da = aa axl 

(6.20) 

(6.21) 
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Operating it on Eq. (6.20), we obtain: 

G = -f oW dA+ f iW dA+ f I; oui ds- f I; oui ds 
A 0a A dX1 r T 0a r T dX1 

(6.22a) 

But the integrand of the first term is modified as follows: 

aw = aw d£ij =!a o(ui,j +uj,;) 
da d£ij aa 2 I/ aa 

Making use of the symmetry of stress tensor ( <r;i = <ri;), we obtain: 

aw o(u;,j) - (OU;) - = (jij -"\- -O'ij --;-
oa oa oa i,j 

(6.22b) 

Invoking the principle of virtual work, we have: 

f. I; ou; ds = f aij [au; J dA 
r, da A oa i,j 

(6.22c) 

Substituting Eqs (6.22b) and (6.22c) in Eq. (6.22a), we obtain (note ou; = 0 on r 11 and therefore 
ry ~ r 0) 

(6.23) 

The first term can now be converted into the line integral by invoking the Divergence Theorem, 
for which closed contour r0 is chosen to coincide with the body contour and the crack faces as 
shown with the dashed line in Fig. 6.11. Although the singularity of the crack tip lies on the path r 0, 

it is not serious for the first term of Eq. (6.23). For small values of r, strain energy density W varies, 
as 1 / r because it is a product of stress and strain, each varying as 1 / .Jr . Therefore, dW I dx1 varies 
as 1/r, but dA varies a r2 and thus the singularity is nullified when r ~ 0. Then, the divergence 
theorem modifies Eq. (6.23) to: 

f f au. 
G = W 111 ds - I; -' ds 

To To dXI 

The contour r0 can be split into two parts, 

ro = r+ re 
where re is the portion on the crack surfaces and r is the usual integration path of the J-Integral 
(from one crack surface to another). Also, it is worth noting that on re path dx2 "" 0 and T; = 0. By 

notingnids = dx2 [Fig. 6.4(b)], the above equation is thus simplified to: 

f f au 
G = W dx2 - I;-' ds 

T T dX1 

The right hand side has the expression of J, which is path independent, and therefore, 
G=J 

Thus, for linear elastic materials, the expression of the J-Integral is equivalent to G. 
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APPEND1X6B 

The }-Integral of Some Common Cases through Engineering Approach 

For the engineering approach (Sec. 6.6), Jp is defined as JP =a<J0e0bg1h1(P I P0 y,+1
• In this appendix, 

the expressions for the geometric factor g1 and collapse load P0 are given, and the geometric factor 
h1 is listed for plane stress (p - CJ) and plane strain (p - e) for some commonly encountered cases. 
Usually, <Jo is chosen to be same as yield stress ( <Jy5). 

6B.1 THREE-POINT BEND SPECIMEN 

The specimen is loaded with force P per unit thickness, as shown in Fig. 6.12. 

a/W 

1/8 

1/4 

3/8 

1/2 

5/8 

3/4 

b_j_ t 
T a w 

~---~-,-----~_j_ 

Type 

p-e 
p-a 
p-e 
p-a 
p-e 
p-a 
p-e 
p-a 
p-e 
p-a 
p-e 
p-a 

L L 

Fig. 6.12 Three-point bend specimen 

P0 = 0.728 <Jys b2 IL for plane strain 
PO = 0.536 ays b2 IL for plane stress 
g1 = 1, and h1 = listed in Table 6.1 for L/W = 2. 

TABLE 6.1 h1 for three-point bend specimen 

n 
1 2 3 5 7 10 

0.937 0.869 0.805 0.687 0.580 0.437 
0.676 0.600 0.548 0.459 0.383 0.297 

1.20 1.034 0.930 0.762 0.633 0.523 
0.869 0.731 0.629 0.479 0.370 0.246 
1.33 1.15 1.02 0.846 0.695 0.556 

0.963 0.797 0.680 0.527 0.418 0.307 
1.41 1.09 0.922 0.675 0.495 0.331 
1 .02 0.767 0.621 0.453 0.324 0.202 

1.46 1.07 0.896 0.631 0.436 0.255 
1.05 0.786 0.649 0.494 0.357 0.235 
1.48 1.15 0.974 0.693 0.500 0.348 
1.07 0.786 0.643 0.474 0.343 0.230 

13 16 

0.329 0.245 
0.238 0.192 

0.396 0.304 
0.174 0.117 

0.442 0.360 
0.232 0.174 

0.211 0.135 
0.128 0.0813 

0.142 0.084 
0.173 0.105 

0.223 0.140 
0.167 0.110 

20 
0.165 
0.148 

0.215 
0.0593 

0.265 
0.105 
0.0741 
0.0298 

0.411 
0.471 

0.0745 
0.0442 



6B.2 CENTRE,CRACKED PLATE 

The plate is pulled by the load P per unit thicknessi as shown in Fig. 6.13. 

p 

a/W Type 

1/8 p-E 
p-0' 

1/4 p-E 
p-0' 

3/8 p-E 
p-0' 

1/2 p-E 
p-0' 

5/8 p-E 
p-0' 

3/4 p-E 
p-0' 

a b 

w 

p 

Fig. 6.13 A centre-cracked plate 

P = 2b O'ys 

g1 = a/W 
h1 = (Listed in Table 6.2) 

for plane strain 

for plane stress 

TABLE 6.2 h1 for centre cracked plate 

n 
1 2 3 5 7 10 

2.80 3.61 4.06 4.35 4.33 4.02 
2.80 3.58 4.01 4.47 4.65 4.62 

2.54 3.01 3.21 3.29 3.18 2.92 
2.54 2.97 3.14 3.20 3.11 2.86 

2.34 2.62 2.65 2.51 2.28 1.97 
2.34 2.53 2.52 2.35 2.17 1.95 

2.21 2.29 2.20 1.97 1.76 1.52 
2.21 2.20 2.06 1.81 1.63 1.43 

2.12 1.96 1.76 1.43 1.17 0.863 
2.12 1.91 1.69 1.41 1.22 1.01 

2.07 1.73 1.47 1.11 0.895 0.642 
2.07 1.71 1.46 1.21 1.08 0.867 

13 
3.56 
4.41 

2.63 
2.65 

1.71 
1.77 

1.32 
1.30 

0.628 
0.853 

0.461 
0.745 

I-Integral 139 

16 20 
3.06 2.46 
4.13 3.72 

2.34 2.03 
2.47 2.20 

1.46 1.19 
1.61 1.43 

1.16 0.978 
1.17 1.00 

0.458 0.300 
0.712 0.573 

0.337 0.216 
0.647 0.532 
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6B.3 COMPACT TENSION SPECIMEN 

The standard compact tension specimen is pulled by the force P, as shown in Fig. 6.14. 

a/W Type 

1/4 p-£ 
p-0' 

3/8 p-£ 
p-0' 

1/2 p-£ 
p-a 

5/8 p-£ 
p-0' 

3/4 p-£ 
p-a 

6 
Q 

I: 
a 

Fig. 6.14 Compact tension specimen 

P0 = 1.455 /3 b a-ys 

PO = 1.071 f3 b a-y, 

gl = 1 
'11 = (Listed in Table 6.3) 

for plane strain 

for plane stress 

f3 = [(2a/b)2 + 4a/b + 2]1 12 
- 2a/b- l. 

TABLE 6.3 '11 for compact tension specimen 

n 
1 2 3 5 7 10 

2.23 2.05 1.78 1.48 1.33 1.26 
1.61 1.47 1.28 1.06 0.903 0.729 

2.15 1.72 1.39 0.970 0.693 0.443 
1.55 1.25 1.05 0.801 0.647 0.484 

1.94 1.51 1.24 0.919 0.685 0.461 
1.40 1.08 0.901 0.686 0.558 0.436 

1.76 1.45 1.24 0.974 0.752 0.602 
1.27 1.03 0.875 0.695 0.593 0.494 

1.71 1.42 1.26 1.03 0.864 0.717 
1.23 0.977 0.833 0.683 0.598 0.506 

13 16 

1.25 1.32 
0.601 0.511 

0.276 0.176 
0.377 0.284 

0.314 0.216 
0.356 0.298 

0.459 0.347 
0.423 0.370 

0.575 0.448 
0.431 0.373 

20 

1.57 
0.395 

0.098 
0.220 

0.132 
0.239 

0.248 
0.310 

0.345 
0.314 
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6B.4 SINGLE-EDGE NOTCHED PLATE 

The plate with an edge crack is pulled by far field stress O"(= P /W) as shown in Fig. 6.15 .. 
a 

a/W Type 

1/8 p-£ 
p-a 

1/4 p-£ 
p-a 

3/8 p-£ 
p-a 

1/2 p-£ 
p-a 

5/8 p-£ 
p-a 

3/4 p-£ 
p-a 

t t t t t 

-
a I 

b I 

w 

a 

Fig. 6.15 Single-edge-notched plate 

P Q == 1.455 /3 b 0",1s 

P0 == 1.072 /3 b O"ys 

g1 =a/W 

for plane strain 

h1 == (Listed in Table 6.4) 

/3= [ l+(a/b>2J112 -a/b 

for plane stress 

TABLE 6.4 h1 for single-edge-notched plate 

n 

1 2 3 5 7 10 13 
4.95 6.93 8.57 ! 11.5 13.5 16.1 18.1 
3.58 4.55 5.06 5.30 4.96 4.14 3.29 
4.34 4.77 4.64 3.82 3.06 2.17 1.55 
3.14 3.26 2.92 2.12 1.53 0.960 0.615 
3.88 3.25 2.63 1.68 1.08 0.539 0.276 
2.81 2.37 1.94 1.37 1.01 0.677 0.474 
3.40 2.30 1.69 0.928 0.514 0.213 0.090 
2.46 1.67 1.25 0.776 0.510 0.286 0.164 
2.86 1.80 1.30 0.697 0.378 0.153 0.0625 
2.07 1.41 1.106 0.755 0.551 0.363 0.248 
2.34 1.61 1.25 0.769 0.477 0.233 0.116 
1.70 1.14 0.910 0.624 0.447 0.280 0.181 

16 20 
19.9 21.2 
2.60 1.92 

1.11 0.712 
0.400 0.230 
0.142 0.0595 
0.342 0.226 

0.0385 0.0119 
0.0956 0.0469 
0.0256 0.0078 
0.172 0.107 

0.059 0.0215 
0.118 0.0670 
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6B.5 DOUBLE-EDGE NOTCHED PLATE 

The double-edge notched plate is pulled by far field stress a(= P/2W), as shown in Fig. 6.16. 

a/W Type 

1/8 p-e 
p-0' 

1/4 p-e 
p-0' 

3/8 p-e 
p-0' 

1/2 p-e 
p-0' 

5/8 p-e 
p-a 

3/4 p-e 
p-a 

(j 

t t t t t t t 

a , __ b_,._,j • b • I a 

2W 

(j 

Fig. 6.16 Double-edge-notched plate 

P0 = (0.72W + 1.82b) ay, 

P0 = 4b a ysl J3 

for plane strain 

for plane stress 
gl = 1 
h1 = (Listed in Table 6.5) 

TABLE 6.5 h1 for double-edge-notched plate 

n 
1 2 3 5 7 10 13 

0.572 0.772 0.922 1.13 1.35 1.61 1.86 
0.583 0.825 1.02 1.37 1.71 2.24 2.84 

1.10 1.32 1.38 1.65 1.75 1.82 1.86 
1.01 1.23 1.36 1.48 1.54 1.58 1.59 

1.61 1.83 1.92 1.92 1.84 1.68 1.49 
1.29 1.42 1.43 1.34 1.24 1.09 0.970 

2.22 2.43 2.48 2.43 2.32 2.12 1.91 
1.48 1.47 1.38 1.17 1.01 0.845 0.732 

3.16 3.38 3.45 3.42 3.28 3.00 2.54 
1.59 1.45 1.29 1.04 0.882 0.737 0.649 

5.24 6.29 7.17 8.44 9.46 10.9 11.9 .... 
1.65 1.43 1.22 0.979 0.834 0.701· · 0.630 

16 20 

2.08 2.44 
3.54 4.62 

1.89 1.92 
1.59 1.59 

1.32 1.12 
0.873 0.674 

1.60 1.51 
0.625 0.208 

2.36 2.27 
0.466 0.020 

11.3 17.4 
0.297 
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6B.6 AxIALLY CRACKED PRESSURIZED CYLINDER 

Pressurized cylinders are commonly used in industries; a crack along the axial direction may grow 
under pressure p0 , as shown in Fig. 6.17. 

a/W 

1/8 

1/4 

1/2 

3/4 

Fig. 6.17 Axial crack in a pressurized cylinder 

Po = 2b <5 ys / ( J3 Re) 

g1 =a/W 

h1 = (Listed in Table 6.6) 

Re= (R; +a). 

TABLE 6.6 h1 for internally pressurized cylinder with axial crack 

W/Ri 
1 2 3 

n 

5 7 

1/5 6.32 7.93 9.32 11.5 13.1 
1/10 5.22 6.64 7.59 8.76 9.34 
1/20 4.50 5.79 6.62 7.65 8.07 

1/5 7.00 8.34 9.03 9.59 9.71 
1/10 6.16 7.49 7.96 8.08 7.78 
1/20 5.57 6.91 7.37 7.47 7.21 

1/5 9.79 10.4 9.07 5.61 3.52 
1/10 10.5 11.6 10.7 6.47 3.95 
1/20 10.8 12.8 12.8 8.16 4.88 

1/5 11.00 5.54 2.84 1.24 0.83 
1/10 16.1 8.19 3.87 1.46 1.05 
1/20 23.1 13.1 5.87 1.90 1.23. 

10 

14.9 
9.55 
7.75 

9.45 
6.98 
6.53 

2.11 
2.27 
2.62 

0.493 
0.787 
0.883 . 
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6B. 7 CIRCUMFERENTIALLY CRACKED CYLINDER 

Figure 6.18 shows the cylinder subjected to an axial load P, with a circumferential crack on the 
inside surface of depth a. The far field axial stress for this case is a= PI ( ,r (Ri -R; )). 

a/W 

1/8 

1/4 

1/2 

3/4 

cr 

t t t t t t 
R; 

b 

(I 

t t t t t t 
cr 

Fig. 6.18 Circumferentially cracked cylinder 

P0 = 2 ,r O'ys (~ -R;)/ .J3 
g1 =a/W 

h1 = (Listed in Table 6.7) 

Re= Ri+a 

TABLE 6.7 Value of h1 for circumferentially cracked cylinder 

n 
W/Ri 

1 2 3 5 7 

1/5 3.78 5.00 5.94 7.54 8.99 

1/10 4.00 5.13 6.09 7.69 9.09 
1/20 4.04 5.23 6.62 7.82 9.19 

1/5 3.88 4.95 5.64 6.49 6.94 

1/10 4.17 5.35 6.09 6.93 7.30 
1/20 4.38 5.68 6.45 7.29 7.62 

1/5 4.40 4.78 4.59 3.79 3.07 

1/10 5.40 5.90 5.63 4.51 3.49 
1/20 6.55 7.17 6.89 5.46 4.13 

1/5 4.12 3.03 2.23 1.55 1.30 

1/10 5.18 3.78 2.57 1.59 1.31 

1/20 6.64 4.87 3.08 -1.68 1.30 

10 I 

11.1 
11.1 
11.1 

7.22 
7.41 
7.65 

2.34 
2.47 
2.77 

1.11 
1.10 
1.07 
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QUESTIONS 

l. Why is the numerical evaluation of Jr usually simpler than the evaluation of Gr or Kr, in the 
case of the LEFM? 

2. Path independence of the J-Integral is not valid for elastic-plastic materials. Why? 
3. If path independence is not valid for elastic-plastic materials, how can we apply it to real 

life cases dealing with large plastic zone in the vicinity of the crack tip? 
4. Although a variation is found to be large in an experimentally determined he , it is 

acceptable for design purposes. Justify. 
5. Why is the Ramberg-Osgood relation convenient for determining the J-Integral for elastic­

plastic materials? 
6. Why are the specimens very thick to determine the value of K1c of ductile materials? 
7. Unlike the case of K1c-test, the specimen recommended for finding the critical J-Integral 

need not be thick for ductile materials. Why? 

PROBLEMS 

l. Consider an infinitely long strip with an edge-crack of length a. The lower surface of the 
strip is bonded to a rigid surface and the upper surface to a rigid rail as shown in Fig. 6.19. 

Xz Rigid rail 

E : · - - - - -- - - - -- -- -- - - - - - - - - - - - - - - - - - .••.•. - .... o: 
F • : 
A ~ 
B • ....••.......•......•.•......•.......••...... 9.: 

Fig. 6.19 The figure of Problem 1 

If the rail is displaced in the x2 direction by distance u, determine Ji (and then K1) by choosing 
a convenient path. Consider plane stress and plane strain cases separately. Note that: 
(a) Path ABCDEF is so chosen that points C and Dare quite far away from the crack tip, 
(b) The variation of the displacement field with x1 is zero, and 
(c) On segment CD, 

Plane stress: a-11 :;t: 0, CJ 22 :;t: 0, <Y 33 = 0, t:11 = 0, t:22 :;t: 0, t:33 :;t: O; 

Plane strain: t:11= 0, t:22 :;t: 0, t:33 = 0, <Y 11 :;t: 0, CY 22 :;t: 0, <Y 33 :;t: 0 

2. Consider two infinitely long strips of thickness h1 and h2 with material properties as shown 
in Fig. 6.20. These strips are bonded together with an edge-crack of length a. The strips are 
wide enough to assume plane strain conditions. The lower face of the bottom strip is 
bonded to a rigid surface, while the top surface of the upper strip is bonded to a rigid rail. 
Determine the J-Integral, if the rail is pulled up by distance u. (Note: At the interface 

( CY~ = a-g> but t:~ :;t: t:g).) 
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Xz Rigid rail 

---------------- ------------------------------------~~u_,_f 

h2 

I. (1 .I Bond-interface 

Fig. 6.20 The figure of Problem 2 

3. Same as Problem 1, with a difference that the top rail is moved by a distance win the x3 
direction. 

4. Consider a DCB specimen made by bonding two infinitely long strips as shown in Fig. 6.21. 
Determine J1 if the ends of cantilevers are loaded with moments M. 

Xz 

M( 
E1, V1 

h1 

M\ X1 E2, v2 h2 

I~ I 
a .I Interface 

Fig. 6.21 The figure of Problem 4 

5. Stress-strain relation for a steel alloy with modulus E = 207 GPa is shown in Fig. 6.22. 
Determine C5,15, and material constants a and n of the Ramberg-Osgood equation. 

2000 
-
-
-
- ( 

1600 

1200 
-
-
-

800 
-
-
-

400 
-
-
-

0 
I I I I I I I I I I I I I I I I 

0.00 0.20 0.40 0.60 0.80 

Fig. 6.22 The figure of Problem 5 
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6. Consider a three-point bend specimen with a centre load as shown in Fig. 6.23. The material 
properties for the Ramberg-Osgood relation are: 

P= 2230 N/mm 

Fig. 6.23 The figure of Problem 6 

crys = cr0 = 700 MPa, C(J = cr0 / E 

E = 207 GPa, a= 8.2, n = 6 

(a) Determine K1 

(b) Estimate the plastic zone size 
(c) Determine G1 based on the LEFM 
(d) Determine f,, using the engineering approach. 

1so Jm 

7. Consider a circumferentially cracked cylinder of 240 mm internal radius, 24 mm wall 
thickness and 3 mm long crack all around the circumference (Fig. 6.18). The material follows 
the Ramberg-Osgood equation with the following material constants: 

~ 15 = cr0 = 800 MPa, C(J = cr0 / E 

E = 207 GPa, ex= 8.6, n = 3. 
The cylinder is subjected to axial tension. If f; ,:: 150 kJ / m2

, determine the maximum axial 
tensile stress. Neglect j". 

8. Determine the maximum tensile stress for the cylinder of Problem No. 7 when the wall 
thickness and crack length are changed to 8 mm and 2 mm respectively. All other 
dimensions and material properties remain the same. 
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Chapter 

7 
Crack Tip Opening Displacement 

If I don't get there headed straight, may be I get there by zig zagging or jumping over 
the problem. 

Dr Nathan Kline 

7.1 INTRODUCTION 

Crack tip opening displacement (CTOD) is another parameter suitable to characterize a crack. Unlike 
parameters G and K, it can be used for both linear elastic fracture mechanics (LEFM) and elastic­
plastic fracture mechanics (EPFM). ltwas formulated by Wells [7.1, 7.2] and Cottrell [7.3] and became 
more popular in Europe, at least in the initial stages. In fact, the parameter was formulated about a 
decade before it was realized that the J-Integral could be used for EPFM. How is CTOD defined? 

The material cannot withstand very high stresses within the plastic zone, and the usual stress 
field of the square root singularity no longer exists. However, rigorous analysis is complex and we 
would like to explore a simple model. The yielding of the material and resulting rearrangement of 
the stresses around the crack tip can be accounted by an effective crack, which is longer than the 
actual crack as discussed in Chapter 5. The tip of the effective crack is located inside the plastic 
zone (Fig. 7.1). Now, the linear equations of elasticity can be applied to the effective crack. One can 

crack 

Fig. 7.1 The effective crack and CTOD 
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then visualize that the effective crack has some finite opening at the location of the actual crack tip. 
The opening is defined as the crack tip opening displacement as shown in Fig. 7.1. 

In reality, there is hardly any opening of the crack tip; only the tip may become more rounded as 
the plastic deformation increases. Thus, the definition of the CTOD is based on a model that a 
beginner may find a bit difficult to accept. Further, the symbol for a crack tip opening displacement 
is still not standardized. Some people use the symbol /5, while others call it COD (crack opening 
displacement). However, the term 'COD' is found ambiguous, because at any location of the crack, 
the opening is called a crack opening displacement. Therefore, we will be using CTOD as the 
parameter and CTODc, as its critical value. 

The CTOD parameter has been found more useful for cracks having large plastic zones. Like the 
J-Integral, the CTOD is another approach to deal with elastic-plastic fracture mechanics (EPFM). 
However, in the next section, we will explore equivalent relations between K, G and CTOD for 
cracks with small plastic zone (LEFM). 

7.2 RELATIONSHIP BETWEEN CTOD, KI AND GI FOR SMALL SCALE YIELDING 

In this section, we will prove that for small scale yielding in the vicinity of the crack tip 
2 

CTOD = _!S.L_ (7.1) 
?.£er ys 

where A is a constant and its value is close to unity. In fact, its value depends on the plastic zone 
and, therefore, A is influenced by the model chosen for determining the plastic zone size. Since 
G1 = Kf IE for plane stress, we can express CTOD in terms of the relation 

CTOD = __£_. (7.2) 
?.er ys 

For deriving Eq. (7.1), we will use the expression of crack opening displacement of Mode I, 
developed in Chapter 3 [Eq. (3.35)). Thus, at distance of x1, COD becomes: 

iler I 
COD= -\Ja~ff - xf for plane stress 

E 

4er(l-,>2) I, 2 COD= \Ja;ff - x1 for plane strain 
E 

(7.3) 

where, aeff is the length of the effective crack and can be estimated using Irwin's correction 
[Eq. (5.9)] as 

rP 
aeff =a+ - . 

2 
Substituting aeff in Eq. (7.3), we have for plane stress 

4er r I 2 ]1/2 
COD= -q(a+ ~) -xi 

For evaluating CTOD, x1 is replaced by a and we obtain 

[ ]

1/2 

CTOD = 4; ~ (4a+rp) 

(7.4) 
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For LEFM, rp may be neglected in comparison to fa and the expression simplifies to 

CTOD = 
4cr far E '\/"'p 

where rp is given by Eq. (5.8) 

K2 
rP = --1z-. 

'!rO"ys 

K1 in this expression is based on aeff· In the case of small scale yielding considered in this section, the 
approximate relation is used by determining K1 on the actual crack length a. Then, the CTOD is 
expressed as 

CTOD = _:!_ ,/a er n/ = 4cr a . 4 /[2 l 2 
E V 7r CJ ys EO"ys 

This expression can be restated by using K1 = er& as 

CTOD = 4Kf . 
n EO"ys 

If the Dugdale approach is used, it can be shown that 

CTOD = Kf = Gr . 
EO"ys O"ys 

Thus, the equivalence relations depend upon the model adopted for finding the effective crack 
length. Also, the relations depend upon the hardening parameter of work hardening materials. 
The value of A in Eq. (7.1) can vary between and n/4 and 2.2. However, direct experimental 
methods find that A is closer to unity (through optical methods [7.4] and the metallographic 
sectioning of the crack tip filled with a plastic [7.51). 

7.3 EQUIVALENCE BETWEEN CTOD AND J 

Both the CTOD and the J-Integral characterize elastic-plastic fracture and, therefore, a relation 
should exist between them. Consider a crack of actual length a and an effective crack of length acff 

(Fig. 7.2), whose crack tip is located at point B. Figure 7.2 shows CTOD as the distance AC. An 
appropriate integration path ABC is chosen for determining the J-Integral which is restated as 

J ( OU· ) J= Wdx2 -~-' ds . 
OX1 r 

Along the integration path, dx2 is negligibly small, making the first term of J negligible. If the 
material is considered to be elastic-perfectly plastic, T2 = cr115 on the integration path r, then, 
J simplifies to · 
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leading to 

Fig. 7.2 Finding J-integral along path ABC 

J = - J ~ au2 ds 
r dX1 

= I (Yysd(ur - uf8
) 

= (5!JS CTOD 

J CTOD= -
(5 ys 

(7.5) 

However, the material within the plastic zone may deform with work hardening, as 
characterized by the factor n. The relation is then written in more general form as 

CTOD= (7.6) 
aays 

where a is a dimensionless factor that depends on n. Test methods to determine CTODc are 
described in Chapter 8. 

7.4 CLOSURE 

Crack tip opening displacement parameter can characterize materials for both LEFM and EPFM. 
This approach is not well-developed to give simple relations between field stresses (or loads) and 
CTOD and therefore the parameter is not convenient to predict crack growth in practical situations. 
The CTOD approach may be useful to compare toughness of materials. In certain cases, he or K1c 
may be determined by finding CTODc and then using equivalence relations. However, some 
uncertainty exists in using the equivalence relations because they depend on the elastic-plastic 
material behavior and the model adopted to find the effective crack length. 
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QUESTIONS 

1. What are other symbols used in the literature for CTOD? 
2. Through a clear sketch, show the distance that depicts CTOD. 
3. Why are direct relations not available between CTOD and a load applied on the 

component? 
4. CTOD was developed about a decade earlier than the application of the J-Integral to 

fracture problems began. Still, the CTOD remains unpopular. Why so? 
5. The CTOD is a virtual displacement, which is determined through a model. Do you think 

that the model is based on a sound approach'? Justify your answer. 

PROBLEMS 

1. Determine GJc, fie and CTODc for a hardened steel if material properties are: crys = 700 

MPa, E = 207 GPa, Krc = 48 MPa .Jin and v = 0.3. 

2. A cylindrical vessel with closed ends is made of steel with yield stress 350 MPa and 
modulus 207 GPa. The diameter of the pressure vessel is 1.6 m and the wall-thickness is 18 
mm. The critical CTOD is known to be 0.08 mm. Use the small scale yielding model to 
determine the maximum pressure the vessel can withstand if a through-the-thickness crack 
of length 2a = 20 mm is detected, parallel to the axis of the cylinder. 
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Chapter 

8 
Test Methods 

It is said that in old days when an armourer fulfilled an order for iron shirt of mail, he 
first put it on himself and his client dealt him a few blows with his sword. If the 

craftsman survived, his 'product' was considered satisfactory ... But if the armour's work 
was not good enough, there was no one to pay the money to. 

S. Venestky 

8.1 INTRODUCTION 

A material is selected to have adequate toughness for a given application. We, therefore avoid 
using materials of low toughness like glass, carbides and ceramics for most of the daily structural 
applications except in some special cases. One of the main reasons for widespread popularity of 
mild steel is that its toughness is very high. Toughness is a material property as yield stress. Proper 
test methods should be developed to determine material toughness. 

For a long time, people understood toughness of materials intuitively. People could value it but 
could not measure it. One crude measure, still sometimes used today, is to find how much a 
material elongates before it fails. In the field of engineering, this property is known as elongation. 
A material with 10% elongation is much tougher than another material having 2% elongation. 
However, the modern fracture mechanics has shown that elongation alone cannot measure the 
toughness of a material. 

A better estimate of toughness can be realized by finding the area under the stress-strain curve 
up to the ultimate tensile strength. Larger area corresponds to higher toughness. Keeping track of 
the area under the curve may not be practical for the field engineers. However, the field engineers 
adopt a simple method. They keep track of the elongation as well as the ultimate strength of a 
material. These two properties give a reasonable estimate of the area under the stress-strain curve. 
However, this method does give some feel of the toughness of the material but is not rigorous. It is 
used only when modern techniques are not available. 

The first method developed for measuring toughness is known as Charpy or Izod notch 
sensitivity test. In these tests, a specimen with a notch is impacted by a very large pendulum mass, 
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and the energy absorbed in failing the specimen either through bending or breaking at the notch is 
measured. A tougher material absorbs more energy. These test machines became popular rather 
quickly and are still used all over. In fact, this kind of notch sensitivity test explained the failure of 
ships in the cold waters of the Northern Atlantic Ocean during the Second World War. The steel 
used in making the structure of these ships changed its behavior from ductile to brittle below a 
certain temperature and, then, even a small flaw in the hull would grow and break the ship into 
two parts. 

Notch sensitivity impact tests are simple to conduct and not very expensive. However, they are 
not based on rigorous analysis. It is difficult to use the results of these tests to predict whether a 
crack is likely to grow under given loading conditions. In these tests, the thickness of the specimen 
chosen is not based on the toughness of the material and thus considerations of plane stress and 
plane strain are not accounted for. In fact, unlike in the rigorous tests of finding K1c and he, there is 
hardly any consideration in choosing the size of the specimen of Charpy or Izod test based on the 
material toughness. Further, notch sensitivity tests are always conducted under dynamic impact 
which is generally not the case in many engineering applications. For less ductile materials, the 
sharpness of the crack tip is important but rigorous considerations regarding the crack tip 
sharpness are not undertaken in the specimen of the Izod or Charpy test. As a postgraduate student 
in early seventies at the Brown University, I was surprised to find that the existing impact test 
machine was taken out of the test facility area because test methods for J-Integral were being 
developed and it would be disgrace to Brown University if some one found out that Charpy tests 
were being conducted at the side of J-Integral tests. 

However, we will soon realize that evaluation of K1c or Jrc is so sophisticated a process that many 
field engineers fail to unde!stand the theories and their applications. Even if they understand the 
modern test methods, the tests are so expensive that they are out of the reach of many engineering 
companies. Consequently, crude methods are still widely used to estimate the toughness of a 
material; Charpy and Izod test machines are still popular. 

One of the ironies is that research and development resources are mostly used up for theoretical 
developments and analysis. These days not much importance and respect is given to experimental 
development. Consequently, experimental methods have not been developed and simplified at a 
similar pace and whatever have been developed are still out of means of many engineering 
companies. To develop new materials, to improve properties of existing materials or to assure 
proper material selection of machine components, it is essential to have effective test methods. At 
the same time, it is desirable that the test methods are made simple enough for a semi-technical 
person to conduct them routinely. Unfortunately, test methods developed so far are quite 
sophisticated and beyond the reach of many small and medium size companies. 

It is important to emphasize that fracture toughness is a material property. It cannot be derived 
from other material properties like modulus, yield stress, etc. However, other properties may 
influence toughness of a material. For example, when an alloy steel is given heat treatment to 
obtain higher yield stress, its toughness decreases. We cannot calculate or determine toughness just 
by knowing the yield stress of the material. A separate experimental test is required to determine 
material toughness. 

In the previous chapters, four commonly used parameters G, K, J and CTOD have been 
discussed. Which parameter is adopted by a designer depends upon the application. K is widely 
used for LEFM and J for EPFM. G is generally used for brittle materials and finds its application in 
special cases such as interlaminar toughness of fiber composite laminates. CTOD is an alternative 
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approach to deal with EPFM. Depending upon the extent of usage, we have chosen to present test 
methods in the order K, J, G and CTOD in this chapter. 

Before we start discussing the details of the various test methods, we would like to comment 
that, in general, a crack propagates in a mixed mode, that is, a propagating crack has components 
of all three Modes, I, II and III. However, it has been found that Mode I dominates in most of the 
real life cases. Therefore, a greater emphasis has been placed on test techniques of mode I. In fact, 
test techniques and codes are already available for Mode I, whereas test methods for Mode II and 
Mode III have not yet been investigated adequately. Therefore, in this chapter,we will confine our 
discussion mostly to Mode I cracks. 

8.2 K1c-TEST TECHNIQUE 

Experimental determination of the critical stress intensity factor (Krc) is most widely studied and 
developed.\ Code on K1c test was made for the first time in 1965-66 but since then the code has been 
revised several times.)n this section, we will be discussing the salient features from the ASTM 
Code Designation E 399-83 to determine Krc of a material [8.1]. 

We discussed in Chapter 4 that the fritical stress intensity factor of a material depends on the 
thickness of the plate. However, for a thick plate it is independent of thickness because the material 
in front of crack tip deforms in plane strain. Then, critical stress intensity factor can be treated as 
the property of the material.. Thus, the experiment should be controlled so as to have its loading in 
plane strain only; that is, the plastic zone size in front of the crack tip is quite small in comparison 
to the specimen thickness. 1:'hen the Linear Elastic Fracture Mechanics (LEFM) can be applied to do 
the analysis. The entire body of the specimen is assumed to be deformed elastically and small 
strain theory having linear stress-strain relations is invoked.,. 

Before presenting the details of KFtest, it is summarized as follows. To begin with, K1c of the 
specimen is guessed. Then, the specimen is prepared following several dimensional constraints 
which are based on the guessed value of K1c The crack tip is made very sharp with a fatigue growth. 
,The specimen is pulled in a tensile machine to obtain a relation between the load and the crack 
mouth opening displacement. This relation provides the critical load PQ. Accounting for the crack 
length and geometry of specimen, the stress intensity factor Ko corresponding to P Q is determined 
using LEFM. If KQ satisfies all the constraints on the geometry of the specimen and of fatigue 
growth, it becomes K1c The remaining portion of this section describes the method in detail. 

I 

8.2.1 Vark,us Test Specimens 

Four kinds of test specimens are shown in Figs 8.1 and 8.2-Compact Tension (CT), Single Edge 
Notch Bend (SENB), Arc-shaped Tension (AT) and Disc-shaped Compact Tension (DCT). However, 
CT and SENB specimens are the ones widely used. AT specimen is convenient for cylindrical 
geometries such as pressure vessels or pipings and DCT specimen is suitable for circular blanks, 
round bars, cores, etc. Also, there are two recommended geometries for AT specimen, one with 
X/W = 0.5 and another X/W = 0. For introducing a crack in a specimen, a notch is cut by a machine 
usually of length 0.45W. The tip of the crack is then sharpened by growing the machined crack 
further so as to have crack length a close to 0.5W through a controlled fatigue loading. 
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8.2.2 Constraints on Specimen-Dimensions 

Specimen plate thickness B, crack length a and width W must satisfy the following requirements: 

B ~ 2.s[K1c r 
ays) 

w ~ s.o[K1c ]2 
O"ys 

(8.la) 

(8.lb) 

(8.lc) 

where cr115 is the usual yield stress of the material. Why should these conditions be imposed? The 
first condition is required to meet the foremost requirement-the specimen must be loaded in plane 
strain. The plastic zone size, based on Irwin's correction, is close to 0.1 (Kief ays)2 for plane strain. 
When the inequality 8.l(a) is invoked, the thickness of specimen is much larger (about 25 times) 
than the plastic zone size, assuring plane strain conditions at the crack tip. 

The constraint on the crack length can also be justified. If the specimen is designed to have a 
small crack length, the far field stress has to be high to develop large enough SIF at the tip for the 
crack to grow. But the large far field stress is undesirable because the analysis would not be 
accurate. 

The third inequality is also justified because the free surface of lateral faces should be reasonably 
away from the crack tip. Although the effect of free surfaces is accounted for in the analysis, the 
accuracy improves if the free surfaces are far away from the crack tip. 

8.2.3 A Dilemma 

Inequalities 8.1 are like the chicken and egg problem. The goal is to have an experimental 
determination of K1c but until and unless we know its value, how can we determine the size of the 
specimen through the inequalities (8.la)? One way out is that we take a very thick specimen and 
stay on the conservative side. Such approach is not recommended owing to several practical 
problems such as difficulty in purchasing a thick plate for the specimen, high machining cost, 
specimen handling difficulties and requirement of a high capacity test machine. 

For many materials, we already have an idea of the range of K1c prior to the test and one can 
design specimen accordingly. If K1c of a new material is to be determined and there is no prior 
information about the expected Kie, one would have to guess a value for its K1c , design new 
specimens accordingly and perform the test (the details of the test will be presented shortly). The 
fracture toughness of the material thus obtained is given a tentative name KQ. Once the value of KQ 
is known, specimen dimensions (a, Band W) are evaluated through Inequa'lity 8.1. The test is a 
valid test if all the three inequalities are satisfied and then KQ becomes K1c. Otherwise, another 
guess on K1c is required and the experiment is conducted again with modified dimensions of the 
specimen. 
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8.2.4 Fatigue Crack Growth to Sharpen the Tip 

An ideal crack should have a zero radius curvature at the tip because it is the worst case scenario; 
the stresses near the tip are highest and the material is weakest against fracture failure. A crack is 
generally prepared in a two-step procedure, (i) making a machined slot, and (ii) extending its tip 
by fatigue loading; It is worth noting that a cutting tool cannot make a very sharp notch,. There is 
always a finite radius of curvature of the cutting edge of the toot and also cutting of an engineering 
material is associated with some plastic flow. As stated earlier, !he slot is machined cut to a length 
which is close to 0.45W and then the tip is extended by at least 0.05W with the help of an 
appropriate fatigue load .. 1 

1;he tip of the machined slot should be prepared carefully to guide the fatigue-growth. Two 
kinds of notches are recommended-(i) V-notch, and (ii) Chevron notch, as shown in Fig. 8.3. 

J· 
V-notch is relatively simple to prepare but the crack front after the fatigue-growth may get inclined; 
the crack front may have a shorter crack length on one face of the specimen in comparison to that 
on the opposite face. Specimen having more than 10% difference in the two crack lengths should be 
rejected. Further, in some specimen fatigue crack emanating from the V-notch may not even grow 
in the plane of the machined slot, and such specimen should be rejected. 

V-Notch 

Fig. 8.3 V-notch and Chevron notch 

The Chevron notch minimizes the problems of the V-notch but it is relatively difficult to prepare. 
The notch is prepared with an angle tool forming four inclined faces near the tip. In fact, a valley is 
formed on each side of the specimen. The bottom line of the valley is inclined having one end at the 
mid thickness. The Chevron notch works well because the thickness at the crack tip is very small 
(tending to be zero) and the fatigue crack nucleates with a small number of load cycles. The 
nucleated crack front is guided on the self-similar plane because the thickness is smallest as long as 
the crack tip is with in the Chevron notch. Once a crack tip moves for a certain distance on the 
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self-similar plane, it is expected that it would continue to grow on the same plane when the crack 
tip comes out of the notch. If the growing crack deviates away from the plane of the crack, the 
specimen should be rejected. 

The maximum load of the fatigue loading should not be large because it would then develop a 
plastic zone of the significant size. The crack growth will no longer be sharp then. On the other 
hand, a low fatigue load is not practical as it would take a large number of load cycles to prepare a 
specimen. The following constraint should be followed for fatigue crack growth: 

Kf(max) ~ 0.6 KQ (8.2) 

where Kf(max) corresponds to the maximum value of the fatigue load. Like the previous inequalities, 
this inequality also poses difficulties as KQ is not known a priori; Inequality (8.2) should be checked 
after KQ is determined. If Kf(max) employed is more than 0.6 KQ, the experiment is rejected and a new 
specimen is fatigued at a lower maximum load. 

8.2.5 Clip Gauge 

A clip gauge measures the Crack Mouth Opening Displacement (CMOD) accurately. It is also 
known as COD gauge. The measurement of the displacement should be highly linear and very 
sensitive with an accuracy better than 1 %. , 

A typical clip gauge is made of two elastic cantilever strips clamped at the far end of the gauge 
with a spacer in between them:,; Mounting of the clip gauge to the mouth of a crack is designed 
carefully. Two kinds of mounting are popular. Figure 8.4 shows the first kind in which free ends of 
the strips are prepared to fit into a suitably designed groove on each surface receptor of the 
machined notch. The detail of the notched surface shows that a proper knife edge is prepared so 
that the end of the gauge strip can be fitted well into the receptor groove. The spacing between the 

Strain gauges 

A 

Detail A 

Notch 

Specimen 

Groove in specimen 
with knife edge 

Fig. 8.4 (a) Clip gauge mounted on specially prepared receptor grooves, 
and (b) details of the receptor groove 
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strips is designed to accommodate substantial bending of the cantilever strips at the time of 
mounting the gauge into the notch. When a load is applied to the specimen and the mouth of the 
crack opens, the strips strive to become straight. This ensures a good positive contact between the 
ends of the gauge-strips and grooved surfaces of the crack-notch. Figure 8.5 shows the other kind 
of mounting. The free ends of the thin strips are designed such that they bend outward as shown in 
the figure. The bent portions are fastened using screws to the side face of the specimen. Tapped 
holes, two on each side of the notch of the specimen, are made on the side face such that they match 
with the clear holes in the clip gauge and substantial bending of the strips is achieved at the time of 
mounting. Electrical strain gauges are mounted on both sides of each strip as shown in Figs 8.4 and 
8.5. A fuli Wheatstone-Bridge is used to monitor strains in the strips. The gauge is calibrated to 
determine distance between the ends of cantilever strips. 

Strain gauges 

Notch 

Fig. 8.5 Clip gauge screwed to the side face of a specimen 

8.2.6 Load-Displacement Test 

.A specimen is loaded to obtain load vs. crack mouth opening displacement (CMOD) using a clip 
gauge. CT, AT and DCT specimen are pulled in a tensile machine to record load vs. CMOD relation; 
SENB specimen is loaded in a 3-point loading set up with span S = 4W?s shown in Fig. 8.1. 

Depending upon the material, three types of response are observed between load P and crack 
m6uth opening displacement ?s shown in Fig. 8.6.,In all three cases P-CMOD curves are linear at 
low loads,}n the case (a) the curve starts becoming nonlinear with increasing load owing to 
growing plastic zone at the crack tip and the stable crack growth .. In the case (b) the crack grows 
with a pop-in sound and the load drops for a while before it starts increasing again. The case (c) is 
the response of an ideal brittle material; 

Now we should define a criterion to determine fracture load P Q from these experimental 
records. The criterion should guarantee that either the crack tip has already moved by a small 
distance or it is definite to move if load is increased by a small amount. 

For the case (a) of Fig. 8.6, a 5% secant offset line OS is drawn and its intersection with P-CMOD 
curve gives fracture load P Q· The 5% secant line is drawn by having its slope 5% less than the 
initial slope of P-CMOD curve. It has been found that 5% secant line corresponds to about 2% 
increase in crack length in CT and SENB specimens. Note that 5% is judicially chosen in the code 
and is similar to 0.2% offset used in determining yield stress of a material. For finding accurate 
value of P Q the P-CMOD curve should be recorded with proper scales such that the initial slope 
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lies between 0.7 and 1.5. For case (b), the load which initiates pop-in crack growth is taken to be 
fracture load PQ. In the case (c) of the brittle growth, the maximum load is PQ. 

Po ................... . 

p 

0 

......... \ 
5% Secant 
line 

CMOD 

(a) 

p 

0 

Pop-in 
sound 

./\ 
5% Secant 
line 

CMOD 

(b) 

p 

0 CMOD 

(c) 

Fig. 8.6 Load (P) vs. crack mouth opening displacement (CMOD) 

8.2. 7 Measuring the Crack Length 

For accurate measurement of the crack length, it is recommended that the specimen is split into 
two halves by letting the crack run all the way. Looking into a split surface, three kinds of surface­
zones can be observed-(i) machine cut (ii) fatigue grown and (iii) surface produced through 
fracture during the loading. The texture and reflectivity of an incident light from the fatigue-area 
are much different from those of the fractured surface and, therefore, three surface zones can be 
easily identified., Figure 8.7 shows all the three surface-zones and the commonly observed shape of 
the fatigue crack front developed from a Chevron notch. The front of the fatigue grown crack is 
generally found to be curved as shown in the figure. The crack length is taken as:E = 1/3 (a1 + a2 + a3). 

Jhe test is rejected if anyone of the three crack lengths differs more than by 5% from a. The test is 
also rejected if any part of the crack front of fatigue growth is close to the machined notch within 
0.005 a or 1.3 mm. / 

I· 

l l 

a2 

Fig. 8.7 Measurement of crack length 

Fractured 
surface 
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8.2.8 Data Analysis 

Knowing critical load P Q, crack length a and specimen dimensions, LEFM is invoked to determine 
K1c Specimens are made of finite dimensions and therefore effect of the size must be incorporated 
in the data analysis. Appendix 4A gives relevant formulae for each case. For SENB specimen, K1 
has the following form: 

PS 
K1 = 3/2 f (a/W) 

BW 
(8.3) 

and for CT, AT and DCT specimen, 

p 
K1 = --in f(a/W). 

BW 
(8.4) 

Form off (a/W) is quite involved and one may make a mistake in calculating its value for a given a/W. 
Table 8.1, therefore, lists its values for SENB, CT and DCT specimen for various a/W. 

TABLE 8.1 Value off (a/W) for determining K1c 

f (a/W) 

a/W SENB CT DCT 

0.450 2.286 8.340 8.705 
0.455 2.320 8.458 8.838 
0.460 2.354 8.580 8.974 
0.465 2.390 8.704 9.112 

0.470 2.426 8.830 9.254 
0.475 2.463 8.960 9.399 
0.480 2.501 9.093 9.547 
0.485 2.540 9.230 9.698 

0.490 2.580 9.369 9.853 
0.495 2.621 9.512 10.01 
0.500 2.663 9.659 10.17 
0.505 2.705 9.807 10.33 

0.510 2.749 9.964 10.51 
0.515 2.794 10.12 10.68 
0.520 2.840 10.29 10.86 
0.525 2.887 10.45 11.04 

0.530 2.936 10.63 11.23 
0.535 2.985 10.82 11.42 
0.540 3.036 10.93 11.62 
0.545 3.089 11.17 11.83 
0.550 3.142 11.36 12.04 
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Equations (8.3) and (8.4) enable us to find KQ corresponding to P Q· If KQ satisfies all dimensional 
Inequalities 8.1 and fatigue Inequality 8.2, it becomes the material property K!C" If not, another 
guess for KQ is made, next specimen is prepared with modified dimensions, and the entire test is 
repeated. Note that it is a trial and error method. 

8.2.9 Comments on Plane Strain K1c-Test 

For tough materials with low yield stress, thickness required for Krc-test specimen is high and it 
would not be practical to do K1c test. Thus, it is difficult to make specimens for tough materials like 
mild steel, nuclear reactor steel, commercially available aluminum, etc. In fact, the difficulty 
encountered in testing of these materials motivated researchers to formulate J-Integral test which 
will be discussed in detail in the next section. However, even if we determine plane strain K1c of 
tough material like mild steel, the result may not be useful to us because in most of the practical 
applications, sheet thickness falls in the category of plane stress. 

Alloy steels are now being increasingly used in engineering applications. Their properties are 
altered considerably through heat treatment. One can practically choose almost any yield stress he 
wants in his steel alloys. If the yield stress is increased, K1c changes considerably to a lower value. 
There are innumerable combinations of K1c and yield stress crys and there are many different kinds 
of alloys available in the market. Characterization of Krc for all materials is a voluminous task 
because considerable time, care and expenses are required for each test. Consequently, it becomes 
difficult for a designer to obtain sufficient data on KlC' 

Most of the plates or standard sections such as angle, channel, tube, I-Beam, etc., are made 
through rolling with elongated grains in the direction of the rolling. Thus, toughness depends also 
on the direction of crack front. For example, a through-the-thickness crack growing in rolling 
direction is less tough in comparison to a crack advancing in the direction of the width of the plate. 

A K1c test is costly. It needs a well trained person to design specimens. Growing a crack through 
a fatigue load is expensive and time consuming. As a result, not many laboratories are equipped to 
conduct Krc test. Even after progressing so much in analytical field, a designer faces problems in 
selecting a material in the absence of an adequate data bank. In many cases, engineering companies 
are not able to afford the K1c test. Designers are forced to somehow manage by taking K1c of a 
similar looking material and modifying it with some correction factors based on the yield stress. 

8.3 TEST METHODS TO DETERMINE J le 

The J-Integral has been developed to account for elastic-plastic behavior of the material in the 
plastic zone near the crack tip. Methods to find he are quite different from the procedure of finding 
K!C' In K1c-test method, specimen is chosen to be of a large thickness so that the plastic zone size 
near the crack tip is small and nonlinear stress strain relations in the plastic-zone do not affect the 
linear elastic analysis significantly. On the other hand, a specimen of much smaller thickness for 
he-test can be chosen with a large plastic zone size at the vicinity of the crack tip. 
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8.3.1 Graphical Interpretation 

For test methods, the energy interpretation of J-Integral is found to be more convenient. Figure 8.8 
shows the energy interpretation for Gr for linear elastic material and fr for elastic-plastic material. 
Linear load-displacement relations (P vs. u) are shown in Fig. 8.8 (a) for two cracks with length a 
and a+&i. It has already been shown in Section 2.6 that area between the two linear lines is equal to 
Gr B&l where B is the thickness of the plate. 

p 

u 
(a) 

u 

(b) 

Fig. 8.8 (a) Gr through linear P-u relations, and (b) fr through elastic-plastic P-u relations 

For elastic-plastic case shown in Fig. 8.8 (b), think in terms of two specimens identical in all 
respects except with the slight change in crack length. The area between the two curves 
corresponds to Jr Bila. The area can be determined from P-u relations in several different ways: 

(i) Area under a P-u curve of elastic-plastic deformation (Fig. 8.9) is defined as: 

UEP=fPdu 

p 

u 

Fig. 8.9 Area under P-u curve (UEp) 
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Now, consider the case of Fig. 8.8 (b) for two cracks of length a and a+.111. Both specimens 
are deformed to the displacement ll1. Analogous to definition of G in Chapter 2, we can 
express Jin terms of UEP· However, for the case of constant u, external work Wext is zero and 
expression of fr becomes: 

Tr= _2_(auEP) 
B aa 

111 

(8.5) 

(ii) We find the area under the P-u curve by considering displacement controlled case in which 
load decreases from PA to P 8 as the crack length is increased from a to a + Ila as shown in 
Fig. 8.8 (b). Then, the area of the thin vertical slice is (-!lP)/lu. Integrating to obtain the 
entire area between the two curves and equating it to B Tr fl a, we obtain [8.2]. 

l 111 (aP) Ji= --J - du 
B

O 
aa 11 

(8.6) 

(iii) In a load control case, displacement increases from uA to u 8 as the crack length is increased 
by Ila, as shown in Fig. 8.8 (b). Again equating the area, we obtain [8.2]: 

Jr= 2-f (au) dP (8.7) 
B

O 
aa p 

8.3.2 Historical Develo·pment 

For tough materials such as those used in nuclear reactors, the thickness of K1-test specimen should 
be very high so as to meet plane strain requirements and therefore specimen becomes very large as 
discussed earlier; determination of K1c is prohibitively expensive. Begley and Landes [8.3] 
developed an experimental technique which was based on J-Integral. They made use of Eq. (8.5). 
In the method developed, CT specimens of identical geometry with different initial crack length 
are prepared, and load-displacement relation for each specimen is obtained on a tensile test 
machine. The data are analyzed by finding U EP for a few selected displacements ( u1, u2, u3) and then 
the curves are plotted between UEP and the crack length for each selected displacement. UEP vs. a 
curves are differentiated to make use of Eq. (8.5) for determining J1c . 

The technique is quite general and may be adopted even for odd shaped specimen. However, 
the technique is not described here in detail because of several practical problems. The technique 
requires extensive processing of data; rep lotting of curves is likely to introduce large errors in some 
cases. Then the replotted curves are differentiated. As a general practice, differentiation of 
experimentally obtained data is avoided, as far as possible, because a small error may get 
amplified. Further, it is difficult to define an appropriate criterion for 'the onset of crack 
propagation'. In spite of all these problems, the work of Begley and Landes played an important 
role as a stepping stone for the development of better methods. 

8.3.3 Formulation 

For more convenient techniques to determine Ire, Eq. (8.6) is further exploited. Consider a SENB 
specimen (Fig. 8.10) for which some discussion has been presented in Section 6.5. A crack of length 
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a is introduced in a specimen with thickness B and width W. The uncracked ligament bis about 50% 
of width W. The ligament b is subjected to vigorous plastic deformation when load Pis applied at 
the centre. Deflection of the load point is u and rotation of two segments of the specimen is 2 '¥. 

Fig. 8.10 SENB specimen with a deep crack 

The critical J-Integral, denoted by Jrc, is the value of Jr which would grow the crack if there is an 
incremental increase in Jr. However, it is not possible to tell when a crack is at 'the onset of crack 
growth'. We should allow a small crack growth to make sure that 'the onset of crack growth' has 
already been achieved. Based on experience, it has been found that unloading caused by the small 
crack growth, does not change the value of Jr significantly. Therefore, a small crack growth may be 
permitted in experimental determination of he 

If area under the P-u record of the bend-specimen is A, we will show that J-Integral is given by [8.4] 

2A 
Ji= Bb (8.8) 

This expression can be proved using dimensional analysis applied to the specimen of Fig. 8.10. 
The rotation Pis made of two parts: (i) PP caused by intense plastic deformation of the uncracked 
ligament, and (ii) Pe due to elastic deformation in the specimen. It is worth noting that PP dominates 
specially in the case of a deep crack. The effect of elastic deformation thus may be neglected. PP 
depends on the following parameters: bending moment at the crack plane (M), uncracked ligament 
(b), specimen thickness (B), flow stress (a}, modulus (E) and hardening parameter (n). The 
dimensionless group M/(a!Bb2

) depends upon PP' a/E and n. It can be expressed as: 

M 
--2 = J(lJ!p,af /E,n) 
a1Bb 

Since PP= u/L and M = a PL, where a is a factor, the equation is modified to: 
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Differentiating with crack length a and realizing i_ = _i_ we obtain: oa ob 

(aP) = _ 20-_r Bb (!!_ o-_r n) 
oa u aL f L' EI 

Substituting Eq. (8.9) into Eq. (8.10), we have: 

(~~l .= - 2: 
Now, substituting it in Eq. (8.6), we have: 

l 11
1 2P 2A 

Ii= B [ bdu = Bb 

In case CT specimen is used, Eq (8.11) is modified to [8.5] 

A 
Ji= Bbg(ao!W) 

where a0 is the initial crack length and 

g(a0 /W) = 2[(1+a)/(l+a2)] 
with a defined as: 

a= [(2a0 /b)2 +2(2a0 /b)112 -(2a0 /b) + 1 J 

8.3.4 Details of Jrc Test Method 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

Our objective is to determine J1c corresponding to the initiation of a crack growth. This section 
describes the salient features of ASTM Code 813 [8.5]. Similar to K1c-test, two kinds of specimen are 
recommended-Single Edge Notch Bend (SENB) and Compact tension (CT). Following constraints 
are required on the specimen: 

a'c. 0.5W 

b "c. 25 lic Io-.r 

B 'c. 25 lic Io-f 

(8.13a) 

(8.13b) 

(8.13c) 

where flow stress o-1is defined in terms of yield stress O"ys and ultimate tensile strength o-,,15 as: 

O"_( = ( O" ys + 0"1115 ) / 2 
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The definition of flow stress accounts for work hardening of the material. Justification of the 
constraints on the specimen size will be discussed subsequently. The code requires that the crack 
tip should be sharpened by growing a machined notch with a fatigue load. Like in the case of 
K1c-test, the specimen size of he-test is linked with the value of he which is not known a priori. 
Therefore, specimen size is based on a guessed /re and the resulting value of }-Integral is called f Q· 

If f Q satisfies Inequalities (8.13), it is a valid test, otherwise specimen dimensions should be 
modified for the next test. 

For evaluating he, several specimens of identical size and almost of same initial crack length are 
prepared. Each specimen is loaded in a tensile machine to obtain load vs. displacement (P - u) 
curve as shown in (Fig. 8.9). The crack is allowed to extend by a small length and the crack 
extension is varied from specimen to specimen. The crack extension should be measured 
accurately. Before the specimen is broken apart, the extension should be marked or frozen. This can 
be achieved through several techniques. The specimen can be heat-tinted. Heat tinting for steel is 
carried out for 10 minutes at 800°C. After the heat tinting, which chahnges the color of the cracked 
surface due to oxidation, the specimen is broken apart for measuring &I. Another technique is to 
use a dye penetrant which would color the cracked surfaces. Dye penetrants are easily available in 
the market as they are widely used to detect surface cracks. 

Nature of the cracked surface of a specimen is shown in Fig. 8.11. The crack front is generally 
curved as shown and it is important to measure lia very accurately. In a thick specimen, it is 
recommended that the crack length should be determined by taking average of nine measurements 
across the thickness of the specimen. 

Machined 
slot 

Surface of broken 
specimen 

---Crack 
extension !!,.a 

Fig. 8.11 Crack extension 

h is determined from each specimen using Eq. (8.8) and is plotted against crack extension as 
shown in (Fig. 8.12). A straight line, known as R-line, is best fitted through the h points. A 

blunting line, Ji= (ays +auts )11a, is drawn whose intersection with R-line gives f Qas shown in the 
figure. It is now worthwhile to justify the form of blunting line and the constraints on the 
specimen. Because of the intense plastic deformation the crack-tip blunts before stable crack 
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growth initiates. The blunting can be considered as a small crack growth as shown in Fig. 8.13. 
For estimating the small crack growth, the blunt crack can be modeled as a semicircle with its 
radius CTOD /2. Since CTOD = Jr I CJp the small crack growth due to blunting is /1 / 2a1 and 
therefore the 'on-set of crack propagation' corresponds to: 

Ji= 2a/ia 

= ( CJ ys + auts )Aa (8.14) 

Fig. 8.12 Determining f Q through R-line and blunting line 

-: 
' 

c-----------c-: --1 

~~~~~~~~~~~~~~~~~~~~-'~!~~C,aci< c=____________ : extension 

Fig. 8.13 Blunting of crack tip and crack extension 
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Thus, stable crack growth is beyond the blunting line. The nearest experimental point can never 
be at the blunting line owing to practical considerations; there has to be a small but finite crack 
extension for accurate measurements. Since R-line is extrapolated to find Jo, it is prone to data 
processing error. To minimize the error, the nearest experimental point should be close to the 
intersection of blunting line and R-line. 

he measurements require that the plate thickness B should be much larger than the size of the 
intense plastic deformation which is given by fr/ 2a 1. Thus, Inequality (8.13c) assures that B is 
much bigger than the intense plastic deformation. Similarly, Inequality (8.13b) assures that the 
uncracked ligament is much larger than the intense plastic zone. Inequality (8.13a) is required to 
enhance plastic deformation in front of the crack tip. 

8.3.5 Comments on l1c-Test 

he corresponds to the onset of crack extension because stable growth is not admissible as it involves 
unloading. In most of the real life materials, a crack goes through a fairly large stable growth before 
it becomes unstable. Thus, I1c is conservative in comparison to K1c which admits some stable crack 
growth. However, in sensitive applications, like in a nuclear reactor, even a small extension of a 
crack is considered as failure and I1c is found to be more suitable. 

Conducting he-tests is expensive because several specimens should be used to draw the R-line. 
Further each experiment should be prepared carefully with the expensive fatigue crack growth. 
Measurement of crack extension, !:i.a, involves further expense in marking the crack front (e.g., heat 
tinting) and making accurate measurements. Consequently, data on he are not readily available. 
Further, a large but natural scatter in I1c discussed in Secs 6.5 and 6.6, discourages tabuiation of 
material properties. 

Now, we would explore how he-test helps in reducing the size of a test specimen. Minimum 
recommended thickness BK of K1c-test specimen is: 

and minimum thickness B1 for he-test specimen is: 

For the sake of comparing the thickness in the two kinds of tests, we take a 1 = ays to have: 

Taking he == Kfc IE 

E 

lOays 

For most of the engineering materials, we know that modulus is much larger than yield stress. 
For reactor steel with E close to 207 x 103 MPa and yield stress of 350 MPa, the ratio of thickness is 
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about 60-a dramatic reduction in specimen size. he-test enables us to determine toughness of a 
ductile material accurately by using a reasonable sized specimen. This has made the test popular 
within a short duration especially with critical industries like nuclear plants. 

8.4 TEST METHODS TO DETERMINE G1c AND Gue 

Critical energy release rate of commonly used isotropic materials (metal, plastics) is not usually 
determined. However, in certain special cases, parameter G is found to be more appropriate. A 
laminate of fiber composite material is known to possess poor interlaminar toughness. Similarly, 
when two sheets made of metals are adhesively bonded together, the bond is usually weak against 
interlaminar crack growth. Thus appropriate techniques should be developed to measure 
interlaminar toughness of small magnitude. It is worth noting that stresses around the tip of an 
interlaminar crack are low and anelastic deformation is small. Therefore, LEFM is appropriate for 
such cases and determination of G1c is usually preferred. 

In this section, test techniques for determination of critical energy release rate of interlaminar 
crack are discussed for Mode I and Mode II. 

8.4.1 Determination of Interlaminar G1c 

A Double Cantilever Beam (DCB) specimen of thickness B and height of each cantilever h is 
employed to determine critical energy release rate. The end of each cantilever is pulled in a tensile 
test machine and the loads are applied through hinges as shown in Fig. 8.14. The hinges release any 
bending moment which may otherwise get developed due to the rotation of the cantilever end. The 
other end of the specimen tends to move downwards due to its dead weight. This inclination is 
eliminated by a small counter weight tied to specimen through a thread as shown in the figure. 

p 

4---------~ 
' 

DCB specimen 

/ 

Small counter -
weight 

Fig. 8.14 The cantilevers of a DCB specimen pulled through hinges and a counter 
weight to balance the dead weight of the specimen 



Test Methods 173 

The overview of the test techniques is as follows: (i) experiments are conducted to determine 
compliance of the DCB specimen for several crack lengths, (ii) critical load is determined for each 
crack length, and (iii) G1c is obtained with a suitable data reduction scheme [8.6]. 

The DCB specimen is pulled in a tensile test machine on displacement control with a low pulling 
speed and the crack is allowed to grow by a small distance usually in the range of 5-15 mm: The 
machine is stopped for some time (till the crack tip becomes stationary) and then the length of the 
extended crack is measured. The load carried by the specimen decreases from point A to point D (Fig. 
8.15) because the stiffness of the specimen decreases with crack growth. The slope of the u - P curve 
up to point A gives the compliance; the load at point A is the critical load Pc for the crack length. 

10 

8 

E 
E 
:; 6 
c 
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~ 
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a= 30.1 mm 
300 

A 

Fig. 8.15 Loading-unloading cycles to determine compliance 
and Pc for several crack length 

Now, our aim is to find compliance for the increased crack length. To achieve it, the load on 
the specimen is decreased by moving the jaw of the tensile machine in the opposite direction till 
the load becomes zero. The unloading curve is usually not linear and is ignored. The spedmen is 
loaded again to have further crack growth by a small distance. The loading curve gives the 
compliance of the increased crack length with critical load at point D. Compliance and critical 
load are determined by repeating the process several times as shown in Fig. 8.15. G1 of DCB 
specimen is given by (Sec. 2.7) 

p2a2 
G--­
i- EIB (8.15) 
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It is worth noting that modulus E and moment of inertia I may not be known to the investigator 
because composite material is not a standard material like steel. The modulus may vary from one 
laminate to another. We would not determine E and I through separate tests. Further, composite 
materials or bonded sheets do remain elastic during interlaminar growth and therefore we can use 
elastic solution for the deformation of DCB specimen. Usually, one specimen grip of the tensile 
machine remains stationary; the force and the displacement of the other specimen grip are recorded 
accurately. Accounting for the deflection of both cantilevers, displacement u is given by: 

2 Pa3 

U= ---
3 EI 

and then the compliance C is given by: 

C=~=3_~ 
P 3 EI 

The equation is expressed as: 

C = A1 a
3 

where A1 is a constant. In fact, A1 determines the flexural rigidity EI with the relation: 

A-~ 
i - 3EI 

(8.16) 

(8.17) 

In case flexural rigidity is well known, one need not evaluate C vs. a relation. However, we would 
obtain flexural rigidity directly from loading and unloading cycles of the experiment for most of 
the cases. When C and a are plotted on a log-log scale, Eq. (8.16) should give a straight line with 
slope 3. Thus, we fit a straight line to the experimental data points with slope 3 and ln(A1) is read 
from the graph (Fig. 8.16). In fact, regression analysis can be used to evaluate A1 without plotting 
points on a graph paper. The details of the regression analysis are given in Appendix 8A. 
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Fig. 8.16 Fitting a straight line of slope 3 to determine A1 
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Corresponding to critical load Pc, Eq. (8.15) gives critical release energy rate as 

p2a2 
G - _c_ 

Ic - ElB 

Note that Gic is a material property and Pc and a are the only two variables in the above expression. 
Defining the product of these variables as: 

A2 = Pea 

we obtain: 

G - A1 
Ic - EIB 

In order to evaluate A2 we note that 

p = A2 
C a 

(8.18) 

(8.19) 

Figure 8.17 shows the plotted values of Pc and a on a log-log scale with best fitted line of slope-1; 
the intercept of the line with Zn(Pc) axis yields the value of A2• Substituting for EI from Eq. (8.17) 
into Eq. (8.18) we obtain: 

(8.20) 

10 

8 

4 

2 

0 ,___,__,_ __ .,__ _ _..._ __ ....._ _ __,__ 

0 2 3 4 5 
ln(a) 

Fig. 8.17 Fitting a straight line of slope -1 to determine A2 

Example 8.1 Consider a DCB specimen made of fiber composite laminate whose cantilevers are 
pulled in a tensile machine for several crack lengths as shown in Fig. 8.15. 
Determine Gic if the specimen thickness is B = 25 mm. 
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Solution: Crack length a, compliance C and critical load Pc are determined in Fig. 8.15 and 
tabulated in Table 8.2 along with the logarithmic values. Plots of Zn (C) vs ln(a) and ln(Pc) vs ln(a) 
are shown in Fig. 8.18 along with the best fit lines of slopes 3 and -1. Through regression analysis 
(Appendix SA), we have: 

6.0 

-3 • 
5.5 

? .s 1 L _____ •• 5.0 
r-1-+J 

-7 '--~..L-~-'-~-'-~--'-
3 4 5 

4.5 
3 4 5 

ln(a) ln(a) 

Fig. 8.18 (a) Variation of ln(C) with ln(a), and (b) variation of ln(Pc) with ln(a) 

Table 8.2 Logarithmic values of a, C and Pc of Example 8.1 

S.No. a C pc ln(a) ln(C) 

(mm) (mm/N) (N) 

1 30.1 3.33 X 10-3 305.7 3.40 -5.70 
2 40.4 8.14 X 10-3 266.7 3.70 -4.81 
3 51.7 14.12 X 10-3 219.5 3.95 -4.26 
4 62.8 25.19 X 10-3 183.0 4.14 -3.68 
5 80.7 32.40 X 10-3 166.0 4.39 -3.43 
6 87.2 55.90 X 10-3 146.0 4.47 -2.88 

Sum of column (:~::) 24.05 - 24.76 

1 1 
Zn (A1) = -[-3LZn(a)+LZn(C)]=-[-3x(24.05)-24.76]=-16.15 

n 6 

yielding 

and 

yielding 

A1 = 96.86 x 10-9 1 /N(mm)2 

Zn (A2) = _![Lln(a)+Lln(PJ]=.!_[24.05+32]=9.34 
n 6 

A2 = 11.38 x 103 Nmm 

Substituting A1 and A2 in Eq. (8.20), we have 

ln(Pc) 

5.72 
5.59 
5.39 
5.21 
5.11 
4.98 
32.00 

3 A1Ai 3 (96.86xl0-9 /Nmm2
) x (11.38x103 Nmm)2 

G1c= 2-B-=2x 25mm 

= 0.753N/mm=753 J /m2 
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SA.2 Determination of Interlaminar Gue 

Interlaminar critical energy release rate for Mode II is determined by employing an end notched 
flexure specimen shown in Fig. 8.19. The edge crack is on the mid plane where the shear stress is the 
highest. The initial crack length is approximately equal to 0.5 L but it should not exceed 0.69 L. The 
specimen is loaded in a 3-point bend fixture as shown in Fig. 8.19. For this system it has been 
shown [8.7] that: 

9P 2 Ca 2 

Gu=-----
2B ( 2L 3 + 3 a 3 ) 

Fig. 8.19 Edge-notched flexure specimen loaded in 3-point bend fixture 

where C is the compliance. The compliance can be found using the beam theory as: 

2L 3+3a 3 

C = 8EBh 3 

(8.21) 

However, C is not evaluated using this formula due to uncertainty in the modulus of a laminate. It 
is determined directly from the P-u record. 

We would now check the stability of crack growth. Substituting C in Eq. (8.21) and differentiating 
the resulting expression with respect to a we have: 

dG 11 --= 
da 
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Note that dGn Ida is always positive in load control testing and once the crack becomes critical, its 
growth is unstable. The case of displacement control is more interesting. Substitution of P = u/C in 
Eq. (8.21) yields: 

9it2a2 

Gu=-----~ 
2CB(2L3 +3a3

) 

Substituting the expression of C in this equation and differentiating with respect to a, we obtain: 

dGn 72u 
2 

Eh
3 

a [ 9a
3 

] 

a;- = (2L 3+3a 3 ) 2 l- 2 L 3+3a 3 

For unstable crack growth, dGu/da should be positive, giving: 

a ::=;; ~ 13 = 0.693 L 
(3) 

The unstable crack growth for a< 0.69 Lis desirable because it gives a sharp value of critical load Pc 
as shown in Fig. 8.20 for Mode II. In fact, the crack acquires high speed in a short duration at the 
critical load PC' Knowing Pc and compliance C from Fig. 8.20 we can determine Gue using Eq. (8.21). 
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Fig. 8.20 P-u record to determine compliance and critical load 

Example 8.2 An end-notched specimen is made of height 2h = 2.8 mm, initial crack length a= 26 mm, 
total length between the support 2L = 100 mm and thickness B = 25 mm. The load-displacement 
relation under 3-point loading is shown in Fig. 8.20. Determine the critical energy release rate Gue 

Solution: From Fig. 8.20 compliance C is evaluated in the linear portion of P-u record as: 

C = 1.67 x 10-3 mm/N = 1.67 x 10-6 m/N 



and the critical load is: 

Pc= 1361 N 

Then, we have: 

9P2Ca2 

Gue = --,-~c --_,.. 

2B(2L3 +3a3
) 
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9x(1361 N)2 x(l.67 xl0-6m/N)x(0.026 m)2 2 = =1243/ /m 
2x(0.025 m)x[ 2x(0.05 m)3 +3x(0.026 m)3 J 

To sum up, in this section experimental techniques have been presented for determining 
interlaminar toughness of fiber composite laminates or two strips bonded together for both Mode I 
and Mode II cases. Energy release rate parameter has been found to be the most convenient. G1c is 
determined by employing a DCB specimen with repeated load cycles for different crack lengths. 
The relations between compliance and crack length, and critical load and crack length then yield 
Grc. To find Gue, an end notched specimen is used which is loaded under a 3-point bend test. The 
compliance and the critical load for unstable crack growth determine Gue 

8.5 DETERMINATION OF CRITICAL CTO D 

The definition and the formulation of crack tip opening displacement are presented in Chapter 7. 
In this section, an experimental technique to determine the critical crack tip opening displacement 
(CTODc or oc) will be discussed. 

We would present the salient features of the test technique discussed in the British Standard BS 
5762 [8.8]. The code recommends the use of SENB (single-edge-notched bend) specimen to be 
loaded under a 3-point bend fixture. The geometry of the specimen is similar to one adopted for 
Kic-test. However, the V-notch, rather than the Chevron notch, is recommended. The specimen 
should be pre-fatigued as prescribed for KFtest. Crack mouth opening displacement (CMOD) is 
measured when load Pis applied at the centre of the SENB specimen. 

The general criterion is that load and CMOD are determined when the crack is at the onset of an 
unstable crack growth. With an appropriate data reduction scheme, CTODc is determined. 
However, the character of P-CMOD record varies from material to material. Often, it is difficult to 
determine when exactly the unstable growth initiates. 

We will now discuss the various kinds of experimental measurement of P-CMOD relations. The 
simplest case deals with initiation of unstable crack growth with pop-in. In Fig 8.21 (a), there is no 
stable crack growth prior to pop-in whereas stable growth occurs in the case (b) prior to pop-in. 
The load at which pop-in initiates is taken as the critical load. For this critical load, plastic 
component up of measured CMOD is found by drawing a line parallel to the initial P-CMOD record 
as shown in Fig. 8.21. 

We would now consider the cases when pop-in response is not observed. Figure 8.22 (a) deals 
with the case of no stable growth and unstable crack growth is initiated at the maximum load P max· 

In case (b), stable growth occurs prior to unstable crack growth and unstable crack is initiated at 
the maximum load P max· In case (c), stable growth occurs but unstable growth is initiated prior to 
the maximum load. However, it is difficult to identify the load that initiates the unstable crack 
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growth in routine testing. Therefore, maximum load is taken to be critical load. Thus, in all three 
cases of Fig. 8.22, maximum load is treated as the critical load of unstable crack growth. Plastic 
component up is also shown for these cases in the figure. 

Pop-in 
Pop-in 

p 

-+-j Up I-+- CMOD 

(a) (b) 

Fig. 8.21 (a) P-CMOD record with pop-in and no stable crack, and (b) with stable 
growth before pop-in 

Pmax 

p p 

-l"1 j-up CMOD -l"1 Up f-o- CMOD 

(a) (b) 

p 

Pmax 

I• u •I CMOD p 

(c) 

Fig. 8.22 P-CMOD record for (a) no stable growth, (b) stable growth prior to unstable growth 
initiating at Pmax and (c) stable growth but unstable growth is initiated before P max 

The CTODc is made of elastic and plastic parts given as: 

CTODc = (CTODc)e +(CTODc)p 
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The elastic part (CTODc)e is calculated by finding K1c from P-CMOD records using secant line as 
described in Sec. 8.2. Then, the Dugdale model is invoked to find (CTODc)e. For plane strain, the 
result of Dugdale model is modified by a factor of Vl to account for constraints on plastic 
deformation. Thus, the elastic portion of (CTODc)eis given by the expression: 

(
CTOD ) = _K---'?c{l_-_v_c...2) 

Ce 20" E ys 
(8.22) 

The plastic portion of (CTODc)p is determined by assuming that the uncracked ligament works 
like a plastic hinge with its centre at a distance rb from the crack tip as shown in Fig. 8.23(a). 
Knowing up, rb and a, we determine (CTODc)P through simple analysis of similar triangles 
[Fig. 8.23(b)] as: 

u rb 
( CTODC) = _P_ 

P a+rb 
(8.23) 

Centre of plastic hinge 

(a) 

Fig. 8.23 (a) Plastic hinge with its centre at distance rb from the crack tip and (b) obtaining 
(CTODc)p through similar triangles 

The factor r is determined through experimentation, and it is found to lie between 0.33 and 0.48. 
However, experimental determination of r is difficult on a routine test basis; therefore, a nominal 
value of r = 0.4 is used for standard testing of CTODcgiving 

0.4uP (W-a) 
(CTODc)p = 0.6a+0.4W (8.24) 

Example 8.3 A single-edge-cracked bend specimen is loaded in a 3-point bend fixture (Fig. 8.1) 
and variation of centre load with CMOD is recorded. The span of the bend fixture is s =200 mm for 
the specimen of width W = 50 mm, thickness B = 25 mm, and crack length a = 25 mm. P-CMOD 
record of the test is shown in Fig. 8.24. Determine CTODc following British Standard BS 5762 if 
E = 207 GPa, v = 0.29, and O"ys = 600 MPa. 

Solution: S = 0.2 m, W = 0.05 m, B = 0.025 m, a = 0.025 m, E = 207 x 103 MPa, v = 0.29. From 
Fig. 8.24, 

Pc= 26600 N (through 5% secant line) 
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Fig. 8.24 P-CMOD record. For determining (CTODc)e, 5% secant line is drawn to find K!C' 
For evaluating (CTODc)p up corresponding to P max is found 

P max = 29800 N 

up= 1.14mm 

a= a/W = 0.5 

Through Table 8.1 we find/( a) as: 

J(a) = 2.663 

K f() PcS =2.663x(26600N)(0.2m) 
Ic = a BW 312 (0.025 m) x (0.05 m)312 

= 50.7MPa .Jm. 
Substituting in Eq. (8.22), we have: 

Kfc { 1- v
2

) ( 50.7 MPa.Jin)2 { 1- 0.292
) 

( CTOD ) = = -------,------'--c-

c e 20'y5 E 2(600MPa)x(207x103MPa) 

= 0.0095 mm 
Through Eq. (8.24), we have: 

(CTOD) = 0.4up (W-a) = 0.4x(l.14 mm)x(0.05m-0.025m) 
c P 0.6a+0.4W 0.6x0.025m+(0.4x0.05m) 

= 0.325 mm 
The overall CTODc becomes: 

CTODc = 0.0095 + 0.325 = 0.335 mm 

Note that the elastic part of CTOD is negligible. 



Test Methods 183 

8.6 CLOSURE 

In this chapter test techniques are presented with reasonable details for finding K1c, he , Grc , Gue, 
and CTOD c Out of all these, K1c is the most widely used and its values are listed in literature for 
commonly used engineering materials. Determination of K1c is a relatively simple technique but a 
good quality CMOD gauge is required. Designs based on plane strain Krc are too conservative for 
high toughness materials. Also, determination of K1c for these materials is very difficult and 
expensive due to large thickness of the specimen. Therefore, EPFM should be used for which he or 
CTODc are required. In comparison to CTODc it is found that frc is more convenient for designers. 
However, methods to find fie are still complex, expensive and time consuming. It is hoped that 
simpler test-technique will be developed in future. G1c and Gue are found convenient for 
determining interlaminar toughness of composite materials. The test method for finding Gic is 
better developed and more widely used. 

APPENDIX SA 

Regression Analysis to Fit a Line of Known Slope 

Data analysis for finding Grc requires fitting a straight line of a known slope to experimentally 
recorded data. The line is y = mx + c for which slope m is known and c is to be determined. The line 
is best fitted so as to minimize sum of square of the distance from data points to the line. Consider 
a point (xi, y) and if the distance of the point from the line is d;, the sum D of the square of the 
distance for n points is: 

For minimum D, 

leading to 

Form= 3, 

and for m = -1, 

QUESTIONS 

f 2 '°' (mx;-y; +c}2 
D= £ .. ii =~---2---

i=l m +1 

dD = O 
de 

C= 
(-Lmxi +Ly;) 

n 

C= 
(-31: X; + Ly i) 

n 

C= 
(LX; + LY;) 

n 

l. Why are results of Charpy or Izod impact tests not useful in predicting loads that would 
grow an existing crack in a component with known geometry and boundary conditions? 

2. Why are Charpy or Izod tests still popular in industries? 
3. Why are the dimensions of specimen for plane strain Krc-test based on material toughness 

K1c? 
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4. Why is it difficult to find plane strain K1c of ductile materials? 
5. Why is it required to extend a machined notch by fatigue for K1c-test? 
6. There is a constraint on the maximum stress of fatigue load. Why so? 
7. Why is Chevron notch better than V-notch for K1c-test? 
8. In comparison to V-notched specimen, it is observed that fatigue crack initiation occurs at 

less number of cycles in Chevron notched specimen. Why so? 
9. What does 5% secant line assure in KFtest? 

10. Why is texture of fatigue growth different from the texture of fractured surface? 
11. Use of Kic by a designer is on conservative side. Comment on the statement 
12. K1c can be determined through one specimen, whereas to determine J1c several specimens 

are required. Why so? 
13. Why do dimensions of specimens for f,c-test depend on Ji/ 
14. How do we implement the requirement of 'onset of crack initiation' in he-test? 
15. Determination of critical SIP for plane stress is less rigorous because plastic zone size is 

large, and linear elastic analysis deviates considerably from the actual stresses and strains. 
However, f1c can be obtained quite accurately for plane stress cases. Why so? 

16. Grc-test is found to be best suited for experimental determination of low toughness of certain 
cases such as interlaminar crack growth in fiber composite laminates. Why is K1c-test not 
suitable? 

17. In G1c-test of interlaminar cracks, flexural rigidity (EJ) is evaluated through the experiment 
on a DCB specimen and not through a separate experiment such as a tensile test. State the 
reasons. 

18. In processing the data of GFtest, how are the theoretical results exploited in the regression 
analysis? 

19. Why do we like to have unstable crack growth in interlaminar Gue-test? 
20. What are important requirements of a clip gauge? 

PROBLEMS 

l. The machined Chevron notch of SENB specimen is extended by a fatigue load with P max= 40 
kN and P min = 5 kN. The dimensions of the specimen are: 

Thickness B = 25 mm 

Width W = 50 mm 

Span S = 100 mm 

Average crack length a= 24.1 mm. 

The critical load determined through 5 % secant line is 80 kN and the yield stress of the 
material is 800 MPa. Determine KQ and check whether the dimensions of the specimen 
and fatigue load were proper. 

2. A compact test specimen is employed to find plane strain Kic- The dimensions of the 
specimen are: 

Thickness B = 30 mm 

Width W = 100 mm 

Average crack length a= 49.8 mm 
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The experimental record of P-CMOD is shown in Fig. 8.25. Determine KQ and check whether 
the experiment is valid if the yield stress of the specimen material is 600 MPa. 
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Fig. 8.25 The figure of Problem 2 

3. Four SENB specimens of an unknown steel material were prepared to find fie of the following 
dimensions: 

Thickness B = 20 mm 
Width W = 40 mm 

Span S = 160 mm 

The machined notch is fatigue grown till overall crack length is close to 0.5 W. 
Area (A) under the load displacement curve for a small crack growth is determined. The 
details of uncracked ligament b, crack extension !!.a, and area A are: 

Expt. No b L1a A 
. 

(mm) {mm) (Nm) 

1 19.2 0.36 22.46 
2 19.6 0.82 25.08 
3 18.7 1.22 26.93 
4 20.1 2.70 38.19 

The yield stress and ultimate tensile strength of the material are 350 MPa and 550 MPa 
respectively. Determine Jrc and then find whether dimensions of the specimen were valid 
for finding frc 

4. A bend. specimen is loaded under four-point bending as shown in Fig. 8.26. Develop the 
expression for J if load displacement (P - u) record is known. 
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Fig. 8.26 The figure of Problem 4 

5. A DCB specimen of thickness B = 30 mm and made of a composite material is pulled in a 
tensile test machine under displacement control test to find interlaminar toughness. Figure 
8.27 shows the load-displacement record of loading and unloading cycles. The crack length 
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Fig. 8.27 The figure of Problem 5 
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of each loading is also shown in the figure. Determine critical energy release rate of 
interlaminar crack. Also, determine Grc through individual triangles; find the average and 
then compare it with Grc obtained by evaluation of A1 and A2. 

6. An end-notched flexure specimen of a polymer composite is of length 2L = 160 mm, 
thickness B = 22 mm and overall height 2h = 3.2 mm (Fig. 8.19). A precrack of length a= 40 
mm is introduced at a midplane of the specimen. Estimate the critical load if the estimated 
Gue is 1200 J / m 2 and modulus in the direction of specimen length is 110 GP a. 
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Fatigue Failure and 
Environment-assisted Fracture 

Chapter 

9 

Fatigue is a process that is capable of selecting the weakest link in strength ... 

V. Finkel 

9 .1 INTRODUCTION 

The performance of a machine or structural component is usually tested in a laboratory where 
conditions are controlled. In real life conditions, the component is subjected to several harsh 
conditions. Fluctuating loads, known as fatigue loads, quite often cause failure of components. In 
addition, the combined effect of stresses and a corrosive environment may cause a premature 
failure of a component. It is now well-known that both of them cause the growth of subcritical 
cracks to their critical length, followed by the rapid crack growth and eventual failure of the 
component. It is difficult to protect the component from various fluctuating loads as we live with 
many machines which either rotate or have back and forth motions. Also it is difficult to control the 
service environment of a component. Even abundant materials like water or its vapors, various 
salts, oils, edible items are known to cause the growth of subcritical cracks to their critical length. 
Thus the designer of a component should identify its service conditions and if required, he should 
carry out an appropriate analysis to avoid its premature failure. 

In this chapter, various aspects of fatigue failure and environment-assisted fracture are 
presented. In addition, a brief discussion on the combined effect of a fluctuating load and a 
corrosive environment is included. 

9.2 FATIGUE FAILURE 

A component, which fails through yielding at a high constant (unfluctuating) load, may fail under a 
substantially smaller fatigue load. To consider an analogy, our muscles are not strong enough to 
make a tree fall. We can chip off the trunk bit by bit with an axe until the groove becomes so large that 
the tree can be pulled down easily with a rope. The process is slow but repeated action makes it fall. 
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Innumerable examples of fatigue loads can be observed in our nearby environment. Many 
machines use rotating shafts. Shafts are designed to carry torque, but lateral loads, which generate 
bending moments, cannot be avoided. Consequently, a fiber on the shaft surface which is aligned 
parallel to the axis is subjected to tensile and compressive stresses in every rotation. Consequently, 
the axles of railway wagons, automobiles, and gear boxes are subjected to fluctuating loads. Failure 
of a locomotive axle should be avoided as it can stall the entire train suddenly with the wagons 
tumbling and climbing over each other. One serious accident took place only two kilometers away 
from IIT Kanpur as late as in 1980s. One axle of a goods train failed and, consequently, most of the 
wagons were derailed and deshaped. It was a huge financial loss only due to fatigue failure in one 
of the axles of the train. 

The wings of an airplane are subjected to fluctuating loads of wind gusts during the flights and 
therefore, the wings are carefully designed. In fact, before the flight test of a newly developed 
airplane, the entire wing is experimentally tested to fluctuating wind loads, simulated in the 
laboratory, till it fails. In another example, the fuselage of a plane is subjected to one cycle of 
pressure per flight because at high altitude the air pressure is increased inside to make it 
comfortable for the passengers. The fuselage of the ill-fated commercial Comet Jet airplanes failed 
in 1950s owing to a fatigue crack growth nucleated near an opening in its fuselage. 

In sophisticated way of modern living, many automated machines and gadgets have been 
developed which involve some kind of rotation, reciprocating motions or vibrations, and, 
therefore, some crucial components are subject to fatigue loads. One cannot really avoid fatigue 
loads; they are as natural to machines as breath is to a human body. Therefore, we should learn 
more about them so as to avoid surprise failures. It has been observed that most fracture failures 
are initiated by fatigue loads. Initially, the crack length is subcritical and the crack is not dangerous. 
With subsequent load cycles, the crack grows to acquire length close to the critical length and then 
only conventional fracture mechanics (K1C' J1c, etc.) come into picture [9.1-9.3]. Mechanisms of 
crack initiation, especially quantitative models, are still not known well. However, once a crack has 
nucleated and has grown to the stage where it can be detected, some empirical or semi-empirical 
formulations are available for its subsequent growth. 

9.2.1 Terminology 

There are two kinds of fatigue loads, (i) constant amplitude load and, (ii) variable amplitude load. 
The loads on locomotive axles are of constant amplitude whereas fluctuating wind load on a wing 
of an airplane is of variable amplitude. In certain cases, both types of loads may be superposed on 
a component. 

Figure 9.1 shows the constant amplitude loading with maximum stress CJmax and minimum stress 
CJmin with the stress range ACJ given by: 

ACJ = CJmax - CJmin 

We define mean stress CJm as: 

CJ max + CJ min 
CJm = 2 

Corresponding to CJmax and CJmin, we can determine Kmax and Kmin as 

Kmax = f(a/W) CJmaxJiia (9.1) 
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Fig. 9.1 Constant amplitude loading 

Kmin = f(a/W) (Jmin Jiia 

O"max 

wheref(a/W) is the geometric factor for crack length a and component width W. 

In most cases, dependence of J(a/W) on crack length a is secondary in comparison to .fa 
dependence. In order to keep the calculations simple, some designers prefer not to consider 
variation of f(a/W). The difference of Kmax and Kmin is an important parameter for determining 
crack growth and is expressed as: 

!l.K = Kmax - Kmin 

Another parameter, stress ratio R, is also used and defined as: 

There are three categories of R - positive, zero and negative, as shown in Fig. 9.2. Positive R is 
tension-tension fatigue whereas negative R is tension-compression fatigue. For negative stress 
ratio, compressive stress loading is not likely to grow the crack and, therefore, some investigators 
treat this case same as the one having R = 0. However, in sophisticated analysis, R = 0 and R < 0 
may be treated differently; some introductory discussion is included in Sec. 9.7. 

A fatigue crack may be initiated at an existing notch, an inclusion or a surface. It has been 
observed that initiation requires a large number of load cycles. Once a crack is initiated, it grows by 
some distance in every cycle, initially with extremely small growth per cycle. As the crack becomes 
longer, the rate of propagation per load cycle, da/ dN, also increases. Obv1ously, cracks of very 
small lengths cannot be detected by available non-destructive test-techniques. The number of 
cycles required to initiate a crack and then make it grow to a detectable length is known as initiation 
life N;. Detectable crack in most cases is still sub-critical and needs to grow further under the fatigue 
load. The number of cycles required to grow the smallest detectable crack to a critical size is known 
as propagation life NP. Thus, the total life N becomes 

N= Ni+Np 
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Fig. 9.2 Three categories of stress ratio 

9.2.2 S-N Curve 
In the nineteenth century, many structural bridges collapsed and the axles of locomotives failed 
owing to fatigue loads. It was then realized that a structure could fail even if the applied stress was 
much smaller than the yield stress. Fatigue test-machines were then developed. A test-machine 
applies a constant amplitude loading on a rotating shaft with bending stress (R = -1). Using the 
machine an empirical relation is determined between applied stress (peak value of the fluctuating 
load) and number of cycles N required to cause the failure. The relation is generally known as S-N 
curve shown in Fig. 9.3 ( a) for steel and Fig. 9 .3 (b) for nonferrous metals. At a higher stress, of course, 
the component has a shorter fatigue life. For steel, it is found that below the endurance limit <Ye the 
material does not fail. However, distinct endurance limit is not observed for nonferrous metals. It has 
been a common practice to design a steel component such that the critical stress does not exceed <Yr 

Now, more sophisticated models are being developed based on the concepts of fracture mechanics. 
For nonferrous metals, conventional design approach has been to determine allowable stress <Ya for a 
reasonable number of cycles, say 108 cycles, as shown in 5-N curve of Fig. 9.3 (b). 

S-N curves have been in use for more than a century, and are still being used by conventional 
designers. 5-N curves have certain limitations. An S-N curve adopts a black-box approach and it 
does not explore the mechanisms of failure. It does not even distinguish between initiation life and 
propagation liie; only overall fatigue life is taken into account. There is hardly any consideration of 
the specimen size; that is, data generated on small size specimen may not be applicable on large 
size components. Also, the data on an S-N curve has a large scatter suggesting that the formulation 
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Fig. 9.3 (a) S-N curve for steel with endurance limit O"eand (b) S-N curve for non-ferrous 
metals with no clear cut endurance limit 

needs to be more rigorous. A component, designed on the basis of endurance limit, may still fail 
during its use. Locomotive wheel-axles are checked frequently for fatigue crack growth because 
S-N curve does not impart sufficient confidence for a fool proof performance. 

The field of damage tolerance is being developed these days. Certain defects in a component can 
be tolerated with a reasonable assurance on quality. Number of defects may increase or existing 
defects may become longer with time. Anon-destructive test is conducted to assess if the component 
is still safe for further usage. However, designs based on S-N curve approach do not entertain damage 
tolerance. 

9.2.3 Crack Initiation 

Crack initiation is observed to occur at the tip of an existing crack or at some point of a free surface. 
A fatigue crack grows with each applied load cycle and therefore, crack growth per unit cycle, 

da/ dN, is an important parameter. Initially, da/ dN is extremely small, may be as small as 10-10 

m/ cycle which is of the order of one lattice parameter. Such a small crack growth rate cannot be 
detected easily and, therefore, it is included in crack initiation. 

As the crack grows LlK increases and da/ dN eventually becomes quite large. When a fatigue 
crack is about to become critical, da/ dN may become as large as several millimeters per load cycle. 
The crack growth is divided into three regions as shown in Fig. 9.4 on log-log scale. The crack 
growth curve is known as Sigmoidal Curve. In the region I, da/ dN is very small. In fact, there is no 
initiation of crack growth if LlK is smaller than a threshold Mth· Even for LlK exceeding LlK1h, crack 
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Fig. 9.4 Characteristic growth curve of a fatigue crack 

TABLE 9.1 Representative value of f1K1h and its dependence on stress ratio R 

Material 

Mild Steel 

Austenitic Steel 

Maraging Steel 

430 

685 
2010 

R-ratio Mth(MPa ,Im) 
-1.00 6.4 

0.50 4.3 
0.75 3.8 

-1.00 6.0 
0.67 2.7 

growth per cycle cannot be easily detected. Threshold Mth depends on material properties and 
stress ratio R; Table 9.1 shows representative values for some commonly used mat.erials [9.4]. 

Initiation at the Tip of an Existing Defect 
In case of a structural component, a crack may initiate at the tip of an existing defect, a reentrant 
comer, a slot, a void or an inclusion. In these cases, there exists some M that helps in the nucleation 
of the fatigue crack. The initiation is influenced significantly by the radius of curvature of the 
defect. An inclusion with sharp notch is likely to nucleate the fatigue crack easily. Some 
investigators [9.4] have tried to investigate the effect of the radius of curvature on the initiation life 
Ni. Figure 9 .5 shows the variation for initiation life with M 1/ jp where pis the radius of curvature 
of the crack tip (9.5]. Clearly, Ni is high for blunt crack tips. 
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Fig. 9.5 Dependence of nucleation life on radius of curvature of the defect and 
!}.K1 for HY-130 steel 

Initiation on a Surface 
It is commonly observed that a fatigue crack initiates on a surface where no crack was existing 
before the cyclic load was applied. In fact, fatigue load, being a powerful force, tries to first initiate 
a crack on the surface of an existing inclusion, a hole or a reentrant comer. If any such initiation is 
not favorable, the fatigue load initiates a crack on a free surface. What causes the initiation? 

When a metal specimen is subjected to a cyclic load, it is observed that dislocation glide bands 
initiate on the specimen surface. With increasing load cycles, these glide bands multiply laterally 
and become denser. As a result, the surface no longer remains smooth. The dislocations transport 
material from or to the surface, creating extrusions and intrusions on the surface as shown in Fig. 9.6. 
An intrusion acts like a crack with a finite !}.K. If the initial surface is not very smooth it encourages 
nucleation and growth of these intruded cracks. In fact, the surface of critical load bearing shafts is 
polished to have a very low roughness. It pays to make the surface very smooth as it delays the 
nucleation of surface cracks and enhances N;. It is difficult to predict initiation life from the free 
surface of a component because the micro-mechanism of crack nucleation is still not well 
understood and quantitative formulations are difficult. 

Fig. 9.6 Extrusion and intrusion created by glide bands 
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9.2.4 Crack Propagation 
The crack propagation rate, da/ dN, depends on tiK and stress ratio Rand it can be expressed in as 

:~ = f(tiK, R) 

Many attempts have been made to find the nature of this relation. The results are empirical or 
semiempirical. For many materials, dependence of da/ dN on R is not very significant, especially in 
Region II as shown in Fig. 9.7. Most designers are contented with the simple form: 

!!!!_ = f (tiK) 
dN 

(I) 

13 
"' o; 0.4 
.Q 

~ 
:g 

!!..K, log scale 

Fig. 9.7 Effect of stress ratio on Sigmoidal curve 

Paris law is most widely used and is stated as: 

!!!!_ = C(tiK)m 
dN 

(9.2) 

where C and m are material constants to be evaluated through experiments for a material under 
consideration. To have a feel of the material constants, representative relations for some materials 
are: 

• Ferrite-Pearlite steel [9.3] 

_E!!_ = 6.8 X 10-12 (tiK )3·0 

dN 
• Martensitic steel [9.3] 

_E!!_ = 1.33 x 10-10 (!1K)2·25 

dN 

(9.3) 

(9.4) 
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• Austenitic stainless steel [9.3] 

: = 5.5 x 10-12 (AK )3.25 

• Cast iron [9.6] 

!!!!.._ = 4.3 x 10-B (AK)4 

dN 
• Aluminum alloy (7075-T6) [9.6] 

!!!!.._ = 1.1 X 10-11 (AK )3·89 

dN 

(9.5) 

(9.6) 

(9.7) 

In these relations, crack length a is in meter and AK in MPa.Jm . It is worthwhile to discuss the Paris 
law further and obtain an expression for crack's propagation life NP. Substituting AK into the Paris 
law, we obtain: 

!!!!.._ = C [f(a/W)A<r ]"1 (nat1 12 

dN 
Rearranging and integrating, we have: 

m 
a1 2 NP 

f a da = C(Aat nm/2 f dN 
ao fm(a/W) 0 

(9.8) 

where a0 is the initial crack length of the propagating stage and af is final crack length. It is worth 
noting that afneed not be the critical crack length. Rather, it is taken usually to be the longest crack 
length permissible in the damage tolerance design. If f(a/ W) does not vary strongly, it can be taken 
as constant and then the expression can easily be integrated to give: 

(-1¥+1) (-!+1) 
N = ao -af (9.9) 

P (m/2-l)C J'n(a0 /W)(A<r)m;rr-'¥ 

Note that this expression is not valid form= 2 and one should go back to Eq. (9.8), which is 
simplified to: 

aff a-lda 2 NJP 

j2(a/W) = C(A<r) n dN 
% 0 

On integration, 

1n(:~) 
Np=~~~-'-----'-~~ 

C/2(ao /W)(Aa)2n 
(9.10) 

Example 9.1 An edge crack, detected on a large plate, is of length 3.1 mm under a constant 
amplitude cyclic load having <Ymax = 310 MPa and <Ymin = 172 MPa. If the plate is made of a ferrite-

pearlite steel and K1c = 165 MP a .Jm, determine (a) propagation life up to failure and (b) propagation 
life if the crack length a is not allowed to exceed 25 mm. 
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Solution: For this large plate with the edge crack 

f(a/W) = 1.12 

dO"= 138 MPa and a0 = 0.0031 m 

(a) The critical length ac = a1 = KyJ[n(l.12 O"max)2] = 0.0719 m 
Taking value of C and m from Eq. (9.3) we obtain propagation life up to fracture using 
Eq. (9.9) as 

N _ (0.0031ft+l) -(0.0719)H+l) [ 1 ] 
p - (J-1) 6.8 X 10-lZ X (1.12)3(138)3 X n-312 

= 
17

·
96

- 3·
729 

x 7153 = 203.6 x 103 cycles 
0.5 

(b) Replacing a1= 0.0719 by a1 = 0.025 in the solution of Part (a), we have 

= 
17

·
96

-
6

·
325 

x 7153 = 166.4 x 103 cycles 
0.5 

It is worth noting that difference in propagation life of two cases is small, only 37200 cycles. This 
is so because the crack propagates faster at a higher crack length. 

The S-N curve approach has been used for a very long time and to a certain extent it works. It is 
worth exploring whether S-N curve is a subset of the Paris law. Focusing again on Eq. (9.9), we may 
argue that a1 is governed by Kic and if the material is not changed from one experiment to another, 
it remains constant. Similarly, a0 is the initial crack length which can again be taken constant if 
specimen geometry is not altered during experimentation. We have then, 

N = constant 
P (da)'n 

leading to log NP= -m log dO"+ constant. 

This is a familiar linear S-N curve on log-log plot. 
If the effect of stress ratio R is to be included, the Paris law has been modified by several 

investigators. One such law, proposed by Forman et al. [9 .7], is stated as 

da C(Mt 
-=-----
dN (1-R)Kc-M 

where Kc is the critical stress intensity factor. If Kmin is negative, the crack tip closes for compressive 
portion of a stress cycle and therefore Kmin is taken as zero (R = 0). 

The complete Sigmoidal curve of crack propagation can also be expressed through one equation. 
Erdogan and Ratwani [9.8] have suggested the following expression: 
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da C(l + /3)'11(.11K - LlKth t 
= 

dN K, -(1 + /3) LlK 

where c, m, n, Mth and K, are material constants, and 

/3 = Kmax + Kmin 

Kmax -Kmin 

Some investigators argue that the plastic zone size plays an important role in actual crack 
propagation, and in such a case elastic-plastic fracture mechanics should be used. One such form 
of crack propagation law is 

~ = C(LlI) 111 

dN 
where J is J-Integral. A similar analysis may be carried out with CTOD parameter or effective crack 
length. 

9.2.5 Effect of an Overload 

An overload is a pulse ( or a set of pulses) of higher amplitude on a constant amplitude fatigue load as 
shown in Fig. 9.8. The crack propagation rate retards considerably after the overload pulse [9.9, 9.10]. 

Overload 

pulse\ 

Retarded 
growth 

N 

Fig. 9.8 An overload pulse on the constant amplitude fatigue load 

Why does the propagation rate decrease after the overload pulse? To understand it, we look into 
the behavior of the plastic zone near the crack tip. The overload forms a much larger plastic zone. 
During the unloading portion of the overload pulse, the surrounding elastic material tries to regain 
its original state. However, the plastic zone cannot regain the original state and, therefore, 
compressive residual stresses are developed in the vicinity of the crack tip. In the follow-up pulses 
of the constant amplitude load, the tensile loading at the crack tip is suppressed by the residual 
compressive stresses. Consequently, da/ dN is lowered appreciably. The crack tip may remain 
within the enclave of residual compressive stres.s for many subsequent pulses of the constant 
amplitude load as shown in Fig. 9.9. 
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Fig. 9.9 Enclave of residual compressive stress developed by the overload and 
plastic zone of subsequent pulses 

It, therefore, takes some load cycles for the crack tip to come out of the enclave and then only 
da/ dN regains its value based on the length of the crack and t:..K at that location. The effect of 
overload on crack growth is shown in Fig. 9.10. 
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Fig. 9.10 Retarded growth of the crack owing to the overload pulse 

9.2.6 Crack Closure 

We will first consider the cases when Kmin is zero (R = 0). During the unloading portion of a load 
cycle, it has been observed that crack faces start touching each other for some finite tensile stress. 
Figure 9.11 shows that the crack closes at a point A. When the stress is reduced further to zero, 
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compressive stress at the crack tip is developed [9.11]. Why does a crack close at point A and not at 
point B? To understand it, we should study the nature of cracked surfaces developed through the 
fatigue load. Each cycle produces some crack extension forming a ridge and a valley, known as 
striation. Furthermore, surfaces of a striation are not smooth. They are rough owing to non-uniform 
local plastic deformation during separation. It is quite improbable to expect that all the peaks of the 
top surface will fit exactly into the valleys of the bottom surface on unloading. Therefore, as K is 
reduced below point A of Fig. 9.11, the touched surfaces start exerting compressive load. The early 
crack closure is facilitated if the newly created surfaces are oxidized or have some other chemical 
reaction with the atmospheric air. Moreover, in practical situations it is rare to have only pure 
Mode I acting on a crack. Some contribution of Mode II, Mode III is generally present that causes 
lateral shift of cracked surfaces and would not allow perfect matching of the surfaces on unloading. 

K 

B N 

Fig. 9.11 Early closure of a crack and reduction in AK to AKeff 

Fortunately, the crack closure is helpful in retarding the crack growth. It is clear from Fig. 9.11 
that effective Mis reduced due to early closure. Therefore the crack propagation rate is reduced 
and a component has a longer fatigue life. Early crack closure also works for R < 1 and may work 
for positive Ras shown in Fig. 9.12. Clearly for high positive R crack closure is less. 

K K 

----i----

-l--·-'-''-·-----'---.-4r-tff·-·c-.... --. .... ---.,_ 

0 
N 

(a) (b) 

Fig. 9.12 (a) Crack closure for R > 0, and (b) for R < 0 

How to find the effective AK? One can perform experiments to find Kat which the crack closes. 
However, it is not possible to do experiments every time a component is designed. We would 
rather have some models to determine it. The effective AK is expressed as 

(AK)eff = Kmax - Kc1 
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where Kc1 is the stress intensity factor at the time of closure of crack faces [9.12, 9.13]. However, Kc1 
is generally not determined. An alternative procedure is adopted by modifying the Paris law by 
associating a factor U with AK. The Paris law is then written as: 

where 

!!!!_ = C(ULiK.) 111 

dN 

U = Kmax - Kc1 
Krnax - Kmin 

(9.11) 

Several empirical models have been suggested for finding U. Elber [9.12] proposed the formula for 
2024-T3 aluminum as 

U= 0.5 + 0.4 R 

and Schijve [9.13] suggested the formula for 2024-T3 aluminum, as 

U = 0.55 + 0.33 R + 0.12 R2 

(9.12) 

(9.13) 

Crack closure has already been accepted by industry and some computer packages do make 
necessary correction on crack propagation rate. 

9.2. 7 Variable Amplitude Fatigue Load 

Constant amplitude fatigue load is simpler to study but is not as common as variable amplitude 
load in many applications. Machines and structures like pumps, vehicles, earth moving 
equipments, rolling mills, ball and cylindrical bearings, airplanes, bridges, ships and off-shore 
structures are subject to variable amplitude fatigue loads. 

Can the Paris law or some other law for crack propagation rate still be used? Yes, but with some 
reservations. The data of the variable amplitude load should be processed before invoking the 
Paris law [9.3, 9.8]. However, there exists a problem of fundamental nature. We have already noted 
in Sec. 9.6 that a high stress pulse retards the propagation rate of some subsequent load cycles 
significantly. The number of retarded load cycles depends upon the relative magnitude of stresses. 
In case of variable amplitude loads there are many overload pulses, each having associated load 
cycles with retarded crack growth. It is difficult to keep track of the extent of retardation and 
predict the crack growth. However, if the variable amplitude is limited to a narrow band, the 
retardation of the crack growth may be ignored. This simplification is on the conservative side and 
a designer may not mind it. 

To predict the life or the crack growth of a component, one should know the expected load history 
based on previous experiences. It is worth noting that the nature of load varies considerably from one 
kind of application to another [9.14]. For example, variable amplitude load on aircraft wing is quite 
different from the load on a lifting crane. Moreover, the load fluctuations generally do not follow the 
Gaussian distribution. Based on the application, a suitable statistical procedure is adopted to 
determine root mean square value of AK. If Paris law is chosen, the propagation equation becomes: 

!!!!_ = C(LiK )"' dN . rms 
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Example 9.2 Fluctuating load on a critical component of an offshore structure is shown by a 
histogram in Fig. 9.13. During a routine check-up, an edge crack of length 1.5 mm is detected. If the 
crack length is not allowed to exceed 25 mm, determine the remaining life of the component. Use 
Paris law with material constants as C = 6.0 x 10-12 (MPaf3·2 m--0·6 and m = 3.2. 
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Fig. 9.13 Percentage occurrence of load pulses of the variable amplitude load 

Solution: (Aa)rms is evaluated as 

(A<1)rms = ~0.2 X 902 +0.4 X 1102 +0.3 X 1302 +O.l X 1502 = 117.4 MPa 

!!!_ = C(AK )m 
dN rms 

Using Eq. (9.9), 

o.0015(-=¥+l) -0.025(-=¥+1) 

Np= ¥ 
(3:z.2-1) X 6.0 X 10-12 X (1.12)3·2 X (117.4)3·2 X 1C . 

= 
49.47 - 9.146 

135.6 X 10--6 
297 x 103 cycles 

9.3 ENVIRONMENT-ASSISTED FRACTURE 

9.3.1 Introduction 
Man makes various machines, structures, and other mechanical systems, which deteriorate slowly in 
their service environment. In fact, all kinds of atmosphere, most kinds of water, oils, chemicals, gases, 
and food corrode structural components. The corrosion is known to be high in the vicinity of a crack 
tip where stresses are large and the plastic deformation is intense. In metal components, slip bands 
with innumerous dislocations facilitate the dissolution of material and thus the crack length increases 
slowly. This process may also be facilitated by the anodic dissolution at the crack tip. For example, 
when a component of mild steel is submerged in water, it loses its metallic ions close to the crack tip. 
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The loss of metallic ions leaves extra electrons on the surface, thus making the crack tip behave as an 
anode. The dissolution through such an electrolytic cell (galvanic cell) is known to be accelerated 
under a stressed field. Also, owing to the tensile field at the crack tip, small sized hydrogen atoms 
may diffuse into the component's material, causing hydrogen embrittlement and easy growth of the 
crack. Thus, the environment-assisted corro.sion gradually increases the length of a subcritical crack. 
The growth of a crack length, in turn, increases the Stress Intensity Factor (SIF) and a stage reaches 
when the SIP becomes critical, causing rapid failure of the component. A designer should choose the 
material of the component or the working environment carefully to limit the environment-assisted 
crack growth. 

It is difficult to formulate the environment-assisted fracture mechanics. It is an interdisciplinary 
field involving chemistry of materials, electrical aspects of current flow, and various mechanical 
and materials aspects such as diffusion, plastic deformation, grain boundaries, impurity content, 
voids, etc. Many different kinds of corrosion mechanisms act on the tip of a crack. Some 
mechanisms are known and backed by experimental findings. Models for some other mechanisms 
are available in literature but they have not been verified still by experimental. The complexity of 
the formulation increases further as there are many different kinds of materials and a variety of 
corrosive environments. The corrosion of a material is often found to be affected considerably by a 
slight change in a material parameter such as impurity content, percentages of alloying elements, 
heat treatment, work-hardening, etc. Also a slight change in environment may influence the 
corrosion substantially. For example, atmospheric humidity plays a crucial role in the rusting of 
steel components. Consequently, a comprehensive coverage on environment-assisted cracking is 
beyond the scope of this book and only an overview is presented in this chapter. 

A corrosive environment affects all surfaces of a component. Even a smooth surface develops 
roughness under the combined effect of high stresses and environment. The micro-crevices thus 
generated grow with time. Some of them become cracks of finite length and grow further to cause 
component's failure. Similar to the fatigue failure from a smooth surface, there is an incubation time 
for an environment-assisted crack to nucleate. In this chapter, owing to the complexity involved we 
will not discuss nucleation of cracks on smooth surfaces. We would be confining our attention only to 
an already existing crack in a metal component to study how a corrosion crack nucleates on the tip of 
the existing crack and how it grows to cause the eventual failure of the component. 

9.3.2 Micromechanisms 

Most structural metals like aluminum, titanium, steel, copper, etc. are naturally protected from a 
thin oxide layer on their external surfaces. The thin layer, being passive in most metals, protects the 
interior material from rapid corrosion. For example, if an aluminum component is cut in air, a thin 
layer of aluminum oxide is immediately developed on the new surfaces and protects the 
component. For stress corrosive cracking, the passive layer should be broken. As discussed in the 
earlier chapters, the stresses at the crack tip are high, which cause intensive plastic deformation in 
the plastic zone. In metals, slip bands consisting of innumerous dislocations make the surface near 
a crack tip rough with micro-cracks. Consequently, the passive thin layer is broken, exposing the 
material to the corrosive atmosphere. In fact, the size of the plastic zone is not important because 
only the plastic deformation near the crack tip is influenced by the corrosion. Thus, the rate of 
crack growth does not depend much on increasing stress intensity factor with the advancement of 
the crack length. This aspect will be discussed further in the next section. 
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The crack surface in the vicinity of a crack-tip, as stated in the previous section, becomes the anode 
of the electrolytic cell formed. If the crack surface of steel component is wet with water, the iron ions 
in the vicinity of the crack tip dissolve, leaving excess electron on the surface. Thus the crack surface 
near the tip starts acting as the anode of the electrolytic cell as modeled in Fig. 9 .14. Far away from the 
crack tip, the passive layer works as the cathode of the cell. The excess electrons on the anode pass 
through the conducting body of the component to the cathode surfaces. These electrons then reduce 
the hydrogen ions of the surrounding water, resulting into the evolution of hydrogen gas. Some of 
these hydrogen atoms may diffuse into the component to cause hydrogen embrittlement which is 
discussed subsequently in this section. The current density of the electrolytic cell regulates the rate of 
material loss at the crack-tip. Since the metal is in direct contact with the corrosive environment near 
the tip, the current density can be high. However, the resistance of the cathode oxide layer is quite 
high and thus it restricts the current density of the electrolytic cell and the dissolution rate to low 
levels. It is worth noting that the crack growth through anodic dissolution is continuous. 

Passive layer 
(Cathode) 

·. :_ · : Elee:trolyte 

(J' 

Plastic zone 

Fig. 9.14 The electrolytic cell formed near the crack tip 

It is also observed that in comparison to the interior crystalline material the grain boundaries of 
most metals are more anodic. This causes higher dissolution rate at the grain boundaries, resulting 
into intergranular crack growth. 

Owing to the tensile stresses in the vicinity of the crack tip of a component, the hydrogen atoms, 
being small in size, diffuse into the grain boundaries, the voids, the inclusions and highly strained 
slip-bands. The diffused hydrogen atoms make the material brittle and the process is known as 
hydrogen embrittlement. The diffusion is usually slow but makes the material in the vicinity of the 
crack tip brittle and the crack is no longer able to withstand the SIF. Consequently, the crack grows 
to the point where the effect of hydrogen embrittlement is diminished. The crack thus moves by a 
small step. Usually the failure is intergranular as grain boundaries. are more susceptible to 
hydrogen embrittlement. It again takes some time for hydrogen atom to diffuse beyond the 
extended crack tip. Thus, unlike the continuous anodic dissolution the crack, the growth through 
hydrogen embrittlement is in short steps. 

In some cases, the anodic dissolution facilitates the diffusion of hydrogen. For example, anodic 
dissolution grows a crack tip within a grain till it reaches a grain boundary, thus exposing the grair 
boundary for hydrogen diffusion. Thus the environment-assisted crack growth is often caused b~ 
the simultaneous actions of several mechanisms. 
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9.3.3 Test Methods 

Tests on environment-assisted cracking fall into two categories: (i) the constant load method and 
(ii) the constant displacement method. In both categories, specimens with a precrack are employed 
whose notch is sharpened with a fatigue growth. The constant load test setup requires multiple 
specimens and thus the testing expenses are on higher side. On the other hand, only one specimen 
can suffice in the constant displacement test, but the crack does not grow to become critical to 
cause the failure and therefore the experiment yields less number of results. Details of strengths 
and limitations of each method will be discussed subsequently in this chapter. 

Constant Load Method 
In the constant load test, a cantilever specimen with a sharp notch is commonly used as shown in 
Fig. 9.15. A lever arm is bolted to the far end of the specimen so as to generate high bending moment 
using a dead load P. The bending moment remains constant throughout the duration of an 
experiment. But the Stress Intensity Factor (SIF) increases with the advancing crack. The crack tip 
is surrounded within a corrosion chamber where corrosive environment is controlled as per the 
requirements. 

Environment 
chamber 

~ 

Fig. 9.15 A schematic test setup of the constant load method 

The crack tip is prepared following the same procedure as used for making specimens for 
K1c-test (Sec. 8.2.4). A machine crack is prepared, preferably with a Chevron notch to initiate the 
fatigue crack at small number of cycles. The fatigue load is carefully chosen to have the SIF at the 
crack tip substantially smaller than the SIF developed by the constant load during environment­
assisted testing. 

A standard test machine such as a universal testing machine may be employed but corrosion 
test are long duration tests and therefore use of a costly machine may be avoided. A simple setup as 
shown in Fig. 9.15 can be easily designed and developed in a test laboratory. The constant load test 
yields several results such as: 

• Determination of time-to-failure for an initial SIF, Ku 
• Determination of threshold SIF, Krth, below which the precrack would not grow 
• Determination of the rate of crack growth, da/dt. 

It is worth noting here that most real life structures of aerospace, automobile, nuclear plants, etc. 
are not thick enough to qualify for plane strain conditions. Also the results are required for a 
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specific set of material-environment interface. Since there are many combinations of materials and 
environments, it is practically very difficult to have data for all cases in the open literature. Thus a 
user is expected to determine results for the combination of material and environment to which the 
component would be subjected in service conditions. In such a circumstance, the user may get the 
testing done under the conditions which simulate the actual application of the component. Thus, 
he need not make specimens which satisfy stringent conditions of plane strain. Thinner specimens 
corresponding to plane stress or transitional cases (Fig. 5.8) may be used which will fail at the 
maximum value of SIF, Kmax· Of course, in case a specimen meets the requirements of plane strain, 
the specimen will fail at Kie· 

A set of multiple specimens, usually 5 to 10, are employed to conduct the constant load test. The 
specimens are loaded with varying initial stress intensity factor, K!i. During the experimentation 
the crack length of a specimen is continuously monitored. To determine the length of a crack it is 
not recommended to use the usual method of monitoring the change of electrical resistance with 
the increasing crack length. The resistance method applies a voltage on the specimen which may 
affect the voltage of the electrolytic cell formed at the crack tip. Thus the resistance method is likely 
to introduce errors in experimentation. One usually adopts the method of monitoring the change 
in compliance by recording the crack mouth opening displacement and then calculating the crack 
length. 

It usually takes a fairly long time for the precrack to start growing once a specimen is placed in a 
corrosive environment. This time is known as incubation time, tine- After the incubation time, it takes 
an additional time tg for the crack to grow till failure. Thus the total time-to-failure t1 becomes: 

ti= tine+ tg 

The characteristic relation between time log(t) and Kliis shown in Fig. 9.16. If such a relation is 
available to a designer and the initial crack length of a crack is known, he can estimate the life of a 
component. 

Fig. 9.16 Characteristic relation of incubation time tine and 
growth time tg versus initial SIF, K!i 
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A relation between Kr; and time-to-failure t1 is also explored through constant load tests to 
determine threshold Kith' below which no crack extension takes place due to the stress-assisted 
corrosion. Figure 9.17 shows a characteristic relation between Kii and time to failure. It is, in fact, 
difficult to determine Kith as tests have to be performed for very long durations. Some experiments 
are conducted by applying a load which develops SIF just above the Kith· Then load is reduced to 
have no crack growth even when the specimen is exposed for a long time. What should be the 
adequate test duration to determine K1th? For some material-environment combinations, 1000 hours 
of test time is adequate to assume that the crack would not grow if the specimen is exposed for longer 
time. But for other combinations it may require testing for longer duration. In fact, the adequate 
duration of a test depends on the material-environment interface. Therefore for testing an altogether 
new combination, preliminary testing is required to determine the adequate test duration. 

log {t,) 

Fig. 9.17 Characteristic relation between initial SIF and time-to-failure, t1 

The constant load tests also leads to another useful relation between the rate of crack growth and 
the instantaneous SIF that increases with the crack growth. Figure 9.18 shows the schematic diagram 
of log(da/dt) versus K1 where a is the crack length. In most combinations of materials and 
environments, three regions are observed. An initial crack having its SIF less than Kith does not grow 
at all. In Region I, there is a steep rise in da/dt with K1• In the Region II, da/dt shows a plateau; that is, 
there is no increase in the crack growth rate with the increasing SIF. As mentioned in the previous 
section, the corrosion depends only on the material in the vicinity of the crack tip. At a higher SIF the 
plastic zone size increases, but the flow stress at the crack tip is not affected much. Thus stress 
corrosion cracking in the Region II continues to grow at the constant rate till the SIF starts approaching 
~ax· The rate of crack growth increases at a much faster rate in the Region III and causes the failure 
of the specimen. The rate of increase in da/dt is so high in certain materials that the Region III is not 
even recorded. However, the Region III is not of much use to us and we need not make special 
arrangement to monitor it. We thus note that in the Region I a stress induced corrosion crack is 
nucleated at the tip of the existing precrack. The Region II signifies the growth period of the crack. 
The Region III is not important as the crack propagates rapidly to cause the failure of the component. 

The crack growth rate in the Region II is usually in the range of 10-8 mm/ s to 10-4 mm/ s for most 
material-environment interfaces. It is worth noting that da/dt"' 10-8 mm/ s corresponds to about 0.3 
mm crack growth per year which is negligible for most applications. There is no need to do analysis 
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Region II III 

Fig. 9.18 Characteristic relation between the rate of crack growth and SIP 

on such material-environment interfaces. On the other hand da/dt "" 10-4 mm/ s corresponds to 9 
mm growth in a day which is quite high and the designer should do some major design changes 
such as exploring other material-environment combination. For intermediate cases of da/dt in the 
range of 10~ and 10-7 mm/ s, a designer may choose his design parameters to either avoid failure 
within the designed life of a component or recommend frequent checking of the crucial 
components through appropriate nondestructive tests. 

Constant Displacement Method 
In the constant displacement method, usually a compact test specimen is modified. An initial 
displacement is given between the two ends of the cantilevers of the specimen and then the 
displacement is maintained (fixed grip loading). Initially the SIP is high but it decreases as the 
environment-assisted crack grows. A universal test machine can be used to conduct this test but 
usually a simple configuration is incorporated within the specimen. Figure 9 .19 shows. the schematic 
diagram of the configuration in which a tapped hole is made in the top cantilever. In the bottom 

Fig. 9.19 A schematic test setup of the constant displacement method 
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cantilever a through-the-thickness hole is made within which a rod with its top flattened is slipped 
in. In fact, this hole is made before the machine crack is introduced in the specimen so as to facilitate 
its fabrication. This rod distributes the point load applied by the bolt that is screwed into the tapped 
hole in the top cantilever. By rotating the bolt the bottom cantilever is pushed out to develop the 
required initial gap between the two ends of the cantilevers. The specimen is placed within an 
environmental chamber or it can be taken to an outdoor field to simulate the conditions of the actual 
application. 

The crack length is monitored to determine the crack growth rate. The length at which the crack 
stops growing corresponding to Kuh and thus one single experiment yields Knh unambiguously. 
Recall that in case of the constant load method, several tests are required at K1; slightly above and 
slightly below the Knh· Even after running an experiment for a long duration, there is still a doubt that 
the crack would have grown if the experiment had been conducted for a longer duration. However, 
there is a major difference between the two kinds of experiments. In the constant load method the SIF 
increases till failure. On the other hand, the SIF decreases in the constant displacement test to Knh and 
thus the test does not evaluate the time-to-failure and the incubation time. 

9.3.4 Major Factors Influencing Environment-assisted Fracture 

There are many factors which influence the crack growth in a component under the combined 
action of the stresses and environment. Some of the important parameters are: 

Alloy chemistry: The environment-assisted cracking in materials often depends on the percentage 
of the alloying elements. In certain materials even minor changes in the alloying elements 
drastically alters the environment-assisted cracking. For example, the rate of crack extension in 
aluminum 7079-T651 is about 1000 times greater than that of Aluminum 7178-T651 when tested in 
3.5 % sodium chloride water [9.15]. 

Heat treatment: The yield stress of many alloys is enhanced by proper heat treatments, but the 
increase in the yield stress may deteriorate the corrosion resistant. For example, in a study tl1e alloy 
steel 4340 was tested under the flowing sea water conditions [9.15]. When the heat treatment was 
changed to increase its yield stress from 900 to 1400 MPa, decrease in K1c was not much, 95 to 66 

MPa Jm. only. However, the threshold SIF, Knh , dropped drastically from 76 to 10 MPa Jm.. In 

another study [9.15] on over-aging of the aluminum alloy 7079-T651, it was found that the rate of 
crack growth decreased by a factor of 100 when the over-aging was increased from 1 hour to 15 hours 
at 160° C. 

Humidity: The humidity of environment has pronounced effect on environment-assisted fracture of 
certain materials. In the aluminum alloy 7075-T651, it was found that the crack growth rate increased 
24 times when the relative humidity of the surrounding air was increased from 5% to 67% [9.15]. 

Salt concentration: Service components are often immersed in a liquid with a salt whose 
concentration may have marked influence on the corrosion behaviour. For example, an increase in 
the concentration of potassium iodide enhances the crack growth rate (da/dt) in aluminum alloy 
7079-T651 as shown in Table 9.2 [9.16]. 
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TABLE 9.2 Variation of crack growth rate with the concentration of potassium iodide 

Concentration of K1 da/dt 
(Mole) (mm/s) 

0.002 3 X 10-S 

0.020 7 X 10-S 

0.200 80 X 10-5 

2.000 600 X 10-S 

Temperature: For some combinations of materials and environments, there is a considerable 
influence of the temperature on the stress assisted cracking. If the influence is considerable, a 
relation may be explored to do accelerated tests at higher temperatures and predict the behavior 
on a longer time span at lower temperatures of components in service. 

Work-hardening: Plastic deformation in a metal generates a large number of dislocations which in 
turn enhance the corrosion. It is a common observation that a steel wire corrodes first at bends 
where material is work-hardened. Some designers like to choose cold rolled sections and sheets as 
materials of their components because their yield stress is significantly higher over that of hot­
rolled sections, about 20 % in mild steels. However, higher susceptibility to environment-corrosion 
of work-hardened materials offsets the advantage of the higher yield stress. 

9.3.5 Liquid Metal Embrittlement 

Liquid Metal Embrittlement (LME) is another mechanism of environment-assisted crack growth. 
On the surface of a metal component, a thin layer of some other liquid metal may cause the rapid 
growth of a crack. In some cases the growth rate may be as high as 5000 mm/ s. The exact 
mechanism is not known but some investigators believe that the layer of a liquid metal around the 
crack tip reduces the cohesive strength of the molecules of a ductile material, causing rapid growth 
of the crack. Not all combinations of metals exhibit liquid metal embrittlement. Table 9.3 shows 
which combinations of liquid metals and common structural materials are sensitive to LME. 

TABLE 9.3 LME of a liquid metal layer on structural materials 

Mercury Zinc Lead Tin 

Aluminum yes yes no yes 
Copper yes no yes yes 
Iron yes yes yes no 
Titanium yes no no no 

9.3.6 Design Considerations 

In the design of structural and machine components, designers often do not give serious 
consideration to fracture failure due to combined effect of stress and environment. In many cases, 
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environment-assisted crack growth may be so slow that the crack may not become critical during 
the life span of the component and thus need not be considered. It is worth noting here that not all 
kinds of failures (strength, buckling, fatigue, creep, deflection beyond a certain stage, wear, etc.) 
are analyzed in detail during the design of a component and only the relevant parameters are 
identified and pursued. There are significant numbers of real life situations in which environment­
assisted cracking may cause the failure of components in service conditions. These cases should be 
analyzed carefully for stress-assisted corrosion. 

Threshold stress intensity factor Kith seems to be attractive property for safe design. However 
for most combinations of environment and material, K!th is small, of the order of 5-15 MPa Jii. . If 
a component is designed to limit the SIF of its cracks to K1tiv the design will be very conservative 
and thus expensive and impractical. For practical and economical designs, crucial components 
should be checked at a regular interval through nondestructive techniques (Chapter 12) to identify 
cracks which may become critical and cause the failure. In the modern industrial world, long 
pipelines carrying various liquids or gases, railway tracks, axle of railway coaches and wagons, 
piping of chemicals plants, etc. are routinely checked during the service conditions to identify 
potentially dangerous cracks, which might have developed during the usage. Since these cracks 
may grow and fail the components, necessary remedial actions are taken. 

9.4 ENVIRONMENT-ASSISTED FATIGUE FAILURE 

The formulation of fatigue failure in an inert environment is still not well developed as well as the 
environment-assisted growth of a stationary crack is also not formulated well due to many 
parameters involved. The combination of the two makes the formulation still more complex and 
causes the failure of a service component earlier than expected. Furthermore, often a synergy effect 
exists between fatigue crack growth and environment-assisted cracking. For example, the 
formation of a passive layer on the newly created surfaces of an advancing crack may get affected 
by the fatigue load. In fact, the fluctuating load may break the new passive layer or delay its 
formulation, resulting into higher crack growth. 

A designer faces difficulties in predicting the life of a component loaded with combined effect 
of stress, cyclic load and corrosive environment as reliable models are not available to him. He 
may get tests conducted in simulated service conditions of the component. The tests are not only 
expensive but takes very long time, weeks, months or years depending on the application. The 
accelerated tests are still in the preliminary stages as it is difficult to correlate their results with 
actual conditions of outdoors usages. The fatigue failure of most commonly used metals like 
steel, aluminum and titanium is even enhanced considerably by the presence of water molecules 
in air. And it is not practical, for most cases, to limit the humidity of surrounding air of structural 
components. In fact, a certain minimum humidity is necessary for the comfort of people and thus 
it is not justified to create the environment of dry air around a machine or a structure. Figure 9 .20 
shows the dependence of the crack extension per cycle in 7075-T6 aluminum alloy on the water 
content in the environment [9.15]. There is a marked influence of water molecules on the crack 
growth rate. When water content was increased from 2 x 10 to 2 x 104 ppm, the crack growth rate 
increased from 2.6 x 10-5 to 18 x 10-5 mm/s-a substantial increase of seven times. 
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Fig. 9.20 Dependence of the crack extension per cycle in the aluminum alloy 7075-T6 
on the water content in the environment for Kmax = 13.75 MPa.Jin 

Many variables which have significant effect on environment-assisted cracking have already 
been discussed in Sec. 9.3.4. However environment-assisted cyclic load adds two more variables to 
the list of large number of variables, the frequency and the mean stress. The frequency is found to 
have a considerable effect in many cases. Often a low frequency loading causes more 
environmental corrosion, probably because it gives more time to the corrosive medium to work on 
the crack tip. Experiments on 12Ni-5Cr-3Mo steel showed no dependence of crack growth rate per 
cycle (da/dN) on frequency when the specimens were tested in air between slow rate of 0.1 and fast 
rate of 10 cycles per second (Fig. 9.21). However when specimens were tested in the medium of 3% 
NaCl at the high frequency load of 10 cps the relation between da/dN and ll.K was not too different 
from the results of testing in air. As the frequency was reduced to 0.1 cps, there was a considerable 
shift in the relation towards higher rate of crack growth [9.15]. 

1Q-3 

0.1-10 cps 

10-4 - Air 

-- 3%NaCI 

20 40 60 100 

LlK, MPa (m)112 

Fig. 9.21 Variation in the crack extension per cycle with frequency in steel alloy 
12Ni-5Cr-3Mo tested in 3% NaCl solution 
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In short, the combined effect of a cyclic load and a corrosive environment hastens the crack 
growth rate in many materials. A designer is recommended to look into the chances of 
environment-assisted fatigue failure. Furthermore, one should be careful in generating the data on 
fatigue failure. May be, the environment is also playing a significant role in the results as even the 
atmospheric humidity may have a considerable effect on the crack growth. This raises a doubt that 
probably early investigators, say before the year 1990, were not conscious of the contribution of 
environment while generating data on fatigue crack growth and we may reevaluate some of the 
important data. 

9.5 CLOSURE 

Fatigue loads and corrosive environment are two harsh service conditions on a structural 
component. A subcritical crack, which would not grow under the controlled and ideal test 
conditions of a laboratory, may grow under these harsh conditions. The crack length eventually 
will increase to its critical length, followed by its rapid growth to the failure of the component. The 
formulation of crack nucleation and growth is quite complex because many micro-parameters are 
involved. Only a limited success has been achieved so far. 

It takes a large number of cycles to nucleate a fatigue crack at the tip of an existing crack. 
Similarly it takes a fairly long incubation time for an environment-assisted crack to appear at the 
tip of an existing crack. In fact, satisfactory analyses have not been so far developed to predict the 
nucleation of cracks under a fatigue load or in a corrosive environment or both. The irony is that 
the time required to nucleate a crack is quite long and is comparable to the duration a nucleated 
crack takes to propagate to the final failure of the component. Thus it is difficult to predict the total 
time to fracture and therefore a crucial structural component should be checked through non­
destructive techniques on a regular interval to detect nucleated cracks. The propagation time is 
handy to give us some convenient breathing space between the two consecutive checks. 

In case of a fatigue load, the crack proportion rate per cycle is determined through an empirical 
law such as the Paris law. The propagation rate depends on t..K and the stress ratio but experiments 
show that t..K plays a dominant role. An overload pulse develops compressive residual stresses in 
the vicinity of the crack tip and therefore it retards the crack propagation rate significantly of some 
load cycles following the overload pulse. Further, crack closure is another phenomenon that 
reduces t..K because the crack closes prior to complete unloading. 

In environment-assisted fracture, several kinds of mechanisms act on a crack tip. In metals, an 
electrolytic cell may develop with the crack tip acting as the anode. The metals near the crack tip 
dissolves as metal ions leave the component to the electrolytic solution and thus the crack length 
increases slowly. Another mechanism is the hydrogen embrittlement. The hydrogen atoms, being 
small in size, may diffuse into the metal near the crack tip because the stresses are tensile in the 
plastic zone. Consequently, the metal becomes brittle in the vicinity of the crack tip and the crack 
grows easily. Unlike the fatigue crack growth rate which depends on the increasing t:,.K with an 
advancing crack, the environment-assisted crack growth is found not to depend on the increasing 
SIF of a growing crack. 

Environment· assisted fatigue deals with the combined action of fatigue loading and 
environment corrosion, resulting into the faster growth of a crack. In some cases, there exists a 
synergy effect between the fatigue loading and the environment-assisted cracking, increasing the 
crack growth rate further. 
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QUESTIONS 

1. Give three applications each of constant amplitude fatigue load and variable amplitude 
fatigue load. 

2. What are the shortcomings/limitations of S-N curve approach? 
3. Why is it difficult to formulate crack initiation of a fatigue crack? 
4. How does a fatigue crack get initiated on a smooth surface? 
5. In case of negative stress ratio, crmin is usually taken to be zero. Why so? 
6. Propagation rate of a fatigue crack, in general, depends on t:.K and R but the Paris law, 

which ignores the effect of R, is very popular. Why so? 
7. Some investigators claim that t:.J should be used in place of t:i.K in a crack propagation law 

for a fatigue crack. Is the claim justified? 
8. How does an overload retard the growth of a fatigue crack? 
9. What is crack closure? Why does it happen? 

10. How is crack propagation rate determined for variable amplitude fluctuating load? 
11. How do we account for retardation of a fatigue crack growth owing to overloads in variable 

amplitude fatigue load? 
12. Are predictions of crack growth accurate enough for engineering applications considering 

the present know-how? 
13. Why does the environment-assisted cracking occur mostly through inter-granular growth? 
14. What is anodic dissolution? 
15. Why does the rate of anodic dissolution depend on the resistance of the passive layer? 
16. Why is it difficult to determine Knh through the constant load testing? 
17. Why does work-hardening cause higher rate of crack extension of environment-assited 

cracks? 
18. Does the rate of crack growth of a corrosion crack not depend on the SIP for most materials? 
19. It is difficult to design components which would not fail due to fatigue loads or stress 

induced environment-cracking or both. Therefore a crucial component should be routinely 
checked to identify whether cracks, which have potential to grow and cause the failure of 
the component, have developed since the last check-up. Comment on these statements. 

PROBLEMS 

1. Determine nucleation life if a slot is made in a large plate (HY-130 steel) having a tip­
radius of 2 mm and a length of 40 mm from one edge to another. The plate is subjected to 
a fatigue load of crmax = 140 MPa and <Ymin = 0.0 MPa. 

2. An inclusion is detected in a plate of HY-130 steel through X-ray. It is modeled as a through­
the-thickness crack of length 22 mm, with the radius of curvature of the tip as 0.2 mm. If 
the plate is subjected to a fatigue load of constant amplitude with <Ymax = 140 MPa and 
crmin = 0.0 MPa, determine the number of cycles required to nucleate a crack at the tip of 
the inclusion. 

3. Determine the propagation life for the case of Problem 1 if the crack is not allowed to 
exceed 60% of the critical length corresponding to K1c = 150 MPa.Jm. Use the Paris law 
with C = 7.2 x 10-12 MPa-3 m-1/2and m = 3.0. Also determine the total fatigue life (take slot 
length as initial crack length). 
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4. The Paris law of fatigue growth of a crack is known to have the form 

da 3 
dN = C(i1K1) 

where a is in meter and M 1 in MPa.Jm. The centre crack in a large plate, initially of length 
2 a= 8 mm, grows to 2a = 10 mm in 2000 load cycles when a constant amplitude fluctuating 
load is applied with O'max = 180 MPa and O'min = 100 MPa. Determine the life of the 
component beyond 2a = 10 mm if the same amplitude load continues on the component 
and the maximum allowable crack length in the damage tolerant design is 2 a = 50 mm. 

5. To find material constants for Paris law, it was found that an already nucleated centre 
crack grows from 2 a= 5.6 mm to 2 a= 7 mm in 10,000 cycles of a constant amplitude load. 
When the same load is continued, the crack grows from 2 a = 32 mm to 2 a = 36.8 mm in 
1400 cycles. If O'max = 180 MPa and O'min = 90 MPa, find the constants C and nz. 

6. A centre-crack in a large plate is detected at 2 a = 5.0 mm when the plate is subjected to 
fluctuating load of O'max = 180 MPa and O'min = 80 MPa. After 360 x 103 cycles it grows to 
2 a= 14.2 mm. Additional 180 x 103 cycles are required to increase the crack length to 
2 a = 37.4 mm. Determine elastic constants of the Paris law. (From the two equations, 
eliminate C and determine m by trial and error.) 

7. An edge crack in a large plate is subjected to a constant amplih1de fatigue load vvith a max = 150 MPa 
and O'min = 10 MPa. Calculate the life of the component if initial crack length is 2.4 mm and 

K1c = 80 MPa.Jm. Also, find the life if correction for crack closure is made and U = 0.5 + 0.4 
R. (The material constants of the Paris law are C = 6.0 x 10-12 (MPar3 (mr112

, and m = 3.) 
8. On a large plate, used as a critical component of a machine, amplitude of the fatigue load 

shifts several times in a sequence of every 1000 cycles as shown in Fig. 9.22. The material 
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Fig. 9.22 The figure of Problem 8 
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follows the Paris law with C = 2.2 x 10-12 (MPa)3
.4 (m)-0.7, m = 3.4. Determine how many 

load sequences are needed to cause the failure if the initial crack of 2 a = 7.2 mm is detected 
near the centre of the plate and Krc = 80 MPa. 

9. A machine is used only for the first five days of a year and it is stored in an open ground 
in the rest of the year where it is subjected to a corrosive atmosphere. A crucial component 

of the machine is made of an alloy steel and its critical SIF is known as 60 MPaJrn. Just 
before using the machine, a centre crack of length 2 a = 4 mm has been detected in the 
component. During the operation of the machine the component is subjected to a fatigue 
load of frequency 24 cycles per minute with its maximum stress of 120 MPa and minimum 
stress zero. The material of the component follows the Paris law of fatigue growth given 
by Eq. (9.3). Make an estimate of the remaining life of the component if the crack growth 
rate under the corrosive conditions is 1.5 x 10-7 mm/ s. For the estimate to be conservative, 
neglect the nucleation time for both fatigue and corrosive growth. Also, estimate the life 
of the component if the machine is stored in a non-corrosive environment. 
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Finite Element Analysis 
of Cracks in Solids* 

Chapter 

10 

Science studies what is, engineering creates what never has been. 

van Karman 

10.1 FINITE ELEMENT METHOD 

Finite Element Method (FEM) is one of the numerical methods to obtain an approximate solution 
to many of the fracture mechanics problems. This method has become very popular with the 
availability of powerful computers. In the finite element method the domain of the problems is 
discretized into a number of subdomains, called finite elements which are connected with one 
another at points known as nodes. The variables of the problem, such as displacements, 
temperature, velocity, etc., are approximated piecewise, so that they are represented in each 
element by simple polynomials. The coefficients of the polynomial equivalently expressed as nodal 
values of the variable are determined such that the governing equations and boundary conditions 
are satisfied in the best possible manner. The approximation procedure may be a variational 
method (such as minimization of potential energy) or a weighted residual approach [10.1, 10.2, 
10.3]. In general, the solution becomes more and more accurate by choosing smaller elements and 
more number of nodal variables. The necessary and sufficient conditions on the nodal variables 
and the shape functions to assure the convergence are well laid out in FEM theory. 

To briefly explain the methodology let us consider a two-dimensional stress analysis problem in 
which the domain is divided into elements as shown in Fig. 10.1. Here the displacement variable 

</>M( x, y) in each element domain n(e) may be defined as a polynomial, 

</>(c)(x,y) = a1 +a2x+a3y+···+anyn 

Equivalently, it can be expressed in terms of nodal values as 

</>(e)(x, y) = N1(x, y)</>1 + Ni(x, y)</>2 + ··· + N 11 (X, y)</>11 

* Contributed by Prof. N.N. Kishore, Department of Mechanical Engineering, III Kanpur. 
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Displacement 
boundary condition 

T; 

Applied 
traction 

Fig. 10.1 Two-dimensional body and finite element discretization 

where ¢ 11 ¢ 2, ... , <f>w are the values of the function</> at then-nodes in the element, and N1(x, y), 
N2(x, y) ... , N{x, y) are known as interpolation functions, trial functions or shape functions. This 
recasting of</> e)(x, y) in terms of nodal variables facilitates the automatic satisfaction of continuity 
conditions at element boundaries. 

For example, in a triangular element with nodes (i, j, k) at the three vertices, the displacement (u, v) 
within the element can be written as (Fig. 10.2) 

y 

L, 
Fig. 10.2 Two-dimensional stress analysis using triangular elements 
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u(x,y) = N; (x,y) u;+Ni (x,y) ui+Nk (x,y) uk 

v(x,y) = N;(x,y) v;+Ni(x,y) vi+Nk(x,y) vk 

where U;,V;,ui,vi,uk,vk, are the nodal displacement values and N;,Ni,Nk are linear shape 

functions. The strain components can therefore be expressed as 

du 
ex - -

dx 

dN. dN. dN 
= -' u.+--1 u.+--k u 

dX I dX I dX k 

av 
Ey = -

dy 

dN; dNi dNk 
= -v.+--v.+--vk 

dy I dy J dy 

du av 
Yxy = -+-

dy dx 

_ dNi oNj dNk dNi dNj dNk 
- -ui+--u;+--uk+-vi+--v.+--vk 

dy dy 1 dy OX dx I dx 

The above relations between strain components and the nodal displacements can be written in 
the matrix form as: 

dN; 
0 

dNi 
0 

dNk 
0 

U; 

{;J= 
dx dx ax V; 

0 
dN; 

0 
cwi 

0 
oNk u, 

dy dy dy vi 

oN; dN; dNi aNi aNk aNk Uk 

ay ax ay ax ay ax vk 

which in short form can be written as: 

[e] = [B]{u<el} 

The stress-strain relation, known as constitutive relation, for a linear isotropic material in plane 
stress can be written as 

{

(J' x} £ 1 V Q l £ x } 
(J' y = --2 V l O Ey 

"C xy 1 - V Q Q 1- V y X1J 

2 
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or in short, 

[<Y] = [D] {t:} 

By using minimization of potential energy of the body or virtual work principle, we can drive 
the element stiffness matrix as 

[K(e)J = f [Bf [D] [B] h dA 
A(,i 

where h is the thickness of the plate, and the integration is done over the area of the element 
domain. These element stiffness matrices can be assembled to form global stiffness matrix [K]. The 
applied traction in the form of distributed load can be transformed into nodal loads {P}. Thus, the 
finite element equations can be finally written as global equations, 

[K] {u) = {P) 

In addition to the application of the load, it is also necessary to apply a minimum number of 
displacement boundary conditions to remove the rigid body degrees of freedom and make the 
finite element equations solvable. Having solved for global nodal displacements, the stress at any 
point in any element can be evaluated using the stress and nodal displacement relations. 

The above procedure for 3-node triangular element can be applied to other elements, such as 
4-node rectangle, or 8-node isoparametric elements (Fig. 10.3). As these elements have higher 
order interpolation functions, they will yield more accurate results. The isoparametric elements 
can also model elements with curved edges. 

3-node triangle 
y 

8-node isoparametric 

~----------x 

4-node 
quadrilateral 

12-node isoparametric 

Fig. 10.3 Typical two-dimensional elements 
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For example, 12-node isoparametric elements have the capability to model quadratic variation 
of stresses and strains. However, they require mapping and numerical integration technique to 
evaluate element matrices (Fig. 10.4). In this element, the geometry is described by 

11 

12 

2 3 

y 

-~-------

4 

Fig. 10.4 Mapping of 12-node element 

12 

X = 2.,~Xi 
i=l 

i=l 

and displacements are given by 

where 

12 

u = 2.,N; (s,t) u; 

12 

v ::-:: 2.,N; (s,t) v; 
i=1 

N 1 = l._(1-t) (1-s) (-10+9s2 +9t2) 
32 

N2 = ;
2 

(1-t) (1-s2) (1-3s) 

N 3 = ;
2 

(1-t) (l-s 2
) (1+3s) 

N4 = l._(1-t) (l+s) (-10+9s 2 +9t 2
) 

32 

6 

5 

4 

X 
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N 5 = -2._(l+s) (l-t 2
) (1-3t) 

32 

N 6 = ;
2 

(l+s) (l-t 2
) (1+3t) 

1 
N7 = 

32
(1+s) (l+t) (-10+9s2 +9t2) 

N8 = ;
2 

(l+t) (l-s 2
) (1+3s) 

N 9 = -2._(l+t) (1-s 2
) (1-3s) 

32 
1 

N10 = 
32 

(l+t) (1-s) (-10+9s 2 +9t 2
) 

N11 = ;
2 

(1-s) (1-t 2
) (1+3t) 

N12 = _2_(1-s) (1-t 2
) (1-3t) 

32 

10.2 DIRECT METHODS TO DETERMINE FRACTURE PARAMETERS 

The stress and strain fields in 2-D crack problems can be determined, in general, by using the 
triangular, quadrilateral or isoparametric elements. The elements may be 3-node or 6-node 
triangles, 4-node quadrilaterals or 8-node isoparametric elements as shown in Fig. 10.3. Out of all 
these the 8-node isoparametric elements can model complex geometries and can have a quadratic 
interpolation of displacement variation. 

Making use of the expressions for the displacements and the stresses near the crack tip, we can 
use the value of crij at any point near the crack tip to determine the value of K1, K11 as follows: 

/YI() /fn(· /fIII() 
ui = K1v2nf; 8 +Knv2nf; e)+ Kmv2nf; 8 , 

6-;i(r, 8) = _&_g}-(8)+~g}1(8)+~g;Jl(8) finr J finr J finr 1 

h rI rll rlll d I II III f · f 8 w ere Ji,;; ,;; an gij,gii ,g;j are unctions o . 

i =1, ... ,3 

For example, for a Mode I case, we know the stress, strain or displacement field for plane strain 
as follows: 

K1 e (1 . 8 . 38)£ a = --cos- -sm-sm- s 
X .J21r f 2 2 2 

K1 8( . 8 . 38) 
O"y = ~

2
7r r cos2 l+sm2sm2 

Ki . e e 38 
r = --sm-cos-cos-
xy J21r r 2 2 2 
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u = 2(1 + v) Kr tr cosf (1- 2v+ sin2 f) 
E f ~ 2 2 

v = 2(1+v)K1 tr sinf(2-2v+cos2 i) EV~ 2 2 

Therefore, K1 can be determined from the known stress, strain or displacement field as 

~2nr 
K1 = Gij gl (8) 

or from displacement field as 

K - ui .fin 
r- -frf/(8) 

Ideally, K1 and Kn determined from the stress value at any point near the crack tip should give 
the correct K1 and Ku values. However, there are certain limitations of simple elements to represent 
large stress gradients. The stress gradient near the crack tip is very high and, theoretically, stress 
becomes singular at the crack tip. To represent such large stresses and stress gradients reasonably 
well, we need to employ a very fine mesh near the crack tip. Watwood [10.4] made some studies of 
center cracked specimen using triangular and rectangular elements (Fig. 10.5). He evaluated K1 

--J 2a I-

(a) 

~ 
~ 
Crack tip 

(c) 

'./ ,1, ' ) ',./ ,1 ,, './ ':',./ 
I I I I I I I 
I I ,. m ... 

~a--j (b) 

Fig. 10.5 (a) Geometry and load on centre cracked panel, (b) finite element idealization of 
upper right hand quadrant by Watwood [10.4], 478 Elements, 478 nodal points, and 

(c) blow up near the crack tip 
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using the stress values in various elements in the neighborhood of the crack tip; they are listed in 
Table 10.1. It is clear from Table 10.1 that Kr ranges from 5 to 18.5 while the theoretical value is 5.82. 

TABLE 10.1 Ki determined through ax, Cfy or "-"Y in various elements of centre cracked 
specimen (Fig. 10.5) 

Element No. Kr 
(Jx (JV 'fxv 

1 2.37 12.5 8.4 

2 3.4 5.5 18.5 

3 2.6 5.8 5.05 

4 2.28 6.5 4.2 

5 --- 7.2 6.1 

6 --- 5.8 3.85 

7 1.56 6.1 5.62 

Very near the crack tip the finite element solution tends to be inaccurate due to its inability to 
model singular nature of stresses accurately. An improved evaluation of Kr can be done from the plot 
of Ki vs. r. Thus, Ki can be extrapolated to find Kr at r = 0 for a fixed () (Fig. 10.6). Using this approach, 
Chan et al. [10.5] determined that the Ki value with coarse mesh (area of element is 3.1 x 10-4) was 
within an error of 11 % and with fine mesh (area of element is 1.2 x 10-4) the value was within an error 
of 5% compared to Westergaard solution. 

2.0 

1.8 

1.6 

~ 
1.4 

t 
~ 1.2 

1.0 

0.8 

0.6 
0 

t 

0.2 

Extrapolated 

Theoretical 

0.4 0.6 

-L a 

Fig. 10.6 Results of finite element calculations for infinite plate with central 
crack, Chan et al. [10.5] 
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The drawback of the above mentioned direct methods is that they require very fine mesh in the 
vicinity of the crack tip which involves large amount of computational complexity. 

10.3 INDIRECT METHODS TO DETERMINE FRACTURE PARAMETERS 

There are several indirect methods which do not use crack tip stress formulae directly. They make 
use of the knowledge of crack behavior in finite element analysis which will markedly improve the 
accuracy of the results. 

10.3.1 }-Integral Method 

As given in Eq. (6.1), J-Integral is defined as 

J = s( Wdx
2 

- I; du; ds) 
r\ dX1 

E 

where W = f aie;i is the strain energy density and T; is the traction. The contour r starts from one 
0 

crack surface and goes on to the other crack surface surrounding the crack tip (Fig. 6.2). This 
integral value can be evaluated on a path which is slightly away from the crack tip. Thus, the stress 
and the displacement values on the integration path rare not much affected by the modeling 
inaccuracies of the crack tip stresses. 

A typical path in a finite element analysis is shown in Fig. 10.7. The path is taken along the nodes 
on the element's edges. The strain energy density values at nodes are obtained as extrapolation of 
the values at the Gauss points within the elements. The values of the traction vector T; are the 
external forces for the region enclosed by r as a free body. Chan et al. [10.5] applied this method to 
the analysis of a compact test specimen. The resulting stress intensity factor K1 is quite accurate and 
has an error of only 3.5%. 

+ + ~ ' + + 

r 
--
--

t t f 1 t t 
Fig. 10.7 A rectangular elements mesh and path of integration r for the J-integral 
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10.3.2 Energy Release Rate Method 

This involves the evaluation of energy in the cracked body for two slightly different crack 
configurations, say, a and a + Cl.a. Let TI and TI + 11TI be the potential energies of the plate, 
respectively (Fig. 10.8). Then, the energy release rate G1 can be written as 

11TI 
G=-­

Bi1a 

S=O 

Extended 
crack front 

Lll 

Fig. 10.8 Growth of embedded crack 

where B is the thickness of the plate. Watwood [10.4] applied this method to analyze a center 
cracked panel of finite size. The Gr can be written in terms of Kr using the relation K1 = µ for a 
plane stress case of linear isotropic material. The results are compared with those obtained by Isida 
[10.6] in Table 10.2. It can be seen that the error is within 2%. This method can also be 
applied to a 3-dimensional case to evaluate fracture parameters of the embedded cracks. An 
average value of energy release rate G is given by (Fig 10.8): 

11TI 
Gav = f i1I(s)ds 

TABLE 10.2 Kr obtained by FEM through energy release approach 

a/W K1 I a Difference 
FEM Theoretical* 

0.188 4.86 4.96 2% 

0.254 5.90 6.00 1.7% 

0.317 6.90 7.01 1.6% 

* Isida [10.6] 
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10.3.3 Stiffness Derivative Method 

This technique evaluates the change in the potential energy L.\Il in finite element analysis which 
uses the change in stiffness of the plate L.\K for the two configurations of the crack. The difference in 
the potential energies is given by: 

1 
L.\Il = -uT L.\Ku+(uTK-PT)L.\u 

2 
where Pare the nodal loads. This is suitable for 3-dimensional problems as the crack can advance 
in multiple ways. 

10.3.4 Singular Element Method 

All the mentioned approaches discussed so far use conventional elements which either can model 
constant stress or linear stress variation within each element. Modeling of large stress gradients 
near the crack tip can be improved significantly by (he employment of a very fine mesh. But they 
are inadequate to model the theoretically infinite stress at the crack tip. Singular finite elements are 
a special class of elements which have the exact interpolation functions to model the stress 
singularity. In these elements, in addition to the usual nodal displacements as degree of freedom, 
there will be displacement functions involving ( r112

) terms. These are associated with additional 
degrees of freedom directly giving the stress intensity factors K1 and Kn. Using Gifford and Hilton 
[10.7] these additional terms are 

Usr = J_ fr{cose[(21C-l)cos!!..-cos 
3
e]-sine[(2,c+ l)sin!!.. -sin 

3
e]} 

4µV~ 2 2 2 2 

U 5rr = J_ /Y{cose[(2,c+3)sin!!..+sin 
3
eJ+sine[(2,c-3)cos!!..+COS 

3
e]} 

4µV~ 2 2 2 2 

v sl = J_ /Y {sine [<21( - I) cos!!.__ cos 
3e J + cos e [<21( - I) sin!!.__ sin 

3e ]} 
4µV~ 2 2 2 2 

v,n = J_ fr{sine[(2K+3)sin!!..+sin 
3

e]+cose[(2,c-3)cos!!..+cos 
3
e]} 

· 4µV~ 2 2 2 2 

where µ is shear modulus and 

,c = (3 - 4v) 

= (3 - v)/(1 + v) 

for plane strain 

for plane stress. 

The total displacement in the singular element is the summation of the regular expressions and 
the terms derived due to singular terms are as follows: 

12 

u = "'2:,N;U; +K1u 51 +Kuusu 
i=1 



Finite Element Analysis of Cracks in Solids 229 

12 

v = 'I,N;v; +Krv51 +K11 v511 
i=l 

The singular elements are employed adjacent to the crack tip. Outside these singular elements, 
the usual conventional elements are used. 

Theoretical 

.... 1~---10 
1 
T 
3 
j_ 
1 

Geometry and load 

Ki= 1.92 K1 = 2.01 

4 Elements 6 Elements 

Idealizations of upper right hand quadrant 

K1 (Upper) = 2.05 

Ki (Lower) = 2.05 

12 Elements 

K1 (Upper) = 2.02 

K1 (Lower) = 2.04 

20 Elements 

Idealizations of right hand side 

er= 1 

Fig. 10.9 Geometry and idealizations for double edge notch tension 
test specimen [10.7] 

This singular element approach to a double edge notched specimen (Fig. 10.9) yields quite 
accurate results using only a few elements [10.7]. With a 4-elemelit mesh, the stress intensity factor 
K1 was evaluated as 1.92, and with a 6-element mesh the Kr value was obtained as 2.01 while the 
exact value is 2.00 [10.8]. For a single edge notch at an angle of 45° (Fig. 10.10) 4-element analysis 
gave the values of Kr and Kn as 1.79 and 0.85 and 7-element mesh yielded 1.92 and 0.90 respectively 
while the exact values are 1.86 and 0.88 [10.9]. 
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a= 1 

2.5 
45• 

~ 
2.5 

2.5 

Ki= 1.92 
Kn= 0.90 

7 Elements 

Ki= 1.88 
Kn= 0.94 

10 Elements 

Ki= 1.79 
Ku= 0.85 

V 

4 Elements 

Ki= 1.89 
Kn= 0.88 

18 Elements 

Theoretical K1 = 1.86, Ku = 0.88 

Fig. 10.10 Geometry, idealizations, and results for 45° slant crack in 
tensile specimen [10.7] 

10.3.5 Barsoum Element 

An easier simulation of crack tip singularity can be achieved with the help of Quarter-Point element 
technique which is known as Barsoum Element [10.10]. In this special method, the usual 
isoparametric 6-node triangle or 8-node isoparametric quadrilateral elements are employed. As 
shown in Fig. 10.11, mid-side nodes on the two adjacent sides are shifted towards the comer node to 
the quarter point location. For these locations of the mid nodes, the Jacobian becomes singular at the 
comer node, thus making displacement derivates infinite and consequently stresses and strains 
become infinite as well. It can be shown that the variation of stresses along the two sides of the 
elements is according to 1/ .Jr. 

On the other hand, if all the three nodes on the side of an 8-node quadrilateral element are 
collapsed to one node (giving the same node number) then the stress (or strain) varies as 1/ .Jr 
along any radial line emanating from crack tip. To model the crack tip singularity the mesh 
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~. 
c~ 

1 2 3 
Triangular element 

Rectangular element 

Quadrilateral element 
collapsed to a triangle 

Fig. 10.11 Quarter point elements 

arrangement can be taken to be as shown in the Fig. 10.12. Observe that all the mid side nodes 
adjacent to the crack tip are at quarter point locations. From the displacement field solution the 
stress intensity factor K1, in a Mode I case, can be calculated as per the following relation, 

K = .l:.!!._ffir(4vB -Ve) 
I K+l .j[ 

where v 8, v c are the displacement in the y direction behind the crack tip. 

Fig. 10.12 Quarter point elements around a crack tip 

It has been demonstrated that K1 found by this method is within 2% of the theoretical solutions. 
Accuracy of the finite element calculation can be improved if the neighboring elements are also 
modeled to have the terms depicting the stresses for a crack with its tip outside the element. 

Finally, finite element method can be applied to study fracture in the case of elastoplastic 
materials and impact loads. Dynamic crack propagation can also be simulated well but the 
propagation simulation procedures are still in progress. 
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Mixed Mode Crack 
Initiation and Growth* 

Chapter 

11 

... I do not understand the reason why it is that the correct laws of physics seem to be 
expressible in such a tremendous variety. 

Richard Feynman 

11.1 INTRODUCTION 

In the previous chapters, we have studied crack growth under Mode I loading. Over the past many 
years considerable research work has been devoted and fracture mechanics principle based designs 
are developed using Mode I fracture theories. This may be mainly so, because Mode I failure 
predominates for homogeneous isotropic materials. In the particular case of opening mode, 
loading is applied in the direction normal to the crack faces and the crack grows parallel to the 
faces, i.e., in a self-similar manner. But, in many practical situations, loading is of mixed mode 
type, that is, combination of all the three Irwin's modes-opening mode, in plane shear sliding 
mode and out of plane tearing mode. For conservative fracture based design estimates, one needs 
to characterize the crack under mixed mode loading. 

Studies are carried in the mixed mode condition in order to find the crack extension direction, 
critical load (or critical crack dimension) and stability of the crack path. Various models have been 
proposed to characterize the mixed mode crack. Essentially, the models proposed are based either 
on energy or stresses. Various models for initiation and growth of a crack subjected to Mode I and 
Mode II loading are presented in this chapter within the scope of linear elastic fracture mechanics. 

11.2 FRACTURE SURFACE 

Fracture surface is a locus of points in KrKu space where the combined action of K1 and Kn attains 
a material dependent critical value. For a crack in a plane problem subjected to mixed mode 
loading, the fracture surface can be taken in a general functional form as: 

* Contributed by Prof. Raju Sethuraman, Department of Mechanical Engineering, III Madras. 
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(11.1) 

where Kr and Kn are Mode I and Mode II stress intensity factors, K1c and Kuc are critical values of Kr 
and Ku. The function describing the fracture surface is commonly considered in a polynomial or 
power law form and is expressed in a non-dimensional form as: 

(}S__)a +(~)b = 1 (11.2) 
K1c Kuc 

In the above equation the exponents a and bare material dependent constants. Equation (11.2) was 
applied by Wu [11.1] for predicting the crack behavior in a mixed mode condition for composites. 
He obtained the values of material constants a and b as equal to 1 and 2 respectively for the 
behavior of a crack in wood. Different values have to be used for material constants a and b if one 
needs to apply Eq. (11.2) for various composites. 

Based on energy principles fracture surface function can be assumed to be quadratic in K1 and Kn. 
It can be expressed as: 

(11.3) 

where C11, C12 and C22 are material dependent constants to be evaluated through experiments and 
C is a real number constant. 

Experimental results observed by Erdogan and Sih [11.2] follow ellipse like distribution as 
shown in Fig. 11.1. This kind of distribution is a subset of the form given in the Eq. (11.3). Later, 
Broek [11.3] proposed a model which takes the following form: 

(_!S__)2 +(~)2 = l 
Krc K11c 

(11.4) 

Kncr----

• • 

• 
• 0'-----------------'---

0 

Fig. 11.1 A typical failure surface based on experiment [11.2] 

It was observed by Broek that the failure surface given by Eq. (11.4) closely approximates the 
fracture behavior of mixed mode for most of the engineering materials. 

11.3 MIXED MODE CRACK PROPAGATION CRITERIA 

In this section the following criteria are presented: 
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• Modified Griffith Criterion 
• Maximum Tangential Stress (MTS) Criterion 
• Strain Energy Density (SED) Criterion. 

11.3.1 Modified Griffith Criterion 

In the Modified Griffith Criterion, the concept of energy balance is extended to include energy 
release rates associated with all the modes. Total energy release rate for a crack in a plate subjected 
to Mode I and Mode II loading is given as: 

G = G1 + Gn (11.5a) 
where 

Kf 
G1 = aE (11.5b) 

Kf1 
Gu= aE (11.5c) 

a = l for plane stress 

= 1 - v2 for plane strain 

According to this criterion, crack extension will occur in the direction where total energy release 
rate is maximum and the extension will occur when the maximum energy release rate reaches a 
critical value. The critical value depends on the material considered. 

Crack Extension Direction 
A crack in a plate with an inclination of /3 degree with ordinate subjected to remote loading a0 is 
shown in Fig. 11.2. A polar coordinate system is considered at the crack tip. For various 
hypothetical crack extension directions, 8 (-re < 8 < re), the associated strain energy release rates 
G8 is evaluated and is plotted as a function of 8as shown in Fig. 11.3. The crack extension direction 

()c corresponding to the G ; 0
' is obtained by maximizing the Ge using 

Fig. 11.2 Mixed mode crack subjected to remote loading a0 
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Fig. 11.3 Variations of energy release rate with crack extension direction 

Critical Condition 

(11.6) 

Crack extension will occur when G ;ax reaches a critical value of strain energy release rate Ge, that is, 

(11.7) 

The material dependent critical value Ge is obtained from pure Mode I loading. Employing 
Eq. [11.S(b)], we obtain 

aKi 
G=-

c E 
(11.8) 

where Kic is the critical Mode I stress intensity factor. 

11.3.2 Maximum Tangential Stress Criterion 

Maximum Tangential Stress Criterion (MTS) was proposed by Erdogan and Sih [11.2] based on a 
certain component of stress state reaching a critical condition. Consider a crack subjected to Mode I 
and Mode II loading as shown in Fig. 11.2. Stress components in the vicinity of crack tip (Point H) 
using polar coordinate system are expressed as: 

er,,= Kif 11 (r,8)+Knf 12 (r,8) 

CJ 88 = K d 21 (r,8)+ K nf 22 (r,8) 

r,8 = Krf 3i(r,8)+Knf 3i(r,8) 

where the coordinate dependent functions f ij (r,8) are given as 

1 (5 8 l 38) f11 (r,8) = ~
2

rcr 4cos2- 4cos2 

(11.9) 

(11.10) 

(11.11) 



Mixed Mode Crack Initiation and Growth 237 

According to MTS criterion, crack extension will occur in the direction where tangential stress 
component a ee at an infinitesimal radial distance r0 from the crack tip is maximum and the 
extension will take place when the maximum tangential stress reaches a critical value which is a 
material dependent parameter. 

Crack Extension Direction 
Consider a crack in a mixed mode loading condition as shown in Fig. 11.2. Around the crack tip an 
infinitesimal circle with radius r0 is constructed such that r0 / a << 1 (Fig. 11.4). Along the 
circumference of the circle, a ee is maximized and the corresponding (Jc is evaluated using 

acr 66 
-=0 

c)() 

azcr 66 0 
~<. 

ro 
a<<1 

Grr 

Fig. 11.4 Crack extension direction for MTS criterion 

(11.12a) 

(11.12b) 
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Substituting / 21 (r, 8) and / 22 (r, 8) in Eq. (11.10), we obtain the expression for a ee as 

K1 ( 8 38) 3K11 ( • 8 . 38) O'ee= --- 3cos-+cos- --- sm-+sm-
4.J2nr 2 2 4.J2nr 2 2 

(11.13) 

Applying the condition of Eq. (11.12a) in the above equation and replacing() by crack extension 
direction (Jc, we have 

( 
, (Jc . 38 c) K ( (Jc 38 c) Ki sm2 +sm2 + n cos 2 +3cos2 = 0 (11.14) 

This expression can further be simplified by trigonometric manipulation to: 

Ki sin() c + Kn (3cosfJ c-1) = 0 (11.15) 

Note here that the stress components a,, and a00 are becoming principal stresses in the direction of 
(Jc on the considered circle. This can be verified by substituting expressions of / 13 (r, fJ) and / 23 (r, ()) in 
Eq. (11.11) to have 

1 [ ( (Jc 38c) ( 8c 38c)] 1:,9 = ~ K1 sin-+sin-- +Kn cos-+cos--
4-v2nr 2 2 2 2 

(11.16) 

Using Eq. (11.14) the above equation gives 

'C,9 = 0 

Critical Condition 
To obtain a ;ax, the maximum value of a88 corresponding to crack extension direction, we replace 
() by (Jc in Eq. (11.13). Also, we manipulate trigonometric relations to obtain: 

K () 3K e. 
(J max = __ i - cos3 _£ - - __ II - COS __f_ SID() 

98 n::::- n::::- C v2nr0 2 2 v2nr0 2 
(11.17) 

Crack extension occurs when a;;'" reaches a critical value ac which is a material dependent 
constant; ac is usually obtained from pure Mode I loading where 8c = 0 and Ki = K1c, that is, 

K1c 
(J =--

c .J2nr0 

(11.18) 

For obtaining failure surface independent of the distance r0 , we substitute Eq. (11.18) in Eq. (11.17) 
to have 

3 (Jc 3 8c · 
K1 cos - - - Kn cos- sm()c = K1c 

2 2 2 
(11.19) 

Fracture surface based on Eq. (11.19) is shown in Fig. 11.5. 
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./3 
2 

o~--------~--
o 1.0 

Fig. 11.5 Fracture surface based on maximum tangential stress criterion 

Example 11.1 Consider an infinite plate with a center crack of length 2a. Find crack extension 
direction and critical condition for the crack extension using MTS criterion for (i) pure Mode I 
loading as shown in Fig. 11.6(a), and (ii) pure Mode II loading as shown in Fig. ll.6(b ). The critical 
stress intensity factor in Mode I, determined experimentally, is K1c. 

ao 

t t t t t - - -ro 

! t 
=::::::=::,. ! =::::::=::,. t w w ! t 

t i i i t - - -
ao 
(a) (b) 

Fig. 11.6 Figures of Examples 11.1 and 11.2 of centre crack plane problems subjected to 
(a) pure Mode I loading and (b) pure Mode II loading 

Solution: (i) Invoking Eq. (11.15) for Kn, we have 

K1 sin Be = 0 

yielding 

Be= 0 

The critical condition for crack extension is obtained by substituting ()c in Eq. (11.19) to have 

K1 = K1c 

which, of course, is the expected value. 



240 Elements of Fracture Mechanics 

(ii) Invoking Eq. (11.15), for Kr= 0, we have 

Krr(3cosec-1) =0 

yielding 

ll -1 1 
o =cos -

C 3 

There are two solutions for -,r < e < 1r , 

e, = 70.5° 

e, = - 70.5° 

The second solution (ec =-70.5°) is considered because it satisfies Inequality (11.12b). The critical 

condition for crack extension is obtained by substituting ec = -70.5° in Eq. (11.19) to have 

Ku = _3_ K1c = .J3 Kr 
3 COS( {jC /2) Sin 8, 2 C 

11.3.3 Strain Energy Density Criterion 

Based on energy principles, Sih [11.4, 11.6] proposed Strain Energy Density [SED] criterion. 
Consider a crack subjected to Modes I and II loading as shown in Fig. 11.2. Total strain energy 
U can be obtained from stress and strain field as: 

u~ ![1 u;;de,}v (11.20) 

where Vis a region inside the body. The SED function Wis given as 

dU Cij 

W = dV = f <J';ide;i (11.21) 
0 

For plane linear elasticity problems W can be written in the following form in terms of stress 
components 

where 

K = 3-4v 

= (3-v)/(l+v) 

(for plane strain) 

(for plane stress) 

(11.22) 

The Cartesian stress components in the vicinity of crack tip in terms of polar coordinate system 
are given as: 

<111 = Krf11 (r,e)+Kuf12 (r,e) 

<122 = Krf21 (r,e)+Kn/22 (r,e) 

'X'12 = -Krf31 (r,e)+Kn/32 (r,e) 

(11.23) 

(11.24) 

(11.25) 
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where the coordinate dependent functions !ii (r,8) are given as 

f11 (r,8) = ~cosf(l-sinfsin 
38

) 
v2rc r 2 2 2 

1 . 8 ( 8 38) .fi2 (r,8) = - r;::-::-sm- 2+cos-cos-
...;2rc r 2 2 2 

h1 (r,8) = ~cosf(1+sinfsin 
38

) 
y2rc r 2 2 2 

1 . 8 8 38 /i2 (r,8) = i;-::-:- sm-cos-cos-
v2rc r 2 2 2 

1 . 8 8 38 
,h1 (r,8) = ~sm-cos-cos-

v2rc r 2 2 2 

hz (r,8) = ~ cosf(1-sinfsin 
38

) 
y2rc r 2 2 2 

Substituting Eqs. (11.23)-(11.25) in Eq. (11.22), the SEO function is obtained with some algebraic 
manipulation in terms of stress intensity factor as: 

where 

1 
g11 = -(l+cos8)(K-cos8) 

16µ 

g12 = - 1
-sin8[2cos8-(K-1)] 

16µ 

g22 = - 1
-[(K + 1)(1-cos8)+(1 +cos8)(3cos8-1)] 

16µ 

E 
µ = 2(1+v) 

(11.26) 

Strain energy density function poses singularity of order one at the crack tip. Sih proposed a 
strain energy density factor 5 in a quadratic form which is independent of the coordinate r ; it is 
defined as: 

(11.27) 

According to SEO criterion, crack extension will occur in the direction of minimum strain energy 
density 5(8) and the extension will occur when the 5(8) reaches a critical value S, which is a 
material dependent parameter. 
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Crack Extension Direction 
Consider a crack in a mixed mode loading condition as shown in Fig. 11.2. Along the circumference 
of a circle with radius r0 strain energy density is minimized and the corresponding ec is evaluated 
using conditions: 

aw 
-=0 ae and 

or, 

as = 0 and 
ae 

Substituting Eq. (11.27) in Eq. (11.29), we obtain 

[2cose-(K-1)] sine Kf +2[2cos28-(K-1) cose] Ki Ku + 

[(K-1-6cose) sine] Kii = o 

[2cos 28-(K-l)cose] Kf +2[(K-1) sin8-4sinW]Ki Kn+ 

[(K-1) cos8-6cos28] Kii > 0 

(11.28) 

(11.29) 

(11.30) 

(11.31) 

By knowing values of the stress intensity factors for a given problem, crack extension direction 
can be obtained from the solution to Eq. (11.30), subject to the condition Piven by Inequality (11.31). 

Critical Condition 
Crack extension will occur when minimum value of strain energy density function (Smin) reaches 
a critical value of strain energy density factor Sc Thus, the condition is expressed as: 

(11.32) 

The material dependent critical value Sc is usually obtained by using Eq. (11.27) for a pure Mode I 
loading with ec = 0° and Ki = K1c as 

, _ (l+v)(K-1) K2 
.::,c - 4n:E Ic 

(11.33) 

Thus, Inequality (11.32) can be expressed as 

> (l+v)(K-1) K2 
Smin - 4n:E le 

(11.34) 

for a crack to become critical. 

Example 11.2 Consider again the infinite plate of Fig. 11.6 with a center crack of length 2a. Find 
crack extension direction and critical condition for crack extension using SEO criterion for (i) pure 
Mode I loading and (ii) pure Mode II loading. The critical stress intensity factor in Mode I, 
determined experimentally, is K1c and Poisson's ratio of the material is v = 0.3. 
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Solution: (i) Involving Eq. (11.30) for Kn for pure Mode I, we obtain 

[2cos8c-(K-1)]sin8c =0 

This equation yields two solutions: 

ec = 0 

ec = cos-1 
( K; 1) 

Substituting ec = 0 in the left hand side of Inequality (11.31), we obtain 

LHS = [ 2- ( K- 1)] Kf 

where 

K = 3-4v = 1.8 

K = (3-v)/(l+v)=2.08 

Equation (11.35) simplifies to 

LHS = l.2Kf > 0 

LHS = 0.92Kf > 0 

(for plane strain) 

(for plane stress) 

(for plane strain) 

(for plane stress) 

(11.35) 

Hence, Inequality 11.31 is satisfied. It can be shown that the second solution does not satisfy 
Inequality 11.31. Therefore, ec = 0 is considered. To find the critical condition, we substitute ec = 0 
in Eq. (11.27) to have: 

2 (K-1) 2 
Smin = g11 Kr = Snµ Kr 

Smin is substituted in Inequality 11.34 to obtain: 

(K-1) K2 > (l+v) (K-1) K2 
8nµ I- 4JT,E le 

which simplifies to yield the expected result K1 ;::: Krc 
(ii) Invoking Eq. (11.30), for pure Mode II loading, we have: 

[(K-1)-6cos8c] sin8c = 0 

yielding two solutions: 
ec = 0 

ec = cos-1 
( K; 1) 

In the above two solutions, ec = cos-1 
( K; 1) is considered because it satisfies the condition of 

Inequality (11.31). For a plane strain case with v = 0.3, 
K = 1.8 

e, = cos-1 
( 

0
~
8

) = -82.3° 
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Substituting ec in Eq. (11.27), we have: 

l+v( 2 ) 2 S min = 
96 

E -1( + 14K - 1 Kn . 

To find critical condition for crack extension in pure Mode II, we substitute Smin in Eq. (11.34) to 
have: 

( 
24(K-1) )l/Z 

Kn;;,:.: z K1c 
-1( + 14K-1 

It is worth noting here that MTS criterion is same for plane stress and plane strain because it is 
stress based. On the other hand, SED criterion depends on conditions of plane stress or plane strain 
because it accounts for stresses as well as displacements. 

11.4 AN EXAMPLE OF MIXED MODE 

In the previous section, all three criteria have been discussed and relevant equations and inequalities 
have been developed. In this section, we consider an example of mixed mode which is solved by MTS 
criterion as well as by SED criterion. 

Example 11.3 Consider an infinite plate with a crack of length 2a = 80 mm, inclined at angle /3 with 
the applied tensile stress cr0 as shown in Fig. 11.7. K1c of the material is known to be 40 MPa.Jm, its 
elastic constants are E = 200 GPa and v = 0.3, and the plate is subjected to plane strain. (i) Determine 
initial crack extension direction using MTS and SED fracture criteria for /3 = 60°, (ii) find the applied 
stress cr0 corresponding to the crack initiation using MTS and SED fracture criteria for f3 = 60° and, 
(iii) determine relations ec vs. /3 and critical a0 vs. /3 for both fracture criteria for /3varying between 
10° and 90°. 

Solution: State of stress with respect to axes X1 and X2 is (Fig. 11.7) 

' 2 
a11 = a0 cos /3 

, . 2 
0"22 = <Yo sm /3 

't~2 = a O sin /3 cos /3 

0"11 = Oo cos2 /3 
0"22 = Oo sin2 /3 

+ 

/ 
1"12 = a0 sin /3 cos /3 

Fig.11.7 Angled crack subjected to remote uniaxial tensile load 

/ 
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Stress component a;21oads the crack in pure Mode I and component 1:12 in pure Mode II, 
whereas the effect of o-11 can be neglected. Thus, we have 

K1 = 0-0 .Jiia sin2 /3 

K11 = a O Jiui sin /3 cos /3 
(i) To find initial crack extension direction for f3 = 60°: 

K1 = o-0 ,jiui sin2 60° = ~a0 Jiui 
4 

Kn= a0 jiui sin60°cos60° = Jj a0 jiia 
4 

Substituting K1 and K11 in Eq. (11.15) for applying MTS criterion, we obtain 

· J3sinec+(3cos8,-1) =0 

This equation can be solved by trial and error. It is convenient to make a small program on 
computer. Out of the two roots within the range -n: < e < n: , the one that satisfies Inequality (11.12b) is 

oc = - 43.2° 

Similarly, to find ec for SEO criterion, we substitute K1 and Kn in Eq. (11.30) for plane strain 

(K" = 1.8) to obtain: 

3( cosec -0.4) sinec + 2-Jj ( cos We -0.4 cosec )+(0.4-3cosec) sinec = 0 

Through trial and error approach this equation yields: 

ec = - 40.5° 

(ii) To find critical applied stress a~rit corresponding to crack initiation: 

To determine att through MTS criterion we substitute K1 and Kn in Eq. (11.19) to have: 

a~rit~nx0.040 [ 3 (-43.2°) 3jj (-43.2°). ( 0 )1 3cos --- ---cos --- sm -43.2 = 40 
4 2 2 2 

yielding a ~rit = 111 MP a. 

For finding att through SEO criterion, we substitute K1, Kn and ec in Eqs (11.27) and (11.33) to 
have: 

S . = 0.008286 ( crit )2 
mm E O" 0 

S = 132.4 
C E 

which, on substitution in Inequality 11.34, gives: 

att = 126.4 MPa 
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/3 
oo 100 30° 50° 70° 90° 

-20° 

~~ -400 

-600 

-80° 

Fig. 11.8 Critical angle ec vs. crack orientations angle /3 of Example 11.3 for 
MTS and SED fracture criteria 

(iii) Similar to parts (i) and (ii), ec and o-~rit are determined for various values of angle /3 using the 
computer program. Figure 11.8 shows the relation between crack extension direction ec and crack 
inclination angle /3. For the pure Mode I case of /3 = 90°, the critical angle ec turns out to be 0°, 
representing, as expected, crack growth in self-similar manner. As /3 decreases from 90° and the 
Mode II component starts increasing, deviation of the crack angle ( (Jc) from the crack plane increases. 
Figure 11.9 shows the dependence of critical applied stress o-~rit on the crack inclination angle /3. 
Obviously /3 = 90° is worst possible crack orientation angle which shows the lowest value of o-~nt. 

600 
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~ 400 
"' /l.. 
~ 
:' 300 
80 
b 

200 

100 

0 
10° 30° 50° 70° 90° 

/3 

Fig. 11.9 Relation between critical load <Y8rit and crack angle /3 of Example 11.3 
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11.5 CRACK GROWTH 

For LEFM analysis, one of the three criteria, presented in this chapter, may be chosen for predicting 
the initiation of the crack extension. In comparison to Modified Griffith Criterion, MTS Criterion 
and SEO Criterion are more popular among investigators. Furthermore, MTS criterion is strictly 
stress-based and its analysis does not depend on the condition of plane stress and plain strain. SEO 
criterion deals with strain energy and therefore conditions for predicting crack growth direction 
and critical applied stress depend on whether the plate is subjected to plane strain or plane stress. 

The path of a finite crack growth in a mixed mode case can be predicted by successive 
application of the fracture criterion. When the given external loading situation reaches the critical 
stage through a chosen criterion, the existing crack is extended in the predicted critical direction 
through a small distance. For the newly extended crack configuration we apply the chosen criterion 
again and criticality of the current (updated) loading configuration is checked. If the loading is 
critical, the crack is extended and the above procedure is repeated. If the condition is subcritical, 
the crack growth stops. 
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Crack Detection through 
Non-Destructive Testing 

Chapter 

12 

Archimedes was given the task of determining if King Hiero's goldsmith was embezzling 
gold during the manufacture of the king's crown ... Baffled, Archimedes went to take a bath 

and observed from the rise of the water that he could calculate the volume of water. 
Allegedly, Archimedes went running through the street naked shouting, 

"Eureka! Eureka!" 

Wikipedia 

12.1 INTRODUCTION 

There are defects in the materials of real life components, which act as cracks. In fact, 
manufacturing of a component is not ideal. There are always defects of several kinds like voids and 
inclusions. Welding, a common technique to join components, is a very aggressive technique. It 
generates various kinds of defects in the weldment and in the heat affected zones. Thus, all critical 
components must be checked through non-destructive techniques (NDT) to detect potentially 
dangerous cracks. 

It is common practice to apply a factor-of-safety during the designing of a work-piece. The major 
uncertainty is due to the presence of manufacturing defects. If the work-piece is scanned with an 
NDT to rule out dangerous cracks, its integrity is assured and reliability is improved. The designer 
can afford to choose a lower factor-of-safety. These days, NDT has been improved to the extent that 
almost defect free components can be manufactured for crucial applications. However, a designer 
should justify the cost involved. 

Many process plant operators and machine users now perform scheduled inspection at a regular 
interval rather than act after a failure. NOT is very effective in identifying those defects which may 
grow and cause catastrophic failure in a component. These defects can either be repaired or else the 
component itself can be replaced. This kind of quality assurance is found to be economical in the 
long run. 
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In certain crucial components such as space vehicles, airplanes, nuclear plants, dams, etc., online 
monitoring of defects is recommended. To achieve it, sophisticated technologies have been 
developed; many of them use large data handling capabilities of modern computers. These days 
many non-destructive tests are available, from very simple to very sophisticated. This chapter 
discusses some of the commonly used non-destructive test methods. They are: 

r. )Examination through human senses, 
• Liquid penetration method, 
• Ultrasonic testing, 
• Radiographic imaging, 
• Magnetic particle inspection. 

12.2 EXAMINATION THROUGH HUMAN. SENSES 

In many cases, a defect in a component can be detected in an initial investigation using human 
senses such as sight, smell, hearing, etc. Field technicians working with a machine usually know 
the possible locations where a crack is most likely to grow and may become unstable. Also, these 
people with some experience develop a keen and acute sense of observation. 

12.2.1 Visual Inspection 

A human eye is a marvelous device provided by nature. It is capable of detecting even minute 
changes in the intensity of light. For most crack detections, an initial cleaning of the surface is 
required. My friend, Vijay, is an expert on rolling mills. Once Vijay was consulted by a production 
firm to determine why the rolled sheets of a rolling machine were no longer maintaining the 
uniform thickness. I accompanied him to the site; Vijay looked at the rolling mill and then asked for 
a cleaning cloth. The frame which houses the rollers is a crucial component. It was found to be oily 
and dusty. Vijay cleaned the portion of the frame between the main rollers and observed a fatigue 
crack growth. The crack had still not achieved the critical length required for catastrophic failure 
but had decreased the stiffness of the frame considerably. The firm owner was advised to reinforce 
the frame so that the crack could be arrested and the frame could regain its original stiffness. 

Several optical aids are used to facilitate the detection of a crack. Most of these devices have 
their own light source to properly illuminate the area under investigation. The simplest optical 
device is a convex lens known as the magnifying lens. To investigate the surface for a crack the lens 
is moved in or out to focus on the surface. A magnification of 2 to 3 usually facilitates crack 
detection. To detect minor cracks or scratches, an optical microscope is used, usually of 10 
magnifications. A microscope with a higher magnification of lOOx, SOOx or lOOOx can also be used 
but the depth of the field and the area of view are reduced considerably. 

An endoscope is a more sophisticated optical device which has its own source of light so that the 
surface can be illuminated and scanned for cracks. The surface is adequately illuminated by the light 
carried through flexible optical fibers. Also, a subminiature closed circuit TV camera is installed at 
the front portion of the endoscope. The pictures are then carried back with the help of another set of· 
optical fibers to a computer screen. Because of high optical efficiency of optical fibers, an endoscope 
can view surfaces up to 4-5 meter away. Endoscopes are useful for a wide range of applications like 
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detecting crncks in the internal surfaces of boilers, pipes, reactors, and heat exchangers. For example, 
once I visited a company making cylinders to store nitrogen and oxygen gases at very high pressures. 
I found that the internal surface of each cylinder was being thoroughly checked with an endoscope. 

12.2.2 Investigation through Hearing 

Polymer composite laminates are initially investigated by a coin test. A metal coin (e.g. one rupee 
coin) is tapped on the surface of a polymer composite component. The noise of the tap changes 
wherever interlaminar separation is present. With no interlaminar damage, the sound waves go all 
the way up to the rear end of the laminate and then return back, thus taking a long time to return. 
This corresponds to a low frequency noise. When interlaminar cracks are present, some sound 
waves are reflected from the surfaces of the inter laminar separation and return back early giving a 
higher frequency noise. The difference in the frequencies can be quite easily detected. However, a 
component passing the coin test is usually checked further through a rigorous NDT like ultrasonic 
investigation before it is finally approved. 

Up till very recent time, all axles of locomotive passenger compartments were tested on all big 
stations during a long railway journey. Now, with the availability of more reliable components, 
frequent checking is not required. The axles are inspected in the yard of destination station. A 
trained person taps one end of the axel with a small hammer to hear the frequency. A higher 
frequency note would cause alarm and the compartment with a defective axle is taken out of the 
train-rack for a rigorous NOT. In short, appearance of a crack in a component does produce new 
sound frequencies and a trained person can sense the danger. 

12.2.3 Detection through Smell 

One good example is the leakage in an L];'G cooking stove. In reality, there is no smell in LPG but an 
artificial smell is introduced so that if there is a leakage any where, a housewife can smell the gas 
and be alarmed. In most cases, the damage occurs in the plastic pipe taking the gas from the 
cylinder to the stove as it gets aged and cracked. 

In making a high pressure cylinder, the design is usually made to have a leak before break. A 
semi-elliptical crack extends mostly in depth from the internal surface towards external surface. A 
stage comes when the semi-elliptical crack grows and becomes a through-the-thickness-crack. The 
design is made such that the through-the-thickness-crack is not critical. However, there will be a 
leakage of the gas or liquid and the crack is detected. 

12.2.4 Other Simple Methods 

I visited a steel plant which was making tubes as one of the several products. Each tube was tested 
by first closing its ends and then filling it with a liquid (e.g., water). The pressure of the liquid was 
increased to 30-40 'Yo higher than the designed pressure. The pressure of the filled system was 
monitored with a pressure gauge for a specified time (e.g., 15 minutes) to explore whether the 
pressure decreases. A flow through a leak will make the pressure drop fast as the liquid does not 
compress much and even a small loss of liquid will decrease the pressure quickly. Such pressure 
difference tests are adopted for checking various systems. If a system stores high pressure gas, its 
leakage is often detected by applying a soap water solution on the suspected place and watch the 
bubbles come out. 
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12.3 LIQUID PENETRATION INSPECTION 

Liquid penetration inspection is a simple technique for non-destructive testing and is one of the 
most widely used techniques. It detects cracks which are exposed to a surface. The technique can 
be used on the surface of a wide variety of materials. It is quite reliable and is capable of identifying 
cracks of very small width, even cracks of just a few microns (pm). 

~-:::;-------- ----·-··- ···~--·-·-·-- ··--·-·----------····;, 

12.3.1 Principle 

An appropriate penetrant liquid with an excellent wetting capability is made to enter into the 
cavity of a crack through the capillary action. It is worth noting here that widths of most cracks in 
work-pieces of real life are so thin that cracks can not be observed through naked eyes. Figure 
12.l(a) shows one such ·crack: dashed lines depict the existence of a crack which is invisible to 
human eyes. When a penetrant is applied on the surface it starts entering the crack [Fig 12.l(b)]. 
The penetration into a very narrow crack cavity is slow and thus takes time, known as dwell time. 
The penetrant contains a.bright colour dve, usually red, to provide enough contrast for decorating 
~~ 

the crack. 

(a) (b) 

(c) (d) 

Fig. 12.1 (a) A thin crack having an opening on the surface but invisible, (b) a penetrant is 
spread on the surface which enters in to the cavity of the crack, (c) the penetrant is wiped 

out but crack is still invisible and (d) spreading of developer brings colored penetrant 
out of the crack cavity to make of crack look wider a~d visible 

The excess penetrant is wiped offirom the surface, leaving only the liquid within the crack 
cavity. Although the crack is filled with a colored liquid [Fig. 12.l(c)L the crack can not be seen yet 
in most cases because the crack mouth is very narrow (a few pm only). 

Another liquid"a developer, is applied on the surface which is a good solvent for the penetrant 
liquid. As a result, a part of the penetrant comes out of the crack cavity and diffuses into the 
developer's layer on the surface [Fig.12.1 (d)]. In fact, the developer's layer works like a blotting 
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paper. Thus, a colored line with a reasonable width appears at the mouth of the crack opening. The 
colored line can now be easily observed by the investigator. 

12.3.2 Procedure 

Before applying the penetrant, the surface of the work-piece is made free of scales, flakes, paint, 
dirt, grease, other chemicals, etc. If the surface is not cleaned, the penetrant will have difficulty 
entering the crack cavity. However, abrasive cleaning methods should be avoided. Sand blasting 
must not be done as the particles are likely to fill the crack opening. Usually, a good solvent is used 
to clean the surface. Then, the surface should be dried so as to let the cleaning solvent evaporate 
out and to facilitate the entering of the penetrant inside the crack. 

A penetrant is usually a water based liquid containing a bright dye, usually red. It can be 
petroleum based also. A supplier usually provides a kit of mutually compatible chemicals-a 
penetrant, a developer and useful solvents. It is important that the penetrant and the other 
chemicals do not react with the surface of the work-piece. Filling of the crack cavity through 
capillary action takes time and, therefore, the layer of penetrant should be allowed to remain on 
the surface for some time. The dwell time is usuall 20 minutes or so. 

At the end of the dwell time, the penetrant is cleaned from t e urface. The surface should be 
cleaned thoroughly. If the traces of the penetrant remain on the surface, they will be decorated too 
along with the crack cavity when the developer is applied and the identification of a crack may 
become difficult. The cleaning should not be overdone also, as it can cause the loss of the penetrant 
from the cavity of the crack. For water-based penetrants, a simple wiping of the surface with a 
cloth damped with water is suitable. Or the work-piece may be washed in water. For petroleum 
based penetrants, oil or chlorine based solvents may be used. 

A developer which is a good solvent of penetrant is applied on the surface. The developer is 
usually a liquid but in certain cases a solid powder is also used. The penetrant takes time to come out 
of the crack cavity and get soaked into the developer. This dwell time is approximately same as the 
dwell time taken by the penetrant to enter into the crack. The sideway spread of the bright colored 
dye makes the crack line look thicker. Then, the crack can be easily detected with naked eyes. 

Chemicals used in dye penetration tests are usually sold in convenient aerosol cans. Thus, the 
chemicals can be easily sprayed on the surface to be examined for crack detection. Because of the 
low cost of chemicals and their availability in convenient aerosol spray cans, the dye penetration 
technique is very popular. 

12.3.3 Crack Observation 

The crack should be observed in bright day light or in a well illuminated place. The wavelength of 
red light lies between 0.63 ~:hd"0.76 µm which 1s adequate 1oraetecting most cracks. It is important 
to know that to identity a geometric feature, it has to be greater than or equal tQ~ where ,'.l is the 
wavelength of the light source. An analogy is that when a horse crosses a field, he does not feel the 
small pits or bumps on the surface of the ground. But, if a mouse runs over the ground he has to go 
up and down with the unevenness of the surface. However, i~th..oiacrack is_expected to be 
q~ite sm~ll, a flu~~~nt ~ye-is_~~~ ~~Ql~P-~?-etranE1:p!a~': o~th~.recl coloflr.<!y;=Tfie·crac~s 
are then observed unaer darl< cona1tions using ultrav10let (UV) rays whose wavelength 1s 
substantially smaller (in the range of 0.35 to 0.4 µm). --
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The dye penetrant examination can be performed on a variety of materials, ferrous and non­
ferrous metals, polymers, ceramics, and glass, etc. However, the technique is not suitable for porous 
materials because pores that are opened to the surface will light up and it would be d1fficult to 
identify the cracks. 

For thin components, through-the-thickness-cracks are identified easily as the penetrant passes 
from the front free surface to the rear free surface (Fig. 12.2). 

Front surface --...., 

Front surface 

A-A ~ 
W#Y~ 

Rear surface 

Fig. 12.2 Detecting a through-the-thickness crack 

To summarize, the liquid penetration inspection is inexpensive, simple to use, reliable and 
versatile to inspect work-components of many kinds of materials. But it can detect only those 
cracks which are exposed on the surface. For fully embedded cracks, other non-destructive 
techniques should be used. 

12.4 ULTRASONIC TESTING 

Ultrasound tests in medical diagnostic centers are now quite popular and many of us have 
undergone scanning of our body organs. Ultrasonic testing to detect crack in a hardware 
component is based on the same principle. In fact, the ultrasonic tests were first developed for 
hardware materials and later on modified to perform ultrasound diagnosis of human body. 

Ultrasonic testing is non-invasive, simple, inexpensive and very versatile. The technique is capable 
of detecting fully embedded cracks as well as surface cracks. Ultrasonic detectors are now made 
very compact and can be easily taken to inspect defects in fields. Also, defects can be easily identified 
in many kinds of materials like metals, polymers, wood, ceramics, polymer composites, etc. 

12.4.1 Principle 

The ultrasonic testing is similar to a search light being used to locate a thief. If there is no thief, the 
light gets reflected from a wall across the street. In case, there is a thief, the light will be reflected 
from the thief as well as from the wall. 

In case of a search light, optical light waves emanate and detect objects, where as in ultrasonic 
tests, stress waves (also known as the sound waves) propagate within the work-piece to be 
investigated. When a stress wave propagates through a solid or a liquid, a particle vibrates from its 
usual position and makes the neighboring particle move. Thus, the energy propagates from one 
particle to another with sound wave velocity. 
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There are several kinds of stress waves in a material but two prominent ones are, (i) longitudinal 
or primary waves in which the particles move in the direction of energy propagation, and (ii) shear or 
secondary waves in which particles move normal to the direction of energy propagation. Usually, the 
velocity of longitudinal waves is designated by c1 and the velocity of shear waves by c2. They can be 
determined with the help of following expressions 

C1=)E!p 

C2 = )GI p 

where E is the Young's modulus, G the shear modulus and p the density. It is to be noted that c1 is 
greater than c2 as Eis larger than G. Majority of ultrasonic tests are done through primary waves but 
secondary waves are also used for special applications. Primary wave velocity in steel is quite high 
(about 5140 m/s). 

In ultrasonic testing, a bunch of stress wave pulses (usually 3 to 9) of a high frequency is 
introduced on the surface of a work-piece by a probe as shown in Fig. 12.3. The frequency of the 
pulse-bunch is high, usually in the range of 0.5-15 MHz. This frequency is much higher than our 
capability of hearing whose upper limit is only 0.02 MHz. Thus, ultrasonic testing is inaudible to 
human ears. Most of the stress waves of a pulse-bunch reflect back from the rear face of a work­
piece since there is air beyond it and very little energy is transmitted to air particles. In fact, for 
waves propagating in solids and liquids, the air can be regarded as vacuum. The reflected pulses 
are received by the probe and are quite weak in magnitude. The probe sends them to an instrument 
for amplification and processing. If a defect exists in the work-piece, the pulse-bunch is reflected 
from the defect with a shorter flight time. 

(a) 

Defect Work-piece 

(b) 

Fig. 12.3 (a) A bunch of high frequency pulses, (b) a probe transmitting high frequency 
pulses to a work-piece and receiving reflections from the rear surface and a defect 

It is inconvenient to deal with a bunch of high frequency pulses. Therefore, pulses are rectified 
and smoothened as shown in Fig. 12.4; the smoothened pulse is known as echo. The incident pulses 
on the work-piece are also rectified and smoothened to have a primary echo (bang). Figure 12.5 
shows the primary echo, the echo from the rear surface and the echo from a defect. Appearance of 
an echo between the primary echo and the echo of the rear surface gives two important 
informations, (a) there is a defect in the material, and (b) how deep is the defect. Figure 12.5 shows 
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an echo from a defect with round trip flight time of t1. Then, the distance of the defect from the 
front surface is c1t1/2. 

/ 
A bunch of high 
frequency pulses 

~~ 
Rectified pulses Echo 

Fig. 12.4 A burst of high frequency pulses rectified and smoothened to have an echo 

Primary echo Echo from defect 

~---·t--- Echo from 
rear surface 

t, 

Fig. 12.5 Echoes recorded on an oscilloscope display or a computer 

Ultrasonic testing requires high frequency of pulses because the defect size should be larger 
than the half of the wavelength (l/2) of elastic waves. For example, wavelength of sound wave 
propagation for 5 MHz probe is about 1 mm in steel. This kind of pulse frequency can detect flaws 
having geometrical features large than 0.5 mm. If a probe of 1 MHz frequency is used on a steel 
component, defects smaller than 2.5 mm will not be detected. On the other hand, wavelength of 
1 MHz probe in a polymer like epoxy is close to 1.6 mm and defects of sizes smaller than 0.8 mm 
are not detectable. 

12.4.2 Equipment 

There are mainly three major units of an ultrasonic test setup, (i) probe, (ii) pulse-echo instrument, 
and (iii) display oscilloscope (or computer) as shown in Fig. 12.6. The probe is the most crucial unit 
and will be taken up first. 
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Fig. 12.6 Hardware elements of an Ultrasonic Detector 

The transducer in the probe is a thin disk of a piezoelectric material which converts a voltage signal 
into stress pulses. These stress pulses are transmitted to the surface of the work-piece. There are 
several piezoelectric materials available but quartz is found to be appropriate for most 
applications. The thin disk is cut from a single crystal of quartz at an appropriate angle (X-cut for 
generating longitudinal waves). Figure 12.7 shows the schematic diagram of a probe. The thickness 
of the quartz disk is precisely controlled so as to have its resonant frequency same as the desired 
frequency of the probe. To apply voltage on the quartz transducer both faces of the thin quartz disk 
are electroplated and electric wires are attached. At the front face of the quartz disk a wear resistant 
plate is fixed as shown in the figure.A spike of high voltage and of a very short duration (""10 ns) is 
applied on the quartz transducer by the pulse-echo instrument. This makes the piezoelectric disk 
vibrate at its resonant frequency. The vibrations in quartz transducer do not die fast and, therefore, 
a damping material is applied on the rear face of the piezoelectric disk. The damping material 
helps in suppressing the vibrations of the disk and thus, only a bunch of a few pulses passes into 
the work-piece. 

Electrode 
wires 

Damper 

Electrode 

Quartz 
transducer 

Wear plate 

Fig. 12.7 Schematic diagram of a probe with quartz transducer, sound absorbing 
damper and wear plate 
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A kit of ultrasonic flaw detector comes with probes of different frequencies. Depending upon 
the material to be tested, an appropriate probe is chosen. The wavelength of sound waves is usually 
maintained between 1 and 10 mm within the work-piece. 

The piezoelectric disk also works as a transducer to record the echoes coming back to it. The 
stress of an echo develops voltage across the faces of the piezoelectric disk. The electric signal thus 
generated is weak and needs to be amplified. 

A material known as couplant is required to propagate the sound waves from the probe to the 
surface of the work-piece. Usually, a viscous oil, grease, glycerin or water is used as couplant. The 
couplant should be quite inert to avoid damage to the surfaces of the work-piece and the probe. 

Pulse-Echo Instrument 
As alr~ady stated, the pulse-echo instrument generates a spike of high voltage and of a very short 
duration at a regular interval. This spike resonances the piezoelectric disk which, in turn, passes a 
bunch of pulses into the specimen as the primary echo (main bang). 

The sound wave inside the material is dissipated due to several mechanisms (to be discussed 
subsequently). Once all the echoes of a main bang die, a new spike of identical nature is generated. 
The new spike again triggers the oscilloscope and the echo response is repeated. This kind of 
repetition at a regular interval creates a stable display on an oscilloscope or computer screen. 

An amplifier in the pulse-echo instrument amplifies the weak signal of the echo received by the 
probe. Also, the instrument filters the undesirable noise picked up by the probe before the echo is 
displayed on an oscilloscope screen. Some professionals like to use a computer in place of 
oscilloscope display. It has the advantages that a large number of test information can be stored, an 
echo can be magnified and minute features can be studied. 

Transmission Losses 
As the pulse propagates in the material, there are transmission losses and the intensity of the stress 
waves is attenuated because of several causes: (i) there is a divergence of stress waves which in 
turn makes the echo weak,(ii) there is a scattering of stress waves due to inhomogeneities present 
in real life material such as inclusions of second phase particles, voids, shrinkage cracks, grain 
boundaries, etc., and (iii) there exist hysteresis which convert mechanical energy of sound waves 
into heat. If the transmission losses are high, the echo from the rear surface of the work-piece will 
be of poor quality. Losses of high frequency stress waves are more and therefore a high frequency 
probe may not be appropriate for testing thick components. A low frequency probe can be used on 
a thick work-piece as the transmission losses are low. However, it can not detect minute defects as 
the wavelength of the sound wave is long. On the other hand, a high frequency probe can detect 
defects of smaller sizes. An experienced or trained operator chooses a probe of a right frequency 
for the given job. 

Transmission losses are much higher in polymers in comparison to losses in metals. Then, a 
single probe with pulse-echo capability may not work. In such situations, two probes are used, a 
transducer transmitter and a transducer receiver, as shown in Fig 1.2.8. Most polymer composite 
laminates are tested with the help of this arrangement. 
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Transducer 
transmitter 

Work-piece 

Fig. 12.8 Two probes Ultrasonic Detector 

12.4.3 Immersion Inspection 

Transducer 
receiver 

A component is completely immersed in water or other suitable liquids and tested for flaws. The 
testing can be done through a transmitter-receiver transducers or through a single probe using 
pulse-echo principle. The immersion method is convenient for testing a large number of work­
pieces. The method has an additional advantage that the couplant is uniform over the entire surface 
of a work-piece. 

From the geometric point of view, there are three kinds of inspections-A-Scan, B-Scan and 
C-Scan. A-Scan investigates flaws at a point of the work-piece. If the probe is moved in a line and 
echo response is continuously monitored it is called a B-Scan. C-Sran is useful in scanning the full 
area of a component as the probe is moved first along a line, say parallel to x-axis, then, it is shifted 
laterally by a small amount along y-axis and again scanned in x-direction. The procedure is carried 
out to cover the entire area. Figure 12.9 shows a C-scan of an impacted polymer composite panel. 
The empty space corresponds to the signals not received by the receiving transducer. In the 
impacted panel, this corresponds to delamination caused by the impact induced damage. 

-----------------
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Fig. 12.9 C-scan showing delamination in a polymer composite laminate 

Once, I visited a company which was making large panels of polymer composites to be used in 
airplanes. They had a setup specially made for detecting crack in a panel. In the set up, a jet of 
water hit the left face of a panel which also transmitted ultrasonic waves to the panel. On the right 
face of the panel, another jet of water was made to hit the panel in the same line. This water jet was 
connected to a receiving transducer. The transmitting and receiving transducers moved in unison 
to do the C-scan of the work-piece. 
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The ultrasonic testing is very versatile and has been adopted for various applications by 
devising special elements. For example, a work-piece can be scanned at an angle using an angular 
probe whose transducer usually works on shear wave propagation. In short, ultrasonic test is a 
widely used non-destructive technique. It is simple to use, relatively inexpensive, quick and 
portable. The technique can detect surface as well as fully embedded defects. 

12.5 RADIOGRAPHIC IMAGING 

Working of radiographic imaging is similar to that of a camera with a flash light which we use in 
daily life. The flash sends a predetermined amount of light and the reflected light from the objects 
is recorded on a photographic film installed inside the camera. The film records the contrast of the 
light reflected from the various objects in the view. In radiography, the difference is that the 
recording film is separate from the radiographic source and is placed behind the work-piece. 

In radiographic imaging, electromagnetic waves (X-rays or y-rays) of very short wavelength are 
transmitted through a work-piece. If the material of the work-piece is not uniform, the transmission 
of electromagnetic waves will be absorbed differently and there will be contrast on the recording 
film. For example, if there is an embedded void in the work-piece, the electromagnetic waves will 
not be absorbed while propagating through the void and thus reduction in the intensity will be 
less. Consequently, the film will be exposed more on the portion that corresponds to void location. 

X-rays or y-rays are both electromagnetic waves but are produced using different sources. Each 
has its own strength and limitations (to be discussed subsequently). For radiographic imaging, 
both waves behave in same manner to detect defects. 

12.5.1 Contrast through Absorption Rate 

X-rays or y-rays propagate with the velocity of light. Their frequencies are extremely high and 
consequently their wavelengths are extremely small, usually ranging between 1 nm and 1 x 10-6 

nm. They are capable of passing through any material because of the presence of spaces between 
atoms. Also, an atom itself is spacious as its nucleus is quite small. Radiographic waves are like a 
mouse which can go through small holes in a wall, whereas light waves with longer wavelength 
are like a cat which cannot pass through. 

X-rays or y-rays are progressively absorbed as they propagate in a material. The absorption rate 
(attenuation) depends on the material being tested; it is high in a dense material. The progressive 
absorption is the key to radiographic imaging. An inclusion or a void will affect the intensity of 
radiation on the recording film, thus creating contrasts. 

12.5.2 Imaging through X-rays 

X-rays are produced in high vacuum within a tube made of glass or ceramic. When the cathode is 
heated by passing current through it, electrons are emitted. A very high voltage is applied between 
the cathode and the anode target as shown in Fig. 12.10. Depending upon the application, an X-ray 
tube is designed with voltage in a high range from 20 kV to 20 MV. The electrons, accelerated by 
the high voltage, impact the target producing X-rays. The target is known as focal point and is 
usually made of a hard material like tungsten. Most of the kinetic energy of the impacting electrons 
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is converted into heat. Thus, a proper cooling of the target is required. Also, the target cannot be 
very small to avoid its overheating. The finite size of target plays an important role in affecting the 
sharpness of imaging. This aspect will be discussed subsequently. A window of low absorbing 
material (beryllium, aluminum) is provided for the exit of the X-rays from the tube. The X-rays 
r~diation spreads as shown in Fig. 12.11. X-rays pass through a work-piece to a recording film. 

~ X-rays tube 

Cathode 

Focal point '1J!·ili4il·ll!l0 -·r--Window 

X-rays 

Fig. 12.10 X-ray setup 

Penetration Ability and Exposure 

High 
voltage 

Absorption of X-rays is high in thick or dense materials. To have an appropriate intensity of X-rays 
for a given material and a given thickness of a work-component, suitable anode-voltage is selected 
for the X-rays tube. For example, X-rays generated by 150 kV can penetrate 30 mm thick steel plate 
and 80 mm thick aluminum plate. Similar to a photographic camera, right exposure is given for 
imaging defects. Too much or too little exposure will not give a proper contrast on the recording 
film. Usually, an exposure is measured as E = At, where A is the filament current of cathode and t 
the exposure time. 

Loss of Sharpness of an Image 
The image of a defect may not be sharp due to two considerations: 

(i) Geometric unsharpness: The focal point works more like a point source from where X-rays 
start spreading as shown in Fig. 12.11. However, as discussed earlier;1rrs-d:ifficulHo have 
the focal point very small; usually its size is between 2 mm x 2 mm and 5 mm x 5 mm. Due 
to the finite size of the focal point, X-rays from the edge of a defect fall on a finite width of 
the recording film, giving rise to a blurring of the edge (Fig. 12.12). The blurring can be 
minimized by placing the focal point far away from the work-piece and the recording film 
very close to the rear surface of the work-piece. 

(ii) Effect on radiation on recording film: High density radiation interacts with the recording film 
which has a thin layer of a silver halide as a main constituent to record the amount of 
exposure. The radiographic exposure dislodges electrons from silver halide emulsion. These 
electrons fly to cause ionization of adjacent silver halides causing blurring of the edges of a 
defect. One can use low sensitivity film with a thinner spread of silver halide to suppress 
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Focal point 

Work-piece 

Fig. 12.11 X-rays falling on a work-piece with a film placed 
close to its rear surface 

the blurring. But then, the exposure time on the film would have to be higher, thus creating 
a condition of give and take. 

12.5.3 Imaging through Gamma Rays 

A gamma rays source is an unstable nucleus that continuously emits radiation similar to the 
radiation of X-rays. Several kinds of gamma sources are used but the most common are Cobalt 60 
and Iridium 192. The energy level of radiation is quite high, in the wide range of 100 keV to 1 MeV. 
Because of their smaller wavelength, they are capable of penetrating dense and thick materials. 
Sources of y -rays are supplied by a national atomic commission (i.e., Bhabha Atomic Reactor 
Center, Mumbai in India). They are supplied in sealed capsules of dimensions ranging between 
0.3 mm x 0.3 mm and 6 mm x 6 mm. 

The gamma imaging of defects in a material is similar to X-ray imaging with associated 
problems of contrast, blurring and optimum exposure. However, a gamma source is small and can 
be inserted into a small cavity. For example, a gamma source can be placed within a pipe of small 
internal diameter; the radiation sensitive film is then placed at the outside surface of the pipe. 

A y-source continuously emits radiation and, thus, has a limited life, a few months to a few 
years depending upon the type of y-rays source. It is worth noting that X-rays emission is 
broadband, that is, radiation has a wide range of wavelength. In contrast, y -rays emission is 
monochromatic. Also, in comparison to X-rays, the number of disintegration per unit time is much 
less in y-rays and, therefore, substantially longer exposure time is required. 
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Fig. 12.12 The finite size of the focal point develops geometric 
unsharpness on the film 

12.5.4 Strong Points of Radiographic Imaging 

• Can detect defects in almost all materials including dense steel. 
• X-rays and y-rays can penetrate thick components and detect cracks. 
• No surface preparation of a work-piece required. 
• Sources of y-rays are very compact to use. 

12.5.5 Limitations of Radiographic Imaging 

• The technique is relatively expensive, Sophisticated equipment is required for X-rays and a 
source of y-rays has a limited life. 

• Access to both front and rear surfaces is needed. 
• Very tight cracks (very small space between the crack faces) are difficult to be detected. 

Also, minute discontinuities are not detected. 
• Radiographic imaging gives no idea of how deep the defect is. 
• Sharpness may be a concern in interpreting the images. 
• A thin defect (e.g. a thin disk) normal to the propagation direction of X-rays or y-rays is not 

recorded with good contrast as the progressive absorption through the defect is small 
creating only small contrast. 

• X-rays or y-rays are high energy electromagnetic waves and may cause injuries to workers. 
Each worker in a radiographic unit has to carry a badge which progressively monitors the 
radiation exposure to his body. 

In short, radiographic imaging deals with powerful high frequency and very low wavelength 
electromagnetic waves which pass through all kinds of materials. A defect absorbs the radiation 
differentially and is recorded on a sensitive recording film with a different contrast: 
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12.6 MAGNETIC PARTICLE INSPECTION 

Magnetic particle inspection is capable of detecting surface and subsurface cracks in a work-piece 
made of ferromagnetic materials such as most steels, nickel and cobalt. The technique is simple to 
use, inexpensive, quick, sensitive, and reliable. However, inspection is limited to ferromagnetic 
materials only. 

12.6.1 Principle 

A strong magnetic flux is generated within a work-piece. A defect disturbs the lines of force and 
creates leakage of magnetic flux out of the surface of the work-piece. When minute magnetic 
particles are sprayed, they get deposited on the surface at points which are close to the crack. This 
happens because the disturbed magnetic flux passes through the particles. Figure 12.13 (a) shows 
a crack open to the surface. Some magnetic particles may enter inside the cavity of the crack and 
allow some magnetic flux pass through them. But most of the disturbed flux passes through a ridge 
of particles which builds up at the mouth of the crack. It is worth noting that the width of the 
particle ridge is much wider than the width of the crack mouth. Thus, the cracks can be observed 
easily. This concept is similar to one used in liquid penetration test where the coloured penetrant 
comes out of the crack cavity and spreads on the sides to make the crack visible. 

A subsurface crack which is not too deep inside the surface (usually within 6 mm) is also 
detectable. In Fig.13 (b ), a fully embedded crack disturbs the magnetic flux and part of it tends to 
leak out. When magnetic particles are sprayed, they get deposited on the surface to facilitate 
magnetic lines of force pass through them. However, the deposition of magnetic particles due to a 
subsurface crack is diffused whereas a surface crack shows clear and sharp deposition of particles. 
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Fig. 12.13 Magnetic flux through work-pieces, (a) a particle ridge is built up over the mouth 
of a surface crack, and (b) magnetic particles are deposited due to a subsurface crack 

12.6.2 Sensitivity 

Magnetic particle inspection is quite sensitive and can detect cracks as small as 0.02 mm deep. 
Also, it is capable of detecting surface cracks with opening as small as 0.002 mm (2 µm). However, 
the ratio of the depth to width of the crack should be large (>5). A shallow crack with a wide 
opening having depth/width ratio of the order of one does not really disturb the magnetic flux and 
therefore magnetic particles do not get deposited. 
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12.6.3 Hardware 

The technique is versatile and many kinds of hardware models have been developed for different 
geometry of work-pieces. A schematic diagram of a general purpose test setup is shown in 
Fig. 12.14. Its flexible yokes can clamp a large variety of work-pieces. The coil develops a 
longitudinal magnetic flux in the work-piece. The work-piece in the figure shows a corner crack 
identified by magnetic particle inspection. 

Corner crack 
Magnetic flux 

Work-peice 

Flexible yoke 

Fig. 12.14 A schematic diagram of a hardware setup with yokes 

12.6.4 Flaw Orientation 

Flaws normal to the magnetic flux direction disturb the magnetic lines of the force the most. On the 
other hand, if a thin long crack is aligned to the magnetic flux direction, it would not be detected. 
Usually, flaw orientations between 45° and 90° are detected. Thus, to detect all the cracks, the 
work-piece should be tested in several orientations. For example, if defects are to be detected in a 
tube, two kinds of magnetic flux should be generated. In Fig.12.15 (a), a coil is wound around the 
tube generating longitudinal magnetic flux. The configuration detects cracks normal to the axes of 
the tube. In Fig. 12.15 (b), a conductor rod is passed through the interior of the tube generating 
circular flux. This kind of flux would detect cracks parallel to the axis of the tube. 
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Fig. 12.15 (a) Wound coils around a tube generating axial lines lines of force and 
(b) a conducting rod inserted inside the tube generating circular flux 

12.6.5 Magnetic Ink Powder 

Particles used are minute in size (about 6 µm) and are made of a suitable ferromagnetic material 
with good permeability like pulverized iron oxide (Fe30 4), carbonyl iron powder (pure iron), etc. 
There are two ways of applying the magnetic particles, (i) wet and (ii) dry. In the wet route, 
particles are suspended in water or oil and are applied on the component. In dry particle route, air 
is the carrier which sprays particles on the surface. 

Magnetic particles inspection can be performed even if there is a thin paint on the surface of the 
work-piece and particles. Thus, particles are often coloured with black or red thin paint. Also, the 
work-piece may be painted with a thin coat of white colour so that the build up of black or red 
coloured particles on a defect is easily observed. 

Fluorescent particles are also used, especially to detect hair line cracks. Fluorescent particles are 
prepared by applying a thin coat of a fluorescent material on the surface of the ferromagnetic 
particles. Then, the observation is made under dark conditions using UV light. In comparison to 
crack detection through ordinary magnetic particles, the illumination of a crack through 
fluorescent particles is vastly superior. 

12.6.6 Voltage Source 

Three kinds of voltage sources are used: (i) DC, (ii) AC, and (iii) Half Wave Rectification (HWAC). 
A DC source gives full penetration and is suitable to detect both surface and sub-surface cracks. An 
AC source works well with surface cracks. AHWAC source works well with dry particles as ripples 
in magnetic flux keep on vibrating the particles making them more visible. 

12.6. 7 Demagnetization 

Often, a work-piece needs to be demagnetized to avoid confusion in detecting defects. There are 
several ways but one good method is to-place the work-piece in reverse magnetic field and reduce 
the magnitude gradually to zero. 
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12.6.8 Strength and Limitations 

The strength and limitations of the magnetic particle inspection are: 

Strength 
• Simple to use. 
• Inexpensive. 
• Rugged equipments. 
• Sensitive enough to detect even hairline cracks. 
• No elaborate surface preparation of the work-piece required; only degreasing is adequate, 

especially on machined and electroplated surfaces. However, rust, scale, etc., should be 
removed. 

• No elaborate safety required. 
• Quite dependable if a component can be checked in several directions. 

Limitations 
• Only work-pieces made of ferromagnetic materials can be inspected. 
• Only surface or subsurface defects are detectable 
• Orientation of a crack with the direction of magnetic flux is important. 
• Often, demagnetization of a component is required. 

In short, the magnetic particle inspection is a powerful technique to detect surface or subsurface 
defects in ferromagnetic materials. The technique is inexpensive and simple to use. 

12. 7 CONCLUDING REMARKS 

Fracture mechanics is applicable only when a crack exists in a work-piece. Real materials have 
many defects like voids, inclusions, cracks, etc. But most of them are subcritical and safe. Reliable 
non-destructive test methods are required to assure safety of components. These days, many non­
destructive test techniques are available. However, only some of the widely used methods are 
discussed in this chapter. Also, only the basics of various NDTs are covered in this chapter; for in­
depth details and various sophistications, readers are recommended to refer to advanced material. 

Some time back, I met a German expert whose team developed an experimental test setup to 
check a locomotive wheel for defects with ultrasonic testing at 21 locations. The testing of the 
wheels is done at a fast pace so that all the wheels of a train rack can be tested within an hour. Such 
preventive testing can save many human lives. Thus, the modem philosophy is to avoid, to the 
maximum possible extent, a catastrophic failure by regularly checking the critical components 
through non-destructive testing. 
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